Wide Field Aperture Synthesis Radio Astronomy

Douglas Carl-Johan Bock

A thesis submitted for the degree of Doctor of Philosophy at the University of Sydney

September, 1997

Abstract

This thesis is focussed on the Molonglo Observatory Synthesis Telescope (MOST), reporting on two primary areas of investigation. Firstly, it describes the recent upgrade of the MOST to perform an imaging survey of the southern sky. Secondly, it presents a MOST survey of the Vela supernova remnant and follow-up multiwavelength studies.

The MOST Wide Field upgrade is the most significant instrumental upgrade of the telescope since observations began in 1981. It has made possible the nightly observation of fields with area ~ 5 square degrees, while retaining the operating frequency of 843 MHz and the pre-existing sensitivity to point sources and extended structure. The MOST will now be used to make a sensitive (rms $\approx 1 \text{ mJy beam}^{-1}$) imaging survey of the sky south of declination -30° . This survey consists of two components: an extragalactic survey, which will begin in the south polar region, and a Galactic survey of latitudes $|b| < 10^{\circ}$. These are expected to take about ten years. The upgrade has necessitated the installation of 352 new preamplifiers and phasing circuits which are controlled by 88 distributed microcontrollers, networked using optic fibre. The thesis documents the upgrade and describes the new systems, including associated testing, installation and commissioning.

The thesis continues by presenting a new high-resolution radio continuum survey of the Vela supernova remnant (SNR), made with the MOST before the completion of the Wide Field upgrade. This remnant is the closest and one of the brightest SNRs. The contrast between the structures in the central pulsar-powered nebula and the synchrotron radiation shell allows the remnant to be identified *morphologically* as a member of the composite class. The data are the first of a composite remnant at spatial scales comparable with those available for the Cygnus Loop and the Crab Nebula, and make possible a comparison of radio, optical and soft X-ray emission from the resolved shell filaments. The survey covers an area of 50 square degrees at a resolution of $43'' \times 60''$, while imaging structures on scales up to 30'. It has been used for comparison with Wide Field observations to evaluate the performance of the upgraded MOST.

The central plerion of the Vela SNR (Vela X) contains a network of complex filamentary structures. The validity of the imaging of these filaments has been confirmed with Very Large Array (VLA) observations at 1.4 GHz. Unlike the situation in the Crab Nebula, the filaments are not well correlated with H α emission. Within a few parsec of the Vela pulsar the emission is much more complex than previously seen: both very sharp edges and more diffuse emission are present. It has been postulated that one of the brightest filaments in Vela X is associated with the X-ray feature (called a 'jet') which appears to be emanating from the region of the pulsar. However, an analysis of the MOST and VLA data shows that this radio filament has a flat spectral index similar to another more distant filament within the plerion, indicating that it is probably unrelated to the X-ray feature.

Preface

It has been MOST enjoyable and satisfying to be part of the major upgrade of the Molonglo Observatory Synthesis Telescope. This project has involved all the staff of the Astrophysics Department in the School of Physics, and much of the material in the early chapters is an account of the collective effort.

I must especially thank my supervisor and co-supervisors. Michael Large has been instrumental not only to my contribution to the project, but also conceived of the Wide Field upgrade, identifying the existing features of the MOST that made it possible. Tony Turtle planned the initial observations and provided continued advice for the MOST Vela SNR survey. Anne Green helped me expand my horizons into multiwavelength studies and gave me extra encouragement while I was writing this thesis. Dale Frail introduced me to observing at the VLA and was a wealth of information on SNRs. All made helpful comments on drafts of this thesis.

The Wide Field upgrade could not have taken place without the extraordinary dedication of the staff at Molonglo: Duncan Campbell-Wilson, Jeff Webb, Mick White and Boyd Smithers, who worked in trying conditions to install the new hardware and keep the telescope in good order. In Sydney, Ralph Davison, Fred Peterson, Barbara Piestrzynski and the workshop staff kept up supplies of vital components for the project. Ralph particularly helped me with electronics. The foresight of one of the great radio astronomers, Bernard Mills, has made the MOST an instrument which continues to be productive today.

