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INTRODUCTION 

Traditional microeconomic modeling of public transport (usually a single line) has been based 
on aggregated demand description, that is, total ridership along a line and average journey 
length. This way, aggregation is spatial rather than temporal, as most public transport systems 
are designed for the period of largest demand. With this approach, various  authors have 
formulated optimization models whose goal is to  maximize social benefit or minimize total 
costs (considering both  users and operators), finding optimal levels for the decision  variables 
such as frequency, vehicle size, number of bus stops and spacing between lines. Presently, it 
is feasible to capture more precise demand patterns in cases where either the payment device 
or the specialized infrastructure in buses and stations can provide not only passenger counts, 
but also exact identification of the origin and destination of the passenger journey (RFID 
cards along with wide-range devices on bus doors, cameras, etc.).  
 
In this paper we examine the advantages of having different levels of aggregation regarding 
demand information in order to explore improvements on the recommendations and 
conclusions obtained from classical microeconomic models. Thus, we establish the optimal 
conditions for the relevant decision variables (frequency and vehicle size) on a public 
transport corridor with inelastic demand, in cases where the demand data is only available at 
an aggregated level (at the level of an entire line, or ridership per direction of movement) as 
well as cases in which it is feasible to obtain more detailed information on the demand 
structure, like origin-destination matrices at the level of bus stops or number of passenger 
who board and alight each bus at each stop.  
 
In the following section analytical expressions for the optimal frequency and vehicle size are 
developed for each case. A theoretical comparison is presented in section 3 regarding optimal 
frequencies, and numerical experiments are conducted in section 4. We close with some 
relevant comments, conclusions and further research in the final section. 
�

SINGLE LINE MODELS WITH AGGREGATE AND DISAGGREGATE DEMAND  

Demand description 

In what follows, a linear corridor is used as a representation of a generic public transport 
system, which can correspond to either a single isolated bus line or a line inserted within an 
existing network of fixed topology (number and position of bus routes). We assume that 
passengers arrive randomly to the stations, a reasonable assumption for high frequency 
corridors with headways of less than 10 minutes (Seddon and May, 1974; Danas, 1980). The 
demand is treated parametrically in the proposed formulations. Our purpose is to find the 



optimal value for the design variables (in these developments, optimal frequency f and vehicle 
size K) in order to maximize the social welfare of the system, which in case of inelastic 
demand is equivalent to minimizing the total cost, taking into consideration both users and 
operators. Users’ costs will include both waiting and travel time of passengers, both very 
dependent of the line frequency, the latter because of the effect of boarding and alighting at 
stations. Access time to bus stops is not included in the system optimization since the number 
and location of bus stops along the corridor are assumed to be fixed. 
 
As mentioned earlier, the major objective of this paper is to compare the analytical 
expressions obtained for the optimal design variables under different demand aggregation 
levels. First, a model based upon aggregated demand is formulated in two versions, one 
whereby only the total cycle demand y is know (denoted as Model 1 or M1) and a second 
model relying on aggregated demand information per direction of circulation, say y1 and y2 
on direction 1 and 2 respectively (denoted as Model 2 or M2). In both cases the average 
journey length is assumed to be known. 
 
Then, a model relying on disaggregated demand is presented (denoted as Model 3 or M3). 
Unlike M1 and M2, in this case we assume that a stop-to-stop OD matrix is available. From 
the more detailed demand data, the cost functions can be stated in a more comprehensive way, 
mainly the components that depend on the in-vehicle time, which is modeled just as an 
average value by the traditional aggregated demand models in the transit microeconomic 
literature. Besides, for the M3 specification, the line contains N stations in one direction (N-1 
stretches), as shown in Figure 1. The operation directions are denoted direction 1 (from 
station 1 to N) and direction 2 (from station N to 1). 
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Figure 1:  Generic public transport corridor 
�
In the models we describe next, the following parameters are assumed known and fixed:   
L: Length of the corridor [km] 
Rk: Bus movement travel time under normal service between stations k and k+1, including 
acceleration and deceleration times at bus stops [min] 
�: Marginal passenger boarding time [seg/pax] 

klλ : Trip rate between stations k and l [pax/hour] (used for M3). This demand is assumed 
fixed over the studied period, defining a trip matrix of the form: 
��
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Additionally, for M3 also, the following functions are defined: 
 
• Passenger boarding rate at station k, whose destination is among stations l1 and l2 

inclusive [pax/hour]: ( )
2
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• Passenger alighting rate at station k, whose destination is among stations l1 and l2 

inclusive [pax/hour]: ( )
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Thus, from these functions we can define the following quantities: 
 

• Passenger boarding rate at station k, direction 1: ( )1
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1

1

1

1, 1
k

k k lk
l

kλ λ λ
−

− −

=
≡ − =�  

• Passenger boarding rate at station k, direction 2: ( )
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• Passenger alighting rate at station k, direction 2: ( )2

1

1,
N

k k lk
l k

k Nλ λ λ− −

= +
= + = �  

 
We assume that the boarding process dominates over the alighting process, and therefore, in 
the model only the first phenomenon (quantified through the parameter �) is considered.  
 
