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1 INTRODUCTION 

Much concern has been dedicated to rail services, both from the general public and 
politicians in most countries. Should rail services be state-owned or private? Should they be 
supported financially? Are rail services financially and socially viable or are they obsolete? 
Paradoxically there are two simultaneous trends, rail lines are shut down and high-speed 
tracks and trains are introduced. Financially no entire national railway system is profitable, 
especially if infrastructure costs are taken into account, even though certain lines may be very 
successful even from financial point of view.  

During the last two decades another trend has flourished: deregulation. In Western Europe 
this trend commenced within local and regional public transport. The privatisation of the 
English bus industry, even the long distance coach services, represents the "full market 
solution", where both supply, prices and the operation are in the hands of competing profit 
maximising firms. In the Nordic countries, and to some extent in the US and France, the 
decision over local and regional public transport supply and prices has bee kept in the hands 
of a public authority, while the actual operation is left for competition through tendering. 
Typically these services need local or central government grants for financing – and there are 
economic rationales for this. 

Rail transport has in most countries so far been left in the hands of government controlled 
bodies. In England the railway is split into a rail track company and operators, all privatised. 
In Sweden the Swedish Rail (SJ) has been split into a social welfare oriented Railway 
Administration (Banverket) responsible for infrastructure investments (financed by the 
government) and the "commercial" new SJ, with the aim to operate the service at a minimum 
profit determined by the government. SJ still enjoys monopoly for the commercially viable 
lines for passenger transport, while the non-viable ones are put out for tender by a new 
government authority (Rikstrafiken). With respect to freight transport there is free 
competition “on the track”. The reader should keep in mind that the author of this paper 
basically has the Swedish organisational form in mind, where the rail service operators are 

* This work has been carried out on behalf of and is financed by the Swedish Rail Track Authority (Banverket). 
I thank Malcolm Lundgren and Lars Hellsvik, Banverket and Bo-Lennart nelldal and Hans Hellstrøm, SJ (the 
Swedish National Railways) for useful comments. I also thank Harald Lang, Royal Technical Institute of 
Stockholm, for checking the mathematical derivations and for useful hints on alternatiave ways to express 
certain relationships. 
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commercial, but most of the analysis is supposed to be general since welfare and profit 
oriented regimes are contrasted.  

This paper does not aim to solve or even discuss all the issues related to rail transport. One 
aim is to analyse whether there may be economic reasons for subsidisation of passenger 
railway services through consumer prices or infrastructure charges. The second aim is to 
analyse these subsidisation issues under second-best conditions. In this thus important to 
contrast welfare and profit maximising policies in terms of prices and supply, since many 
railway companies now act commercially. We will also briefly discuss whether vertical 
integration or separation between track and operational responsibilities may be of some 
significance in this context and whether competition “on the track” seems justifiable. 

The model considers two principally different cases:  

A welfare maximising authority determines simultaneously price, service frequency and 
number of carriages per train. This case corresponds to vertical integration under a 
government welfare maximising monopoly. 

Profit maximising operators determine simultaneously price, service frequency and 
number of carriages per train. In this case a welfare maximising rail track authority 
determines infrastructure charges and consumer subsidies. This case corresponds to 
vertical separation with independent profit maximising operators and a supervising 
welfare maximising authority. 

Joint determination of price and supply of public transport from a welfare point of view was 
first presented by Mohring [1972]. The approach has then been followed by e.g. Turvey and 
Mohring [1975] and J. O. Jansson [1979], [1984] who deal with price and service frequency, 
using models which are most relevant for frequent urban services and assuming one 
passenger group. Nash [1978] optimises price and output in terms of miles operated for 
frequent urban bus services, contrasting maximum profit and maximum welfare solutions and 
assuming demand in terms of passenger miles to be dependent on price and bus miles 
operated. Panzar [1979] analyses infrequent airline services, assuming demand to be 
dependent on price and service frequency and allowing for a distribution of ideal departure 
times. These works consider demand from all passengers, or from one representative group 
travelling the average distance, with no concern for where passengers board and alight. 
Jansson [1991] considers and contrasts frequent and infrequent services, and takes into 
account a variety of passenger groups. This work follows Jansson in the basic modelling 
approach, but deals also with (a) two passenger groups with different valuations, (b) that the 
railway operators may either be welfare or profit maximising, and (c) competition between 
rail operators or between a rail operator and other modes.  

We will first, in section 2, define the basic prerequisites and assumptions, including the 
definition of the passengers’ price and quality attributes. Section 3 deals with welfare and 
profit maximisation for one service and one passenger group. Section 4 extends the analysis 
to deal with several passenger groups. Section 5 analyses the implications of external effects 
and second-best situations. Section 6 summarises the main results of parallel work on 
simulations of subsidies applied on the Swedish rail network. The main results are 
summarised in section 7.  

2 BASIC PREREQUISITES AND ASSUMPTIONS 
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2.1 Notation 

is the number of seats per carriage.

I is the variable infrastructure cost per departure due to track maintenance etc.,  

F is frequency in number of departures per hour, 

f is the corresponding infrastructure fee per departure,  

e is the external cost per departure, 

ri is the ride time of group i, 

cLi is a cost proportionate to number of passengers in group i, mainly sales costs,

is the vector of the travel time components,

1 and 1 are the number of seats in per carriage 1
st
 and 2

nd
 class respectively,

i is the monetary time value of group i, 

 is the monetary time value of frequency delay (wait time) of group i, 

i  is frequency delay of group i,

Ti  is the cost of frequency delay of group i

N1 and N2 are the numbers of first and second class carriages used in a train, 

h is the round trip distance of a line, 

c 1  and c are the per unit capital and personnel costs for first and second class 

carriages,

CF is costs related to the each departure of the train (but not related to the train size), i.e., 

capital costs of the minimum train size, including cost of the driver, terminal costs, energy 
costs etc,  

CN[N1k+N2k] are the costs directly related to the train size, i.e., certain personnel costs 

(e.g. conductors, cleaners), energy, the depot size, the platform size etc.  The derivative of 
this cost with respect to size is assumed to increase strongly over a certain size,  

X1 and X2 is the number of passengers in each group 1 and 2 during a period of time, 
thought of as one hour. 

We introduce the following notation: 

X

p

p

X  for own price elasticity,   

F

X

F

F

X for frequency elasticity,  

N

X

N

N

X for elasticity with respect to number of carriages (here also denoted carriage 
elasticity).

Differentials are written in two different ways, either by use of deltas or by use of subindex, 
e.g.,

X

F
XF
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A specific service is denoted k, which could be a railway line, a coach line or an airline. 

Arguments of functions are throughout delimited by [], while polynoms are delimited by (). 

2.2 Authorities 

All the infrastructure authorities, for road, rail and air, are assumed to be welfare maximising. 
However, we will also investigate the consequences of not applying optimal infrastructure 
charges by a second-best analysis. 

The Railway Track Authority (RTA) is assumed to be responsible for investments and 
maintenance of tracks, electricity distribution and allocation of slots (time spaces between 
departures) for rail operation. The RTA is also charging a track user charge. 

2.3 The operating firms 

The firms may be either welfare or profit maximising. In both cases they optimise prices, 
service frequency and the number of carriages of each kind for a certain period of time during 
the day.

Generally we will assume efficiency in production, i.e., that any level of output is produced at 
minimum cost, irrespective of whether the actual producer is welfare or profit maximising. 
The focus is put on consumption efficiency related to determination of optimal prices, 
optimal frequency, optimal number of carriages and possible subsidies and infrastructure 
charges. 

Demand is assumed to be specified for certain periods, such as the average weekday 
afternoon peak hour in wintertime, the average Saturday etc. Only one type of charge - a per-
trip price - is considered.  

