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Abstract 

In underwater acoustic imaging, used to produce high-resolution images in turbid waters, a 
specular reflector in general produces a ‘pseudoimage’ of the receiving array, located on the 
reflecting surface; the pseudoimage is of considerable use since it reveals the shape of the 
surface.  A system is considered in which a spherical transmitter together with a 2D receiving 
array give a 3D image in a single ‘ping.’  A treatment predicting the shape of the 
pseudoimage—in particular, its lateral extent—is given that is exact within geometrical 
acoustics.  The surfaces to which the treatment is applied are the paraboloid (with two principal 
radii of curvature)—provided that the transmitter lies on the paraboloid’s axis—the sphere, the 
cylinder and the plane.  The treatment involves a ray-tracing algorithm based on the equation 
of the surface, and an algorithm to invert that procedure using the Levenberg-Marquardt 
method.  Pseudoimages of lines in the array are graphed and discussed, along with, more 
interestingly, pseudoimages of squares.  While the latter pseudoimages are parallelograms 
when the square is small, in general they are not parallelograms, since all four sides are curved.  
Further features found are that an ‘object’ in the array may produce multiple pseudoimages, no 
pseudoimage, ‘local optima’ and/or ‘blockage points.’  Such an exact determination of the 
resulting pseudoimage for selected surfaces gives useful insight into pseudoimages that occur 
in practice.  Conditions of validity (arising because wave effects are neglected) are given.  The 
report also contains a preliminary discussion of the extension that would be needed to include 
wave effects.  In addition it is shown that, subject to more restrictive conditions, the results 
apply also to a general smooth surface.  A ‘paraxial’ approximation (similar to the ‘large-range 
approximation’ of an earlier paper but somewhat more general) is described and found to be 
useful.  
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1. Introduction 

 
1.1 Underwater Acoustic Imaging 
 
 To produce high-quality images of objects in water, most often optical means such as a 
video-camera are used.  However, in sediment-laden waters such methods fail.  Underwater 
acoustic imaging (UAI) offers a way around this problem.  As outlined by Jones (1996), the 
Maritime Operations Division of the (Australian) Defence Science and Technology 
Organisation (DSTO) initiated an innovation program to implement UAI.  In this endeavour, 
DSTO was joined by Thales Underwater Systems (TUS) and the CSIRO (Commonwealth 
Scientific and Industrial Research Organisation).  As a result, an operational prototype was 
produced in 2004. 
 
 Accounts of the UAI project have been given by Maguer et al. (2000), Jones (2000) and 
Vesetas and Manzie (2001).  Particular aspects of the program have been discussed as follows: 
a simulation of the image-forming process (Blair and Anstee, 2000), near-field beam patterns 
(Blair, 2002), rapid signal processing (Blair and Jones, 1998; Blair, 1997) and one-bit 
digitisation (Blair et al., 2006).  In the present report the ‘image-forming’ process refers to the 
equation for adding together the signals received at the various sensors with appropriate time 
delays to produce a 3D image. 
 
 The UAI system has a lateral resolution of the order of a few mm per m of range, and a range 
resolution of the order of a few mm.  Images are obtainable for ranges from 0.5 m to beyond 
2 m.  The dimensions of the two-dimensional (2D) receiving array are a few hundred 
millimeters.  The elements are distributed at random and the array is very sparsely populated.  
The system has a spherical transmitter and the operating frequency is a few megahertz.  A long 
chirp pulse is used to achieve good range resolution; to this end a cross-correlation or 
‘dechirping’ process is applied to the received signals (Urick, 1983; Rihaczek, 1985).  A 3D 
image is produced in one ‘ping’ from the transmitter.  Images are produced in real time, 
provided that the ‘partly coherent’ mode (defined below) is used; thus a moving image is seen.  
To achieve the high sampling rate needed, the system uses one-bit sampling preceded by the 
intentional adding of noise.  
 
 Other groups have developed somewhat different implementations of the underwater acoustic 
imaging concept as follows: E. Belcher (Belcher et al., 2002; Belcher et al., 2001; Belcher et 
al., 1999), J. Impagliazzo (Chiang et al., 2003; Broadstone et al., 1999; Chiang et al., 2002) 
and R.K. Hansen (Hansen and Andersen, 1996; Hansen and Andersen, 1998; Hansen, 1993), 
together with co-workers in each case. 
 
 
1.2 Specular Reflectors 
 
 A specular reflector is a surface that reflects waves as a mirror does in optics.  In the 
acoustics case, a specularly reflected wave is produced whenever a wave is incident on a 
smooth boundary that is an infinitely thin boundary separating two materials of different 
acoustic impedance.  Considerable work on the acoustic imaging of specular reflectors has 
been reported in the literature, as will now be discussed.  Much of this work is concerned with 
medical imaging, as follows.  It is known that imaging via an array or a focussed aperture, by 
methods appropriate to point scatterers and extended diffuse scatterers, also produces an 
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image—a correctly located image—of specular surfaces (called in this report pseudoimages, 
because of their special relationship to the receiving array). However, such an image is 
restricted to the portion of the specular surface that is nearly perpendicular to the general 
direction of propagation3 (Shapiro et al., 2001).  The image lies4 on the specular surface; the 
axial (or range) resolution is one-half of the spatial pulse length, just as for a point scatterer 
(Anderson-Dutoit, 2002, p. 7).  The systems discussed in the present report often involve a 
long transmitted pulse followed by the appropriate cross-correlation process: then the ‘pulse 
length’ is to be replaced by the length of the autocorrelated pulse, of order Bc 2 , where B  is 
the bandwidth and c  is the speed of sound. 
 
 As stated by Goldstein and Powis (1999, p. 60), specular reflectors are of relatively little use 
in medical diagnosis: their use tends to be limited to indicating organ size.  Some attention has 
gone into reducing the contribution to the image from specular reflectors, so as to better detect 
other features (Wilhjelm et al., 2004).  It is to be noted that in medical imaging, the surfaces 
called ‘specular’ tend to produce both a specularly reflected component and a diffusely 
reflected component (Goldstein and Powis, 1999, p. 61).   
 
 We note that sonar imaging in typical situations differs from medical imaging in at least two 
respects.  First, artificially constructed objects (such as sea mines) are often targeted for 
viewing, in which case the mapping of specular reflectors can be of considerable interest.  
Second, it is expected that, with artificial targets, very often the diffuse component is quite 
small.   
 
 As a general point in the context of specular reflectors in ultrasound or acoustic systems, 
other methods have been devised to complement the image-forming equation.  In particular, 
methods have been reported for the classification of reflections into a few categories, of which 
one is specular reflection; examples from sonar are given below.  
 
 We now turn to sonar imaging.  In sonar (as in medical imaging), the image-forming 
equation and similar techniques not only locate point scatterers and diffusely reflecting 
surfaces, but also give rise to highlights in the image, of which some are due to specular 
reflectors but others are due to targets of other kinds.  Dealing with highlights has thrown up 
challenges, which authors have addressed to a considerable degree.   
 
 Ray tracing of reflections from specular surfaces have been carried out: for example, 
Bouxsein et al. (2006) dealt with a plane, a sphere and a cylinder.  Kuc and Viard (1991) 
employed Huygens’ Principle and linear systems theory to study reflection from specular 
surfaces.  Surfaces that are rough still produce some phase coherence effects in the reflected 
beam.  Such surfaces have been treated using the Kirchhoff approximation by, for example, 
Culver and McDaniel (1991) and Bosma and Kuc (1994); surfaces of this type were also 
treated by Williams and Funk (1994) (see also references therein). 
 
 Work has been done (in sonar) on the classification of highlights and related features.  For 
example, a method reported by Kleeman and Kuc (1995) classifies targets into planes, corners, 
edges and unknowns, while Nai-Chyuan Yen  and Dragonette (1997) used waveform analysis 
to classify returns into categories including specular reflectors, creeping waves, chalice waves, 
Bragg waves and Bloch waves.  Hansen (2008) reported a method for analysing acoustic data 
                                                 
3 This refers to the case where the transmitter and the receiving array are placed close together, so that 
the ‘look direction’ is approximately the same for both. 
4 This refers to the position in ‘image space.’ 
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to produce a mathematical representation of a large or complete surface, initially made up of 
triangles but optionally later fitted by a smooth mathematical surface; surface roughness values 
are also estimated. 
 
 Ferguson and Wyber (2005) used techniques of acoustic reflection tomography to image 
underwater objects that included specular reflectors.  The waves insonifying the targets were 
made approximately plane by keeping a large separation between the transducer and the target. 
 
 From the discussion in this Section 1.2 (especially the first paragraph), we may note two 
ways in which the forming of an image of a specular reflector differs from that of a collection 
of point scatterers placed randomly.  (It is expected that a very rough surface may be regarded 
as a case of the latter.)5  First, to trace out a complete specular surface, usually multiple pings 
from different directions are needed.  Second, experience has shown that, for those points on 
the specular surface that do reflect to the receiving array, the theory of image-forming, 
developed for point scatterers, continues to locate the points in the image correctly; however, it 
is not necessarily the case that this theory (including the point spread function) applies in toto 
to specular reflectors.  We return to this point in Section 12. 
 
 
1.3 Context and Goals of the Present Work 
 
 In the 1999 ‘Pyrmont 2’ trial of the UAI system, Thales Underwater Systems observed that a 
flat specular reflector can produce what looks like an image of the receiving array (Manzie, 
2000).  Such an ‘image’ has been dubbed a ‘pseudoimage’ (Blair, 2006).  Manzie noted that 
such an image can alert the observer to the fact that a specular reflector is present.  A 
pseudoimage is very easy to recognise if the receiving array is operated in the ‘partly coherent’ 
mode (defined in Section 2 below).  By way of clarification, we point out that, because the 
pseudoimage lies on the surface of the specular reflector, the pseudoimage is quite different 
from images of the usual kind, encountered, for example, in optics. 
 
 Pseudoimages are very useful in underwater imaging because they provide a way of mapping 
a specular (smooth) surface (usually with multiple pings, as pointed out below in Section 1.4).  
It was therefore judged important to develop a theoretical understanding of pseudoimages.  To 
this end, two articles have been produced: one of them in 2006 (Blair, 2006, to be called I) and 
one of them being the present report.  The approach adopted in both these articles has been to 
‘work one’s way’ outwards from the ‘chief reflecting point’ [defined in Section 3.1 as a point 
on the reflecting surface that (geometrically) reflects directly back to the (center of) the 
transmitter].  At that point the surface possesses two principal radii of curvature.  Usually, near 
that point, the smooth surface is described to a good approximation by a second-order 
polynomial equation determined by these radii (and their orientation)—in fact the equation of a 
paraboloid.  Then the existence of pseudoimages provides a way to use acoustic imaging to 
determine, not only the location of specular reflectors, but also their principal radii of 
curvature, because the magnification(s) of the pseudoimage depend on these radii.   
 
 In paper I, formulae were derived describing the pseudoimage for both flat and curved 
reflectors.  Each curved reflector was taken to be a paraboloid, described by two (not 
necessarily equal) radii of curvature; however (as discussed in Section 11 below) the treatment 
applies, as an approximation, to other smooth surfaces having the same two radii of curvature 
                                                 
5 Actually, for the very rough surface and the random point scatterers, some coherence is still present, 
leading to so-called ‘speckle’ (Goodman, 1976).  In the present discussion speckle is ignored. 
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at the ‘chief reflecting point.’  The treatment in paper I was based on the ‘geometrical 
approximation.’  In that approximation (for reasons given in I and rounded out in Section 2) a 
given ‘object point’ (a point on the receiving array),6 normally leads to a bright point, or 
pseudoimage point, on the surface of the reflector7; the position of the pseudoimage point is 
given by the law of reflection.  The geometrical approximation should be good in the limit of 
short wavelengths.8  In paper I (in the case of a non-planar reflector), the ‘large-range 
approximation’ was also assumed. 
 
 The present report extends the treatment to points that may lie far from the ‘chief reflecting 
point.’  It is recognised that, as one moves further away from that point, the radii of curvature 
in general change.  In order to keep the study within bounds, a class of simple surfaces was 
selected for simulation.  The present report is similar to I in that one of the surfaces treated is 
the paraboloid (with two radii) (The plane is included as a special case.).  In a minor extension, 
the sphere and the cylinder are also treated.  What all these surfaces have in common is that the 
equation of the surface, in Cartesian coordinates ( )zyx ,, , is given by equating to zero a 
second-order polynomial function of x , y  and z .  (Not all such polynomials are treated, 
however.)   
 
 For a general treatment of the above surfaces, two major extensions (of the treatment in paper 
I) are necessary: first, to drop the ‘large-range’ assumption and, second, to replace the 
geometrical treatment by one that takes account of wave effects.  In the present system, wave 
effects arise from two sources.  First, acoustic waves are propagated and reflected: these are 
amenable to a treatment via Huygens wavelets undergoing spherical spreading (e.g. Clay and 
Medwin, 1977).  Second, the image-forming (a numerical procedure defined above), since it is 
an approximation to back-propagation (Ljunggren et al., 1980; Shewell and Wolf, 1968; Lalor, 
1968), also introduces wave effects.  We return to the second task (waves) at the end of the 
report; the present report carries out the first task: the dropping of the large-range 
approximation. 
 
 In paper I, the ‘large-range approximation’ was introduced as a means of simplifying the 
recovery of shape parameters for a non-planar reflecting surface.  The large-range 
approximation basically requires that the displacement of the object point from the ‘chief 
normal’ [defined in Section 3.1 below as the normal to the reflecting surface that passes 
through the (center of) the transmitter] be small compared to the range.  (Precise conditions on 
the approximation are given in I.)  It is important to make the extension to larger displacements 
for two reasons.  First, when the displacements are large, if the principal curvatures are inferred 
from the image data on the basis of the large-range approximation, the results can be in error 
by a factor as great as three, as will be found below (at Figure 9.2).  Moreover, because the 
image of a square is no longer a parallelogram, in general no unique value for a given curvature 
would be obtained, even though the curvature has a definite value.   
 
 The second reason is that, at large displacements of the object point, further effects occur (as 
will be seen later).  A single object point can lead to multiple pseudoimage points, or to no 
pseudoimage point.  The object point can also lead to points in the image that share some, but 

                                                 
6 As noted in a footnote to Section 2, strictly one must consider, not a mathematical point (object point), 
but a region of the plane of the array that is small, but not too small.  The appropriate region contains a 
considerable number of sensor elements. 
7 That is, on the image of the surface of the reflector. 
8 Subject also to (i) the effective length of the pulse being small, and (ii) the smallness of grating lobe 
effects (Section 10.3). 
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not all, of the characteristics of a pseudoimage point, namely ‘local optima’ and ‘blockage 
points.’ 
 
 It is of interest to see how well the large-range approximation behaves in a typical situation.  
A rough measure of the goodness of the large-range approximation is the smallness of 

( ) 02 rL≡α , which is essentially the maximum angle (in radians) of inclination of rays to the 
‘chief normal’ (defined in Section 3.1 below).9  Here L  is the diameter of the array and 0r  is 
the range.  A typical system (such as that considered by DSTO) has m 5.0=L  and m 5.10 =r , 

giving 
6
1=α .  Hence, in this situation, while we expect the large-range approximation to give a 

good first approximation, it is not accurate.  It must be emphasised that this is for a typical 
case: cases of considerably better behaviour and considerably worse behaviour both occur.  It 
is worth mentioning that in the case considered, the accuracy is actually good (even at large 
displacements) if the reflector is a near-planar surface (see I, p. 11). 
 
 The purpose of the present work has been to develop an algorithm that describes exactly (but 
within the geometrical approximation) a set of surfaces specifiable by a small number of 
parameters, but having two distinct radii of curvature.  The choice of the paraboloid (as above) 
achieves this.  Thus, first, the present study of the paraboloid gives, exactly, an example of the 
effects that are produced when one goes beyond the plane to a curved surface.  And second, it 
is believed that the paraboloid gives a good illustration of the qualitative features (see the 
‘other features’ in Section 1.4) of the pseudoimage produced by a curved surface—at least in 
the case where the curvature does not change greatly over the extent of the surface. 
 
 Arguably the surfaces chosen for simulation are the ones most likely to occur in practice.  
However, two further limitations of the algorithm as currently coded need to be mentioned.  
First, the transmitter is required to lie on the axis of the paraboloid.  (There is no corresponding 
limitation on the sphere or the cylinder.)  Second, consider a situation of multiple ‘pings’ in 
which the transmitter-receiver system is moved rigidly (relative to the target) between pings.  
The present set of input parameters is not ideally suited to exploring the effects of such a rigid 
motion.  The second limitation could be removed by a not-too-large amount of work.  The 
removal of the first limitation requires an extension of the analytic calculation on which the 
ray-tracing algorithm is based; the extension appears to be fairly straightforward but somewhat 
lengthy. 
 
 
1.4 Use of the Present Work 
 
 It is known that the pseudoimage lies on the reflecting surface, but usually occupies only a 
part (most often, a small part) of that surface.  Thus (Stuart Anstee, private communication) an 
image of the entire specular surface can be built up from multiple pings taken with the sonar 
system located at different positions and orientations.10  One is therefore led to ask why the 
present work is of use. 
 

                                                 
9 This quantity α  is to be distinguished from the quantity α  used from Equation (3.1) onward. 
10 This statement assumes that either: (i) the movement of the sonar system from one ping to another is 
known, or (ii) registration—the fitting together of an image from one ping and that from another ping—
can be carried out.  The discussion of these two items lies outside the scope of the present work. 
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 A brief answer is that, in the literature, there appears to have been little discussion of the 
lateral extent of the pseudoimage.  This report helps to fill that gap; at the same time it relates 
the extent and boundaries of the pseudoimage to the geometry of the receiving array. 
 
 Thus first, the report is useful in showing, without vagueness, what some typical 
pseudoimages look like and how their shape may diverge from the simple shape (e.g. a 
parallelogram) predicted by the large-range approximation.  Second, the report is useful in 
showing (with detailed examples) that a number of other features occur.  First among these is 
that, for a given configuration (of the sonar system together with the target), there may be 
multiple pseudoimages or no pseudoimage.  Second among the ‘other features,’ there may be a 
pseudoimage of part of the array only.  On occasions this is due to the pseudoimage reaching 
the edge of the reflector.  But on other occasions a more novel mechanism is at work, which 
produces a pair of part-pseudoimages abutting one another and separated by a curve of local 
optima.  The report is useful also for a third reason: it reveals the presence of local optima and 
blockage points; their existence is of mild theoretical interest. 
 
 The above are the main uses of the report.  Two lesser possible uses will be mentioned. First, 
an acquaintance with pseudoimages may help the sonar operator to steer the sonar system to 
new positions and orientations that enable the complete reflector surface to be mapped with 
efficiency.  Second, it has been suggested (by Stuart Anstee, private communication) that a 
program that simulates a paraboloidal reflector might be useful in the design phase of a system, 
the aim of which is to map specular reflectors (the paraboloid being a good test case).11 
 
1.4.1 Use of the ‘Pseudoimage’ Concept 
 
 The concept of a ‘pseudoimage,’ as developed in the short sequence of articles cited at the 
start of Section 1.3 (three articles including the present one), emphasises the relationship of the 
pseudoimage to the receiving array.  The sequence as a whole has possible uses not mentioned 
so far in Section 1.4. 
 
 First among these, if the receiving array is operated in the partly coherent mode, the 
pseudoimage tends to consist of a (more or less) regular array of spots.  This gives a strong 
visual cue to the fact that a specular reflector is present.  Second, irrespective of whether the 
partly or the fully coherent mode is used, the pseudoimage gives rather directly the 
magnification(s) of the pseudoimage.  From these, the principal radii of curvature can be 
deduced (quite quickly in the case where the large-range approximation is valid).  There are 
thus two methods for calculating these radii, the other being a calculation based directly on the 
image (pseudoimage) of the surface in 3D space (without paying attention to the 
magnification).  The ‘magnification’ method may have an advantage, in that the calculation of 
the radii is then based on the values of first spatial derivatives rather than second ones. 
 
 Third, consider the reflection from a general (non-paraboloidal) smooth surface in the 
neighbourhood of a reflecting point that reflects directly back to the transmitter. For a 
sufficiently small neighbourhood, a paraboloid provides a good approximation to the surface; 
then the algorithm of the present report gives the pseudoimage and its magnification 
accurately.  This point is discussed in more detail in Section 11 below. 
 

                                                 
11 In particular, a combined hardware-plus-software system to handle registration might be tested before 
the hardware is built.  The present computer program would first need to be modified by, for example, 
allowing the transmitter to lie off the paraboloid’s axis. 
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1.5 Outline of the Report 
 
 The geometrical approximation is described in Section 2.  After Section 3 describes the 
configuration of the system, Section 4 solves exactly, within the geometrical approximation, 
the problem of tracing a ray forwards from the reflecting surface to the array.  In Section 5, the 
paraxial approximation—a useful generalisation of the large-range approximation—is 
introduced; within the paraxial approximation, simple formulae describing the pseudoimage 
are obtained.  Returning to an exact treatment, Section 6 presents results obtained from the ray-
tracing algorithm.  Section 7 describes an algorithm that inverts the ray-tracing procedure, thus 
obtaining the pseudoimage of any point on the array.  Section 8 discusses in turn three 
programs that call on the inversion routine and presents numerical results from each program.  
Section 9 shows graphically how the pseudoimage of a square develops away from the 
parallelogram shape as the size of the square is increased.  The conditions on the geometrical 
approximation are given in Section 10, while Section 11 shows that, under specified 
conditions, the algorithm of the present report may be applied to a general smooth surface.  
Conclusions are presented in Section 12. 
 
 

2. Geometrical Approximation 
 
 In the UAI system, image-forming to produce a 3D image proceeds by combining the 
analytic (i.e. complex) signals (Bellanger, 1984, pp. 244–248) from all the sensor elements by 
a standard delay-and-add procedure (Steinberg, 1976).  Exact path lengths are used for 
applicability in the near field (e.g. Knudsen, 1989; Blair and Anstee, 2000).  For each image 
point r  (each point in the 3D image), the absolute value of the resulting complex image 
amplitude is calculated.  In the UAI project, no attempt is made to show these absolute 
amplitudes at all points r  in 3D space.  Instead, along each line of sight from the ‘viewing 
point’ (for example the center of the receiving array) the maximum amplitude is found and 
displayed (coded as brightness or colour).  The above description is for the fully coherent mode 
of operation.  In the partly coherent mode, the array is subdivided into tiles, and for each tile 
the image-forming as above is carried out.  Then, for each image point r , one adds together the 
absolute values of the image amplitudes due to the various tiles to produce the final image.  
This mode produces a lower resolution, but has the advantage that the image can be computed 
much more rapidly.  Note that for a fully coherent array, ‘tile’ is interpreted to mean the whole 
array.   
 
 The geometrical approximation, introduced in I, consists of assumptions 1 and 2 as follows.  
Assumption 1 is that the physical reflection from the surface is described by geometrical 
acoustics (analogue of geometrical optics).  Assumption 2 is that, as a result of the image-
forming, the n th element nR  produces a bright point (a small spot) in the image at any 
corresponding reflecting point nS , that is, any point that specularly reflects a ray to nR .  (We 
shall see that there may be more than one such point—there may be as many as three.) 
 
 The reason for the bright point (and hence bright regions) can be explained at a more 
fundamental level than in I.  The explanation is in terms of ‘path pairs’ that contribute to the 
image amplitude at a given point r  in the scene being viewed.  Constructive interference 
between many such path pairs leads to an enhanced brightness at r  if incident rays reaching r  
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are specularly reflected to a point within the array.  The argument is outlined in Appendix A.12  
(The possibility of spurious images is discussed in Section 10.3.)  We return to the above 
argument in Section 12. 
 
 We must be aware that there is always some blurring of the pseudoimage due to wave effects; 
specifically, due to ‘numerical diffraction’ that arises in the image-forming (see I).  Such 
blurring has two consequences.  First, often the elements are so close together that, because of 
blurring, we may regard them as forming a continuous distribution of element strength over the 
tile.  The result is that the i th tile iT  produces a pseudoimage that is an extended bright region.  
In this report we assume that the elements effectively do form a continuous distribution.  The 
condition for the validity of this assumption is derived in Section 10.2. 
 
 Second, the pseudoimage of the tile—or for that matter the pseudoimage of the whole 
array—is not a bright region that has sharp, geometrical edges, but is itself blurred to a greater 
or lesser degree.  Let us discuss the case of the partly coherent mode.  (The corresponding 
results for the fully coherent mode then follow as a special case.)  Consider the distance b  over 
which blurring of the pseudoimage occurs due to wave effects.  The size of the pseudoimage 
(according to the geometrical approximation) is LmL =′ , where m  is the magnification.  Let 

each tile have size a ; then the pseudoimage of a tile has size ama =′ .  The geometrical 
approximation is good (at least, as far as wave effects are concerned) provided b  is small on 
the scale of L′ : for then all sizes on the scale of L′  are predicted with reasonable accuracy by 
that approximation.  In these circumstances, b  may or may not be small on the scale of a′ .  If 
it is not small, the tile’s pseudoimage will have a blurred appearance.  For this reason we shall 
refer to the tile’s pseudoimage as an ‘extended spot’ or simply a ‘spot.’  An experimental 
image made up of such spots is shown (in false colour) in Figure 1 of I.  In that case it must be 
stressed that the geometrical approximation still holds (i.e. on the scale of L′ ), even though the 
pseudoimage of a tile is blurred considerably.  In the (quite different) case where b  is small on 
the scale of a′ , we may say that the geometrical approximation holds ‘in the strong sense.’ 
 
 At this point we draw attention to a possible misconception, arising from the following line 
of thinking.  First, there is an image of the transmitter produced by the specular surface, where 
‘image’ here means ‘image’ in the usual sense of geometrical optics.  Second, the pseudoimage 
is an out-of-focus version of this image—out-of-focus because it is forced to lie on the specular 
surface.  Hence the pseudoimage is inherently blurred, even in the limit of infinitely small 
wavelengths.  This line of thinking is to be rejected.  It is not helpful to introduce the ‘ordinary’ 
image.  The blurring of the pseudoimage approaches zero as the wavelength approaches zero.  
We shall return to this point in Section 12. 
 
