OPTICAL CONSIDERATIONS IN
SOLAR CONCENTRATING SYSTEMS

by

DAMIEN CHARLES WILLIAM BUIE

A thesis submitted to
The University of Sydney
for the degree of
Doctor of Philosophy

August 2, 2004
ABSTRACT

To optimise the performance of concentrating solar power systems, a detailed knowledge of the resultant flux distribution in the imaging plane is required. To achieve this, an accurate model of the direct solar beam impinging on the concentrator is essential. This thesis presents an empirical model of the terrestrial solar distribution that has both a high-correlation to observed data and an invariance to a change in location. The model is based on the amount of circumsolar radiation in the direct beam and takes into account the small variations that are due to atmospheric scattering.

A modelling framework is developed to simulate the flux distribution in the imaging plane of a generic solar concentrating system. Algorithms are developed to include the following: the spatial solar energy distribution; the systemic effect of reflecting that distribution off a non-ideal mirrored surface; the spectral energy distribution; the transmission, absorption and reflection characteristics of optical thin films; and the coordinates of the solar vector.

The framework is then used to investigate the performance of anti-reflection coatings on silicon substrates and the performance of linear Fresnel systems. Combined, these algorithms and simulation tools can be applied to create comprehensive optical models of solar concentrating systems.
TO WILLIAM AND LUCY
ACKNOWLEDGMENTS

Completing this doctoral work has been a wonderful and often overwhelming experience. It is hard to know whether it has been grappling with the physics itself which has been the real learning experience, or grappling with how to write a paper, give a coherent talk, work in a group, teach, code intelligibly, tolerate computers, stay up until the birds start singing, and... stay, um... focused.

I would like to specifically thank: both my supervisors Dr David Mills and Dr Christopher Dey for their confidence and direction; and Dr Steven Bosi and Dr Tony Monger for their wealth of knowledge. I am gratefully indebted to both Ben Simons and Chris Willing who have given so much of their time and expertise. Without all of these people I would never have been able to complete a PhD in computational physics; their willingness to always help however trivial my concern and competence in their respected fields, is a testament to both their ability and generosity.

The School of Physics contains many talented and dedicated people: Manfred, Tom, Jocelyn, Michael, Anne Gerd, David and Marcela, Nick, Nigel, Ian and of course Leanne. Their ability to handle stressful situations and incredibly stressed people is inspirational.

From my personal life there are so many people I would like to thank it does no justice to name them individually. Your encouragement, hospitality, distraction and your beer has been greatly appreciated.

Finally and especially I would like to thank both my mother and step father who have supported my decision to undertake this body of work and for their ongoing affection.
PAPERS PUBLISHED

JOURNAL ARTICLES

Buie D. (Submitted), A solar class for the optical simulation of solar concentrating systems, Solar Energy.

CONFERENCE PAPERS

Contents

Abstract ii

Acknowledgments iv

Published Works v

List of Figures xiii

List of Tables xiv

1 Introduction 1

1.1 Energy trends and the global environment 2

1.1.1 Findings of the IPCC 2

1.1.2 Global energy trends 3

1.1.3 The impact on the developing world 8

1.2 Alternatives to burning fossil fuels 9

1.3 Problems with large scale solar power 11

1.4 Solar energy distribution 12

1.5 Circumsolar ratio 14

1.6 Overview of this thesis 15

2 The effect of circumsolar radiation 18

2.1 Introduction 19

2.2 Apparent trends in solar profiles 19

2.3 The effect of variations in sunshapes 22

2.4 Conclusion 25
CONTENTS

3 The spatial solar energy distribution

3.1 Literature review .. 27
3.2 Sunshape data .. 29
 3.2.1 LBL reduced data base 30
 3.2.2 DLR sunshape measurements 35
3.3 Creating a sunshape .. 37
 3.3.1 Intensity profile within the solar disc 37
 3.3.2 Intensity profile in the solar aureole 40
3.4 Discussion .. 44
3.5 Conclusion .. 48
3.6 List of symbols .. 49

