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Quantum Integrable Systems and Special Functions

Arising from Separation of Variables

Abstract

In this thesis, we study three families of quantum integrable systems and the
corresponding special functions that arise from separation of variables. By analysing the
respective classical systems, we are able to elucidate connections between the classical
and quantum systems, their symmetries and the latter’s associated special functions.

In Chapter 2 we study both the classical and quantum integrable systems arising from
separating the free particle on R3 in prolate spheroidal coordinates. In doing so, we
obtain the spheroidal wave equation as a separated linear ODE whose solutions are the
well known spheroidal wave functions. By reducing to T ∗S2 we show that the joint
spectrum of these eigenfunctions on L2(S

2) has a defect, i.e. quantum monodromy,
meaning a global assignment of quantum numbers is impossible. Considering the semi-
classical limit of the quantum operators, we construct a semi-toric integrable system
with a non-degenerate focus-focus point, thereby proving the existence of monodromy.

In Chapter 3 we study what we call the Harmonic Lagrange Top, the well-known
Lagrange top with an added quadratic potential. Our key result is that the non-trivial
ODE obtained by separating the Schrödinger equation for this system yields the most
general confluent Heun equation. In the physics literature, this is known as Teukolsky’s
master equation. The reduced system is semi-toric without the harmonic potential, but
more complicated in general, while retaining a global S1 symmetry.

Finally, we investigate the families of quantum systems arising from separating the
Schrödinger equation on S3. There are 6 orthogonal separable coordinate systems on
this space: ellipsoidal, prolate, oblate, Lamé, spherical and cylindrical. From this,
we obtain a vast array of special functions; in particular the generalised Lamé wave
functions, Heun and Gegenbauer polynomials. We show that all separated ODEs
possess only regular singularities. This stands in contrast with the previous systems
studied (on non compact manifolds) for which there is an irregular singularity at infinity.
In this family, we find integrable systems without an S1 symmetry, some with an S1

symmetry (including a semi-toric case) and one toric integrable system.
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Chapter 1

Introduction

1.1. OVERVIEW

This thesis investigates the relationship between classical integrable systems, their quantum
counterparts and special function solutions. The theory of classical integrable systems is
well known and has led to many powerful results, see e.g. [PVuN09], [Del88] and [MW74].
Similarly, quantisation and subsequent study of the resulting quantum integrable systems
is flourishing; see e.g. [CPVuN13] and [PVuN12]. We show that by analysing the ordinary
differential equations and special functions that arise from quantised classical systems, new
insights can be found for both the classical and quantum systems. In particular, this work
focuses on the study of three families of integrable systems.

The first system, detailed in Chapter 2, arises from studying the free particle in R3 in prolate
spheroidal coordinates, one of the 11 orthogonal separable coordinates of R3. Separating the
Schrödinger equation in these coordinates yields a family of ordinary differential equations
(ODEs), the most interesting of which is the confluent Heun equation. Solving these
ODEs yields what we call spheroidal harmonics - extensions of the well known spherical
harmonics. Returning to the classical mechanics, we perform a reduction to T ∗S2 and also
show that the corresponding (reduced) integrable system is symplectically equivalent to
the C. Neumann system. We also show that the spheroidal harmonics are eigenfunctions
of the two reduced quantum operators on L2(S

2). A key result is that the corresponding
joint spectrum is shown to have quantum monodromy, meaning that a global labelling of
joint eigenstates is impossible. This is proven by studying the semiclassics; we construct
the corresponding classical system and show that it is of the semi-toric type. By proving
the existence of a non degenerate focus-focus point, the key result is shown. Chapter 2 was
published in its entirety as [DDN21] and also contains further results on the classical system
which were found by Diana Nguyen.

The next family of integrable systems studied arises from rigid body dynamics. Motivated
by the results in Chapter 2, we set out to construct a classical integrable system that, when
quantised, yielded the most general form of the confluent Heun equation. Our efforts led us

10
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to define what we term the "Harmonic Lagrange Top" - the conventional Lagrange top well
known in rigid body dynamics subject to a harmonic potential. The resulting most general
confluent Heun equation is also known in the literature as Teukolsky’s master equation
and is studied in the context of rotating black holes (i.e. the Kerr metric) [Teu73]. Our
result, however, is in some sense more general since one parameter in the master equation
is restricted to be the spin of a particle while in our case it can be any integer. Chapter 3 was
published in its entirety as [DDN22] and was co-written with Diana Nguyen.

Finally, our attention then shifts in Chapter 4 to a much larger family of integrable systems
that arise from separating the geodesic flow on S3. From [KM86], it is known that there
are six distinct orthogonal separable coordinates on the 3−sphere, the most general of
which are known as the ellipsoidal coordinates. In these coordinates, we again separate
the Schrödinger equation. This time, we recover a family of ODEs, all consisting of the
generalised ellipsoidal wave equation. Our analysis extends the results of [SZ07b].

The other five separable coordinate systems: prolate, oblate, Lamé, spherical and cylindrical
are all obtainable from the ellipsoidal coordinates by various degenerations. For the prolate
system, separation yields the well known Heun equation and Heun polynomials. Like
the free particle on R3, the joint spectrum is shown to possess quantum monodromy
and this is proved by showing the corresponding classical system is semi-toric. We then
study the oblate system; separation again yields the Heun equation with Heun polynomial
solutions. However, unlike the prolate system, monodromy is not observed in the joint
spectrum because there are hyperbolic singularities. For the Lamé system, separation yields
both the Lamé wave equation and hypergeometric equation with Lamé and Gegenbauer
polynomials as respective solutions. When studying the spherical coordinates, we obtain a
family of hypergeometric equations and obtain the Gegenbauer and Jacobi polynomials as
solutions. Finally, for cylindrical coordinates, a single non trivial hypergeometric equation
is obtained whose solution are the Jacobi polynomials. This corresponds to a classical
system on S2 × S2 that is toric. For all coordinate systems, we also investigate how
the discrete symmetry class of the corresponding classical system descends to both the
joint spectra and ODEs. This gives five examples illustrating the relationship between
the classical and quantum dynamics. We hope that future work will extend these
methodologies and allow for more connections to be drawn between special functions and
the corresponding classical integrable systems.

Chapters 2, 3 and 4 are all published in their entirety as separate papers as, respectively,
[DDN21], [DDN22] and [DD24]. With this in mind, this dissertation is presented as a thesis
by publication. The contribution of this author to [DDN21] and [DDN22] was primarily in
the quantum mechanics and the classical mechanics was the focus of Diana Nguyen and
her PhD thesis. In the rest of this chapter, we focus on the necessary background required
to understand this thesis.
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1.2. HAMILTONIAN MECHANICS

In this section we introduce the necessary foundations of Hamiltonian mechanics for
Chapters 2, 3 and 4. The study of Hamiltonian systems arose in the early 19th century as
a reformulation of Lagrangian mechanics. Via its connections to symplectic and Poisson
geometry, it has since gone on to serve as a way of linking classical and quantum
mechanics.

The interested reader should seek out [Arn78], a thorough introduction to the field. Further
texts include [CB15], [BF04] and [MR94].

Hamiltonian dynamics take place on sympletic manifolds.
Definition 1. A sympletic manifold (M,ω) is a pair consisting of a smooth manifold M and a
differential 2−form ω that is closed (dω = 0) and non degenerate (meaning ω(v, ·) = 0 only if
v = 0).

It follows from the definition that all symplectic manifolds are orientable and of even
dimension.

Darboux’s theorem [Arn78] guarantees the existence of so-called Darboux coordinates.
Theorem 1.1. Let (M,ω) be a 2n dimensional symplectic manifold. Then, in a neighbourhood of
every point x ∈ M , there exist local coordinates (q1, . . . , qn, p1, . . . , pn) in which the symplectic
form can be written as

ω =
n∑
i=1

dqi ∧ dpi.

Due to the non degeneracy condition of the symplectic form, an isomorphism can be
constructed between the tangent (TM) and cotangent bundles (T ∗M) of a symplectic
manifold. Let X (M) be the set of smooth vector fields and Ω1(M) be the set of smooth
differentiable 1−forms onM . WithX ∈ X (M) and α ∈ Ω1(M), it is easily shown that

iXω = α

is such an isomorphism where iXω = ω(X, ·).

Given a smooth function H :M → R, one can define a Hamiltonian vector field.
Definition 2. The Hamiltonian vector field XH ∈ X (M) corresponding to Hamiltonian function
H is given by

iXH
ω = dH

where dH is the differential of H .

In the case of canonical coordinates (q, p) where ω = dq ∧ dp, the Hamiltonian vector field
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is given by the familiar Hamilton’s equations

q̇ =
∂H

∂p
ṗ = −∂H

∂q
. (1.1)

Definition 3. Let ΦHt : M → M denote the flow of the Hamiltonian vector field XH . A function
f ∈ C∞(M) that is invariant under ΦHt for all t is said to be a first integral or constant of motion
of the Hamiltonian.

Poisson brackets are an efficient tool for checking first integrals and writing the equations
of motion for a given Hamiltonian.
Definition 4. On a symplectic manifold, the Poisson bracket {·, ·} of two smooth functions f, g ∈
C∞(M) is given by

{f, g} = ω(Xf , Xg).

Again, consider canonical coordinates (q, p) on the cotangent bundle T ∗M . Then, Hamilton’s
equations (1.1) can be rewritten as

q̇ = {q,H} ṗ = {p,H}

and it follows that for a function f
ḟ = {f,H}.

Thus, a function f is a first integral of the Hamiltonian if and only if {f,H} = 0, i.e. f and H
Poisson commute.

The idea of a Hamiltonian system can be generalised to a Poisson system where the
symplectic manifold is generalised to a Poisson manifold.
Definition 5. (Poisson Manifold) A Poisson manifold (P, {·, ·}) is a smooth manifold P equipped
with a Poisson bracket {·, ·} : C∞(P )× C∞(P ) → C∞(P ) which satisfies the following:

1) Bi-linearity:

{αf + βg, h} = α{f, h}+ β{g, h} ∀f, g, h ∈ C∞(P ) and α, β ∈ R,

2) Skew symmetry

{f, g} = −{g, f} ∀f, g ∈ C∞(P ),

3) Jacobi identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 ∀f, g, h ∈ C∞(P ),
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4) Leibniz rule

{fg, h} = {f, h}g + f{g, h} ∀f, g, h ∈ C∞(P ).

Note that conditions 1) through 3) make C∞(P ) a Lie algebra. Further, it is also clear that a
symplectic manifold is always a Poisson manifold but the reverse is not true.

Consider a point on a Poisson manifold, around which local coordinates zi are defined.
Then, the Poisson bracket can be written using a 2−tensor B called the Poisson tensor.
Specifically, one may write

{f, g} =
∑
i<j

Bij(z)
∂f

∂zi

∂g

∂zk
.

The Poisson tensor does not need to have full rank. If it does not, the degeneracy prohibits
the construction of a compatible symplectic form on the manifold. However, if the tensor
has full rank then this means the manifold is symplectic.

Consider a function H : P → R on a Poisson manifold (P, {·, ·}).
Definition 6. The Hamiltonian vector field XH of H on P is given by

XHf = {f,H}

for all smooth function f ∈ C∞.

We say two functions f and g are in involution if they Poisson commute, i.e. {f, g} =

0.
Definition 7. A Casimir is a function C ∈ C∞(P ) that is in involution with all other functions
f ∈ C∞(P ) on the Poisson manifold, i.e. {C, f} = 0 for all f .

Liouville integrable systems are defined on symplectic manifolds and are a key concept in
this thesis.
Definition 8. Liouville Integrable System : Let (M,ω) be a 2n dimensional sympletic manifold and
let Fi :M → R where i ∈ {1, . . . , n} be first integrals. If

1. The Fi are functionally independent, i.e. dF1 ∧ · · · ∧ dFn ̸= 0 almost everywhere on M and

2. The Fi are all in involution, i.e. {Fi, Fj} = 0 for all i, j = 1, . . . , n

then we call the triple (M,ω,F ) where F = (F1, . . . , Fn) an n dimensional Liouville integrable
system.

The Hamiltonian H could be any of the Fi or a function of the Fi. We default to the
convention of setting F1 = H .
Definition 9. A point x ∈M is called regular if the Fi are independent at x, i.e. if

(dF1 ∧ · · · ∧ dFn) (x) ̸= 0
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then x is regular, otherwise it is known as a critical point.

Consider the level sets of the integrals

Mc = {x ∈M |F (x) = c}

where c = (c1, . . . , cn), i.e. Fi(x) = ci. If Mc only contains regular points then c is known as
a regular value, otherwise it is a critical point.
Definition 10. The mapping F : M → Rn is called the momentum map of the integrable system.
The image of all critical points under F is the set of critical values also known as the bifurcation
diagram.

The following was proven in [Arn78] and is a key result in the study of integrable systems
since it gives a general description of the dynamics on regular level sets.
Theorem 1.2. Consider (M,ω,F ), an n dimensional integrable system and let c be a regular value
of F :M → Rn. Further, let F1 = H be the Hamiltonian. Then:

1) Mc is a smooth manifold invariant under the Hamiltonian flow induced by H ,

2) If Mc is compact and connected then it is diffeomorphic to the n−torus Tn,

3) There exist local symplectic coordinates (θ1, . . . , θn, I1, . . . , In) near Mc such that the Ii are
constant, θ̇i = Ii and the symplectic form can locally near Mc be re-written as

ωc =

n∑
i=1

dθi ∧ dIi.

Near regular values, all integrable systems have the same trivial dynamics as described
by the theorem above. Interesting invariants of integrable systems thus appear at critical
values, and hence the bifurcation diagram, definition 10, is a central object in this
thesis.

1.3. QUANTUM MECHANICS

Quantisation is a deeply technical field and we only give a brief overview of the necessary
concepts required for this thesis. The interested reader is encouraged to read these excellent
texts on the matter, for example: [SVuN17], [OdA88], [CAM+03] and [LL77].

Quantisation is the mechanism by which one goes from a classical integrable system
(with integrals defined on a symplectic manifold) to a quantum integrable system (with
commuting operators on a Hilbert space). Conversely, the process by which a quantum
integrable system is converted into a classical system is called taking the semi-classical limit,
if possible.
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Consider R2n with standard symplectic form form ω and let x := (x1, . . . , xn) and p :=

(p1, . . . , pn) be Darboux coordinates. We then say that the corresponding Hilbert space H is
the space L2(Rn)(x); the space of square integrable functions of x.
Definition 11. The Dirac rule quantises functions of the local symplectic coordinates (x,p)

as follows. The position variable xj is associated with the quantum position operator which is
multiplication by xj , i.e. xju where u ∈ L2(Rn) though the product is not necessarily in L2(Rn). In
other words, xj must be viewed as an unbounded operator. Similarly the momentum pj is associated
with the (also unbounded) quantum momentum operator ℏ

i
∂
∂xj

where ℏ > 0 is known as the semi-
classical parameter.

Much like the classical Poisson bracket, there exists what we call the standard commutator
between quantum operators on a Hilbert space.
Definition 12. Let F̂ and Ĝ be quantum operators on a Hilbert space. Then the commutator
between these operators is given by [

F̂ , Ĝ
]
:= F̂ Ĝ− ĜF̂ .

If
[
F̂ , Ĝ

]
= 0, then we say the two are commuting operators.

The position and momentum operators do not commute under the standard commutator.
Specifically, we have [

ℏ
i

∂

∂xj
, xj

]
=

ℏ
i
. (1.2)

As the order of the operators matters, Dirac quantisation is not unique. Further, simply
replacing position and momentum variables by their corresponding operators is not even
guaranteed to give a Hermitian operator.

It can be shown that the quantum operators ℏ
i
∂
∂xj

◦ xj and xj ◦ ℏ
i
∂
∂xj

have the same classical
limit - xjpj . However, because of the non vanishing bracket (1.2), measuring position and
momentum is order dependent. In other words, measuring position and then momentum
yields a different result to the reverse operation. The property (1.2) is known as the
uncertainty principle.

We note that, due to the non-commutativity of the position and momentum operators (1.2),
the Dirac rules are insufficient for quantising general functions.

We now have all the ingredients necessary to define a quantum integrable system.
Definition 13. Let (R2n, ω) be an 2n dimensional symplectic manifold equipped with Liouville
integrable system F = (F1, . . . , Fn), i.e. {Fi, Fj} = 0 for all i, j where {·, ·} is the canonical Poisson
bracket. We say that the quantum integrable system corresponding to (M,ω,F ) is a collection
(F̂1, . . . , F̂n) of n pairwise commuting self-adjoint operators on H, the Hilbert space corresponding
to the quantised symplectic manifold.
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While the Dirac method on Rn is a relatively straightforward method of quantisation and so
is a good introduction to the space, it has many limitations. By contrast, there are two well
know methodologies for quantising certain integrable systems. These are Weyl quantisation
on a cotangent bundleM = T ∗X whereX is a smooth n dimensional manifold and Berezin-
Toeplitz quantisation on compact symplectic manifolds. For the latter, the set of admissible
values of the semi-classical parameter ℏ is itself quantised with ℏ = 1

k where k ∈ N∗ and
the Hilbert space itself is finite with its dimension dependent on ℏ. For more detail, see
[Cha03].

Consider an n dimensional quantum integrable system (F̂1, . . . , F̂n) on a Hilbert space
H.
Definition 14. Let ψ ∈ H be a simultaneous eigenstate of all of the F̂j , i.e.

F̂jψ = λjψ ∀j.

We say that ψ is a joint eigenstate of (F̂1, . . . , F̂n). The set of all n−tuples (λ1, . . . , λn) for all joint
eigenstates ψ is called the joint spectrum of the quantum integrable system.

The joint spectrum of a quantum integrable system with a semiclassical limit is a function
of the semi-classical parameter ℏ. The limit ℏ → 0 is known as the semi-classical limit and
one recovers the corresponding classical system. The integrals obtained from degenerating
the operators in this limit are known as the principal symbols.

From [PVuN15], we have the following theorem which relates the joint spectrum in the
semi-classical limit to the image of the momentum map.
Theorem 1.3. Let I ⊂ (0, 1] be a set with a limit point at 0. Then the limit set of the joint spectrum
of a family of pairwise commuting self-adjoint semiclassical operators

F̂1 := (F̂1,ℏ)ℏ∈I , . . . , F̂n := (F̂n,ℏ)ℏ∈I

is the classical spectrum S ⊂ Rn of the corresponding classical integrals (F1, . . . , Fn) where Fi is
the classical integral corresponding to F̂i. That is, the limit set of the joint spectrum is the closure of
the image of the momentum map of the classical integrals F1, . . . , Fn.

In particular this means that the joint spectrum is contained in the image of the momentum
map, as we will see in our examples.

1.4. DIFFERENTIAL EQUATIONS

Deeply related to our investigation of the quantum mechanics is the study of ordinary
differential equations. See e.g. [SL00], [Ars64], [RA95] and [Inc56].

At the heart of this thesis’s study of quantum mechanics is the Laplace Beltrami operator.
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Consider a manifold with local coordinates xi and metric tensor elements gij .
Definition 15. The Laplace Beltrami operator of a twice differentiable function f is the divergence
of the gradient, i.e.

∆f := ∇ · (∇f). (1.3)

In local coordinates, one may rewrite (1.3) as

∆f =
1√
|g|
∂i

(√
|g|gij∂jf

)
where |g| := |det(gij)| is the absolute value of the determinant of the metric tensor, gij is the (i, j)th
component of the inverse of the metric tensor and we use the Einstein summation convention.

The well known Schrödinger equation in physics for a free particle (i.e. no potential) is
simply the eigenvalue equation of the Laplace Beltrami Operator

∆f = Ef (1.4)

where E denotes the total energy of the system. One can recover the Schrödinger (and,
in turn, the Laplace Beltrami operator) from (1.4) by using the Dirac rule by swapping
instances of xj with multiplication by xj and those of pj with multiplication by ℏ

i
∂
∂xj

.

In this thesis, we focus on solving the Schrödinger equation by using the method of
separation of variables. For more details, see the works of [KKM18] and [KWMW76].
In particular, we focus on R3 and S3. For the former, there exist 11 orthogonal separable
coordinates and for the latter, there exist 6 such coordinate systems.

As all systems studied in this thesis arise from separation of variables, we know that
all resulting systems are Stäckel systems [Eis34]. Thus, we know that classically the
Hamiltonian, along with integrals obtained via separation, will be quadratic in the
momenta.

From the quantum perspective, it is known that the Schrödinger equation is separable
in a given orthogonal coordinate system if the corresponding Hamilton-Jacobi equation
is separable and if the Robertson condition is satisfied [Rob27, BCR02]. Further, from
[Eis34, BCR02] we know that the latter is satisfied if and only if the Ricci tensor is diagonal.
Since all the systems we study in R3 and S3 have diagonal Ricci tensor, we are guaranteed
separable solutions to the Schrödinger equation if the classical system separates. All ODEs
arising from separation studied in this thesis are of second order.

Consider a second order linear ODE given by

v
′′
(z) + a(z)v

′
(z) + b(z)v(z) = 0 (1.5)
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where a(z) and b(z) are analytic functions. The following is well known in the fields of
special functions and ODEs. For more detail, see [Kri10, SL00].
Definition 16. Let z = z0 be a singular point of (1.5). We say that z0 is a regular singular point
if we can rewrite a(z) = A(z)

z−z0 and b(z) = B(z)
(z−z0)2 where A(z) and B(z) are analytic functions in

some neighbourhood of z0. If this is not the case, then we say z0 is an irregular singular point.

Since A(z) and B(z) are analytic, they can be expressed locally as power series about
z = z0, i.e. A(z) =

∑∞
i=0 ai(z − z0)

i and B(z) =
∑∞

i=0 bi(z − z0)
i. Thus, around regular

singular points, one can use the Frobenius ansatz v(z) =
∑∞

i=0 vi(z − z0)
α+i where v0 = 1.

Substituting this expression for v(z) into (1.5) gives a three term recurrence relation which
begins with

α2 + (a0 − 1)α+ b0 = 0. (1.6)

Definition 17. Equation (1.6) is called the indicial equation for (1.5). The roots (α1, α2) to the
indicial equation are known as the exponents for the root z0.

A special family of linear ODEs encountered in this thesis are known as Fuchsian
equations.
Definition 18. A second order differential equation with rational coefficients andN+1 singularities
is called Fuchsian if all singularities are regular.

A Fuchsian equation can be written in the following form [Inc56]

w
′′
+

 N∑
j=1

γj
z − ej

w
′
+

 N∑
j=1

qj
z − ej

w = 0 (1.7)

where
∑N

j=1 qj = 0, the exponents at the ej are (0, 1− γj), those at ∞ are denoted by (α, β)

such that

α+ β + 1 =

N∑
j=1

γj αβ =

N∑
j=1

ejqj . (1.8)

The qj in (1.7) are called the accessory parameters. For a Fuchsian equation with N finite
singularities, there are N − 2 free accessory parameters. The Heun and Hypergeometric
equations are Fuchsian equations with N = 3 and N = 2 respectively. In this thesis we also
study the collision of singular points. This is known as confluence and the resulting ODE
can remain Fuchsian (e.g. going from Heun to Hypergeometric) or an irregular singularity
can appear (e.g. Heun to confluent Heun equation).

It is well known, see [KM86] and [KKM06], that separation in orthogonal coordinate
systems yields special functions like Heun, ellipsoidal, Jacobi functions and so forth. These
functions, their symmetries and their relationships to their corresponding classical systems
will be a central focus of this thesis.
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As we discover via the examples studied in this thesis, the separated ODEs that arise from
the compact manifold S3 are all Fuchsian type equations. Separation on Rn (with or without
potential) results in confluent ODEs. In particular, in the first two examples, the confluent
Heun equation occurs when the singularity at infinity is irregular.