The operating firm reaches decisions about relevant inputs and prices well ahead of 
implementation because of a necessary planning lag. All factors of production that are 
variable between decision and implementation are therefore considered relevant for the joint 
decision on the magnitude of policy variables. These factors include, we assume, the number 
and size of trains, as well as personnel required at various levels of demand and by various 
numbers of units, and give rise to what we call variable costs. Policy variables are thus 
considered to be continuous. This assumption is not very restrictive, neither with respect to 
frequency, nor with respect to number of carriages. A theoretical optimal number of carriages 
at 6.7 could in practice be 6 or 7 etc. 

If C[N] denotes the cost per departure, total operating costs per hour for a line is:  

(1)FC[N] cLX F(CF CN N ) h cLX

The notation for distance h is for simplicity reasons subsequently omitted, bearing in mind 
that all departure related costs should be multiplied with the factor h. Infrastructure costs of 
rail operation is IF. Finally production gives rise to external costs eF. The operators are 
supposed to pay the infrastructure charge fF. It could be, or not, that f=I+e. There are also 
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basic administrative and planning costs, A. These costs A are exogenous in the model since 
they are not affected by the operation of a specific line.  

2.4 The passengers 

Since first and second class passengers use different carriages, passengers in each group 
affect only fellow passengers belonging to the same group.  

Aggregate consumers' surplus is expressed as a function of "generalised cost", G = p + ,

where is the vector of the travel time components and  is the vector of monetary time 
values, i.e., the marginal rates of substitution between price and travel time components. 

Although  is assumed to be the same for all individuals within a group, i.e., the same for all 

at each point [p, , may be a function of  and vary among passenger groups. For the sake 

of simplicity, however, is here often written without index for group. The vector is here 
assumed to comprise riding time and "frequency delay", which is the time interval between 
ideal and actual departure time.  

Riding time for group i is written ri. The cost of riding time for a group i is then: 

(2)Ti i

Xi

FN i i

ri

where

(2b)
Ti

Xi

i

Di

1

FN i i

ri

i is thus the value of riding time, assumed to be dependent on the occupancy rate,  

Di  Xi FNi i, which is the number of passengers per seat in a group, and where it is assumed 

that / D >0 and 
2

/ D
2
 >0, so that the value of riding time is progressive with the 

occupancy rate. The number of passengers per departure is qi Xi F. We ignore that different 
passenger groups travel different distances, ri . We interpret r instead as the average distance 
travelled. Subsequently we omit the ride time r, bearing in mind that ride time costs should be 
multiplied by the time r. These simplifications will substantially facilitate the expressions 
derived without disturbing the purpose of this analysis. The consequences of taking into 
account various distances travelled will be commented where appropriate and the full 
analysis of this aspect is found in Jansson [1991]. 

The interval between departures is 1/F hours. Ideal departure times, t, are uniformly 

distributed within this interval, i.e., 0<t 1/F. Frequency delay is then 1/F - t. The cost of 

frequency delay for a group is T [ , F, t] =  [1/f-t](1/F-t). This is the delay multiplied by 

value of time, which is a function of the delay.  The value of time of 1
st
 class passengers 

could be assumed to be substantially higher than the value of time of 2
nd

 class passengers. 
Subsequently we ignore the distribution of t and assume that the expectation value of the 

frequency delay is a function of frequency only, i.e T = T [F]. Ignoring the distribution t 

drastically simplifies the analysis without significant drawbacks for the purpose of this paper, 
but the full effects of taking t into account is found in Jansson [1991]. It may be useful to 
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think about the frequency delay as wait time calculated as half the headway, 1/2F, and wait 

time cost as  /2F. 

 If p denotes the price, the generalised cost of travel for a group (index omitted) at time t is:  

(3)G[p,F,N,s] p+ T+ T [F] p+
X

FN 2 F

so that: 

(3b)
G

p
1

T

X

X

p

Demand per hour, X, for each group is a function of generalised cost: 

(4)X = X[G[p,  F,  N, ]]

Note that the number of passengers in the same group affects demand in a certain group but 
not in other groups, since the groups use different carriages. We know that own-price 

elasticities, denoted p, are negative, p<0. We assume, based on solid empirical evidence, 

that demand elasticities with respect to frequency, vehicle size and train size, denoted F, N

and , are such that  0< F<1, 0< N<1, implying that q/ F<0, q/ N<0. This rules out the 

possibility that an increase in frequency or unit size would generate so many passengers that 
the occupancy rate is unchanged or increases1. Aggregate consumers' surplus for a group is: 

(5)S[G] X[ ]d
G

G max

and

(5b)
S

G
X

Gmax is here the reservation price in generalised cost terms for the individual in a group i with 
the maximum reservation price in generalised cost terms. 

We should already here note the following important relationships with respect to frequency 
and number of carriages. 

(6)
S

G

G

F
-X

T

F
- X(

G

T

T

X

X

F
+

G

T

T

F
) - X

T

F
- X(

T

X

X

F
+

T

F
)

                                                

1 Taking elasticity with respect to frequency as an example, we have:  

q

F

F
X

F
X

F
2

X(
F

X

X

F
1)

F
2

X( F 1)

F
2  which is<0 only if F<1

(3)G[p,F,N,s] p+ T+ T [F] p+
X

FN

F

2 F
(3)G[p,F,N,s] p+ T+ T [F] p+

X

FN

F

2 F
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(7)
S

G

G

N
-X(

G

T

T

X

X

N
+

G

T

T

N
) - X(

T

X

X

N
+

T

N
)

Expression (6) shows the consumer surplus change of a marginal change of frequency. The 
first term on the right hand side is the effect on frequency delay. This term can also be said to 
represent a positive external effect of public transport due to economies of scale in 
consumption. The second term reflects the effect on ride time cost. This cost is composed of 
two terms. The first one is the effect via demand, which in turn affects the crowding in the 
train. The second effect is the direct effect on crowding of a frequency change, denoted by 

use of the special delta . By differentiation of (2) with respect to F we can also write these 
two effects as follows. 

(8)X
D

(
FXF

F
2
N

-
X

F
2
N

) X
T

X
(

X

F

X

F
)

Expression (7) shows the consumer surplus change of a marginal change of number of 
carriages. This cost is composed of two terms. The first one is the effect via demand, which in 
turn affects the crowding in the train. The second effect is the direct effect on crowding of a 

change of number of carriages, denoted by use of the special delta . By differentiation of (2) 
with respect to N we can also write these two effects as follows. 

(9)X
D

(
NXN

FN
2 -

X

FN
2 ) X

T

X
(

X

N

X

N
)

Below we derive the basic marginal effects on demand with respect to price and frequency. 

(10)
X

p

X

G

G

p

X

G
(

G

p
+

G

T

T

X

X

p
)

(11)
X

p
(1

X

G

T

X
)

X

G

(12)
X

p

X

G

(1
X

G

T

X
)

(13)
G

F
(

T

F
+

T

X

X

F
) +

T

F

T

X
(

X

F
+

X

F
) +

T

F

(14)
X

F

X

G

G

F

X

G

G

T
(

T

F
+

T

X

X

F
) +

X

G

G

T

T

F

(15)
X

F
(1

X

G

T

X
)

X

G
(

T

F

T

F
)

X

G
(

T

X

X

F

T

F
)
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(16)
X

F

X

G
(

T

F

T

F
)

(1
G

T

T

X
)

X

G
(

T

X

X

F

T

F
)

(1
G

T

T

X
)

(17)
X

G

X

F

TX (
X

F

X

F
)

T

F

(18)
X

X G

XTX(
X

F

X

F
) X

T

F

X F

XTX XTX

X

F

X F

X
T

F

XF

(19)
G

N
(

T

N
+

T

X

X

N
)

T

X
(

X

N

X

N
)

(20)
X

N

X

G

G

N

X

G

G

T
(

T

N
+

T

X

X

N
)

(21)
X

N
(1

X

G

T

X
)

X

G

T

N

X

G

T

X

X

N

(22)
X

N

X

G

T

N

(1
G

T

T

X
)

X

G

T

X

X

N

(1
G

T

T

X
)

(23)
X

G

X

N
T

X
(

X

N

X

N
)

(24)
X

XG

XTX (
X

N

X

N
)

XN

XTX XTX

X

N

X N

3 ONE SERVICE AND ONE PASSENGER GROUP 

3.1 Objective functions 

We present here the objective functions of the welfare maximisation and the profit 
maximisation models. In this section we do not consider several services and several 
passenger groups for which reason indices are omitted. We neither consider a binding budget 
constraint.
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The maximisation relates to one service during a period normalised to one (hour). The 
analysis may then be repeated for other periods and routes.  