 As in I, we shall place emphasis, not on the fully coherent mode, but on the partly coherent 
mode combined with a sonar array of tiles whose centres make up a regular lattice of points—
in particular, a lattice whose unit cell is a square.  These conditions hold for the above 
experimental image.  In that image, the lattice of spots also has essentially a square unit cell.13  
More generally (Consider a reflector that is curved and/or obliquely inclined.), the spots would 

                                                 
12 Incidentally, the argument in Appendix A shows that Assumption 2 cannot be maintained at the level 
of a mapping from a mathematical point (or an element) to another mathematical point.  Rather, when 
Assumption 2 holds, it is in the sense of a mapping from a not-too-small region to a not-too-small 
region. 
13 The small, random departure from squareness is due to marine growth on the surface of the otherwise 
plane reflector. 
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form a lattice whose unit cell is not a square but a parallelogram, provided that the large-range 
approximation—or more generally the paraxial approximation, discussed in Section 5—holds.  
In other words, consider any rectangle, formed of tiles: its pseudoimage is an arrangement of 
spots whose external shape and unit cell are both parallelograms. 
 
 This report studies the distortion that occurs when the paraxial approximation does not hold 
(broadly, when the array size is no longer small compared to the range14).  As the rectangle of 
tiles is increased in size, we expect the four sides of the pseudoimage to become increasingly 
curved, yielding what might be called a curved quadrilateral, or c-quad.  The c-quad 
underlying the spot positions (positions of spots along the sides of the c-quad)15 will be studied 
in Section 9; arguably that section contains the results of this report that are of most interest. 
 
 For a sonar array operated in fully coherent mode, consider an array whose external shape is 
square.  When the geometry becomes non-paraxial, the pseudoimage changes from a (bright) 
filled-in parallelogram to a filled-in c-quad.  (Under conditions favourable to the geometrical 
approximation, discussed in I, wave effects produce only slight blurring at the edges of the 
pseudoimage.)  
 
 To recapitulate, the geometrical approximation, in its pure form, yields the same 
pseudoimage (of the whole array) in the partly coherent mode as in the fully coherent mode.  
However, when it is subsequently recognised that there are some wave effects, it is seen that 
when these are not too large, the principal effect of changing to the partly coherent mode is 
towards breaking up the whole pseudoimage into extended spots, one spot for each tile.  Such 
an image is shown in paper I. 
 
 It follows that a specular reflector may often be distinguished from a diffuse reflector as 
follows.  When part of the array is ‘switched off’ (by not including its contribution in the 
image-forming equation), in the diffuse case the image simply becomes more blurred, while in 
the specular case part of the image tends strongly to disappear.  This effect was observed in the 
‘Pyrmont 2’ trial. 
 
 Let us return to the partly coherent mode.  On occasions, a rectangle of tiles may have as 
many as three pseudoimages.  The system then produces the superposition of these three 
pseudoimages; that is, the superposition of three c-quads.  (Any sufficiently bright local optima 
are superimposed as well.)  Although we have used the term ‘superposition,’ a little thought 
shows that, when the geometrical approximation is valid, no two pseudoimages overlap each 
other.  However, they may abut each other, as will be seen in Section 9.2. 
 
 In line with what has been said earlier in this section, the present report on the departures 
from the paraxial image (or the large-range image) assumes the geometrical approximation: 
specifically, that that approximation holds on the scale of the array (i.e. there is little blurring 
on the scale of the array).  The conditions for this are given in I and summarised in Section 10; 
the above experimental image satisfies the conditions. 
 
 
                                                 
14 The paraxial approximation applies up to a significantly larger array size in the case of a near-planar 
array. 
15 If the tile is sufficiently small, the centre of each spot lies at the reflecting point iS  that reflects an 
incident ray to the centre of the tile.  (In general, due to curvilinear distortion on the scale of one tile, 
there is a further displacement of the centre of the spot.) 
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3. Geometry; Reflecting Surface 
 
3.1 Coordinate Systems 
 
 The chief reflecting point 0S  on the reflecting surface σ  is defined to be such that the normal 
to σ  at 0S  passes through the point transmitter T (Fig. 3.1).  (It can be shown that a spherical 
transmitter is equivalent to a point transmitter located at the spherical centre, as the image 
amplitude function produced is the same.)  The normal TS0 , called the chief normal, intersects 
the plane τ  of the array at the chief receiving point 0T ; the distances 00ST  and TT0  are called 
the range 0r  and the (signed) offset e  respectively.  The chief tangent plane μ  is the tangent 
plane to the reflecting surface at 0S .  Let ν  be the plane passing through 0T  parallel to μ .  We 
define a right-handed Cartesian system uvw  with the w  axis along the chief normal and v  
along the line of intersection of τ  and ν .  (If τ  and ν  are the same plane, v  is chosen 
arbitrarily.)  The sense of the v  axis is chosen so that the angle δ  between τ  and ν  lies 
between 0 and 2π  (τ  must end up lying ‘above’ ν  in Fig. 3.1.)  (Note that ν , the Greek 
letter representing the plane, is to be distinguished from v  in uvw .) 
 

T
e
T0 δ ν

u′

w′
w

r0

S0 x

y
z σ

τ

v′v =

u

μ

δ

 
Figure 3.1.  Definition of the uvw, xyz  and wvu ′′′  coordinate systems. 

   
 A new frame xyz  is obtained by a translation of the uvw  axes from 0T  to 0S ; the x  and y  
axes lie in the chief tangent plane.  One obtains the wvu ′′′  axes by rotating the uw  axes about 
v  through the angle δ ; u′  and v′  lie in the plane of the array.  From Figure 3.1 the 
transformations between the various coordinate systems can be written down.  When relating 
this report to an experimental image, it will be necessary also to transform from the wvu ′′′  
frame to a predetermined frame based on the array of sensor elements. 
 
 The portion of the reflecting surface σ  sufficiently near 0S  is important because only that 
portion will reflect energy back to the array; energy reaching other parts of σ  will not be 
detected.  (Here it is supposed that the array is near the transmitter.)  We shall call w′ , the 
direction of the array normal, the broadside direction.  Then the angle δ  may be thought of as 
the departure of 0S  from broadside when viewed from 0T .   
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 Note that the chief receiving point does not necessarily coincide with the center of the array.  
However, the chief receiving point is a useful origin to choose [for the uvw  coordinates and the 

wvu ′′′  coordinates] because the results (for the location of the pseudoimage point) then take on 
the simplest mathematical form.  In particular, for small displacements of the object point from 
that origin, the paraxial approximation (and the large-range approximation) is accurate.16  Note 
also that the chief normal is not necessarily normal to the plane of the array. 
 
 (Also, it is a mistake to think that the transmitter necessarily lies at the center of the receiving 
array, or even that the transmitter lies on the perpendicular to the array plane passing through 
that center.) 
 
 
3.2 Reflecting Surface 
 
 The smooth reflecting surface, of the form ( )yxfz ,= , is, to first order in x  and y , simply 
the tangent plane at 0S .  To next order, z  is of the form 22 2 byhxyaxz ++= : the surface is a 
paraboloid.  We study surfaces of three general shapes, the first shape being the (exact) 
paraboloid.  Then, by a rotation 
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                                               (3.1) 

to new axes X  and Y , called the principal axes, the equation of the surface may be cast into 
the form 

YX

YXz
ρρ 22

22

+=                                                       (3.2) 

with no term in XY  (Perlis, 1952, pp. 84, 186; Guggenheimer, 1963, pp. 209–213; McCrae, 
1960, pp. 99–101; Kreyszig, 1959, pp. 124–134).  Here XX κρ 1=  and YY κρ 1=  are the 
principal radii of curvature.  (If the surface is only asymptotic to a paraboloid, Xρ  and Yρ  are 
still called the principal radii of curvature of the surface at 0S .)  A positive Xρ  means that the 
reflecting surface is convex along its intersection with the XZ  plane.  For definiteness we 
choose YX κκ ≥  and 22 παπ ≤<− .  If Xκ  and Yκ  are of the same sign the surface is an 
elliptic paraboloid; if of opposite signs, a hyperbolic paraboloid (Spiegel, 1968, p. 52).  (In the 
latter case the origin is a saddle point.)  If just one of Xκ  and Yκ  is zero, the surface is a 
parabolic cylinder; if both are zero it is a plane.  A special case of the elliptic paraboloid, 
occurring when YX κκ = , is the paraboloid of revolution, to which a sphere is a close 
approximation near 0S .  Similarly an ordinary cylinder is a close approximation to the 
parabolic cylinder. 
 
 Note that, in the case of the paraboloid, attention has been restricted to the subcase in which 
the chief reflecting point coincides with the vertex of the paraboloid; in that subcase it follows 
that the chief normal coincides with the axis of the paraboloid.  The algorithm developed on 
this basis does, however, hold somewhat more generally, as will be discussed in Section 11. 
 
 Due to their prevalence in engineering structures, we study two other shapes for the surface, 
namely the (exact) sphere and the cylinder, given respectively by 

                                                 
16 Provided also that the point of reflection is close to the chief normal. 
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( ) 2222
XXzYX ρρ =−++                                                (3.3) 

( ) 222
XXzX ρρ =−+                                                    (3.4) 

Again the radius of curvature Xρ  may have either sign.  Only that half of the complete sphere 
or cylinder is considered present that has 10 ≤≤ Xz ρ .  The shapes (3.3) and (3.4) each 
become asymptotic to a paraboloid (3.2) when X  and Y  both approach zero. 
 
 

4. Geometrical Solution in the General Case 
 
 We consider the following ray-tracing problem: Given a reflecting point ( )sss zyx ,,S , find 
the point ( )0,,R RR vu ′′  on the array to which a ray, incident at S from the transmitter, is 
reflected.  Except in the early and late stages of the calculation, the mathematics is carried out 
in the xyz  coordinate system. 
 
 Consider first the paraboloidal shape (3.2).  Given the first two coordinates, sx  and sy , of S, 
the corresponding coordinates sX  and sY , along with ss Zz = , are given by Equations (3.1) 
and (3.2).  The tangent plane at S has the equation 

( ) ( )ssYssXs YYYXXXZZ −+−=− κκ                                       (4.1) 
and so the vector 

( )1,, −=′ sYsX YX κκb                                                   (4.2) 
points along the normal (outward from the reflecting surface).   
 
 Let â , b̂  and ĉ  be unit vectors directed outwards from S along, respectively, the incident 
ray, the normal and the reflected ray, expressed in xyz  (not XYZ ) coordinates.  Since the 
transmitter position is ( ) ( )erzyx −−= 0,0,0,, , we have 

( ) Fzeryxa sss ++−= 0,,ˆ                                               (4.3) 
where 

( )[ ] 212
0

22
sss zeryxF ++++=                                             (4.4) 

Let b  be defined as the same vector as b′  but expressed in xyz  coordinates.  Then from (3.1) 
we have 
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                                            (4.5) 

while 
1−=′= Zz bb                                                           (4.6) 

Then Gb b=ˆ , where 

( ) ( )[ ] 2122 1++= sYsX YXG κκ                                             (4.7) 
The law of reflection can be written in the form 

( ) abbac ˆˆˆˆ2ˆ −⋅=                                                         (4.8) 
so that ĉ  is now given in terms of sx  and sy . 
 
 A general point ( )zyx ,,U  on the reflected ray SR is given by 

( ) ( ) ctzyxzyx sss ˆ,,,, +=                                                 (4.9) 
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where the parameter t  ( 0≥ ) is the distance of U from S.  From Figure 3.1, the equation of the 
array plane τ  is 

( ) 0cossin 0 =++− δδ zrx                                              (4.10) 
The value of t  at the particular point RU =  is given by substituting (4.9) into (4.10), after 
writing ĉ  in (4.9) as ( )zyx ccc ˆ,ˆ,ˆ .  Thus we find 

( )
δδ

δδ
cosˆsinˆ

sincos0

zx

ss

cc
xzr

t
−

−+
=                                              (4.11) 

When this value is substituted into (4.9), the right-hand side of (4.9) gives ( )RRR zyx ,, , the 
coordinates of the desired point R on the array. 
 
 From Figure 3.1, for any point the uvw  coordinates are given by the transformation 

zrwyvxu +=== 0    ,    ,                                              (4.12) 
The wvu ′′′  coordinates are then given by 
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      ,                                      (4.13) 

Equations (4.12) and (4.13) apply in particular to the point R; we simply append the subscript 
R to all the coordinates.  Thus finally we have the desired result for Ru′  and Rv′ .  As a check, it 
may be verified that the resulting value of Rw′  is zero. 
 
 For the sphere and the cylinder, the corresponding equations are derived by the same method 
as above.  In the case of the sphere, the only differences in the final results are as follows.  
Equation (3.2) (invoked above Eqn 4.1) is replaced by Equation (3.3).  Equations (4.2), (4.6) 
and (4.7) respectively are replaced by  

( )sXsXsX ZYX κκκ +−=′ 1,,b                                           (4.14) 

sXZz Zbb κ+−=′= 1                                                   (4.15) 

( ) ( ) ( )[ ] 21222 1 sXsXsX ZYXG κκκ −++=                                  (4.16) 
(Equation 4.1 is also replaced, but the new equation is omitted here as it does not form part of 
the final algorithm.) 
 
 For the cylinder, Equation (3.2) of the paraboloid is replaced by Equation (3.4).  Equations 
(4.2), (4.6) and (4.7) respectively are replaced by 

( )sXsX ZX κκ +−=′ 1,0,b ,                                             (4.17) 
Equation (4.15) and 

( ) ( )[ ] 2122 1 sXsX ZXG κκ −+=                                           (4.18) 
 
 The overall result for each of the three shapes is a nest of formulae such that, given the point 
S, the point R is specified.  Our primary interest, however, is in the inverse problem: given R, 
find S.  This is because, given any point R on the array plane (at least if occupied by an 
element), any corresponding point S is a pseudoimage of R in the geometrical approximation.  
Hence, to determine the pseudoimage(s), some inversion procedure must be applied to the 
‘forward’ algorithm set out in the present section.  Such a procedure is described in Section 7. 
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5. Paraxial Approximation 
 
 Within the geometrical approach, we now introduce an approximation that will be found 
useful when discussing numerical results—useful because it represents a limiting case.  The 
approximation turns out to be a slight generalisation of the large-range approximation 
discussed in I. 
 
 
5.1 The Approximation 
 
 To motivate the approximation, we suppose that 0r , e , Xκ  and Yκ  are fixed, along with the 
angles δ  and α , and look for the asymptotic form of the relationship between the coordinates 
( )RR vu ′′ ,  of R, on the one hand, and the coordinates ( )ss yx ,  of S, on the other—the asymptotic 
form as the two vectors, ( )RR vu ′′ ,  and ( )ss yx , , approach zero.  Note that the rays are then 
paraxial, that is, they make a small angle with the chief normal.  (Usually the smallness of the 
one vector implies the smallness of the other, but we shall encounter two exceptions to this: 
one in Section 5.3 and the other at the point H in Fig. 6.1.) 
 
 The calculation proceeds as in Section 4 but with two differences.  First, it is convenient to 
carry out the calculation in all the early stages in the XYZ  (not xyz ) frame and then switch at a 
certain stage to the UVW  frame.  The latter frame is defined to have axes parallel to the XYZ  
axes but with the origin translated from 0S  to 0T  (Fig. 3.1), so that the transformation between 
the two frames is 

ZrWYVXU +=== 0    ,    ,                                               (5.1) 
The second difference is that, due to paraxiality, many terms can be dropped. 
 
 Consider first the paraboloidal shape.  Then Equations (4.1) and (4.2) remain unchanged.  In 
(4.3) and (4.4), the new equations are obtained by replacing â , sx , sy  and sz  by a′ˆ , sX , sY  
and sZ .  But, in the equation replacing (4.4), sX , sY  and sZ  may be dropped, being small 
compared to er +0 .  Equations (4.5) and (4.6) are not needed, and at (4.7) we have 1==′ Gb .  
In (4.8), we simply add a prime to each variable.  Let us define Xσ  and Yσ  by 

erer YYXX +
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+=
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121      ,121
ρσρσ

                                      (5.2) 

Then the following simple result for c′ˆ  is obtained: 

1ˆˆ          ,ˆˆ
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ZWYsYV

XsXU

ccYcc
Xcc
σ
σ

                                       (5.3) 

where Uĉ′ , Vĉ′  and Wĉ′  are the components of the unit vector ĉ′  expressed in the UVW  system. 
 
 The analogue of Equation (4.9) is 

( ) ( ) ctWVUWVU sss ˆ,,,, ′+=                                              (5.4) 
But we immediately see that, for the purpose of calculating the first two components, RUU =  
and RVV = , at R, a sufficient approximation for the distance t  is 0rt = .  For there are just two 
possible sources of error.  First, the small paraxial angle causes the ray travelling from S to the 
uv  plane to be a little longer than 0r .  But this lengthening is a higher-order correction to t , 
which is negligible.  Second, the ray is shortened because it travels, not to the uv  plane, but to 
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the array plane τ  (Fig. 3.1).  This shortening is of the order of ( ) δtan2122 vu + .  For fixed 0r  
and fixed 2πδ ≠ , this shortening becomes negligible compared to 0r  in the limit 

0,0 →→ vu .  Hence we may put 0rt = , as claimed.  (This will give an incorrect value for the 
third coordinate RW —to the first order in small quantities—but that value will not be used, as 
we shall see.) 
 
 With this value of t , it follows from Equations (5.1) to (5.4) that the expressions for RU  and 

RV  are 
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Hence the system possesses a pair of principal magnifications, namely Xm  and Ym .  Equation 
(5.5) gives expressions for these.  In the parentheses in Equation (5.5), the first and third terms 
may be ascribed to the fact that, within the approximation, 0r  and er +0  are (to a sufficient 
approximation) the distances from the reflecting point S to the receiving point R and the 
transmitter respectively. 
 
 It remains to relate the UV  coordinates of R, given by (5.5), to the uv  coordinates and then 
the vu ′′  coordinates of R.  The first of these two steps is straightforward, since the rotation 
matrix in (3.1) that relates xy  to XY  also relates uv  to UV .  Then from Figure 3.1, since R 
lies on the plane τ , the wvu ′′′  coordinates of R are determined by the uv  coordinates (within 
the paraxial approximation) according to  
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(via a simple inversion). 
 
 
5.2 Discussion 
 
 A key result from the above derivation is that, under paraxial conditions, the coordinates 
( )yx,  of S are obtained from the coordinates ( )vu ′′,  of R by a sequence of linear operations.  
It follows that, under these conditions, the pseudoimage of a square is a parallelogram. 
 
 
5.3 Conditions of Validity 
 
 We continue to consider the paraboloidal shape.  Then it can be shown that the conditions 
(5.7) to (5.10) below jointly ensure that the paraxial approximation is valid (subject to the 
validity of the geometrical approximation)17: 

~ 00 rer >+                                                              (5.7) 
2near not  is πδ                                                        (5.8) 

                                                 
17 Here ~>  means ‘is greater than or of the order of.’ 
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0rR <<′u                                                              (5.9) 

RYRX uu ′>>−′>>− 00    and   ρρρρ                                     (5.10) 
Here Ru′  is defined as the 2D vector ( )RR vu ′′ , .  0ρ  (a negative quantity) is defined by the 
equation 

err +
−−=

000

112
ρ

                                                    (5.11) 

 
 Condition (5.9)—a paraxial or large-range requirement—may be said to be the key condition.  
The two requirements (5.10) are related to the fact that when (say) Xρ  approaches 0ρ , the 
magnification Xm , given by (5.5), approaches infinity.  In such situations there are rays from 
the transmitter that, after reflection at a relatively large distance from the ‘axis’ (the chief 
normal), return to a position close to the axis at the array plane.  Such situations were alluded 
to earlier, for they are situations in which the smallness of the vector ( )RR vu ′′ ,  does not imply 
the smallness of the vector ( )ss yx , . 
 
 
5.4 Spherical and Cylindrical Surfaces 
 
 Consider the cylindrical shape.  As noted previously, the surface is asymptotically a 
paraboloid as 0→X .  To the next order, from Equation (3.4), we have 

L++= 43
8
12

2
1 XXZ XX κκ                                              (5.12) 

so that the gradient is 
( )[ ]3XOXdXdZ XX κκ +=                                              (5.13) 

Then the derivation given in Section 5.1 (leading to the results given by Eqns 5.5 and 5.6) 
remains valid, provided that we ensure that the error introduced by the cubic term in (5.13) is 
negligible; on this basis the condition of validity given in the next paragraph is derived.  For 
the sphere, the argument proceeds similarly.  In fact, in that case it suffices to consider the 
intersection of the sphere with the plane 0=Y ; hence Equations (5.12) and (5.13) again apply. 
 
 It turns out that the conditions on the paraxial approximation in the cases of the sphere and 
the cylinder are again (5.7) to (5.10), except that the condition (5.10) must be strengthened to 
the following: 

3231
00 RX r u′>>− ρρ                                                   (5.14) 

(The corresponding condition on Yρ  is dropped.) 
 
 
5.5 The Large-Range Approximation Revisited 
 
 In I, the large-range approximation was introduced, based principally on the condition 

Lr >>0 , where L  is the diameter of the array (or the side in the case of a square array).  In that 
approximation, the relationship between an object (part of the array) and its pseudoimage was 
shown to be given by Equations (7) to (9) of I, while Equations (10) to (13) of I give a 
sufficient set of conditions for the validity of the approximation.  We can express the predicted 
object-pseudoimage relationship as follows: the large-range prediction is the same as the 
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paraxial prediction, Equations (5.5) and (5.6), except that the (large-range) principal 
magnifications are  

( ) ( )Y
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                                       (5.15) 

It is readily verified that these predictions are what the paraxial predictions (the right-hand 
equalities in Eqn 5.5) become when the transmitter offset e  is put equal to zero.  
 
 We therefore expect that normally the large-range approximation is valid provided we add to 
the conditions (5.7) to (5.10) (or Equation 5.14 as the case may be) the further condition 

0re << .  In fact, for the paraboloidal shape, it can be shown that a sufficient set of conditions 
for the large-range approximation consists of Equations (5.16) to (5.19), as follows. 

0rR <<′u                                                            (5.16) 
2near not  is πδ                                                      (5.17) 

0re <<                                                              (5.18) 
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Unlike the set of conditions given in I, this set does not contain the array size L .  It is therefore 
a useful alternative set of conditions to that given in I. 
 
 We now consider the application of the large-range approximation to the sphere and cylinder.  
It turns out that, for either of these surfaces, the conditions in (5.19) must be replaced by  

errr XRX >>+′>>+ 0
3231

00       , ρρ u                                     (5.20) 
(without any corresponding conditions for Yρ ). 
 
 The key requirement of the large-range approximation is condition (5.16).  In I, this 
relationship was thought of as 0r  being large (compared to some fixed value of Ru′  or L ).  

But of course the relationship can equally well be thought of as Ru′  being small (compared to 
a fixed 0r ), in accordance with the introduction to Section 5.1. 
 
 

6. The Forward Algorithm; Results 
 
6.1 The Algorithm 
 
 The algorithm of Section 4 gives, in effect, a complicated formula by which, given the xy  
coordinates of a point S on the reflecting surface, one can calculate exactly the coordinates vu ′′  
of the corresponding object point R, that is, the point to which a ray, reflected at S, meets the 
array.  We call this the forward algorithm.  By contrast, the inverse procedure for computing S 
from R requires a more complicated algorithm.  Note that any reflecting point S that is related 
to R as above is a pseudoimage point corresponding to the object point R. 
 
 A function m-file (a subroutine), called ray.m, has been written in MATLAB, embodying the 
forward algorithm.  (The other routines developed for this report are also written in 
MATLAB.)  The code for ray is included in this report in Appendix C, along with the code for 
some other routines mentioned in the report.  The input variables to ray include shape and Zb, 



 22 

defined as follows.  shape is 1, 2 or 3, for a reflector that is a cylinder, sphere or paraboloid 
respectively.  The reflecting surface may be cut off at a plane constant=Z , in which case the 
latter is one of the two planes Zb±=Z .  The motivation for the cutoff, along with further 
details, are given in Section 6.2. 
 
 Two alternative script m-files (main routines), raymain.m and rysuite.m, have been written, 
each of which makes calls to ray and presents the results via a curve (raymain) or a suite of 
curves (rysuite).  raymain is a relatively simple routine.  Its output is intuitively appealing in 
that it plots object position versus reflecting point position on a linear scale; nevertheless it has 
been found that raymain is used less often than rysuite.  An example of the use of raymain (Fig. 
6.1) is given in Section 6.3.1. 
 
 rysuite produces a suite of curves on the one graph.  However, the program has the limitation 
that its use is confined to systems with a considerable degree of symmetry.  Basically, the 
symmetry requirement is18  

0    , == δκκ YX                                                        (6.1) 
The first of these two requirements means that the reflecting surface σ  is a surface of 
revolution.  The double requirement (6.1) entails that the entire system (apart from the detailed 
placement of the tiles and elements on the array surface) has circular symmetry (invariance 
under rotation about the z  or w′  axis).  Partly because of this, dimensionless or scaled 
variables can be used to advantage, as will be discussed shortly. 
 
 Given the surface σ , each reflecting point ( )zyx ,,S  is determined by the corresponding 
projected reflecting point ( )0,,S yx′ .  In rysuite, each curve is generated by taking, as inputs, 
projected points ( )0,,S yx′  lying along a line through the origin.  The various curves describe 
object points pertaining to the same line of reflecting points S (after projection), but those 
curves are characterised by different values of the product 0rXκ .  The other independent 
dimensionless variables, such as 0re , are held constant throughout for a given graph.  Due to 
the symmetry (6.1), all lines through the origin in the xy  plane are equivalent, so we may 
restrict attention to input points lying along the line 0=y  without loss of generality.  Then 
each curve is essentially a plot of u′  as a function of x .19  (More correctly, scaled values of u′  
and x  are plotted, as will be discussed shortly.)  Because of the circular symmetry (6.1), the x  
direction is not special, and the curve is simply a plot of radial displacement in the vu ′′  plane 
versus radial displacement in the xy  plane.  
 
 Regarding scaling, in the symmetric case (6.1), the reflecting point – object point relationship 
may be written as 
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For a given graph, the last three arguments of f  are held fixed, while 0rXκ  (the first argument) 
specifies a particular curve.   
 

                                                 
18 An exception to the requirement YX κκ =  is that a cylindrical surface is allowed, provided that all 
the input points S considered lie in a common plane perpendicular to the axis of the cylinder.   
19 There is no need to plot v′  because the symmetry ensures that 0=′v .   
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 The curve itself is a plot of the inverse magnification xu′  versus ( )010log rx ; an example of 
such a graph from rysuite is shown in Figure 6.2.  (This graph is discussed briefly here and 
further in Section 6.3.)  The interpretation of the vertical axis is as follows.  Consider a vector 

PO ′′  in the chief tangent plane, drawn from the chief reflecting point O′  ( 0S= ) to a point 
( )yx,P′ .  The reflected ray maps O′  to the chief receiving point O  ( 0T= ) and P′  to a point 
( )vu ′′,P  in the array plane.  Plotted along the vertical axis is the ‘inverse magnification’ 

POOP ′′ .  The qualifier ‘inverse’ is inserted here because our primary interest is in the 
magnification OPPO ′′  produced in the mapping of the vector OP  to PO ′′ , which is its 
pseudoimage (to be precise, the projection of the pseudoimage onto the chief tangent plane).  
Curves of that magnification will be displayed in Section 8.   
 