The ODEs obtained by separation, along with their boundary conditions, allow us to
compute the joint spectrum. For most systems with at most N = 3 finite singularities,
this is a relatively straightforward affair. On compact manifolds, equations such as those
arising (after substitution) from (1.5) will truncate as a result of a quantisation condition.
This leads to a finite three term recurrence relation from which spectral parameters can be
found; see Chapter 4. For non compact manifolds (see Chapters 2 and 3) no such truncation
occurs, but a numerically accurate approximation for the spectra can be computed from an
infinite tri-diagonal matrix.

There is one system we study for which there are N = 4 finite singularities; these
arise from separating the Schrödinger equation in ellipsoidal coordinates on S3. In this
case, we employ the method of Heine-Stieltjes polynomials as described in [Ala79] and
[ARZ85].



Chapter 2

Monodromy in Prolate Spheroidal Harmonics

Abstract

We show that spheroidal wave functions viewed as the essential part of the joint
eigenfunction of two commuting operators of L2(S

2) has a defect in their joint
spectrum that makes a global labelling of the joint eigenfunctions by quantum
numbers impossible. To our knowledge this is the first explicit demonstration
that quantum monodromy exists in a class of classically known special
functions. Using an analogue of the Laplace-Runge-Lenz vector we show
that the corresponding classical Liouville integrable system is symplectically
equivalent to the C. Neumann system. To prove the existence of this defect
we construct a classical integrable system that is the semi-classical limit of the
quantum integrable system of commuting operators. We show that this is a
generalised semi-toric system with a non-degenerate focus-focus point, such
that there is monodromy in the classical and the quantum system.

2.1. INTRODUCTION

Prolate spheroidal wave functions are important and well known special functions that
appear when separating variables in problems that have the symmetry of prolate ellipsoids.
Classical references on spheroidal wave functions are [WW65, MS54, Fla57, SMC+59,
Ars64]. One inspiration for our work is the general theory of separation of variables
developed in [MJ77, BKM76, KKM18]. There spheroidal harmonics appear as the joint
eigenfunctions of two commuting operators on the Hilbert space L2(S

2). The two operators
are constructed from separation of variables in spheroidal coordinates. In the spherical limit
the spheroidal harmonics reduce to the well known spherical harmonics. In this paper we
study the joint spectrum of these two commuting operators and show that the lattice of
joint eigenvalues has a global defect. Even though prolate spheroidal wave functions are
very well studied special functions this observation about the joint spectrum seems to be
new.

21
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Another inspiration for our work is the study of quantum and Hamiltonian monodromy
in integrable systems, specifically so-called semi-toric integrable systems. The global study
of Liouville integrable systems was initiated by Duistermaat in [Dui80]. In a subsequent
paper with Cushman [CD88] it was shown that classically and quantum mechanically
the spherical pendulum has Hamiltonian and quantum monodromy, respectively. It was
realised that classically [Mat96, Zun97] and quantum mechanically [VuN99] monodromy is
caused by a so-called focus-focus equilibrium point of the classical system. More recently
a global classification of semi-toric integrable systems has been achieved [PVuN09]. By
definition [VuN07], semi-toric systems have two degrees of freedom and one proper global
integral which induces an S1 action. Furthermore, no critical points can be of hyperbolic
or degenerate type. The condition of properness is rather restrictive, such that, e.g., the
spherical pendulum and the integrable system studied in this paper are not semi-toric
system in this strict sense. They are, however, generalised semi-toric systems [PR+17], for
which only the combined moment map needs to be proper. In general integrable systems
that come from separation of variables of the free particle in R3 do not possess a global
S1 action. If we restrict to those coordinate systems that have rotational symmetry we do
have a global S1-action: rotation about the symmetry axis. As we will show, separation in
spheroidal coordinates provides an example of a generalised semi-toric system.

In two recent papers [DW18] and [CDEW19] we have used separation in spheroidal
coordinates for the Kepler problem in space and the harmonic oscillator in space,
respectively, and shown that both problems – when considered in prolate spheroidal
variables – have Hamiltonian and quantum monodromy. The present paper grew out of
the realisation that an even simpler problem, namely the free particle, can be studied in a
similar way, and leads to similar results, namely monodromy in the joint spectrum. As in
the two previous works it is crucial for this approach that the system under consideration
is superintegrable. In the Kepler problem and the harmonic oscillator superintegrability
implies that the flow of the Hamiltonian is periodic with constant period, and hence it is
possible to consider symplectic reduction with respect to this flow, viewed as an action of
the group S1. The reduced system inherits two constants of motion which are the separation
constants from the separation of variables. In the present example of the free particle the
orbits of the Hamiltonian are not periodic orbits, but instead straight lines. Thus we need
to consider reduction not with respect to a compact group S1 but with respect to the non-
compact group R1. Even though there are no general theorems about reduction in this case
it turns out that the reduction can be performed nicely and elegantly using the invariants
of the Hamiltonian flow. This leads to the classical analogue of the commuting operators
described by Kalnins and Miller [BKM76], and we then show using singular reduction
with respect to the global S1 action (the angular momentum about the z-axis) that the
system is generalised semi-toric and has a non-degenerate focus-focus point and hence
monodromy.
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The fact that the free particle when treated in this way has monodromy was first observed
in [MDEW19, Mar18] as a special limit of Euler’s two-centre problem in which the masses
of both centres vanish. The main point of [MDEW19, Mar18] was the investigation of
scattering monodromy, and in [Mar18] it was shown that after reduction by the free flow
the degenerate C. Neumann system aka the quadratic spherical pendulum is obtained. The
presence of monodromy in the quadratic spherical pendulum is well known [BZ93, Efs05],
and the interpretation as a degeneration of the C. Neumann system was elucidated in
[DH12]. The reduction using invariants we perform in this paper leads to the classical
analogue of the work of Kalnins and Miller [KKM18], and gives rise to a generalised semi-
toric system with Lie-Poisson structure e∗(3), see Theorem 1. From [Mar18] we know
that this system must be equivalent to the degenerate C. Neumann system on T ∗S2, and
in Theorem 5 we give the explicit symplectomorphism that establishes this equivalence.
Thus Theorem 6 is already known indirectly, because using Theorem 5 the monodromy
in the degenerate C. Neumann system applies. Nevertheless, we give a direct proof of
monodromy in Theorem 6, and illustrate it following an idea from [CIAD14].

The third inspiration for our work is to connect the two threads described above: separation
of variables including the corresponding special functions on the one hand and the
global theory of integrable systems on the other hand. Special functions related to
(confluent) Fuchsian equation beyond the (confluent) hypergeometric equation are for
example discussed in [Ars64, SL00]. The spheroidal wave equation is a particular case
of the confluent Heun equation, see [RA95] and the references therein. In our setting
spheroidal harmonics are joint eigenfunctions of two commuting operators, and we show
that a defect in the joint spectrum of these operators can be understood from the analysis
of the corresponding Liouville integrable system. This is more than a WKB analysis of the
solutions, since it takes into account global information about the action variables of the
integrable system. Nevertheless, we remark that the essence of the defect could have been
observed by analysing well known asymptotic expansions [AS92] for the eigenvalues of the
spheroidal wave equation; but to our knowledge such an analysis has not been presented
before.

The solutions of the Helmholtz equation inside the prolate ellipsoid (aka the quantum
billiard in the prolate ellipsoid) have been studied in [WD02], and monodromy was found
in the joint spectrum. Since this is a system with three commuting operators (as opposed
to two in the current paper) the radial equation has to be included and this leads to two
coupled boundary value problems that were numerically solved in [WD02]. In the present
problem we only study the angular wave equation and find monodromy also in this simpler
setting.

The plan of the paper is as follows. In section 2 we describe a reduction of the free particle
in R3 that leads to a reduced system with a Lie-Poisson structure of the algebra e∗(3) of
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the Eulidean group of translations and rotations E(3). To obtain an integrable system on
the reduced space separation of variables in prolate spheroidal coordinates is employed
in the next section. The centrepiece of the paper is the description of monodromy in
the corresponding quantum system, which is obtained from separation of variables of
the Helmholtz equation in R3. We show that the joint spectrum of the two commuting
operators has quantum monodromy. In particular this can be seen from the analysis of
the classical asymptotic series for the eigenvalues in two distinct limits. Then we show
that the spheroidal harmonics integrable system is in fact symplectically equivalent to the
integrable C. Neumann system of a particle constrained to move on a sphere with an added
harmonic potential, which in this case has rotational symmetry. The analysis of monodromy
using well known asymptotic formulas is somewhat heuristic, and to prove monodromy we
show that the underlying classically integrable spheroidal harmonics system is generalised
semi-toric with a non-degenerate focus-focus point corresponding to a doubly pinched
torus.

2.2. THE FREE PARTICLE

The free particle in R3 lives on the phase space T ∗R3 ∼= R6 with global coordinates
Q := (x, y, z)T and P := (px, py, pz)

T . The Hamiltonian is simply H = 1
2

(
p2x + p2y + p2z

)
and the equations of motion are Q̇ = P and Ṗ = 0. The trajectories or geodesics are

Q = P t+Q0, P = P0

where Q0,P0 are the intitial position and momentum vectors, respectively, and t is time.
In position space, the geodesics are oriented lines through Q0 in the direction of P = P0.
We can perform a symplectic reduction that identifies the oriented straight lines of the flow
of H to points and so lowers the dimensionality of the phase space from 6 to 4. We will
see that this reduction also produces a compact configuration space, which is the space of
oriented lines through the origin, which is a sphere. The conserved quantities are the linear
momenta P = (px, py, pz) and the angular momenta L := Q× P = (lx, ly, lz)

T , since

L (t) = (Q0 + tP0)× P0 = Q0 × P0 = constant.

By construction we have P ·L = 0.

The six invariants P , L are closed under the standard Poisson bracket in T ∗R3. For example
{px, ly} = pz , and {lx, ly} = lz , etc. Assembling all such identities into a 6 × 6 matrix B
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gives1

B = −

(
0 P̂

P̂ L̂

)
. (2.1)

The matrix B is the matrix of a Lie-Poisson structure on R6 with coordinates P and L. This
Lie-Poisson structure is the algebra e∗(3) corresponding to the Euclidean group E(3), the
group of isometries of Euclidean space R3. In particular the components of P are generators
of translations, while the components of L are generators of rotations. Given a Hamiltonian
G the time evolution of any function f(P ,L) is given by ḟ = {f,G} = ∇f tB∇G and
thus

Ṗ = −P ×∇LG, L̇ = −P ×∇PG−L×∇LG . (2.2)

The Poisson structureB has rank 4 with two Casimirs C1 = P ·P = 2E and C2 = P ·L = 0,
such that B∇Ci = 0. The first Casimir C1 = 2E is often set to 1 by normalisation of the
speed of the particle, whereas the second Casimir C2 is an identity that states that L is
orthogonal to P . In addition to these 6 basic invariants an analogue of the Laplac-Runge-
Lenz (LRL) vector can be defined and we will discuss this in more detail in section 2.5.

Fixing the two Casimirs defines the reduced phase space of T ∗S2 as a subset of R6 with
coordinates P and L. Here the sphere is defined in momentum space, and reflects the
constancy of the kinetic energy of the particle, while the tangent space to the sphere is
the set of planes with normal vectors P in L space, hence C2 = 0. Every point on T ∗S2

represents a line (geodesic) in the original T ∗R3 with direction P (the point on the sphere)
and angular momentum L (the vector in the tangent space of the sphere). Note that L is a
normal vector to the plane that contains the geodesic and the origin, and the length of L is
the distance of the geodesic to the origin divided by the value of C1. There are four oriented
lines with direction ±P in a given plane with normal vector ±L. Changing the orientation
of the geodesic amounts to changing the sign of P and L. Changing the sign of L but not of
P represents a parallel line with the same orientation in the same plane that is passing on
the other side of the origin. Lastly, changing the sign of P but not of L represents a parallel
line with the opposite orientation that is passing on the other side of the origin. Later we
will identify any two such geodesics, which will lead to T ∗RP2 instead of T ∗S2.

Since we have reduced by the dynamics of H there are no dynamics defined on T ∗S2 at
the moment. In the next section we are going to define an integrable system on T ∗S2

by separating the free particle in spheroidal coordinates. The separation constant and the
angular momentum will induce an integrable system on T ∗S2.

1For a vector v ∈ R3 the corresponding antisymmetric hat matrix v̂ is defined by

v̂u = v × u ∀u ∈ R3.

Later we also use hat to denote the quantum operator corresponding to a classical observable; from the context
it should be clear which one is meant.
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2.3. THE SPHEROIDAL HARMONICS INTEGRABLE SYSTEM

Prolate ellipsoids are formed by rotating an ellipse around its focal axis. Let the foci of the
resulting ellipsoid be located at (0, 0,±a). Prolate spheroidal coordinates are then defined
by

x = a
√

(ξ2 − 1) (1− η2) cos(ϕ),

y = a
√

(ξ2 − 1) (1− η2) sin(ϕ),

z = aξη ,

(2.3)

where η ∈ [−1, 1], ξ ∈ [1,∞) and ϕ ∈ [0, 2π) = S1. Each point of R3 is associated with the
intersection of the ellipsoid described by (2.3), a confocal hyperboloid and a plane. These
surfaces correspond to fixed ξ, η and ϕ respectively. The Hamiltonian of the free particle in
prolate spheroidal coordinates is

H =
1

2a2

(
(1− η2)p2η + (ξ2 − 1)p2ξ

(ξ2 − η2)
+

p2ϕ
(1− η2) (ξ2 − 1)

)
(2.4)

where pη, pξ and pϕ are the momenta conjugate to η, ξ, ϕ, respectively. Clearly pϕ is a
constant angular momentum, sinceH is independent of ϕ. To separate the variables observe
that

0 = (H − E)2a2(ξ2 − η2) = G(η, pη)−G(ξ, pξ),

where

G(q, p) = (1− q2)(p2 − 2a2E) +
p2ϕ

1− q2
(2.5)

such that G(ξ, pξ) = g = G(η, pη) where g is the separation constant. Substituting E = H

into G gives

G =
p2η − p2ξ
ξ2 − η2

(1− η2)(ξ2 − 1) + p2ϕ
ξ2 − η2

(ξ2 − 1)(1− η2)
.

To convert this to the original variables observe that

|L|2 = (ξ2 − 1)(1− η2)

(ξ2 − η2)2
(pξη − pηξ)

2 + p2ϕ

(
1 + ξ2 − η2

(ξ2 − 1)(1− η2)

)
and

a2(p2x + p2y) =
(ξ2 − 1)(1− η2)

(ξ2 − η2)2
(pξξ − pηη)

2 + p2ϕ
1

(ξ2 − 1)(1− η2)

such that
G = |L|2 − a2(p2x + p2y) . (2.6)

This is a smooth function on T ∗S2, as is pϕ = Lz , and it is easy to check that they have
vanishing Poisson bracket. This can be computed in the original variables (Q,P ) with
respect to the canonical bracket on T ∗R3, or in the variables (P ,L) after reduction to T ∗S2
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with respect to the induced bracket with Poisson tensor B. In both cases {|L|2, Lz} = 0 and
also {p2x+p2y, Lz} = 0 and hence {G,Lz} = 0. We write Lz for the function that maps a point
(P ,L) to the coordinate lz . Thus we arrive at the main classical object of this paper:
Theorem 2.1 (Spheroidal harmonics integrable system). Consider R6 with coordinates (P ,L)

and Lie-Poisson structure of e∗(3) with Poisson tensor B given by (2.1) and Casimirs P · P = 2E

and P ·L = 0. The functions (Lz, G) = (lz, l
2
x+ l

2
y+ l

2
z −a2(p2x+p2y)) define a Liouville integrable

system on T ∗S2.

The values of (Lz, G) will be denoted by (m, g). We call this integrable system the
(prolate) spheroidal harmonics integrable system, since it arises from separation of variables in
spheroidal coordinates. It is the classical analogue of the compact part of the spheroidal
wave equation, whose solutions are known as spheroidal harmonics.2 In this work
we are only interested in the prolate spheroidal harmonics. Formally the oblate case
can be found by flipping the sign of a2, and this system is also Liouville integrable.
However, the dynamics in the oblate case are quite different and in particular does not
exhibit monodromy, so we do not consider this case in the present work. Repeating
this procedure for any of the 11 separating coordinate systems on R3 gives rise to an
integrable system on e∗(3). The list of the resulting smooth commuting integrals is given
in [MPW81]. For example, for Euclidean coordinates the integrals are the components of
P , and the dynamics produces straight lines in L. This is an integrable system, but all
the dynamics is unbounded. Separation in ellipsoidal coordinates leads to an integrable
system on e∗(3) with two quadratic commuting functions and with two parameters. Under
the mapping described in Theorem 5 this integrable system is equivalent to the (non-
degenerate) C. Neumann system. It is an interesting research project to study these
integrable Hamiltonian systems alongside the corresponding special functions. In this
paper we restrict our attention to spheroidal coordinates, because, as we will show, it
leads to a generalised semi-toric system that exhibits Hamiltonian monodromy. The
related quantum system has quantum monodromy. In other words, the eigenvalues of the
spheroidal wave equation exhibit monodromy. Before we describe the spheroidal wave
equation and its quantum monodromy in the next section, here we are going to describe
some aspects of the dynamics of the spheroidal harmonics integrable system. A detailed
analysis including the proof that it is a generalised semi-toric system with Hamiltonian
monodromy is postponed to a later section.

The vector field that is generated by the Hamiltonian Lz is given by B∇Lz which

2The term spheroidal harmonics is used in different ways in the literature. The strict use of “harmonics”
refers to solutions of the Laplace equation. When considering the Laplacian in R3 separated in spheroidal
coordinates the eigenfunctions are products of associated Legendre functions, however, one of them is
evaluated outside the usual range |z| < 1, and is thus sometimes referred to as a spheroidal harmonic [DLMF,
14.3]. Our use of the term spheroidal harmonic is different and serves as a “reminder of the kinship with the
spherical harmonics" [PFTV88, 17.4].
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gives
Ṗ = −P × ez, L̇ = −L× ez . (2.7)

The solution is a rotation of the first two components of P and L by the same amount; the
third components are unchanged. Thus the point P on S2 is rotated about the pz-axis, while
L in the tangent space is rotated in the same way. The north- and the south-poles of S2 are
fixed by this rotation, but then L = (lx, ly, 0)

T is not fixed, unless it vanishes. A vector
L = (0, 0, lz)

T that is in the tangent space of a point P = (cosϕ, sinϕ, 0) on the equator of
the sphere is fixed by this rotation, but the corresponding P is not. This shows that the
only fixed points of this S1 action are P = (0, 0,±1)T , L = (0, 0, 0)T . They correspond to
geodesics along the z-axis, i.e., lines through the two foci of the ellipsoid of the spheroidal
coordinates.

The vector field that is generated by the Hamiltonian G is

Ṗ = −2P ×L, L̇ = a2P × (P − ezpz) = −a2pzP × ez . (2.8)

Clearly L = 0 and P = ezpz is an equilibrium point. Moreover, for P = (px, py, 0)
T and

L = (0, 0, lz)
T we have L = const, pz = 0 = const and ṗx = −2lzpy and ṗy = 2lzpx, a

periodic solution along the equator with orientation depending on the sign of lz . For lz = 0

the equator is a circle of non-isolated equilibrium points of the flow of G.

In the limiting case a → 0 the integral G becomes the angular momentum squared. In this
limit the equations of motion can be solved explicitly in terms of trigonometric functions.
Since L̇ = 0 the equation for Ṗ is that of a rotation about the fixed axis L. The period of these
rotation is given by

√
|L|. If instead of G = |L|2 we consider |L| as a Hamiltonian then the

period is 2π, and hence |L| is an action variable. To see this just integrate Ṗ = −P ×L/|L|
for constant non-zero L. The solution is a rotation of P about the fixed normal vector in the
direction of L. The only problem with the flow of |L| is that the vector field is not defined
when L = 0 and hence the flow does not define a global S1 action. When instead the flow
of G = |L|2 (for a = 0) is considered the vector field simply vanishes when L = 0, and so
the whole sphere |P | = 2E is a sphere of fixed points.

The spheroidal harmonics integrable system has a number of discrete symmetries. We
restrict our attention to discrete symmetries that are canonical transformations.
Proposition 1 (Discrete symmetries). The group of linear discrete canonical symmetries of the
spherical harmonics integrable system is Z2 × Z2. For si = ±1, i = 1, 2, 3 define S =

diag(s1, s2, s3) and S̃ = diag(s2s3, s1s3, s1s2) so that a linear map of (P ,L) is given by (SP , S̃L).
The non-trivial elements of Z2 × Z2 are obtained from S1 = diag(+,+,−), S2 = diag(−,−,−)

and S3 = diag(−,−,+).

Proof. Since S−1 = St the map Q 7→ SQ extends to a symplectic map as (Q,P ) 7→
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(SQ, SP ). The induced sign flip on the angular momentum is L 7→ S̃L where Ŝ =

diag(s2s3, s1s3, s1s2) is found by computing the cross product Q × P . The integral G
is invariant under all such sign flips, since it is quadratic in components of P and L.
In addition Lz = xpy − ypx should be invariant under the discrete symmetry which
requires s1s2 = +1. Thus the discrete symmetries of the spheroidal harmonics system are
S1 = diag(++−), S2 = diag(−−−) and S3 = diag(−−+) together with the corresponding
induced map S̃i on L. Together with the identity they form the group Z2 × Z2.

■

In prolate spheroidal coordinates (2.3) the symmetry operations are realised as follows.
Changing the sign of η changes the sign of z but leaves x and y unchanged, so that η 7→ −η
corresponds to the symmetry S1. Adding π to ϕ changes the signs of x and y while z is
unchanged, so that ϕ 7→ ϕ + π corresponds to the symmetry S3. The composition of both
gives S2.

2.4. QUANTUM MONODROMY IN PROLATE SPHEROIDAL

HARMONICS

Separation of variables of the Laplace equation or the Helmholtz equation in R3 in
spheroidal coordinates leads to spheroidal harmonics. The classical references on
spheroidal harmonics are [SMC+59, MS54, Fla57], and a few more modern ones are
[PFTV88, FAW03, Vol03, DLMF, Zha17]. We would like to mention that prolate spheroidal
wave functions have found applications as band-limited functions [Sle83], also see [XRY01,
Boy04] and the references therein. Here we will derive the spheroidal wave equation in the
traditional way from the Schrödinger equation of the free particle separated in spheroidal
coordinates. This will allow us to connect to the spheroidal harmonics integrable system
by way of semi-classical quantisation, a connection we need later to prove the existence of
quantum monodromy.

The stationary Schrödinger equation for the free particle is −1
2ℏ

2∆Ψ = EΨ, or we can think
of it as Helmholtz’s wave equation ∆Ψ + k2ψ = 0. Writing the Laplacian ∆ in spheroidal
coordinates (2.3) gives

1

(ξ2 − η2)

(
∂

∂ξ

(
(ξ2 − 1)

∂Ψ

∂ξ

)
+

∂

∂η

(
(1− η2)

∂Ψ

∂η

))
+

1

(1− η2) (ξ2 − 1)

∂2Ψ

∂ϕ2
= −2Ea2

ℏ2
Ψ .

(2.9)
Separation into product form Ψ(η, ξ, ϕ) = ψη(η)ψξ(ξ)ψϕ(ϕ) yields the simple equation

L̂2
zψϕ +m2ψϕ = 0, L̂2

z =
∂2ψϕ
∂ϕ2

(2.10)
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and the (prolate angular) spheroidal wave equation

Ĝψη = gψη, Ĝ = − d

dη

(
(1− η2)

d

dη

)
+

m2

1− η2
− γ2(1− η2), γ2 =

2Ea2

ℏ2
(2.11)

with separation constants m and g. The third separated equation is found by replacing η by
ξ. The difference is in the domain η ∈ [−1, 1] while ξ ≥ 1.

