Catalytic Oxidation of 4-t-Butyltoluene

A Thesis Submitted for the Degree of

Doctor of Philosophy

of The University of Sydney by

Ahmed Anwar Amin

School of Chemistry

October 2002
Abstract

The oxidation of 4-t-butyltoluene in glacial acetic acid by hydrogen peroxide in a process catalysed by cobalt(II) acetate tetrahydrate and sodium bromide has been studied with the aim of increasing the selectivity towards 4-t-butylbenzaldehyde.

The reaction mixtures were analysed by HPLC. Product identification was via the use of authentic compounds and retention times.

The oxidation of 4-t-butyltoluene using hydrogen peroxide yielded five measurable products, 4-t-butylbenzaldehyde, 4-t-butylbenzoic acid, 4-t-butylphenol, 4-t-butylbenzyl bromide, and 4-t-butylbenzyl alcohol. The major product was 4-t-butylbenzaldehyde. The selectivity with respect to 4-t-butylbenzaldehyde depended upon the temperature, addition time of oxidant, oxidant type and concentration, and the cobalt(II) acetate tetrahydrate and sodium bromide concentrations.

The effect of the temperature at which the reaction was operated was studied. It was found that the oxidation of 4-t-butyltoluene should be carried out at lower temperatures due to the instability of the hydrogen peroxide at the higher temperatures. The temperature 45 °C was chosen as an optimum temperature for a good yield of 4-t-butylbenzaldehyde.

Hydrogen peroxide, cobalt(II) acetate tetrahydrate, sodium bromide concentrations were examined for yields and selectivity towards 4-t-butylbenzaldehyde.
When hydrogen peroxide is added over 30 minutes the reaction is completed within the first 15 minutes. Similarly if hydrogen peroxide is added over 60 minutes, the reaction proceeds rapidly during the first 30 minutes. Over-oxidation to 4-t-butylbenzoic acid does not occur. It was also found that the rapid reaction was inhibited after an initial stage. There was no clear evidence that any of the products except 4-t-butylbenzaldehyde, which is the major product, or more than 1 mmol of 4-t-butyphenol inhibit further oxidation. Adding 100 mmol of water to the reaction mixture the formation of 4-t-butylbenzaldehyde decreased. An engineering solution to remove the product continuously seems required for process optimisation.

Using TEMPO as free radical trap and manganese(II) acetate, the system was completely unreactive and no products were observed.

It is concluded that although many oxidants can be used in oxidation of 4-t-butyltoluene, hydrogen peroxide is considered to be a good oxidant towards 4-t-butylbenzaldehyde which is an important flavour and fragrance intermediate for manufacture of the perfumery compound called Lilial (Lily of the Valley).
Acknowledgments

First I would like to express great gratitude to my research supervisor, Associate Professor James K. Beattie, a big thanks for always being approachable and providing invaluable advice on many matters, chemical and non-chemical.

I would like to thank my associate supervisor, Associate Professor Anthony F. Masters, for his continued advice during the past years.

Thanks are also due to all the past and present members of Beattie Lab, Miriam, Sara, Sophie, Alex, Tien, Mathew, Linggen, Hong, Chris, Kazu, Maung, Rebecca and catalyst group, John, Corina, Adriana, Paul, and Manuela Korner, who passed away in a diving accident, God blesses her.

Thanks are also due to the staff from the Inorganic Chemistry Department, in particular Fernando and Jeff.

I would like to thank Dr. Kelvin Picker for his assistance in the HPLC analysis.

I would also like to thank The University of Sydney for the Scholarship award.

Finally, I dedicate this Thesis to my wife Nadifa, my family, and all friends in Australia and overseas, for their continued support and extraordinary patience throughout my Ph.D. pursuit.

