Molecular mapping and improvement of rust resistance in the Australian wheat germplasm

Cakir M1, Drake-Brockman F2, Shankar M2, Golzar, H2, McLean R2, Bariana H3, Wilson R2, Barclay I2, Moore C2, Jones M1, and Loughman R2

1WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia, 2Department of Agriculture and Food, 3 Baron-Hay Court, South Perth, WA 6151, Australia, 3 The University of Sydney Plant Breeding Institute-Cobbitty, PMB11 NSW 2750, Australia

ABSTRACT

Molecular markers make the pyramiding of rust genes possible in adapted elite lines. In this study we report the microsatellite tagging of leaf rust genes \textit{Lr13} and \textit{Lr28} in the Leichardt/WAWHT2071 and Sunland/Arrino populations, respectively. Leichardt and Sunland were the sources of resistance genes for \textit{Lr13} and \textit{Lr28}, respectively. \textit{F}_2 and \textit{F}_{2:3} populations were used for microsatellite tagging of the genes. Closely linked SSR markers were identified for \textit{Lr13} and \textit{Lr28} on chromosomes 2BS, 4AL, respectively. Molecular markers for a range of other rust resistance genes (\textit{Lr9}, \textit{Lr19/Sr25}, \textit{Lr24/Sr24}, \textit{Lr34/Yr18}, \textit{Lr46/Yr29}, \textit{Lr47}, \textit{Sr26}, \textit{Sr32}, \textit{Sr33} and \textit{Sr36}) are currently being implemented for variety development and germplasm enhancement.

INTRODUCTION

Pyramiding of rust resistance genes in elite lines using markers that are diagnostic in a range of genetic backgrounds is one of the objectives of Australian breeding programs. Wheat breeders are often challenged with new rust pathotypes and consequently have to deploy additional rust resistance genes in advanced breeding lines. McIntosh et al. (1995) has listed and genetically characterized and named rust resistance genes. These genes have been assigned to individual chromosome arms through cytogenetic studies. Linked molecular markers have been identified for some of these genes. The sequence tagged site (STS) and cleaved amplified polymorphic sequence (CAPS) type of markers were developed for some of the resistance genes (\textit{Lr9}, \textit{Lr35}, \textit{Lr37}, \textit{Lr46}, \textit{Lr47}). Validation of markers across different genetic backgrounds is necessary for successful implementation.

The Western Australian Wheat Breeding Program has been deploying the adult plant leaf rust resistance gene \textit{Lr34} and \textit{Sr2} and therefore many advanced breeding lines carry these genes. A molecular marker designed from the chromosome arm 7DS is effectively being used for marker-assisted selection (MAS) of \textit{Lr34} (Lagudah et al. 2006). Since additional genes are required to achieve durable rust resistance, this study has been conducted to identify SSR markers linked with \textit{Lr13} and \textit{Lr28}.

MATERIALS AND METHODS

Plant material

Mapping populations used in this study are listed in Table 1. Phenotypic evaluation was performed according to Shankar et al. (this conference).

Table 1. The list of mapping populations (each included 94 lines), relevant rust genes, donor lines, population analysed.

<table>
<thead>
<tr>
<th>Cross/Gene/trait</th>
<th>Donor Line</th>
<th>Pop. type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leichardt/\textit{WAWHT2071}</td>
<td>\textit{Lr13}</td>
<td>Leichardt</td>
</tr>
<tr>
<td>Sunland/\textit{Arrino}</td>
<td>\textit{Lr28}</td>
<td>Sunland</td>
</tr>
</tbody>
</table>

Molecular analysis

DNA extraction, from approximately 0.1 g of fresh leaf tissue, obtained from each \textit{F}_2 plant, was carried out according to Rogowsky et al. (1991).

SSR markers were selected from wheat consensus maps (Appels 2003; Somers et al. 2004). SSR analysis was performed by PCR amplification of the DNA with primers known to bracket SSR regions (Cakir et al. 2003a). Fragments were separated using either polyacrylamide gels with EtBr staining or MRTTM (Multiplex-Ready Technology) as described by Hayden et al. (2007).

All marker loci were subjected to a Chi-square goodness-of-fit test for segregation analysis to determine whether the alleles distributed in the expected 1:2:1 segregation ratio in the populations. Linkage and quantitative trait loci (QTL) analysis of the markers were conducted according to Cakir et al. (2003b) with the software packages Mapmanager (Manly 2001) and Qgene (Nelson 1997). Linkages were established with a minimum LOD score of 3.0. LOD scores lower than 3.0 were used to investigate loose linkages.
RESULTS AND DISCUSSION

Phenotypic data for these populations reported by Shankar *et al.* (this conference) was used to identify markers closely linked with leaf rust resistance genes *Lr13* and *Lr28* (Table 2). After parental polymorphism study, chromosome specific 14 and 8 polymorphic SSR markers were identified for the mapping of *Lr13* and *Lr28*, respectively. Mapping analysis for each disease data has identified most significant flanking markers (Table 2).

<table>
<thead>
<tr>
<th>Cross</th>
<th>Gene</th>
<th>Chr. Loc.</th>
<th>Linked markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leichardt/</td>
<td>Lr13</td>
<td>2BS</td>
<td>WMC474, BARC183</td>
</tr>
<tr>
<td>WAWHT2071</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunland/Arrino</td>
<td>Lr28</td>
<td>4AL</td>
<td>BARC327, BARC343</td>
</tr>
</tbody>
</table>

Marker orders for each chromosome (not shown) were confirmed using two consensus maps of wheat (Appels 2003; Somers *et al.* 2004) and a deletion map of SSR markers (Sourdille *et al.* 2004). The locations of the most significant flanking markers were also in accordance with the previously reported locations of these genes (McIntosh *et al.* 1995).

This study has identified closely linked SSR markers for *Lr13* and *Lr28* leaf rust genes. These markers are currently being implemented in the wheat breeding programs in Western Australia. In addition, markers for a range of other rust resistance genes (*Lr9*, *Lr19/Sr25, Lr24/Sr24, Lr34/Yr18, Lr46/Yr29, Lr47, Sr26, Sr32, Sr33 and Sr36) are also being implemented for variety development and germplasm enhancement. The impact of these applications to wheat improvement is discussed in detail by Cakir *et al.* (this conference).

ACKNOWLEDGEMENTS

We thank Hugh Wallwork and Rudi Appels for their contributions to the genetic analysis project. We are also grateful to Ken Chalmers, Matthew Hayden, Sharon Westcott, Ester Walker and many other colleagues who shared their marker and PCR information with us. Funding for this research was provided by the Department of Agriculture and Food Western Australia and Grains Research and Development Corporation through Australian Winter Cereal Molecular Marker Program, and Molecular Plant Breeding CRC.

REFERENCES

