THE ECOLOGY OF FERAL CATS, FELIS CATUS, IN OPEN FOREST IN NEW SOUTH WALES: INTERACTIONS WITH FOOD RESOURCES AND FOXES

ROBYN L. MOLSHER

A thesis submitted for the degree of Doctor of Philosophy in the School of Biological Sciences, University of Sydney. May, 1999
STATEMENT OF RESPONSIBILITY

This thesis is my own original work, except where specifically acknowledged

May, 1999
ABSTRACT

Despite increasing evidence for the impact of feral cats Felis catus on native fauna in Australia, little is known of the ecology of cats, particularly factors that limit cat abundance. The ecology of the feral cat in Australia is represented by just 15 published studies on diet, only one of which has examined diet in relation to prey availability, and one study of home range behaviour. The red fox Vulpes vulpes is a significant pest to agriculture and native fauna in Australia and widespread fox removals have been proposed by the Vertebrate Biocontrol Cooperative Research Centre (VBCRC). However, there is concern that feral cats may increase compensatorily when fox populations are reduced, as has occurred in Western Australia, and therefore that predation pressure may not be alleviated on native fauna following fox control programs.

This thesis is divided into two parts. First, the diet and home range size of cats is examined in relation to prey availability, and home range overlap and habitat use are determined. In the second part, several niche parameters (diet, home range and habitat use) that were potentially important resources for foxes and cats were quantified to assess the potential for competition. Avoidance and aggression between cats and foxes was examined using simultaneous radiotracking techniques and video observations. The hypothesis that foxes limit cats through interspecific competition (exploitation and interference) was then tested using a fox removal experiment. Finally, three further hypotheses were tested using a fox removal experiment to determine which factors limit feral cats at Burrendong. The four hypotheses tested were thus: i) Cats are limited independently of foxes through other factors such as food availability; ii) Foxes limit cats through interspecific competition (exploitation and/or interference); iii) Foxes limit cats through intraguild predation; iv) Cats benefit from the presence of foxes through facilitation.
The diets and spatial use of feral cats were examined on agricultural land on the eastern shore of Lake Burrendong, New South Wales (32° July 1994 and June 1997. The major land use for the area is water catchment under the agistment of sheep Ovis aries and cattle Bos taurus. The study area encompasses about 90 km² of hilly terrain with undulating slopes that extend down to a flat foreshore area that has been extensively cleared of trees for grazing. The slopes are generally well timbered and dominated by white box Eucalyptus albens woodlands with some yellow box E. melliodora associations. Stands of cyprus pines Callitris spp. are also common. Feral cats and red foxes are established throughout the study area, and the European rabbit Oryctolagus cuniculus was abundant until the arrival of Rabbit Calicivirus Disease (RCD) in June 1996.

The diet of feral cats was determined from the analysis of 499 scats. Rabbits were the staple prey of cats, with occurrence (O) in 81.6% of scats and comprising 68.4% by volume (V). Carrion (mostly eastern grey kangaroo Macropus giganteus and sheep) (O 21.5%, V 11.5%) was an important secondary food, particularly in winter and spring. Other mammalian prey included brushtail possums Trichosurus vulpecula (O 4.6%, V 2.4%), house mice Mus domesticus (O 6.2%, V 3.2%), black rats Rattus rattus (O 2.6%, V 1.4%) and a dunnart Sminthopsis sp. (probably S. murina) (O 0.2%, V 0.006%). Invertebrates (mostly Orthopterans) (O 41.5%, V 7.5%), vegetation (O 26.3%, V 3.6%), birds (O 4.2%, V 0.8%) and reptiles (O 3.4%, V 0.3%) were generally of minor importance in the diet. Few significant seasonal differences were found, although invertebrates contributed significantly less, and possums more, to the mean scat volume in winter and summer respectively.