For general values of γ the equation (2.11) is a singular Sturm-Liouville equation. It can be
transformed into an equation with periodic (but still singular) coefficients, see, e.g. [Ars64].
Viewed as a polynomial differential equation in the complex plane it can be transformed
into the confluent Heun equation [RA95]. The general Heun equation is the second order
ordinary differential equation of Fuchsian type with four regular singular points. Letting
two of the regular singular points coalesce leads to an irregular singular point. The result is
the confluent Heun equation.

The quantum integrable system (QIS) on the reduced space consists of two self-adjoint
operators L̂z and Ĝ acting on functions on the sphere S2. The eigenvalues gml of Ĝ are
those values of g in (2.11) for which the solution of the spheroidal wave equation for η
leads to a smooth function ψηψϕ on the sphere. This is because, as we shall see below,
said eigenvalues will be obtained from an infinite series of smooth Legendre polynomials.
These coefficients will be set so as to give a final bounded and smooth wavefunction. In our
treatment we ignore the equation for ξ.

The solution ψϕ to the angular equation is equal to linear combinations of e±imϕ and 2π-
periodicity in ϕ implies e±im2π = 1, and hence m must be an integer. This integer m is the
quantum number for the z-component of the angular momentum lz = mℏ.

When g is an eigenvalue gml of the singular Sturm-Liouville problem (2.11) the corresponding
eigenfunction bounded on (−1, 1) is called the (prolate angular) spheroidal wave function
of the first kind, which we denote by Sml (γ, η).

3 In the limit γ → 0 these solutions
degenerate to the associated Legendre polynomials of the first kind Pml (η). For γ ̸= 0

the spheroidal wave functions can be written as a (generally infinite) series of associated
Legendre polynomials

Sml (γ, η) =
∞∑

k=0,1

′ dlmk (γ)Pmm+k (η) (2.12)

where dlmk are the expansion coefficients and the prime on the summation indicates to sum
over odd k if l − m is odd and over even k if l − m is even. Expressions for the resulting
three term recursion relation that determines dlmk can be found, e.g., in [AS92, 21.7.3].

3The notation for the angular spheroidal wave function varies, see [AS92] for a table comparing various
common notations. Our notation loosely follows [AS92], but we prefer to write l instead of n as in [SMC+59,
MF53], and we write the indices m

l as in the associated Legendre polynomials.
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Figure 2.1: Joint spectrum (ℏm, ℏ2gml ) of the spheroidal harmonics with 2Ea2 = 18 for
ℏ = 1.0, 0.5, 0.1 illustrating the semi-classical limit ℏ → 0.

The product of the eigenfunctions of (2.10) and (2.11) gives the spheroidal harmonics

Zml (γ, η, ϕ) :=
1√
2π

Sml (γ, η)e
imϕ =

∑
k

dlmk Y m
m+k(η, ϕ) (2.13)

expressed as a series of spherical harmonics Y m
l . In the limit γ → 0 we have Zml = Y m

l .
Normalisation on the sphere requires

ˆ 2π

0

ˆ π

0
Zml (Zml )∗ sin θdθdϕ = 1.

and the dlmk are chosen such that this holds, see, e.g., [AS92]. An example of the spheroidal
wave function Sml (γ, η) is shown in Fig. 2.7 and a comparision of Zml (θ, ϕ) with the
corresponding spherical harmonic Y m

l (θ, ϕ) is presented in Fig. 2.8.

We now consider the joint spectrum of the QIS (L̂z, Ĝ). The joint spectrum of a QIS
(Ĥ1, . . . , Ĥn) is the set of (λ1, . . . λn) ∈ Rn where Ĥiψ = λiψ for i = 1, . . . , n and ψ is a
joint eigenfunction. For periodicity in ϕ we need to require that the eigenvalue of L̂z is ℏ
times an integer m. The eigenvalues gml of Ĝ can in general only be computed numerically.
The Mathematica [rWR19] function SpheroidalEigenvalue[l,m, γ] gives the spheroidal
eigenvalue gml of (2.11). From general results in microlocal analysis, see, e.g., [PPVuN14],
we know that in the semiclassical limit ℏ → 0 the joint spectrum (ℏm, ℏ2gml ) is locally a
lattice ℏZ2. For a fixed spheroidal coordinate system, i.e., a fixed value of a decreasing ℏ
makes this local lattice finer and finer, see Fig. 2.1.

In the following we prefer to absorb ℏ in the definition of the single parameter γ = 2Ea2/ℏ2

and present the scaled joint spectrum (m, gml ). When changing γ the values and the
distribution of the joint eigenvalues changes. We are going to explain the structure of the
joint spectrum and its dependence on γ in the course of the paper. Two examples of the
joint spectrum are shown in Fig. 2.2 for γ = 8, 32. Note that this lattice is bounded below
by a parabola (given by the critical values of the energy-momentum map, see below) but
unbounded from above. We can observe that, locally the lattice is isomorphic to Z2 thus
allowing local assignments of quantum numbers. However, there is a lattice defect at the
origin, and thus we do not have a global Z2 lattice, indicating the presence of quantum



CHAPTER 2. THE SPHEROIDAL HARMONICS SYSTEM 32

-20 -10 0 10 20

0

100

200

300

m

g

-20 -10 0 10 20

-1000

-800

-600

-400

-200

0

m

g

Figure 2.2: Joint spectrum (m, gml ) of the spheroidal harmonics for γ = 8, 32. The asymptotic
expansion for gml (2.14) is valid in the top part of the left figure, while (2.15) is valid in the
bottom part of the right figure.

monodromy.

The spectrum of the spheroidal wave equation is well understood, and asymptotic
expansions for the eigenvalues gml are well known [MS54, AS92, DLMF, Ars64]. Here
we are going to use these formulas to describe the quantum monodromy in the joint
spectrum.

When a → 0 the constant γ → 0 and the operator Ĝ → |L|2 becomes that of the associated
Legendre equation with spectrum gml = l(l + 1) and corresponding eigenfunction the
associated Legendre polynomial Pml (η) for −l ≤ m ≤ l. The spectrum is degenerate since
gml is independent of m. The labelling of eigenvalues in the spheroidal wave equation is
continued from this limit for non-zero a. This means that in the Sturm-Liouville problem of
the operator Ĝ for given fixed integer m the eigenvalue gml of the ground state is labelled
by l = |m|. The degeneracy is split for non-zero γ and

ĝml = l(l + 1)− 1

2

(
1 +

(2m− 1)(2m+ 1)

(2l − 1)(2l + 3)

)
γ2 +O(γ4/l2), (2.14)

see, e.g., [MS54, AS92, DLMF, Ars64]. This expansion converges when γ2 < ρml where
ρml > 4l + 6 for l − |m| = 0, 1 and ρml > 4l − 2 for l − |m| ≥ 2, see [MS54, 3.22]. This
means that for fixed γ one can always choose l large enough so that the series converges.
For fixed γ this approximation can be understood as a semi-classical limit with fixed a but
large quantum number l or correspondingly large values of the eigenvalue gml .

When γ → ∞ the spectrum also becomes simpler, but in this limit we are only aware of
an asymptotic series expansion for the eigenvalues. The leading order of the operator Ĝ is
−a2(p̂2x + p̂2y). The eigenvalues satisfy

ǧml = −γ2 + (2(l − |m|) + 1)γ − 3
4 +m2 − 1

2(l − |m|)(l − |m|+ 1) +O(1/γ), (2.15)

see [MS54, AS92, DLMF, Ars64, Mül63]. Thus eigenvalues with the same value of l − |m|
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Figure 2.3: Joint spectrum (m, gml ) of the spheroidal harmonics for γ = 16. A lattice unit cell
is transported around the origin. The lower blue parabola is g = −γ2 +m2 and the upper
blue parabola is 2g = 2l2 − γ2 −m2(γ/l)2 for l = l∗. The red and purple cells are transports
of the bottom cell Bm

l and the top cell Tml , respectively, for positive m. The grey and green
cells are those for negative m.

and small |m| are degenerate at leading order. The limit of large γ can be understood as
the semiclassical limit where ℏ → 0 for fixed value of a for quantum numbers l close to the
ground state with l = |m|.

Fig. 2.3 illustrates the monodromy about the origin. A unit cell is parallel transported along
a path that encloses the origin. As the basis vectors (say v1 is the vertical vector and v2 is
the horizontal one) are fully transported around the loop, we observe that v1 stays constant
whilst v2 becomes v2 + 2v1. This implies that we have a basis transformation according
to (

v′1
v′2

)
=

(
1 0

k 1

)(
v1

v2

)
(2.16)

where k = 2. This integer is called the monodromy index. In the figure the full loop
is broken up into two symmetric half-loops. At each of the two points where the two
half-loops meet a basis transformation with k = 1 occurs, and their product gives the
monodromy with k = 2. In the next section we will prove monodromy by showing that
in the classical phase space there are isolated critical points of focus-focus type and the pre-
image of the corresponding critical value is a doubly pinched torus. Here we give a direct
quantum mechanical interpretation of monodromy that is based on discrete symmetries
and the well known asymptotic formulas (2.14) and (2.15). We should emphasise that the
following discussion is a heuristic analysis of monodromy. While (2.14) can be extended to
a convergent series, we are not aware of a a convergent extension of the asymptotic formula
(2.15). Because of this it is not easy to make the following argument rigorous.

The monodromy along a loop in the joint spectrum around the origin can be analysed by
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Figure 2.4: Joint spectrum (m, gml ) (black dots) compared to the asymptotic formulas
(m, ĝml ) (blue dots) and (m, ǧml ) (red dots) for γ = 16. The two asymptotic formulas
approximately agree near the lattice point l = |m| = l∗ = 12.

transporting a unit cell, see Fig. 2.3. Transporting a unit cell only makes sense where there
are at least two negative eigenvalues in the sequence g0l , l = 0, 1, . . . . The ground state g00
is always non-positive. For γ = π we have g01 < 0 < g02 and hence we require γ ≥ π. The
transport is done along the lower parabola where l2 − m2 = 0 in the joint spectrum and
near a particular “upper” parabola where l = l∗ = ⌈κγ⌉ is constant in the joint spectrum.
The factor κ needs to satisfy κ > 1/

√
2 so that g0l∗(γ) > 0. In Fig. 2.3 we choose κ =

√
2/3

and in Fig. 2.4 we choose κ = 3/4. To see that these are indeed parabolas in (m, g)-space a
truncation of (2.14) gives g = −γ2 +m2 and a truncation of (2.15) gives g = (l∗)2 − γ2/2 −
1
2m

2(γ/l∗)2. Note that it is neither required nor necessary that these parabolas go through
points in the spectrum. They merely serve as an approximate guide to where the lattice
structure of the joint spectrum is going to be analysed.

A unit cell in the joint spectrum is defined at l = m = 0 and moved along the lower
parabola. Another unit cell in the joint spectrum is defined at l = l∗, m = 0 and transported
along the upper parabola. The two parabolas meet where m = l∗. A unit cell near the
bottom parabola is defined by its four corners as Bm

l = (gml , g
m+1
l+1 , gm+1

l+2 , gml+1) moving
counterclockwise around the unit cell. A unit cell near the top parabola is defined by its
four corners as Tml = (gml , g

m+1
l , gm+1

l+1 , gml+1) moving counterclockwise around the unit cell.
For negative m cells are obtained by reflection about m = 0. The cell at the top has a natural
labelling, which is inherited from the spherical harmonics limit. Now the cells are moved
together to the point where the parabolas meet. There Bl∗−1

l∗−1 is compared with T l
∗−1
l∗ . The

2nd and 3rd state in the two unit cells agree, and the last of B with the first of T . Thus a
basis transformation will add 1 unit to l. A mirror symmetric situation occurs for negative
m, and hence the total monodromy around the loop is 2.
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Figure 2.5: a) and b) Joint spectrum where l−m is even and m is even/odd respectively. c)
and d) where l −m is odd and m is even/odd respectively. a) is invariant under the whole
discrete symmetry group, b), c), d) are invariant under S1, S3, S2, respectively.
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Figure 2.6: Parts of the joint spectrum whose eigenfunctions are a) even under S2, b) odd
under S2 and c) the complete joint spectrum. The spectra shown in a) and b) both have
monodromy index 1.

When repeating this process with the asymptotic formulae (2.14) and (2.15) instead of
with the (numerically computed) exact spectrum, the cell Bm

l is defined using ǧml in (2.14)
and Tml is defined using ĝml in (2.15). Approximate eigenvalues in these cells will only
approximately agree near l = l∗ = |m|. In Fig. 2.4 the exact eigenvalues are shown as
black dots, approximations from (2.14) (using ǧml up to including terms of order γ4) are
shown as blue dots for l − l∗ = 0, . . . , 4, ±m = 0, . . . , l and approximations from (2.15)
(using ĝml up to including terms of order γ−2) are shown as red dots for l − |m| = 0, . . . , 4,
±m = 0, 1, . . . , l∗ + 4. The blue dots sit nearly on top of the black dots for larger l, while
the red dots sit nearly on top of the black dots for small l − |m|. The choice of κ and
hence l∗ is selecting the region near (l,m) = (l∗, l∗) where both formulas work. To make
this quantitative we introduce a measure for the quality of the asymptotic formulas as the
relative error

e(l,m) =
ĝml − ǧml
ĝml+1 − ĝml

evaluated at lattice points (l,m) where both hold approximately. Evaluated with κ = 3/4

this gives |e(l∗, l∗)| < 0.07, |e(l∗ + 1, l∗ + 1)| < 0.07 for the two lower states near (l∗, l∗) and
|e(l∗ + 1, l∗)| < 0.19, |e(l∗, l∗ − 1)| < 0.19 for the two higher states. These estimates hold
for any γ > π. This implies that even though there is a considerable error, it is still possible
to identify the unit cells, since the error is less than 20% for all four corners relative to the
size of the cell. Thus it is possible to define quantum monodromy using the asymptotic
formulas alone.
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The joint spectrum can be divided into symmetry classes. Since (2.11) is even in η the
eigenfunctions Sml are even or odd. They inherit the symmetry of Pml so that Sml is even
when l−m is even and odd when l−m is odd. Accordingly Sml ◦S1 = (−1)l−mSml . Similarly
for ψϕ = eimϕ it holds that ψϕ ◦ S3 = (−1)mψϕ. Thus every point in the joint spectrum can
be classified according to the parity of l−m and m. This is illustrated in Fig. 2.5 a) through
d), where each subfigure contains one quarter of the number of points the full spectrum
possesses. Despite this, the unit cell is still deformed in the same way as in Fig. 2.3 and the
monodromy index is 2.

It is interesting to note that when selecting states according to their symmetry under S2 =

S1 ◦ S3 the monodromy index changes to 1. The (semi-)classical explanation for this is that
after discrete symmetry reduction by S2, the reduced phase space is T ∗(RP2). See Lemma 10
for more detail. Further related to this, as we will see, such a reduction will give a system
with the same action variables, but different Maslov indices. Since Zml is the product of
ψϕ and Sml it is invariant under S2 if l − m and m are either both even or both odd. The
corresponding joint eigenvalues are shown in Fig. 2.6 left and middle, and for this selection
of joint eigenstates the monodromy is 1.

The most striking effect of the monodromy is a change in what the symmetry of horizontally
neighbouring states near the line m = 0 is. Consider Fig. 2.6 left and middle. When g ≪ 0

the horizontally neighbouring states have the same symmetry type, while for g ≫ 0 the
symmetry type changes. Not only does the symmetry type change, but also the location
of states comparing m = 0 and m = 1. For g ≫ 0 horizontally neighbouring states with
m = 0 and m = 1 have nearly the same eigenvalue. By contrast, for g ≪ 0 consider a state
with m = 0. Now there is no horizontally neighbouring state with m = 1. Instead the
eigenvalue for a state with m = 1 is approximately half way between the nearby states with
m = 0.

We are now going to make these observations precise using (2.14) and (2.15). Consider
states invariant under S2, hence with even l −m and even m, see Fig. 2.6, left. Observe the
upper end of the figure where g ≫ 0 with m = 0 and l ≫ 0. These states are described by
(2.15), the asymptotics for large γ or small ℏ. Horizontally neighbouring states with m = 0

and m = 1 have nearly the same eigenvalue. Using (2.15) we find

g1l+1 − g0l = 1 +O(1/γ), for g0l ≫ 0.

The same analysis holds for Fig. 2.6, where l in the above formula is odd, while in the left
figure it is even. Note that the separation of states in the vertical direction g0l+2 − g0l =

4γ + (2l+ 3) +O(1/γ) is of order γ, and hence we perceive the neighbour in the horizontal
direction as nearly the same. If we were to present eigenvalues with dimensions then the
difference in eigenvalue of two horizontally neighbouring states would be of order ℏ2, while
those of two vertically neighbouring states would be ℏ.
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Now compare this to the situation with g ≪ 0 and hence small l near the line m = 0. There
the state with m = 1 is approximately equal to the average of neighbouring states with
m = 0. Using (2.14) we find

g0l + g0l+2

2
− g1l+1 = 1 +O(γ2), for g0l ≪ 0

in the horizontal direction, while in the vertical direction the separation is g1l+1 − g0l =

2(l + 1) + O(γ2). A comment similar to the previous case about the scaling with ℏ applies
here.

The previous discussing of neighbouring states was done separately for states that are
either invariant under S2 or not. The reason is that for these subsets the monodromy
index is 1. When considering all states the monodromy index is 2, and its manifestation
on the symmetry and labelling of states is different. In the set of all states in both limits,
large positive and large negative g0l , there is always a horizontally neighbouring state with
almost the same eigenvalue, see Fig. 2.6, right. A direct consequence of monodromy is
the following observation: for large l such that g0l ≫ 0 for horizontally neighbouring
states g0l − g1l = O(γ2). For small l such that g0l ≪ 0 however this difference is not
small, g0l − g1l = 2γ + O(1). This means that states with the same l are not horizontal
neighbours, instead the index l needs to be increased by 1 when going to the right, then
g0l −g1l+1 = 1+O(1/γ) is small. This means that when comparing the labelling of states along
the line m = 0 with the line m = 1 there is a mismatch that occurs for small l (negative g),
while for large l (positive g) states are labelled in the natural way. As already mentioned the
fact that this labelling is “natural” in the latter case is a choice that was made in order to have
continuity with the labelling in the spherical harmonics limit a→ 0. One could redefine the
labelling to be “natural” with respect to the Sturm-Liouville problems for fixedm, then each
ground state for fixed m would have the same quantum number. Then the mismatch in the
labelling of horizontal neighbours would appear for states with large eigenvalues gml . The
fact that this mismatch cannot be avoided is an expression of the quantum monodromy in
the system.

The discussion of monodromy using the asymptotic expansions (2.14) and (2.15) is
enlightning, but it is somewhat heuristic, since we don’t know about the convergence of
(2.15). If we stay near the line m = 0 and observe the change in lattice for small and large
g (as we did in the discussion of neighbours above) we cannot complete a loop around the
focus-focus point, because neither formula is valid there. If we do complete the loop along
the parabolas as indicated in Fig. 2.3 we are stretching the asymptotic expansions to the
limit of their validity. For this reason we are going to prove existence of monodromy in the
semi-classical limit by a detailed analysis of the corresponding classically integrable system
in section 2.6, and by appealing to the general theory of quantum monodromy [VuN99]. It
is interesting to note that the general theory only makes sense in the semi-classical limit;
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when explicit approximate formulas for the quantum eigenvalues like (2.14) and (2.15) are
known, quantum monodromy makes sense as long as there are at least a few eigenvalues
g0l < 0, so down to say γ = π.

2.5. LAPLACE-RUNGE-LENZ AND C. NEUMANN

In this section we will show that the spheroidal harmonics system is symplectomorphic
to the degenerate C. Neumann system. The C. Neumann system is a famous integrable
system that was studied by Jacobi’s student Carl Neumann [Neu59], as a prime example
of separation of variables. It consists of a particle constrained to move on the unit sphere
(in any dimension) under influence of an additional harmonic potential [Mos80a, Mos80b,
Ves80, Raţ81]. The degenerate case has been studied in [Vuk08, DH12], and the action
variables in the general case were analysed in [DRVW01], also see [DVuN07]. For the
quantisation of the C. Neumann system (in the non-degenerate case) see [BT92, Tot93,
Gur95].

The invariants P and L = Q × P of the free particle are of degree 1 and 2 in the original
phase space variables. Invariant degree 3 polynomials can be formed from them using an
analogue of the Laplace-Runge-Lenz vector A = P × L. As in the Kepler problem it is
useful to scale with the energy: K = A|P |−α. The Poisson tensor in R9 with coordinates
(P ,L,K) then is

Bα =

 0 −P̂ P̂ 2|P |−α

−P̂ −L̂ −K̂

−P̂ 2|P |−α −K̂ L̂|P |2(1−α)

 . (2.17)

In the Kepler problem the idea is to have the bracket between L and K close, so there the
choice is α = 1 so that |P | drops out in the lower right corner and the algebra is so(4).
In our case the choice α = 1 leads to a realisation of the spheroidal harmonic system on
so(3, 1), but the Hamiltonian G is not smooth when written in terms of L and K, so we do
not investigate this further. Instead we are interested to make the bracket between P and
K close. To achieve this we need to eliminate L. Using standard cross product identities we
find P ×A = −|P |2L+P (P ·L). Choosing α = 2 thus gives P ×K = −L+P (P ·L)|P |−2.
Now fixing the Casimir P · L = b of Bα allows us to eliminate L and the resulting Poisson
structure on R6 with coordinates (P ,K) is

BP,K = |P |−2

(
0 P̂ 2

−P̂ 2 −Û

)
, where U = P ×K − bP |P |−2 (2.18)

with Casimirs P · P and P · K. Setting the magnetic term b = 0 and using the identity
PP t− P̂ 2 = idP ·P we see that this is the Dirac structure of T ∗S2 embedded in R6 as, e.g.,
derived in [DH12]. When considering the Dirac structure of T ∗S2 in R6 we use coordinates
x = (x1, x2, x3)

t ∈ S2 and momenta y = (y1, y2, y3)
t in the tangent space of the sphere so
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that x · y = 0. Thus define the Dirac structure BD of T ∗S2 in R6 as

BD =

(
0 −id+ xxt|x|−2

id− xxt|x|−2 −x̂× y|x|−2

)
(2.19)

with Casimirs x · x and x · y = 0. Note that the lower left block is the projector to the
subspace orthogonal to x.
Lemma 2. Consider the manifold Mr =

{
(x,y) ∈ R6 | x · x = r2,x · y = 0

}
for r > 0. The map

µ :Mr →Mr, (x,y) 7→ (x,−x× y) is a diffeomorphism with inverse (x,y) 7→ (x,x× y/r2).

Proof. Composing µ with µ−1 and using the vector triple product expansion formula gives
−x× (x× y)/r2 = y(x · x)/r2 − x(x · y)/r2 = y.

■

Note that for r = 1 the map µ of M1 has order 3. If we think of a curve x(t) on the sphere
such that y is the tangent vector to the curve then µ maps the tangent vector to the normal
vector. When applied a second time µmaps the normal vector to the binormal vector. When
applied a third time µ maps the binormal vector back to the tangent vector.
Proposition 3. The map (P ,L) 7→ (x,y) = (P ,P × L|P |−2) is a symplectomorphism between
the co-adjoint orbit of the Lie-Poisson structure of e∗(3) in R6 with variables P ,L given by (2.1) to
T ∗S2 embedded in R6 with variables x,y with Dirac structure given by (2.19).