4 The effective size of the solar cone

4.1 Literature review .. 50
4.2 The size of the solar cone 52
4.3 Reflection off a mirrored surface 53
4.4 Discussion of results ... 60
4.5 Conclusion .. 62
4.6 List of symbols .. 62

5 A modelling framework

5.1 Introduction .. 64
5.2 A tool to facilitate modelling 65
 5.2.1 Vector package ... 66
5.3 Simulating the terrestrial solar beam 66
 5.3.1 Literature review .. 66
 5.3.2 Terrestrial solar algorithm 70
 5.3.3 Solar Class ... 71
5.4 Examples of applications and results 74
5.5 Conclusion .. 81
CONTENTS

6 Thin film simulations 82
 6.1 Literature review 83
 6.2 Theoretical thin film simulations 84
 6.2.1 Thin film theory 84
 6.2.2 Normal incident simulation 86
 6.2.3 Full day simulation of the direct beam radiation .. 88
 6.3 Comparison to experimental results 91
 6.4 Surface passivation properties 92
 6.5 Implications for solar cell design 93
 6.6 Conclusions ... 95

7 Line focus Fresnel concentrators 97
 7.1 Literature review 98
 7.2 Collector field end-effects 100
 7.3 Field design ... 102
 7.3.1 Linear simulations 102
 7.3.2 Field layout 103
 7.3.3 Spacing results 104
 7.4 Curved absorber simulation 107
 7.4.1 Selective coating 109
 7.4.2 Corrugated absorber 110
 7.4.3 results ... 110
 7.5 Conclusion .. 112

8 Conclusion 113

Bibliography 116

Appendices 123

A File format of the Reduced Data Base 124
B Line intercept justification 127

C Computer code 130
 C.1 C++ libraries .. 130
 C.1.1 solar.h .. 130
 C.2 Fortran code ... 161
 C.2.1 LBL .. 161
List of Figures

1.1 IEA: Total final consumption 1973 - 2001 .. 4
1.2 IEA: Electricity generation 1973 - 2001 ... 4
1.3 IEA: Regional shares of electricity generations 1973 - 2001 7
1.4 Regions share of carbon dioxide emissions 7
1.5 Mie, Rayleigh and specular scattering 13

2.1 20 filtered LBL profiles .. 20
2.2 Correlation between the CSR and the power law gradient 21
2.3 Correlation between the CSR and the power law intercept 21
2.4 Flux map of a line-focus system ... 23
2.5 Optical efficiency of an ideal line-focus imaging concentrator 24