A significant dietary response was found for changes in rabbit abundance, but not for the other prey groups. Cats continued to prey heavily on rabbits after the arrival of Rabbit Calicivirus Disease, despite the relatively low numbers of rabbits. Ten months post-RCD, house mice increased in importance in the diet. However, it was not known whether this represented prey switching sensu stricto or opportunistic predation on an increased mouse population, as mouse abundance was not measured during this period.
Seventy-seven cats (48 recaptures) were caught in 6762 trap nights between November 1994 and August 1996 using both cage traps and leg-hold traps. A further 18 individual cats were trapped as non-target animals by the VBCRC Fox Sterility Project and used in this study. Trapped adult cats were fitted with radio collars and their home range size, overlap and habitat use examined. Home ranges and core areas were quantified using 95% and 50% kernel utilisation distributions (KE 95 and KE 50) and minimum convex polygons (MCP 100, MCP 95, MCP 50). Four habitat types (grassland, open woodland, open forest, and mudflats) were delineated on aerial photographs and a habitat map produced using ARC/INFO. Compositional analysis was used to examine habitat preference in cats.

Home range sizes of cats (n = 15, 598 fixes) in winter 1995, prior to fox removal, were similar to those reported in the only published study of cat spatial use in Australia, but larger than those recorded elsewhere. This may have reflected more dispersed food resources in Australia, although home range size was not correlated significantly with rabbit abundance. Male ranges (MCP 95 \(\bar{x} = 284 \text{ ha}, n = 11 \)) tended to be larger than females (\(\bar{x} = 151 \text{ ha}, n = 4 \)), but no differences were detected between young (1-3 years, \(\bar{x} = 271 \text{ ha}, n = 7 \)) and old (>3 years, \(\bar{x} = 221 \text{ ha}, n = 8 \)) cats. Cats were active both by day and night with no temporal differences being detected in range size. Both adult male and female cats tended to be solitary, although home ranges overlapped extensively. Kin groups were indicated (but not confirmed) as most inter-sexual overlap occurred between young and old cats.

Habitat composition of home ranges generally reflected the availability of habitats at the study site, although cats significantly avoided mudflats. Home ranges comprised mostly open woodland and open forest habitats with smaller areas of grassland and mudflats. However, within individual home ranges, cats used grassland and open woodland habitats most often where rabbits were more abundant. Inter-individual (sex, age) or temporal (day/night) differences in habitat use were not detected.

Comparison of resource use between cats and foxes indicated a large overlap in diet, home ranges and habitat use. Dietary breadths and overlaps between cats and foxes increased when rabbit availability declined in autumn and post-RCD. Dietary overlap was high overall (75%), although some resource partitioning was detected.
Rabbits were more important in the diet of cats than foxes, particularly in summer, when foxes ate more grasshoppers. Carrion, invertebrates and vegetation were more important for foxes than for cats overall. Home ranges of both cats and foxes comprised mostly open woodland habitats followed by grassland, open forest and mudflats, which largely reflected their relative availabilities. However, within individual home ranges, cats showed a preference for grassland habitats. In addition, cats tended to deposit scats more often than foxes at rabbit warrens and at hollow log entrances, while foxes deposited scats more often than cats on sand plots, tracks and at dams. The large overlap in resource use between cats and foxes indicated a high potential for exploitation competition.

Foxes may attempt to lessen competition by killing cats (interference competition). Three radiocollared cats were killed by foxes and aggression was observed toward cats. Home ranges overlapped extensively, but avoidance was indicated from the simultaneous radiotracking of both predators, as greater separations and lower overlaps in home ranges and core areas were recorded between species than within species. In addition, video observations suggested avoidance of carcasses by cats in the presence of foxes.

The hypothesis that foxes limit feral cats through interspecific competition was then tested using a fox removal experiment. Foxes were reduced at two of the four sites Predator-Prey project. Resource use and abundance of cats were compared before and after fox removal and between treated and untreated sites. Although no increase in cat abundance followed the removal of foxes, significant behavioural changes by cats strongly suggested interspecific competition operating via exploitation and interference. Exploitation competition was supported by the increased consumption of carrion by cats at the treated sites after fox removal, while support for interference competition came from the increased use of grassland habitats at night after fox removal. The direction of the resource shifts to more prey-rich habitats indicated asymmetry in the relationship between the two predator species. Although the null hypothesis of no limitation of cats by foxes could not be rejected, as no increase in cat abundance was recorded after fox removal, interspecific competition was considered to be the most likely mechanism limiting feral cats at Burrendong. Intraguild
predation was not indicated as no cat remains were found in any of the 343 fox scats or 255 fox stomachs that were examined. In addition, minimal evidence was found for facilitation between cats and foxes, or for food limitation.

