Analysis of Some Linear and Nonlinear Time Series Models

Ponnuthurai Ainkaran

A thesis submitted in fulfillment of the requirements for the degree of Master of Science

School of Mathematics and Statistics
University of Sydney

August 2004
Abstract

This thesis considers some linear and nonlinear time series models. In the linear case, the analysis of a large number of short time series generated by a first order autoregressive type model is considered. The conditional and exact maximum likelihood procedures are developed to estimate parameters. Simulation results are presented and compare the bias and the mean square errors of the parameter estimates. In Chapter 3, five important nonlinear models are considered and their time series properties are discussed. The estimating function approach for nonlinear models is developed in detail in Chapter 4 and examples are added to illustrate the theory. A simulation study is carried out to examine the finite sample behavior of these proposed estimates based on the estimating functions.
Acknowledgements

I wish to express my gratitude to my supervisor Dr. Shelton Peiris for guiding me in this field and for his inspiration, encouragement, constant guidance, unfailing politeness and kindness throughout this master’s programme, as well as his great generosity with his time when it came to discussing issues involved in this work. There are also many others whom I list below who deserve my fullest appreciation.

I would like to take this opportunity to thank Professor John Robinson and Dr Marc Raimondo for their guidance in this research during the period in which my supervisor was away from Sydney in 2002.

Associate Professor Robert Mellor of the University of Western Sydney gave me invaluable guidance towards my research on linear time series which appears in Chapter 2 and his help is greatly appreciated.

I am also indebted to Professor A. Thavaneswaran of University of Manitoba, Canada, for giving me the opportunity of working with him on the nonlinear time series described in Chapter 4 of this thesis during his visits to Sydney University.
I owe sincere thanks to the statistics research group for their many helpful discussions and suggestions leading to the improvement of the quality of my research.

The Head and staff of the School of Mathematics and Statistics gave their constant support during my master’s programme, for which I wish to express my gratitude.

I also appreciate the valuable suggestions, comments and proof-reading provided by my friends Chitta Mylvaganam and Jeevanantham Rajeswaran which contributed towards improving the literary quality of this thesis.

I am also indebted to my parents, teachers and all my friends who contributed to my personal and academic development up to this stage.

Last but not least in importance to me are my wife Kema and two children (Sivaram & Suvedini) without whose understanding, love and moral support, I could not have completed this thesis.
CONTENTS

Abstract... iii

Acknowledgements... iv

List of Figures.. viii

List of Tables.. xi

Chapter 1. Introduction .. 1

1.1. Notation and Definitions... 1

1.2. Recursive estimation methods and Kalman filtering....... 7

Chapter 2. Linear Time Series Models 9

2.1. Autoregressive Moving Average Process..................... 9

2.2. State-space representation and Kalman filtering of ARMA models... 13

2.3. Analysis of short time series............................... 20

Chapter 3. Nonlinear Time Series Models 39

3.1. Bilinear Models.. 40

3.2. Random Coefficient Autoregressive (RCA) Models 46

3.3. Doubly Stochastic Models... 52

3.4. Threshold Autoregressive (TAR) Models................... 57

3.5. Autoregressive Conditional Heteroscedasticity (ARCH) Models... 62
Chapter 4. Estimating Functions and Applications

4.1. Estimating Functions

4.2. Recursive Estimation using Estimating Functions

4.3. Applications of Estimating Functions

4.4. Smoothed Estimating functions

4.5. Applications of Smoothed Estimating Functions

Chapter 5. Simulation Study for the Estimates Via Estimating Functions

5.1. RCA Model

5.2. Doubly Stochastic Model

5.3. TAR Model

5.4. ARCH model

5.5. Summary and conclusion

References

vii
List of Figures

1. Comparison of the bias of \(\hat{\phi}_1 \) and \(\hat{\phi}_2 \) (\(\mu = 5 \) and \(\sigma^2 = 1 \)) ... 35

2. Comparison of the mse of \(\hat{\phi}_1 \) and \(\hat{\phi}_2 \) (\(\mu = 5 \) and \(\sigma^2 = 1 \)) ... 36

3. Plot of BL(1,1,1,1) (\(\phi = 0.8, \theta = 0.7 \) and \(\beta = 0.6 \)). 44

4. acf plot of BL(1,1,1,1) (\(\phi = 0.8, \theta = 0.7 \) and \(\beta = 0.6 \)). ... 44

5. pacf plot of BL(1,1,1,1) (\(\phi = 0.8, \theta = 0.7 \) and \(\beta = 0.6 \)). ... 45

6. Plot of RCA(1) (\(\phi = 0.8 \)). 50

7. acf plot of RCA(1) (\(\phi = 0.8 \)). 50

8. pacf plot of RCA(1) (\(\phi = 0.8 \)). 51

9. Plot of doubly stochastic(1,1) (\(\phi = 0.2 \) and \(\theta = 0.1 \)). ... 55

10. acf plot of doubly stochastic(1,1) (\(\phi = 0.2 \) and \(\theta = 0.1 \)). ... 56