I thank also many people with whom I had helpful discussions or who read and commented upon drafts of parts of this thesis, including Lewis Ball, Lawrence Cram, David Crawford, John Dickel, Bryan Gaensler, Richard Hunstead, Tom Landecker, Phil Lukins, Bruce McAdam, Vince McIntyre, Doug Milne, Gordon Robertson, Elaine Sadler, Bob Sault, Ian Skillen and many others at the School of Physics, ATNF and NRAO.

I am grateful to be able to include data obtained by several others in this thesis. Mike Bessell and Andrew Walker made and reduced the H α observations of the Vela shell and Vela X. Vince McIntyre and Tanya Hill helped with additional reduction. Doug Milne, Berndt Aschenbach and Craig Markwardt kindly provided electronic versions of their data. I acknowledge the support provided by software authors both within and outside the School of Physics, including Lawrence Cram, David Crawford, Richard Gooch, Neil Killeen, Bob Sault and Taisheng Ye. Dick Manchester, Matthew Bailes and Peter McCulloch provided Vela pulsar timing data. Thanks are due also to Miller Goss at NRAO and Tom Landecker at DRAO for their hospitality while I was visiting their institutions. I acknowledge financial support in the form of an Australian Postgraduate Award while a student, and also travel support from the Department of Industry Science and Technology (Access to Major Research Facilities Program), the Science Foundation for Physics, the James Kently Memorial Scholarship, the R. and M. Bentwich Scholarship, the Astronomical Society of Australia and the Science Faculty (Conference Travel Grants Scheme).

My family and close friends have always been supportive of my study. My brother Timothy helped me with statistics. I particularly thank my mother who, apart from proofreading this thesis, made many sacrifices to ensure that my brothers and I received an excellent education.

This thesis was typeset by the author using the $L^{A}T_{E}X$ document preparation system (Lamport 1994).

Statement of originality

The work contained in this thesis is the result of the sole and original endeavours of myself, Douglas Carl-Johan Bock, except where noted otherwise. The latter exclusions include some of the work contained in chapters 2, 3 and 8, which was undertaken in collaboration with others. In each case a statement explaining the extent to which the work was my own is incorporated within the chapter.

> Douglas Carl-Johan Bock The University of Sydney Sydney, Australia September 1997

Next to our own sun, Vela X was probably the most important star in the history of humanity.

George Michanowsky, 1977, The Once and Future Star: Exploring the Mysterious Link Between the Great Southern Supernova (Vela X) and the Origins of Civilization, (New York: Hawthorn).

Contents

Preface			i		
\mathbf{A}	Acronyms, Abbreviations and Conventions			xii	
1	Intr	Introduction			
	1.1	Radio	astronomy of the southern sky	. 1	
	1.2	The N specti	Molonglo Observatory Synthesis Telescope: An historical per-	. 1	
	1.3	The N	OST Wide Field upgrade and surveys of the southern sky	2	
	1.4	Overv	riew of this thesis	. 5	
2	The	MOS	T Wide Field System	6	
	2.1	The N	Aolonglo Observatory Synthesis Telescope	. 6	
	2.2	Image	e forming with the MOST	. 8	
		2.2.1	Calibration	. 8	
	2.3	Wider	ning the field of view	. 10	
	2.4	New r	adio-frequency hardware	. 13	
		2.4.1	Low noise amplifiers	. 15	
		2.4.2	Bay phasers	. 15	
		2.4.3	Further improvements	. 15	
	2.5	A dist	Tributed control system	. 16	
		2.5.1	The master controller	. 17	
		2.5.2	Bay controllers	. 18	
		2.5.3	The communications system	. 18	
		2.5.4	Bay linkers	. 19	
3	Upg	gradin	g the MOST	21	
	3.1	Manu	facture and installation of the new hardware	. 21	
		3.1.1	Stage one: New radio-frequency hardware	. 21	
		3.1.2	Stage two: Computer controlled phase shifting	. 22	
		3.1.3	Stage three: New intermediate-frequency (IF) system	. 24	
		3.1.4	Stage four: Local oscillator (LO) distribution system	. 25	
	3.2	Comn	nissioning the Wide Field system	. 26	
		3.2.1	Linking the master controller to the bays	. 26	