Ahmed A. Amin
Tables of Contents

Acknowledgment I
Abstract II
List of Tables IX
List of Figures X

Chapter 1. Introduction

1.1 Oxidation with hydrogen peroxide: an overview 1
1.2 Oxidation of side chains of aromatic compounds 4
1.3 Effect of additives 5
1.4 The effect of halides on the cobalt/bromide catalyst 6
1.5 Solvent 8
1.6 Industrial processes 10
1.7 Electrochemical oxidation of p-t-butyltoluene 13
1.8 Metal catalysed oxidation of organic compound 15
1.9 Mechanistic principles of metal-catalysed oxidation 21
1.10 Homolytic catalysis 21

Chapter 2. Methodology

2.1 Introduction 27
2.1.1 Cleanliness of glassware 27
2.1.2 Materials 28
2.2 Analytical procedures 29
2.2.1 High performance liquid chromatography (HPLC) 29
2.2.2 Method of preparing samples 30
2.2.3 Preparing of stock solutions 30
2.2.4 Retention time of each compounds 30
2.2.5 Preparing of standards 30
2.2.6 Preparing the reaction product samples for HPLC analysis 31
2.3 Analysis of residual hydrogen peroxide 32
2.4 General and variation experimental procedures 33

Chapter 3. The oxidation of 4-t-butyltoluene

3.1 Introduction 35
3.2 Temperature effect 36
3.3 Reaction time effect 39

Chapter 4. The effect of the oxidant

4.1 Effect of quantity of hydrogen peroxide 48
4.2 Effect of alternative oxidants on the oxidation of 4-t-butyltoluene 57
4.3 Analysis of residual hydrogen peroxide 57

Chapter 5. The effect of the catalysts

5.1 Effect of quantity of sodium bromide 59
5.2 Effect of cobalt(II) acetate tetrahydrate

5.2.1 Effect of quantity of cobalt(II) acetate tetrahydrate

5.2.2 Effect of feeding cobalt(II) acetate tetrahydrate together with hydrogen peroxide

5.2.3 Effect of two additions of hydrogen peroxide, cobalt(II) acetate tetrahydrate and sodium bromide

5.2.4 Effect of two step oxidations of 4-t-butyltoluene

5.2.5 Effect of sodium chloride

5.2.6 Effect of alternative catalysts

5.2.6.1 Effect of cobalt(III) acetate trimer and dimer

5.2.6.2 Effect of manganese(II) acetate tetrahydrate

5.2.6.3 Effect of 2,2',6,6'-tetramethylpiperidine N-oxyl (TEMPO)

Chapter 6. The effect of alternative solvents on the oxidation

6.1 Effect of the water or methanol

6.2 Effect of acetic anhydride

Chapter 7. Examining a variety of reaction factors

7.1 The oxidation of 4-t-butyltoluene in the absence of cobalt(II) acetate and sodium bromide

7.2 The oxidation of 4-t-butyltoluene in the absence of cobalt(II) acetate, sodium bromide and hydrogen peroxide
Chapter 8. Effect of all expected products on the oxidation of 4-t-butyltoluene

8.1 Effect of 4-t-butylphenol on the oxidation of 4-t-butyltoluene
8.2 Effect of 4-t-butylbenzoic acid on the oxidation of 4-t-butyltoluene
8.3 The oxidation of 4-t-butylbenzyl alcohol
8.4 Effect of 4-t-butylbenzyl alcohol on the oxidation of 4-t-butyltoluene
8.5 The oxidation of 4-t-butylbenzyl bromide
8.6 Effect of 4-t-butylbenzyl bromide on the oxidation of 4-t-butyltoluene
8.7 The oxidation of 4-t-butylbenzaldehyde
8.8 Effect of 4-t-butylbenzaldehyde on the oxidation of 4-t-butyltoluene
8.9 Effect of the mixtures of all expect products on the oxidation of 4-t-butyltoluene

Chapter 9. Discussion and conclusions

9.1 Introduction
9.2 The oxidation of 4-t-butyltoluene
9.2.1 The effect of oxidant
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.2</td>
<td>The effect of temperature</td>
<td>106</td>
</tr>
<tr>
<td>9.2.3</td>
<td>The effect of addition time</td>
<td>107</td>
</tr>
<tr>
<td>9.2.4</td>
<td>The effect of catalysts (sodium bromide and cobalt(II) acetate tetrahydrate)</td>
<td>109</td>
</tr>
<tr>
<td>9.3</td>
<td>The effect of alternative catalysts</td>
<td>110</td>
</tr>
<tr>
<td>9.4</td>
<td>The use of TEMPO</td>
<td>111</td>
</tr>
<tr>
<td>9.5</td>
<td>The effect of alternative solvent</td>
<td>112</td>
</tr>
<tr>
<td>9.6</td>
<td>Multivariate investigation</td>
<td>115</td>
</tr>
<tr>
<td>9.7</td>
<td>The effect of all expected products on the oxidation of 4-t-butyltoluene</td>
<td>115</td>
</tr>
<tr>
<td>9.8</td>
<td>Conclusions</td>
<td>120</td>
</tr>
</tbody>
</table>