11. pacf plot of doubly stochastic(1,1) (\(\phi = 0.2 \) and \(\theta = 0.1 \)). ... 56

12. Plot of TAR(2;1,1) (\(\phi_0 = 1 \) and \(\phi_1 = 0.8 \)). 60
13 acf plot of TAR(2;1,1) ($\phi_0 = 1$ and $\phi_1 = 0.8$). 61
14 pacf plot of TAR(2;1,1) ($\phi_0 = 1$ and $\phi_1 = 0.8$). ... 61
15 Plot of ARCH(1) ($\phi_0 = 1$ and $\phi_1 = 0.8$). 65
16 acf plot of ARCH(1) ($\phi_0 = 1$ and $\phi_1 = 0.8$). 65
17 pacf plot of ARCH(1) ($\phi_0 = 1$ and $\phi_1 = 0.8$). 66
18 Plot of GARCH(1,1) ($\phi_0 = 1$, $\phi_1 = 0.1$ and $\theta_1 = 0.1$). .. 70
19 acf plot of GARCH(1,1) ($\phi_0 = 1$, $\phi_1 = 0.1$ and $\theta_1 = 0.1$). .. 70
20 pacf plot of GARCH(1,1) ($\phi_0 = 1$, $\phi_1 = 0.1$ and $\theta_1 = 0.1$). .. 71
21 Plot of the bias of $\hat{\phi}$ in RCA(1) 112
22 Plot of the mse of $\hat{\phi}$ in RCA(1) 112
23 Plot of the bias of $\hat{\phi}$ in doubly stochastic (1,0) model... 119
24 Plot of the mse of $\hat{\phi}$ in doubly stochastic (1,0) model... 119
25 Plot of the bias of $\hat{\phi}$ in TAR(2;1,1) model 122
26 Plot of the mse of $\hat{\phi}$ in TAR(2;1,1) model 122
27 Plot of the bias of $\hat{\phi}$ in ARCH(1) model 125
28 Plot of the mse of $\hat{\phi}$ in ARCH(1) model 125
29 Distribution of $\hat{\phi}$ for the RCA(1) model 127
30 Distribution of $\hat{\phi}$ for the doubly stochastic (1,0) model... 127
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Distribution of $\hat{\phi}$ for the TAR((2;1,1) model</td>
<td>128</td>
</tr>
<tr>
<td>32</td>
<td>Distribution of $\hat{\phi}$ for the ARCH(1) model</td>
<td>128</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Simulated means of $\hat{\delta}_1$ and $\hat{\delta}_2$ (m=100, k=300)</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>Simulated variances of $\hat{\delta}_1$ and $\hat{\delta}_2$ (m=100, k=300)</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>Simulated bias of $\hat{\delta}_1$ and $\hat{\delta}_2$ (m=100, k=300)</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>Simulated mse of $\hat{\delta}_1$ and $\hat{\delta}_2$ (m=100, k=300)</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>Simulated means of $\hat{\delta}_1$ and $\hat{\delta}_2$ (m=500, k=500)</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>Simulated variances of $\hat{\delta}_1$ and $\hat{\delta}_2$ (m=500, k=500)</td>
<td>30</td>
</tr>
<tr>
<td>7</td>
<td>Simulated bias of $\hat{\delta}_1$ and $\hat{\delta}_2$ (m=500, k=500)</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>Simulated mse of $\hat{\delta}_1$ and $\hat{\delta}_2$ (m=500, k=500)</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>Simulated means of $\hat{\delta}_1$ and $\hat{\delta}_2$ (m=1000, k=1000)</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>Simulated variances of $\hat{\delta}_1$ and $\hat{\delta}_2$ (m=1000, k=1000)</td>
<td>32</td>
</tr>
<tr>
<td>11</td>
<td>Simulated bias of $\hat{\delta}_1$ and $\hat{\delta}_2$ (m=1000, k=1000)</td>
<td>33</td>
</tr>
<tr>
<td>12</td>
<td>Simulated mse of $\hat{\delta}_1$ and $\hat{\delta}_2$ (m=1000, k=1000)</td>
<td>33</td>
</tr>
<tr>
<td>13</td>
<td>Mean, variance, bias and mse of $\hat{\phi}$ for the RCA(1) model</td>
<td>111</td>
</tr>
<tr>
<td>14</td>
<td>Mean and variance of $\hat{\delta}$ for the RCA(1) model</td>
<td>114</td>
</tr>
<tr>
<td>15</td>
<td>Simulated bias and mse of $\hat{\delta}$ for the RCA(1) model</td>
<td>115</td>
</tr>
<tr>
<td>16</td>
<td>Mean, variance, bias and mse of $\hat{\phi}$ for the doubly stochastic (1,0) model in (5.7)</td>
<td>118</td>
</tr>
</tbody>
</table>
Mean, variance, bias and mse of \(\hat{\phi} \) for the TAR(2;1,1) model in (5.12)(\(\phi_0 = 1 \)) 121

Mean, variance, bias and mse of \(\hat{\phi} \) for the ARCH(1) model in (5.14)(\(\phi_0 = 5 \)) 124