The welfare objective function is expressed as: 
     
(25)W = S G[p,  F,  N]]+ pX[p,  F, N] - FC[N] - cLX - IF - eF

The objective function for profit maximisation includes only producer's surplus, taking into 
account the infrastructure paid, f: 

(26)  = pX[p,  F,  N] - FC[ N] - cLX - fF

3.2 Welfare optimum 

Prices

The first-order conditions with respect to the price yields: 

(27)
W

p
=

S

G

G

p
+  X + p

X

p
-  cL

X

p
=  0

   

where

S

G
X

and

G

p
1

T

X

X

p

 The optimal price is then: 

(28)p
*W

=  cL +  XTX

The welfare optimal price is thus composed of the marginal production cost plus the marginal 
passenger cost with respect to number of passengers. 

By use of (2b) we can also express the optimal price as: 

(28b)p
*W

=  cL +
D

X

FN

We also achieve an expression for optimal frequency: 
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(28c)F
*W

X
D

N (p
*W

- cL)

Frequency

The first-order condition with respect to frequency yields: 

(29)
W

F
X

G

F
p

X

F
cL

X

F
C I e 0

(30)
W

F

X

XG

p cL

C I e

X F

0

(31)p
*W

cL

X

XG

C I e

X F

We use (18) in order to achieve an alternative expression for the optimal price. 

(32)p
*W

cL XTX(
XF X/ F

XF

)

X
T

F

XF

C I e

XF

(33)p
*W

cL

1

F

(
F(C I e)

X
FTX(XF X/ F) F

T

F
)

The first term within the parenthesis in (33) is the average variable cost besides the sales cost. 
The second term is negative since X/F> XF. X/F stems from the direct effect on in-vehicle 
crowding of a frequency change and XF stems from the indirect effect on in-vehicle 
crowding, via demand change, of a frequency change. The optimal price is thus reduced 
below the average variable cost due to the net positive effect on crowding of a frequency 
increase. The third term represents the positive effect on wait time cost of a frequency change 
and will also push the optimal price downwards below the average variable cost. All costs 
apart from the marginal sales cost are increased by the inverse of the frequency elasticity. 

Carriages

The first-order condition with respect to number of carriages yields: 

(34)
W

N
X

G

N
p

X

N
cL

X

N
F

CN

N
0

(35)
W

N

X

XG

p cL

F
CN

N

XN

0
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(36)p
*W

cL

X

X G

F
CN

N

XN

(37)p
*W

cL

F
CN

N

XN

XTX (
X

N

X

N
)

XN

(38)p
*W

cL

1

N

(
NF

X

CN

N
NTX(

X

N

X

N
))

The first term within the parenthesis is the marginal cost of a changed number of carriages 
per passenger. The second term is negative since X/N> XN. X/N stems from the direct effect 
on in-vehicle crowding of a changed number of carriages and XN stems from the indirect 
effect on in-vehicle crowding, via demand change, of a changed number of carriages. The 
optimal price is thus reduced below the average variable cost due to the net positive effect of 
a changed number of carriages. 

Combination of welfare optima for price and frequency 

Equality between optimal price according to the first-order conditions with respect to price 
(28) and frequency (31) yields: 

(39)XTX

X

XG

C I e

X F

Use of (18) yields: 

(40)

XTX

X

F
X

T

F

XF

C I e

XF

(41)F
*W X2TX

C I e X
T

F

The numerator shows that the optimal frequency grows with in-vehicle congestion and 
demand. The denominator shows that the optimal frequency declines with the costs but grows 
with the effect on frequency delay of a marginal frequency increase. 

We can then also express optimal price in an alternative way by noting that: 

(42)

F(C I e X
T

F
)

X
XTX p cL

We achieve: 
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(43)p
*W

cL

F(C I e)

X
F

T

F

The welfare optimal price is thus equal to the marginal production cost (sales cost) plus the 
average variable operating, and external, cost plus the marginal effect of a frequency change. 
This effect on reduced frequency delay cost was also seen in (33) above. Note that when the 
optimal price is expressed in this way one cannot see the positive effect related to in-vehicle 
crowding that was visible in (33). 

Combination of welfare optima for price and carriages 

Equality between optimal price for the first-order conditions with respect to price and number 
of carriages yields: 

(44)XTX

X

XG

F
CN

N

X N

(45)XTX XTX XTX

X

N

X N

F
CN

N

X N

(46)XTX

X

N
F

CN

N

(47)N
*W X2TX

F
CN

N

By combining (47) with (28) we get: 

(47b)p
*W

cL

NF
CN

N

X

The optimal price is thus the marginal production cost plus the marginal cost with respect to 
number of carriages, per passenger. 
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Combination of welfare optima for price, frequency and carriages 

By combining (43) and (47b) we get: get: 

(47c)
F(C I e)

X
F

T

F

F(C I e)

X 2F

NF
CN

N

X

(47d)F
2 X

2(C I e N
CN

N
)

X

2(CF CN N I e N
CN

N
)

Again we note that optimal frequency grows with the value of frequency delay. The new 
information provided by (47d) is that if the cost with respect to number of carriages is 
proportionate to number of carriages then the denominator would only include operation cost, 
infrastructure cost and external cost. If on the other hand the carriage costs are progressive 
with number of carriages, the denominator would be reduced below the other costs and the 
supply would rather increase by optimal frequency rather than the growing carriage costs. 

3.3 Profit optimum 

Prices

The first-order condition with respect to price yields: 

(48)
p

X pXp cLX p 0

(49)p
*

= cL-
X

X/ p

By use of the price elasticity concept, optimal price can also be written as: 

(50) p
*

=
cL

1
1

p

By using the development of the differential of X with respect to p in (12) we can also write 
(49) as: 

(51) p
*

= cL -
X

X p

cL-
X(1 XGTX )

X G

cL-
X

XG

XTX

By use of (18) we can also write (51) as: 
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(51b)p
*

= cL XTX

X TX ( F 1)

F

-

F
T

F

F

Frequency 

 The first-order condition with respect to frequency yields: 

(52)
F

p
X

F
cL

X

F
C f 0

(53)p
*

cL

C f

X F

cL

F(C f)

X F

Carriages

 The first-order condition with respect to number of carriages yields: 

(54)
N

p
X

N
cL

X

N
F

CN

N
0

(55)p
*

cL

F
CN

N

X N

cL

NF
CN

N

X N

Combination of profit optima for price and frequency 

Again, equality between optimal price for the first-order conditions with respect to price and 
frequency yields: 

(56)XTX

X

XG

C f

X F

Use of (18) yields: 

(57)

XTX

X

F
X

T

F

X F

C f

X F

(58)F
* X 2TX

C f X
T

F

We can then also express optimal price in an alternative way by noting that: 
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(59)

F(C f X
T

F
)

X
XTX p cL

X

XG

We achieve: 

(60)p
*

cL

F(C f)

X
F

T

F

X

XG

(61)p
*

cL

F(C f)

X
F

T

F

X
T

X
(

X

F

X

F
) X

T

F

X F

cL

F(C f)

X

X
T

X
( F 1)

F

F
T

F
( F 1)

F

According to (60) the profit optimal price exceeds the welfare optimal price with –X/XG,
given that f=I+e. Expression (61) demonstrates the difference in another way. The indirect of 
a frequency change, via demand, pushes the price upwards and above the average cost. The 
direct effect of a frequency change, however, pushes the price downwards and the latter 
effect is larger. The net effect is a price exceeding the welfare optimal price but also 
exceeding the average cost. 