From these definitions, we can relate the demand defined in the context of the three models as 
follows 
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(1) 

 
Besides, the vehicle arrival distribution to the stations is crucial for a correct computation of 
the passenger waiting time, which decreases as the headways become more regular. 
Following Delle Site and Fillipi (1998), two possible bus arrival patterns to stations are 
considered, namely scheduled service (regular headways) and random bus arrivals (Poisson 
process). The former is associated with systems with low variability in both running and 
passenger transfer times at bus stops, for instance special bus segregated corridors with 
efficient transfer operations at stops. In this case the average waiting time turns out to be half 
of the headway. Random arrivals are characteristic of networks with high variability in 
running times (poorly controlled bus systems); in this case the expected waiting time is equal 
to the average headway. 
 
Recalling that the pursued objective is to minimize the total system cost expression with 
respect to the relevant design variables (frequency and vehicle size), next we define 
analytically the different cost components considered for the three models, from both the 
users and operator standpoints. The former comprises the waiting and in-vehicle time costs 
while the latter comprises two operational cost expressions associated with distance and time 
respectively.  
�
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Users’ costs 

The waiting time cost (Cw) is considered as the product between the total expected waiting 
time experienced by all customers and the subjective value of waiting time (Pw). If x is an 
auxiliary binary variable (equals to 1 if buses arrive Poisson, 0 if buses arrive at constant 
headway, as discussed earlier) we can compute the waiting time cost component as follows:  
�
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where f  is the operational frequency, computed as the inverse of the headway. Expression (2) 
applies to all models, regardless of the demand aggregation level applying expression (1). 
 
The in-vehicle time cost (Cv) is modelled as the product between the total expected in-vehicle 
time and the subjective value of the in-vehicle time (Pv).Unlike the waiting time component 
Cw, Cv adopts a different form depending on the demand aggregation level. For the M1 model, 
in-vehicle travel time is expressed as a fraction of the total cycle time, i.e. the ratio between 
the average journey length l and the total route length 2L (Mohring, 1972; Jansson, 1980; Jara 
Díaz and Gschwender, 2003). On the other hand, for the M2 model, it is possible to split this 
component per direction, as the average journey length on direction i (namely li) of journey 
over the route length (L). Moreover, the cycle time ct is computed as the sum of the running 
time by direction (denoted as Ri) and the total stopping time at stations (computed as the total 
expected passenger boarding time). The latter component is computed as the product between 
the average number of passengers boarding a vehicle, /iy f , and the marginal boarding time. 
Analytically, for M1: 
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and for M2��
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For M3 no approximation is needed; travel time tkl for each OD pair (k,l) is given by 
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Then, multiplying (5) times klλ , adding over all OD pairs and multiplying by Pv. the total in-
vehicle travel time cost is obtained in monetary units. Analytically,   
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Operator cost 

In this computation we take into account two components for the operator cost, as some items 
are better represented on a temporal basis (labor) and others over a spatial basis (running cost, 
maintenance, etc.). Following Jansson (1980) and Oldfield and Bly (1988), a linear 
dependency on the vehicle capacity K is assumed for the operator cost functions. Let us 
denote ( )c K  as the cost per vehicle-hour ($/veh-h) and ( ),c K as the cost per vehicle-
kilometer ($/veh-km). Analytically,  
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Therefore, the operator cost can be expressed as: 
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( ) ( )'oC c K F c K v F= + � (8)�
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where v is the commercial speed and F is the fleet size given by frequency f  times cycle time 

ct discussed in section 2.2. Thus, (8) can be rewritten as a function of ct  and f  as follows 
�
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which applies for the three models. 
�

Optimal Value of the Frequency and the Vehicle Capacity. 

The total cost minimization problem comprises the joint minimization of both users’ and 
operators’ costs, encompassing equations (2); (3), (4) or (6); and (10). In order to find the 
optimal value of the variables f and K, first order conditions (FOC) are applied. The vehicle 
capacity is adjusted in order to accommodate the demand of the most loaded segment along 
the corridor, qmax, which can be easily obtained from the OD matrix in M3. For models M1 
and M2, this value must be assumed to be known (or accurately estimated). Then, by defining 
a safety factor ( ]0,1η ∈ ,  and computing maxK q fη=

 
the FOC yield the following values 

for the optimal frequency for M1, M2 and M3 respectively: 
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ANALYTICAL COMPARISON  