Proof. The Jacobian of the mapping is

M =

(
id 0

−L̂|P |−2 − 2(P ×L)P t|P |−4 P̂ |P |−2

)
.

Computing MBM t gives all blocks but the lower right block of BP,K immediately. For
this block notice the identity L̂P̂ 2 + P̂ 2L̂ − P̂ L̂P̂ = −L̂|P |2 (or in cross-product terms
L× (P × (P × v)) + P × (P × (L× v))− P × (L× (P × v)) = L× v|P |2 for all v ∈ R3)
while all other terms vanish because P is in the kernel of P̂ . Now using the map µ from the
Lemma we see that P = x and L = −x× y and this gives the result.

■

Having established the equivalence of the Lie-Poisson structure of e∗(3) of the spheroidal
harmonics system with the Dirac structure of T ∗S2 the question is what the Hamiltonian G
becomes when interpreted in these terms.
Theorem 2.2. The integrable spheroidal harmonics system of Theorem 2.1 with energy |P | =

√
2E

is symplectomorphic to the integrable C. Neumann system of a particle constrained to move on the
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unit sphere |x| = 1 with a harmonic potential. In the coordinates (x,y) on T ∗S2 ∈ R6 with the
Dirac structure (2.19) the Hamiltonian of the Neumann system is

GN =
1

2
(y21 + y22 + y23)− Ea2(x21 + x22)

with second integral LN = −x1y2 + x2y1.

Proof. We start with an x that is not yet restricted to the unit sphere. The map from
Proposition 3 gives |L| = |x||y|, so that the the term |L|2 in G becomes |x|2|y|2. Finally
we do a symplectic scaling to the unit sphere, namely x = cx̃ and y = ỹ/c where c =

√
2E.

Dropping the tildes and dividing by 2 gives GN .

■

Theorem 2.2 has been proved in [Mar18] in the context of scattering problems. Here we
prove the result by explicitly constructing the symplectomorphism. In its usual form the
C. Neumann system has a positive attractive potential. This can be adjusted by shifting
the potential by the constant term Ea2|x|2, such that the shifted potential is Ea2x23. To
keep the analogy with the spheroidal harmonics integrable system we choose not to do this
shift.

Note that while in the spheroidal harmonics system Lz is a coordinate after reduction, and
this coordinate is a constant of motion, in the Neumann system the corresponding integral
is again the angular momentum x1y2−x2y1 about the third axis but here this is a function of
the coordinates x and y. Even when interpreting Lz as a function of the original coordinates
Q and P before reduction the difference is that then P was the momentum, while now
after renaming P as x this is the coordinate in configuration space. When considering the
units of the quantities defined we see, however, that x = P does have units of momentum
while y = P × (Q × P )|P |−2 has units of length, so that x × y does have units of angular
momentum, except it has the opposite sign: x×y = P×(P×(Q×P )|P |−2 = −Q×P .

We can introduce spherical coordinates on the unit sphere by

x1 = sin θ cosϕ, x2 = sin θ sinϕ, x3 = cos θ

which transforms the Hamiltonian GN to

GN (θ, ϕ, pθ, pϕ) =
1

2

(
p2θ +

p2ϕ

sin2 θ

)
− Ea2 sin2 θ (2.20)

where p2θ =
y23√
1−x23

and pϕ = x1y2 − x2y1 are canonically conjugate momenta to θ and ϕ,

respectively.
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Figure 2.7: Spheroidal wave function with (n,m, γ) = (4, 2, 20).
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Figure 2.8: a) The spheroidal harmonic Z2
4 (θ, ϕ) with γ = 20. b) The spherical harmonic

Y 2
4 (θ, ϕ) for comparison.

Thus we see that separation of the (rotationally symmetric) Neumann system in spherical
coordinates leads to the same Hamiltonian as the prolate spheroidal harmonics system
obtained from separation in R3 in prolate spheroidal coordinates. A corresponding
statement holds for the quantum systems. Since the phase space T ∗S2 is a cotangent bundle,
we quantise by mapping the coordinate variables (xi, yi) to the operators (xi,

ℏ
i
∂
∂xi

). The
operator corresponding to the Hamiltonian GN is

2ĜN = −ℏ2∇S2 − 2Ea2 sin2 θ

which for ℏ = 1 can be seen to be the same as (2.11) by making the substitution η = cos θ.
We close this section by showing the graph of a spheroidal wave function for m = 2, l = 4

and a contour plot of the real part of the corresponding spheroidal harmonic Zml on the
sphere, along with the spherical harmonic Y m

l for comparison. Since the potential has its
maximum at the poles (and its minimum along the equator) the wave function is “repelled”
from the poles.
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Figure 2.9: Bifurcation diagram of the spheroidal harmonics integrable system.

2.6. MOMENTUM MAP OF THE SPHEROIDAL HARMONICS SYSTEMS

We are now going to analyse the global geometry of the singular Liouville foliation of the
integrable spheroidal harmonics system. In a number of steps we will prove
Theorem 2.3. The spheroidal harmonics integrable system is a generalised semi-toric system with
global S1 action Lz . The momentum map F = (Lz, G) : T ∗S2 → R2 has two isolated co-
rank 2 critical points P = ±ez

√
2E, L = 0 and a family of co-rank 1 critical points P =√

2E(cosϕ, sinϕ, 0)t, L = ezm, ϕ ∈ S1, m ∈ R. The image of the co-rank 2 critical points
is the critical value (0, 0), which is a non-degenerate focus-focus value and F−1(0, 0) is a doubly
pinched torus. The image of the co-rank 1 critical points is the parabola (m,m2 − 2Ea2), points
on which are of elliptic-transversal type and F−1(m,m2 − 2Ea2) is a periodic orbit consisting of
co-rank 1 critical points parametrised by ϕ. The pre-image of each regular value of F is a single torus
T2.

As already mentioned in the introduction, the results of Theorem 2.3 have been established
in [BZ93, Efs05, CVuN02] in the context of the quadratic spherical pendulum on T ∗S2.
Using the equivalence given by Theorem 2.2 these results also hold for the spheroidal
harmonics integrable system on e∗(3). Here we prove these results directly on e∗(3) so
that the connection to the spheroidal wave functions is more transparent. The system will
be analysed using singular reduction (using invariants), regular reduction (using global
but singular canonical coordinates) and reconstruction to understand the fibres of the
momentum map. In particular we will show that the focus-focus critical value is non-
degenerate and hence there is Hamiltonian monodromy in the classical system invoking
[Mat96, Zun97]. In particular this also implies the existence of quantum monodromy in the
semiclassical limit as shown in general by San Vũ Ngo. c in [VuN99].
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Figure 2.10: Level lines of G(q, p) for m = 0 (left) and m = 1 (right), γ = 4.

We already know a symmetry reduced description (2.5) from separation of variables, albeit
in singular coordinates. Eqn. (2.5) is connected to the Neumann system (2.20) via the
transformation η = cos θ. Setting ℏ = 1 we have lz = m and arrive at the one degree of
freedom Hamiltonian

G(q, p) = (1− q2)(p2 − γ2) +
m2

1− q2
. (2.21)

There is a coordinate singularity at |q| = 1. The phase portrait of this reduced Hamiltonian
is shown in Fig. 2.10. Away from the singularity there is an equilibrium at the origin with
critical value G(0, 0) = m2 − γ2. This gives the line of critical values g = m2 − γ2 in the
bifurcation diagram Fig. 2.9. The corresponding motion in the original system in Euclidean
coordinates is a periodic orbit along the equator of the sphere, as already discussed in
section 2.3. The parabola of critical values g = m2 − γ2 is also the lower boundary of
the joint spectrum and is hence shown in Fig. 2.3.

Since the coordinate system from the separation of variables is singular along the z-axis we
now use singular reduction starting from the global Euclidean description in (P ,L) ∈ R6

to understand the global dynamics.
Lemma 4. Reduction of the spheroidal harmonics system of Theorem 2.1 by the global S1 symmetry
leads to a Poisson structure in R3 with coordinates (b1, b2, b3). The reduction map T ∗S2 → R3 for
|P | =

√
2E is given by

b1 =
pz√
2E

, b2 = l2x + l2y, b3 =
lxpy − lypx√

2E
.

with syzygy
C3(b1, b2, b3) = (1− b21)b2 − b21m

2 − b23 = 0 .

The Poisson tensor is ∇̂C3.

Proof. The global S1 action Lz as a Hamiltonian with respect to the Poisson structure B
generates a rotation in the first two components of P and L and fixes the third component,
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Figure 2.11: a) The singular reduced phase space Pm=0 with two singular points at
(b1, b2, b3) = (±1, 0, 0); b) A regular reduced phase space Pm=2 with non zero m.

see (2.7). Thus pz and lz are invariant under this symmetry. Introducing pw = px + ipy and
lw = lx+ily the S1 action is multiplication of pw and lw by eiϕ. Any polynomial of pz and lz is
also invariant. Additional quadratic polynomial invariants are |pw|2, |lw|2 and the real and
imaginary part of pw l̄w. All other polynomial invariants are functions of these 6 invariants, 2
linear and 4 quadratic. The Casimirs of the Poisson structureB expressed in these invariants
read |pw|2+ p2z = 2E and ℜ(pw l̄w)+ pzlz = 0 and can be used to eliminate |pw|2 and ℜ(pw l̄w)
wherever they appear. As before we set lz = m where m is now considered as a parameter.
In addition we scale the momentum with

√
2E as for the transformation to the Neumann

system. The remaining invariants are denoted by bi where b2 = |lw|2 and b3 = ℑ(pw l̄w)√
2E

. This
gives the stated reduction map. The invariants satisfy |b1| ≤ 1 and b2 ≥ 0 by construction.
The identity ℜ(pw l̄w)2 +ℑ(pw l̄w)2 = |pw l̄w|2 = |pw|2|lw|2 rewritten in terms of the invariants
gives C3 = 0. A fundamental property of invariants is that their Poisson bracket is again an
invariant. By using the original Poisson structure B in the original variables (P ,L) one can
verify that

{b1, b2} = 2b3, {b1, b3} = 1− b21, {b2, b3} = 2b1m
2 + 2b1b2 .

The right hand sides are given by the derivatives ∂C3/∂bi, such that the reduced Poisson
structure is ∇̂C3 as claimed. By construction then C3 is a Casimir of the reduced Poisson
structure. Since this encodes an identity between invariants (a so-called syzygy) the value
of C3 must be zero.

■

The invariants can of course also be written in the coordinates (x,y) of the Neumann system
on the unit sphere where they look more natural as

b1 = x3, b2 = y21 + y22, b3 = y1x2 − y2x1 .
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Figure 2.12: Separatrix connecting the singular points. It is given by the intersection of the
singular reduced phase space P0 (yellow) with the energy surface {G = 0} (blue) for γ = 0.5
(left) and γ = 5 (right).

The points P = (0, 0,±
√
2E) and L = (0, 0, 0) are fixed under rotations about the third axis.

Hence the global S1 action has fixed points and the symmetry reduced phase space is not
in general a smooth manifold. This is the reason that we are using singular reduction. This
fixed point occurs for lz = m = 0 and its image under the reduction map is (±1, 0, 0). We
now verify that these are exactly the singular points of the reduced phase space.
Lemma 5. The reduced phase space Pm = {(b1, b2, b3) | C3 = 0, b2 ≥ 0, b21 ≤ 1} is a
smooth surface for m ̸= 0 and a singular semi-algebraic variety with two conical singularities at
(b1, b2, b3) = (±1, 0, 0) for m = 0.

Proof. The reduced phase space is the subset of R3 with coordinates b1, b2, b3 for which the
syzygy Casimir is satisfied, C3 = 0, and in addition the inequalities b2 ≥ 0 and b21 ≤ 1 hold.
Singular points occur when ∂C3/∂bi = 0 which implies b3 = 0, b1 = ±1 and b2 = −m2,
which is only possible for m = b2 = 0. Thus for m = 0 the variety {C3 = 0} is not a smooth
manifold, but has two singular points at (±1, 0, 0), see Fig. 2.11. For m ̸= 0 it is a smooth
manifold. The inequalities select one connected component.

■

The next step is the analysis of the dynamics of the reduced system. We write the
Hamiltonian G of (2.6) in terms of invariants as

G(b1, b2, b3) = b2 +m2 − γ2(1− b21) (2.22)

using lz = m and γ = 2Ea2 with ℏ = 1. The trajectories of the reduced system are given
by the intersection of the reduced “energy surface" {G = g} with reduced phase space Pm.
This leads to the description of the image of the momentum map (Lz, G), see Fig. 2.9.
Lemma 6. The set of critical values of the energy-momentum map (Lz, G) consists of an isolated
point at the origin (0, 0) and the parabola g = m2 − γ2. The corresponding critical points are
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(±1, 0, 0) and (0, 0, 0), respectively. The sepatratrices connecting (±1, 0, 0) are the parabolic arcs
(b1, b2, b3) =

(
b1, γ

2(1− b21),±γ(1− b21)
)
.

Proof. In general a tangency between the reduced phase space Pm and the parabolic
cylinder {G = g} occurs when their gradients are parallel, which implies b3 = 0 and either
b1 = 0 or b2 = −m2 − γ2(1 − b21). Since b2 ≥ 0 the latter implies b1 = ±1 and m = 0. These
are two isolated critical points at (±1, 0, 0) both with isolated critical value (m, g) = (0, 0).
The preimage of this critical value in the reduced system is given by the intersection of
the singular reduced phase space P0 with the reduced energy surface {G(b1, b2, b3) = 0}.
Solving G = 0 with m = 0 gives the equation for b2. Inserting into C3 = 0 and extracting a
square root gives the equation for b3. See Fig. 2.12

In the other case of parallel gradients with b1 = 0 the Casimir C3 = 0 implies b2 = 0

as well, so that the critical point is (0, 0, 0) with corresponding family of critical values
(m, g) = (m,m2 − γ2). All points in the (m, g) plane above the parabola g = m2 − γ2 with
the exception of the origin are regular values. For each regular value the intersection of Pm
and {G = 0} is a single curve diffeomorphic to S1. These intersections can also be seen as
the level lines of G(q, p) as shown in Fig. 2.10 (right).

■

The final step in the analysis of the classical dynamics is the reconstruction, which leads
to a description of the invariant sets of the dynamics in the original coordinates (P ,L).
The reduction map of Lemma 4 is a projection from the 4-dimensional space T ∗S2 ⊂ R6 to
R3.
Lemma 7. For given b1, b2, b3 points in the preimage of the reduction map are given by

P =
√
2E

(√
1− b21 cosu,

√
1− b21 sinu, b1

)
, L =

(√
b2 cos v,

√
b2 sin v,m

)
where u−v = arg(−b1m+ ib3). The S1 action increases both u and v by ϕ and leaves the difference
u− v invariant.

Proof. In Lemma 4 we already noted that the S1 action is most easily described by
multiplication with eiϕ after introducing the complex variables pw = px + ipy and lw =

lx + ily. By definition b2 is the modulus squared of lw and b1 is the normalised size
of pz , such that |pw|2 = 2E − p2z = 2E(1 − b21). Thus there are angles u and v such
eiϕpw =

√
2E(1− b21)e

iu and eiϕlw =
√
b2e

iv. For given b1, b2, b3 the arguments u and v are
related. On the one hand from Lemma 4 we have ℜ(pw l̄w) = −pzlz and ℑ(pw l̄w) =

√
2Eb3,

such that pw l̄w =
√
2E(b1m + b3). On the other hand pw l̄w =

√
2E
√

1− b21
√
b2e

i(u−v), and
hence the result. At the singular point (±1, 0, 0) the angles u and v are undefined, but this is
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the fixed point of the S1 action, so the preimage of each of these points is just a single point
each, instead of a circle each.

■

It is interesting to note that these formulas can be directly expressed in terms of the
original separating variables. In particular both, pw and lw when expressed in terms of
(ξ, η, ϕ, pξ, pη, pϕ) after cotangent lift of the definition (2.3) of spheroidal coordinates can be
written as pw = eiϕpw0 and lw = eiϕlw0 where pw0 and lw0 are independent of ϕ. This leads
to formulas for b1, b2, b3 in terms of the separating variables. One subtlety here is that in
such formulae the value of E is not fixed, but is determined by the values of ξ, η, pξ, pη,
while lz = pϕ = m, as always. The difference in the reconstruction formula is that there ξ
and pξ have been eliminated.

Symplectic coordinates on the reduced phase space can be introduced by

(q, p) =

(
b1,

b3
1− b21

)
.

It is easy to check that these functions satisfy {q, p} = 1, and that they reduce the Poisson
structure ∇̂C3 in R3 to the standard symplectic structure in R2. Using the Casimir to
express b2 as a function of (q, p) the Hamiltonian G in (2.22) can be turned into the form
(2.21). Of course reintroducing symplectic coordinates also reintroduces the coordinate
singularity.

However, notice that through the chain of transformations we have arrived again at the
separated Hamiltonian function G albeit evaluated in different coordinates. Originally
the separation gave a function G(q, p) where either (q, p) = (η, pη) or (q, p) = (ξ, pξ).
The variables (q, p) just introduced as a function of bi however set q = pz/

√
2E and

p =
√
2E(P ×L)z/(p

2
x + p2y).

In order to classify the critical point corresponding to the critical values the dynamics needs
to be analysed in full phase space. First we show that the preimage of the isolated critical
value (0, 0) of the momentum map (Lz, G) is a doubly pinched torus, and then we will show
that it is a non-degenerate focus-focus critical value.
Lemma 8. The preimage of the critical value (0, 0) of the prolate spheroidal harmonics system is a
doubly pinched torus with lz = 0 in the phase space T ∗S2 parametrised by pz and ϕ as

px

py

lx

ly

 =
√
2E − p2z


1 0

0 1

0 ±a
∓a 0


(
cosϕ

sinϕ

)
.
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Proof. Combining the parabolic arcs from Lemma 6 with the reconstruction formula
Lemma 7 for the case g = m = 0 gives the result. We have ℜ(pw l̄w) = 0 since m = 0

and hence u − v = ±π/2 where the plus sign correspond to the upper parabolic arc with
b3 ≥ 0 and the minus sign to the lower arc with b3 ≤ 0.

■

This Lemma gives a parametrisation of the doubly pinched torus in phase space. For the
spheroidal harmonics system it is even possible to describe the dynamics on this doubly
pinched torus in terms of simple formulas. Consider the local symplectic coordinates
G(q, p). When m = 0 then G = 0 implies either q = ±1 or p = ±γ. We choose the second
condition to stay away from the critical point. Hamilton’s equations then say that p = ±γ
is constant, as can be seen in Fig. 2.10. The remaining ODE for q can be solved to give
q(t) = tanh(±2tγ − c), which is the connection from the north-pole to the south-pole of the
sphere, or vice versa, depending on the sign of p = ±γ. The dynamics of ϕ is trivial, since
ϕ̇ = −∂G(q, p)/∂m = 0 for m = 0.
Lemma 9. The critical value (0, 0) of the momentum map (Lz, G) : T

∗S2 → R2 is a non-degenerate
focus-focus value. The critical values (m,m2 − γ2) are non-degenerate values of elliptic-transversal
type.

Proof. At a critical point of the map (Lz, G) the flows (in the original coordinates) generated
by G and Lz are parallel:

αB∇G+ βB∇Lz = 0, β ∈ R\ {0} . (2.23)

The vector fields are given by (2.8) and (2.7), and since the the former is non-vanishing for
E > 0 we can set α = 1.

Critical points of the form P = (0, 0, pz) and L = (0, 0, 0) with β arbitrary have the critical
values (0, 0). Critical points of the form P = (px, py, 0) and L = (0, 0,m) with β = m have
the critical value (m,m2 − γ2).

The essential object for the classification of critical values and non-degeneracy are the
eigenvalues of the Jacobian ∂P ,L (B∇G+ βB∇Lz) at these critical points. Two of the six
eigenvalues are always zero; corresponding to the two Casimirs of the Poisson structure B.

At the north and south poles of the P sphere the eigenvalues are λ = ±apz ± iβ where
β ∈ R\ {0} is an arbitrary parameter and pz = ±

√
2E. This implies that the poles of the P -

sphere are non-degenerate focus-focus points, with corresponding non-degenerate focus-
focus value (0, 0).



CHAPTER 2. THE SPHEROIDAL HARMONICS SYSTEM 49

-1.0 -0.5 0.5 1.0
m

1.8

1.9

2.0

J

-1.0 -0.5 0.5 1.0
m

2.4

2.6

2.8

3.0

J

-1.0 -0.5 0.5 1.0
m

2.5

3.0

3.5

4.0

J
˜

Figure 2.13: Plot of J versus m for a) g < 0 and b) g > 0. c) Plot of J + 2 |m| versus m when
g > 0.

At the equator of the P sphere the eigenvalues are λ = 0, 0,±i
√
m2 + γ2. Thus, all points

on the equator of the P sphere are elliptic-transversal critical points.

■

See [CVuN02] for similar results for the example of the quadratic spherical pendulum.

Note that for the elliptic-transversal points the vector field of G is Ṗ = 2m (−py, px, 0) and
L̇ = 0. Thus for m ̸= 0 the set of critical points in the preimage of (m,m2 − γ2) is a periodic
orbit along the equator of the P -sphere. For m = 0 this periodic orbit degenerates into a
circle of fixed points, but from the point of view of the momentum map (Lz, G) they are still
non-degenerate.

The classical monodromy of the spheroidal harmonics system can also be understood from
the non-trivial action variable J . Recall that Lz is already an action variable. The second
action is given by J = 1

2π

¸
β p dq where p is obtained from solving (2.5). The β-cycle encloses

the interval [−r1, r1] where ±r1 are the two middle roots of p2 = 0 and |r1| ≤ 1. In Fig. 2.13
we show J as a function of m for positive (a) and negative (b) values of g. Observe that J
is a symmetric but non-smooth function of m for g > 0 at m = 0. The action J is a smooth
function of (m, g) on the image of the momentum map with the slit m = 0, g ≥ 0 removed.
However, m = 0, g > 0 is not a critical value of the momentum map. Thus, there is an
alternate definition of action J̃ that is the smooth continuation of J across the slit. This is
shown in (c) and defined by J̃ = J for m ≥ 0 and by J̃ = J + 2|m| for m < 0. The alternate
action J̃ defines a smooth action function on the image of the momentum map with the slit
m = 0, g < 0 removed. The action J̃ is a function of the values (m, g). Considering m = Lz

and g = G as functions on phase space the action J̃ becomes a function on phase space, and
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Figure 2.14: Evolution of an angle-variable on the projected torus when a loop around the
focus-focus point is completed. The initial loop (orange) and the final loop (dashed) differ
by 2 rotations (monodromy index 2).
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hence has a Hamiltonian vector field XJ̃ . From the chain rule we obtain

XJ̃ =
∂J̃

∂g
XG +

∂J̃

∂m
XLz .

Note that ∂J̃
∂g is the reduced period and ∂J̃

∂m is the rotation number. They constitute part
of the so-called period lattice, see, e.g., [Dui80]. By definition the flow of an action is 2π-
periodic, so that integrating XJ̃ gives a closed curve. The two vector fields XJ̃ and XLz

can be used to generate the coordinate lines of the angle coordinates on a torus. This grid
of coordinate lines has been computed in [CIAD14] in order to better understand classical
monodromy, and we have done the same here for the spheroidal harmonics system. Instead
of showing a whole grid we simply show a single curve, see Fig. 2.14. The reason for that
is that in our case all other curves of the grid are obtained by rotation about the z-axis. The
angle coordinate lines corresponding to the global action Lz are simply lines of constant
latitude, and we only show the two extremal such curves which mark the caustic of the
torus. We begin the loop at m = 0 and g < 0 (orange). Moving in a counter-clockwise
direction around the focus-focus point we see the caustics shrink to the poles when m = 0,
g > 0 (blue loop). Moving into the region where m < 0 we see the loop flip to the other side
of the sphere. Finally, as we arrive back at the initial point on the bifurcation diagram, we
see that the original loop has two cycles in the ϕ direction added, and so the monodromy
index is 2.