This net effect that stems from the deviation of frequency elasticity from zero is thus the 
margin for coverage of fixed costs and pure profit. 

Combination of profit optima for price and carriages 

Again, equality between optimal price for the first-order conditions with respect to price and 
number of carriages yields: 

(62)XTX

X

XG

F
CN

N

XN

Consequently: 

(63)N
* X 2TX

F
CN

N

The expression for optimal number of carriages under profit maximisation thus looks the 
same as the corresponding expression under welfare maximisation. 

We can also express the optimal price in an alternative way by noting that: 
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(63b)

NF
CN

N

X
XTX p cL

X

X G

We achieve: 

(63c)p
*

cL

NF
CN

N

X

X
T

X
(

X

N

X

N
)

X N

cL

NF
CN

N

X

X
T

X
( N 1)

N

Diagnostic comparison between welfare and profit optima 

Below we repeat and compare the various expressions for optimal price according to welfare 
and profit maximisation. In these comparisons we assume that the infrastructure charge paid 
by profit maximising operators equals the infrastructure costs and external costs, so that 
f=I+e. 

(28)p
*W

=  cL +  XTX

(51b)p
*

= cL XTX

X TX ( F 1)

F

-

F
T

F

F

Here we note that the profit optimal price firstly exceeds the welfare optimal price by the 
difference between the direct and the indirect effects on riding time cost.  Secondly the profit 
maximiser adds the passengers’ marginal frequency delay cost. Both additions are multiplied 
with the inverse of the frequency elasticity. 

(43)p
*W

cL

F(C I e)

X
F

T

F

(53)p
*

cL

F(C f)

X F

(61)p
*

cL

F(C f)

X

X
T

X
( F 1)

F

F
T

F
( F 1)

F

(43) demonstrates that the welfare optimal price is equal to the average variable operating 
cost minus a term that reflects the positive effect of a frequency increase. 

(53) shows that the profit maximiser ignores the positive effect of a frequency increase. In 
addition the average production and external costs are increased by the inverse of the 
frequency elasticity.  

(61) shows another way to express the difference. Now no longer the production and external 
costs are upgraded. Instead the following two terms show that the positive effect of a 

frequency increase is counterweighted since F <1. It is the direct effects on in-vehicle 
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crowding and frequency delay that are ignored and these effects are larger than the indirect 
effect via demand change that the profit maximiser takes into account.  

In total, while the welfare optimal price is below the average variable cost, the profit 
maximising price is above the average variable cost. 

(47b)p
*W

cL

NF
CN

N

X

(55)p
*

cL

NF
CN

N

X N

(63c)p
*

cL

NF
CN

N

X

X
T

X
( N 1)

N

(55) shows that the profit maximiser upgrades the average marginal cost with respect to 
number of carriages with the inverse of the elasticity with respect to number of carriages.  

(63c) shows another way to express the difference. Now no longer the average marginal cost 
with respect to number of carriages is upgraded. Instead the following term shows that the 
direct effect on in-vehicle crowding is ignored and this effects is larger than the indirect 
effect via demand change that the profit maximiser takes into account.  

With respect to optimal frequency we know that the expressions, repeated below, are the 
same for welfare and profit maximisation, given that the infrastructure charge equals the 
infrastructure operating cost and the external operating cost, i.e., that f=I+e. 

(41)F
*W X2TX

C I e X
T

F

(58)F
* X 2TX

C f X
T

F

Also with respect to optimal number of carriages we know that the expressions, repeated 
below, are the same for welfare and profit maximisation: 

(47)N
*W X2TX

F
CN

N

(63)N
* X 2TX

F
CN

N
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Comparative sizes of the optima for welfare and profit maximisation 

Let us now evaluate the relationships between optimal price, frequency and number of 
carriages for welfare and profit maximisation respectively. 

The point of departure is the derived fact that if optimal frequency and number of carriages 
were the same for the two objectives, then all the expressions for optimal prices show that the 
optimal price is higher for profit than for welfare maximisation. We will then use the 
expressions for optimal frequency, (41) and (58), and number of carriages, (47) and (63) in 
order to investigate the following. Is the optimal frequency larger or smaller for profit 
maximisation given that the optimal number of carriages is the same and is the optimal 
number of carriages larger or smaller for profit maximisation given that the optimal 
frequency is the same? 

Is the optimal frequency higher or lower for profit or welfare maximisation? 

Assume that the number of carriages is the same for both objective functions. 

The higher price with profit maximisation means that demand X and the marginal crowding 
cost TX are lower for profit than for welfare maximisation, so the numerator is lower for 
profit than for welfare maximisation. Since X is lower for profit maximisation and the 
marginal cost with respect to frequency delay is the same if frequency is the same we also 
know that the denominator is higher for profit than for welfare maximisation.  

The conclusion is that expression (58) for optimal frequency cannot be fulfilled if frequencies 
are the same, but only if optimal frequency is lower for profit than for welfare maximisation.  

Is the optimal number of carriages higher or lower for profit or welfare maximisation? 

Assume that the frequency is the same for both objective functions. 

The higher price with profit maximisation means that demand X and the marginal crowding 
cost TX are lower for profit than for welfare maximisation, so the numerator is lower for 
profit than for welfare maximisation. Since the marginal cost with respect to number of 
carriages is the same if the number of carriages is the same we also know that the 
denominator is higher for profit than for welfare maximisation.  

The conclusion is that expression (58) for optimal number of carriages cannot be fulfilled if 
the number of carriages is the same, but only if the number of carriages is lower for profit 
than for welfare maximisation.  

In total we can conclude that: 

P
*

> P
*W 

and F
*

< F
*W

 at least if N
*

= N
*W

P
*

> P
*W 

and N
*

< N
*W

 at least if F
*

= F
*W
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3.5 Corrections for non-optimal behaviour 

In order for the welfare maximising authority to deal with the non-optimal behaviours of the 
profit maximising competitors two policy parameters are introduced. One is a possible 
subsidy, motivated by the result in section 4 where subsidies where found to make the 
operator act in the direction towards social optimum. The other parameter is an infrastructure 
charge, or producer fee, meant to complement the subsidy in order to be able to care for both 
the price and the frequency variables. We ignore a possible third parameter that could be a 
consumption tax, VAT for example. Introduction of such a tax would, however, mean no 
difference to the principle outcome of the analysis since it would only serve as a fiscal 
parameter that would affect the magnitudes of the subsidy and the producer fee but not their 
principle influences. 

We thus introduce a subsidy, s, per kilometre, which means that the objective function and 
first-order condition is:  

(64)  = (p + s)X[p, F,  N]- FC[ N] - cLX - fF

The first-order condition with respect to price yields:  

(65)
p

X (p s)Xp CLXp 0

(66) p
*

= cL -
X

X/ p
s

(67)p
*

= cL -
X

Xp

s cL -
X(1 XGTX)

XG

cL -
X

X G

s XTX

The first-order condition with respect to frequency yields:  

(68)
F

(p s)
X

F
CL

X

F
C f 0

(69)p
*

CL s
C f

XF

Apparently, if s = - X/XG, and if f = I+e, then both first-order conditions with respect to profit 
maximisation coincides with the first-order conditions with respect to welfare maximisation. 

The next issue is whether such equality between profit and welfare maximisation can be 
achieved without a subsidy, but instead by playing with the infrastructure charge f. 

There are thus two policy variables, s and f. We are searching the values of s and f 
respectively that makes welfare and profit optimum equal. We employ the combined first-
order conditions with respect to price and frequency for welfare and profit maximisation. 
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For welfare optimum (28) and (39) yields: 

(70)(p CL XTX)X F C I e
X

XG

XF XTXXF

In optimum the right-hand side is equal to zero since the parenthesis on the left-hand side 
represents price equal to social marginal cost. 