		3.2.2 Interfacing the master controller	27
	3.3	Astronomical testing	28
		3.3.1 A sweep observation on the sun	28
		3.3.2 Preliminary tests on 3–block fields	29
		3.3.3 Preliminary tests on 7–block fields	32
		3.3.4 A test survey region—The MOST Vela supernova remnant	
		survey	34
4	The	e Vela Supernova Remnant	36
-	4.1	The evolution of supernovae	37
		4.1.1 The interaction of supernova ejecta with the ISM	37
		4.1.2 Pulsar-powered nebulae	38
	4.2	Diversity among supernova remnants	39
	1.2	4.2.1 Shell supernova remnants	39
		4.2.2 Plerionic supernova remnants	41
		4.2.3 Composite supernova remnants	41
	4.3	The radio remnant of Vela	42
	1.0	4.3.1 Morphology	44
		4.3.2 Distance and age	46
	4.4	Vela X and the Vela pulsar	47
		4.4.1 Classification of the Vela SNR	47
		4.4.2 A pulsar-powered nebula	48
_	T I		- 0
5	The	e MOST Vela Supernova Remnant Survey	52
	5.1		52
	5.2		03 E9
		5.2.1 Pulsar gating	53 54
	۲ ۹	5.2.2 Improving the gating	54
	0.3	Imaging	54
		5.3.1 Mosaicing	55
	F 4	5.5.2 Sensitivity to extended emission	00 5 <i>C</i>
	0.4	5.4.1 The Vela superness perment	00 57
		5.4.1 The vela supernova remnant	57
		5.4.2 Artenacts	01 60
	ГF	5.4.5 Astronomical objects not connected with the vela SINR	00
	0.0	Discussion	60
6	Vel	a and the MOST Wide Field System	63
	6.1	Wide Field reduction software	63
	6.2	Characteristics of MOST Wide Field images	64
		6.2.1 A sample observation	64
		6.2.2 Features of the images	65
		6.2.3 Quality of MOST Wide Field images	68
	~ ~	I and builded and file on anti-anti-anti-anti-	70

		6.3.1 Observations	$70 \\ 70$
	64	Position and flux density reliability	73
	0.4	6.4.1 Source measurement	73
		6.4.2 Bandwidth and time-average smearing	74
	65	Noise levels in Wide Field images	74
	0.0	6.5.1 Observations	75
		6.5.2 Applysis	75
		6.5.3 Discussion	76
	6.6	Postscript	78
-	T I		01
7	The	e Vela SINR Shell	81
	(.1	Observations of the northern Vela shell	81
		7.1.1 MOS1 843 MHz observations	81
		(.1.2 H α observations	84
	7.0	7.1.3 The ROSAT all-sky image	86
	7.2	Multiwavelength analysis	86
		7.2.1 Morphological comparisons	86
	7.0	$7.2.2 \text{ Discussion} \dots \dots$	87
	1.3	The X-ray 'bullets'	91
		$(.3.1 \text{ Observations} \dots \dots$	91
		7.3.2 Results and discussion	92
	(.4	Conclusions	95
8	The	e Vela X Region	97
	8.1	MOST observations of Vela X	98
		8.1.1 The region around Vela pulsar $(B0833-45)$	102
		8.1.2 Unusual objects in the Vela X region	102
	8.2	Unresolved sources within Vela X	105
		8.2.1 Observations and reduction	107
		8.2.2 Results	107
		8.2.3 Discussion	110
	8.3	Complementary radio surveys of the Vela X region	110
		8.3.1 VLA 1.4 GHz observations	111
		8.3.2 Other available datasets	112
	8.4	The Vela X filaments	114
		8.4.1 Measuring spatial spectral index variation	115
		8.4.2 T–T plots	116
		8.4.3 The adopted recipe	116
		8.4.4 Results	117
		8.4.5 Discussion	120
	8.5	Vela X in H α	121
		8.5.1 Observations	121
		8.5.2 Discussion	124