The potential for foxes to limit cats, as shown in this study, indicates that cats need to be considered in future fox control operations. Integrated pest management, where foxes, cats and rabbits are controlled together, is strongly proposed if the objective is to safeguard native fauna in Australia. Further research is required to improve the effectiveness of current techniques for censusing cat populations, particularly in forested areas. This is essential for monitoring the effectiveness of control campaigns and quantifying factors that limit cat populations, and ultimately for effective protection of susceptible native fauna.
ACKNOWLEDGMENTS

I sincerely thank my supervisors Alan Newsome and Chris Dickman for their support and guidance throughout this project. Alan was instrumental in finding a place for me at the VBCRC in the beginning and over the years endeavored to teach encouragement and enthusiasm were critical, especially during the write-up phase. Thanks also to Alan for allowing me to make use of the fox removal program and for access to spotlight data. John Mcllroy kindly provided spotlight data and fox home range data that was used in this study. David Hik provided advice during the initial stages of the project.

Many thanks to Eddie Gifford whose extensive experience and knowledge of animal behaviour was instrumental in the field. His friendly advice was also most appreciated, especially when mechanically or geographically challenged. Peter Banks was an important contact throughout this study. He provided comments on chapter drafts and manuscripts and was my key contact with PhD life during the early stages of the project. I also thank many others whose intellectual interest in this project facilitated its final outcome in some way, in particular Roger Pech, John Mcllroy and Jim Hone. Kim Allcock provided useful comments on chapter drafts.

Completion of this project would not have been possible without the assistance of numerous volunteers, particularly multiple trippers; Anna Nilsson, Leigh Granger, Gavin Christian and Jackie Corlass. I also thank the Burrendong crew who assisted me in some way; in particular Steve Henry and Adam McKeown. I thank CALM employees, Bernie Scott and Phil Marr, who came to my aid during disasters in the field, despite frequently threatening to boost my trap success by dumping a car load of cats in the study area from the Wellington Dump.

linear regression and the ins and outs of Genstat. Greg Hood also provided much appreciated statistical advice. Gil Pfitzner instructed me on repoting radio transmitters and introduced me initially to Burrendong. Chris Dickman taught me how to cross section hairs, and with Paul Mahon I enthusiastically compared scats. John Wombey and Ian Mason from the Australian National Wildlife Collection assisted in the identification of reptile and bird remains.

As an external student, interactions with other PhD students at similar stages in their projects was an important component of this work; Sonja Best, Kim Jenkins, Mani Berghout, Paul Mahon, Liz Sutherland, and Russell Palmer. In particular, I thank Rachel Paltridge for maintaining my sanity through her regular emails (sometimes particularly Gayle McNaught. She even acted as a proxy for me so I could obtain hair slides. Julian Reid was also in the midst of writing and shared an indulgence for cigarettes and coffee.

Library staff at CSIRO Wildlife and Ecology, particularly Megan Edwards and Inge Newman, were always willing to help and Inge enjoyed reading my articles on cats.
obtained through inter-library loans. Roxanne Missingham saved me a lot of time referencing by teaching me the intricacies of Procite, while Guy Barnett and Brendan Baker were patient in their lessons on ARC INFO.

Generous financial support was received from Environment Australia, which allowed this project to be carried out to its full extent. I also sincerely thank the Vertebrate Biocontrol CRC for accepting me as a PhD student and for providing additional financial assistance. CSIRO Wildlife and Ecology provided logistical support.