For profit optimum (69) yields: 

(71)(p CL )X F C f sXF

We extend expression (71) in order to make the left-hand side equal to the one for welfare 
maximisation: 

(72)(p CL XTX)X F C f sXF XTXXF

In order to make expression (72) welfare optimal it is required that the right hand sides of 
(70) and (72) are equal: 

(73)C f sXF XTXXF C I e
X

XG

X F XTXXF

(74)f sXF I e
X

XG

X F

There are apparently a number of combinations of s and f that will fulfil the welfare optimum 
criterion. We can also express the criterion in the following ways: 

(75)s
f I e

XF

X

XG

(76)f I e X F(s
X

X G

)

We can exemplify a few combinations of s and f. 

If the infrastructure charge equals the infrastructure and external costs, f=I+e, we get that:  

(77)s
X

XG

If no infrastructure charge is used we get: 

(78)s
I e

X F

X

X G

In this case the subsidy is modified in the sense that the passengers are charged for the 
infrastructure and external costs, divided by the demand change of a marginal frequency 
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change. It may very well be the case that the net subsidy is negative. The cost coverage 
related to infrastructure is thus transferred from the operator to the passengers. 

If no subsidy is employed we get that: 

(79)f I e X F

X

X G

In this case the optimal subsidy of the passengers is transferred to subsidisation of the 
operator. 

4 ONE SERVICE AND SEVERAL PASSENGER GROUPS 

4.1 Objective functions 

We present here the objective functions of the welfare maximisation and the profit 
maximisation models. Since first and second class passengers use different carriages, 
passengers in each group affect only fellow passengers belonging to the same group.  

The maximisation relates to one service during a period normalised to one (hour). The 
analysis may then be repeated for other periods and routes.  

     
(80)W = iSi Gi[p i ,  F,  Ni ]]+

+ ip iX i[p i ,  F,  N i] - FC[N i] - icLiX i - FC - FI - Fe +

+ ( ip iXi[pi ,  F,  Ni] - FC[N i] - icLiXi - FC- FI - )

;  i=1,2  

The objective function for profit maximisation includes only producer's surplus, while the 
consumers' surplus and the budget constraints are missing: 

(80b)  = ipiXi[pi ,  F,  Ni] - FC[ N i ]- icLi[Xi] - fF

;  i=1,2  

In the derivations that follow we omit indices in most situations, keeping in mind that there 
are two carriage types, each carrying only one passenger group. Since passenger groups do 
not affect each other and since the expressions for each group, frequency and train size look 
the same apart from indices, we can be without most of them with pleasure. The only 
situation in which we need indices is where there is a sum of the two passenger groups on the 
same line, which means that we use index i for passenger group. 
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4.2 Welfare optimum 

Prices

The first-order condition yields: 

(81)
L

p
=

S

G

G

p
+ (1+ )X + (1+ )p

X

p
-  (1+ )cL

X

p
= 0

where

G

p
 1 +   

T

X

X

p

S

G
 -  X  

(81) then yields: 

(82)
L

p
= X +  (-X

T

X
+ (1+ )p - (1+ )cL)

X

p
= 0

(83)p
*W

= cL + X
TX

1
-

X

Xp

1

1

And, by use of the price elasticity: 

(84)p
*W

=

cL +  X
TX

1

1
p(1 )

With a binding budget constraint the consumer cost in terms of in-vehicle congestion is 

discounted by 1/(1+ ). In this way consumer costs are downscaled in order to make them 
comparable with the upgraded production costs.  Apparently the optimal price declines 
(grows) with a growing (declining) price elasticity (Ramsey-pricing). Since for a given price 
level 1

st
 class passengers typically are less price-sensitive than 2

nd
 class passengers are, prices 

should mainly be raised for 1
st
 class passengers. Price discrimination is thus motivated. 

Frequency

The first-order condition with respect to frequency is: 

(85)
L

F
=  - iXi

G i

F
+  (1+ )( ipi

X i

F
-  C -  icLi

X i

F
- I) e
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(86) i

Xi

F
(-Xi

Ti

X i

+ (1+ )pi  - (1 + )cLi ) iX i

Ti

Xi

Xi

F
iX i

Ti

F
(1+ )(C + I) + e

In optimum, when prices are optimal, frequency is: 

(87)F
*W

iXi

2 Ti

Xi

(1 + )(C I) e iXi

Ti

F

Assume that 1
st
 class passengers have a high value of wait time and 2

nd
 class passengers have 

a low value of wait time. The high value will push optimal frequency upward and the low 
value downwards. 2

nd
 class passengers will thus benefit from 1

st
 class passengers’ valuations 

and 1
st
 class passengers will lose from 2

nd
 class passengers’ valuations. 

From (82) we know that: 

(88)Xi

Ti

Xi

Xi

Xi

p i

(1+ )(p i - cLi )

and that 

(89) - Xi

Ti

Xi

+ (1+ )p i - (1+ )cLi =
Xi

Xi

pi

(86) can then be rewritten as: 

(90) i

Xi

F

Xi

Xi

p i

i

X i

F
(

X i

Xi

pi

(1+ )(pi - cLi )) iX i

Ti

F
(1+ )(C + I) + e

The average of optimal prices is thus: 

(91) ipiXi

iXi

icLiXi

iX i

F(C + I)

iXi

Fe
1

1

iXi

F i

Xi

Xi

p i

(
Xi

F

Xi

F
)
1

iXi

F iXi

Ti

F

1

1

iXi

Here we note in the fourth term on the right hand side that the difference between the direct 

and indirect marginal in-vehicle congestion costs are discounted by /(1+ ). As for the profit 
maximiser the indirect effect via demand pushes the optimal price downwards while the 
direct effect pushes the optimal price upwards, and the latter effect is the larger one. As for 
the first-order condition with respect to price we also note that the fourth term demonstrates 
that the optimal price declines (grows) with a growing (declining) price elasticity. 
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The fifth term that frequency delay costs are discounted by 1/(1+ ). That is, when a budget 
constraint is taken into account the fourth and the fifth terms show that the passenger benefits 
of improved service level are downgraded and the third term shows that the external costs are 
downgraded.  

Assume that 1
st
 class passengers have a high value of wait time and ride time costs and that 

2
nd

 class passengers have relatively low values. Assume also that 1
st
 class passengers have 

low price elasticity and that 2
nd

 class passengers have relatively high price elasticity. (91) 
then shows that the contribution to cost coverage from 1

st
 class passengers grows with respect 

to the low price elasticity. This is the ordinary Ramsey-pricing rule. But note also that the 
contribution from 1

st
 class passengers is reduced with respect to the valuations of ride time 

and wait time. It is thus an empirical issue whether 1
st
 or 2

nd
 class passengers would 

contribute most to cost coverage in optimum when no distribution concern is taken. 

Carriages

The first-order condition with respect to number of carriages is: 

(92)
L

Ni

= -Xi

Gi

Ni

+(1 + )(pi

Xi

Ni

- C - cLi

Xi

Ni

- F
CNi

Ni

) 0

Use of (19) yields: 

(93)
Xi

Ni

(-Xi

Ti

Xi

+ (1 + )pi - (1+ )cLi ) Xi

Ti

X i

X i

N i

(1 + )(C + F
CNi

Ni

)

In optimum, when prices are optimal, the number of carriages of type i is: 

(94)Ni

*W

X i

2 Ti

X i

1

(1+ )

(C + F
CNi

Ni

)

When the budget constraint is binding the in-vehicle congestion cost is discounted by 

1/(1+ ).

By use of (88) and (89) we get: 

(95)
Xi

Ni

Xi

Xi

p i

X i

N i

(
X i

X i

pi

(1+ )(pi - cLi)) (1 + )(C + F
CNi

Ni

)

(96)pi

*W
cLi (C + F

CNi

Ni

) +
1+

N i

X i

pi

(
X i

N i

Xi

N i

)
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As for the first-order condition with respect to frequency we note that the optimal price grows 
with the difference between the direct and the indirect demand effects of an increased supply, 
in this case in terms of more carriages.   