 Because scaled variables are used, a graph from rysuite represents many more situations than 
might at first be thought.  It should be noted from Section 5 that, as 00 →rx  (left-hand end of 
graph), the inverse magnification must approach the constant value predicted by the paraxial 
approximation. 
 
 The routines rysuite and raymain have limitations.  (For example, rysuite requires symmetry.)  
‘Forward’ programs in which these limitations are removed could be written (in particular, a 
program analogous to the inverse program multigen.m, described below).  However, rather 
than devote time to that task, it was decided to concentrate effort on developing a number of 
programs for the inverse problem, which is of greater interest.   
 
 The reason why the latter problem is of greater interest is as follows.  The array geometry is 
simple, because the tile centres form a regular lattice so that the ‘array objects’ of interest are, 
for example, squares.   A significant question therefore is: given a simple shape in the array—
say a square—what is the shape of its pseudoimage?  This picks out the ‘inverse’ problem as 
being of special interest.  By contrast, there is little point in investigating the problem that 
begins from a pseudoimage of simple shape. 
 
 
6.2 Virtual Object Points; the Cutoff Plane 
 
 For a given reflecting point, a corresponding genuine or ‘real’ object point20 may fail to exist.  
This may happen for a variety of reasons.  For example, the reflected ray may be travelling 
away from the array rather than towards it.  ray reports the mode of failure, by means of a ‘fail 
code,’ which is an integer ranging from 2 to 9.  In such cases ray still calculates a notional 
output pair ( )vu ′′, .  In many cases these calculated values have some physical significance 
(e.g. the point obtained by extending the reflected ray backwards to the array).  In such cases 
the calculated point is called a virtual object point.  In the remaining cases the calculated point 
has no physical significance (and in fact is based on an arbitrary instruction in the routine).  
Whenever there fails to be a real object point, we shall speak of a forward failure.  Details of 
the fail codes, and of the cases where a virtual object point exists, are given in ray in Appendix 
C. 
 
  In raymain and rysuite, optionally the curve of virtual points is output as well as the curve of 
real object points.  
 
                                                 
20 Here ‘real’ is used in the sense of optics (real versus virtual, not real versus complex or imaginary). 
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 As stated, in ray and the other routines, the reflecting surface may be cut off at one of the two 
planes Zb±=Z .  The reasons for introducing this feature are as follows.  First, note that if at 
least one of the two curvatures is negative, the surface, if not cut off, will extend to the array 
plane and beyond.  Second, as portions of the surface nearer to the array are considered, where 
the surface becomes more steep (becomes more inclined to the chief tangent plane), it becomes 
more likely that the reflected ray will be reflected a second time.  It is not appropriate, in the 
present work, to cover the calculation of second-reflected rays; rather, such rays are simply 
regarded as lost to the imaging process.  The cutting-off of the surface often restores to the 
imaging process a ray that would otherwise be second-reflected and lost.  For this reason, 
cutting off the surface often makes the geometry more simple overall.  Note that in a real 
system the reflecting surface is always cut off somewhere. 
  
 In ray, as an option, a default value of Zb is available in the programs.  The cutoff value has 
been chosen small enough so that forward failure, when it occurs, is usually due to the cutoff: 
other types of forward failure tend to be pre-empted.  It is therefore believed that the default 
cutoff produces something like the simplest overall geometry.  The numerical results presented 
in this report are all based on the default cutoff except where otherwise stated. 
 
 The details of the default cutoff are as follows.  For a paraboloid with both 0≥Xκ  and 

0≥Yκ , no cutoff is imposed.  For all other paraboloids, let ( )YX κκκ ,min0 =  and 
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Then we impose a cutoff at Zb−=Z ; there is no cutoff at positive Z .  For a sphere, let 
Xκκ =0  and define Zb by Equation (6.3).  A cutoff is imposed at either Zb=Z  or Zb−=Z , 

whichever of the two planes intersects the spherical surface.  A cylinder is treated in the same 
way (the principal curvature that is zero being ignored). 
 
 
6.3 Results 
 
6.3.1 Results from raymain 
 
 Figure 6.1 shows the object position versus reflecting point position, plotted on a linear scale 
using the program raymain.  The case considered involves a paraboloidal reflector and 
possesses the symmetry (6.1).  The parameter values (in SI units) are 9.00 =r , 0=e  and the 
product 375.10 −=rXκ .  As mentioned, due to the symmetry, all lines through the origin in the 
xy  plane are equivalent, so we may consider just projected reflecting points that lie on the x  
axis without loss of generality.  The corresponding object points have 0=′v . 
 
 As predicted in Section 5, near the origin (incident ray near chief normal), the curve of u′  
versus x  approaches the linear relationship given by the paraxial approximation (shown as a 
dash-dot line).   
 
 At large x  the deviation from the paraxial prediction can be large.  For the concave surface 
studied, for positive x , u′  changes from a decreasing to an increasing function of x  and 
eventually u′  changes sign.  The last means that the ray, which for small x  is reflected back 
across the chief normal, eventually upon reflection does not cross that normal.   
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Figure 6.1.  Object position plotted against reflecting point position, in a symmetric 
paraboloidal case.  For parameter values see text.  Obtained via program raymain.  The 
dashed portions of the curve represent virtual object points. 
 

 
Figure 6.2.  Inverse magnification plotted against scaled reflecting point position, for 
symmetric paraboloids.  The values of 0rXκ  cover a small range and are stepped at an interval 
of 0.125.  0=e . Obtained via program rysuite. 
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 A consequence of the curve’s having a turning point is that the inverse function, which maps 
u′  to x , is in general multivalued.  This has a bearing on results to be given in Section 7.   
 
 As x  is further increased, eventually only a virtual object point is obtained (dashed curve).  
For this particular case the program then yields a fail code of 3, showing that the reflecting 
point S has moved beyond the cutoff plane.  
 
 
6.3.2 Results from rysuite 
 
 For a paraboloidal reflecting surface satisfying the symmetry conditions (6.1), with 00 =re , 
Figure 6.2 gives a suite of curves representing the object point as a function of the reflecting 
point position, both variables being scaled.  ( x  is taken positive without loss of generality.)  
The graph covers only the parameter range 5.05.1 0 ≤≤− rXκ .  Section 5 tells us that, as 0rx   
approaches zero (left-hand end of curves), the magnification (reciprocal of the ordinate xu′ ) 
approaches the value predicted by the paraxial prediction.  It is readily checked that this claim 
is borne out.21  The present graph confirms that the inverse magnification differs from a 
constant value when x  increases sufficiently.   
 
 In Figure 6.2, only curves for real object points are shown.  A circle marker is plotted where 
the real curve comes to an abrupt end.  (For outputs discussed in this report, the convention is 
adopted that an abrupt end occurring at the left end of the curve is shown by a cross, at the 
right end a circle.  The mode of failure beyond the end is discussed below.) 
 
 Two special values of the parameter 0rXκ  are worth noting.  First, the value zero represents a 
flat reflecting surface.  Then, as simple geometry shows, the inverse magnification xu′   is 
precisely 2 at all values of x .  Second, for 5.00 −=rXκ , from (3.2) simple geometry shows that 
the transmitter is located at the focus of the paraboloid.  By a well-known property of the 
paraboloid, the reflected ray is then parallel with the chief normal, so that xu =′ , as in Figure 
6.2. 
 
 It is of interest to compare the curve of Figure 6.2 for 375.10 −=rXκ  with Figure 6.1.  
Although the data being plotted are the same for the two figures, the curve has a much more 
dramatic appearance in the simple plot of Figure 6.1.  For example, note that, as x  increases in 
Figure 6.2, the –1.375 curve crosses the horizontal line 0=′u  at a point H.  This crossing point 
is to be identified with the right-hand point in Figure 6.1 where u′  changes sign (also marked 
H).  This example shows that, when working with plots like Figure 6.2, because the inverse 
magnification rather than u′  itself is plotted, one must bear in mind that the plot downplays the 
‘drama’ that is occurring.  On the other hand, the type of plot exemplified by Figure 6.2 has 
some valuable features: besides displaying a large number of curves simultaneously, it enables 
an easy comparison with the paraxial approximation. 
 
 In Figure 6.3, the input parameters are the same as for Figure 6.2 but cover a wider range of 
values of 0rXκ .  The curves that run off the edge at the top and bottom merit discussion.  As is

                                                 
21 In the present case, since 0=e , this prediction reduces to that of the large-range approximation.  
However, in Section 9.2, graphs are presented that confirm the ‘paraxial’ claim in the general case 

0≠e .   
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Figure 6.3.  As for Figure 6.2, but for a larger range of 0rXκ  values.  Each step in the value of 

0rXκ  is either 1 or 0.5. 

 
Figure 6.4.  As for Figure 6.3, but for a sphere.  The results apply also to a cylinder. (The 
curve for 10 −=rXκ  coincides with the axis 0=′u  but does not extend to the right of the 
circle.) 
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common in optics, these curves go asymptotically to ∞±  following a ( ) 1−− cx  singularity, 
where c  is a constant.  However, each curve abruptly ceases to represent a real object point at 
some stage before infinity is reached.  (This outcome is assured because the forward algorithm 
deems that it has failed to deliver a real object point once the direction of the reflected ray 
comes within about 1/30 radian of being parallel to the array plane.) 
 
 A table output by rysuite (not reproduced here) shows that, as x  is increased, each curve in 
Figures 6.2 and 6.3 eventually encounters a forward failure (except in the case of a flat 
reflector).  The reasons for the first failure to occur as x  increases turn out to be twofold.  For 
all the positive curvature cases, the failure occurs when the reflected ray travels in a direction 
away from the array, or nearly in such a direction (as judged by the ‘1/30 radian’ criterion 
above).  For the negative curvature cases, the failure occurs because the point S lies beyond the 
cutoff plane.  A diagram (which the user is invited to sketch) shows that these results are not 
surprising.  (The conclusions given in this paragraph and the preceding one are found to apply 
also in the case of a spherical surface, described below.) 
 
 Figure 6.4 is obtained when the inputs are precisely the same as for Figure 6.3 but a sphere 
rather than a paraboloid is considered.  Clearly the results apply also to a cylinder (with the 
displacement ( )yx,  of the projected reflecting point S′  at right angles to the axis of the 
cylinder). 
 
 For the sphere, three values of 0rXκ  constitute special cases.  The value zero yields a plane 
reflector, as before.  The value –1 places the transmitter at the centre of the sphere.  Clearly all 
rays are then reflected back to the transmitter and u′  is identically zero.  When 5.00 −=rXκ , 
the transmitter is at the focus of the spherical reflector for paraxial rays (as in geometrical 
optics).  Hence, as an approximation, the reflected ray is parallel to the chief normal and we 
have xu =′ .  The figure shows that this is a fairly good approximation right out to the abrupt 
end point. 
 
 Comparison with Figure 6.3 shows that the results are similar to those for a paraboloid.  The 
most noticeable difference is for 0rXκ  around –2, as follows.  Consider x  to be (positive and) 
increasing.  Whereas the inverse magnification xu′  becomes less negative in the paraboloidal 
case, it becomes more negative for the sphere.  A trend followed for a wider range of values of 

0rXκ  is that, for negative 0rXκ , for a given x , u′  is decreased for the sphere compared to the 
paraboloid.  A simple diagram (which the reader may sketch) explains this as follows.  The 
spherical surface is steeper than the paraboloidal one at a given x .  The ray is therefore 
reflected to a point u′  that is more negative than that for the paraboloid.  A similar analysis 
explains the direction of the change when 0rXκ  is positive: u′  is increased for the sphere. 
 
 Figure 6.5 shows some typical virtual curves; the paraboloid shape has been selected.  For 

5.00 =rXκ , there are two branches which asymptotically show ( ) 1−− cxa  behaviour with the 
same values of a  and c .  Similarly for 5.10 =rXκ .  In either case the solid curve on the left 
represents real object points; the other branch is associated with a ray that appears to emanate 
from a virtual object point.  For 0rXκ  equal to –3 and –1.5, the virtual curve (at least at the 
beginning of the continuation) shows how the real curve would continue if the reflecting 
surface were not cut off. 
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Figure 6.5.  As for Figure 6.3, but showing not only the real-object curves (solid) but also the 
corresponding virtual curves (dashed).  For clarity a reduced set of values of 0rXκ  is used. 

 
 

7. The Inversion Algorithm 
 
 A subroutine imige.m has been written, embodying the solution to the problem that is the 
inverse of that studied in Section 6.  The problem that it must solve is: given an object point 
lying in the array plane, calculate the position of any corresponding pseudoimage points (and 
certain related points to be discussed).  We put forward a line of reasoning that leads to the 
algorithm finally selected, the Levenberg-Marquardt method.22   
 
 Inversion methods in general are discussed by Aster et al. (2005).  That work (pp. 14, 189) 
identifies some references on the subject as particularly significant.  Inversion methods used in 
geophysics and remote sensing, but generally having wider application, have been discussed by 
Twomey (1996), Parker (1994) and Jupp and Vozoff (1975). 
 
 

                                                 
22 After the present work was completed, it was realised that there is an alternative method of obtaining 
the geometrical pseudoimage of an object point.  Given the transmitter location and the object point, by 
Fermat’s principle, a corresponding pseudoimage point exists at any point on the reflecting surface such 
that the go-and-return path length is stationary with respect to variations of the point within the 
reflecting surface.  There may be more than one way of implementing this idea.  One way is as follows.  
Since the equation of the surface is known, one can write down a pair of equations (since the surface is 
2D) that jointly are necessary and sufficient for the point to be a pseudoimage.  These two equations 
could then be solved numerically via the Levenberg-Marquardt method.  Note that the ‘alternative’ 
method would bypass the forward ray-tracing step. 
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7.1 Newton’s Method 
 
 In the present acoustics problem, the forward routine maps a 2D vector ( )yx,≡x  into a 2D 
vector ( )vu ′′≡′ ,u .  (In what follows, the primes will be temporarily dropped for simplicity.)  
Our primary aim is to obtain an algorithm that calculates the inverse of this functional 
relationship.  (This initial problem will be replaced by a somewhat broader problem in Sections 
7.2 and 7.3.)  An appropriate solution to this initial problem is provided by (a modified version 
of) Newton’s method (e.g. Aster et al., 2005, p. 171).  In that method, one is given a smooth 
functional relationship  

( )xfu =                                                             (7.1) 
between column vectors x  and u , each of length (dimension) m .  (The case 1=m  is best 
known; the present acoustics problem has 2=m ).  The problem is to find x , given u .  The 
solution begins from an initial guess23 0x  and applies an iterative procedure.  In each iterative 
step, the relationship f  is first linearised via the elements jiji xuJ ∂∂=  of the Jacobian matrix 

J  evaluated at 0x —or, more generally, at the updated value of x  resulting from the previous 
iteration.  This yields the approximate relationship 

xJu δδ =                                                            (7.2) 
 where 0xxx −=δ , 0uuu −=δ  and ( )00 xfu = .  The Jacobian matrix is then inverted to find 
the updated value of x .  Under suitable conditions, the procedure converges to the solution 

sxx = .  The convergence is quadratic, in that twice as many correct significant figures are 
obtained in each iteration as in the previous one. 
 
 Two complications and two limitations on Newton’s method are to be noted.  The 
complications are, first, that there may be more then one solution to Equation (7.1), and 
second, that there may exist no solution at all.  Regarding limitations, there are two conditions 
which, if not fulfilled, make it necessary or advantageous to make modifications—small or 
large—to Newton’s method.  The conditions are: (i) J  is ‘well-conditioned,’ that is, it is not 
close to being singular; and (ii) 0x  is sufficiently close to the solution sx .24  We return to these 
matters below. 
 
 
7.2 Local Optima 
 
 As a preliminary, for any given values of x  and u , we define the ‘error’ E  to be the 
magnitude of the vector ( ) uxf − .  In particular, we may speak of the error at the end of the n th 
iteration (and likewise at the end of an internal iteration, see Section 7.3) to be the value of E  
obtained by inserting the most up-to-date value for x .  We also define the relative error to be  

uE=relerr                                                          (7.3) 
 
 For a given u , when there is no solution to Equation (7.1), some interest attaches to finding 
the x  that minimises the error E .  Such a point x  will be called a local optimum (i.e. a point at 
which the error is a local minimum but not zero).  Recall that a pseudoimage of an array 
element appears bright in the acoustic image.  In some circumstances, namely when the relative 
error (7.3) is small, we expect that a local optimum for a given element will also appear bright, 
                                                 
23 The superscripts, 0 and s , are changed to subscripts when the acoustic system is treated.  This is 
done for convenience and is unlikely to cause confusion. 
24 There is a tendency for condition (i) to hold when (ii) holds and to fail when (ii) fails. 
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though generally less bright than a pseudoimage point.  This phenomenon is likely to occur 
when, as ( )vu ′′,  is varied along a line, a pseudoimage point is at some stage replaced by a local 
optimum: some brightness should persist while the local optimum is close to the last 
pseudoimage point.  (Examples occur later, e.g. in Figures 8.5 to 8.7.) 
 
 The inversion algorithm (embodied in imige.m) has been designed to find local optima (as 
well as pseudoimage points), even for those u  for which a pseudoimage point exists.  
Fortunately not much extra work is required to achieve this. 
 
 
7.3 Levenberg-Marquardt Method 
 
 In the initial approach to the present acoustics problem, Newton’s method was used but with 
a modification as follows: if the step specified by the method fails to reduce the error, the step 
size is repeatedly halved until it does.  This modification goes a long way towards overcoming 
limitation (ii) above.  It was found that the modified method works well in finding 
pseudoimage points and ‘blockage points’ (defined in Section 7.4), but it does not correctly 
locate local optima. 
 
 Because of the latter failure, the modified Newton method was replaced by the Levenberg-
Marquardt (LM) method (described by Aster et al., 2005, p. 176; and in more detail by Nash 
and Sofer, 1996; Nocedal and Wright, 1999; and Björck, 1996).  It was found that the LM 
method both enables the local optima to be found and also provides a more stable way of 
dealing with limitation (ii).  In the LM method, the iterative step to be taken is given, not by 
(7.2), but by  

( ) uJIJJx δλδ TT 1−
+=                                                 (7.4) 

where I  is the identity matrix and T  denotes transpose.  (As usual, the Jacobian J  is 
evaluated at the x  value from the previous iteration.)  The positive parameter λ  is adjusted 
during the course of the iterations.  One advantage of introducing the Iλ  term is that it ensures 
that the matrix to be inverted is nonsingular, thus overcoming limitation (i) above. 
 
 For 0=λ , the LM method reduces to the so-called Gauss-Newton (GN) method; the latter 
method has been discussed by Jupp and Vozoff (1975) and by the above four references given 
for the LM method.25  The GN method is frequently used in seeking the point x  that minimises 
the error26 when m , the dimensionality of u , exceeds n , the dimensionality of x .  The latter 
situation is common when fitting a model with parameters x  to data values u .  Note that, 
when nm = , the GN method reduces further to the Newton method (as is easily seen).27  For 
large λ , the LM method reduces to the method of steepest descent, in which the algorithm 
simply takes a small step down-gradient.  Consequently, for large λ  the LM method provides 

                                                 
25 A major modification to the GN method, introduced by Marquardt (1963), based on earlier work of 
Lanczos (1958), offers a possible alternative to the LM method. 
26 Note that when nm > , there is no solution to Equation (7.1), only one or more local minima of the 
error. 
27 An algorithm based on Newton’s method was tried on the present acoustics problem (which has 

nm = ), with the following results.  For circularly symmetric systems, it produces essentially the same 
results as the algorithm based on the LM method.  Consider now nonsymmetric systems.  Then the 
Newton algorithm is good at locating pseudoimage points; however, it reports ‘local optima’ in the 
wrong locations.  The latter result is understandable, because neither Newton’s method, nor even the 
GN method, is based, in a sufficiently rigorous way, on minimising the error. 
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very slow but certain convergence—that is, convergence to a point of minimum error (this 
minimum error being being zero in the case of a pseudoimage point).  Conversely (Aster et al., 
2005), very small values of λ  (essentially the GN method) produce uncertain, but potentially 
much faster, convergence.  It is worth noting that the GN and steepest-descent methods 
produce steps in two different directions, and that the LM step points somewhere between the 
two. 
 
 In setting the value of λ , a ‘simple approach’ recommended by Aster et al. was followed.  
One starts with a small value of λ  (the choice made is 0.1 times the term of maximum absolute 
value in the determinant of JJT ).  If the LM step reduces the error, the step is taken and λ  is 
halved for the next iteration.  If not, that step is not taken.  Instead, λ  is repeatedly doubled 
(each doubling leads to a new ‘internal iteration’) until the error is reduced, at which stage the 
resulting step is taken and the algorithm proceeds to the next main iteration.  (Following the 
series of doublings, no further change is made in λ  in preparation for the next main iteration.)  
Thus the advantages of both the GN and the steepest-descent methods are obtained. 
 
 
7.4 Blockage Points 
 
 During the running of imige, for each tentative point x  that is generated, imige calls the 
subroutine ray.  After a number of iterations of imige, the point x  may reach a boundary curve 
beyond which ray always fails (forward failure), that is, for these points x  there is no 
corresponding object point u .  Such a boundary curve will be called a blockage perimeter and 
the point  reached on that perimeter will be called a blockage point; further ‘progress’ of the 
point is ‘blocked.’28  The simplest case of a blockage perimeter is a cutoff perimeter—the 
intersection of the cutoff plane (see Section 6.2) with the reflecting surface.  If the default 
cutoff is used, this case is also the most common case of a blockage perimeter; indeed the 
majority of the blockage perimeters presented in this report are cutoff perimeters.  Other types 
of blockage perimeter occur (i) when the reflected ray becomes almost parallel to the array 
plane (see ‘1/30 radian’ in Section 6.3.2), and (ii) when the reflected ray begins to be reflected 
a second time before it meets the array. 
 
 A difference between a local optimum and a blockage point is worth noting.  Given a 
particular initial guess 00x  that leads to a particular local optimum point P, there is a region 
surrounding 00x  such that any guess 0x  in the region leads to the same local optimum point P.  
The same is not true for a blockage point: varying 0x  normally leads to a variation in the 
blockage point.  This difference is borne out by numerical results (table output by the program 
multigen described below). 
 
 
7.5 Estimates of Derivatives 
 
 The n th iteration begins with the input ( )111 , −−− = nnn yxx  that was produced by the previous 
iteration.  The derivatives ( xu ∂∂ , xv ∂∂ , yu ∂∂  and yv ∂∂ ) at 1−nx  are required.  The exact 

                                                 
28 The reported position of a blockage point may (and usually does) depart very slightly from the true 
blockage point (and be very slightly away from the blockage perimeter) because of a failure at a point 
used to calculate the derivative (Section 7.5).  The details are readily gleaned from Appendix B. 
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derivatives are, however, replaced by estimates using finite differences.  The new values of x  
and y  used for this purpose are x1, x2, y1 and y2, given by  
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Then a two-sided estimate of each derivative is used, of the form 
( ) ( )[ ] hhxuhxuxu 2−−+=∂∂  

(two-sided for added accuracy).   
 
 
7.6 End Points: Discussion 
 
 At the end of each internal iteration, the output value of the error and the size of the step 
taken are tested to determine whether ‘convergence’ has occurred to a pseudoimage point (PI), 
a blockage point (BP) or a local optimum (LO); details are given in Appendix B.  In any such 
case the algorithm is terminated. 
 
 The criteria for declaring a PI (Appendix B) are straightforward and need no checking.  The 
criteria for declaring  a BP or a LO were checked as follows.  A number of points declared to 
be BP were investigated and each was found to lie accurately on a cutoff perimeter.  (Thus the 
criteria used for a BP were confirmed to be valid.)  To investigate LO, a program, varerr.m, 
was written to calculate, for the given value of u′ , the error ( ) uxf ′−  for a 2D grid of points x  
in the neighbourhood of the declared LO, LOx .  It was found, for the several such declared LO 
studied, that the error was indeed minimised at LOx . 
 
 If, despite the tests for PI, BP and LO, the 61st main iteration is commenced, the program 
declares a maximum-iterations point (MI); the algorithm is terminated without convergence. 
 
 The subroutine imige always reaches an ‘end point’ x —the value of x  obtained in the last 
iteration that was successful in reducing the error—and this value of x  is output.  It is believed 
that the only types of end point are PI, BP, LO and MI.29  Table 7.1 summarises the possible 
types of end point together with the corresponding ‘ending code’ (90 to 94) used by the suite of 
programs to report each type.  (Code 94 represents a new type of end point that could, a priori, 
occur.)  We shall refer to the last two types (93 and 94) as maximum-iterations points (93) and 
‘rare’ end points (94) respectively, and the two types collectively as points of nonconvergence.  
From experience, ‘rare’ end points (94) seem never to occur.  Thus in practice it seems that the 
two italicised terms can be treated as identical. 
 
 In the case of any maximum-iterations end point, it is believed that there is an underlying end 
point that is either a PI, a BP or a LO.  That is, a superior algorithm would eventually report 
convergence to one of these types.  The underlying types of points (namely BP and LO) that 
are not pseudoimage points will be called ghost points.30 

                                                 
29 Provision is made for imige to report an ending that is other than these (ending code 94 in Table 7.1), 
but no such endings have been reported. 
30 We use ‘ghost reported points’ to refer to end points (not underlying end points) of types 91 to 94. 
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Type of end point Code Marker 

Pseudoimage point 90 plus (+) 
Blockage point 91 diamond 
Local optimum 92 circle 
Maximum-iterations point: maximum main iterations (61) reached.  
Usually one can identify the underlying end point as 90, 91 or 92 by 
examining nearby input points  

93 [square] 

‘Rare’ end point: other type of ending to imige.  Occurs rarely or never 94 [asterisk] 

Table 7.1.  Showing, for each type of end point reached by the subroutine imige, the ending 
code, and the corresponding marker used in the graphical output of multisym and succeeding 
programs.  The code is given in a table that is output by the relevant program.  Square 
brackets indicate that the corresponding marker is often suppressed. 
 
 Fortunately maximum-iterations end points occur considerably less often than blockage 
points or local optima.  For almost every MI point, it is clear what the underlying type of end 
point is (namely PI, BP or LO): the type is identified by noting the type that was actually 
declared for neighbouring input points. 
 