By looking at expressions (11), (12) y (13), we can observe that the only difference in the 
optimal frequency values appears in the term associated with the in-vehicle travel time within 
the square root because in-vehicle time cost is quadratic with the demand. Therefore, the 
relevant comparison involves 
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Note first that in systems where the stop time at stations is fixed, the three formulae 
(equations 11, 12 and 13) provide the same result. On the other hand, by writing the average 
journey time length as a function of the disaggregated quantities we obtain  
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First, we focus our analysis in models M1 and M2. Let us dliote Di the total traveled distance 
along direction i, that is, Di= liyi that yields 
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Then (11a) and (12a) can be rewritten as follows  
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Comparing these two expressions is equivalent to analyzing the sign of the expression 
( )( )1 2 2 1y y D D− − . Then, expression (11) will be larger than (12) if either 

( ) ( )1 2 2 1y y D D> ∧ >  or ( ) ( )1 2 2 1y y D D< ∧ < , which is equivalent to say that the traveled 



distance is the largest on the smallest demand direction of movement. On the other hand, if 
the largest demand direction matches the largest traveled distance (which is a very reasonable 
intuitive assumption), the most aggregated model (expression 11) underestimates the optimal 
frequency compared with that obtained from the model that differentiates both directions 
behind expression (12). 
 
Now, let us compare formulae (12a) and (13a), i.e. M2 and M3. By writing (12a) in a 
disaggregated way we have: 
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The previous expression must be compared against (13a). A priori, it seems not possible to 
perform any comparison between both expressions under a generic situation. In order to 
approach to the solution, let us to examine some interesting particular cases,. First, let us 
examine the case of equal trip rates in each direction, that is,  
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In such a case, (12a) and (13a) yield the same result given by 
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Moreover, expression (11a) becomes 
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Note that (15) is always lower or equal than (14). Besides, in this case the average length of 
trip is the same in both directions. 
 
Let us now see the case in which the number of stations equals three (N=3). In this case, (12a) 
and (13a) become, respectively (by simplicity, we analyze only direction 1): 
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The comparison then is reduced to 
 

12 23 13 232λ λ λ λ+  (12c) 
2 2
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The relative value of the trip rates λ  will determine the value of the optimal frequencies. Two 
particular cases: 
 

a) If 12 23λ λ= , (12c) is equivalent to (13c) and both optimal frequencies turn out to be the 
same. 

b) If 13 23 1λ λ λ= ≡   and 23 2λ λ≡ ,  then if 1 2λ λ> , (12c) is larger than (13c) and 
consequently (12) is larger than (13); the other case is analogous. 

 
Therefore, we can not establish a priori a ranking among optimal frequencies obtained from 
the different models. That ranking mostly depends upon the value of the matrix cells. 
Apparently, the more heterogeneous the matrix cells become, the higher the probability of 
getting different values for the optimal frequencies from the various proposed models. 
Therefore, it seems clear that the concentration of trips is a relevant issue when comparing the 
analytical recommendations obtained from the different aggregation level models. In the next 
section, we complement these analytical insights with the conclusions from some numerical 
examples.  
 

NUMERICAL COMPARISON  

In this section we conduct some numerical computations of the optimal design variables 
(frequency, vehicle and fleet size) obtained by applying the different demand aggregation 
models (M1, M2 and M3). We concentrate our analysis on two numerical cases. One is the 
study of a public transport corridor in Santiago, Chile, called Los Pajaritos, from where we 
have origin-destination demand matrix for the most demanded morning peak hour on a typical 
day of operation (MTT, 1998). Los Pajaritos is a corridor of 7 km., with 9 segments and 10 
stations along each direction. The second example is the experiment proposed by Delle Site 
and Phillipi (1998), where also a detailed station to station origin destination demand matrix 
is available. The matrices used in both examples were properly generated from real data of 
affluence at the level of stations. In both examples, the assumed parameters are those shown 
in Table 1 next. 
  

Table 1:  Summary of the assumed model parameters 
 

Parameter Value 
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Example 1: Corridor Los Pajaritos 

The morning peak hour OD matrix and the associated load profile are shown in Table 2 and 
Figure 2 respectively.  Load imbalance between both directions of movement is evident. 
Results are summarized in Table 3. Models M2 and M3 show similar results while M1 clearly 
underestimates not only the optimal frequency but also the optimal fleet size. 
 