4.3 Profit optimum 

Prices

Since passenger groups do not affect each other the first-order condition with respect to price 
is the same as for the case where one passenger group was taken into account, that is: 

(51) p
*

= cL -
X

X p

cL-
X(1 XGTX )

X G

cL-
X

XG

XTX

Frequency 

The first-order condition with respect to frequency yields: 

(97)
F

= ip i

X i

F
-  C -  icLi

Xi

F
- f 0

(98) i

Xi

F
(p i  - cLi ) C + f

5 EXTERNAL EFFECTS AND SECOND-BEST 
PRICING

We will here investigate interactions between services that compete. One of these is a railway 
line. The other could be a railway line with rail but alternatively also an air or coach service 
or private car. The restriction to two services or modes does not reduce the generality of the 
analysis. The problem in focus is how optimal prices and frequencies change if one or both 
services do not charge optimal consumer prices or are not charged optimal infrastructure 
charges by a transport authority.  

Since the interesting implications of taking into account two passenger groups and two 
classes were treated in the previous sections we will here assume one homogenous passenger 
group only. 

We assume for simplicity that the two services have the same length in order to avoid a 
notation for distance. It is then implicitly understood that each departure has a specific 
distance. All parameters related to departure can then simply be converted to kilometres by 
use of the distance. For simplicity reasons we also ignore the number of carriages in a train 
since we here have competition between services or modes in focus.  
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Section 5.1 deals with welfare optimum only, assuming possible deviations from optimal 
pricing. Section 5.2 deals with the case that both operators are profit maximising and 
consequently with second-best optima. 

5.1 Welfare optimum 

The welfare objective function for two competing services, e.g. rail and coach, rail and air, 
rail and rail, denoted k (=1 and 2) is: 

(99)W = k Sk[G k[p1,  p2,  F1,  F2 ]  +

+ k pkX k[p1,  p2,  F1,  F2 ] - k FkCk  - k cLkX k -

- k IkFk  - k ek Fk

We will now where sufficient confine ourselves to derivations with respect to one of the two 
services due to the symmetry.  

The first-order condition with respect to the price of mode1 is: 

(100)
W

p1

=
S1

G1

G1

p1

+
S2

G2

G2

p1

+ X1 + p1

X1

p1

+ p2

X2

p1

cL1

X1

p1

cL2

X2

p1

= 0

where
G1

p1

 1 +   
T1

X1

X1

p1

G2

p1

T2

X2

X2

p1

Sk

G k

 -  Xk

(100) can then be written as: 

(101)
W

p1

= (- X1

T1

X1

+ p1- cL1)
X1

p1

+ (-X2

T2

X2

+ p2- cL 2 )
X 2

p1

k (- Xk

Tk

Xk

+ pk - cLk )
X k

p1

= 0

where Mpi and Mci reflect the marginal cost with respect to passengers and costs respectively. 

If we denote the difference between price and social marginal consumer cost di and express 

the differentials as X pj

i
, we can also write this condition in matrix form as: 

(102)
X p1

1 X p1
2

X p1

2 Xp 2

2

d1

d2

0
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In optimum of course the first-order condition with respect to prices requires that d1 = d2 =0. 

The first-order condition with respect to frequency is: 

(103)
L

F1

=
S1

G1

G1

F1

+
S2

G 2

G2

F1

+ p1

X1

F1

+ p2

X2

F1

- C1- cL1

X1

F1

- cL2

X2

F1

- I1- e1 = 0

where

S1

G1

G1

F1

X1

T1

X1

(
X1

F1

X1

F1

) X1

T1

F1

S2

G 2

G2

F1

X2

T2

X2

X 2

F1

(103) can then be rewritten as: 

(104) k (pk - cLk -  X k

Tk

X k

)
X k

F1

X1

T1

X1

X1

F1

X1

T1

t

F1

- C1- I1 - e1 = 0

The first term reproduces the first-order condition with respect to prices. The second term 
reflects the direct marginal effect on in-vehicle congestion due to frequency increase. The 
third term reflects the positive external effect on frequency delay. The other terms reflect cost 
per departure, infrastructure cost and environmental cost. 

If we express the differentials as X Fj

i
, we can write this condition in matrix form as: 

(105)
XF 1

1
XF1

2

XF 2

1 XF 2

2

d1

d2

X1

T1

X1

X1

F1

+ C1 + I1 +  e1 X1

T1

F1

X 2

T2

X2

X2

F2

+ C2  + I2 + e2 X2

T2

F2

The corresponding expression for the difference between actual price and social marginal 
cost for each profit maximising operator is (see (72)): 

(106a) XF 1

1
d1 X1

T1

X1

X1

F1

s1

X1

F1

C1 f1

(106b)X F 2

2
d2 X2

T2

X2

X2

F2

s2

X 2

F2

C2 f2
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Since we want the welfare and the profit maximisation criteria to be fulfilled simultaneously, 
we can make use of the differences between the left-hand and the right-hand sides of the 
equation systems (105) and (106) to achieve: 

(107a) XF 1

2
d2 f1 I1 e1 X1

T1

X1

(
X1

F1

X1

F1

) s1

X1

F1

X1

T1

t

F1

(107b) XF 2

1
d1 f2 I2  e2 X2

T2

X2

(
X2

F2

X 2

F2

) s2

X2

F2

X2

T2

t

F2

(108)f1 I1 e1 X1

T1

X1

(
X1

F1

X1

F1

) X1

T1

t

F1

s1

X1

F1

X 2

F1

d2

I1 e1 X1

X1

F1

X1

G1

s1

X1

F1

X2

F1

d2

(109)s1

f1 I1 e1 X1

T1

X1

(
X1

F1

X1

F1

) X1

T1

t

F1

X2

F1

d2

X1

F1

f1 I1 e1

X1

F1

X1

X1

G1

X 2

F1

X1

F1

d2

Assume now that d2 is below its first-best optimal value, due to that f2 is lower than the 
optimal value and/or that s2 is higher than the optimal value. One reason may be that the 
authority reduces the charge for the infrastructure and environmental costs at a larger extent 
than what is motivated by the positive external effects (X/XG)XF.

It is then clear that d1 has to be below its first-best optimal value. This situation is obtained if 
f1 is lower than the first-best optimal value and/or that s1 is higher than the first-best optimal 
value.

The decrease of f1 and/or increase of s1 are larger the larger are the cross-elasticities between 
the competing lines or modes, the larger are dX2/dF1 and dX1/dF2. The deviations of f1and s1

from their first-best values, f1
*
and s1

*
, can also be expressed explicitly by using each of these 

first-best values given that either s1=0 and f1
*
= I1+e1 + X1(dX1/dF1)/( dX1/dG1), or f1= I1+e1

s1
*
 = - X1/( dX1/dG1). We then achieve the following additional reduction of the first-best 

optimal infrastructure charge and the additional subsidy of the consumer price respectively: 

(110) f1 f1

* X2

F1

d2
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(111)s1 s1

*

X 2

F1

X1

F1

d2

If d2=0 we notice that the infrastructure charge and the subsidy are exactly those that were 
obtained for corrections in optimum, according to expressions (11) – (15).  

If d2<0, for example due to that line/mode 2 has a too low infrastructure charge we notice that 
the infrastructure charge of line/mode 1 must be reduced and/or the subsidy of mode 1 be 
increased compared to the situation where optimal corrections are employed.  

If d2>0, for example due to that line/mode has a too high infrastructure charge and/or the 
politicians cannot or will not correct for monopolistic pricing, the infrastructure charge of 
mode 1 should be increased and/or the subsidy be reduced, compared to the situation where 
optimal corrections are employed. 

The corrections of subsidies and infrastructure charge grow with the cross-elasticity with 
respect to frequency.  

The larger the own elasticity with respect to frequency is, the smaller the subsidy can be; the 
subsidy “bites better” in this case. 

Whether corrections ought to be made through subsidies or infrastructure charges is a 
practical matter. This issue in turn is dependent on the organisation of the transport system in 
general and whether the railway is vertically integrated or separated. 
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6 SUMMARY OF SIMULATION WORK 

6.1 Introduction 

The theoretical analysis demonstrated that railway services ought not to cover the full 
operation costs. If competing modes such as air services do not fully cover external costs this 
forms an additional argument for subsidising the railway. 