 A single running of imige, based as it is on a single initial guess 0x , will always lead to one 
and only one end point x .  On the other hand, as noted in Section 6.3.1, to any input object 
point there may be as many as three corresponding pseudoimage points, the functional 
relationship being multivalued.  A fortiori, there may be multiple end points.  These two 
observations are reconciled as follows.  The three (or two) end points can potentially all be 
obtained by inputting a number of initial guesses 0x .  A grid of such initial guesses is in fact 
used in the programs multisym and multigen (Sections 8.2 and 8.3 respectively)——programs 
that seek to find all the end points corresponding to a given object point u′ . 
 
 In the examples studied in the present work, it has been found that for any given object point 
u′ , the underlying end points always total one, two or three, provided one makes a special 
allowance for blockage points.31  (The ‘misbehaviour’ of blockage points is discussed in 
Section 8.3.1.)  
 
 The inversion algorithm used contains some less important features that are omitted in the 
main text.  Interested readers are referred to the code of imige in Appendix C. 
 
 

8. Results for Pseudoimage Points 
 
 In this section we present results for the pseudoimage position—or more generally the end 
point—as a function of the object position.  Three programs are used for this purpose: 
imsuite.m, multisym.m and multigen.m.  These are discussed in turn along with the results 
obtained from each.  A closely related program quad.m is discussed in Section 9. 
 
 

                                                 
31 For blockage points, the statement becomes true if we employ the fiction that end points lying on the 
same blockage perimeter are identical end points.  In actuality, in the case of blockage points, the end 
point depends on the initial guess (and would do so even if the method of steepest descents were used). 
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8.1 Program imsuite 
 
 The program imsuite, like rysuite, produces a suite of curves on one graph.  Its use is 
confined to systems with considerable symmetry—the same symmetry as described at 
Equation (6.1).  The remarks made about symmetry in Section 6.1 again apply.   
 
 Each curve is generated by taking, as inputs, object points ( )0,,R vu ′′  that lie along a line 
through the origin.  The various curves describe pseudoimage points pertaining to the same line 
of object points R, but those curves are characterised by different values of the product 0rXκ .  
The input points considered lie on the line 0=′v  and essentially x  is plotted against u′ .  Due 
to the symmetry, however, the results also apply to any other radial line, not just 0=′v  
(compare Section 6.1). 
 
 The relationship (6.2) is replaced by 
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For a given graph, the last three arguments of f  are held constant.  Each curve (specified by a 
value of 0rXκ ) is a plot of the magnification ux ′  versus ( )010log ru′ .  Plotted on the vertical 
axis is the magnification of a vector OP , drawn in the array plane from the chief receiving 
point, as discussed in Section 6.1.  (In some graphs, 0rx  is plotted instead of ux ′ , as will be 
discussed in Section 8.1.1.)  Because scaled variables are used, the graph represents many more 
situations than might at first be thought.  From Section 5, as 00 →′ ru  (left-hand end of 
graph), for each curve the magnification must approach the value predicted by the paraxial 
approximation.  This prediction is readily seen to hold in the sample graphs, Figures 8.1 and 
8.2. 
 
 As discussed in Section 7, the running of imige (called by imsuite) with different initial 
guesses ( )000 , yx=x  can lead to more than one pseudoimage point, and can also lead to ghost 
points.  imsuite is designed with the goal of producing just one output, and the output aimed at 
is the one that lies on the quasiparaxial branch (of the pseudoimage relationship).  By this we 
mean the continuous curve of pseudoimage points that reduces to the paraxial solution as a 
limiting case.  In other words, the program seeks the continuation of the paraxial solution into 
the region where the paraxial conditions do not hold.  To attain the goal, the initial guess 
( )00 , yx  used in imsuite is always the prediction of the paraxial approximation. 
 
 Consider any of the above curves: it is a curve traced out as u′  increases.  (Here and 
elsewhere in Section 8.1, for convenience we consider 0r  as fixed.  Indeed the relevant points 
can be made by considering 10 =r .)  In the cases considered in our simulations, it turns out 
that, as u′  rises out of the paraxial region, imsuite always traces out the quasiparaxial 
branch— to indefinitely large values of u′ , or, if the quasiparaxial branch terminates, to the 
termination point.  (In principle, the output curve could have jumped to a different 
pseudoimage branch.)  Beyond the termination point the output follows a ghost curve that joins 
continuously with the quasiparaxial branch. 
 
 In Section 7 two types of ghost point (namely, local optimum and blockage point) were 
identified.  For each output ghost point, imsuite identifies the type in a table that is output, but 
does not show the type on the graph. 
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8.1.1 Results   
 
 Figure 8.1 shows the graph that is output from imsuite for a paraboloidal reflecting surface, 
with zero offset e  and the default cutoff, using selected values of 0rXκ .  Figure 8.2 shows the 
corresponding graph for a sphere.  (The latter graph applies also to a cylinder, as in Section 6.) 
 
  We discuss special cases of the parameter 0rXκ .  For 00 =rXκ , the reflecting surface is a 
plane and the magnification is exactly 0.5, in accord with both the graphs.  For the paraboloid 
with 5.00 −=rXκ , the magnification is exactly one, as in Section 6; for the sphere, the 
magnification approaches one at low u′ .  For 10 −=rXκ  (in the context where 0=e ), it will 
be recalled that the paraxial approximation predicts an infinite magnification.  The upshot is 
that, at least for u′  in some neighbourhood of 0=′u , as 10 −→rXκ  (whether from above or 
below), the magnification ux ′  becomes very large, a prediction consistent with each of the 

 
Figure 8.1. Position of pseudoimage points (solid curve) and ghost points (dashed), for a 
paraboloid.  Plotted as magnification against scaled object position, for the values of 0rXκ  
marked.   Obtained via program imsuite.  Note the change of vertical scale by a factor of ten at 

( ) 75.0log 010 =′ ru .  For 00 =rXκ  (plane reflector), the pseudoimage curve (a horizontal line) 
continues indefinitely far to the right provided the ‘ 301  radian’ criterion is not invoked.  
There is a point J (approximate position marked) at which the solid curve and the dashed curve 
actually meet; the graph does not show this because of the nonzero sampling interval used.  
(The solid curve should continue beyond the circle.)  To the right of the point K, two dashed 
curves coincide (see text).  The curve for 1000 +=rXκ  lies barely above the line (not drawn) 

0=x . 
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Figure 8.2.  As for Figure 8.1, but for a sphere or cylinder. 
 
 
two graphs.  Finally, the curve 1000 =rXκ  represents a case near the limit where 0rXκ  
approaches infinity.  Then the surface approaches a point reflector (at least in the case of a 
sphere) and x  is forced to approach zero (for all values of u′ ), in accord with each of the 
graphs.  For 0rXκ  approaching minus infinity (i.e. the inside of a hemispherical surface in the 
case of a sphere), again x  must approach zero.32 
 
 The differences between the curves for the paraboloid and those for a sphere can be 
accounted for qualitatively via simple diagrams (not presented here).  Consider for example the 
case 01 0 <<− rXκ .  Because the spherical surface is steeper than the paraboloid’s surface at a 
given positive x , the resulting object point displacement u′  is less for the sphere.  It follows 
that, for a given u′ , x  is greater for the sphere than for the paraboloid.  This prediction is 
borne out by Figures 8.1 and 8.2.  A similar argument applies for each of the cases 

10 −<<∞− rXκ  and 00 >rXκ .   
 
 An alternative way, or mode, of plotting the results of Figures 8.1 and 8.2 is more useful for 
some purposes; the re-plotting produces Figures 8.3 and 8.4 respectively.  In this alternative 
mode, the quantity plotted along the vertical axis is 0rx .  When 0r  is considered fixed, this 
means that essentially the displacement x , rather than the magnification, is plotted.  A  
 
                                                 
32 Some of the statements in this paragraph need modification for some choices of the cutoff plane, in 
that blockage points may be produced for some values of u′ . 
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Figure 8.3.  The results of Figure 8.1 (paraboloid) re-plotted with 0rx —essentially the 
displacement—along the vertical axis.  For 00 =rXκ , the exponential curve continues 
indefinitely to the right. 

 
Figure 8.4.  The results of Figure 8.2 (sphere) re-plotted with 0rx —essentially the 
displacement—along the vertical axis. 
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disadvantage of the second mode is that a curve that is a constant (horizontal line) in the first 
mode is replaced by a curve with the exponential shape te —due to the horizontal axis being 
logarithmic.  An advantage, however, is that a curve that is exponential ( te− ) (in Figures 8.1 
and 8.2) becomes a constant (horizontal line).  It will turn out that the latter pairing occurs 
more often, giving an overall advantage to the second mode.   
 
 Meanwhile, however, we discuss termination points and ghost curves.  Figures 8.1 and 8.2 
together (or alternatively, Figs. 8.3 and 8.4) show ten termination points (indicated by circles) 
(putting aside for now the termination points bunched together in a vertical line labelled by L).  
A table output by imsuite (not reproduced here) reveals that, beyond the termination point (that 
is, along the dashed curves), the end-point type is a local optimum in two cases (paraboloid, 

20 −=rXκ  and 5.1− ) and is a blockage point in the other eight cases.  Of the eight cases of 
blockage, six arise from cutoffs.  The remaining two cases are covered (as items i and ii) in 
what follows.  Consider, for the sphere, the curves for 50 −=rXκ , 2−  and 5.1− .  Perhaps 
surprisingly, their termination points arise from three different causes.  The respective causes 
are: (i) the reflected ray meeting the reflecting surface for a second time; (ii) the reflected ray 
travelling away from the array or coming within about 301  radian of being parallel to it; and 
(iii) the end point reaching the cutoff plane.   
 
 In more detail, consider first the local optimum curves (certain dashed curves in Figs. 8.1, 
8.3).  Because the case 5.10 −=rXκ  differs little from the case 375.10 −=rXκ  discussed in 
Section 6.3.1, with the aid of Figure 6.1 it is clear what is happening.  Consider what happens 
at fixed 0r .  As x  becomes more negative, u′  (positive) at first increases (quasiparaxial 
branch) and then decreases (non-quasiparaxial branch).  The larger positive values of u′  are 
never reached.  Let tu′  and tx  be the values of u′  and x  at the turning point.  For tuu ′>′ , there 
is no corresponding value of x  (near tx ) that represents a pseudoimage point, but at txx =  the 
error in u′  is minimised.  Hence, at the point J in Figures 8.1 and 8.3 there is a transition from 
the quasiparaxial branch to a curve of local optima. 
 
 Two further comments regarding the local optima are worth making.  First, consider the 
graph of a function in the neighbourhood of a turning point, as in Figure 6.1.  When we invert 
the function, the resulting curve should have an infinite slope at the termination point (and 
should asymptotically be a parabola near that point).  The two relevant curves in each of 
Figures 8.1 and 8.3 are consistent with having such an infinite slope.   
 
 Second, for all u′  along a given curve of local optima, x  should be equal to the constant 
value tx .  Calculations from the output table show that this is the case.  (The table—not 
shown—gives values of x  with high precision.)  The constancy is seen in Figure 8.3. 
 
 Consider now the blockage point curves (Figs. 8.1 and 8.2, or alternatively 8.3 and 8.4).  
Again consider 0r  fixed.  Along each of the eight curves (identified above and again in Table 
8.1), it is found that x  has a constant value (Figs. 8.3, 8.4).  This claim has been verified to 
high accuracy from imsuite’s output table; the results are shown in Table 8.1.  For the six 
curves arising from cutoffs, a further check can be made by calculating the cutoff value of 0rx  
from Equation (6.3) together with (3.2) and (3.3).  Table 8.1 shows agreement in this test also.  
For the paraboloid (Figs. 8.1, 8.3), to the right of the point K, two blockage point curves 
coincide.  In fact, there is a range of values of 0rXκ  over which the corresponding curves 
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coincide: the x  values are the same though the z  values differ.  This is a property that depends 
on the default cutoff and has no further significance.  
 
 For the positive values of 0rXκ , (at constant 0r ) the pseudoimage curves persist to large 
values of u′  (Figs. 8.1 to 8.4).  Furthermore, as 0ru′  approaches infinity, (for each positive 
value ) x  approaches a constant value, equal to the displacement x  that produces a reflected 
ray parallel to the array. [Here we are speaking of the pseudoimage curves (solid), not the ghost 
(dashed) lines.  Thus, in Figs. 8.3 and 8.4, these pseudoimage curves asymptote to a horizontal 
line.]  Note that towards the right-hand end of Figures 8.1 and 8.2, it is the magnification ux ′  
that approaches zero, not x  itself. 
 
 As 0ru′  approaches infinity, eventually the angle of departure from parallelism drops below 

301  radian (Section 6.3.2) and the program reports termination of the pseudoimage curve.  
This produces the bunch of termination points at L on the extreme right; it is no accident that 
these occur around 300 =′ ru .  

 
shape 0rXκ  cause of 

blockage 0r
x  max. error 

parts in 410  
parab 5−  cutoff 20000.0−  0.5 
parab 75.0−  cutoff 00000.1+  1 
parab 5.0−  cutoff 00000.1+  1 
sphere 5−  (i) 14328.0−  3 
sphere 2−  (ii) 42728.0−  3 
sphere 5.1−  cutoff 57735.0−  0.6 
sphere 75.0−  cutoff 92702.0+  1.8 
sphere 5.0−  cutoff 96825.0+  1.5 

Table 8.1.  Check on the constancy of 0rx —and hence the constancy of x  at fixed 0r —along 
each of the eight blockage point curves in Figures 8.1 and 8.2.  For each curve (row), values of 

0rx  were extracted from imsuite’s output table for two input values of 0ru′  as far apart as 
possible.  These 0rx  values were compared with each other and, in the ‘cutoff’ cases, with the 
known cutoff value.  The values of 0rx  quoted are the known cutoff value in the ‘cutoff’ cases, 
and the average of the two simulation values in the other two cases.  The maximum error is the 
maximum departure from the known cutoff value (‘cutoff’ cases) and the departure of one 
simulation value from the other (‘non-cutoff’ cases).  Significantly, all the errors are within the 
roundoff error of imsuite’s table.  For the notations ‘(i)’ and ‘(ii)’ see the main text. 
 
 
8.2 Program multisym 
 
 The program multisym again requires a symmetric system.  Unlike imsuite, it attempts to 
find all the end points resulting from each given object point (‘multiple’ end points).  To avoid 
the graph’s having too cluttered an appearance, a given graph deals with only one value of 

0rXκ  rather than a ‘suite’ of values.  To find all the end points, many initial guesses 
( ) ( )0,, 000 xyx =  are used.  The positive values of 0x  are distributed over the interval from 
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px210−  to px5.210+ —where px  is the paraxial prediction—with the logarithm of 0x  distributed 
uniformly.  The corresponding values of 0x  having the opposite sign are also used. 
 
 A typical graph is shown in Figure 8.5.  Each combination of an object point and an end 
point is shown by a marker.  A different marker is used for each type of end point, as shown in 
Table 7.1.  In general a smooth curve—a branch of the output—can be drawn joining markers 
of the same type.  This has not been done, as a complex algorithm would be required to do it 
automatically.  However, in each case the position of the curve is clear to the eye.  Note that, in 
the graphs produced by multisym (Figs. 8.5 to 8.8), the second mode of plotting has been 
followed (i.e. 0rx  along the vertical axis). 
 
8.2.1 Results 
 
 Figure 8.5 shows the output from multisym for a paraboloid for the value 25.10 −=rXκ , with 
zero offset.33  We are already familiar with the branches AL and LB: they are a repetition of 
the two curves (pseudoimage and local optimum) for 5.10 −=rXκ  in Figure 8.3, but for a 
slightly different value of 0rXκ .  For the smaller values of u′  (left end), a second and a third 
pseudoimage branch are now present, in addition to the quasiparaxial branch AL.   
 
 The behaviour of the three pseudoimage branches is explained by referring to Figure 6.1.  
(Though the two values of 0rXκ  are slightly different, the qualitative features are the same.)  
For u′  slightly above zero, from Figure 6.1 clearly there are three corresponding values of x .  
Furthermore, of the two extreme values of x , one is approximately the negative of the other, in 
accord with Figure 8.5.  As u′  is raised, from Figure 6.1 eventually the lowest two values of x  
coalesce and then disappear.  Figure 8.5 shows that upon disappearing, the two pseudoimage 
branches are replaced by a single curve (LB) of local optima, as anticipated in Section 7.2. 
 
 The behaviour of the curves near the point of disappearance, or critical point, L, is shown in 
Figure 8.6.  That graph confirms that the two relevant pseudoimage curves form a single 
smooth curve having a vertical tangent at the critical point, as anticipated in Section 8.1.1. 
 
 In Figure 8.5, the upper pseudoimage branch gives way, at the point M, to a blockage point 
curve as u′  increases.  Along the latter curve, 0rx  is constant at 0.800.  It is known that the 
blockage point corresponds to ( )yx,  reaching the cutoff perimeter, because, from Equations 
(6.3) and (3.2), 0.800 is the value of x  at the cutoff (the value of Z  at the default cutoff being 
0.400). 
 
 Not only in Figure 8.5, but in all the similar graphs of systems with circular symmetry 
(Figures 8.7, 8.8, and the previously-discussed Figures 8.3 and 8.4), each local optimum curve 
and each blockage point curve is characterised by x  being a constant.34  Furthermore 
 

                                                 
33 For added clarity, points of nonconvergence have been suppressed in the graphs; similarly in the 
graphs produced by multigen and quad. 
34 The constancy of x  may come as a surprise in the case of the blockage point curve, in view of the 
discussion in Section 7.4.  However, the constancy comes about because in the present case the system 
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(Fig. 8.5), along each nonparaxial pseudoimage branch, as 0ru′  approaches zero, x  
approaches a constant other than zero (as expected from Figure 6.1). 

  
Figure 8.5.  Position x  (strictly, 0rx ) of pseudoimage points and other end points, for a 
paraboloid;  .25.10 −=rXκ   Obtained by program multisym.  For the code for markers, see 
Table 7.1.   

 
Figure 8.6.  Expanded view of Figure 8.5 near the critical point L. 
                                                                                                                                                           
is circularly symmetric: the path followed by ( )yx,  during the iterations is confined to the line 0=y .  
This point is discussed further in Section 8.3.1. 
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 When 0rXκ  is changed from 25.1−  to 5.1− , the resulting graph (not displayed) is 
qualitatively the same as Figure 8.5, except that now the entire uppermost pseudoimage branch 
is replaced by a curve of blockage points.  At 75.10 −=rXκ , the graph obtained is shown in 
Figure 8.7.  Now most, but not all, of the lowest pseudoimage branch is also replaced by a 
curve of blockage points.35   
 
 It is found that the graphs discussed so far capture the qualitative behaviour exhibited for 
parameter values throughout the interval 13 0 −<<− rXκ .  The graphs obtained outside this 
interval are less interesting than those obtained in this interval.  Outside the interval the number 
of branches becomes less; often there is only a single pseudoimage branch joined end-to-end to 
a single ghost branch; sometimes there is no ghost branch and the single pseudoimage branch 
extends from one end of the graph to the other. 
 
 The inversion algorithm does not always behave ideally.  First, as the initial guess 0x  
increases (the input object point u′  remaining constant), the end point found often jumps back 
and forth between one branch and another (e.g. between a local optimum and a blockage point 
curve), thus showing a kind of instability.  This is due to the nonzero size of the step that ( )yx,  
takes in the iterative procedure, causing ( )yx,  to follow a somewhat erratic path.  The 
phenomenon causes no problem in the graphs. 
 

 

Figure 8.7.  As for Figure 8.5, but for 75.10 −=rXκ . 

                                                 
35  As a check, it is worthwhile to compare the curves in Figure 8.7 (Similar remarks apply to 
Figure 8.8.) with the corresponding curves obtained by interpolating by eye in Figure 8.3 to 

75.10 −=rXκ .  For the quasiparaxial branch, the branch of local optima and the critical point, there is 
seen to be at least semiquantitative agreement. 
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Figure 8.8.  As for Figure 8.5, but for 25.20 −=rXκ . 

 Of somewhat more concern is the behaviour illustrated in Figure 8.8, which is the output for 
25.20 −=rXκ .  Clearly, in both the upper and lower curves of blockage points, some end points 

are missing; that is, there are underlying end points that multisym failed to find.   
 
 When the underlying end points are pseudoimage points, a happier outcome is obtained.  
Despite the extensive use to which multisym has been put, no evidence has been found of a 
missing pseudoimage point, suggesting that such ‘misses’ do not occur for systems with 
circular symmetry.  Misses for systems without such symmetry are discussed in Section 8.3.1. 
 
 We return, for systems with circular symmetry, to end points of other types: we note that for 
blockage points, misses are not infrequent.  I am fairly confident that, because u′  is varied 
during the construction of one graph, at least all the branches are found, except in rare cases.  
But there is no obvious way of confirming this; we can only say that there appears to be no 
reason why there should be more branches than those found. 
 
 
8.3 Program multigen 
 
 The program multigen, like multisym, attempts to produce all the end points ( )yx,  for each 
input object point ( )vu ′′, .  As in multisym, many initial guesses ( )00 , yx  are used; these are 
spread along a radial line through the point ( )pp yx ,  predicted by the paraxial approximation.  
But multigen differs from multisym in four ways.  First, there is no requirement that the system 
be symmetric; the parameters, including the angles α  and δ , may take on any values (hence 
‘gen’ for general in the name).  Second, the input points ( )vu ′′,  may lie along any line segment 
in the vu ′′  plane.  In more detail, the user specifies a 2D vector ( )1vp,up1  pointing along the 
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line segment, and p , the perpendicular offset of the line from the origin.36  A parameter, dist, 
is defined as the signed distance along the line, from the offset point, measured in the direction 
of ( )vp1,up1 .  
 
 Third, no scaling is applied before plotting: the two axes simply represent two of the 
following three variables: dist, x  and y .  Fourth, three graphs, not one, are output, as will now 
be discussed.  For each value of dist, the program generates a number of end point vectors 
( )yx, .  Each such end point is represented by a marker in each of three graphs: (i) x  versus 
dist, (ii) y  versus dist, and (iii) y  versus x .  These will be called respectively the ‘ x  graph,’ 
the ‘ y  graph’ and the ‘ xy  graph.’  The meaning of each marker is given in Table 7.1 as before.  
Clearly the xy  graph is a scale drawing of the pseudoimage of the object line.  We shall see 
that the xy  graph reveals patterns that are not revealed by the first two graphs. 
 
8.3.1 Results 
 
 As an example, multigen was run with the parameter set multigen 1 shown in Table 8.2.  
(The last seven parameters, I to ht, are matters of detail; they are included so that, by rerunning 
the program, the reader could reproduce the graphs exactly.37)  The resulting three graphs are 
shown in Figures 8.9 to 8.11, to be discussed shortly (beginning with the paragraph after next). 
 
parameter value parameter value parameter value 

shape paraboloid Xκ  375.0−  N 38 
Zb default Yκ  75.0−  showgh 1 

0r  2 up1 0.4 tini 0.75 
e  0.1 vp1 0.6 tfin 1.35 
δ  18° p  0 hb 300−  
α  32° I 52 ht 300 

Table 8.2.  Parameter set multigen 1. 
 
 Note (from Table 8.2) that none of the parameters has a special value, such as zero, with one 
exception: the fact that 0=p  means that the line of input points passes through the origin, i.e. 
the chief receiving point.  For generality, it is desirable to also treat one or more cases in which 

0≠p .  In fact, cases of p  not equal to zero have been treated, as described in two places 
below.  First, in this Section 8.3.1, following the discussion of the 0=p  case, we describe the 
results obtained when we change the value of p  to one while leaving the other parameters in 
Table 8.2 unchanged.  Second, in Section 9, pseudoimages of many squares are computed.  For 
each square, two of the sides have 0≠p ; hence that section gives a comprehensive treatment 
of line segments for which 0≠p . 
 
 In each of Figures 8.9 to 8.11, the end points form four branches or clusters: two 
pseudoimage branches (PI1 and PI2), a local optimum branch (LO); and a blockage point 

                                                 
36 There is a sign convention associated with p . 
37 tini and tfin specify essentially the initial and final values of dist: for details see the relevant program 
in Appendix C. 
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cluster (BP).  As in the earlier, symmetric systems, the two pseudoimage curves meet at a point 
(the critical point) from which a local optimum branch emanates. 

 
Figure 8.9.  x  component of end point positions, plotted against object position, for the 
parameter set multigen 1.  Obtained by program multigen.  The labels such as PI1 are 
explained in the text. 

 
Figure 8.10.  As for Figure 8.9, but y  component. 
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Figure 8.11.  Plot of the vector positions ( )yx,  of the end points obtained for parameter set 
multigen 1.  Hence the curves PI1 and PI2 together give a scale drawing of the pseudoimage of 
the object line. 
 
 We turn to blockage points.  Because there are only three of them in Figures 8.9 to 8.11, 
conclusions can hardly be drawn from that avenue.  However, when there are many such 
points, we expect that, in the xy  graph, the points lie accurately on a single curve, the blockage 
perimeter.  Consider now the separate x  and y  graphs.  Recall, from the discussion of 
instability in Section 8.2, that, during the iterations, the point ( )yx,  is thought to follow a 
somewhat erratic path.  Furthermore, because the movement is no longer confined to the line 

0=y  (circularly symmetric case), but can spread in two dimensions, a change in the initial 
guess in general leads to a different blockage point (on the same blockage perimeter).  Then, on 
the x  and y  graphs (graph of x  versus dist, for example), the blockage points should not lie 
on a single curve, but should be scattered. 
 
 To test this prediction, multigen was run with the same parameters as in Table 8.2 but with 

1=p .  In the x  and y  graphs, the very many (about 325) blockage points were found to lie 
along four roughly parallel curves but with scatter about each of the four: quite small scatter 
about three curves and very considerable scatter about the fourth.  However, in the xy  graph, a 
single precise curve embraced all the blockage points, as predicted.  Incidentally, these graphs 
illustrate a further feature of the ‘instability’ at a blockage point in nonsymmetric cases, as 
follows.  For a given object point—but many initial guesses—the number of output values can 
be many more than the ‘one to three’ previously encountered.  This happens only with 
blockage points. 
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 We return to a point made at the end of Section 7.6.  Apart from the ‘misbehaviour’ of 
blockage points, the plotted points always lie on a small number of smooth curves.  In a certain 
sense, the maximum number of curves encountered in the work is three.38  In the xy  graph, the 
maximum number is three in a stronger sense.39 
 
 In regard to pseudoimage points and local optima, it is reasonable conclude that the LM 
method, as implemented in imige, is good at finding them.  Any point claimed to be a 
pseudoimage point or a local optimum is indeed a point of the type claimed.  However, 
occasionally a ‘miss’ occurs, that is, no point is ‘claimed’ even though a pseudoimage point or 
a local optimum exists.  (The iterative process ends with a point of nonconvergence.)  For 
nonsymmetric systems (Symmetric systems may behave still better.), the evidence based on a 
small number of runs with multigen is that a ‘miss’ occurs, on average, about once on each 
graph.  Indeed, in the run that produced Figures 8.9 to 8.11, there is exactly one miss (shown 
by the label N in Figs. 8.9 and 8.10).  In regard to blockage points, those claimed are indeed 
blockage points, but the frequency of misses is quite appreciable. 
 