The spheroidal harmonics system has a discrete symmetry that can be reduced such that the
doubly pinched torus becomes a reduced singly pinched torus. In particular the two focus-
focus critical points are identified with each other. When reducing by the full symmetry
group the quotient is not a smooth manifold. Consequently, we quotient by symmetry S2
that flips P to −P only.
Lemma 10. After discrete symmetry reduction by S2, the reduced phase space is T ∗ (RP2

)
.

Proof. The reduced P -space is RP2 because discrete symmetry S2 identifies antipodal points
of the sphere S2. A possible fundamental region is the northern hemisphere with pz ≥ 0.
Since S2 does not act on L, the reduced phase space is therefore T ∗ (RP2

)
. There is only

one focus-focus point in the reduced phase space since S2 maps the north-pole and the
south-pole of the sphere S2 into each other.

■

Note that the S2 reduced system (Lz, G) on T ∗ (RP2
)

has an S1 action that is not effective.
The reason is that the equator is halved by the symmetry reduction, so that the action is not
free for all values (m, g) on the parabola in Fig. 2.9. Hence the symmetry reduced system is
not even generalised semi-toric in the sense of [PR+17].
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Figure 2.15: Action lattice (m,J(m, gml )) for points in the joint spectrum that are a) invariant
under S2 b) flip sign under S2. Note that these lattices show the interior of the semi-
toric polytope. As the system is not strictly semi-toric nor is the phase space compact,
the polytope itself is not compact.

The even/odd spectra in Fig. 2.6 correspond to the same classical integrable system (Lz, G)

on T ∗(RP2) obtained in the previous Lemma. Quantum mechanically the two spectra
correspond to different systems since they have different boundary conditions. Thus the
semi-classical quantisation of these system will quantise the same action variables, but
with different Maslov indices. This is illustrated in Fig. 2.15 which shows the action
lattice (m,J(m, gml )) for states invariant under S2 (left) or odd under S2 (right). Shifting
all points in the right figure up by 1 unit will make them coincide (in the semi-classical
approximation) with the points in the left figure, except for the line of ground states.

An interesting observation that can be made from Fig. 2.10 (left) for m = 0 is that because
p = const on the critical level the action of the critical level is simply equal to the area of the
rectangle with side lengths 2γ and 2 divided by 2π, so that Iη(0, 0) = 2γ/π. By Weyl’s law
this tells us that in the semiclassical limit (i.e. for large γ) the number of negative eigenvalues
g0l is to leading order 2γ/π, which for γ = 16 gives approximately 10, which can be observed
in Fig. 2.3.



Chapter 3

The Harmonic Lagrange Top and the Confluent Heun

Equation

Abstract

The harmonic Lagrange top is the Lagrange top plus a quadratic (harmonic)
potential term. We describe the top in the space fixed frame using a global
description with a Poisson structure on T ∗S3. This global description naturally
leads to a rational parametrisation of the set of critical values of the energy-
momentum map. We show that there are 4 different topological types for
generic parameter values. The quantum mechanics of the harmonic Lagrange
top is described by the most general confluent Heun equation (also known as
the generalised spheroidal wave equation). We derive formulas for an infinite
pentadiagonal symmetric matrix representing the Hamiltonian from which the
spectrum is computed.

3.1. INTRODUCTION

The Lagrange top is a prime example of classical mechanics. Over centuries, it has been
studied starting with Euler and Lagrange, and interest in its various features is blossoming
again and again. Almost every modern development in mechanics has lead to new insights
about the Lagrange top. Before we attempt to describe the place of the Lagrange top in
mechanics in the remainder of this introduction, let us formulate our main observation:
the quantum mechanics of the harmonic Lagrange top is described by the most general
confluent Heun equation (also known as the generalised spheroidal wave equation). By
harmonic Lagrange top we mean the Lagrange top with an added harmonic (i.e. quadratic)
potential. It provides an example of the subcritical and the supercritical Hamiltonian Hopf
bifurcation and hence the quantisation of these bifurcations. The bulk of the paper is
devoted to the description of the classical integrable system.

Rigid body dynamics is treated in most mechanics textbooks, e.g. [Whi37, LL84, Arn78,

53
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Gol80, MR94]. Of the books devoted specifically to rigid body dynamics we highlight
the monumental volumes of Klein & Sommerfeld [KS10], Audin [Aud96] and the recent
addition by Borisov & Mamayev [BM18]. Many special cases of rigid body dynamics
including the Lagrange top are completely integrable Hamiltonian systems, and as such
have been studied in detail in Bolsinov & Fomenko [BF04] and Cushman & Bates [CB15].
For all the references we inevitably missed in this introduction we refer to the extensive
bibliography in [BM18].

In modern mechanics the (energy)-momentum map plays a central role. Singularity
theory’s swallowtail was found as the set of critical values of the energy-momentum map of
the Lagrange top in [CK85], also see [CB15]. The meaning of the swallowtail from the point
of view of bifurcation theory, specifically the supercritical Hamiltonian Hopf bifurcation
in the Lagrange top was described in [CvdM90]. The fact that the swallowtail may make
the set of regular values in the image of the energy-momentum map non-simply connected
is the essential observation that explains why the Lagrange top does not possess global
action variables [Dui80, CD88]. Hamiltonian monodromy of the Lagrange top is described
in [Viv03]. Integrable discretisations of the integrable Lagrange top were found in [BS99].
The complex algebraic geometry of the Lagrange top was described in [GZ98], and its bi-
Hamiltonian structure in [Tsi08]. In KAM theory perturbations of the Lagrange top give a
beautiful example worked out in detail in [HBHN06].

The quantisation of the symmetric top was first done in the early days of quantum
mechanics [Rei26] and leads to a hypergeometric equation, also see [LL77]. The study of
polar molecules in an electric field leads to a Hamiltonian that is equivalent to the Lagrange
top. In the physics literature this is referred to as the Stark effect, and was first studied
in [Sch55]. Matrix elements for the numerical computation of the spectrum were given in
[Shi63], and nearly 30 years later again in [HO91].

The discovery of quantum monodromy [Dui80] was in the smaller brother of the Lagrange
top, the spherical pendulum, in [CD88]. The quantum monodromy in the Lagrange top
itself has been studied in [KR03].

While so-called semi-toric systems with two degrees of freedom (somewhat like the
spherical pendulum) are now in a precise sense completely understood classically
[PVuN09] and quantum mechanically [LFVuN21], the Lagrange top is still out of reach
from this point of view. We should mention that many generalisations of the spherical
pendulum have been studied, in particular the magnetic spherical pendulum [CB95, CB15],
also see [Sak02], and the quadratic spherical pendulum [Zou92, Efs05]. The combination
of both is the harmonic Lagrange top, which is the object of this paper. To our knowledge,
it has not been considered in the literature in full generality. The so-called Kirchhoff top
which has only quadratic terms in the potential has been studied in [Bog92, BZ93]. A
general potential with linear and quadratic terms was considered in [Han97] from the point
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of view of perturbation theory of the Euler top. The harmonic Lagrange top can also be
considered as an example of the general idea described in [DP16], where a semi-toric system
is deformed preserving integrability. In particular, we find that the harmonic Lagrange top
exhibits the subcritical and the supercritical Hamiltonian Hopf bifurcations.

As mentioned in the beginning, we want to draw attention to the fact that the quantisation
of the Lagrange top leads to the confluent Heun equation. The Heun equation is a Fuchsian
equation with 4 regular singular points, thus generalising the hypergeometric equation by
one singularity, see, e.g., [Ars64, RA95, SL00, DLMF]. An important physical application
of the confluent Heun equation appears in the perturbation theory of a rotating black hole
in general relativity [Teu73, PT73, Lea86]. In this context, expansions in terms of Jacobi
polynomials have been given in [FC77], and series expansion for small potential are given in
[Sei89]. As we show below, the harmonic Lagrange top leads to the most general confluent
Heun equation, unlike the above application in general relativity, which does not have
enough parameters.

After this work was completed we learned that a physical interpretation for the additional
quadratic ("harmonic") term in the potential is provided by considering the Lagrange top on
a vibrating suspension [Mar09, Mar12]. In this context the focus-focus points in the model
have been analysed in [BRS20], also see [BI22]. Some of our results about the threads of
focus-focus points in the bifurcation diagram overlap with [BRS20], also see [RS21].

The structure of this paper is as follows. We give an introduction to the Lagrange top in the
next section, where we emphasise the description in the spatial frame using quaternions
and the corresponding Poisson structure. The various periodic flows and their differences
when considering T ∗SO(3) or T ∗S3 (the quaternions) is discussed in section 3, and the
reductions to two degrees of freedom in section 4. The traditional description in Euler
angles is recalled in section 5, which is needed for the quantisation. The main classical
results are the description of the critical points in phase space and the corresponding critical
values in the image of the energy-momentum map. There are 4 different cases, with one
thread (the original Lagrange top), with two threads, with a triangular tube instead of the
thread, and a triangular tube shrinking to a thread. In the final section we show that the
quantum harmonic Lagrange top leads to the most general confluent Heun equation and
compute the spectrum, which is displayed overlayed with (slices) of the classical energy-
momentum map. A new method for the computation of the spectrum is presented.

3.2. HEAVY SYMMETRIC TOP

Consider a general rigid body with a fixed point. Assume that the symmetric inertia tensor
I with respect to that point has three distinct eigenvalues I1, I2, I3, the moments of inertia,
and assume that a body frame has been chosen in which the tensor of inertia is diagonal.
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For the symmetric top with I1 = I2 the location of the corresponding basis vectors is only
defined up to a rotation about the symmetry axis (or figure axis) of the body. In the spatial
coordinate frame, the z-axis is parallel to the direction of gravity. Let V be the coordinate
vector of a point in the body frame. The orthogonal matrix R ∈ SO(3) describes how this
point is moving in time when viewed in the spatial frame, v = RV .

For the free rigid body (Euler top), the fixed point of the body is the centre of gravity of the
body. For the Lagrange top, the centre of gravity is on the figure axis but does not coincide
with the fixed point of the body, which also lies on said axis. Denote the unit vector along
the figure axis of the top by a (in the spatial frame), then the potential energy in the field of
gravity is V = c1az . In this paper, we are going to study the more general case

V (az) = c1az + c2a
2
z .

The angular velocity Ω in the body frame is defined through R by RtṘV = Ω× V for any
vector V , or, equivalently, by Ω̂ = RtṘ. The kinetic energy of the rigid body is

T =
1

2
Ω · IΩ

where I is the diagonal tensor of inertia and · denotes the Euclidean scalar product.

The angular momentum vector is defined by L = IΩ. For the free rigid body l = RL is a
constant vector. For the Lagrange top instead there are only two conserved quantities given
by

lz = l · ez, L3 = L · e3 = Rtl · e3 = l ·Re3 = l · a .

In the spatial frame we have ez = (0, 0, 1)t and in the body frame we have e3 =

(0, 0, 1)t.

A beautiful global description of the dynamics of rigid bodies uses quaternions x =

(x0, x1, x2, x3) which are coordinates on the double cover of SO(3) which is S3 ∈ R4 given
by x20 + x21 + x22 + x23 = 1. Define

x± =

x1 −x0 ∓x3 ±x2
x2 ±x3 −x0 ∓x1
x3 ∓x2 ±x1 −x0


which satisfy x+x

t
+ = id, x−x

t
− = id, xt+x+x

t
− = xt−, and xt−x−x

t
+ = xt+ on the unit

sphere. Then an orthogonal 3 × 3 matrix is given by R = x+x
t
− and the last two identities

in the previous sentence become xt+R = xt− and xt−R
t = xt+. The matrices x± relate the

angular velocities to the tangent vector of the sphere ẋ by Ω = 2x−ẋ and ω = 2x+ẋ,
see, e.g., [Whi37, Section 16]. To see this, differentiate R with respect to time, observe that
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ẋ+x
t
− = x+ẋ

t
−, and use Rtx+ = x−. Substituting Ω = 2x−ẋ into the expression for T

gives
T = 2ẋt(xt−Ix−)ẋ .

Differentiating with respect to ẋ gives the conjugate momenta p = 4(xt−Ix−)ẋ on T ∗S3.
Using L = IΩ = 2Ix−ẋ we see that

L = 2Ix−ẋ = 2(x−x
t
−)Ix−ẋ =

1

2
x−p .

Similarly, we have l = 1
2x+p. It is valid to use the canonical bracket between x and p

because the resulting Hamiltonian automatically preserves |x| = 1 and x · p = 0.

Now changing from canonical variables (x,p) to non-canonical variables (x,L) gives the
Lie-Poisson structure in the body frame as [BM97, BM18]

B− =

(
0 1

2x
t
−

−1
2x− L̂

)
, ẋ = 1

2x
t
−∇LH, L̇ = −1

2x−∇xH +L×∇LH .

Similarly, the Lie-Poisson structure in the space fixed frame is

B+ =

(
0 1

2x
t
+

−1
2x+ −l̂

)
, ẋ = 1

2x
t
+∇lH, l̇ = −1

2x+∇xH − l×∇lH .

Both Poisson structures have the Casimir x20 + x21 + x22 + x23. The Poisson structure B+ is
found by sandwiching the symplectic structure of the (x,p) variables by the Jacobian of the
transformation of (x, l) and its transpose.

For the Euler top the usual Hamiltonian in the body frame is H = 1
2L · I−1L, and the

complicated integrals are RL (which imply the simple integral |L|2). In the space fixed
frame instead we have the complicated Hamiltonian H = 1

2 l · RI
−1Rtl with the simple

integrals l. We mention the Euler top here to make the point that for general moments of
inertia, the description in the body frame is simpler. However, for a round rigid body with
I1 = I2 = I3 both Hamiltonians are equally simple. Also for a symmetric rigid body with
say I1 = I2, the spatial frame is useful because

2T = l ·RI−1Rtl = l · 1

I1
R(id+ δe3e

t
3)R

tl =
1

I1

(
l2 + δL2

3

)
where δ = I1/I3 − 1. The important point is that L3 = e3 · L = e3 · Rtl = Re3 · l = l · a is
the angular momentum about the body’s symmetry axis e3 and hence a constant of motion
for the symmetric top.
Theorem 3.1. The Lagrange top (symmetric heavy rigid body with a fixed point on the symmetry
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axis) in coordinates x ∈ S3 ⊂ R4 and angular momenta l in the space fixed frame has Hamiltonian

H =
1

2I1
(l2x + l2y + l2z + δL2

3) + V (x20 + x23 − x21 − x22)

and Poisson structure B+, with integrals lz and

L3 = 2lx(−x0x2 + x1x3) + 2ly(x0x1 + x2x3) + lz(x
2
0 + x23 − x21 − x22).

The vector fields of lz and L3 generate a T 2 action with isotropies. The vector field of the Hamiltonian
is

XH =
1

2I1
Xl2 +

δL3

I1
XL3 −

1

2
(0, 0, 0, 0,x+∇xV )t . (3.1)

The functions H , lz , L3 have pairwise vanishing Poisson bracket. The vector fields XH , XL3 and
Xlz are independent almost everywhere.

This theorem is well known for the case of a linear potential, and when using Euler angles
it is part of most mechanics textbooks. Instead we offer a global description in the spatial
frame with a Poisson structure. In addition, in order to make the connection with the
general confluent Heun equation, we consider not just a linear potential (gravity), but in
addition a quadratic term. After some preparations in the next sections discussing the
torus action, the reduction, and briefly recalling Euler angles, the main technical part is the
description of the set of critical values of the energy-momentum map in Theorem 2.

3.3. TORUS ACTION

The vector field generated by L3 in the space fixed coordinate system is

XL3 = B+∇L3 =
1
2(x

t
+Re3, 0, 0, 0)

t = (12x
t
−e3, 0, 0, 0)

t (3.2)

where we used the identity xt+R = xt−. This vector field can be easily integrated (two
harmonic oscillators) to give the flow ΦψL3

. This flow rotates (x0, x3) and (x1, x2) by ψ/2

clockwise. However, when the flow acts onR it acts by multiplication by a counterclockwise
rotation about the z-axis through ψ (not ψ/2!) from the right. Thus L3 has 2π-periodic flow
on T ∗SO(3) and hence is an action variable.

The vector field generated by the integral lz is

Xlz = B+∇lz = (12x
t
+ez,−l× ez)

t. (3.3)

Again, this vector field is easily integrated (three harmonic oscillators) giving the flow
Φϕlz . The action on R is by multiplication with a counterclockwise rotation about the z-axis
through ϕ from the left. In addition, the momentum vector l is rotated by the same rotation
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matrix. Thus lz has 2π-periodic flow on T ∗SO(3) and hence is an action variable.

The vector fields XL3 and Xlz are parallel when lx = ly = 0 and either x0 = x3 = 0 or
x1 = x2 = 0. These critical points have l||a||ez and are called sleeping tops. In the first case
az = −1 (hanging sleeping top), while in the second case az = +1 (upright sleeping top).
The torus action is not free at these points because the rotations coincide. Since L3 = l · a
we see that L3 = −lz for the hanging sleeping top and L3 = lz for the upright sleeping top.
The corresponding critical points of H are two parabolas above lz ± L3 = 0.

The vector fields Xlz and XL3 both have 2π periodic flows on T ∗SO(3), i.e. they map x

to −x after time 2π. When considered as flows on S3 both flows have period 4π. Now
consider the vector fields generated by lz ± L3. These are both 2π periodic vector fields on
T ∗S3. Points with lx = ly = 0 and either x0 = x3 = 0 or x1 = x2 = 0, respectively, are
fixed points of these flows. Nevertheless, they are action variables on T ∗S3. Notice that as
flows on T ∗SO(3) the orbits of lz±L3 do not all have the same minimal period, since points
with lx = ly = 0 and either x0 = x3 or x1 = x2 have minimal period π, while all other
non-fixed points have minimal period 2π. The T 2 action on T ∗S3 is of course still not free,
the difference is that now the exceptional sets of points are found as those where one of the
vector fields vanishes.

The vector field of the spherical Euler top is that of l2 = l2x + l2y + l2z . The vector fields of lx
and ly are permutations to that of lz given in (3.3). Combining these gives

Xl2 = (xt+l, 0, 0, 0)
t .

Here the components of l are all constant, and the flow of this vector field is a rotation
about the axis l. This is also a periodic flow, but the period is not constant. To obtain
constant period, we consider the flow generated by l =

√
l2, which we denote by Xl. This

flow commutes with the flows of lz and L3, but not with that of H . The flow of l2 leaves l

constant and so

Φαl = exp

 α

2l


0 lx ly lz

−lx 0 −lz ly

−ly lz 0 −lx
−lz −ly lx 0




=


cos α2 lx/l sin

α
2 ly/l sin

α
2 lz/l sin

α
2

−lx/l sin α
2 cos α2 −lz/l sin α

2 ly/l sin
α
2

−ly/l sin α
2 lz/l sin

α
2 cos α2 −lx/l sin α

2

−lz/l sin α
2 −ly/l sin α

2 lx/l sin
α
2 cos α2

 .

When acting with this flow on the rotation matrix R with initial condition x = (1, 0, 0, 0)

gives Rodrigues’ parametrisation of SO(3) with rotation axis l/l and rotation angle α. Thus
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Rodrigues’ formula gives the geodesics of the spherical top. When acting with this flow on
S3 it is periodic with period 4π.

The reason we are including this flow is that there is an interesting difference between SO(3)

and S3. On T ∗SO(3) the singular T 3 torus action generated by the commuting flows of lz ,
L3, and l is faithful. This means that outside the singularity where lz ± L3 = 0 the action
on each T 3 obtained by fixing the values of the generators is faithful. By contrast, when
considering the T 3 torus action generated by lz + L3, lz − L3, and l + l on T ∗S3 the action
is not faithful on regular tori. The reason is that when flowing each flow only for angle
π, then the first two flows together achieve x → −x, and this is cancelled by the flow
Φπ2l = Φ2π

l .

3.4. REDUCTIONS

The flows of lz and L3 are global S1 actions, and hence allow for regular reduction. It is
straightforward to obtain the reduced system from the global system with Poisson structure
B±. The lz-reduced system gives the well known Euler-Poisson equations, while the L3-
reduced equations are somewhat less well known in classical mechanics (see, e.g., [BS99,
CB15, Dul04]). The full reduction is singular because the T 2 action of lz and L3 is not free.
The standard description of reduction uses zxz-Euler angles, the singular reduction using
invariants is in [CB15]. A peculiar property of Euler angles is that the ψ-rotation leaves
the figure axis invariant (it acts on the right) while the ϕ-rotation leaves the direction of
gravity invariant (it acts on the left), and hence Euler angles are neither space-fixed nor
body-fixed. The quantisation of the top (see below) starts out with Euler angles [LL77], but
in the end, writing the Hamiltonian using l2 and L2

3 shows that for the quantum mechanical
description the spatial frame is also useful.

The reduction by the symmetry ΦψL3
introduces the coordinates of the axis of the top a =

Re3 as new coordinates. This is, in fact, reduction by invariants, since the third column of
R is given by (2(x0x2 + x1x3),−2x0x1 +2x2x3, x

2
0 + x23 − x21 − x22) and these are all invariant

under the two-oscillator flow ΦψL3
. We already noted that ΦψL3

acts on R by multiplication
by Rz(ψ) from the right, where Rz(ψ) denotes a counterclockwise rotation about the z-axis
by ψ. Hence RRz(ψ)e3 = Re3 = a is invariant. The resulting reduced system has Poisson
structure

Br
+ =

(
0 −â

−â −l̂

)
, ȧ = −a×∇lH, l̇ = −a×∇aH − l×∇lH .

Denote the Jacobian of the transformation from (x, l) to (a, l) by A. Then Br
+ = AtB+A

when expressed in the new variables. The main identity in the reduction from B+ to Br
+

is 1
2
∂a
∂xx

t
+ = â. The Poisson structure Br

+ has Casimirs a2 = 1 and a · l and the reduced
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Hamiltonian is
H =

1

2I1
(l2 + δ(a · l)2) + V (az).

Since a · l is a Casimir (equal in value to the generator of the symmetry L3) it does not
contribute to the dynamics but merely changes the value of the Hamiltonian.

Note that reduction by the symmetry generated by the integral lz is more complicated in the
spatial frame since the flow is a rotation in x and in lx, ly. However, when switching to the
body frame then the flow of lz (written in terms of L) is simpler. Reduction is achieved by
introducing the invariant of the left action generated by lz , which is et3Rz(ϕ)R = et3R = Γt

with Poisson structure

Br
− =

(
0 Γ̂

Γ̂ L̂

)
, Γ̇ = Γ×∇LH, L̇ = Γ×∇ΓH +L×∇LH .

The reduction leads to the more familiar Hamiltonian of the Lagrange top given by

H =
1

2I1
(L2

1 + L2
2) +

1

2I3
L2
3 + V (Γ3)

where Γ is ez viewed from the body frame. The Poisson structure is Br
− with the opposite

sign than Br
+. These are the equations usually called Euler-Poisson equations. Their

advantage is that this reduction remains valid for an arbitrary rigid body with a fixed
point, and this family for appropriate moments of inertia and position of the centre of mass
contains the Kovalevskaya top, the Euler top, and all other (non-integrable) tops.