�

Table 2:  OD matrix, Los Pajaritos corridor 
�

�

 600 189 165 64 44 342 605 726 395 
3620  11 10 4 3 20 35 42 23 
790 38  5 2 1 10 18 22 12 
1585 75 82  0 0 2 4 5 3 
281 13 14 14  2 13 24 29 16 
186 9 10 9 8  13 22 27 15 
264 13 14 13 12 9  12 14 8 
2631 125 135 130 117 86 107  36 19 
337 16 17 17 15 11 14 18  67 
4425 211 228 218 197 144 180 232 200  
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Figure 2:  Load profile, Los Pajaritos corridor 
�
�
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Table 3:  Optimal design variables, Los Pajaritos corridor  
�

Model 
 

Regime 
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Frequency 
[veh/h] 

Fleet size 
[veh] 

Cap veh 
[pax/veh] 

M1 2152 42594 23784 68530 215 94 74 
M2 1876 40500 25834 68210 247 103 64 
M3 

 
Scheduled 
 1876 40500 25833 68209 247 103 64 

M1 4022 41525 24755 70302 230 98 69 
M2 3561 39775 26701 70037 260 107 61 
M3 

Poisson 
 3561 39775 26700 70036 260 107 61 

�
�



Example 2: Delle Site and Phillipi (1998). 

The morning peak hour OD matrix and its load profile are shown in Table 4 and Figure 3.  In 
this case, demand imbalance between directions is concentrated in only a group of stations. 
Results for M1, M2 and M3 are summarized in Table 5, which shows that optimal frequency 
increases with the level of demand of information available, suggesting that lesser information 
will result in an underestimation of the optimal frequency. The fleet size remains unchanged. 
As the difference among models only happens in travel time, Table 6 shows the results of a 
sensitivity analysis increasing both travel time value Pv to 1800 $/h and travel time between 
stations to 3 minutes, which could be caused by traffic congestion. The difference in optimal 
frequency becomes larger and the optimal fleet size is now different for the three models.  
�
�

Table 4:  OD matrix, Delle Site and Phillipi (1998) example 
�
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Figure 3:  Load profile, Delle Site and Phillipi (1998) example 
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Table 5:  Optimal design variables, Delle Site and Phillipi (1998) example 
�
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Frequency 
[veh/h] 

Fleet size 
[veh] 

Cap veh 
[pax/veh] 

M1 Sched 1538 2563 2910 7011 31 13 45 
M2 Sched 1491 2536 2975 7002 32 13 44 
M3 Sched 1425 2499 3074 6998 34 13 42 
M1 Poisson 2344 2354 3560 8258 41 16 35 
M2 Poisson 2302 2341 3610 8253 42 16 34 
M3 Poisson 2240 2324 3688 8252 43 16 33 

�
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Table 6:  Modified optimal design variables, Delle Site and Phillipi (1998) example 
�
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Frequency 
[veh/h] 

Fleet size 
[veh] 

Cap veh 
[pax/veh] 

M1 Sched 1545 11857 3869 17271 31 31 45 
M2 Sched 1471 11773 4000 17244 33 33 43 
M3 Sched 1375 11662 4194 17231 35 35 40 
M1 Poisson 2460 11496 4541 18497 39 38 36 
M2 Poisson 2384 11453 4646 18483 40 39 35 
M3 Poisson 2278 11392 4806 18476 42 41 34 

 
 
In both numerical examples the optimal frequencies obtained from M1 were systematically 
smaller than those obtained from M2 and M3; and these latter yield different results in the 
second example only. As a general rule, it seems that the better represented is transit demand, 
the larger the optimal frequency and the smaller vehicle size. This makes even more dramatic 
Jansson’s (1984) observation regarding the underestimation of optimal frequency and 
overestimation of vehicle size when users’ cots are not taken into account, considering that he 
was using an M1 type model. Both the analytical developments and the numerical examples 
suggest that the larger the cost associated with in-vehicle travel time, the more likely is that 
the various aggregated models predict different (smaller) values for the optimal frequencies.  
 

CONCLUSIONS 

 
In this paper we examine the advantages of having detailed demand information when using 
classical public transport microeconomic models. We have establish the optimal conditions 
for frequency on a public transport corridor with inelastic demand, in cases where the demand 
data is only available at an aggregated level (at the level of an entire line, or ridership per 
direction of movement) as well as cases in which it is feasible to obtain more detailed 
information on the demand structure, like origin-destination matrices at the level of bus stops 
or number of passenger who board and alight each bus at each stop. 
 
We have developed two analyses, one which is purely analytical and another based on the 
result of applying the different aggregation level models to two examples in which real public 
transport data for peak periods are available.  From the analytical part we clearly identified 
those terms in the optimal frequency expression that remarks the differences among the 
models. However, some conclusions with respect to the ranking among frequencies obtained 
in each model could only be obtained from the analysis of the empirical results. This 



comment motivates a deeper analysis of the analytical expressions, and also and more 
importantly, more numerical examples to validate our conclusions by discarding some 
possible cases that could be imposed numerically in the analytical developments, but not very 
likely to occur in reality. Overall, however, our results suggest that the underestimation of 
optimal frequency and overestimation of vehicle size when not accounting for users’ costs is 
even more important than predicted by Jansson (1984). 
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