 

9. Distortion in Two Dimensions 
 
9.1 Program quad 
 
 Consider a square on the surface of the array, with one vertex anchored at the vu ′′  origin (the 
chief receiving point).  When the square is sufficiently small, the paraxial approximation 
applies and so (Section 5.2) the pseudoimage of the square is a parallelogram.  As the square is 
increased in size, we expect the four sides of the pseudoimage to become increasingly curved, 
yielding what might be called a curved quadrilateral, or c-quad—as noted in Section 2.  
Eventually portions of the curved boundary may be replaced by ghost curves.  These general 
features are shown in Figures 9.1 to 9.4 (to be discussed below). 
 
 The program quad.m is designed to display this development.  A ‘standard square’ on the 
array is specified by a vector ( )vp0up0,  along one side (called the ‘standard side’ and also 
labelled as side 1), extending from the vu ′′  origin and ending in the ‘standard vertex.’  (The 
square is then fixed by requiring that a second side, called side 2, is obtained by rotating the 
standard side about the origin by 90° anticlockwise in the vu ′′  plane.  The other side adjacent 
to side 1 is called side 3.)   A further 1−K  squares (to make a total of K  squares) are 
specified by applying linear scaling factors kf  to the standard square, while holding fixed both 
the vertex at the origin and also the square’s orientation.  In the present examples the size of 
the square increases with k  ( k , which runs from 1 to K , labels the square.), and the standard 
square, the K th, is the largest, so that 10 21 =<<<< Kfff K . 
 
 As with imsuite (Section 8.1), for each input point the program attempts to find the 
pseudoimage point on the quasiparaxial branch only; this is done by using the paraxial 
prediction as the initial guess ( )00 , yx  to be input into imige.  It is expected that usually, (for 

                                                 
38 This number is obtained if each blockage perimeter is artificially construed as contributing just one 
curve, and one restricts attention to a sufficiently small interval of dist. 
39 Here one restricts attention to a sufficiently small interval of dist and does not ‘artificially construe’ 
anything. 
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each input point) when an underlying pseudoimage point on the paraxial branch exists, it is 
reported as the end point.  If such a point does not exist, either a ghost reported point or a 
pseudoimage point on a different branch must be reported; the experience with imsuite 
suggests that most often a ghost point will be found.  The resulting end points give K  
attempted pseudoimages of squares.  The program plots these K  attempted pseudoimages, 
along with the paraxial prediction for each of these K  figures.  Pseudoimages are plotted as 
solid curves; optionally the ghost curves may be plotted (see Section 9.2 for details).  The 
paraxial prediction for each figure is plotted as a dash-dot parallelogram. 
 
 For the standard square, each side is labelled with a value of si (the side number) from 1 to 4, 
as specified at the start of Section 9.1; similarly for each input square obtained from the 
standard square by scaling.  Each side of a c-quad inherits a value of si from the input side of 
which it is the pseudoimage (see e.g. Fig. 9.1). 
 
 Markers are placed along some of the sides as follows.  A number M  is specified by the user 
such that, if the markers were to be placed along the side of the input square (instead of the 
output), they would subdivide the side into M  equal intervals.  Details of the markers are 
given in Table 9.1.40  The program quad also outputs a table giving the type of end point, 
using the same code as in Table 7.1. 
 

Which square Type of point, or which side Marker 
pseudoimage plus (+ ) standard or K th 

square ghost upward-pointing triangle (Δ ) 
pseudoimage cross (× ) ( )1−K th square 

ghost right-pointing triangle 
standard side hexagram (six-pointed star) (large) paraxial prediction 

for standard square other three sides pentagram (five-pointed star) 

Table 9.1.  Details of markers output by program quad. 
 
 
9.2 Results from Program quad 
 
 Examples of results obtained with quad are shown in Figures 9.1 to 9.4.  The respective 
parameter sets, Q1 to Q4, are given in Table 9.2.  Note that none of the parameters has a 
special value such as zero. 
 
 For parameter set Q1, Figure 9.1 shows that the relative deviation of the pseudoimage from 
the parallelogram shape becomes greater as the size of the object square increases.  Consider 
very small squares (smaller than the smallest square input into Figure 9.1), such that the 
paraxial approximation is very good.  Then (from Taylor series considerations) we expect that 
the absolute deviation of each vertex from the paraxial prediction is proportional to the square 
of the side of the object square.  This expectation has been tested using the table output by 
quad (not shown here) and confirmed to high accuracy.  Note from Table 9.2 that the offset e  
is not zero, so that not just the large-range approximation but the (more general) paraxial 
approximation has been tested and confirmed (confirmed because the relative deviation is 
found to approach zero). 
 

                                                 
40 The markers, in particular the triangles, are always plotted, even if they represent points of 
nonconvergence. 
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  Parameter set 

Quantity 
Q1  Q2 Q3 Q4 

Figure 9.1 9.2 9.3 9.4 
shape parab. parab. parab. 

0r  2 2 2 
e  0.1 0.1 0.1 
δ  18° 18° 18° 
α  32° 32° 32° 

Xκ  0.25 36.0−  375.0−  

Yκ  0.13 

 
 
 

as for  
Q1 

0.77 75.0−  
Zb default 
up0 1.6 6.4 2.4 0.4 
vp0 2.4 9.6 6.1−  0.6 
M  4 4 4 
L  30 30 30 
K  4 

as for 
Q1 

4 4 
{ }kf  1/4,  2/4,  3/4,  1  (all parameter sets) 

Table 9.2.  The parameter sets, Q1 to Q4, used as inputs to quad.  Definition of L : The object 
points used for each square subdivide each side of the square uniformly into LM  intervals. 
 

 As noted, the smallest square input into Figure 9.1 does not count as ‘very small.’  It is of 
mild interest that, nevertheless, the quadratic relationship is seen to hold approximately 
between all the four c-quads in respect of side 2 (but not side 1), the deviations being close to 
bearing the ratios 16:9:4:1 .  
 
 Note that in Figure 9.1, for the larger squares the sides are markedly curved.  Also, some 
pairs of opposite sides depart markedly from being parallel. 
 
 Consider now parameter set Q2 (Figure 9.2).  The parameter set is the same as for Figure 9.1 
except that the input squares are larger (in linear terms) by a factor of 4.  The distortion away 
from the paraxial parallelogram becomes marked to a much greater degree.  In this case, 
consider the largest pseudoimage: the magnification along the diagonal extending from the 
origin becomes almost as low as one-third of the paraxial prediction.  A qualitative comparison 
can be made with the 5.00 +=rκ  curve in Figure 8.1 (since 0rXκ  and 0rYκ  are both positive 
and their average is about 4.0 ).  In both cases, the magnification decreases as the size of the 
object increases.   
 
 For the remaining parameter sets, Q3 and Q4 (Figs. 9.3 and 9.4), the attempted pseudoimage 
that is output includes ghost points.  In the normal mode of operation of the program, used 
here, points of nonconvergence are suppressed, and a dashed curve is drawn through the 
remaining ghost reported points.  The latter represent accurately the underlying end points.41 
 

                                                 
41 In the alternative mode, dashed curves are drawn as before.  The points of nonconvergence are also 
represented, but not as a curve.  Instead, either all those points themselves are plotted (as dots), or every 
A th such point is plotted, where A  is an attrition factor chosen by the user. 
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Figure 9.1.  Pseudoimages (solid curves) of four squares of different sizes, given by parameter 
set Q1.  Obtained by program quad.  Dash-dot lines: paraxial approximation.  The graph 
shows also the numbering of selected sides with the parameter si. 

 
Figure 9.2.  As for Figure 9.1, but for parameter set Q2.  Note that the paraxial predictions for 
the c-quads 3=k  and 4=k  extend beyond the graph’s edge, but their positions can be 
inferred by linear scaling. 
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Figure 9.3.  As for Figure 9.1, but for parameter set Q3.  MNPQR is a curve of blockage 
points; although parts of it look like a continuous curve, actually it is a superposition of dashed 
curves. 
 

 
Figure 9.4.  As for Figures 9.1 and 9.3, but for parameter set Q4.  VCFW is a curve of local  
optima. 
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 In parameter set Q3 (Figure 9.3), one of the two curvatures is negative, so that part of the 
reflecting surface arches towards the array plane.  Already in the pseudoimage of the square 

2=k  there is severe distortion (compared to the parallelogram).   
 
 For the larger squares 3=k  and 4=k , parts of sides 2 and 3, as well as all of side 4, are 
missing from the pseudoimage (solid curves).  For all these six ‘missing’ segments (three sides, 
or part-sides, for each of two squares), each output point is a ghost point; the table shows them 
all to be blockage points.  It is found that each blockage point lies on a curve MNPQR that is 
common to all six segments.  (Note that the portion of MPR that presents almost as a 
continuous curve is in fact made up of coinciding dashed curves.)  In fact the dashed curve 
MPR coincides with the cutoff perimeter, as shown by a calculation, as follows.  The default 
cutoff (Eqn 6.3) places the cutoff plane at 7200.0−=Z .  From the table output by quad, 
accurate values of ( )yx,  were noted for two points towards opposite ends of the dotted curve 
MPR.  Using Equations (3.1) and (3.2), the two corresponding values of Z  were each found to 
be 7199.0− , in agreement with the prediction.  Incidentally, the blockage perimeter MPR is 
known to be a conic, in particular a hyperbola. 
 
 We note that, while the relevant pseudoimage curve ends at N, the blockage curve continues 
to M.  This is readily understood in view of the instability discussed in Section  8.2.1.  We also 
note that at N, Q and R, the underlying pseudoimage curve must end precisely on the blockage 
perimeter (any slight gap in the drawn figure being due to finite-interval sampling). 
 
 We return briefly to parameter set Q1 (Figure 9.1) to raise a suggestion which we then reject.  
Consider each paraxial prediction given by a five- or six-pointed star on the outermost 
parallelogram (call any such point P).  The corresponding actual pseudoimage point Q is a 
point marked by a +  sign on the 4=k  c-quad.  In each case, Q is seen to lie very close to the 
line joining the origin (chief reflecting point) to P.  It might be thought that this property holds 
more generally.  However Figure 9.3 shows that it does not.  For example, the prediction fails 
for the sides 1 and 2 (for 4=k ), since the prediction entails that these actual sides should be 
close to straight lines.  Incidentally, these curved sides are tangential to the respective paraxial 
lines at the origin, as required. 
 
 In parameter set Q4 (Fig. 9.4) both principal curvatures are negative.  As a preliminary, note 
that a clockwise rotation is necessary to transform side 1 into side 2; thus the formation of the 
pseudoimage has involved, among other things, a mirror-image operation. 
 
 The ghost points from parameter set Q4 (Fig. 9.4) all turn out (via the table output by quad) 
to be local optima, in contrast to the blockage points of Figure 9.3.  These optimum points 
come from parts of sides 3 and 4 for each of the input squares42 3=k  and 4=k .  The details 
of the mapping can be deduced from the locations of the triangle markers.43  A striking result is 
that the local optimum points from the four part-sides all lie on the single curve VCFW.  We 
shall discuss this phenomenon further below. 

                                                 
42 For 4=k , a small part of input side 3 generates a portion UD of a pseudoimage curve. 
43 The detailed progress of the optimum point is as follows.  For the input square 3=k , along side 3, 
the end point ( )yx,P  makes a very small jump from A to a nearby point on the LO curve and then 
progresses to C (right-pointing triangle).  Along side 4, there is a similar jump from B, followed by a 
similar progression to C.  For the square 4=k , along side 3, P makes a jump from D to V; it then 
follows the LO curve to the triangle at F.  Along side 4, P jumps similarly from E to W; it then 
progresses to F.  
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 A fact that is not immediately evident is that there is a second pseudoimage of, say, the 
standard square.  To see this, note (from Tables 8.2, 9.2) that the side ( 4=k , 1si = ) lies along 
the same object line as that used to generate Figure 8.11.  The side therefore possesses a second 
pseudoimage branch—a part of PI2.  It follows from Figure 8.11 that the portion of the second 
pseudoimage curve that ‘replaces’ UHJ is given roughly by JHU ′′′ .  Anticipating, it is roughly 
a kind of reflection of UHJ about the curve of optima.  [That second pseudoimage curve does 
not appear in Figure 9.4, because quad was designed to produce the quasiparaxial branch only.  
Interestingly, when quad was run in conjunction with Newton’s method, the point ( )yx,  traced 
out part of PI1 and then jumped, tracing out part of PI2, extending roughly from H′  to U′ .]  
 
 The critical point in Figure 8.11 (where LO meets PI) lies approximately at the circle marked 
Z in Figure 9.4.  (To be precise, Z marks the last computed local optimum in Figure 8.11 as the 
critical point is approached fro`m the right.)  It is noteworthy that the curve of optima WFV, 
when extended to the right, passes through Z (as well as the eye can judge). In view also of the 
discussion in Section 9.3 below, it is believed that the curve of optima VFW is a smooth 
extension of the curve of optima in Figure 8.11.44 
 
 Let us now describe the two pseudoimages of the interior of, say, the largest (i.e. the 4=k ) 
square (the interior being a 2D region).   The first pseudoimage of the interior includes the 
sides ( 3si  ,3 ==k ) and ( 4si  ,3 ==k ) (see Fig.9.4).  Note that these two interior curves 
extend to A and B—and presumably (as underlying curves) they extend slightly further to the 
curve of optima.  Thus there is a first pseudoimage, bounded by the curve of optima and the 
outermost solid (pseudoimage) curves, that is, DUJLME.  And there is a second pseudoimage, 
extending from the curve of optima to another set of curves, traced out in part by JHU ′′′ . 
 
 For completeness we note some lesser features of the four diagrams.  For data set Q3 (Fig. 
9.3), sides 1 and 2 diverge (markedly) from each other in the following sense.  As the radial 
distance from the origin (chief reflecting point) increases, the angle between the directions of 
sides 1 and 2 (i.e. the directions of the tangents) becomes greater.  By contrast, for data set Q4 
(Fig. 9.4), those two sides converge.   Again, one can consider, for given directions in the 
object ( )vu ′′,  space, how the magnification changes with the size of the input square.  For data 
sets Q1 and Q2, for each direction, the magnification decreases.  By contrast, for data set Q4 
(Fig. 9.4), it is found that sometimes the magnification increases [e.g. compare the cross near 
( )53.0,13.0 −  with the plus sign near ( )76.0,26.0 − ].  
 
 
9.3 Common Curve of Local Optima 
 
 A striking feature of Figure 9.4 is that the four curves of local optima corresponding to the 
four relevant sides ( 4 and 3si = for each of the squares 4 and 3=k ) all lie along a common 
curve.  Such coincidence is expected for blockage points (Fig. 9.3), since there is just one 
cutoff perimeter; but in the case of optima there is no simple explanation.  To test this 

                                                 
44 The fact that the (combined) curve of optima extends both ways from Z is, upon reflective thought, 
not surprising.  Consider the input line segment (call it 1S ) of Table 8.2 and Figure 8.11.  This is 
collinear with the line segment ( 4=k , 1si = ), to be called 2S .  For 1S , the curve of optima extends 
to the right (only) from Z.  For the line segment 2S , there is no curve of optima.  For the segment 3S  
( 4=k , 3si = ), the curve of optima extends from V to F (only).  And so on. 
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coincidence to high accuracy, a section of the curve was chosen near the point C, where three 
sides are represented.  Local optimum points from the three sides were plotted on an enlarged 
scale (Fig. 9.5).  The points still lie on a common curve (drawn).45 

 
Figure 9.5.  Local optimum points generated by three object line segments (sides—see legend) 
of Figure 9.4.  A common smooth curve is fitted. 
 
 The fact that two object line segments, emanating from a common point, at right angles to 
each other, map onto a common curve (as shown in the previous paragraph) is sufficient for us 
to be confident that any line segment emanating from that point maps into the same curve.  
Thus the local optimum function maps a 2D region onto a 1D region.  The fact that a third 
object line (the 4=k  one) also yields coincidence gives further confirmation.  The italicised 
result is striking, because normally a function that maps ( )vu ′′,  to ( )yx,  maps a 2D region 
onto a 2D region. 
 
 A partial understanding of this result can be given, as there is a precedent (besides the weak 
precedent of the blockage points).  The 2D–1D phenomenon occurs for local optima in the case 
of circular symmetry (Equation 6.1), as exemplified in Figure 6.1.  In that case the curve of 
optima in the xy  plane is a circle, centred on the origin.  It is the locus of all the points 

( )yx,=x  that correspond to the turning point in the function that maps x  onto the 

corresponding object point u′ . 
 
 It seems likely that a fuller explanation of the topology of the local-optimum results can be 
supplied by catastrophe theory, pioneered by René Thom (Thom, 1975; Zeeman, 1977; Postle, 
1980). 
 
 

                                                 
45 This segment is extremely close to a straight line; but Figure 9.4 shows that on a larger scale there is 
appreciable curvature. 
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9.4 A Case of Three Pseudoimages 
 
 We now describe a case where an extended object has three pseudoimages—a case where 
quite interesting distortion occurs.   
 
 For the circularly symmetric system to which Figure 6.1 applies (parameters given in Section 
6.3.1), let the coordinates of the turning point on the right be called ( )tt ux −,  (so that 0>tx , 

0>tu ).  Let the x  coordinate of the zero-crossing point H be hx .  Consider as the object a 

small square of side c  placed near the u′  origin.  In particular, let tuc 10
1=  and let a diagonal 

of the square run from ⎟
⎠
⎞

⎜
⎝
⎛ −− cc 4

1
4
1 ,  to ⎟

⎠
⎞

⎜
⎝
⎛ −− cc 4

5
4
5 , .  By sketching the u′  plane and the x  

plane and referring to Figure 6.1, it is straightforward to see what the three pseudoimages look 
like.  (In the sketches, three relevant circles should be drawn, of radii tu , tx  and hx  
respectively.) 
 
 One pseudoimage, corresponding to the paraxial branch, is approximately a square, located in 
the first x  quadrant and lying close to the origin (compared to the tx  circle).  A second 
pseudoimage (branch near H in Fig. 6.1) lies again in the first quadrant, but at a radial distance 
just short of hx .  But this pseudoimage is elongated in the circumferential direction, so that it 
extends from fairly near the x+  axis around to fairly near the y+  axis, following a curved 
path ‘approximately parallel’ to the circle of radius hx .  The third pseudoimage is similar to the 
second, being circumferentially stretched.  However it lies in the third x  quadrant at a radial 
distance just beyond hx . 
 
 It is worth noting what happens as the side c  is increased.  Eventually the first and second 
pseudoimages abut one another, the curve of separation being the curve of local optima tx=x .  
This helps to explain how the similar situation in Figure 9.4 comes about. 
 
 

10. Conditions on the Geometrical Approximation 
 
 The conditions on the geometrical approximation have been discussed at some length in I.  
Here we recall the main results from I and (in Section 10.1) add some new comments on those 
results.  Actually it has been realised that two further conditions are necessary, given in 
Sections 10.2 and 10.3 respectively. 
 
 Suppose that it is desired that the approximation gives a good description of the pseudoimage 
of an array, the outer boundary of which is approximately a circle of diameter L .  Consider the 
case where mmm YX ≡=  and the array plane is roughly parallel to the reflector.  Let 1S  be the 
pseudoimage of the array center, and let 1D  be the distance from 1S  to the nearest edge of the 
reflector.  The condition for assumption 1 (reflection treated by geometrical acoustics) to hold 
is that 

21
02

1
1 λα mrLmD +≥                                                    (10.1) 
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as shown in I.  Here λ  is the wavelength at the center of the chirp, and α  is a purely numerical 
constant, expected to be somewhat greater than one.  A reasonable guess is that α  should be 
taken as 5/2 for a fairly good description and 15/2 for quite good accuracy.46   
 
 Assumption 2 is concerned with the effects of numerical diffraction as discussed in Section 2.  
Due to this diffraction, a square tile (i.e. a square subarray that is processed coherently) of side 
a  has its pseudoimage blurred over some distance b .  We discuss only the case where m  is 
of order unity, since it appears impossible to discuss the case of a more general magnification 
until the corresponding wave theory has been developed.  Then assumption 2 is good (on the 
scale of L ) if Lb << .  As shown in I, this condition on assumption 2 reduces to 

Lar <<λ0                                                           (10.2) 
 
 We seek a criterion for the predicted geometrical pseudoimage to closely resemble the actual 
pseudoimage.  Equation (10.2) yields a final criterion of the form Lar βλ ≤0 , where it is 
suggested that β  is equal to something like 1/30.  A further point—a positive one—can be 
made: as paper I points out, for one important purpose a weaker condition should suffice, in 
which 31~β .  That purpose is the use of a pseudoimage to make a not-too-bad estimate of 
the magnification (and hence the curvature) in cases where there are two spots which, though 
blurred considerably, can be resolved as two separate spots. 
 
 
10.1 Comments 
 
 Some comments on the above conditions are in order.  First, in the case of an elongated 
array, with two characteristic lengths, 1L  and 2L , sufficient conditions should be obtained by 
requiring that each condition above holds for both 1L  and 2L .  Second, in cases of non-
parallelism ( 0≠δ ), the above conditions still apply provided that one first replaces the 
original array by its projection onto the uv  plane.47 
 
 Third, in cases where part of the geometrical pseudoimage lies near (or beyond) the edge of 
the reflector, clearly condition (10.1) is violated.  However in some circumstances one can find 
a part of the array for which the pseudoimage is geometrical.  In that case 1S  is taken to be the 
pseudoimage of the center of the part array, and L  is replaced by L′ , the size of the part array, 
before applying Equations (10.1) and (10.2).  Finally, the present Section 10 assumes that the 
large-range approximation is at least an order-of-magnitude guide to the geometrical 
pseudoimage.  Hence in the cases of more severe distortion (e.g. magnification severely 
reduced) the present conclusions require modification. 
 
 

                                                 
46 For pseudoimage points near the center of the reflector, the image amplitude may differ from the 
expected value, due to the edge of the reflector following closely an edge of a so-called Fresnel zone 
(e.g. Ditchburn, 1952). 
47 In that case, a  is replaced by two projected values, 1a  and 2a .  Then Equation (10.2) must be 
applied to the pair ( )11, aL  and also to ( )22 , aL . 
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10.2 Density of Elements 
 
 The receiving elements have been treated as though they formed a continuum of element 
density, denoted by ( )ug , the (local) number of elements per unit area.  [Here we drop the 
primes from u′  and 0u′ .]  This should be a good approximation provided that the element 
density is high enough.  We now find the detailed condition required. 
 
 Consider, on the reflecting surface, the point 0r  that, in geometrical acoustics, reflects to a 
point 0u  in the array plane.  From Section 2 and especially Appendix A, the points on the array 
plane that contribute, by constructive interference, to the image amplitude at 0r  are the points 
u  such that Equation (A.3) holds, that is, 

sm 1
0

−<− uu  
where s  is the distance defined by Equations (A.1) and (A.2).  Let ( )00 ugg = ; thus 0g  is the 
element density in the neighbourhood of  0u  (initially a sum of delta functions), but averaged 
over a region containing several (ideally many) elements.48  Then  

21
0
−= gh  

is a measure of the distance between neighbouring elements. 
 
 Consider the physical (acoustic) wave as it reaches the plane of the receiving array.  In a 
small region near a given point on the array, over a short time-interval, the complex pressure of 
the wave (versus position and time) may be written as the pressure of a plane wave multiplied 
by what we shall call the ‘envelope,’ where the envelope varies slowly on the scale of one 
wavelength (and one period).  The envelope varies in the lateral directions on the scale of 

sm 1− .  And the Fourier components of the envelope are appreciable only over wave numbers 

of the order of the reciprocal of sm 1− .  For a reconstruction of the envelope that is close to 
what would be reconstructed from continuous sampling, sampling must occur at spacings down 
to sm 1

3
−θ , where 101~3θ  (say).  The required condition is therefore49 

smh 1
3

−< θ  
This condition should apply irrespective of whether the array is random or regular.   
 
 When the left-hand side rises above the right-hand side, all is not lost.  The resolution (as a 
distance on the reflecting surface, in order-of-magnitude terms) simply rises in proportion to 
the left side; thus, instead of  s , the resolution becomes 

hm  
 
 

                                                 
48 The region is never taken to extend beyond the edge of the array (to where the element density is 
strictly zero).  Instead a region that terminates at the edge is taken for the purpose of averaging. 
49 An investigation strongly suggests that s  itself contains a factor 

21m . 
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10.3 Grating Lobes 
 
 A wave treatment is believed to produce, due to the elements in a small region50 centered on 
u′ , a contribution to the image amplitude that is peaked at the geometrical pseudoimage of u′ .  
However, in the case of a point target, it is known that periodicities in the array can lead, via 
grating lobe effects, to spurious images at points other than that geometrical pseudoimage.  
These periodicities correspond to a high Fourier amplitude, at high wave-number, in the 
spectrum of the element strength distribution. It is expected that similar effects occur with 
specular surfaces.  Hence a requirement on the geometrical approximation is that the Fourier 
amplitudes at such wave-numbers be small. 
 
 

11. Application to a General Smooth Surface 
 
 For the specified surfaces such as the paraboloid,51 the conditions on the ‘present algorithm’ 
(by which we mean the algorithm of the present report) have been stated above.  Consider now 
a general smooth reflecting surface.  In the neighbourhood of any point on the surface, the 
surface is well approximated by a paraboloid.  Based on this fact, it can be shown that the 
algorithm also gives a good approximation to the pseudoimage for a general smooth surface, 
subject however to further conditions, now to be derived. 
 
 We consider the case—which is rather common—in which two conditions are fulfilled.  The 
first condition is that there is a chief reflecting point 0S , that is, a point on the surface such that 
a ray from the transmitter to 0S  is reflected back to the (point) transmitter.  The second 
condition is that the transmitter (or its projection onto the array plane) lies within or near the 
array.52  As before, the ray reflected from 0S  coincides with what is called the ‘chief normal,’ 
and the point where the latter intersects the array plane is called the ‘chief receiving point’ 0T .  
We consider the reflecting surface to be replaced by a paraboloid with its vertex at 0S , having 
the same two principal curvatures at 0S  as the reflecting surface. For points on the receiving 
array sufficiently close to 0T  (or equivalently, for points on the reflecting surface sufficiently 
close to 0S ), the present algorithm gives the pseudoimage to a good approximation.  Note that 
the departure of the predicted pseudoimage point from the true one is due, not to a failure of 
the paraxial approximation (because that approximation is not assumed), but due to the 
surface’s not being a paraboloid.   
 