Here we simulate taking away the base boarding fare and reduce the kilometre charge by 30% 
for 2

nd
 class passengers, on routes with low capacity use and few carriages. 

This section briefly summarises the results that were found by simulation of rail fare 
reductions, assumed to come true through subsidies related to the passengers. The simulations 
were made by use of the VIPS assignment system.  This system simultaneously distributes 
passengers between routes within each public transport mode and between public transport 
modes and car. It also calculates revenues and costs per route and the passengers’ costs in 
terms of price and travel time components. The system thereby takes into account time and 
distance of each link in the network and the price of each mode per kilometre, progressive or 
regressive. Each mode was also given a specific value of time in order to reflect the comfort 
of the mode. 

Since different passenger groups meet different prices for various modes, have different 
values of ride time and wait time and have different availability of car, the demand was 
separated into groups that were also analysed separately. The table below shows the 
segmentation and the assumed values of ride time and the weights for each travel time 
component in relation to ride time. 
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Table 6.1.1 Segmentation of demand, assumed time values and weights

Ride time value and Share Value of Wait Transfer Walk Transfer

weights for the other % time time time time pemalty

components (IC-train) weight weight weight

SEK/hour minutes

Private journeys

Long distance, >100 km 100

Working 32 100 0,6 2,0 2,0 10

Working,  no car available 3 60 0,5 2,0 2,0 10

Working, car available 29 60 0,5 2,0 2,0 10

Studying,  no car available 4 35 0,4 2,0 2,0 10

Studying,  car available 18 35 0,4 2,0 2,0 10

Pensioner,  no car available 3 35 0,3 2,0 2,5 10

Pensioner,  car available 11 35 0,3 2,0 2,5 10

short distande, <100 km 100 20 0,8 2,0 2,0 5

Business journeys

Business, low value of time 50 200 1,2 2,0 2,0 20

Business, high value of time 50 400 1,2 2,0 2,0 20

Ride time weights Share IC-train Night X2000 Coach Bus Air Car

% train High- long regional

speed distance

Private journeys

Long distance, >100 km 100

Working 32 1,0 0,45 0,9 1,3 1,4 1,1 2,0

Working,  no car available 3 1,0 0,45 0,9 1,3 1,4 1,1 1,8

Working, car available 29 1,0 0,45 0,9 1,3 1,4 1,1 1,8

Studying,  no car available 4 1,0 0,45 0,9 1,2 1,2 1,1 2,0

Studying,  car available 18 1,0 0,45 0,9 1,2 1,2 1,1 2,0

Pensioner,  no car available 3 1,0 0,45 0,9 1,0 1,2 1,1 1,4

Pensioner,  car available 11 1,0 0,45 0,9 1,0 1,2 1,1 1,4

short distande, <100 km 100 1,0 0,45 0,9 1,5 1,2 1,1 –

Business journeys

Business, low value of time 50 1,0 0,45 0,9 1,3 1,4 1,1 2,0

Business, high value of time 50 1,0 0,45 0,9 2,5 1,5 1,1 2,0
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6.2 Results 

6.2.1 Shift of modes 

The reduced prices of certain railway lines would of course change the mode split, shown in 
the table below. Since the lines with reduced prices comprise rather small ones the total 
effects on the whole network are not large, but of course demand for train increases and are 
reduced for competing modes. 

Tabell 6.2.1.1 Calculated demand in millions of boardings, passenger kilometres and shares

Boarding Pass. Km Share Boarding Pass. Km Share Pass. Km %

millions millions %  pkm millions millions %  pkm millions

Train 99,4 7517 50 100,6 7655 50 138 2

   of which X2000 5,3 2077 14 5,4 2090 14 13 1

   of which Night train 1,1 928 6 1,1 938 6 10 1

   of which other trains 92,9 4511 30 94,1 4627 30 115 3

Air 7,7 3625 24 7,7 3619 24 -6 0

   of which SAS 5,8 2841 19 5,8 2839 19 -3 0

   of which other airlines 1,9 784 5 1,9 780 5 -4 0

Coach 4,9 1251 8 4,7 1218 8 -33 -3

Regional bus etc. 75,7 2783 18 75,5 2766 18 -17 -1

Total public transport 187,7 15176 100 188,4 15257 100 82 1

Car 92,4 23398 61 92,1 23322 60 -77 0

Base network Alternative with price reductions Difference

The next table shows the capacity, average load and average capacity use for the base 
situation and for reduced prices for each of the lines that were price reduced. 
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Table 6.2.1.2 Capacity use

Route Alignment No. Of Capacity Average Average Load/ Average Average Load/

carriages load>> last<< cap. load>> last<< cap.