Gifford whose belief in my ability and confidence that I would one-day finish, despite my groans to the contrary, made this work possible. I am eternally grateful.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
</tr>
<tr>
<td>FIGURES</td>
</tr>
<tr>
<td>TABLES</td>
</tr>
</tbody>
</table>

CHAPTER 1: GENERAL INTRODUCTION

1. **Biology of introduced species**
 1.1. History of introductions 1
 1.1.2. Impact of introduced mammalian predators 5

2. **Factors limiting mammal populations** 7
 2.1. Resource availability 9
 2.2. Competition 10
 2.3. Predation 17
 2.4. Disease and parasites 23
 2.5. Facilitation 24

3. **Interactions between mammalian predators** 26
 3.1. Mesopredator release 26
 3.2. Interspecific competition 27
 3.3. Intraguild predation 28
 3.4. Other factors involved in carnivore interactions 29

4. **Study aims and scope of thesis** 30

CHAPTER 2: THE FERAL CAT IN AUSTRALIA

1. **Introduction of the feral cat to Australia** 31

2. **Distribution and density of feral cats** 32

3. **Impacts of feral cats** 34
 3.1. Predatory impacts 35
 3.2. Competitive impacts 39
 3.3. Disease transmission 40

4. **What limits feral cats?** 41
 4.1. Interactions with other predators 41
 4.2. Food availability 42
CHAPTER 3: STUDY AREA AND GENERAL METHODS

3.1. Description of study area

- **3.1.1. Topography**
 - Vegetation
 - Mammal fauna
 - Climate

- **3.1.2. Vegetation**
- **3.1.3. Mammal fauna**
- **3.1.4. Climate**

3.2. Why Burrendong was selected for the study

- **3.3. Study sites**

3.4. General methods

- **3.4.1. Scat collection and prey identification**
- **3.4.2. Abundance indices for foxes, cats and rabbits**
- **3.4.3. Capture and handling of feral cats**
- **3.4.4. Radiotracking**
- **3.4.5. Accuracy of radiotelemetry**
- **3.4.6. Home range analysis**
- **3.4.7. Habitat utilisation**

CHAPTER 4: FEEDING ECOLOGY AND POPULATION DYNAMICS OF THE FERAL CAT IN RELATION TO FOOD AVAILABILITY

4.1. Introduction

4.2. Methods

- **4.2.1. Scat collection at latrines**
- **4.2.2. Estimates of minor prey populations**
- **4.2.3. Data analysis**

4.3. Results

- **4.3.1. Overall diet**
- **4.3.2. Seasonal variation in diet**
- **4.3.3. Diet in relation to prey availability**
- **4.3.4. Post-RCD diet**
- **4.3.5. Indices of abundance**
- **4.3.6. Diet of individual cats**

4.4. Discussion

- **4.4.1. Overall diet**
4.4.2. Diet in relation to prey availability 81
4.4.3. Dietary response 83
4.4.4. Post-RCD diet 84
4.4.5. Individual variation in diet-the latrines 84
4.4.6. Impact on native prey 85
4.4.7. Numerical response 85

4.5. Conclusion 86

CHAPTER 5: HOME RANGE, RANGE OVERLAP AND HABITAT USE OF FERAL CATS

5.1. Introduction 87
5.2. Methods 90
5.2.1. Home range size 90
5.2.2. Overlap in home ranges and core areas 91
5.2.3. Habitat utilisation 92
5.3. Results 93
5.3.1. Home range size 93
5.3.2. Overlap in home ranges and core areas 96
5.3.3. Habitat utilisation 96
5.4. Discussion 107
5.4.1. Home range size 107
5.4.2. Social organisation 108
5.4.3. Habitat utilisation 110
5.5. Conclusion 111

CHAPTER 6: OVERLAP IN RESOURCE USE AND INTERACTIONS BETWEEN FERAL CATS AND RED FOXES

6.1. Introduction 112
6.2. Methods 114
6.2.1. Numerical response 114
6.2.2. Dietary comparison between cats and foxes 114
6.2.3. Direct predation of cats by foxes 117
6.2.4. Dietary comparison between cats and quolls 117
6.2.5. Spatial use comparison between cats and foxes 118
6.2.6. Direct interactions 119
6.3. Results