 We define the coordinates X , Y  and Z  as before, so that, on the paraboloid, Z  is a 
homogeneous quadratic function of X  and Y .  For simplicity we consider the case where the 
absolute values of the two principal curvatures are of the same order of magnitude as each 
other, say of order 11 1 ρκ = .  ( Xκ  and Yκ  may be of either sign; 1κ  is positive.)  We consider 
the (quite common) case where the departure of the true surface from the paraboloid is 

                                                 
50 Essentially the ‘small region’ must be of extent somewhat greater than sm 1−

. 
51 The ‘specified’ surfaces are the paraboloid (with the transmitter lying on the paraboloid’s axis), the 
sphere, the cylinder and the plane. 
52 A good practical criterion is that the distance of the (projected) transmitter from the center of the 
array is less than ( )25.1 L , or L75.0 , where L  is the length or diameter of the (square or circular) 
array. 
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qualitatively the same as the departure of a sphere from a paraboloid of revolution, or more 
generally, the departure of an ellipsoid from an elliptic paraboloid.  More precisely, we 
consider the case where each of Z  and its first and second derivatives (with respect to X  and 
Y ) are given accurately by the paraboloid provided that both 

11         , ρρ <<<< YX                                                         (11.1) 
(Typically then, the error first becomes appreciable at displacements of order 1ρ .)  The 
mapping from ( )vu ′′=′ ,u  to its pseudoimage point ( )YX ,=X —and likewise the inverse 
mapping—is then given accurately by the present algorithm provided 

1ρ<<X                                                                   (11.2) 
(To be precise, we note that there are rare combinations of parameters for which an 
appreciable, or even large, error arises due to a local magnification approaching infinity.  The 
phenomenon is essentially the same as when a radius of curvature approaches 0ρ  in the 
situation discussed in Section 5.3.)  Equation (11.2) is the condition we seek.  Equation (11.2) 
can be rewritten as a condition on u′  (instead of X ), but such a condition would be 
considerably more complicated. 
 
 As Equation (11.2) entails that the gradients ( XZ ∂∂  and YZ ∂∂ ) are small, it might be 
thought that (11.2) entails that the rays (both forward and reflected) are paraxial, or 
equivalently, that the paraxial approximation holds.  But this is not so, because the chief 
condition on the paraxial approximation, namely Equation (5.9), is not guaranteed to hold by 
(11.2).  Rather, in the subcase  

10         , ρ<<<< XX r                                                       (11.3) 
both the present algorithm and the paraxial approximation are valid.53  There remains the 
subcase  

10         ,~ ρ<<> XX r                                                       (11.4) 
in which the present algorithm, but not the paraxial approximation, is valid.54 
 
 

12. Conclusions; Future Work 
 
 The geometrical approximation has been applied to ‘specified’ surfaces, namely the 
paraboloid with two principal curvatures—with the transmitter lying on the paraboloid’s axis—
, as well as the sphere, the cylinder and the plane.  Within that approximation, the exact general 
solution for the forward problem has been given, in the form of a nest of formulae, 
implemented in the routine ray.  For the inverse problem—the problem of determining the 
pseudoimage when given an object in the array plane—an algorithm has been described and 
implemented in the routine imige.  Starting from a given object point, the algorithm can lead to 
multiple pseudoimage points, and also to blockage points and local optima, the natures of 
which have been discussed.  Pseudoimages of extended objects have also been discussed. 
 
 Among other topics discussed, the report shows that the present algorithm applies to a 
general smooth surface, subject to further conditions. 
 
                                                 
53 Subject also to the ‘rare combinations’ proviso above. 
54 In this subcase, the reflecting surface is always near-planar, in the sense that 01 r>>ρ .  As a result it 
can be shown that, within the region (11.4), there is a subregion of considerable size in which the exact 
planar solution, given in I, is a good approximation. 
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 We have developed the paraxial approximation, a useful generalisation of the large-range 
approximation in which the pseudoimage of a square is still a parallelogram. 
 
 A suite of programs with graphical outputs has been produced.  These show how the 
pseudoimage point gradually diverges from the paraxial prediction as the object point moves 
further from the chief receiving point.  Of the programs, multigen is the most general, as it 
attempts to find all the end points for object points lying along a general line in vu ′′  space.  
The program quad shows how the pseudoimage of an object square develops away from the 
paraxially-predicted parallelogram. 
 
 In future work, it is intended to dispense with the two assumptions of the geometrical 
approximation and instead use wave theory.  As discussed in Section 1.3, in the present system, 
wave effects arise in two ways.  First, acoustic waves are propagated and reflected: these are 
amenable to a treatment via Huygens wavelets undergoing spherical spreading.  Second, the 
image-forming also introduces wave effects.  A wave treatment would not only deal with the 
wave-induced blurring of the pseudoimage; it would also predict the image amplitude 
distribution ( )rA ; such a prediction is not attempted by the geometrical approximation.  The 
‘bright points’ calculation (Section 2 and Appendix A) is suggestive of how such a wave 
treatment would proceed.  A preliminary account of such a wave treatment for the large-range 
case has been given by Blair (2004). 
 
 By reasoning as in Section 11, it may prove possible to develop such a wave theory, not only 
for the specified surfaces, but, at the same time, for a general smooth surface, by concentrating 
on one small part of the surface at a time. 
 
 A wave treatment would provide an answer to a question raised in Section 1.2: Does the 
theory of the image-forming for a collection of randomly placed point scatterers apply in toto 
to specular reflectors?  A preliminary calculation suggests that the answer is no, and that the 
theory of the point spread function is different, and more complex, for the specular reflector. 
 
 In more detail, the preliminary calculation just mentioned is an extension of the ‘bright 
points’ calculation (Section 2 and Appendix A).  Tentatively, the results are as follows.  One 
can define an appropriate point spread function (PSF)55 showing, for a given point u′  in the 
receiving array, the extent to which the element strength density ( )u′g  at u′  contributes to the 
image amplitude ( )rA  at a given point r .  This PSF depends for its existence on there being a 
point 0r  that (according to geometrical acoustics) reflects to a point 0u′  in (or near the edge of) 
the receiving array.  The PSF depends on the values of certain parameters such as the principal 
curvatures at 0r , but does not depend on the function ( )u′g .  The formula thus obtained for the 
PSF is valid only for r  near 0r  and u′  near 0u′ . 
 
 The ‘preliminary calculation’ yields further results.  Because the PSF is not a delta function, 
( )u′g  is not sharply reproduced in the pseudoimage, but is subject to blurring (‘spreading’) in 

the lateral directions.  For a given u′ , the spread in r  is essentially over the region S (Eqn 
A.2); for a given r , the spread of the contributing u′  values is over the region R (Eqn A.3).  In 
particular, consider any edge—an edge of the array in the case of the fully coherent mode, or 

                                                 
55 Warning: More than the usual care must be taken in defining this function, due to effects associated 
with the distinction between coherence and incoherence. 
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an edge of a tile in the partly coherent case.  It is at such edges that the spreading will be most 
apparent.   
 
 In addition, if the calculation of Appendix A is correct, it is easy to show that the dimensions 
of each of S and R are proportional to 21λ , where λ  is a wavelength typical of the Fourier 
components of the transmitted signal.  Hence each spread is also proportional to 21λ . 
 
 A final point concerns what happens as the typical wavelength λ  approaches zero.  Here we 
may consider any extended region56 R′  of the receiving array.  It is believed (particularly as 
the spread is suggested to be proportional to 21λ ) that the wave treatment would confirm the 
following: that, as λ  approaches zero, the lateral spreading of the pseudoimage of R′  (and, in 
particular, the spread of the pseudoimage of any edge) approaches zero, and that the edges of 
the resulting sharp pseudoimage are identical to those predicted by the geometrical 
approximation. 
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Appendix A: Bright Points 
 
 Let 0r  be a point on the specular surface—a point which, in geometrical acoustics, reflects to 
a point 0u  on the array.  (Here we drop the primes from 0u′ , u′ , etc.)  We consider points u  on 
the array near 0u .  By the theory of Huygens wavelets, the pressure at u  is the sum of the 
contributions from many paths, where each go-and-return path consists of two straight lines 
that meet at a point r′  on the surface.  For a monofrequency signal, the phase shift of any 
contribution is proportional to the corresponding go-and-return path length ( )ur ,′Λ .  The 
(complex) image amplitude ( )rA  at a point r  on the surface is obtained via the image-forming 
equation; ( )rA  thus consists of a phase-shifted sum of the pressures over the elements.  
Formally this sum can be written as an integral over u , in which ( )ug , the element strength 
per unit area, appears as a factor in the integrand.  Due to the time delays of the image-forming 
equation, the contribution to ( )rA  from the path pair ( )ur ,′  has an associated total phase shift 
proportional to the path difference ( ) ( )urur ,, Λ−′Λ  associated with the path pair.   
 
 We recall Fermat’s principle (e.g. Ditchburn, 1952, p. 216), which states (in the case of 
reflections) that, for a given u , the point ( )ur  of (geometrical) reflection to u  is such that the 
path length ( )ur ,′Λ  is stationary with respect to variations in r′  (on the surface) about ( )ur .  
Wave theory justifies this principle by pointing out that, because of the stationarity, 
constructive interference between many more Huygens wavelets than usual, with values of r′  
near ( )ur , occurs at u .  In other words, the values of r′  that interfere constructively occupy a 
much larger region than usual.   
 
 Similarly, in the present system, a bright point will appear at r  when, in the 4D integration 
over r′  and u , there is a 4D region, of rather large extent in all four directions, such that all the 
path pairs picked out by that region interfere constructively at r .   
 
 At the beginning of this appendix we considered points 0r , 0u  and u .  For such a point u , 
consider the Huygens paths that reach u .  A path via any point r′  interferes constructively 
with the path via the fixed point 0r  provided that 

( ) ( ) λ<Λ−′Λ urur ,, 0                                                        (A.1) 
(where =λ wavelength).  More correctly, a coefficient of λ  of order unity—call the 
coefficient 1θ —should be inserted on the right-hand side; the value of 1θ  depends on the 
largest phase difference that is counted as giving constructive interference.  Now, in the first 
instance, consider the case 0uu = .  ( 0u  is defined at the start of the appendix.)  Because of the 
stationarity associated with Fermat’s principle, Equation (A.1) holds for a larger-than-usual 
region S of r′  space.  Ignoring anisotropic cases for simplicity, that region S may be written as  
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s<−′ 0rr                                                                 (A.2) 
(for some s , the calculation of which is postponed to a later article).   
 
 Now consider the region R of u  space defined by  

sm 1
0

−<− uu                                                            (A.3) 
where m  is the local magnification (as given by geometrical acoustics).  At any point u  in R, 
u  is still in the ‘coherent beam’ reflected from the region S, and so Equation (1) should still 
hold.57  (Adjustments may have to be made to the coefficient 1θ  and to a similar coefficient 2θ  
to be inserted in Eqn A.3.  From here on, the inclusion of such coefficients θ  is to be 
understood.)   
 
 (Actually, the present argument suffices only for the case where the reflected rays are 
roughly normal to both the array and the reflecting surface.  Treatment of the general case is 
postponed to a later article, and may require the definition of different kinds of magnification.  
The latter would depend, for example, on whether the ‘size’ of the ‘object’ is measured in the 
array plane or measured via the projection onto the plane perpendicular to the rays.) 
 
 Since the region (A.2) is large in the relevant sense, so also is the region (A.3) (at least for a 
fixed m  that is neither zero or infinite).  Consider now the combinations ( )ur ,′  such that 

S∈′r  and R∈u : these generate a large region in 4D space for which the inequality (A.1) 
holds.  Hence at 0rr =  the point is bright.   
 
 We note in passing that the argument strongly suggests the following: that essentially it is the 
elements within R (possibly with an altered value of θ ) that contribute to, and suffice to 
produce, the bright point at 0rr = .   
 
 The argument (predicting a bright point at 0r ) may be repeated at any other point r  by 
calling it 0r .  Note that the argument strongly suggests a certain ‘blurring’ of the pseudoimage 
as follows.  Given an initial 0r , as r  varies away from 0r , ( )rA  differs from ( )0rA  by a rather 
small amount until the condition  

s<− 0rr                                                                 (A.4) 
(possibly with a different value of θ  to that in Eqn A.2) is violated.   
 
 

Appendix B: Termination of the Inversion Algorithm 
 
 The decision whether to terminate the algorithm is taken at the end of each internal iteration.  
The decision depends on the value of relerr, the relative error (Eqn 7.3), and also on the value 
of relstep, the relative step most recently tried.  For any tentative step xδ  (taken from a 
 

                                                 
57 After all, surely when the ‘<’ sign in (A.3) is replaced by ‘<<,’ all the relevant phases are changed by 
an amount that is small compared to 2π  . 
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position 1−= nxx ), relstep is defined as58 
xxδ=relstep  

 
 At the decision point, several tests are performed.  Termination at a pseudoimage point is 
declared if relerr is less than 1010− ; it is also declared if both 510relerr −<  and 510relstep −< .  
If a pseudoimage point is not found, a blockage point or a local optimum may be found, as 
follows.  First, the step size is considered to be small enough to warrant termination of the 
algorithm if either 1010relstep −<  or the 60th internal iteration has been performed.  When that 
combined condition holds, consider the most recent running of ray at the latest (central) x  
value and at the four associated points used in estimating the derivatives: in each case ray may 
have failed (to find a corresponding value of u′ ).  If ray (having succeeded at the central point 
x ) failed at an associated point, a blockage point is declared.  If, on the other hand, it 
succeeded at all four associated points, a local optimum is declared. 
 
 

Appendix C.  Printout of Selected Routines 
 
 In the present work about 16 routines (main programs and subroutines) are used, each being 
an m-file written in MATLAB.  From these, the most useful collection of four routines has 
been selected for reproduction here; they are imparax.m, ray.m, imige5.m and multigen.m.  
(Strictly, the routine called imige.m in the body of the report possesses the name imige5.m.)  
These four routines suffice to run the program multigen.  Several of the other routines can be 
regarded as modelled on multigen: these consist of all the routines that call either ray or imige5 
and produce graphical output. 
 
 multigen speaks of ‘fail codes’; these are what the body of the report calls—more 
appropriately—‘ending codes.’  imige5 speaks of ‘failure codes’: such a code is a more 
primitive description of the ending.  The fail code (ending code) in multigen and similar 
programs is deduced from a combination of two parameters, namely, imige5’s ‘failure code’ 
and another output from imige5. 
 
 
C.1  imparax.m 
 
% Subroutine imparax.m 
% 
% DESCRIPTION: For a sonar array viewing a specular reflector, this routine 
% accepts a description of the system and a point on the sonar array.  It  
% outputs the point on the reflecting surface that is, according to the  
% PARAXIAL APPROXIMATION, the pseudoimage of that point 
% 
% Author of routine: David Blair, from December 2006 to July 2008 
 
function xve2 = imparax(r0, e, delta, alpha, kappaX, kappaY, upri, vpri) 
 
% This function m-file does the same as imige5.m , except that  
% it assumes also the PARAXIAL APPROXIMATION.  This approximation has wider 
% conditions of validity than the large-range approximation 
% 

                                                 
58 The use of the relative error and the relative step (in place of absolute quantities) in the convergence 
criteria is particularly appropriate when investigating small departures from the paraxial approximation, 
and does no harm when used more generally. 
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% INPUT VARIABLES: See the routine imige5 
% 
% OUTPUT VARIABLES: 
% xve2       row vector of two elements, namely: 
% x, y            coordinates of the geometrical pseudoimage point S of  
%            the point R.  R lies on the receiving array and S lies on the  
%            reflecting surface.   
 
uprive2 = [upri, vpri]; 
Qalpha = [cos(alpha), sin(alpha); -sin(alpha), cos(alpha)]; 
magX = 1/(2*kappaX*r0 + 1 + r0/(r0 + e)); 
magY = 1/(2*kappaY*r0 + 1 + r0/(r0 + e)); 
Qm = diag([magX, magY]); 
Qiproj = diag([cos(delta), 1]); 
 
xve2 = (Qalpha'*Qm*Qalpha*Qiproj*uprive2')'; 

 
 
C.2  ray.m 
 
% Subroutine ray.m 
% 
% DESCRIPTION 
% For a sonar array viewing a specular reflector, this routine accepts the 
% description of the system and the geometry of the outgoing or forward 
% ray.  It outputs the point where the reflected ray meets the receiving 
% array 
% 
% Author of routine: David Blair.  June 2005 to July 2008 
 
function uprive2f = ray(shape, Zb, r0, e, delta, alpha, kappaX, ...  
    kappaY, x, y) 
 
% This function m-file deals with the pseudoimage of the receiving array 
% produced when an underwater acoustic image device "views" a specular 
% reflector.  Within the geometrical approximation, given a point S on the  
% reflecting surface, the routine determines the point R such that a ray  
% emanating from the transmitter and the meeting the reflector at S, upon  
% reflection meets the array plane at R.  Strictly, what is input is the x 
% and y coordinates, which usually determine the point S(x,y,z).  However, 
% a corresponding valid reflecting point S does not always exist.   
% Furthermore, even when S does exist, a corresponding valid object point R  
% does not always exist.  However, whenever R does exist, it is unique. 
% 
% An alternative description (which however, assumes the existence of S and  
% R) is as follows.  When a point S on the pseudoimage is input into the  
% routine, the routine calculates the point R on the array of which the first  
% point is the pseudoimage.   
% 
% Image amplitudes do not enter into the calculation, which is merely  
% concerned with the functional relationship that maps the one point, S, onto  
% the other, R.   
% 
% It is assumed that the reflecting surface is described by an equation of  
% one of the three forms 
% cylinder:        X^2 + (Z - 1/kappaX)^2 = 1/kappaX^2 
% sphere:        X^2 + Y^2 +(Z - 1/kappa)^2 = 1/kappa^2  
% paraboloid:         Z = 0.5*kappaX*X^2 + 0.5*kappaY*Y^2 
% In the paraboloid, kappaX and kappaY are the principal curvatures.  For the  
% cylinder and the sphere, kappaX (kappa respectively) is a curvature.  For  
% all three forms, the kappas concerned can be positive or negative.   
% For all three forms, the chief 
% normal to the surface is defined as the normal that passes through the  
% spherical centre of the transmitter.  Z is the coordinate measured along  
% the chief normal, starting from the chief reflecting point.  Z increases 
% as the point concerned moves away from the array towards the reflecting 
% surface; the direction of that movement is called the 'forward' 
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% direction.  [For more on the kappas and similar parameters, see below under  
% "Input Variables."] 
% 
% INPUT VARIABLES: 
% 
% shape      1 for cylinder, 2 for sphere, 3 for paraboloid 
%            For a plane, input 3 (or 1 or 2 now allowed) with  
%            kappaX = kappaY = 0 
% Zb         must be > 0; BUT, as a code, it can equal 0 or -1 (see end of  
%            the description of Zb for the codes); AND it can also equal 0 
%            in an "EXCEPTIONAL" case described just five lines down. 
%            The reflecting surface is taken to be cut off at Z = Zb or  
%            -Zb; the details follow. 
%            The range of Z values retained (i.e. not cut off) always 
%            includes Z=0 
%            For a paraboloid with both kappas >= 0, there is 
%            no cutoff and Zb is ignored; in that case it is recommended to  
%            input Zb as zero (this is an EXCEPTION to the above rule). 
%            For other paraboloids, the  
%            boundary (cutoff) is taken at -Zb; only the portion of the  
%            quadric surface with Z > -Zb is retained. 
%            For a cylinder or a sphere with positive 
%            curvature, the reflector extends from Z = 0 to Z = +Zb.  For a 
%            cylinder or sphere with negative curvature, the reflector  
%            extends from Z = -Zb to Z = 0. 
%            For a cylinder or a sphere, Zb must not exceed abs(radius). 
%         CODES 
%            Zb = 0 (code applicable to a cylinder or a sphere):  This  
%            instructs the program ray to put Zb equal to abs(radius). 
%            Zb = -1:  The program ray replaces the value -1 by a  
%            default (positive) value of Zb.  For details, see the program. 
% r0         range, as measured along the chief normal, from the plane of 
%            the array to the reflecting surface 
% e          transmitter offset, measured along the chief normal, from the 
%            array plane to the spherical centre of the transmitter 
%            (positive if centre is behind the array plane) 
% delta      angle that the chief tangent plane makes with the array plane 
% alpha      Preliminary: An xyz system is set up as in the paper below.  Its  
%            origin is at the chief reflecting point.  The xy plane is the  
%            chief tangent plane.  The y axis is parallel to a line in the  
%            array plane.  Then: 
%            For a paraboloid, alpha is the angle between the x axis and  
%            the principal direction X of the reflecting surface. 
%            (For a paraboloid of revolution or a flat reflector, recommended  
%            to put alpha = 0) 
%            Similarly for a cylinder, where the Y axis is parallel to the  
%            axis of the cylinder.  
%            For a sphere, the input value of alpha is ignored and 
%            internally alpha is put equal to zero. 
% kappaX, kappaY       
%            For a paraboloid: the principal curvatures, as above 
%            For a flat reflector: input with both kappas equal to zero; 
%            shape may be 1, 2 or 3.  Internally, shape is equated to 3 
%            (paraboloid) 
%            For a cylinder: kappaX (positive or negative but not zero) is  
%            the curvature; a convention is enforced whereby the input kappaY  
%            is required to be zero 
%            For a sphere: kappaX (positive or negative) is the  
%            curvature, and kappaY must equal kappaX 
%            For any of the kappas, a positive value means that the relevant  
%            centre of curvature lies forward of the chief reflecting point. 
% x, y       coordinates of the selected input point S(x, y, z); the latter  
%            lies on the reflecting surface 
% 
% All inputs are in SI units (radian, metre, metre^(-1)) 
% 
% SIGN, AND OTHER, CONVENTIONS, including the definitions of the xyz and  
% (upri, vpri, wpri) coordinates systems: See the paper, Blair, D.:  
% "Underwater acoustic imaging: Image due to a specular reflector in the  
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% geometrical-acoustics limit," J. Marine Science & Technol., vol 11,  
% pp. 123-130 (2006).  (In the descriptions of programs, e.g. the present  
% description, uprime and vprime are often abbreviated to upri and vpri.) 
% 
% OUTPUT VARIABLES: 
% 
% uprive2f   row vector of three elements, as follows. 
%     upri, vpri          coordinates of the point R in the array plane 
%            to which a ray incident at S is reflected.  Geometrically, S 
%            is the pseudoimage of R.  The upri and vpri axes are in the 
%            plane of the array. 
%     wpri   the third coordinate of R, always equal to zero 
% fail       a fail code       
%            = 0 if, for the given (x,y), a valid reflecting point S and a   
%                valid object point R exist 
%            = a higher integer otherwise (SEE DETAILS AT END OF CODE) 
 
fail = 0; 
 
% check input values 
if shape ~= 1 & shape ~= 2 & shape ~= 3 
    disp('shape must equal 1, 2 or 3') 
    pause 
end 
 
% shapi is the value for shape that the routine uses internally 
if shape ~= 3 & kappaX == 0 & kappaY == 0 % adjust shapi for flat reflector 
    shapi = 3; 
else 
    shapi = shape; 
end 
if shapi == 1 | shapi == 2 
    if kappaX == 0 
        disp('in ray, for a cylinder or sphere, kappaX must not be zero ') 
        disp('unless kappaY is also zero') 
        pause 
    end 
    if shapi == 1 & kappaY ~= 0 
        disp('in ray, for a cylinder, kappaY must be zero') 
        pause 
    end 
    if shapi == 2 & kappaY ~= kappaX 
        disp('in ray, for a sphere, kappaY must equal kappaX') 
        pause 
    end 
end 
if Zb < 0 & Zb ~= -1 
    disp('in ray, Zb must be > zero or else equal to 0 or -1') 
    pause 
end 
if shapi == 3 & (kappaX < 0 | kappaY < 0) 
    if Zb <= 0 & Zb ~= -1 
        disp(['in ray, for this shape Zb must strictly exceed zero', ... 
        ' or else equal -1']) 
        pause 
    end 
end 
if shapi == 1 | shapi == 2 
    if Zb > 1/abs(kappaX) 
        disp('in ray, for cylinder or sphere, Zb must not exceed the radius') 
        pause 
    end 
end 
 
% set default value of Zb if appropriate 
if Zb == -1 
    if shapi ==1 | shapi == 2 
        kap = abs(kappaX); 
        Zb = min(1/(2*kap), 0.5*kap*r0^2); 
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%       Zb = min((1 - 1/sqrt(2))/kap, 1/kap - sqrt(1/kap^2 - r0^2)); 
    elseif shapi ==3 
        if kappaX >= 0 & kappaY >= 0 
            Zb = 0; 
        else 
            kap = abs(min(kappaX, kappaY)); 
            Zb = min(1/(2*kap), 0.5*kap*r0^2); 
        end 
    end 
end 
             
% ************************************************************************ 
% initial processing 
if shapi == 2 
    alpha = 0; 
end 
if shapi == 1 | shapi == 2 
    kappa = kappaX; 
end 
if shapi == 1 | shapi == 2 
    if Zb == 0 
        Zb = (1./abs(kappa))*(1 - 1.e-14); 
    end 
end 
 
% initial processing continued  
%    -Zm is the minimum value of Z on the retained surface 
%    Zp [defined only when (surface is a cylinder or a sphere) and kappa > 0]  
%       is the maximum value of Z on the retained surface 
 
if shapi == 3 
    if kappaX >= 0 & kappaY >= 0 
        Zm = 0; 
    else 
        Zm = Zb; 
    end 
end 
if shapi == 1 | shapi == 2 
    if kappa > 0 
        Zp = Zb; 
        Zm = 0; 
    end 
    if kappa < 0 
        Zm = Zb; 
    end 
end 
 