	8.6	Conclusions	124	
9	Fina	al Discussion and Future Prospects 126		
	9.1	The MOST Wide Field project	126	
	9.2	The Vela supernova remnant	127	
\mathbf{A}	The	MOST Wide Field Communications System	130	
	A.1	System requirements	130	
	A.2	System description	131	
	A.3	Bay linkers	132	
		A.3.1 Transmitters and detectors	133	
		A.3.2 Pulse shaping	133	
		A.3.3 Crosstalk immunity	134	
		A.3.4 Reset pulse detection circuitry	134	
		A.3.5 Bay controller lockout circuitry	134	
		A.3.0 Power supply	130	
	Δ 1	A.5.7 Floduction testing	130	
	л.4	A 4.1 Operating conditions	130	
		A.4.2 Polishing	139	
	A.5	The control room/local oscillator hut link	139	
		A.5.1 The control room interface	140	
		A.5.2 The local oscillator hut interface	140	
	A.6	System testing	145	
		A.6.1 Soak tests	145	
		A.6.2 Cumulative pulse shape testing	145	
		A.6.3 Environmental testing	145	
	A.7	System maintenance	146	
	A.8	Further work	146	
в	Sum	nmary of Wide Field Test Observations	149	
С	Puls	sar Gating with the MOST	151	
-	C.1	The ADC hold system	151	
	C.2	Instrumental setup	151	
	C.3	Improving the setup	153	
	C.4	Variation of beam position of a source with hour angle	153	
	C.5	Observing procedure	154	
D	Red	uction of the MOST Vela SNR Survey	156	
	D.1	Data reduction and mosaicing	156	
	D.2	Summary of observations	156	
Re	eferei	nces	162	

List of Tables

2.1	Parameters of the $28\mathrm{s}$ cycle in a MOST Wide Field 7–block observation	12
3.1 3.2	Tests of the phase shifting system and data acquisition software on 3-block fields	32
	neids	34
$6.1 \\ 6.2 \\ 6.3$	Key characteristics of a MOST Wide Field observation	65 76
	the Vela SNR survey	79
7.1	Summary of MOST observations of the X-ray bullets	92
1.2	bullets	95
7.3	MOST 843 MHz flux densities and spectral indices of the unresolved radio sources behind X-ray bullet A	95
8.1 8.2	Spectral indices for each of the sources observed with the VLA	110
-	for the two strongest filaments within Vela X	120
A.1 A.2	The operating current of a bay linker	135
	local oscillator hut linkers	137
B.1	Summary of observations for commissioning the MOST Wide Field system	150
D.1	Summary of the observations comprising the MOST Vela supernova remnant survey	159

List of Figures

1.1	The Molonglo Observatory Synthesis Telescope	3
$2.1 \\ 2.2 \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.6 \\ 2.7 \\ 2.8 \\ 2.9 \\ $	Schematic of the Molonglo Observatory Synthesis TelescopeSingle-block MOST fan beam synthesisWidening the field of view of the MOST by time sharingHardware implementation of the Wide Field systemThe theoretical bay beam response as a function of offset from thefield centre for a 7-block Wide Field observationA new low noise amplifierOne half of a bay phaserA bay controllerA bay linker	7 9 11 13 14 20 20 20 20
$3.1 \\ 3.2$	A sample Wide Field progress chart	23 30
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \end{array}$	MOST image of a classic shell SNR, G337.3+1.0 (Kes 40) A radio and optical image of the Crab Nebula MOST 843 MHz image of a composite SNR, G326.3-1.8 (MSH 15-56) X-ray and 29.9 MHz images of the Vela SNR, showing its 8° extent . The spectra of the integrated flux densities of Vela X and Vela YZ	40 42 43 45 49
$5.1 \\ 5.2 \\ 5.3$	The MOST Vela supernova remnant survey	58 59 61
6.16.26.3	A raw MOST Wide Field image of part of the Vela supernova remnant region, produced directly from the raw data	66 67
6.4 6.5	beam	69 71 72