6.3.1. Numerical response 121
6.3.2. Dietary comparison between cats and foxes 122
6.3.3. Direct predation of cats by foxes 128
6.3.4. Dietary comparison between cats and quolls 129
6.3.5. Spatial use comparison between cats and foxes 129
6.3.6. Direct interactions between cats and foxes 135

6.4. Discussion 143

6.4.1. Overlap in diet: cats and foxes 143
6.4.2. Overlap in diet: cats and quolls 143
6.4.3. Overlap in habitat use 143
6.4.4. Home range size 145
6.4.5. Avoidance 145
6.4.6. Aggression 147
6.4.7. Niche overlap theory 147

6.5. Conclusion 148

CHAPTER 7: EFFECTS OF FOX REMOVAL ON ABUNDANCE, DIET AND USE OF SPACE BY CATS

7.1. Introduction 149

7.2. Methods 151

7.2.1. Fox removal experiment 151
7.2.2. Abundance indices for cats, foxes and rabbits 152
7.2.3. Cat diet 152
7.2.4. Cat home range size 153
7.2.5. Cat habitat use 154

7.3. Results 155

7.3.1. Abundance indices for cats, foxes and rabbits 155
7.3.2. Cat diet 158
7.3.3. Cat home range size 162
7.3.4. Cat habitat use 165

7.4. Discussion 171

7.4.1. General ecology of cats 171
7.4.2. Fox removal experiment 171
7.5. Conclusion

CHAPTER 8: GENERAL DISCUSSION

8.1. Ecology of feral cats

8.1.1. Diet

8.1.2. Home range size, overlap and habitat use

8.2. What limits cat populations at Burrendong?

8.2.1. Hypothesis 1: Food availability

8.2.2. Hypothesis 2: Interspecific competition with foxes

8.2.3. Hypothesis 3: Intraguild predation by foxes

8.2.4. Hypothesis 4: Facilitation

8.2.5. Other factors

8.3. Further research

8.4. Implications for management of vertebrate pests

REFERENCES

APPENDIX 1: Trappability of feral cats

APPENDIX 2: Taxa identified in cat scats

APPENDIX 3: Temporal synchrony and the influence of moonlight on the diet of red foxes (Vulpes vulpes) in central-eastern New South Wales
FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2.1.</td>
<td>The distribution and density of the feral cat in Australia.</td>
<td>33</td>
</tr>
<tr>
<td>Fig. 3.1.</td>
<td>The study area on agricultural land in central-eastern New South Wales showing (a) the eastern foreshore and (b) sheep grazing.</td>
<td>46</td>
</tr>
<tr>
<td>Fig. 3.2.</td>
<td>Cumulative deviation of monthly rainfall for the Burrendong region</td>
<td>47</td>
</tr>
<tr>
<td>Fig. 3.3.</td>
<td>Map of the study area showing the four sites.</td>
<td>49</td>
</tr>
<tr>
<td>Fig. 3.4.</td>
<td>Feral cats were caught using both (a) cage traps and (b) Victor Soft Catch leg-hold traps.</td>
<td>52</td>
</tr>
<tr>
<td>Fig. 3.5.</td>
<td>Different methods for estimating the home range and core area of an animal a) peeled minimum convex polygons and b) kernel analysis.</td>
<td>61</td>
</tr>
<tr>
<td>Fig. 3.6.</td>
<td>Four habitat types described for the Burrendong study area; mudflats, grassland, open forest and open woodland.</td>
<td>67</td>
</tr>
<tr>
<td>Fig. 3.7.</td>
<td>Examples of the four habitat types delineated from aerial photos for the Lake Burrendong region; (a) grassland in foreground, mudflats at back; (b) grassland in foreground, open woodland at back; (c) open forest.</td>
<td>68</td>
</tr>
<tr>
<td>Fig. 4.1.</td>
<td>Seasonal variation in the diet of feral cats at Burrendong from July 1994 to June 1997 (n = 436 scats).</td>
<td>75</td>
</tr>
<tr>
<td>Fig. 4.2.</td>
<td>Overall seasonal variation in the diet of cats from July 1994 to June 1997 (n = 436 scats).</td>
<td>76</td>
</tr>
<tr>
<td>Fig. 4.3.</td>
<td>Cat diet in relation to prey availability for five major prey groups.</td>
<td>77</td>
</tr>
<tr>
<td>Fig. 4.4.</td>
<td>Dietary response of cats to changing rabbit densities (n = 436 scats).</td>
<td>78</td>
</tr>
<tr>
<td>Fig. 4.5.</td>
<td>Abundance of cats and rabbits recorded in spotlight transects from July 1994 to June 1997 (n = 67 counts).</td>
<td>80</td>
</tr>
<tr>
<td>Fig. 4.6.</td>
<td>Dietary comparison between individual cats (A and B; n = 57 and 44 scats) and the overall diet of cats recorded at Burrendong for (a) spring 1995 (n = 76) and (b) 1996 (n = 36).</td>
<td>80</td>
</tr>
<tr>
<td>Fig. 5.1.</td>
<td>Site differences in rabbit abundance (no. 10 km(^{-1})) and home range sizes (MCP 95) of cats in winter 1995.</td>
<td>95</td>
</tr>
<tr>
<td>Fig. 5.2.</td>
<td>Home ranges (MCP 95) of 21 cats in winter 1995.</td>
<td>97</td>
</tr>
<tr>
<td>Fig. 5.3.</td>
<td>Core areas (MCP 50) of 21 cats in winter 1995.</td>
<td>98</td>
</tr>
<tr>
<td>Fig. 5.4.</td>
<td>Percentage overlap in home ranges (MCP 95) and core areas (MCP 50) between adjacent/overlapping pairs of cats for different age group combinations.</td>
<td>99</td>
</tr>
<tr>
<td>Fig. 5.5.</td>
<td>Percentage overlap for different age and sex combinations of cats.</td>
<td>99</td>
</tr>
</tbody>
</table>
Fig. 5.6. Habitat composition of home ranges (MCP 95) for 15 cats in winter 1995.