% cylinder 
if shapi == 1 
    sigrad = 1./kappa; 
    xve2 = [x, y]; 
    Qalpha = [cos(alpha), sin(alpha); -sin(alpha), cos(alpha)]; 
    temp = (Qalpha*xve2')'; 
    X = temp(1); 
    Y = temp(2); 
    if kappa > 0 
        sign = -1; 
    end 
    if kappa < 0 
        sign = +1; 
    end 
     
    if sigrad^2 - X^2 < 0 
        fail = 2; 
    end 
    if fail == 0 
        Z = sigrad + sign*sqrt(sigrad^2 - X^2); 
    else 
        Z = 0; 
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    end 
    z=Z; 
         
    if kappa > 0 & Z > Zp 
        if fail == 0 
            fail = 3; 
        end 
    end 
    if kappa < 0 & Z < -Zm 
        if fail == 0 
            fail = 3; 
        end 
    end 
     
    side4 = -x*sin(delta) + (z + r0)*cos(delta); 
    if side4 < 0 
        if fail == 0 
            fail = 4; 
        end 
    end 
 
    xve3 = [xve2, z]; 
    bprve2 = [kappaX*X, 0]; 
    bve2 = (Qalpha'*bprve2')'; 
    bve3 = [bve2, kappa*Z - 1]; 
    F = sqrt(x^2 + y^2 + (z+r0+e)^2); 
    ahat = -(1/F)*[x, y, z+r0+e]; 
    G = sqrt((kappaX*X)^2 + (kappa*Z - 1)^2); 
    bhat = (1/G)*bve3; 
     
% sphere 
elseif shapi == 2 
    sigrad = 1./kappa; 
    xve2 = [x, y]; 
    Qalpha = [cos(alpha), sin(alpha); -sin(alpha), cos(alpha)]; 
    temp = (Qalpha*xve2')'; 
    X = temp(1); 
    Y = temp(2); 
    if kappa > 0 
        sign = -1; 
    end 
    if kappa < 0 
        sign = +1; 
    end 
     
    if sigrad^2 - X^2 - Y^2 < 0 
        fail = 2; 
    end 
    if fail == 0 
        Z = sigrad + sign*sqrt(sigrad^2 - X^2 - Y^2); 
    else 
        Z = 0; 
    end 
    z=Z; 
     
    if kappa > 0 & Z > Zp 
        if fail == 0 
            fail = 3; 
        end 
    end 
    if kappa < 0 & Z < -Zm 
        if fail == 0 
            fail = 3; 
        end 
    end 
     
    side4 = -x*sin(delta) + (z + r0)*cos(delta); 
    if side4 < 0 
        if fail == 0 
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            fail = 4; 
        end 
    end 
     
    xve3 = [xve2, z]; 
    bve3 = [kappa*x, kappa*y, kappa*z - 1]; 
    F = sqrt(x^2 + y^2 + (z+r0+e)^2); 
    ahat = -(1/F)*[x, y, z+r0+e]; 
    G = sqrt((kappa*x)^2 + (kappa*y)^2 + (kappa*z - 1)^2); 
    bhat = (1/G)*bve3; 
     
% paraboloid 
elseif shapi == 3 
    xve2 = [x, y]; 
    Qalpha = [cos(alpha), sin(alpha); -sin(alpha), cos(alpha)]; 
    temp = (Qalpha*xve2')'; 
    X = temp(1); 
    Y = temp(2); 
    Z = 0.5*kappaX*X^2 + 0.5*kappaY*Y^2; 
    z=Z; 
     
    if Z < -Zm 
        if fail == 0 
            fail = 3; 
        end 
    end 
 
    side4 = -x*sin(delta) + (z + r0)*cos(delta); 
    if side4 < 0 
        if fail == 0 
            fail = 4; 
        end 
    end 
     
    xve3 = [xve2, z]; 
    bprve2 = [kappaX*X, kappaY*Y]; 
    bve2 = (Qalpha'*bprve2')'; 
    bve3 = [bve2, -1]; 
    F = sqrt(x^2 + y^2 + (z+r0+e)^2); 
    ahat = -(1/F)*[x, y, z+r0+e]; 
    G = sqrt((kappaX*X)^2 + (kappaY*Y)^2 +1); 
    bhat = (1/G)*bve3; 
end 
 
% ********************************************************************** 
% resume calculation for all three shapes together 
abdot = sum(ahat.*bhat); 
chat = 2*abdot*bhat - ahat; 
 
if chat(1,3) >= -1/30 
    if fail ==0 
        fail = 5; 
    end 
end 
 
fail6 = 0; 
denR = chat(1,1)*sin(delta) - chat(1,3)*cos(delta); 
if denR == 0 
    fail6 = 11; 
    % reflected ray is parallel to the array; see override to "9" below 
    if fail == 0 
        fail = 6; 
    end 
end 
if fail6 == 11 
    coeffR = 0; 
else 
    coeffR = (-x*sin(delta) + (z+r0)*cos(delta)) / denR; 
end 
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if coeffR/r0 > 30 
    if fail == 0 
        fail = 6; 
    % reflected ray is approaching being parallel to array 
    end 
 
elseif coeffR < 0 
    if fail == 0 
        fail = 6; 
    % reflected ray is directed away from the array 
    end 
end 
 
if fail6 == 11 & fail ~= 2 % "9" overrides 3 to 6 
    fail = 9; 
end 
 
Rxve3 = xve3 + coeffR*chat; 
if Rxve3(3) >= -Zm 
    if fail == 0 
        fail = 7; 
    end 
end 
 
if fail == 0 & (shapi == 1 | shapi == 2) & kappa < 0 
    tH = -(Zm + z)/chat(1,3);         
    Hxve3 = xve3 + tH*chat; 
    Hxve2 = [Hxve3(1), Hxve3(2)]; 
    temp = (Qalpha*Hxve2')'; 
    XH = temp(1); 
    YH = temp(2); 
    ZH = Hxve3(3); 
    if shapi == 1            
        if XH^2 + (ZH - 1./kappa)^2 - 1./kappa^2 > 0 
            fail = 8; 
        end 
    elseif shapi == 2 
        if XH^2 + YH^2 + (ZH - 1./kappa)^2 - 1./kappa^2 > 0 
            fail = 8; 
        end 
    end 
end 
     
if fail == 0 & shapi == 3 & (kappaX < 0 | kappaY < 0) 
    tH = -(Zm + z)/chat(1,3);       
    Hxve3 = xve3 + tH*chat; 
    Hxve2 = [Hxve3(1), Hxve3(2)]; 
    temp = (Qalpha*Hxve2')'; 
    XH = temp(1); 
    YH = temp(2); 
    ZH = Hxve3(3); 
    if 0.5*kappaX*XH^2 + 0.5*kappaY*YH^2 - ZH < 0 
        fail = 8; 
    end        
end 
 
Qdelta = [cos(delta), sin(delta); -sin(delta), cos(delta)]; 
Ru = Rxve3(1); 
Rv = Rxve3(2); 
Rw = Rxve3(3) + r0; 
vpri = Rv; 
uwprive2 = (Qdelta*[Ru, Rw]')'; 
uprive2f =[uwprive2(1), vpri, fail]; 
 
% FAIL CODES 
%  
%           NOTE: A "forward" direction is a direction in which Z increases, 
%                 or a direction moving outwards from the array.  The context 
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%                 determines which of these two descriptions is relevant 
% fail = as follows 
% 0    no failure, a REAL (i.e. GENUINE) object point exists 
% 2    given x and y, there is no corresponding point on the hemisphere  
%      or half-cylinder 
% 3    point S on the quadric is not on the reflecting surface by virtue 
%      of its lying behind or beyond the cutoff plane 
% 4    reflecting point S is backward of the array 
% 5    reflected ray travels in a direction for which Z is increasing, or  
%         nearly in such a direction 
%    NOTE re 5 and 6: The criterion for "nearly" is approximately "being 
%    within 1/30 radian of such a direction" 
% 6    reflected ray travels away from array, or nearly so  
% 7    either (1) the receiving point R is forward of the chief tangent plane, 
%      or     (2) there is a cutoff plane and R is forward of it. 
% 8    reflected ray meets the reflecting surface again before it meets the 
%      array 
% 9    reflected ray is parallel to the array plane  
 
% NOTE: Each numerical fail code overrides those that are numerically 
% greater, in the sense that if there are two reasons for failure, the 
% lesser code is reported.  However, as an exception, the code "9"  
% is regarded as lying numerically between 2 and 3 
 
% VIRTUAL OBJECT POINTS 
% When the fail code is in the interval 3 to 8 inclusive, a virtual object  
% point exists and is output by the function ray  
% IF AND ONLY IF THE FAIL CODE IS 2 OR 9, there exists neither a real nor a  
% virtual object point.  Then the output coordinates have no physical  
% significance whatever (and in fact are based on an arbitrary step in the  
% computation). 

 
 
C.3  imige5.m 
 
% Subroutine imige5.m 
% 
% DESCRIPTION 
% For a sonar array viewing a specular reflector, this subroutine accepts a 
% description of the system and the point where the reflected ray meets the 
% sonar array.  When successful, it outputs a point on the reflecting 
% surface that is either a pseudoimage of the input point, a local optimum 
% or a blockage point 
% 
% Author of program: David Blair, from 27 April 2005 to July 2008 (Replace- 
% ment of Newton's method by the Levenberg-Marquardt method commenced 10  
% April 2008) 
% 
% NOTE: This program is based on the Levenberg-Marquardt method.  Thus it 
% differs markedly from the older version, imige5nwt.m, which is based on  
% Newton's method 
% 
% GENERAL 
% 
% This function m-file deals with the pseudoimage of the receiving  
% array produced when an underwater acoustic imaging device "views" a specular 
% reflector.  Within the geometrical approximation, when a point R on the  
% array is input into the routine, the primary aim of the routine is to find a  
% point S, on the reflecting surface, that is the pseudoimage of R.  Image  
% amplitudes do not enter into the calculation, which is merely concerned with  
% the functional relationship that maps the one point onto the other.   
% 
% There may be as many as three pseudoimage points for a given object 
% point; a single running of imige finds at most one.  Every running of 
% imige performs an iterative process, in which (x, y) progresses from an 
% initial guess through a sequence of values, with the "error" [in (uprime,  
% vprime) space] always decreasing.  [For the definition of "error" and  
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% uprime, vprime, x and y, see the description of the program ray.m or see 
% under "Levenberg-Marquardt Method" below.]   
% Upon the completion of the routine, (x, y) has reached some "endpoint,"  
% which is reported (i.e. is output).  The endpoint may be a pseudoimage point  
% but is otherwise said to be a "ghost reported point." 
%  
% A ghost reported point may be: 
%   - a blockage point [(x, y) can progress no further because it has 
%     reached, for example, the cutoff perimeter] 
%   - a local optimum [the "error" has reached a local minimum], or 
%   - a point of nonconvergence [i.e. any other endpoint] 
% A point of nonconvergence is: 
%   - a maximum-iterations point [the number of main iterations performed  
%     has reached the maximum allowed value], or 
%   - a 'rare' endpoint [this type of endpoint occurs rarely and perhaps 
%     never] 
% We now presume that 'rare' endpoints do not occur.  Then it is believed  
% that, whenever a point of nonconvergence is reached, there is an 
% UNDERLYING endpoint--a pseudoimage point, a blockage point or a local  
% optimum--that would eventually be reached by a superior algorithm allowing  
% many more iterations.  Blockage points and local optima--whether found or 
% underlying--are collectively called "ghost points." 
% 
% CODES for endpoints: imige does not directly report a code specifying 
% which of the above endings has occurred.  The determination of that code is  
% done in multigen.m and in certain other programs that call imige; for 
% a description of these codes see the program multigen.m  Instead, imige  
% reports according to a more primitive classification of endings, with a  
% corresponding code [output variable xve(5) = failim; see below under "Output  
% Variables"].  From that code, together with xve(6) = flrycen, the type 
% of ending as above (more sophisticated scheme) can be deduced. 
% 
% LEVENBERG-MARQUARDT METHOD 
% 
% Described in Aster, RC, Borchers and Thurber, "Parameter estimation and 
% inverse problems" (Elsevier Academic Press, Amsterdam and Boston, 
% c. 2005), p. 176. 
% 
% An iterative method of solving a system of nonlinear equations 
%                         u = f(x) 
% where x and u are column (or row) vectors.  If there is no solution, the  
% method minimises the "error" between the two sides.  [In the  
% acoustics problem, the  
% vector x, when spelt out, is (x, y), and u is (uprime, vprime).  For details, 
% see program ray.m, or see under "Input Variables" below]  An initial guess  
% for the vector x is required.  In each iteration, a step is calculated via  
% the inversion of a matrix 
%                  J_tran * J  +  lambda * I 
% Here J is the Jacobian matrix (essentially du/dx); tran is the transpose; 
% and I is the identity matrix.  lambda is a scalar whose value depends on  
% the detailed algorithm.  A small value of lambda makes the method  
% approximate to the Gauss-Newton method (also called the Gauss method); the 
% latter reduces to Newton's method when the Jacobian is square (i.e. vectors u 
% and x have the same length).  This lambda gives an uncertain but potentially 
% fast convergence (i.e. to a pseudoimage point, a local optimum or a blockage 
% point).  A large value of lambda makes the method 
% approximate to the method of steepest descent.  This lambda gives certain  
% but slow (or very slow) convergence.   
% 
% Regarding the setting of lambda, the present program follows the 
% suggestion of Aster et al. One starts off with a low value of lambda.  Let  
% the "error" be distance of the input or "target" u vector from the f(x)  
% calculated from the value of x reached so far (in the iterations).   If the  
% tentative step (i.e. the step calculated as above) reduces the 
% error, the step is taken and lambda is halved for the next iteration.  If 
% it does not reduce the error, lambda is repeatedly doubled until a step 
% is found that does reduce the error.  That step is taken (and lambda is 
% not further changed as the next iteration is entered). 
% 
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% GENERAL--MORE 
% 
% The reflecting surface has one of three shapes: cylinder, sphere and  
% paraboloid.  For details, see the routine ray.m and also below under “Input  
% Variables.” 
% 
% The result output by imige depends on the parameter parax. 
% 
% Case parax = 1: 
% Then the INITIAL GUESS is equal to the pseudoimage point predicted by the  
% paraxial approximation (the values of the input parameters xin and yin 
% are ignored.)  A consequence is that, in cases where the pseudoimage curve  
% has multiple branches, what is normally found is the pseudoimage lying on  
% THAT BRANCH (call it B1) that is the continuation of the PARAXIAL  
% PREDICTION (where the latter is construed as existing only where it is  
% valid).  [Here a 'branch' means a continuous curve  
% or continuous surface that essentially maps the object point into the 
% pseudoimage point (or endpoint of some other type).] 
% A branch may come to an end.  When the input object point lies  
% beyond the end of the branch B1, the routine normally finds the endpoint  
% (blockage point or local optimum) that is on the branch that is most  
% naturally regarded as the continuation of the branch B1. 
% 
% Case parax = 0: 
% Then the initial guess is specified in the input parameters xin and yin  
% (values of x and y).  Then the result 
% of the iterative procedure may lie on a branch other than B1.  If a 
% suitable LARGE COLLECTION OF initial guesses are used in separate calls to 
% imige, very often all the branches are found; that is, all the pseudoimages 
% and all the endpoints corresponding to the given object point are found. 
% Note the qualification 'very often': sometimes some of the endpoints are not 
% found. 
%  
% 
% INPUT VARIABLES: 
% 
% shape      1 for cylinder, 2 for sphere, 3 for paraboloid 
%            For a plane, input 3 (or 1 or 2 now allowed) with  
%            kappaX = kappaY = 0 
% Zb         must be > 0; BUT, as a code, it can equal 0 or -1 (see end of  
%            the description of Zb for the codes); AND it can also equal 0  
%            in an "EXCEPTIONAL" case described just five lines down. 
%            The reflecting surface is taken to be cut off at Z = Zb or  
%            -Zb; the details follow. 
%            The range of Z values retained (i.e. not cut off) always 
%            includes Z=0 
%            For a paraboloid with both kappas >= 0, there is 
%            no cutoff and Zb is ignored; in that case it is recommended to  
%            input Zb as zero (this is an EXCEPTION to the above rule).   
%            For other paraboloids, the  
%            boundary (cutoff) is taken at -Zb; only the portion of the  
%            quadric surface with Z > -Zb is retained. 
%            For a cylinder or a sphere with positive 
%            curvature, the reflector extends from Z = 0 to Z = +Zb.  For a 
%            cylinder or sphere with negative curvature, the reflector  
%            extends from Z = -Zb to Z = 0. 
%            For a cylinder or a sphere, Zb must not exceed abs(radius). 
%        CODES 
%            Zb = 0 (a code applicable only to a cylinder or a sphere):  This 
%            instructs the program ray to put Zb equal to abs(radius).  
%            Zb = -1:  The program ray replaces the value -1 by a  
%            default (positive) value of Zb.  For details, see the program 
%            code in ray.m. 
% r0         range, as measured along the chief normal, from the plane of 
%            the array to the reflecting surface 
% e          transmitter offset, measured along the chief normal, from the 
%            array plane to the spherical centre of the transmitter 
%            (positive if centre is behind the array plane) 
% delta      angle that the chief tangent plane makes with the array plane 
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% alpha      Preliminary: An xyz system is set up as in the paper below.  Its  
%            origin is at the chief reflecting point.  The xy plane is the  
%            chief tangent plane.  The y axis is parallel to a line in the  
%            array plane.  Then: 
%            For a paraboloid, alpha is the angle between the x axis and  
%            the principal direction X of the reflecting surface. 
%            (For a paraboloid of revolution or a flat reflector, recommended  
%            to put alpha = 0) 
%            Similarly for a cylinder, where the Y axis is parallel to the  
%            axis of the cylinder.  
%            For a sphere, the input value of alpha is ignored and 
%            internally alpha is put equal to zero. 
% kappaX, kappaY       
%            For a paraboloid: the principal curvatures, as above 
%            For a flat reflector: input with both kappas equal to zero; 
%            shape may be 1, 2 or 3.  Within the subroutine ray.m that is 
%            called, shape is equated to 3 (paraboloid) 
%            For a cylinder: kappaX (positive or negative but not zero) is  
%            the curvature; a convention is enforced whereby the input kappaY  
%            is required to be zero 
%            For a sphere: kappaX (positive or negative) is the  
%            curvature, and kappaY must equal kappaX 
%            For any of the kappas, a positive value means that the relevant  
%            centre of curvature lies forward of the chief reflecting 
%            point. 
% upob, vpob          coordinates upri, vpri (i.e. uprime, vprime) of the point 
%            R on the receiving array (of which the pseudoimage point S, or  
%            other endpoint, is sought).  (In the descriptions of programs,  
%            uprime and vprime are often abbreviated to upri and vpri.)  The  
%            upri and vpri axes are in the plane of the array and the third  
%            coordinate wpri of R is zero.  ('ob' is for 'object.') 
% parax      (logical) 1 if the initial guess for (x, y) is to be that given  
%            by the paraxial approximation (see above) 
% xin, yin     the initial guess for (x, y) (ignored if  parax = 1) 
% 
% All inputs are in SI units (radian, metre, metre^(-1)) 
% 
% SIGN, AND OTHER, CONVENTIONS, including the definitions of the xyz and  
% (upri, vpri, wpri) coordinates systems: See the paper, Blair, D.:  
% "Underwater acoustic imaging: Image due to a specular reflector in the  
% geometrical-acoustics limit," J. Marine Science & Technol., vol 11,  
% pp. 123-130 (2006). 
% 
% OUTPUT VARIABLES: 
% 
% xve        row vector of eleven elements, namely: 
%   (1), (2)       x, y.  In turn these are coordinates of the pseuoimage  
%              point S(x, y, z), or other endpoint (reported point), which lies  
%              on the reflecting surface.  z, which is equal to Z, is given 
%              by the three equations (C) above [together with the transfor- 
%              mation from (x, y) to (X, Y) specified by the angle alpha]. 
%   (3)        value of iter upon exit.  This is the number of main iterations  
%              carried out, not counting the initial iteration, except that an  
%              unsuccessful 60 is rendered as 61.  The initial iteration is 
%              labelled as iter = 0 
%   (4)        value, upon exit, of iterini if iter = 0, otherwise of iter3. 
%              In either case, this is the number of internal iterations 
%              carried out within the last iteration, except that an  
%              unsuccessful 60 (internal) is rendered as 61   
%   (5)        failure code, equal to: 
%        10      imige finds a pseudoimage point 
%        11      maximum number of iterations (60) performed without  
%                convergence  
%        13      failure at calculation of derivative (should not occur if 
%                coding done correctly) 
%        16      [iter3 reached 60, OR step size reached its lower limit] 
%                AND, in the last internal step, ray failed at one of five 
%                points.  (iter3 is the number of internal iterations.  Of  
%                the five points, four are associated with the  
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%                calculation of the derivatives.) 
%        17      [iter3 reached 60, OR step size reached its lower limit]  
%                AND, in the last internal step, ray produced five valid  
%                points but error not reduced 
%        21      iterini (number of internal iterations in the initial  
%                iteration) reached 60.  This implies that the initial guess  
%                for S did not produce five valid ray-pairs, even after 60  
%                halvings of the x and y coordinates.  (Five, 
%                because of calculation of derivatives, see 16 above.) 
%   (6)        fail code, of ray, produced at central point reached in last 
%              (60th) internal iteration 
%   (7)        maximum of 5 fail codes, of ray, produced at 5 points reached 
%              in last (60th) internal iteration 
%              [Not sure re the following two statements: The codes in  
%              elements (6) and (7) cannot exceed 8.  Also, if  
%              iter upon exit equals zero, element (7) cannot be zero.]  
%   (8)        relerrsuc, i.e. the relative error in vector (u, v) at end 
%              of last iteration that succeeeded in reducing the error. 
%              Here "relative" means "relative to the modulus of (u, v)" 
%   (9)        relerr, i.e. the relative error in (u, v) obtained in the 
%              last internal iteration 
%  (10)        relstepsuc, i.e. the relative step in the vector (x, y) 
%              carried out in the last iteration that succeeded in reducing  
%              the error.  Here "relative" means "relative to the modulus  
%              of (x, y)" 
%  (11)        relstep, i.e. the relative step in the vector (x, y) tried 
%              in the last internal iteration 
 
function xve = imige5(shape, Zb, r0, e, delta, alpha, kappaX, kappaY, ... 
    upob, vpob, parax, xin, yin) 
 
% check for errors in input 
if shape ~= 1 & shape ~= 2 & shape ~= 3 
    disp('shape must equal 1, 2 or 3') 
    pause 
end 
 
% shapi is the value for shape that the routine uses internally 
if shape ~= 3 & kappaX == 0 & kappaY == 0 
    shapi = 3; 
else  
    shapi = shape; 
end 
 
if shapi == 1 | shapi == 2 
    if kappaX == 0 
        disp('in imige, for a cylinder or sphere, kappaX must not be zero') 
        disp('unless kappaY is also zero') 
        pause 
    end 
    if shapi == 1 & kappaY ~= 0 
        disp('in imige, for a cylinder, kappaY must be zero') 
        pause 
    end 
    if shapi == 2 & kappaY ~= kappaX 
        disp('in imige, for a sphere, kappaY must equal kappaX') 
        pause 
    end 
end 
if Zb < 0 & Zb ~= -1 
    disp('in imige, Zb must be > zero or else equal to 0 or -1') 
    pause 
end 
if shapi == 3 & (kappaX < 0 | kappaY < 0) 
    if Zb <= 0 & Zb ~= -1 
        disp(['in imige, for this shape Zb must strictly exceed zero', ... 
        ' or else equal -1']) 
        pause 
    end 
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end 
if shapi == 1 | shapi == 2 
    if Zb > 1/abs(kappaX) 
        disp('in imige, for cylinder or sphere, Zb must not exceed the radius') 
        pause 
    end 
end 
 
% ************************************************************************ 
% initial processing 
xve = zeros(1, 11); 
if upob == 0 & vpob == 0 
    xve = [0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0]; 
else % A*** this loop is completed at end of routine 
iter = 0; 
iterout = -1; 
     
flrycen = 0; 
flryder = 0; 
failim = 0; 
 
% initial guess of x, y 
if parax == 1 
    xve2 = imparax(r0, e, delta, alpha, kappaX, kappaY, upob, vpob); 
    x = xve2(1); 
    y = xve2(2); 
else  
    x = xin; 
    y = yin; 
end 
 
% BEGIN INITIAL ITERATION (also called iteration zero) to produce initial  
% guess for the sequence of main iterations 
% ******************************************************************* 
 
% In detail, if the routine ray.m fails with the very initial guess,  
% repeatedly halve the vector [x, y] until that routine succeeds.  Success  
% means that a point Sg = Sguess has been found that produces a ray meeting  
% the array.  Success is required both at [x, y] itself and at the four  
% points used in estimating the derivatives.  
exitini = 0; 
iterini = 0; 
while exitini == 0 
    fail1 = 0; 
    iterini = iterini + 1; 
    distlarge = sqrt(x^2 + y^2); 
    upve2f = ray(shapi, Zb, r0, e, delta, alpha, kappaX, kappaY, x, y); 
    up = upve2f(1); 
    vp = upve2f(2); 
    fail10 = upve2f(3); 
    errsq = (up - upob)^2 + (vp - vpob)^2; 
     
    instep = 0.00005*distlarge; 
    x1 = x - instep; 
    x2 = x + instep; 
    y1 = y - instep; 
    y2 = y + instep; 
    upve2f = ray(shapi, Zb, r0, e, delta, alpha, kappaX, kappaY, x1, y); 
    fail1 = max(fail10, upve2f(3)); 
    upve2f = ray(shapi, Zb, r0, e, delta, alpha, kappaX, kappaY, x2, y); 
    fail1 = max(fail1, upve2f(3)); 
    upve2f = ray(shapi, Zb, r0, e, delta, alpha, kappaX, kappaY, x, y1); 
    fail1 = max(fail1, upve2f(3)); 
    upve2f = ray(shapi, Zb, r0, e, delta, alpha, kappaX, kappaY, x, y2); 
    fail1 = max(fail1, upve2f(3)); 
     
    if fail1 == 0 
        exitini = 1; 
    else 
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        x = x/2; 
        y = y/2; 
    end 
     
    if iterini >= 60 
        xyvetrial  = [x, y];%^% 
        iterout = 0; 
        failim = 21; 
        flrycen = fail10; 
        flryder = fail1; 
    end 
end 
      
if failim ~= 21 % D*** 'if' loop is completed at start of main output 
 
% BEGIN MAIN ITERATIONS ************************************************* 
 
idem = [1 0; 0 1]; 
jac = zeros(2, 2); 
exit = 0; 
exitbad = 0; 
while exit == 0 
    iter = iter + 1; 
     
    % test for end of iterations 
     
    if iter >= 61 
         disp('number of main iterations reached 61'); 
         %^%disp('61 main iterations reached; press return') 
         failim = 11; 
         %pause 
         exit3 = 1; 
         exit = 1; 
         exitbad = 1; 
    end 
     
    if exitbad == 0 % B*** loop is completed just before start of  
                    % internal iterations 
    fail2 = 0; 
    fail3 = 0; 
    dist = sqrt(x^2 + y^2); 
    delu = upob - up; 
    delv = vpob - vp; 
     