3.1 Photograph of the LBL circumsolar telescope 30
3.2 Raw data from the LBL RDB .. 32
3.3 Self consistency of the RDB ... 32
3.4 Relative number of profiles from each location within the RDB ... 34
3.5 Number of profiles contained in the filtered RDB 34
3.6 Example of filtered averaged sunshapes from the RDB 35
3.7 DLR sunshape camera used by Neumann et al. (2002) 36
3.8 Neumann et al. (2002) DLR sunshape profiles 36
3.9 Solar limb data for both the DLR and the RDB 38
3.10 Energy contained within the solar disc for the LBL & DLR 39
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.11</td>
<td>r^2 correlation of the circumsolar region of the RDB</td>
<td>42</td>
</tr>
<tr>
<td>3.12</td>
<td>Average gradient of the circumsolar region of the RDB</td>
<td>43</td>
</tr>
<tr>
<td>3.13</td>
<td>Average intercept of the circumsolar region of the RDB</td>
<td>43</td>
</tr>
<tr>
<td>3.14</td>
<td>Competence of the sunshape algorithm</td>
<td>46</td>
</tr>
<tr>
<td>3.15</td>
<td>Generated CSR vs. required CSR</td>
<td>47</td>
</tr>
<tr>
<td>3.16</td>
<td>Tolerance of the sunshape algorithm</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>The effective size of the solar cone</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Error associated with the prediction of the size of the solar cone</td>
<td>54</td>
</tr>
<tr>
<td>4.3</td>
<td>Probability distribution of the slope error</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>Reflected solar image of a mirrored surface</td>
<td>56</td>
</tr>
<tr>
<td>4.5</td>
<td>The angular displacement of the reflected solar cone for different mirror errors for a CSR of 0.05.</td>
<td>57</td>
</tr>
<tr>
<td>4.6</td>
<td>The angular displacement of the reflected solar cone for different mirror errors for a CSR of 0.1.</td>
<td>57</td>
</tr>
<tr>
<td>4.7</td>
<td>The angular displacement of the reflected solar cone for different mirror errors for a CSR of 0.2.</td>
<td>58</td>
</tr>
<tr>
<td>4.8</td>
<td>The angular displacement of the reflected solar cone for different mirror errors for a CSR of 0.3.</td>
<td>58</td>
</tr>
<tr>
<td>4.9</td>
<td>The angular displacement of the reflected solar cone as a function of the circumsolar ratio; incident radiation collection efficiency - 80%.</td>
<td>59</td>
</tr>
<tr>
<td>4.10</td>
<td>The angular displacement of the reflected solar cone as a function of the circumsolar ratio; incident radiation collection efficiency - 90%.</td>
<td>59</td>
</tr>
<tr>
<td>4.11</td>
<td>The angular displacement of the reflected solar cone as a function of the circumsolar ratio; incident radiation collection efficiency - 95%.</td>
<td>60</td>
</tr>
<tr>
<td>5.1</td>
<td>Graphical representation of an abstract solar array</td>
<td>73</td>
</tr>
<tr>
<td>5.2</td>
<td>Radial energy distribution of a reflected solar image</td>
<td>74</td>
</tr>
<tr>
<td>5.3</td>
<td>Fresnel dish flux (outer mirror)</td>
<td>76</td>
</tr>
</tbody>
</table>
5.4 Fresnel dish flux (all mirrors) 76
5.5 EuroTrough end losses 78
5.6 Flux distribution through the absorber plane of a high-flux concentrator (AM1) 80
5.7 Flux distribution through the absorber plane of a high-flux concentrator (AM1.5) 80

6.1 A thinfilm stack on silicon and encapsulated under pottant ... 87
6.2 The spectral solar flux distribution (AM1.5D) 89
6.3 Integral flux of the solar insolation from 7am until 5pm 89
6.4 Total, theoretical solar weighted reflectance as a function of oxide and nitride thickness (Normal) 90
6.5 Total, theoretical solar weighted reflectance as a function of oxide and nitride thickness (Day) 91
6.6 Comparison between the experimental and theoretical reflection 92
6.7 Total, theoretical solar weighted reflectance as a function of oxide and nitride thickness (Difference) 94
6.8 Thin film performance variation for summer and winter 94

7.1 The end-effect of a linear Fresnel concentrator 100
7.2 The end-effect compensation of a LFR concentrator 102
7.3 The average power produced from a line focus Fresnel system 105
7.4 The average daily output from a linear Fresnel concentrator . 106
7.5 Incident and absorbed flux profile of a flat plate 108
7.6 Angular response of a selective surface 109
7.7 Example of two corrugated absorbers 110
7.8 Flux distribution on a corrugated absorber 111
7.9 Performance of a corrugated absorber 111
List of Tables

3.1 LBL reduced database summary of locations 28

3.2 List of symbols for Chapter 3 ... 49

4.1 List of symbols for Chapter 4 ... 62

5.1 The default atmospheric parameters 72

5.2 The input functions to create the solar distribution 73

6.1 Surface passivation results for an nitride deposition 93

6.2 Results of the optimisation of the nitride/oxide thin film stack
for various simulations ... 95

7.1 Comparison of the end-effect of a line focus Fresnel system ... 101

A.1 Lawrence Berkeley Laboratories Reduced Data Base 124

A.2 A sample the data within the Reduced Data Base 125

A.3 Summary description of error and status flags 126