References

121
List of Figures

3.1 Effect of 50 mmol of hydrogen peroxide added at once with substrate 42
3.2 Effect of 50 mmol of hydrogen peroxide added in 15 minutes 43
3.3 Effect of 50 mmol of hydrogen peroxide added in 30 minutes 44
3.4 Effect of 50 mmol of hydrogen peroxide added in 60 minutes 45
3.5 Effect of 50 mmol of hydrogen peroxide added in 120 minutes 46
3.6 Effect of periods of time addition over which 50 mmol of hydrogen peroxide added 47
4.1 Effect of 75 mmol of hydrogen peroxide added in 30 minutes 50
4.2 Effect of 100 mmol of hydrogen peroxide added in 30 minutes 51
4.3 Effect of 200 mmol of hydrogen peroxide added in 30 minutes 52
4.4 Effect of 75 mmol of hydrogen peroxide added in 60 minutes 53
4.5 Effect of 100 mmol of hydrogen peroxide added in 60 minutes 54
4.6 Effect of 200 mmol of hydrogen peroxide added in 60 minutes 55
4.7 Effect of different amounts (50, 75, 100, or 200 mmol) of hydrogen peroxide added in 30 or 60 minutes 56
5.1 Effect of different amounts (0.97, 1.60, 2.92, 3.89, 4.80, 5.83, or 7.77 mmol) of sodium bromide 61
5.2 Effect of 4.8 mmol of sodium bromide added in 4 aliquots together with 50 mmol of hydrogen peroxide dropwise in 60 minutes 62
5.3 Effect of 1 mmol of cobalt(II) acetate tetrahydrate 64
5.4 Effect of 3 mmol of cobalt(II) acetate tetrahydrate 65
5.5 Effect of different amounts (1, 2, or 3) mmol of cobalt(II) acetate
5.6 Effect of 2 mmol of cobalt(II) acetate tetrahydrate in 4 aliquots added together with 50 mmol of hydrogen peroxide added dropwise over a period of 60 minutes

5.7 Effect of two additions of 2 mmol of cobalt(II) acetate, 4.8 mmol of sodium bromide and 50 mmol of hydrogen peroxide

5.8 Effect of two step addition of 32.9 mmol of 4-t-butyltoluene

5.9 Effect of 1 gm of sodium chloride added with substrate

5.10 Effect of 1 gm of sodium chloride added after 30 minutes from the first addition of 50 mmol of hydrogen peroxide

6.1 Effect of 100 mmol of water added with substrate

6.2 Effect of 12.5 mls of methanol added with substrate

6.3 Effect of acetic anhydride as alternative solvent in place of glacial acetic acid

6.4 Effect of acetic anhydride with glacial acetic acid (1:1 mole ratio)

6.5 Effect of 75 mmol of acetic anhydride added with substrate

6.6 Effect of 100 mmol of acetic anhydride added with substrate

6.7 Effect of 150 mmol of acetic anhydride added with substrate

6.8 Effect of 50 mmol of acetic anhydride added after 15 minutes from the first addition of 50 mmol of hydrogen peroxide

6.9 Effect of 50 mmol of acetic anhydride added after 60 minutes to the reaction mixture
List of Tables

1.1 Single oxygen atom donors .. 2
3.1 Effect of temperature on the oxidation of 4-t-butyltoluene 37
4.1 Effect of alternative oxidants on the oxidation of 4-t-butyltoluene 58
5.1 Effect of alternative catalysts on the oxidation of 4-t-butyltoluene 79
7.1 Examining a variety of the reaction factors in the oxidation of 4-t-butyltoluene ... 96
8.1 Effect of all expected products on the oxidation of 4-t-butyltoluene ... 102
8.2 Effect of the mixture of all expected products on the oxidation of 4-t-butyltoluene ... 103