Fig. 5.7. Proportional habitat use for 15 cats in winter 1995 at two levels, (a) % habitat composition of home range, and (b) % fixes in each habitat type.

Fig. 5.8. Habitat use relative to availability for 15 cats at the four sites in winter 1995.

Fig. 6.1. Aundance indices (no. km$^{-1}$) for cats, foxes and rabbits recorded in spotlight counts at the untreated sites (DH and HC) from July 1994 to June 1997.

Fig. 6.2. Dietary comparison of the major prey groups for cats (n = 499 scats) and foxes (n = 343 scats).

Fig. 6.3. Seasonal variation in the diet of cats (n = 436 scats) and foxes (n = 321 scats) at Burrendong from July 1994 to June 1997.

Fig. 6.4. Rabbit consumption by cats (n = 436 scats) and foxes (n = 321 scats) relative to rabbit abundance recorded in spotlight counts.

Fig. 6.5. Comparison between cats and foxes in the (a) macro- and (b) microhabitats in which scats were collected.

Fig. 6.6. Dietary comparison between cats (n = 499 scats) and spotted-tailed quolls (n = 12 scats) at Burrendong.

Fig. 6.7. Home ranges (A) and core areas (B) of cats (n = 8) and foxes (n = 8) in winter 1995.

Fig. 6.8. Trap locations of cats relative to cat (n = 8) and fox (n = 13) core areas (MCP 50) in winter 1996.

Fig. 6.9. Percentage overlap in home ranges and cores areas between cats and foxes and between conspecifics in winter 1995 and 1996.

Fig. 6.10. Habitat use (% fixes in each habitat type) of cats and foxes in winter 1995 (798 fixes) and 1996 (2087 fixes).

Fig. 6.11. Overlap in (A) home ranges (MCP 95) and separation in (B) core areas (MCP 50) between four cats and six foxes.

Fig. 6.12. Geometric distances recorded between cats (n = 4) and foxes (n = 6) and between conspecifics at Spring Creek in October 1996.

Fig. 6.13. Habitat composition of (a) home ranges and (b) at fixes for cats (n = 4) and foxes (n = 6) at Spring Creek in October 1996.