6.6	Noise images of four Wide Field observations made in quiet regions of the sky	77
$7.1 \\ 7.2 \\ 7.3$	MOST 843 MHz image of the northern Vela SNR shell \ldots \ldots \ldots $H\alpha$ image of the northern Vela SNR shell \ldots \ldots \ldots \ldots \ldots ROSAT X-ray image of the northern Vela SNR shell with H\alpha and	82 85
7.4 7.5 7.6 7.7	MOST 843 MHz overlaysMOST 843 MHz overlaysMOST observation of the Vela SNR X-ray bullet AMOST observation of the Vela SNR X-ray bullet BMOST observation of the Vela SNR X-ray bullet DMOST observation of the Vela SNR X-ray bullet DMOST observation of the region of the Vela SNR X-ray bullet EMOST observation of the region of the Vela SNR X-ray bullet E	88 93 93 94 94
$\begin{array}{c} 8.1 \\ 8.2 \\ 8.3 \\ 8.4 \\ 8.5 \\ 8.6 \\ 8.7 \\ 8.8 \\ 8.9 \\ 8.10 \\ 8.11 \\ 8.12 \end{array}$	Vela X in the MOST Vela SNR survey \dots A contour plot of the Vela X region \dots A ruled surface plot of the Vela X region \dots The MOST image of the region around the Vela pulsar \dots The Wisp \dots The Uop \dots The Loop \dots The Lo	99 100 101 103 104 106 108 109 113 118 122 123
A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8	Schematic of the MOST Wide Field communications system Printed circuit board layout of the bay linkers	132 138 141 142 143 144 148 148
C.1 C.2	A sample pulse profile with gating signal	$152 \\ 155$
D.1	The data reduction process for the MOST Vela supernova remnant survey	157

Acronyms, Abbreviations and Conventions

A list of acronyms and abbreviations used frequently in this thesis is given below. A reference to the section where they are introduced is given in parentheses, where usage of the terms is peculiar to the MOST.

A700	The HP-A700 observing computer $(3.2.2)$
AIPS	Astronomical Image Processing System
ADC	Analogue-to-Digital Converter
ARC	Arc (zenithal equidistant) projection
ATCA	Australia Telescope Compact Array
BC	Bay Controller $(2.5.2)$
BL	Bay Linker $(2.5.4)$
BP	Bay Phaser $(2.4.2)$
Dec., δ	Declination
EPROM	Erasable Programmable Read Only Memory
FITS	Flexible Image Transport System
FWHM	Full Width at Half Maximum
HA	Hour Angle
HPBW	Half-Power Beam Width
ISM	Interstellar Medium
IF	Intermediate Frequency $(2.4.3)$
Jy	Jansky, a unit of flux density; $1 \text{ Jy} = 10^{-26} \text{ W m}^{-2} \text{ Hz}^{-1}$
LED	Light Emitting Diode
LNA	Low Noise Amplifier $(2.4.1)$
LO	Local Oscillator
MC	Master Controller $(2.5.1)$
MD	Meridian Distance (2.1)
MIRIAD	Multichannel Image Reconstruction Image Analysis and Display
MOST	Molonglo Observatory Synthesis Telescope
MVS	MOST Vela Supernova Remnant Survey
NCP	North Celestial Pole (slant orthographic) projection
NRAO	National Radio Astromomy Observatory ¹
RA	Right Ascension
RF	Radio Frequency

SN(e)	Supernova(e)
SNR	Supernova Remnant
TCC	Telescope Control Computer $(3.2.2)$
VLA	Very Large Array
WF	Wide Field (2.3)

Typography notes When referring to computer software, I have used the typewriter style, capitalised or not as indicated by common usage, for example AIPS HGEOM but MIRIAD regrid. Algorithms such as CLEAN are given in Roman type. I introduce new terms in *italics*.

Epoch usage I have tried, as far as possible, to use J2000 coordinates throughout this thesis. However, the MOST uses exclusively B1950 coordinates for observing and data archiving. To avoid confusion I have retained B1950 coordinates in discussions of MOST observing parameters.

Spectral indices All radio spectral indices, α , in this thesis are quoted assuming the relationship $S_{\nu} \propto \nu^{\alpha}$.