The Hamiltonian Hopf bifurcation in the sleeping top with a||l||ez respectively Γ||L||e3 is
best described in the reduced system(s), because the corresponding periodic orbit becomes
a relative equilibrium after reduction. It is easy to check that indeed these are equilibria,
and linearising the Hamiltonian vector field about these equilibria yields a 6 × 6 matrix
with 2 eigenvalues zero corresponding to the two Casimirs. The characteristic polynomial
for the remaining non-trivial eigenvalues is

P+(λ) = λ4 + λ2(κ2 − 2f) + f2 = 0, κ = lz/I1 = ωI3/I1, f = azV
′(az)/I1, az = ±1 .

in the spatial frame and

P−(λ) = P+(λ) + ω(ω − κ)(2λ2 + 2f + ω(ω − κ)), ω = lz/I3

in the body frame. The eigenvalues given by the roots of P+ in the spatial frame are not
the same as the eigenvalues given by the roots of P− in the body frame because in the latter
case the system is described in a frame rotating with angular velocity ω. However, they
differ only by ±iω. More precisely, let λ1, λ̄1, λ2, λ̄2 be the roots of P+, then the roots of P−

are λ1 + iω, λ̄1 − iω, λ2 + iω, λ̄2 − iω such that the Floquet multipliers µ = exp(λT ) of the
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periodic orbit with period T = 2π/ω are the same. The description in the spatial frame
gives simpler formulas.

At the Hamiltonian Hopf bifurcation the eigenvalues change from all purely imaginary via
a collision on the imaginary axis to a quadruple of complex eigenvalues. This occurs when
the discriminant of P+(λ) considered as a quadratic equation in λ2 changes from positive
to negative. The discriminant is given by κ2(κ2 − 4f). When f is negative the eigenvalues
are purely imaginary for any κ. When f is positive eigenvalues are purely imaginary when
κ2 > 4f , while the top is unstable with non-zero real parts of the eigenvalues when κ2 < 4f .
This is the classical stability condition for the Lagrange top, here obtained for arbitrary
potential. At the critical case κ2 = 4f the eigenvalues collide and λ2 = −κ2/4.

3.5. EULER ANGLES

The Poisson structures B± allow for a global description of rigid body dynamics free
of coordinate singularities. However, often explicit canonical coordinates are more
convenient, and even essential for the quantisation of the problem. Such a coordinate
system adapted to the symmetries is given by zxz-Euler angles such that

R = Rz(ϕ)Rx(θ)Rz(ψ) .

The canonically conjugate momenta are denoted by pϕ, pθ, pψ, respectively. Then we have
that lz = pϕ and L3 = pψ. The Hamiltonian in these coordinates is

H =
1

2I1
(2Tround + δp2ψ) + V (cos θ)

where Tround is the kinetic energy of the spherical top with moment of inertia 1:

Tround =
1

2

(
p2θ +

1

sin2 θ

(
p2ϕ + p2ψ − 2pϕpψ cos θ

))
=

1

2
l2 .

Notice that this round metric on SO(3) is a metric of constant curvature and hence up to a
covering equivalent to the metric of the round sphere S3.

Away from the coordinate singularity where the torus action is not free, Euler angles are a
smooth local coordinate system. Equilibrium points in θ are determined by ∂H/∂θ = 0. For
later use, we denote this function by Hθ, and similarly the 2nd derivative by Hθθ.

3.6. BIFURCATION DIAGRAM

The energy-momentum map from T ∗SO(3) to R3 is given by (lz, L3, H) where L3 is given
in terms of x and l as in Theorem 1. The bifurcation diagram of this integrable system is the
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A) B)

C) D)

Figure 3.1: Examples of the four topologically different kinds of bifurcation diagrams. A)
triangular tube, B) shrinking triangular tube and thread (zoomed in), C) one thread and D)
two threads. All figures use I1 = 1, δ = 0, c1 = 1. The values of c2 are −1.5,−0.48, 0.4, 2.5
for A,B,C,D, respectively. In A) the ranges for lz and L3 are chosen as to cut away parts of
the surface facing the viewer. In B) the ranges are even more restricted. The black dots mark
the Hamiltonian Hopf bifurcations.



CHAPTER 3. THE HARMONIC LAGRANGE TOP 64

set of critical values of the energy-momentum map. Hence we are interested in the rank of
(Xlz , XL3 , XH). To determine where the rank drops we consider

αXL3 + βXlz + γXH = 0 . (3.4)

Theorem 3.2. The rank 1 points of the energy-momentum map are given by two parabolas of
sleeping tops

(lz, L3, H) =

(
m,±m, m

2

2I1
(1 + δ) + V (±1)

)
. (3.5)

The rank 2 points have a rational parametrisation determined by l(β, az) =
1
β I1V

′(az)a+βez such
that for az ∈ [−1, 1] and β ∈ R the critical values of the energy-momentum map are

lz(β, az) =
1

β
I1V

′(az)az + β,

L3(β, az) =
1

β
I1V

′(az) + βaz,

H(β, az) =
1

2I1
(l(β, az)

2 + δL3(β, az)
2) + V (az) .

Proof. Notice that the last 3 components of XV can be written as

−1
2x+∇xV (az(x)) = −a×∇aV (az) = −a× ezV

′(az) .

Using xt−e3 = xt+Re3 = xt+a in the flow of L3, (3.4) becomes(
1
2x

t
+((α+ γδL3)a+ βez + γl)

−(γI1V
′
a+ µez + βl)× ez

)
=

(
0

0

)
.

This means critical points of the momentum map occur when

(α+ γδL3)a+ βez + γl = 0

γI1V
′
a+ µez + βl = 0.

(3.6)

for α, β, γ not all zero. Hence the three vectors a, l, ez are co-planar. Since a and ez never
vanish, there is no rank 0 point. We have the following four cases.

1) a ∥ ez . This means ax = ay = 0 and az = ±1. If l ̸= 0 and l not parallel to ez ,
then linear independence (3.6) implies α = β = γ = 0. Hence l ∥ ez ∥ a (including
l = 0), and we can use lz = m as parameter and thus showed the parametrisation
of the sleeping tops (3.5). Recall that these are the points where the torus action is
not free. All points along these parabolas have rank 1. Parts of these parabolas may
be isolated threads of focus-focus type, while others form the edges of the surface of
elliptic-elliptic type. The vertices of the parabolas where m = 0 and hence l = 0 are
equilibrium points of XH with az = ±1.
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2) l ∥ ez . Set l = λez . If a ∥ ez then this gives the sleeping top solution again. If a is not
parallel to ez then by linear independence, (3.6) implies α + γδL3 = β + γλ = 0 and
I1V

′
= µ+βλ = 0. If γ = 0 then this forces the trivial solution α = β = 0 so γ ̸= 0 and

V
′
= 0. Since V

′
= c1 + 2c2az this means az = −c1

2c2
=: az0. Normalising γ = −1 gives

λ = β and hence l = βez , a = (ax, ay, az0), L3 = l · a = βaz0 and hence using β = m

as parameter gives

(lz, L3, H) =

(
m,maz0,

m2

2I1
(1 + δa2z0) + V (az0)

)
. (3.7)

Since |az| ≤ 1 this parabola only exists when 2|c2| > |c1|, while for 2|c2| = ±|c1| it
merges with the sleeping tops. The vertex of this parabola where m = 0 and hence
l = 0 is an equilibrium point of XH with |az| ≤ 1. This vertex lies above or below
the vertices of the parabolas of sleeping tops (3.5) described in case 1, depending on
whether c2 < −c1/2 or c2 > c1/2.

3) l ∥ a. This forces l = λa = L3a. If a ∥ ez then this gives the sleeping top solution
again. If a is not parallel to ez then linear independence and (3.6) implies α + γ(δ +

1)L3 = β = 0 and γI1V ′ + βL3 = µ = 0. Again γ = 0 gives the trivial solution, so we
can normalise γ = −1 and find α = (1 + δ)L3 and V ′ = 0, as in case 2. Using L3 = k

as parameter gives

(lz, L3, H) =

(
kaz0, k,

k2

2I1
(δ + 1) + V (az0)

)
. (3.8)

Existence and limiting behaviour is as in case 2. The vertex of this parabola coincides
with that of case 2.

4) General case where no pair of vectors is parallel. If γ = 0 then this gives α = β = 0

while if β = 0 then this gives case 2. We now assume β ̸= 0 and γ ̸= 0. Eliminating l

from (3.6) and using linear independence gives µ = β2

γ and α+ γδL3 =
γ2

β I1V
′. Using

this to eliminate L3 in (3.6) gives −l = γ
β I1V

′
a+ β

γ ez . Normalising γ = −1 computing
lz = l ·e3, L3 = l ·a, and l2 = l · l gives the result. Notice that β is the angular velocity
of the angle ϕ conjugate of pϕ.

■

Note that in cases 2 and 3 the parabolas (3.7) and (3.8) are embedded in the surface of critical
values described in case 4. Unlike the parabolas (3.5) the rank of these points is 2. Since V ′

is linear in az we can eliminate az in favour of α̃ = I1V
′(az)/β. Notice that α is the angular

velocity of the angle ψ, and α̃ is that angular velocity with δ = 0. As a result we obtain a
polynomial parametrisation of the critical values of the energy-momentum map which after
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Figure 3.2: Slices through the bifurcation diagram along lz − L3 = 0 (blue) and lz + L3 = 0
(red) for Fig. 3.1 A,C,D using ℏ = (0.075, 0.15, 0.11) for the quantum spectrum, respectively.
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non-dimensionalisation is given by

(
β + az0α̃(1− α̃β), γ + az0β(1− α̃β), 12(α̃

2 + β2 + az0(1− α̃β)(3α̃β + 1) + δ(α̃+ az0β(1− α̃β))2)
)

with the constraint −1 ≤ az0(1− α̃β) ≤ 1 on the parameters α̃ and β. When δ = 0 any line
determined by fixing α and changing β or vice versa is a planar parabola. This means the
surface is doubly foliated by (arcs of) planar parabolas. The two special parabolas (3.7) and
(3.8) correspond to vanishing angular momentum α̃ = 0 and β = 0, respectively. Hence
for points on (3.7) the top does not rotate about its figure axis while for points on (3.8) the
figure axis does not rotate in space. Both are extreme cases of resonant 2-tori where one
frequency vanishes. Note that such solutions are impossible in the ordinary Lagrange top
with c2 = 0. The parabolas of rank 1 points (3.5) are not part of this foliation, instead they
mark the endpoints of the parabolic arcs where az0(1− α̃β) = ±1.

The rational parametrisation from Theorem 2 is also useful when using the Euler angles.
Inserting the parametrisation into the condition for an equilibrium point Hθ = 0 shows
that it is identically satisfied. To determine the stability of the equilibrium we evaluate the
second derivative Hθθ on the rational parametrisation and find

Hθθ(β, az) = β2I1 − 2azV
′(az) + (1− a2z)V

′′(az) +
1

β2I1
V ′(az)

2 . (3.9)

The transverse stability of a 2-torus is determined by the sign of Hθθ since it gives the
curvature of the effective potential. Computing Hθθ on the parabolas of sleeping top (3.5)
gives m2/(4I1) ∓ V ′(±1), reproducing the classical condition for the Hamiltonian Hopf
bifurcation in Lagrange’s sleeping top found at the end of section 4. Evaluating Hθθ as
given in (3.9) on the parabola (3.7) gives m2/I1 + 2c2(1 − a2z0), and on the parabola (3.8)
similarly gives k2/I1 + 2c2(1 − a2z0). When c2 < −c1/2 these are both negative for small m
or k, respectively, and hence unstable. These correspond to points on top of the triangular
tube, which are hyperbolic. For sufficiently large angular momentum the sign flips, and
they are points in the outer envelope surface of critical values. When c2 > c1/2 the 2nd
derivative is always positive, hence in this case rank 2 points correspond to elliptic 2-tori.

EquatingHθθ to zero gives a relation between β and az which determines degenerate values
in the bifurcation diagram. These are the cusp-shaped edges of the triangular tubes in
Fig. 1A,B. The most degenerate situation occurs when simultaneously the 2nd and the 3rd
θ-derivative of H vanish. This occurs for the special parameter values az = −c1/(2c2), β2 =
−c21/(8c2I1) and az = −c1/(4c2), β2 = c21/(2c2I1) − 2c2/I1. When these degenerate values
for az collide with ±1 then the degenerate points disappear and the topological structure
of the bifurcation diagram changes. This occurs for c1 = ±2c2 and c1 = −4c2. The plus
sign yields imaginary β. The sign of c1 can be made positive by the original choice of body
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coordinate system. This can flip the sign of c1az in the potential but leaves c2a2z unchanged.
Hence there are 4 topologically distinct cases illustrated in Fig. 1:

A) c2/c1 < −1/2: triangular tube Fig. 1A;

B) −1/2 < c2/c1 < −1/4: triangular tube shrinking to a thread Fig. 1B;

C) −1/4 < c2/c1 < 1/2: one thread Fig. 1C;

D) c2/c1 > 1/2: two threads Fig. 1D.

To understand the figures corresponding to these 4 cases it helps to consider how they
bifurcate into each other. We stress again that we always consider δ = 0, because adding
the additional quadratic term in L3 to the Hamiltonian deforms the bifurcation diagram,
but does not essentially change it. Bifurcations similar to those found here have recently
been described in [SZ07a, EHM19], in particular also the related quantum monodromy in
[SZ07a].

Let us start with the ordinary Lagrange top, c2 = 0, c1 = 1 by choice of coordinate system
and normalisation [CK85]. The bifurcation diagram for the harmonic Lagrange top is
topologically the same for −1/4 < c2/c1 < 1/2. It is natural that a small enough quadratic
term does not change the nature of the bifurcation diagram since the potential V (az) is only
changed a little since |az| ≤ 1. The outer surface is a bowl that has at least two corners
when cut at constant energy. For high energy there are four corners, while for low energy
only two. The transitions are two supercritical Hamiltonian Hopf bifurcations where the
sleeping top becomes stable. A thread of critical values detaches at these points of the
surface. This thread is shown in blue in Fig. 1C. In Fig. 2 slices through the 3-dimensional
bifurcation diagram are shown. Each blue curve is a slice with lz − L3 = 0 which contains
the thread, while in the other slice lz + L3 = 0 the thread appears as a single isolated point.
In these figures we also show the quantum spectrum, see the next section. This situation
persists for non-zero c2 not too large.

For c2/c1 > 1/2, a second thread emerges from the minimum of H , as shown in Fig. 1D and
Fig. 2D. For low energies, the outer surface has no corners at all. For intermediate energy
as visible at the top of Fig. 1D, there are 2 corners above where the red thread is attached,
but the blue thread is not yet attached and the outer surface nearby is still smooth. For high
energies, there are 4 corners.

A more dramatic change occurs when decreasing c2/c1 through −1/4. All attachment
points of the threads in the two cases discussed so far are supercritical Hamiltonian Hopf
bifurcations. When passing −1/4, the supercritical Hamiltonian Hopf bifurcation turns into
a subcritical Hamiltonian Hopf bifurcation. The attachment point is replaced by a tube with
triangular cross section that eventually contracts to a point and becomes a thread, as shown
in Fig. 1B (zoomed in).
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When decreasing c2/c1 further, the two subcritical Hamiltonian Hopf bifurcation values
collide when c2/c1 = −1/2, and merge into a triangular tube shown in Fig. 1A and there
is no bifurcation any more in the rank 1 points given by (3.5) with L3 = +m. Instead this
parabola marks the corner at the bottom of the triangular tube and for higher energies the
corner in the outer surface. In this figure, the bounding box is chosen such that it cuts
away parts of the surface facing the viewer so that the triangular tube becomes visible. The
0-slices are shown in Fig. 2A. The two bottom surfaces of the tube correspond to elliptic 2-
tori, while the top surface of the tube corresponds to hyperbolic 2-tori. The top surface joins
the bottom surfaces along a line of cusps whereHθθ = 0. The merging of the triangular tube
with the outer surface is illustrated in additional slices in Fig. 3.3. Consider the red triangle
in Fig. 2A. It is obtained by slicing the tube orthogonal to its long direction in the middle.
When moving this slice away from the middle the triangle moves up, but the bottom curve
below it moves up faster, and eventually the corner of the triangle will pierce through that
curve. When viewing the critical values from below the triangular tube pierces through the
surface. The first bifurcation in the slice occurs when the top of the triangle (hyperbolic
2-tori) becomes tangent to the curve. This creates a pair of saddle-centre bifurcation of 2-
tori and the corresponding critical values in the energy-momentum map are degenerate. In
the rightmost slice the two cusps collide and annihilate and the slice becomes smooth. The
reason that the two different slices in Fig. 3 appear somewhat similar is that when c1 → 0

they actually become identical, see Fig. 4 below. In the left pane a perspective view looking
down along the H-axis from above is shown, while in the right pane we are looking up
along the H-axis from below the surface. This concludes the description of the four generic
cases of the bifurcation diagram.

There are 3 degenerate cases separating A,B,C,D from each other. In addition there are
two non-generic cases that occur in the limit that c1 → 0. There are two different limiting
cases depending on the sign of c2. For positive c2 we recover the case studied in [BZ93], for
which the two threads (3.5) intersect at their vertex. The case of negative c2 is fundamentally
different and was not considered in [BZ93]. Again the two parabolas (3.5) intersect at their
vertices, but they are now embedded in the surface of critical values and mark its edges,
see Fig. 4. In addition the triangular tube becomes symmetric in this limit forming a kind
of trampoline. The edge of the trampoline where Hθθ = 0 is shown in orange. The cuspidal
points of the trampoline touch the outer surface where the self-intersection of the surface
stops, this is where the parabolas (3.7) and (3.8) (green and purple in Fig. 4) intersect the
orange cusps. Viewed from below this point is where the self-intersection of the surface
stops and the parabolas become visible as embedded in the smooth outer surface (Fig. 4
right). Slices of the set of critical values for constant energy in this case have D4 symmetry.
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Figure 3.3: Slices of constant lz − L3 and lz + L3 near the most degenerate values. Top:
slices with constant lz − L3 = (0.200, 0.488, 0.755, 0.888, 1.15). Bottom: slices with constant
lz + L3 = (1.00, 1.96, 2.06, 2.16, 2.31). Parameters are the same as those in Fig. 1A.

Figure 3.4: Top and bottom view (shown in the left and right pane, respectively) of the
limiting case with c1 = 0 and negative c2 = −1. Four parabolas corresponding to (3.5) (red
and blue), (3.7) (green), (3.8) (purple) are shown, in addition to the cuspidal edge of the
“trampoline” (orange).
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3.7. QUANTUM MECHANICS OF THE HARMONIC LAGRANGE TOP

The quantisation of the rigid body is textbook material, see, e.g., [LL77, §103]. The global
action variables lz and L3 become operators l̂z = −i∂/∂ϕ and L̂3 = −i∂/∂ψ, measured in
units of ℏ. We denote the corresponding integer eigenvalues bym and k such that l̂zΨ = mΨ

and L̂3Ψ = kΨ for a wave function Ψ.

The quantum mechanical harmonic Lagrange top has the Hamiltonian operator

Ĥ =
1

2I1

(
l̂2 + δL̂2

3

)
+ c1 cos θ + c2 cos

2 θ (3.10)

where l̂ is the total angular momentum operator. Explicitly the first part of the Hamiltonian
operator is found as the Laplace-Beltrami operator of the metric Tround of the spherical top,
hence

l̂2 = − 1

sin θ
∂θ(sin θ ∂θ) +

1

sin2 θ
(m2 + k2 − 2mk cos θ) ,

where we have already replaced the operators l̂z and L̂3 by their respective eigenvalues.
The equation l̂2f = j(j + 1)f is a self-adjoint form of the hypergeometric equation.
Setting the eigenvalue of l̂2 to j(j + 1) for positive integer j, solutions are given by
sin|m+k| θ

2 cos
|m−k| θ

2P
|m+k|,|m−k|
j−max(|k|,|m|)(cos θ) where Pm1,m2

n are the Jacobi polynomials. Up to
normalisation and phase factors these are the Wigner-D functions [BLC81]. The equation
has regular singular points at θ = 0, π with indices ±(m − k) and ±(m + k), respectively.
Note that the global quantum numbers m and k appear as indices of regular singular
points.

Adding the potential terms, and transforming to z = cos θ brings us to the following
observation.
Theorem 3.3. The quantisation of the harmonic Lagrange top leads to the most general confluent
Heun equation (aka generalised spheroidal wave equation) which has the self-adjoint form

(−∂z((1− z2)∂z +
k2 +m2 − 2kmz

1− z2
+ c̃1z + c̃2z

2 − λ)ψ(z) = 0 (3.11)

where z = cos θ and λ is the spectral parameter related to the energy eigenvalueE of the Hamiltonian
by λ = 2I1E/ℏ2 − δk2, c̃1 = c12I1/ℏ2, c̃2 = c22I1/ℏ2,

In the form (3.11) the indices at z = ±1 are ±(m− k)/2 and ±(m+ k)/2. This equation has
an irregular singular point at infinity, which is obtained by the confluence of two regular
singular points of the Heun equation. The Heun equation is the most general Fuchsian
equation with 4 regular singular points. The Heun equation (after normalisation by Möbius
transformations) has 6 parameters, 1 position of a pole, 4 indices, and the so called accessory
parameter. The pole position is used for the confluence, after which only two regular
singular points remain. Hence 2 indices remain as parameters (given by ±(m ± k)/2).
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Two additional parameters describe the behaviour near the irregular singular point, and
the accessory parameter remains, so that there is a total of 5 parameters.

To transform into the standard form of the confluent Heun equation, see, e.g., [DLMF], first
shift to the standard poles by z → (z + 1)/2, and then scale the dependent variable with
exp(2

√
c̃2)z

|m+k|(z − 1)|m−k|.

When considering the confluent Heun equation, the usual reference to its application in
physics is to Teukolsky’s master equation [Teu73], which appears in the perturbation theory
around a rotating black hole, i.e. the Kerr metric. However, that equation only has 4
parameters, and one index-parameter is more restricted because it represents the spin of a
particle. In this context, eigenvalues λ of the equation have been computed using expansion
in Jacobi polynomials in [FC77]. Their results are not applicable to our case because their
equation only has 4 parameters. To compute the spectrum in our case we generalise the
papers [Shi63], [HO91] which treat the case of a symmetric molecule (i.e. top) in an electric
field, hence the Lagrange top (without the harmonic field). To extend their method, which
is also an expansion in Jacobi polynomials (or rather the related Wigner D-functions), we
need to compute the matrix elements of cos2 θ. This leads to our final result.
Theorem 3.4. The spectrum of the harmonic Lagrange top (3.10) which is equivalent to the most
general confluent Heun equation (3.11) can be computed from a penta-diagonal symmetric infinite
matrix

Ĥ = Ĥ0 + c1Ĥ1 + c2Ĥ
2
1 . (3.12)

For given fixed m, k the operator Ĥ0 is the diagonal representation of the Hamiltonian without
potential and H1 is the tri-diagonal representation of cos θ in terms of Wigner-D basis functions.

Proof. The formulas for Ĥ0 and Ĥ1 are given in [Shi63]. We repeat them here for
convenience. The diagonal entries of Ĥ0 are ℏ2

2I1
(j(j+1)+δk2). The diagonal entries of Ĥ1 are

aj = −km/(j(j+1)) and the off-diagonal entries are bj = −
√
(j2 − k2)(j2 −m2)/(j2(4j2 − 1)).

The first entries in the matrix representing the operators have j = max(m, k). Note that for
m = k = 0 the diverging terms in bj cancel and b0 is defined. It is easy to compute the
matrix elements of cos2 θ. This can be done by noticing thatD2,0,0 =

3
2 cos

2 θ− 1
2 . The matrix

representation ofD2,0,0 can be expressed in terms of Clebsch-Gordan coefficients. However,
it is more efficient to use the fact that since Ĥ1 represents cos θ the matrix Ĥ2

1 represents
cos2 θ. So instead of computing matrix elements of cos2 θ from scratch in terms of Clebsch-
Gordan coefficients we can simply compute the square of the matrix representation of Ĥ1.
In particular the entries in the 2nd off-diagonal are given by products bj−1bj .