Fig. 6.14a. Fox teethmarks on the radiocollar retrieved from a dead cat.

Fig. 6.14b. Radiocollar retrieved from a cat which died from fox attack and from other causes.

Fig. 7.1. Indices of abundance for foxes, cats and rabbits recorded in spotlight counts at treated (DT and GC) and untreated sites (DH and HC) from July 1994 to August 1998.
Fig. 7.2. Abundance indices for foxes, cats and rabbits recorded in spotlight counts at treated (DT and GC) and untreated sites (DH and HC), before and after fox removal. 157

Fig. 7.3. Fox removal effects on the importance (% occurrence) of five major prey groups in the diet of cats (n = 408 scats). 159

Fig. 7.4. Fox removal effects on the importance (% volume) of five major prey groups in the diet of cats (n = 408 scats). 160

Fig. 7.5. Fox removal effects on the a) macrohabitats and b) microhabitats in which scats were deposited by cats at treated versus untreated sites, and before and after fox removal. 161

Fig. 7.6. Fox removal effects on the home range size (MCP 95) of cats for three periods. 163

Fig. 7.7. Home range size (MCP 95) of young (1-3 years, n = 27) and old (> 3 years, n = 16) cats, before (winter 1995) and after fox removal (summer 1995/96 and winter 1996) at treated and untreated sites. 163

Fig. 7.8. Fox removal effects on the home range size (MCP 95) of seven cats that survived all three seasons. 164

Fig. 7.9. Seasonal variation in the day and home range size (MCP 95) of cats. 164

Fig. 7.10. Fox removal effects on the overall habitat use of feral cats at treated and untreated sites, before (winter 1995) and after (winter 1996) fox removal. 166

Fig. 7.11. Differences in day and night habitat use a) before and b) after fox removal at treated and untreated sites. 167

Fig. 7.12. Similarities in cat habitat use between seasons at the four sites. 169

Fig. 7.13. Diet of cats before (winter 1995) and after (winter 1996) fox removal at the treated sites. 170
TABLES

Table 5.1. Mean home range sizes of male and female feral cats.

Table 5.2. Home range and core area size (ha) of 21 radiocollared cats in winter 1995 (730 location fixes).

Table 5.3. Mean (+ s.e.) day and night home range sizes (ha) for 12 cats in winter 1995.

Table 5.4. Percentage habitat composition for cats in winter 1995 at each study site (bold type), within each home range (MCP 95), and at the location fixes.

Table 5.5. Magnitude of mean log-ratio differences between utilised and available habitat compositions for 15 radiocollared cats in winter 1995.

Table 5.6. Relative importance of each habitat type for 15 cats in winter 1995.

Table 6.1. Food items recorded in the diet of cats ($n = 499$ scats) and foxes ($n = 343$ scats) at Burrendong from July 1994 to June 1997.

Table 6.2. Dietary breadth and overlap indices for cats ($n = 436$ scats) and foxes ($n = 321$ scats).

Table 6.3. Home range (MCP 95) and core area (MCP 50) sizes for cats and foxes in winter 1995 and 1996.

Table 6.4. Outcome of a two-way ANOVA for evaluating differences in habitat use between cats and foxes in winter 1995 and 1996.

Table 6.5. Home range (MCP 95) and core area (MCP 50) sizes (ha) of four cats (232 fixes) and six foxes (331 fixes) at Spring Creek in October 1996.

Table 6.6. and foxes (F1-6) and between conspecifics at Spring Creek in October 1996.

Table 6.7. Observations of encounters between cats and foxes at Burrendong ($n = 11$).

Table 7.1. The effect of fox removal on the use of four different habitat types by cats overall.

Table 7.2. The effect of fox removal on the use of four different habitat types by cats with day and night ranges analysed separately.

Table 7.3. Influence of season, sex and age on the habitat use (% fixes in each habitat) of cats.

Table 7.4. Similarities in habitat use between day and night periods for each habitat type and for all three seasons.

Table 8.1. Comparison between observed responses of feral cats at Burrendong and that predicted under each of four hypotheses.