    % calculate estimated derivatives ux, vx, uy, vy and the Jacobian 
    % matrix, jac 
    instep = 0.00005*dist; 
    x1 = x - instep; 
    x2 = x + instep; 
    y1 = y - instep; 
    y2 = y + instep; 
    upve2f = ray(shapi, Zb, r0, e, delta, alpha, kappaX, kappaY, x1, y); 
    uatx1 = upve2f(1); 
    vatx1 = upve2f(2); 
    fail3 = upve2f(3); 
    upve2f = ray(shapi, Zb, r0, e, delta, alpha, kappaX, kappaY, x2, y); 
    uatx2 = upve2f(1); 
    vatx2 = upve2f(2); 
    fail3 = max(fail3, upve2f(3)); 
    upve2f = ray(shapi, Zb, r0, e, delta, alpha, kappaX, kappaY, x, y1); 
    uaty1 = upve2f(1); 
    vaty1 = upve2f(2); 
    fail3 = max(fail3, upve2f(3)); 
    upve2f = ray(shapi, Zb, r0, e, delta, alpha, kappaX, kappaY, x, y2); 
    uaty2 = upve2f(1); 
    vaty2 = upve2f(2); 
    fail3 = max(fail3, upve2f(3)); 
     
    if fail3 ~= 0 
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        % disp('fail3 > 0; failure at calculation of derivative') 
        failim = 13; % This instruction is probably a red herring,  
                     % i.e. probably it never gets carried out 
    end 
         
    ux = (uatx2 - uatx1)/(2*instep); 
    vx = (vatx2 - vatx1)/(2*instep); 
    uy = (uaty2 - uaty1)/(2*instep); 
    vy = (vaty2 - vaty1)/(2*instep); 
    jac = [ux uy; vx vy]; 
 
    % Set initial lambda 
    if iter == 1 
        kac = jac'*jac; 
        lam = 0.1*max(abs(kac(1,1)*kac(2,2)), abs(kac(1,2)*kac(2,1))); 
    end 
     
    end % B *** end of initial loop re main iterations 
        % NOTE: It is important not to collapse B and E into one loop 
     
    if exitbad == 0 % E *** loop is completed just before end of 
                    % code-for-the-iteration 
     
    iter3 = 0; 
    exit3 = 0; 
     
    % BEGIN INTERNAL ITERATIONS ******************************************** 
    % i.e. begin while loop (internal iterations), during which lambda may 
    % be repeatedly doubled; normally doubling is performed if fail2 > 0. 
    % lambda is halved if the first internal iteration is successful. 
    % iter3 and exit3 refer to internal iterations 
     
    exitinbad = 0; 
    while exit3 == 0 
        iter3 = iter3 + 1; 
             
        if iter3 >= 61 
            if fail2 ~= 0 
                failim = 16; 
            else 
                failim = 17; 
            end 
            %pause 
            exit3 = 1; 
            exit = 1; 
            exitinbad = 1; 
        elseif iter3 > 1 & relstep < 1.e-10 
            if fail2 ~= 0 
                failim = 16; 
            else 
                failim = 17; 
            end 
            exit3 = 1; 
            exit = 1; 
            exitinbad = 1;             
        end 
         
        if exitinbad == 0 % C*** 'if' loop ends at end of internal iter'n loop 
        flrycen = 0; 
        flryder = 0; 
         
        % Calculate vector step given by the Levenberg-Marquardt method, 
        % then the tentative new values of x and y, namely xt and yt. 
        % In xt, yt, etc., "subscript" t is for "tentative" 
         
        matri = jac'*jac + lam*idem; 
        if det(matri) == 0 
            disp('matri is a singular matrix.  Press any key to try to') 
            disp('remedy this (by changing lambda)') 
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            iter 
            iter3 
            pause 
            lam = lam*1.1; 
            matri = jac'*jac + lam*idem; 
            if det(matri) == 0 
                disp('matri is doubly a singular matrix') 
                pause 
%    NOTE: It is not clear whether matri can even singly be a singular 
%    matrix.  Such an ending has never occurred, let alone a "doubly" 
%    ending.  If either does occur, it might signal an exact local optimum. 
%    In any case, such an ending can be treated as a rare type of  
%    non-convergence. 
            end 
        end 
        inma = inv(matri); 
        delu2 = [delu; delv]; 
        delxvet = inma*jac'*delu2; 
        delx = delxvet(1); 
        dely = delxvet(2); 
        xt = x + delx; 
        yt = y + dely; 
 
        uptve2f = ray(shapi, Zb, r0, e, delta, alpha, kappaX, kappaY, xt, yt); 
        upt = uptve2f(1); 
        vpt = uptve2f(2); 
        fail20 = uptve2f(3); 
        errsqt = (upt - upob)^2 + (vpt - vpob)^2; 
         
        % logic1 and logic2 are two tests, each of which is 
        % sufficient for finding a pseudoimage point 
        obdist = sqrt(upob^2 + vpob^2); 
        relerr = sqrt(errsqt)/obdist; 
        logic1 = (relerr < 1.e-10); 
        step = sqrt(delx^2 + dely^2); 
        dist = sqrt(x^2 + y^2); 
        relstep = step/dist; 
        logic2 = (iter3 == 60) & (relstep < 1.e-5) & (relerr < 1.e-5); 
     
        % When testing (below) for successful end of sequence of internal  
        % iterations, ray may fail at the points intended to  
        % be used for calculation of the derivative.  Hence tests must be 
        % performed at these points 
        distfut = sqrt(xt^2 + yt^2); 
        instep = 0.00005*distfut; 
        x1 = xt - instep; 
        x2 = xt + instep; 
        y1 = yt - instep; 
        y2 = yt + instep; 
        upve2f = ray(shapi, Zb, r0, e, delta, alpha, kappaX, kappaY, x1, y); 
        fail2 = max(fail20, upve2f(3)); 
        upve2f = ray(shapi, Zb, r0, e, delta, alpha, kappaX, kappaY, x2, y); 
        fail2 = max(fail2, upve2f(3)); 
        upve2f = ray(shapi, Zb, r0, e, delta, alpha, kappaX, kappaY, x, y1); 
        fail2 = max(fail2, upve2f(3)); 
        upve2f = ray(shapi, Zb, r0, e, delta, alpha, kappaX, kappaY, x, y2); 
        fail2 = max(fail2, upve2f(3)); 
     
        % test for "PSEUDOIMAGE FOUND" 
        if (fail20 == 0) & (logic1 | logic2) 
            %^%disp('pseudoimage found; answer follows') 
            failim = 10; 
            %pause 
            x = xt; 
            y = yt; 
            up = upt; 
            vp = vpt; 
            errsq = errsqt; 
            relerrsuc = relerr; 
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            relstepsuc = relstep; 
            exit3 = 1; 
            exit = 1; 
      
        % test for successful end of sequence of INTERNAL iterations 
        elseif (fail2 == 0) & (errsqt < errsq)     % success 
            x = xt; 
            y = yt; 
            up = upt; 
            vp = vpt; 
            errsq = errsqt; 
            relerrsuc = relerr; 
            relstepsuc = relstep; 
            stepsuc = step; 
            exit3 = 1; 
         
            % HALVE lambda if first internal iteration was successful 
            if iter3 == 1 
                lam = lam/2; 
            end             
             
        % DOUBLE lambda (for next internal iteration) 
        else 
            flrycen = fail20; 
            flryder = fail2; 
            lam = 2*lam; 
        end 
        end % C*** end of loop re internal iterations completed 
    end                                            % end of while of internals 
    end % E*** end of loop re main iterations completed 
end                                          % end of while of main iterations 
end % D*** completion of 'if' loop re fail in initial iteration 
 
% *********************************************************************** 
% MAIN OUTPUT (for case where object point is not at origin) 
 
xve(1) = x; 
xve(2) = y; 
 
xve(3) = iter; 
xve(4) = iter3; 
if iterout == 0 
    xve(3) = 0; 
    xve(4) = iterini; 
end 
xve(5) = failim; 
xve(6) = flrycen; 
xve(7) = flryder; 
xve(8) = relerrsuc; 
xve(9) = relerr; 
xve(10) = relstepsuc; 
xve(11) = relstep; 
 
end % A*** completion of 'if' loop involving coordinates both zero 

 
 
C.4  multigen.m 
 
% Program multigen.m 
%  
% DESCRIPTION 
% This main routine concerns a sonar array viewing a specular reflector. 
% The input includes a sequence of points on the array, spaced equally  
% along a line.  The graphical output attempts to show, for each such 
% point, all the corresponding "end points" on the reflecting surface, 
% being points reached in the search for a pseudoimage point 
% 



 86 

% Author of program: David Blair, from 3 January 2007 to July 2008 
% 
% produced from imsurfmn2.m, the earlier version of multisym.m 
% short for "multiple endpoints", "general" (as opposed to symmetric) 
% 
% this routine was once called optmult 
% 
% BACKGROUND 
% 
% This program deals with the pseudoimage of the receiving  
% array produced when an underwater acoustic imaging device "views" a specular 
% reflector.  It assumes the geometrical approximation (but makes no other 
% approximation).  It is a main routine, which repeatedly calls imige5.m (note  
% spelling, i.e. not image).   
% 
% Within the geometrical approximation, each call to imige (i.e. imige5) ac- 
% cepts a point R(uprime, vprime) on the array and an initial guess (xin, yin).   
% imige proceeds to calculate a point S(x, y), on the reflecting surface,  
% that is either a pseudoimage of R or is some other endpoint.  [Strictly  
% speaking, the call calculates the first two coordinates (x, y) of S.]  For  
% each of a number of object points (uprime, vprime), a number of initial  
% guesses (xin, yin) are generated; and for each combination (uprime, vprime,  
% initial guess) a corresponding endpoint (x, y) is calculated.  
% 
% The coordinates just referred to are described as follows. 
% The uprime and vprime axes lie in the plane of the array, and a point in  
% the array plane is specified by these coordinates. The x and y axes lie 
% in the chief tangent plane with the origin at the chief relecting point. 
% (For more on these coordinates, see the subroutine ray.m)  Throughout the 
% program, all parameters of the array are held constant.   
% 
% The endpoint may be a pseudoimage point but is otherwise said to be a "ghost  
% reported point.”  FOR THE DEFINITION of, and a discussion of, blockage  
% point, local optimum, “error,” underlying endpoint and related terms, see the 
% routine imige5.m. 
% 
% multigen (and certain other main routines that call imige) generates a 
% "fail code" telling which of the above endings has occurred.  This is a 
% more sophisticated and user-friendly code than that generated by imige, 
% but the code is determined by the output values of two variables from imige. 
% For details of the code, see under "Fail Codes" below. 
% 
% GENERAL 
% 
% The program generates endpoints for a sequence of points (uprime, vprime) 
% lying along a line, which need not pass through the origin.  The user 
% specifies: 
% (i)  a 2-D vector (up1, vp1) pointing along the line 
% (ii) the offset p, that is, the perpendicular distance from the origin to 
%      the line.  p is taken positive if, after stepping from the origin to 
%      the line, a right-hand turn is required in order to then move in the 
%      direction of the vector (up1, vp1).  Negative if a left-hand turn 
%     
% Each value used for the vector (uprime, vprime) is specified by a 
% parameter t, the relationship being 
%         (upri, vpri) = (offset vector) + (up1,vp1)*t.               (1) 
% t (which may be called the multiplier) is a scalar.  The values of t are 
% uniformly spaced along a specified interval (tini, tfin).  If the offset is  
% zero there is no need to consider the sign in (ii).  In that case only 
% values of t of one sign need be input, because the system possesses  
% symmetry.  
% 
% For each value of the multiplier [i.e. for each point (upri, vpri)], the 
% program generates a number of values (usually of order 50) of the initial 
% guess (xin, yin).  Each combination produces an endpoint (x, y).  But the 
% number of DIFFERENT endpoints is normally much less than the "50". 
% Indeed, the number of different endpoints has been found (so far) to always  
% equal one, two or three, provided that: 
% (1) the points of nonconvergence are put aside, and 
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% (2) all the blockage points produced are deemed (contrary to fact) to 
% coincide 
% 
% **** The parameter dist: 
% For display purposes, the program does not use t but instead uses dist.   
% dist is the same as t but is an unscaled (but signed) distance.  Thus dist  
% is the distance of the object point from the offset point, measured along  
% the line of object points, counted positive in the direction of (up1, vp1). 
% 
% **** The output graphs and table: 
% 
% Consider the vector (x, y) as a function of dist (or of t). In general the  
% function is not single-valued, but has multiple (up to three--or more if  
% there are blockage points) values.  The program outputs three graphs.  Of  
% these, the first graph, the "x" graph, plots, as points, the various  
% combinations (dist, x) found.   The second graph, or "y" graph,  
% is described similarly.  The third graph, or "xy" graph, plots the  
% combinations (x, y) obtained as endpoints.  It reveals patterns not evident  
% in the first two plots. 
% 
% Consider the case (see "Notes re Output" below) where the output of points 
% of nonconvergence is suppressed.  Apart from the "misbehaviour" of 
% blockage points, in each graph the points plotted lie on a small number 
% of smooth curves (also called "branches"); furthermore, at each dist, the  
% number of branches is one, two or three.  Significantly, on the xy graph, the 
% blockage points become "well-behaved" like the pseudoimage points and the 
% local optima: then indeed the points plotted lie on a small number of smooth  
% curves.  (The number may be as large as four or five, because a range of 
% values of dist is involved.  But if we confine attention to a 
% sufficiently small interval of dist, the maximum number drops 
% to three.) 
% 
% The program also outputs a table giving, for each combination of dist and  
% initial guess, the value of the pair (x, y) obtained as the endpoint and  
% also the fail code.  The table enables the user to identify which curve on  
% the y graph is to be paired with a given curve on the x graph. 
% 
% **** The initial guesses 
% For each value of dist, the prediction of the PARAXIAL approximation  
% (xpar, ypar) for the pseudoimage position (x, y) is first calculated.  As  
% the initial guesses, a number I (of order 50) of values of the vector  
% (xin, yin) are generated.  Each of these is a scalar times the vector  
% (xpar, ypar).  Thus they are arranged along a line.  They are arranged along  
% the line in two grids, one with the scalar always positive  
% and one with the scalar negative.  In each of the two cases, the logarithms  
% of the scalars are equally spaced.  
% 
% INPUTS 
% 
% e deltad alphad    Standard variables describing the array system  
% up1, vp1      a vector in the (uprime, vprime) plane pointing along the line  
%              of points to be input as object points 
% p            offset of the line of object points.  Its sign is positive if, 
%              after moving from the origin along the offset, one then needs 
%              to make a RIGHT-hand turn to move in the (up1, vp1) 
%              direction 
% tini, tfin   initial and final values of t [see Equation (1) above] 
% N            number of values of t 
% shape        whether the surface is a cylinder (= 1), sphere (= 2), or 
%              paraboloid (= 3) 
% Zb           specifies where the reflecting surface is cut off (details 
%              in ray.m, also imige.m) (= -1 for default) 
% r0           range 
% kappaX, kappaY   the principal curvatures of the reflecting surface (see 
%              ray.m for details) 
%        Note: The various values of the vector (uprime, vprime), used as  
%              inputs, are given by the parameter t through the equation 
%                     vector = (offset vector) + t*(up1, vp1) 
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% ratiolo (positive)     minimum value of the ratio r of the guess for the  
%              (x, y) vector to the paraxial prediction for the (x, y) vector 
%              (suggest 10^(-2)) 
% ratiohi (positive)     maximum value of the ratio r (suggest 10^(2.5)) 
% I            I is the number of initial guesses (x, y), for a given object  
%              point.  I must be even. I should be big enough to cover  
%              positive and negative values of the ratio r. 
%        Thus I = 2*h+2 where h is number of intervals on the positive  
%              side of the r scale (suggest I = 52) 
%        The LOGARITHMS of the sizes of the guesses are uniformly spaced. 
% 
% SPECIAL INPUTS 
% hb           minimum ordinate allowed to appear on the graph 
% ht           maximum ordinate allowed to appear on the graph 
% showgh       (logical) is 1 if the graphs are to show also 'ghost' reported  
%              points, i.e. not just pseudoimage points 
% recordall    (logical):  (Note: At present only recordall = 1 is supported.) 
%              The value 1 means that the table output to a 
%              file is to give information for ALL input guesses.  The value 
%              0 means that the table is to give information only for input 
%              guesses that fail to yield a pseudoimage point 
% 
% Note re Inputs: 
% deltad and alphad are in degrees 
% All distances are in metres 
% 
% NOTES RE OUTPUT 
%    GRAPHICAL 
% As discussed above, three graphs are produced.  The first two are plots of x  
% versus dist, and y versus dist, respectively, where dist is defined above.   
% Points, not curves, are plotted.  The third graph plots all the endpoints  
% (x, y), irrespective of dist.  In each graph, each point is plotted as  
% a marker representing the fail code (see "Fail Codes" below).   
% 
% The program as it stands suppresses the plotting of points of 
% nonconvergence.  If these are to be plotted, the user must slightly 
% modify the program by commenting, uncommenting and copying appropriate 
% instructions.  (In the end, only three instructions need to be changed.)   
% For most purposes, suppression produces a superior, more clean-cut graph. 
 
% 
%    TABLE 
% A table multigen.txt is produced giving, for each combination of an input  
% point and an initial guess (x, y), the output (x, y) and the fail code. 
% 
%    FAIL CODES: 
% 90 (in table) or a plus sign (in graph) 
%       a pseudoimage point 
% 91 or a diamond 
%       blockage point.   
%       (The point reached is not unique, in the sense that that point reached  
%       depends on details of the algorithm; also in the sense that the point  
%       reached depends on the initial guess) 
% 92 or a circle 
%       local optimum point. The "error" in the calculated object 
%       point is a local minimum with respect to changes in (x, y).   
% 
%    *** NOTE: In the program as it stands, the plotting of endpoints with 
%    either of the two fail codes below is suppressed (see subheading  
%    "Graphical" above) 
% 93 or a square 
%       maximum-iterations point. 
%       Normally one can identify the underlying type of endpoint as a 
%       pseudoimage point, a blockage point or a local optimum by examining  
%       nearby input points 
% 94 or an asterisk 
%       a 'rare' endpoint, i.e. other type of end to imige.m  Expected to  
%       occur rarely or never 
% 
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% *** NOTE: For the exact criteria determining the fail code, given the 
% output from imige, see the program code under "set fail code" 
% 
% Note: Due to a bug in the version of MATLAB used, when the program is run  
% on a subsequent occasion, the previous version of multigen.txt   
% is not erased but is overwritten, beginning at the start of the  
% file.  If the new version  
% of the table to be output is SHORTER than the previous one, the later 
% parts of the previous table are retained; the user needs to be aware of 
% this.  From time to time, the user may wish to make a fresh start by 
% deleting the .txt file at the command prompt.  (For the command to 
% take full effect, it may be necessary to exit from MATLAB.) 
 
format compact 
format long 
more off 
 
% inputs ****************************************************** 
 
showgh = 1; 
recordall = 1; 
ht = 300; % 300 
hb = -300; % -300 
 
ratiolo = 10.^(-2); 
ratiohi = 10.^(2.5); 
I = 52; % is 2*h+2 where h is number of intervals on positive side 
%         of the r or ratio scale 
up1 = 0.4; 
vp1 = 0.6; 
p = 0; % remember sign 
tini = 0.75; 
tfin = 1.35; 
N = 38; 
 
shape = 3; 
Zb = -1; 
r0 = 2; 
kappaX = -0.375; 
kappaY = -0.75; 
e = 0.1; 
deltad = 18; 
alphad = 32; 
% ********************************************* end of inputs 
 
delta = deltad*(pi/180); 
alpha = alphad*(pi/180); 
 
if floor(I/2) == floor((I-1)/2) 
    disp('I must be even') 
    pause 
end 
 
fulcou = 0; 
reccou = 0; 
failcou = 0; 
dgecou = 0; 
bigdist = zeros(I*N, 1); 
output = zeros(I*N, 7); 
 
xp = NaN*ones(I*N, 1); 
xo = NaN*ones(I*N, 1); 
xd = NaN*ones(I*N, 1); 
xs = NaN*ones(I*N, 1); 
xa = NaN*ones(I*N, 1); 
yp = NaN*ones(I*N, 1); 
yo = NaN*ones(I*N, 1); 
yd = NaN*ones(I*N, 1); 
ys = NaN*ones(I*N, 1); 
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ya = NaN*ones(I*N, 1); 
 
mag = sqrt(up1^2 + vp1^2); 
up1unit = up1/mag; 
vp1unit = vp1/mag; 
pvecu = -p*vp1unit; 
pvecv = p*up1unit; 
stept = (tfin - tini)/(N-1); 
 
for j = 1:N 
 
% Calculate input uprime and vprime and the paraxial approximation 
% to (x, y) 
    t = tini + (j-1)*stept 
    upri = pvecu + t*up1; 
    vpri = pvecv + t*vp1; 
    dist = t*mag; 
 
    xve2 = imparax(r0, e, delta, alpha, kappaX, kappaY, upri, vpri); 
    xpar = xve2(1); 
    ypar = xve2(2); 
 
    logstep = (log10(ratiohi) - log10(ratiolo))*2/(I-2); 
    for i = 1:I 
        [j i] 
% Calculate the next initial guess (xin, yin) for start of iterations 
        if  i <= I/2 
            if i == 1 
                loog = log10(ratiohi); 
            else 
                loog = loog - logstep; 
            end 
            xin = - xpar*10^loog; 
            yin = - ypar*10^loog; 
             
        else 
            if i == I/2 + 1 
                loog = log10(ratiolo); 
            else 
                loog = loog + logstep; 
            end 
            xin = xpar*10^loog; 
            yin = ypar*10^loog; 
        end 
   
        xyout(1:11) = imige5(shape, Zb, r0, e, delta, alpha, kappaX, ... 
          kappaY, upri, vpri, 0, xin, yin); 
 
% A "guessed point" is an initial guess, but the number of guesssed points 
% continues to accumulate when the input object point is changed. 
% 
% failcou counts the number of guessed points for which the endpoint is other 
%    than a pseudoimage point                       (numnonpi = total found) 
% dgecou counts the number of guessed points for which the end point is not 
%    a pseudoimage point, a local optimum or a blockage point.  (Almost 
%    always, and perhaps always, this means the maximum number of iterations 
%    was reached.)  ("dge" for diverge)            (numnoncge = total found) 
% reccou counts the number of guessed points for which output is to be 
%    recorded in the output file                     (numrecs = total found) 
% fulcou is the serial number of the combination (object point, initial 
% guess) 
        fulcou = fulcou + 1; 
        reccou = reccou + 1; 
        if xyout(5) ~= 10 
            failcou = failcou + 1; 
        end 
         
        xx = xyout(1); 
        yy = xyout(2); 
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        fim = xyout(5); 
        frc = xyout(6); 
 
        f = fulcou; 
% set fail code 
        if fim == 10 % pseudoimage point 
            fd = 90; 
            xp(f) = xx; 
            yp(f) = yy; 
        elseif fim == 16 & frc == 0 % blockage point 
            fd = 91; 
            xd(f) = xx; 
            yd(f) = yy; 
        elseif fim == 14 | fim == 17 % local optimum 
            fd = 92; 
            xo(f) = xx; 
            yo(f) = yy; 
        elseif fim == 11 % maximum-iterations point 
            fd = 93; 
            xs(f) = xx; 
            ys(f) = yy; 
        else % 'rare' endpoint 
            fd = 94; 
            xa(f) = xx; 
            ya(f) = yy; 
        end 
         
        if fd == 93 | fd == 94 
            dgecou = dgecou + 1; 
        end 
 
% truncate graphs at top and bottom 
        if xp(f) >= ht | xp(f) <= hb | yp(f) >= ht | yp(f) <= hb 
            xp(f) = NaN; 
            yp(f) = NaN; 
        end 
        if xo(f) >= ht | xo(f) <= hb | yo(f) >= ht | yo(f) <= hb 
            xo(f) = NaN; 
            yo(f) = NaN; 
        end 
        if xd(f) >= ht | xd(f) <= hb | yd(f) >= ht | yd(f) <= hb 
            xd(f) = NaN; 
            yd(f) = NaN; 
        end 
        if xs(f) >= ht | xs(f) <= hb | ys(f) >= ht | ys(f) <= hb 
            xs(f) = NaN; 
            ys(f) = NaN; 
        end 
        if xa(f) >= ht | xa(f) <= hb | ya(f) >= ht | ya(f) <= hb 
            xa(f) = NaN; 
            ya(f) = NaN; 
        end 
        bigdist(fulcou) = dist; 
         
% set variables to be output to table  
        output(reccou, 1) = j; 
        output(reccou, 2) = dist; 
        output(reccou, 3) = i; 
        output(reccou, 4) = loog; 
        output(reccou, 5) = fd; 
        output(reccou, 6) = xx; 
        output(reccou, 7) = yy; 
    end 
end 
     
% Plot graphs 
more on 
if showgh == 1 
    plot(bigdist, xp, '+k', bigdist, xo, 'ok', bigdist, xd, 'dk') 
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%    plot(bigdist, xp, '+k', bigdist, xo, 'ok', bigdist, xd, 'dk', ... 
%        bigdist, xs, 'sk', bigdist, xa, '*k') 
else 
    plot(bigdist, xp, '+k') 
end 
hold on 
xlabel('distance along object line') 
ylabel('x') 
title('x-component of Pseudoimage Position') 
hold off 
disp('opportunity to view and save "x" graph') 
pause 
 
if showgh == 1 
    plot(bigdist, yp, '+k', bigdist, yo, 'ok', bigdist, yd, 'dk') 
else 
    plot(bigdist, yp, '+k') 
end 
hold on 
xlabel('distance along object line') 
ylabel('y') 
title('y-component of Pseudoimage Position') 
hold off 
disp('opportunity to view and save "y" graph') 
pause 
 
if showgh == 1 
    plot(xp, yp, '+k', xo, yo, 'ok', xd, yd, 'dk') 
else 
    plot(xp, yp, '+k') 
end 
axis equal % *** 
hold on 
xlabel('x') 
ylabel('y') 
title('2-D Pseudoimage Position') 
hold off 
disp('opportunity to view and save "xy" graph') 
pause 
 
format short 
numrecs = reccou 
numnonpi = failcou 
numnoncge = dgecou 
 
% output to file 'multigen.txt' 
fid = fopen('multigen.txt', 'w'); 
fprintf(fid, ' j      dist     i  loog  fail       x           y \n'); 
fprintf(fid, ... 
    '%3u %11.4e %3u %7.3f %3u %12.5e %12.5e \n', ... 
    output'); 
fclose(fid); 
 
format long 
more off 
disp('end of main routine reached') 

 