■

The numerical convergence of these expressions is good, and the spectra displayed in
Figure 2 were computed from these matrices truncated at twice the maximal needed
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quantum number j. The value j = max(m, k) is called maximal since it is the largest such
number for a given value of the basic Hamiltonian (Ĥ0). The reason for taking twice this
when truncating the infinite matrix is to achieve an optimal balance between performance
and computational time. Even though the term δL2

3 in the Hamiltonian is important for the
classical dynamics, its effect on the quantum spectrum is rather trivial, it simply adds δk2.
It does change the spectrum, but the change is simple, and for this reason in the figures
we restricted attention to δ = 0, the spherical top. Moreover, from the point of view of
the computation of the spectrum of the general confluent Heun equation the term δk2 is
irrelevant.

Why is there a correspondence between the harmonic Lagrange top and the confluent
Heun equation? This question may not have a definite answer, but it is suggestive that
the harmonic potential is the most general potential for which the classical dynamics can be
linearised using the Jacobian of an elliptic curve. This fact appears to be related to the fact
that the corresponding quantum system is described by the confluent Heun equation. After
adding higher order terms to the potential, the system remains integrable and separable
in the same way, but the classical dynamics will involve hyperelliptic curves, and the
quantum system will be described by higher order confluent Fuchsian equations. It would
be interesting to make this observation more precise.



Chapter 4

Quantum Integrable Systems arising from Separation of

Variables on S3

Abstract

We study the family of quantum integrable systems that arise from separating
the Schrödinger equation in all 6 separable orthogonal coordinates on the
3−sphere: ellipsoidal, prolate, oblate, Lamé, spherical and cylindrical. On the
one hand each separating coordinate system gives rise to a quantum integrable
system on S2 × S2, on the other hand it also leads to families of harmonic
polynomials in R4. We show that separation in ellipsoidal coordinates yields
a generalised Lamé equation - a Fuchsian ODE with 5 regular singular points.
We seek polynomial solutions so that the eigenfunctions are analytic at all
finite singularities. We classify eigenfunctions by their discrete symmetry and
compute the joint spectrum for each symmetry class. The latter 5 separable
coordinate systems are all degenerations of the ellipsoidal coordinates. We
perform similar analyses on these systems and show how the ODEs degenerate
in a fashion akin to their respective coordinates. For the prolate system we
show that there exists a defect in the joint spectrum which prohibits a global
assignment of quantum numbers: the system has quantum monodromy. This
is a companion paper to [NDD23] where the respective classical systems were
studied.

4.1. INTRODUCTION

The study of separation of variables yields a vast array of classical and quantum integrable
systems that are ripe for exploration. Separation of variables originated with Jacobi and
Stäckel [Stä93]. On the quantum side, seminal work was done in the early 20th century
by Robertson [Rob27] who showed, for a given orthogonal coordinate system, that the
Schrödinger equation is separable if both the classical Hamilton-Jacobi equation is separable
and the Robertson condition is satisfied. Work done soon after by Eisenhart [Eis34] showed

74
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that all systems that arise from separation of variables are Stäckel systems and so the
corresponding classical integrals obtained will be quadratic in the momenta. Work by
Kalnins and Miller in the late 20th century yielded a complete classification of all orthogonal
separable coordinates on both Rn and Sn [KM86]. This work was further summarised
in [KKM06], where connections to superintegrability were also drawn. Separation for
systems with potential are also well studied. In [KKMP02] invariants for a system that
admit separation of variables were constructed. Schöbel and Veselov gave a topology
to the space of separable coordinates on the sphere [SV15, Sch16] and identified it with
Stasheff polytopes. Previously, our motivation was to study the corresponding integrable
systems, which inherit the same topology. In our paper [NDD23], we showed that the
space of orthogonally separable coordinates on S3 induces a family of classical integrable
systems on S2 × S2 after reduction. Here we seek to broaden this analysis to the space of
quantum integrable systems, their corresponding separated ODEs and special functions. In
particular, we study 5 families of Fuchsian equations: the generalised Lamé, Heun, Jacobi,
Gegenbauer and Legendre differential equations. Similar to our previous work, we aim to
understand how degenerations in the coordinate systems descend to the space of integrable
systems, and correspondingly ODEs and special functions.

The general idea to start with a super-integrable system and exploit its multiseparability to
define interesting Liouville integrable systems by reduction has been exploited in the case
of the Kepler problem [DW18] and the harmonic oscillator [CDEW19]. This paper follows
the same approach for the geodesic flow on the three dimensional sphere S3. In this case the
space of separable coordinate systems is a Stasheff polytope which is the pentagon shown in
Fig. 4.1. This is the parameter space of the family of quantum integrable systems on S2×S2.
While the previous examples (Kepler and Harmonic oscillator) also lead to reduced systems
on compact symplectic manifolds and hence quantised systems on finite dimensional
Hilbert spaces, starting with S3 separation of variables in the Schrödinger equation leads
to Fuchsian equations, while the presence of the potential in the earlier examples lead
to confluent Fuchsian equations. Degeneration of parameters in the general separable
coordinate system on S3 to the so-called prolate case (the bottom edge of the pentagon
in Fig. 4.1) then leads to a semi-toric family whose quantum mechanics is described by
polynomial solutions of the Heun equation. The semi-toric systems on S2 × S2 studied in
[SZ99, LFP18, ADH19] do not appear to include the prolate system studied here, because
the non-trivial integral is a homogeneous polynomial. In fact, all our Liouville integrable
systems have integrals that are in general homogeneous quadratics in the momenta, and
may degenerate into squares of linear functions of the momenta. Because of this all our
integrable systems are related to spherical harmonics on S3. The ellipsoidal reduced system
is related to the Manakov top and has been studied classically and quantum mechanically
in [SZ07b].

In our study of these quantum systems, we perform a variety of numerical computations to
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Figure 4.1: Stasheff polytope of orthogonal separable coordinates on S3 with corresponding
ODEs arising from separation.

find the joint spectrum. For all degenerate systems, a power series ansatz yields a three term
recurrence relation. Given the necessary quantisation conditions, this recurrence terminates
and yields a polynomial as an eigenfunction. The joint spectrum is then computed from
the associated tri-diagonal matrix. The ellipsoidal coordinates on S3 gives the more
difficult generalised Lamé equation which has 5 regular singularities. Consequently, the
aforementioned methodology falls short and we use the method of computing Heine-
Stieltjes polynomials as described in [Ala79, ARZ85, Vol99]. It is interesting to note that for
all systems on S3, the joint spectrum is recovered from finite matrices, with corresponding
polynomial eigenfunction. This contrasts with our previous work [DDN22, DDN21]
where the spectrum is determined by infinite matrices and the eigenfunctions are given
by infinite series. We note that work done by Harnard in [HW95a, HW95b] described
obtaining generalised Lamé equations for spheres of arbitrary dimension and obtaining
eigenfunctions using the Heine-Stieltjes ansatz.

Another motivation for this work is to suggest a natural family of integrable systems that
contains the semi-toric case, but includes deformation to more typical quantum integrable
systems. The classification of semi-toric systems is now fully understood classically
[PVuN09] and quantum mechanically [LFVuN21]. This line of research was initiated by
Duistermaat [Dui80] and the first example of quantum monodromy is due to Cushman
and Duistermaat [CD88]. Monodromy, both classical and quantum, is caused by the
existence of a non-degenerate focus-focus critical value in the classical system [VuN99].
Many important examples of integrable systems in physics do have monodromy, see,
e.g. [CD88, SZ99, DDN21, DW18, DDN22]. In this paper, we obtain a semi-toric system
through separation of the geodesic flow on S3 in prolate coordinates. This system thus
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arises as a degeneration of a more general 2 parameter family corresponding to the inside
of the pentagon in Fig. 4.1.

The outline of this paper is as follows. In Section 4.2 we describe the ellipsoidal-spherical
coordinates, the most general orthogonal separable coordinates on S3. The ODEs that
arise from separating the Schrödinger equation in these coordinates are known as the
generalised Lamé equation. The joint spectrum is computed, along with the corresponding
quantised actions and their symmetry classes. The first degenerate system is analysed in
Section 4.3.1 with the prolate coordinates. Separation yields a semi-toric system whose
monodromy matrix we compute. This contrasts with the oblate system in Section 4.3.2
which, while similar to prolate coordinates, does not possess monodromy and instead
has hyperbolic singularities. Section 4.3.3 studies the Lamé coordinates (an extension of
ellipsoidal coordinates on S2 onto S3) while Sections 4.3.4 and 4.3.5 focus on the spherical
and cylindrical systems respectively. All these results are visualised by the Stasheff
polytope in Fig. 4.1. In the appendix we recall some results on S2 for the only two separable
coordinates: ellipsoidal and spherical.

4.2. ELLIPSOIDAL COORDINATES AND THE GENERALISED LAMÉ

EQUATION

Let x := (x1, x2, x3, x4) be Cartesian coordinates on R4 and consider the unit sphere S3 ⊂ R4

where S3 =
{
(x1, x2, x3, x4) ∈ R4 |x21 + x22 + x23 + x24 = 1

}
. The geodesic flow on S3 is a

constrained system on T ∗R4 with corresponding momentum y = (y1, y2, y3, y4) such that
x · x = 1 and x · y = 0. Set

H =
1

2

∑
i>j

ℓ2ij

to be the Hamiltonian of the geodesic flow where the angular momentum in the (i, j) plane
is given by ℓij := xiyj − xjyi and the symplectic structure is

∑
i dxi ∧ dyi.

Let a homogeneous polynomial ΨD(x1, x2, . . . , xn) of degree D be a solution to Laplace’s
equation in Rn,

∆ΨD =
∑

∂2iΨD = 0 .

By definition ΨD is called a harmonic polynomial. Introduce the radius r =
√∑

x2i and
some local coordinates s on the sphere Sn−1. The Laplacian in such a coordinate system
is

∆Rn =
∂2

∂r2
+
n− 1

r

∂

∂r
+

1

r2
∆Sn−1 .

Now rewrite the harmonic polynomial as ΨD(x) = rDψD(s) and thus define the spherical
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harmonic ψD : Sn−1 → R. Inserting this into the above Laplacian gives

−∆Sn−1ψD = D(D − 2 + n)ψD ,

so we see that spherical harmonics are eigenfunctions of the Laplace-Beltrami operator on
the sphere. For n = 3 on S2 these are the usual spherical harmonics typically denoted by
Ylm, for the case of general n see, e.g., [ABR01]. The above Hamiltonian can be canonically
quantised which leads to ℓ̂ij = −iℏ(xi∂j − xj∂i). This again gives the Laplace-Beltrami
operator on Sn−1 and hence

2ĤΨD = D(D − 2 + n)ΨD .

In the following we will speak of both the spherical harmonic ψD in local coordinates
s on the sphere Sn−1, and the corresponding harmonic polynomial ΨD in global
Cartesian coordinates x on Rn, as eigenfunctions of the Laplace-Beltrami operator. These
considerations apply to any dimension n, but in the following we will consider n = 4

only.

Ellipsoidal-spherical (also known as sphero-conal or spherical ellipsoidal) coordinates s :=

(s1, s2, s3) on S3 are defined as the roots of

T (s) =
4∑
i=1

x2i
s− ei

where 0 ≤ ej ≤ sj ≤ ej+1 for all j = 1, 2, 3 and the ei are called the semi-major
axes. This is by analogy with ellipsoidal coordinates on the tri-axial ellipsoid which are
different and defined through T (s) = 1. We will only use ellipsoidal-spherical coordinates
in the following and call them ellipsoidal for short since no confusion can arise. The
transformation to ellipsoidal coordinates is found by solving T (sj) = 0 where j = 1, 2, 3

together with r2 =
∑4

i=1 x
2
i = 1 to give

x2i =

∏3
j=1(sj − ei)∏
k ̸=i(ek − ei)

. (4.1)

From [NDD23] we have the following result.
Lemma 11. The HamiltonianH for the geodesic flow on S3 separates in ellipsoidal coordinates (4.1)
to give integrals

η1 =
∑
i<j

ℓ2ij ∑
k ̸=i,j

ek

 , η2 =
∑
i<j

ℓ2ij ∏
k ̸=i,j

ek

 . (4.2)

The triple (H, η2, η2) is a Liouville integrable system on T ∗S3.
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Consider the following linear coordinate transformation

X1 =
1√
2
(ℓ12 + ℓ34) Y1 =

1√
2
(ℓ12 − ℓ34)

X2 =
1√
2
(ℓ13 − ℓ24) Y2 = − 1√

2
(ℓ13 + ℓ24)

X3 =
1√
2
(ℓ14 + ℓ23) Y3 =

1√
2
(ℓ14 − ℓ23).

Since
√
H generates an S1 flow with constant period, we are able to reduce by the flow

of
√
H to S2 × S2 with local coordinates (X,Y ) = (X1, X2, X3, Y1, Y2, Y3) and Casimirs

X ·X = Y · Y = 1. Again, from [NDD23] we have the following result.
Lemma 12. The original integrable system (H, η1, η2) on T ∗S3 descends to a two degree of freedom
integrable system (η1(X,Y ), η2(X,Y )) on S2 × S2 with Poisson structure

BX,Y =

(
X̂ 0

0 Ŷ

)
(4.3)

where, for a vector v ∈ R3, the corresponding antisymmetric hat matrix v̂ is given by

v̂u = v × u, ∀u ∈ R3. (4.4)

When written in terms of X and Y on S2×S2 the system can be quantised through Berezin-
Toeplitz quantisation in the same way it was done in [LFP18, LF23]. The quantisation
is the same, but the operators are different. In their case the global S1 integral is linear
and the commuting second integral has linear and quadratic terms, while the integrals η1,
η2 are both homogeneous quadratic. In later chapters on degenerate coordinate systems
(e.g. the prolate case) linear integrals will also appear, in particular the global S1 actions
are linear in X,Y . We will not use Berezin-Toeplitz quantisation, but instead employ
separation of variables, so that the connection to spherical harmonics and special functions
remains.

Quantising through separation of variables reduces the quantisation problem to the
problem of finding polynomial solutions of a single 2nd order Fuchsian ODE. It would
be interesting to study in detail the relationship between the two approaches. The one
thing that we do use from the Berezin-Toeplitz approach is the fact that ℏ is the inverse of
an integer. This also appears naturally through the separation of variables, but would be
harder to justify without reference to the Berezin-Toeplitz approach, because separation
of variables does not clearly execute the reduction to a system with compact phase
space.

To construct a quantised version of the Hamiltonian we derive the diagonal metric tensor g
in ellipsoidal coordinates on the 3−sphere given by (4.1). This is an orthogonal coordinate
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systems, so the off-diagonal entries of the metric vanish. The diagonal entries of the metric
are

gjj =
−(sj − sk)(sj − sm)

4(sj − e1)(sj − e2)(sj − e3)(sj − e4)

where k and m are the two unique distinct indices different from j. Denote the determinant
of the metric by g =

∏
gjj . The inverse metric with upper indices has entries gjj = 1/gjj .

Thus the Laplace-Beltrami operator on S3 in these coordinates is given by

∆ = − 1
√
g

∑
∂i(

√
g gjj∂i) .

When quantising with the semi-classical parameter ℏ the corresponding stationary
Schrödinger equation is given by

−ℏ2∆ψ = Ẽψ . (4.5)

As already remarked, it is possible to quantise in the original Euclidean coordinates and
replace ℓij with xi∂j − xj∂i, see [Gur95, Tot94]. We need separation of variables, however,
and hence obtain commuting operators via the Stäckel matrix of the system. The classical
commuting integrals (4.2) are obtained from separation of variables in the Hamilton-Jacobi
equation. The same separation works for the Schrödinger equation because the sphere has
constant curvature, and hence the Robertson condition is satisfied, see, e.g. [KKM18].

The reduction to a two degree of freedom integrable system is achieved on the quantum
level by fixing the eigenvalue of the Laplace-Beltrami operator, which for S3 isE = D(D+2)

for non-negative integer D.
Theorem 4.1. There are three commuting 2nd order differential operators (Ĥ, η̂1, η̂2) on S3 with
rational coefficients, whose classical limit are the integrals (H, η1, η2) given in (4.2).

Proof. A Stäckel matrix for ellipsoidal coordinates is given by

σel =
1

4


− s21
A(s1)

− s1
A(s1)

− 1
A(s1)

− s22
A(s2)

− s2
A(s2)

− 1
A(s2)

− s23
A(s3)

− s3
A(s3)

− 1
A(s3)

 . (4.6)

where A(z) =
∏4
k=1(z − ek). Note that the metric and Stäckel matrix (4.6) are related by

1

gjj
=

det(Ωj)

det(σel)

where Ωj is the minor formed by deleting the jth row and first column of σel.

Denote the rows of the inverse of the Stäckel matrix by r1, r2, r3. By definition of the Stäckel
matrix the first row contains the diagonal entries of the metric gjj = r1j with upper indices.
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Then the commuting operators are

η̂k−1 = − 1
√
g

∑
i

∂i(
√
g rki∂i), k = 1, 2, 3.

where Ĥ = η̂0 corresponding to the first row of the inverse of the Stäckel matrix is the
Laplace-Beltrami operator. The corresponding classical integrals are ηk−1 =

∑
rkip2i as

defined in (4.2) in Cartesian coordinates. Here pi are the canonical curvilinear momenta
conjugate to the coordinates si. We denote the eigenvalues of (Ĥ, η̂1, η̂2) by (E, λ1, λ2).

■

The system of ellipsoidal coordinates on the sphere is used in the separation of the
quantised C. Neumann system, see e.g. [Gur95, Gur08] and also [BT06b, BT05, BT06a]. Our
system before reduction is the Neumann system without potential, and hence formulas in
[Gur95] can be specialised to our case. The reduction step (or fixing the eigenvalue of the
Schrödinger operator) does not make sense for the Neumann system, because unlike the
geodesic flow on S3 it is not a superintegrable system.

It is also possible to obtain the operators η̂i by canonical quantisation of the angular
momentum operators expressed in ellipsoidal coordinates using

ℓij = 2xi(s)xj(s)(ei − ej)
3∑

k=1

cij(sk)pk, cij(sk) =

∏
n̸=i,j(sk − en)∏
m̸=k(sk − sm)

where xi(s) as given in (4.1). This equation is linear in momenta and can be quantised by
replacing pk → −iℏ∂sk . In this way the classical commuting integrals expressed in terms
of ℓij can be directly converted into the corresponding quantum operators. However, the
calculation using the Stäckel matrix is much simpler.

The inverse of the Stäckel matrix is used to define the commuting operators, while
the Stäckel matrix itself determines how the spectral parameters enter the separated
equation(s), which is the content of
Lemma 13. In ellipsoidal coordinates (4.1) on S3, the Schrödinger equation (4.5) separates into

ψ
′′
j+

1

2

(
1

sj − e1
+

1

sj − e2
+

1

sj − e3
+

1

sj − e4

)
ψ

′
j+

−Es2j + λ1sj − λ2

4(sj − e1)(sj − e2)(sj − e3)(sj − e4)
ψj = 0

(4.7)
for all j = 1, 2, 3 with E := Ẽ

ℏ2 , λ1 and λ2 are spectral parameters and ψ = ψ1ψ2ψ3 where
ψj = ψ(sj).
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Proof. Let

fj :=
∂

∂sj
log(gjj

√
det(g)).

Following [Gur95] the equation (4.5) separates into

ψ
′′
j + fjψ

′
j +

3∑
k=1

ck−1(σel)jkψj = 0

where (c0, c1, c2) = (−E, λ1,−λ2) are spectral parameters. Computing the relevant
quantities gives (4.7).

■

Equation (4.7) is known as the generalised Lamé equation. This is a second order Fuchsian
equation with 4 finite regular singular points which can be writen as

d2w

dz2
+

 4∑
j=1

γj
z − ej

 dw

dz
+

 4∑
j=1

qj
z − ej

w = 0 (4.8)

where
∑4

j=1 qj = 0 and the qj are known as the accessory parameters. Often, we write the
multiplicative term of (4.8) over a common denominator, i.e.

4∑
j=1

qj
z − ej

=
c0z

2 + c1z + c2
4Π4

j=1(z − ej)
. (4.9)

The exponents at the pole ej are (0, 1−γj) while those at infinity are (α, β) defined by

α+ β + 1 =
4∑
j=1

γj , αβ =
4∑
j=1

ejqj . (4.10)

From (4.10) it is clear that there are two free (so-called) accessory parameters, while the
more well known Lamé equation only has one, see [DLMF] 31.14 for more detail. These
two free parameters turn out to be the spectral parameters, i.e. the eigenvalues of η̂1 and
η̂2. For some other examples of occurrences of the generalised Lamé equation, see [Paw07,
MRSD06, CKL19] and the references therein.

In this paper, we seek polynomial solutions of (4.5) giving harmonic polynomials on S3

in Cartesian coordinates. Ellipsoidal coordinates are singular along co-dimension one
submanifolds of S3, and these coordinate singularities translate to the singularities of the
Fuchsian ODE (4.8). Solutions to the separated equations that are analytic at all finite
singularities correspond to polynomial solutions in the local coordinates si, possibly after
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factoring out single powers of xk(s) to achieve all possible discrete symmetries in the
original coordinates. Thus polynomial solutions of the Fuchsian ODEs in local coordinates
lead to polynomial solutions in the original cartesian coordinates. The quantisation
conditions at the level of the Fuchsian equation are the conditions that enforce a polynomial
separated eigenfunction ψ(s). In general these are conditions for each factor ψj(sj) of
the separated eigenfunction ψ(s) =

∏
ψj(sj), but it turns out that in the present highly

symmetric case the three equations are the same equation, just evaluated on different
intervals ej ≤ sj ≤ ej+1, and hence a single polynomial gives three ψj(sj) and hence the
complete eigenfunction ψ(s). In cases of more degenerate coordinate systems discussed in
the next section there will actually be different equations for the different coordinates.

It is known from 31.15 of [DLMF] and [Vol99] that for every vector n = (n1, n2, n3) of non
negative integers, there are uniquely determined real values of (c0, c1, c2) such that (4.8) has
polynomial solutions with nj zeros in the interval (ej , ej+1) for all j = 1, 2, 3. Such solutions
Sd(z) of degree d where d = n1 + n2 + n3 are known as Heine-Stieltjes polynomials.

From [Vol99] we have the following Lemma for the spectral parameter c0.
Lemma 14. Let Sd(z) be a Heine-Stieltjes polynomial solution to (4.8) of degree d over the interval
[e1, e4]. Then

1

4
c0 = −d(d− 1 +

4∑
i=1

γi) = αβ (4.11)

and (α, β) = (−d, (−1 + d +
∑
γi)). Further, let K(d) be the space of all such polynomials that

satisfy (4.8). Then, we have

dim(K(d)) :=

(
d+ 2

2

)
. (4.12)

Note that α is a negative integer in order to obtain polynomial solutions. We also have from
[Vol99] the following Lemma relating polynomial solutions of the Schrödinger equation in
Cartesian coordinates to products of Heine-Stieltjes polynomials.
Proposition 15. The product Sd(s1)Sd(s2)Sd(s3), where Sd(s) is a Heine-Stieltjes polynomial
solution to (4.7) of degree d, when expressed in the original Cartesian coordinates using (4.1), is a
homogeneous polynomial of degree D̃ := 2d in the variables xi given by

ΦD̃(x) :=

(
4∏
i=1

d∏
k=1

(zk − ei)

)
d∏

k=1

4∑
i=1

x2i
zk − ei

, (4.13)

where zk are the roots of Sd(z).