30a tLuleå=tRiksgräns 5 219 000 7 066 12 112 0,04 20 369 18 610 0,09

30b tKiruna=tRiksgräns 3 65 700 0 3 0,00 0 3 0,00

41b tStockhlmC=tGävle 5 593 898 83 152 77 614 0,14 148 987 141 902 0,24

41h Sundsvall=Långsele 2 31 286 16 674 7 895 0,39 17 550 8 321 0,41

48LT Borlänge=Malung 2 175 200 70 233 49 805 0,34 81 867 57 644 0,40

49b tStockhlmC=tFalun 5 328 500 53 646 52 727 0,16 92 526 105 651 0,30

49e tAvesta=tLudvika 2 112 729 17 570 16 062 0,15 18 391 17 174 0,16

53f tÖrebro=tMjölby 3 274 226 28 535 30 740 0,11 52 475 36 535 0,16

55bLT tVästerås=tFagerstaN 2 512 780 141 582 145 725 0,28 154 213 160 209 0,31

55cLT tVästerås=tRamnäs br 2 106 451 28 569 13 678 0,20 29 730 13 789 0,20

56EsFl tEskilstun=tFlen 3 140 786 12 298 11 419 0,08 12 546 11 437 0,09

56KaNo tKatrineho=tNorrköpin 3 93 857 10 156 9 944 0,11 11 459 10 549 0,12

56SaVäLT tSala=tVästerås 3 663 916 137 649 135 206 0,21 158 811 161 457 0,24

56VäEsLT tVästerås=tEskilstun 3 281 571 77 779 72 108 0,27 108 564 99 187 0,37

57ArVäLT tArboga=tVästerås 2 125 143 7 840 16 441 0,10 12 935 31 469 0,18

57fLT tVästerås=tKöping 2 93 857 36 334 41 144 0,41 37 123 43 217 0,43

58a tStockhlmC=tEskilstun 6 338 188 55 781 61 736 0,17 76 959 85 465 0,24

58d tHallsberg=tEskilstun 2 56 289 8 817 9 043 0,16 9 505 10 096 0,17

60g tSkövde=tGöteborg 5 422 169 34 073 37 261 0,08 45 551 49 778 0,11

63aLT tHallsberg=tHerrljung 2 153 300 29 753 40 147 0,23 40 800 53 999 0,31

63bLT tLidköping=tHerrljung 2 160 839 20 133 24 466 0,14 22 969 28 130 0,16

63cLT tMariestad=tHerrljung 2 73 000 3 799 4 789 0,06 4 215 5 203 0,06

63dLT tHallsberg=tLidköping 2 87 600 9 194 9 014 0,10 13 099 10 755 0,14

65a tFalköping=tNässjö 4 516 093 36 212 47 178 0,08 51 470 58 491 0,11

65bLT tJönköping=tNässjö 4 396 286 56 069 62 937 0,15 73 175 89 064 0,20

70dLT tKarlstad=tCharlotte 4 573 931 47 309 61 626 0,09 55 836 74 323 0,11

70fLT tKarlstad=tArvika 2 37 543 6 346 4 487 0,14 7 074 4 862 0,16

71c tGöteborg=tÅmål 4 62 571 5 634 5 249 0,09 10 639 8 583 0,15

73bLT tKristineh=tKarlstad 4 554 800 61 167 59 260 0,11 71 157 76 258 0,13

73c tLaxå=tKristineh 2 93 857 3 710 3 906 0,04 4 017 4 832 0,05

73dLT tKarlstad=tKil 2 288 000 13 592 12 765 0,05 14 746 13 068 0,05

74aLT tKarlstad=tTorsby 2 144 000 43 895 46 144 0,31 48 009 50 035 0,34

74bLT tKarlstad=tSunne 2 56 365 7 879 8 199 0,14 8 886 8 941 0,16

81b tStockhlmC=tLinköping 4 237 559 40 792 37 748 0,17 55 375 49 838 0,22

81c tNyköping=tNorrköpin 2 181 241 24 236 25 554 0,14 24 979 25 835 0,14

81d tLinköping=tMjölby 2 93 857 13 395 11 105 0,13 13 438 11 144 0,13

81iLT tTranås=tNässjö 2 336 000 80 217 63 736 0,21 107 571 74 531 0,27

83 tLinköping=tVästervik 2 269 538 47 416 50 381 0,18 48 896 51 246 0,19

84b tLinköping=tKisa 4 62 571 2 069 2 444 0,04 2 087 2 444 0,04

84c tLinköping=tKalmar 2 138 576 16 381 9 450 0,09 23 666 17 610 0,15

85aLT tNässjö=tHultsfred 2 233 600 51 575 30 681 0,18 76 356 58 459 0,29

85b Berga=Oskarshamn 2 240 471 44 254 2 540 0,10 44 481 2 838 0,10

86aLT tNässjö=tHalmstad 4 416 100 92 809 113 466 0,25 145 983 156 551 0,36

87bLT tJönköping=tVaggeryd 2 87 600 26 813 17 871 0,26 28 556 18 982 0,27

88aLT tNässjö=tÅseda 2 94 886 16 564 13 502 0,16 21 290 15 922 0,20

88bLT tNässjö=tVetlanda 2 226 065 54 942 47 401 0,23 56 966 51 998 0,24

89LT tNässjö=tSävsjö 2 182 364 44 009 44 646 0,24 46 085 47 100 0,26

90a Karlskrona=Malmö 2 533 217 203 899 206 603 0,38 214 209 219 677 0,41

92a tHelsingbo=tKristians 3 187 714 33 732 23 713 0,15 40 061 27 735 0,18

94 tMalmö=tTrellebor 3 131 400 19 512 22 759 0,16 19 512 22 759 0,16

95b tAlvesta=tKalmar 4 412 235 56 133 71 441 0,15 65 735 79 438 0,18

96 tEmmaboda=tKarlskron 1 266 609 27 300 35 214 0,12 32 007 39 812 0,13

98LT tBorås=tVarberg 2 339 097 120 310 164 640 0,42 136 786 188 281 0,48

100c tGöteborg=tHelsingbo 4 87 600 14 789 14 823 0,17 20 857 21 822 0,24

100d tHalmstad=tMalmö 4 118 886 11 810 10 261 0,09 14 507 11 934 0,11

100e tEd=tGöteborg 4 250 286 17 517 18 305 0,07 17 766 19 158 0,07

100f tGöteborg=tHalmstad 4 257 547 26 023 29 382 0,11 31 482 37 999 0,13

107aLT tMalmö=tYstad 2 750 857 326 407 320 829 0,43 333 993 329 864 0,44

130aLT Göteborg=Strömstad 2 204 400 101 327 68 809 0,42 125 566 110 087 0,58

130bLT tGöteborg=tUddevalla 2 190 140 101 694 54 938 0,41 110 744 66 563 0,47

Alt. P-30%Base network
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6.2.2 The passengers 

Table 6.2.2.1 below shows the change of generalised cost per journey and the change of 
consumer surplus for each group of passengers. Since the price reductions refer to few lines 
the effects per journey are small on the national level.  

Business Working Working Pens Stud Trips< 100 km Sum

300 SEK/h 100 SEK/h 60 SEK/h 35 SEK/h 20 SEK/h 36 SEK/h

Gen. cost,  SEK/journey 0,10 0,40 1,09 2,19 1,49 0,00 5,27

Gen. cost,  %/journey 0,00 0,00 0,00 0,00 0,00 0,00 0,01

Cons.  surplus MSEK/yea 3 12 32 28 30 0 103

  of which fare 2 16 36 29 33 0 116

  of which time 0 -4 -5 -1 -3 0 -13

The largest gains are made by pensioners and students. Most groups lose time since many 
change from air to the cheaper but slower train. Business travellers with the lower value of 
time also gain time, which may depend on that some shift from coach and car. 

6.2.3 The operators 

The table below shows the calculated changes of revenues and costs for various operators and 
modes. Evidently the railway is supposed to increase its losses for the already unprofitable 
lines, and the competitors lose as well. No concern is then taken to that air and coach 
operators may adjust their supply in terms of frequency or vehicle size, something thta would 
reduce thier losses. 

Table 6.2.3.1 Calculated change of revenues and costs per operator

and mode in millions SEK per year

Costs Revenues-

Business Private Sum MSEK costs, MSEK

Train 0 -12 -12 14 -26

   of which X2000 2 10 12 0 12

   of which Night train 0 5 5 0 5

   of which other trains -2 -26 -29 0 -29

Air -1 -8 -9 -1 -9

   of which SAS 0 -3 -3 0 -3

   of which other airlines -1 -5 -6 0 -6

Coach 0 -16 -16 -3 -13

Regional bus etc. 0 -12 -12 0 -12

Total -1 -48 -50 10 -59

Revenues, MSEK

6.2.4 Welfare 

The table below summarises all components in the cost-benefit analysis. 
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Benefits and costs MSEK/year

Consumer surplus 103

   of which time 116

   of which price -13

Private sector finances -59

Cost adjustment -2

Net public surplus -30

Excess burden -9

External effects 17

Sum 20

The price reductions assumed to be due to subsidies seem to generate a small social net 
benefit. Even if this benefit is small it demonstrates that subsidies may be an alternative to the 
current procurement of non-profitable railway lines. One should also consider that the losses 
of air anc coach operators may be overestimated since no concern has been taken to possible 
adjustments. 

7  CONCLUSIONS 

The theoretical part of the work shows in short that: 

Welfare optimum implies a price below average operating cost while profit optimum 
implies a price above average operating cost. The low welfare oriented price is due to 
concern for the passengers’ benefits of increased frequency, which affects both ride time 
and wait time costs. Welfare optimum also implies a higher level of frequency than profit 
optimum, at least if the number of carriages is the same in the two cases. And welfare 
optimum implies a higher number of carriages than profit optimum, at least if the 
frequency is the same in the two cases. The non-optimal behaviour of the profit 
maximising operator can be corrected either by use of a subsidy related to the ticket price 
or a reduction of the infrastructure charge or by a combination of the two. 

If there is a binding budget constraint the findings are as follows. Assume that 1
st
 class 

passengers have a high value of wait time and ride time costs and that 2
nd

 class passengers 
have relatively low values. Assume also that 1

st
 class passengers have low price elasticity 

and that 2
nd

 class passengers have relatively high price elasticity. Then the contribution to 
cost coverage from 1

st
 class passengers grows with respect to the low price elasticity. This 

is the ordinary Ramsey-pricing rule. But the contribution from 1
st
 class passengers is 

reduced with respect to the valuations of ride time and wait time. It is thus an empirical 
issue whether 1

st
 or 2

nd
 class passengers would contribute most to cost coverage in 

optimum when no distribution concern is taken. 

In a second-best situation the corrections mentioned have to be modified. If for example 
one mode pays a too low infrastructure charge the competing modes should be subsidised 
either by a higher subsidy related to the ticket and/or a higher reduction of the 
infrastructure charge. 

The simulation part of the work backs up the theoretical part by the finding that a subsidy that 
leads to a reduction of the consumer price may imply a net social benefit. 
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