In Cartesian coordinates there are 16 discrete symmetry classes of eigenfunctions corres-
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ponding to parity about each of the xi axes. Let µ = (µ1, µ2, µ3, µ4) with µi ∈ {0, 1} where
µi = 1 denotes a wavefunction odd about the respective axis and even otherwise. By (4.13)
the wave function ΦD̃(x) is quadratic in all xi, and hence cannot give any odd symmetry.
In order to find these other symmetries, consider the change of dependent variable in (4.7)
given by

ϕj =
∏
i

(sj − ei)
µi/2ψj . (4.14)

This corresponds to multiplication by xµ11 x
µ2
2 x

µ3
3 x

µ4
4 in Cartesian coordinates. This yields

the transformed generalised Lamé equation

ϕ
′′
j +

(
γ̃1

z − e1
+

γ̃2
z − e2

+
γ̃3

z − e3
+

γ̃4
z − e4

)
ϕ

′
j +

(u0 − E)z2 + (u1 + λ1)z + (u2 − λ2)

4(z − e1)(z − e2)(z − e3)(z − e4)
ϕj = 0

(4.15)
where

γ̃m =

3
2 if µm = 1

1
2 if µm = 0

(4.16)

and the uj are shown in Table 4.1 for a given symmetry class µ. Note that in the table we
adopted the notation where (µi) represents symmetry classes where only one µi is 1 (i.e.
(1, 0, 0, 0), (0, 1, 0, 0) etc). Similarly, (µi, µj) represents all classes which are odd about two
axes and so forth for (µi, µj , µk).

Denote by Sµ
d (z) solutions to (4.15) for the symmetry class µ. Repeating the same reasoning

used to obtain (4.13), we let the product Sµ
d (s1)S

µ
d (s2)S

µ
d (s3), when converted to Cartesian

coordinates, be given by Φµ

D̃
(x). Finally, we set

Ψµ
D(x) := xµ11 x

µ2
2 x

µ3
3 x

µ4
4 Φµ

D̃
(x) (4.17)

where D = D̃ +
∑4

i=1 µi. Note that ΦD̃(x) in (4.13) is the special case of (4.17) with µ =

(0, 0, 0, 0).

Symmetry u2 u1 u0
(0, 0, 0, 0) 0 0 0

(µi) ejek + ejem + ekem −2(ej + ek + em) 3

(µi, µj) eiek + eiem + ejek + ejem + 4ekem −2(ei + ej)− 6(ek + em) 8

(µi, µj , µk) eiej + eiek + ejek + 4(eiem + ejem + ekem) −6(ei + ej + ek + 2em) 15

(1, 1, 1, 1) 4(e1e2 + e1e3 + e2e3 + e1e4 + e2e4 + e3e4) −12(e1 + e2 + e3 + e4) 24

Table 4.1: Coefficients uj in (4.15) for each symmetry class.

Theorem 4.2. The function Ψµ
D(x) given by (4.17) is an eigenfunction of the Schrödinger operator
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(4.5). The energy eigenvalue E is given by

E = D(D + 2) (4.18)

where D = 2d+
∑4

i=1 µi is the degree of the harmonic polynomial ΨD.

Proof. We have

∆(Ψµ
D(x)) = ∆(Φµ

D̃
(x)) +

4∑
j=1

2µj
xj

Φµ

D̃
(x)

∂xj
. (4.19)

From [Vol99], we know that since Φµ

D̃
(x) satisfy (4.15) for the appropriate parameter choices

in Table 4.1, they also satisfy the right hand side of (4.19). Hence, Ψµ
D(x) are solutions of

(4.5). To compute the energy for a given symmetry class µ, we note that the shift u2 in Table
4.1 is simply U(U + 2) where U =

∑4
i=1 µi. Combining this with (4.11) and using E = −c0

gives
E = U(U + 2) + 4d(d+ 1 + U) (4.20)

which simplifies to E = D(D + 2) for each class.

■

For more discussion on the representation theory of the above, including the irreducible
representations of SO(4), see the works of Harnard [HW95b, HW95a] and Gurarie
[Gur95].

From (4.17) we observe the following
Proposition 16. For polynomial solutions to (4.5) of fixed degree D corresponding to energy E =

D(D + 2), only 8 of the 16 total discrete symmetry classes can be present. If E is even, then the
(0, 0, 0, 0), (1, 1, 1, 1) and all symmetry classes even about 2 of the xi axes are present. Similarly, if
E is odd, then the remaining 8 symmetry classes odd about and odd number of xi are present.

We refer to solutions which are even about an even (odd) number of axes (with even (odd)
energies) as “even” (“odd”) solutions. In particular, the even symmetry classes are

SE = {(0, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1), (1, 1, 1, 1)}
(4.21)

and the odd symmetry classes are

SO = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)}.
(4.22)

Using the above results, we also have the following Lemma, which shows that all
eigenfunctions are obtained in this way.
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Lemma 17. The total number of eigenstates N for a polynomial solution to (4.5) of degree D is
given by

N = (D + 1)2 (4.23)

Proof. Without loss of generality, we prove this for D even (i.e. “even” solutions). From
(4.12), we know that the total number of eigenstates for the (0, 0, 0, 0) symmetry class is(
d+ 2

2

)
=

(
D+4
2

2

)
. For a fixed D, we similarly have the total number of states for an

element of the (µi, µj) class as

(
D+2
2

2

)
and for the (1, 1, 1, 1) class we obtain

(
D
2

2

)
. The

result follows since

N =

(
D+4
2

2

)
+ 6

(
D+2
2

2

)
+

(
D
2

2

)
= (D + 1)2.

In Table 4.2 we show the number of eigenstates per symmetry class and energy parity.

■

Symmetry Number of States Energy Parity

(0, 0, 0, 0)

(
(D + 4)/2

2

)
Even

(µi)

(
(D + 3)/2

2

)
Odd

(µi, µj)

(
(D + 2)/2

2

)
Even

(µi, µj , µk)

(
(D + 1)/2

2

)
Odd

(1, 1, 1, 1)

(
D/2
2

)
Even

Table 4.2: Number of states for each symmetry class and energy parity.

Recall that the basis of our study is separation of variables on the 3−sphere. It is no surprise
then that the total energy (4.18) and number of eigenstates (4.23) precisely coincide with
standard results for spherical harmonics on the sphere, see, e.g. [ABR01]. To compute
the joint spectrum of (λ1, λ2) in (4.7) for all 16 discrete symmetry classes, we employ the
following Lemma from [ARZ85].
Lemma 18. Let Sd be a Heine-Stieltjes polynomial of degree d and denote its (real) roots by
z1, . . . , zd. If, in (4.8), the γj > 0 and ej ∈ R with ej < ej+1 for all j, then every root is a
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solution to the system of equations

4∑
j=1

γj/2

zk − ej
+

d∑
j=1,j ̸=k

1

zk − zj
= 0, k = 1, . . . , d . (4.24)

For each solution z1, . . . , zd the accessory parameters qj are given by

qj = γj

d∑
k=1

1

zk − ej
, j = 1, 2, 3, 4 ,

and in terms of these the spectral parameters (λ1, λ2) are

λ1 = −4
∑

eiej(qk + qm) (4.25a)

λ2 = 4
∑

eiejekqm (4.25b)

where the sums are over all i, j, k,m that are pairwise distinct.

This well known Lemma is surprising in the sense that the system of equations (4.24)
determines the eigenfunction Sd and joint spectrum (λ1, λ2) simultaneously. Comparing
(4.25a), (4.25b) and the classical equation (4.2), the degrees in ej are different. The reason
for this is that qj for fixed energy is of degree −1 in ej , as can be seen from (4.11). Note
that the solution to the nonlinear equations (4.24) is such that automatically

∑
qi = 0 and∑

qiei = αβ = −d(d− 1 +
∑
γi), combining (4.11) and (4.10).

We can use the value of ℏ to scale the energy eigenvalue to 1 in the semiclassical limit ℏ → 0,
and similar scalings for the other eigenvalues. After the scaling, changing ℏ changes the
number of states, but not the size of the image of the momentum map. Recall the definition
of E = Ẽ

ℏ2 and the discrete values of E = D(D + 2) given in (4.18). To scale such that Ẽ is
exactly 1 would require ℏ = 1/

√
D(D + 2), which is, however, not an integer. The reduced

symplectic manifold is S2 × S2 and hence compact, and therefore we require ℏ to be the
inverse of an integer. Thus

ℏ =
1√

D(D + 2) + 1
=

1

D + 1
(4.26)

so that 1/ℏ2 is exactly the number of states in the reduced compact system. With this
definition of ℏ we find

Ẽ = Eℏ2 =
D(D + 2)

(D + 1)2
= 1− ℏ2

where the last equality is exact.

Using (4.24) with the 16 forms of the generalised Lamé equation, we produce examples of
the joint spectrum shown in Fig. 4.2 with D = 18 (a) and D = 19 (b). We also show that the
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boundary of the joint spectrum is given by the classical momentum map (solid black lines).
For their derivation, see [NDD23].

In our numerics, we seed roots zk randomly in the appropriate intervals (ej , ej+1) as
outlined in [Vol99]. Standard root finding techniques like Newton’s method are then
used to find accurate solutions to (4.24). Larger values of D result in substantially longer
computation time.

Since we have the freedom to choose the quadratic integrals via an affine transformation,
we can give a clearer representation of the spectrum, as shown in Fig. 4.3 a) and b) with the
hyperbolic-hyperbolic point centred at the origin. This clearly shows three regions with a
Z2 lattice.

Note that lattice points in these regions are actually two points, representing period
doubling. Classically, this corresponds to two tori in the pre-image of the classical
momentum map. Moving from these chambers into the fourth (bounded by the curve), we
see a halving of visible dots as we see period doubling occurring again. This phenomena
has been described in more detail in [SZ07b].

10 20 30 40
λ2ℏ

2

2

4
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8

10

12

λ1ℏ
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10 20 30 40
λ2ℏ
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8

10

12

λ1ℏ
2

Figure 4.2: a) Joint spectrum (λ1, λ2) where (e1, e2, e3, e4) = (1, 2, 5, 8) with D = 18 and
b) D = 19. A direct correspondence between the coloured dots and symmetry classes is
shown in Table 4.3.
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Figure 4.3: Spectra corresponding to Fig. 4.2 a) and b) after performing an affine
transformation to map the hyperbolic-hyperbolic point to the origin.

µ Colour a) µ Colour b)
(0, 0, 0, 0) Blue (1, 0, 0, 0) Purple
(1, 1, 0, 0) Red (0, 1, 0, 0) Yellow
(1, 0, 1, 0) Magenta (0, 0, 1, 0) Grey
(1, 0, 0, 1) Green (0, 0, 0, 1) Pink
(0, 1, 1, 0) Brown (1, 1, 1, 0) Light Blue
(0, 1, 0, 1) Black (1, 1, 0, 1) Dark Green
(0, 0, 1, 1) Cyan (0, 1, 1, 1) Light Red
(1, 1, 1, 1) Orange (1, 0, 1, 1) Dark Brown

Table 4.3: Symmetry class corresponding to each coloured eigenstate shown in Figure 4.2.

Equipped with the joint spectrum (λ1, λ2), we can investigate the corresponding action
variables. Using the Stäckel matrix (4.6) and the results of [Gur95] and [NDD23], we have
the following Lemma.
Lemma 19. The three continuous, classical actions (J1, J2, J3) are given by

J1 =
1

π

ˆ min(R1,e2)

e1

p(z)dz J2 =
1

π

ˆ min(R2,e3)

max(R1,e2)
p(z)dz J3 =

1

π

ˆ e4

max(R2,e3)
p(z)dz (4.27)

where the momentum p(z) is given by

p2 =
−Ẽz2 + λ1z − λ2

4(z − e1)(z − e2)(z − e3)(z − e4)
,

and R1, R2 denote the roots of p2 with 0 ≤ R1 ≤ R2.

It was shown in [NDD23] that the 3 actions are linearly dependent, continuous and satisfy
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the following Lemma.
Lemma 20. The actions are constrained by the following relation

J1 + J2 + J3 =
√
Ẽ. (4.28)

The fact that H can be written as a function of the sum of the actions in (4.28) follows from
the fact that H is superintegrable. In Fig. 4.4 a) and b) we show the actions of the even and
odd spectra in Fig. 4.2 a) and b) respectively, computed using (4.27) with Ẽ = 1. Similar
plots for each symmetry class can be found in Appendix A.3.

The classical action variables even though continuous are complicated functions, and
defining corresponding quantum mechanical operators may be difficult. Thus presenting
the joint spectrum in the space of action variables is not done by quantising these functions.
Instead we take the eigenvalues of the operators (Ĥ, η̂1, η̂2) and map them to (J1, J2, J3)

with the previous Lemma. In this way a striking representation of the joint spectrum
inside an equilateral triangle is obtained. Is shown in [NDD23] this triangle is rigid even
when passing to degenerate coordinates systems. Note that this triangle is not Delzant
(our system is not toric to begin with), but it seems to serve a similar role for our class of
quantum integrable systems. Near each corner of the triangle the lattice is approximately N2

with basis vectors given by the sides of the triangle. The action triangle is a natural global
representation because there are three elliptic-elliptic equilibrium points in the reduced
system, so that it represents three different Z2 lattices in one moment map.

Among the degenerate systems discussed in the next section the cylindrical coordinate
system does lead to a toric system on S2 × S2 with a square as Delzant polytope. The
triangle appears as the quotient of the square by discrete symmetry group Z2 × Z2 acting
by reflection across the diagonals of the square, see below.
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Figure 4.4: Joint spectrum in action variables in the ellipsoidal case corresponding to the
joint spectra shown in Fig 4.2 a) and b) respectively.

4.3. DEGENERATE SYSTEMS

We now study the degenerate systems arising from the generalised ellipsoidal coordinates
(1234). We originally focus on the prolate, oblate and Lamé coordinates; these correspond
to the edges of the Stasheff polytope shown in Fig. 4.1. Further degenerations of these yield
the spherical and cylindrical coordinates, represented by the corners of the polytope.

We will show that the separated ODEs for these coordinates can be obtained by smoothly
degenerating those of the generalised ellipsoidal coordinates (i.e. the generalised Lamé
equation). In doing this, we prove the following theorem which is the quantum analogue
of Theorem 3 of [NDD23]:
Theorem 4.3. For each pair of parentheses in the labelled Stasheff polytope (see Fig. 4.1) that enclose
two adjacent numbers, the corresponding quantum integrable system has an SO(2) symmetry and
a corresponding ODE that can be transformed to a trivial ODE with trigonometric solutions.

For each pair of parentheses that enclose three adjacent numbers, the corresponding quantum
integrable system has a global SO(3) symmetry and a corresponding ODE that can be transformed to
the Gegenbauer equation (hypergeometric type). This applies also when there is a pair of parentheses
inside.

If there are two pairs of parentheses (corresponding to the edges of the Stasheff polytope) then one
ODE is of Heun type (Fuchsian with 4 regular singular points).

If there are three pairs of parentheses (corresponding to the corners of the Stasheff polytope) then one
ODE is of hypergeometric type (Fuchsian with 3 regular singular points). For spherical coordinates



CHAPTER 4. QUANTUM SYSTEMS ON S3 92

this can be transformed to the associated Legendre equation and for cylindrical coordinates this is the
Jacobi equation.

For the above Theorem, systems which enclose three adjacent numbers refers to either the
Lamé or spherical systems. If there is a pair of parentheses inside, then this specifically
means the latter. If there are two pairs of parentheses on the edge of the polytope, then this
could either be the prolate or oblate systems.

Note that a single ODE of Heun type gives solutions for two factors of the eigenfunction
ψ. In the general ellipsoidal case treated in the previous section the single Fuchsian ODE
with 4 finite regular singular points gives three such factors. Any ODE of hypergeometric
type (including the trivial trigonometric one) gives a solution for a single factor of the
eigenfunction. Hence another way of stating which ODEs occur for the various cases is
this: On the inside/edges/corners of the Stasheff polytope the highest Fuchsian ODE has
5/4/3 regular singular points, accounting for 3/2/1 of the factors of the eigenfunctions.
The remaining 0/1/2 ODEs are of hypergeometric type.

4.3.1. PROLATE COORDINATES AND THE HEUN EQUATION

Prolate coordinates on S3 are a degeneration of ellipsoidal coordinates arising from limiting
the middle two semi major axes to each other, i.e. e3 → e+2 . We normalise the ei according
to (e1, e2 = e3, e4) = (0, 1, a).

From [KM86], an explicit representation of prolate coordinates is

x21 =
s1s3
a

x22 = −(s1 − 1) s2 (s3 − 1)

a− 1

x23 =
(s1 − 1) (s2 − 1) (s3 − 1)

a− 1
x24 =

(a− s1) (a− s3)

(a− 1)a

(4.29)

where 0 ≤ s1, s2 ≤ 1 ≤ s3 ≤ a and a possible Stäckel matrix is given by

σpro =
1

4


− 1

(s1−1)(s1−a) − 1
(s1−1)s1(s1−a) − 1−a

(s1−1)2s1(s1−a)
0 0 − 1

(s2−1)s2

− 1
(s3−1)(s3−a) − 1

(s3−1)s3(s3−a) − 1−a
(s3−1)2s3(s3−a)

 . (4.30)

From [NDD23] we have the following result.
Lemma 21. Separating the Hamilton-Jacobi equation in prolate coordinates and subsequently
reducing by

√
H gives a semi-toric integrable system on S2 × S2 with integrals

G = aℓ212 + aℓ213 + ℓ214 M = ℓ223

and Poisson structure BX,Y as given in (4.3).
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To obtain the separated equations, we use the Stäckel matrix (4.30) and the metric tensor for
prolate coordinates (4.29), and follow the same methodology as described in Lemma 13. For
all future systems studied in this paper, this same technique is used to obtain the separated
ODEs. This gives the following.
Lemma 22. Separating the Schrödinger equation (4.5) in prolate coordinates (4.29) gives the
following separated equations

ψ
′′
j +

1

2

(
1

sj
+

2

sj − 1
+

1

sj − a

)
ψ

′
j +

−Es2j +
(
λ+ E + (a− 1)m2

)
sj − λ

4sj(sj − 1)2(sj − a)
ψj = 0 for j = 1, 3

(4.31a)

ψ
′′
j +

1

2

(
1

sj
+

1

sj − 1

)
ψ

′
j +

m2

4sj(1− sj)
ψj = 0 for j = 2

(4.31b)

where (m,λ) are spectral parameters.

We observe that the separated equation in (4.31b) is of hypergeometric type, but via the
coordinate transformation s2 = cos2 ϕ we recover the trivial ODE

ψ
′′
2 (ϕ) +m2 = 0. (4.32)

To ensure a smooth globally defined solution on S3, we enforce periodic boundary
conditions. This yields a discrete spectral parameter m ∈ Z representing the quantised
angular momentum in the (x2, x3) plane with solutions eimϕ to (4.32).

In [NDD23] we showed that the classical integrals for the degenerate systems are obtained
by a smooth degeneration of the coordinates. The following Lemma shows how the ODEs
(4.31a) and (4.31b) naturally arise from the generalised Lamé equation (4.7) in a similar
fashion.
Lemma 23. The separated equations for ψj in (4.31a) and (4.31b) can be obtained by smoothly
degenerating the generalised Lamé equation (4.7).

Proof. As noted in [NDD23], the canonical transformation from ellipsoidal to prolate
coordinates is given by

e3 = e2 + ε, s2 = e2 + εs̃2, p2 =
p̃2
ε
, (4.33)

in the limit ε → 0 where s̃2 ∈ [0, 1] and p̃2 is its conjugate momenta. We normalise the
semi-major axes with (e1, e2 = e3, e4) = (0, 1, a) and set

λ = λ2, m2 =
1

a− 1
(λ1 − λ2 − E).
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For the equations in s1 and s3, the first derivative terms trivially degenerate while for the
multiplicative term, substituting (4.33) into (4.7) and taking the limit ε→ 0 gives (4.31a).

Repeating the same process for the equations in s2 gives the desired result.

■

Note that the Stäckel matrix used to obtain the separation constants is not unique and so
neither are the arising ODEs. Another choice of Stäckel matrix would result in a different
(yet equivalent - up to a linear combination of the eigenvalues and operators) set of ODEs
since the separation constants would be different. The first derivative term is specific to the
coordinates and so is independent of the choice of Stäckel matrix.

Equation (4.31a) is an example of a Heun equation; a Fuchsian 4 ODE with regular
singularities at 0, 1, a and ∞:

W
′′
+

(
γ

z
+

δ

z − 1
+

ε

z − a

)
W

′
+

αβz − q

z(z − 1)(z − a)
W = 0 (4.34)

where α+ β + 1 = γ + δ + ε. The corresponding Riemann symbol is given by

SHeun =


0 1 a ∞

0 0 0 α; z

1− γ 1− δ 1− ε β

 . (4.35)

Lemma 24. By the change of dependent variable ψj = (z − 1)|m|/2Wj , (4.31a) can be written in
the form of (4.34) where γ = ε = 1

2 , δ = 1 + |m|, q = 1
4 (a|m| − λ) and

α, β =
1

2

(
1±

√
1 + E + |m|

)
. (4.36)

Specifically, we have

W
′′
j +

(
1

2z
+

1 + |m|
2(z − 1)

+
1

2(z − a)

)
W

′
j +

(−E + |m|(|m|+ 2))z − (a|m| − λ)

4z(z − 1)(z − a)
Wj (4.37)

The solution Hℓ(a, q;α, β, γ, δ; z) that corresponds to exponent 0 about z = 0 such that
Hℓ(a, q;α, β, γ, δ; 0) = 1 is called a Heun function. We use the notation from [DLMF].
Assuming γ /∈ −N, the Heun function can be expanded as an infinite series

Hℓ(a, q;α, β, γ, δ; z) =

∞∑
i=0

ciz
i (4.38)

where |z| < 1 and c0 = 1. Substituting (4.38) into (4.34) gives the following Lemma taken
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from [RA95].
Lemma 25. The coefficients ci in (4.38) satisfy the following three term recurrence relation

Aici+1 − (Bi + q)ci + Cici−1 = 0 (4.39)

where, for i ≥ 1:

Ai = a(i+ 1)(i+ γ)

Bi = i [(i− 1 + γ)(a+ 1) + aδ + ε] (4.40)

Ci = (i− 1 + α)(i− 1 + β)

subject to the conditions c0 = 1 and
aγc1 − qc0 = 0. (4.41)

From (4.40) it is clear that α = −d where d ∈ N forces Cd+1 = 0 and the three term
recurrence (4.39) truncates (4.38) to a polynomial of degree d. These solutions, analytic at
all three finite singularities z = 0, 1, a are known as Heun polynomials and will be denoted
by Hp(a, q;α, β, γ, δ; z). In the general ellipsoidal case Heine-Stieltjes polynomials were
computed by solving a non-linear system of equations for the roots of the eigenfunctions.
In the Heun case the above recursion gives a different and simpler method for computing
the eigenfunctions and eigenvalues. In the remainder of this section we show how to obtain
the corresponding harmonic polynomials in R4 and how to compute the various discrete
symmetry classes of eigenfunctions.

Using a technique similar to the ellipsoidal case and outlined by [Vol99], we have the
following Lemma.
Lemma 26. LetHpd(z) be a Heun polynomial solution to (4.37) of degree d and denote by z1, . . . , zd
its roots. The product Hpd(s1)Hpd(s3), expressed in the original Cartesian coordinates, is given by

Hpd(s1)Hpd(s3) =
d∏

k=1

zk(zk − a)

[
x21
zk

− r2 + x24
1− a

zk − a

]
(4.42)

where r2 = x21 + x22 + x23 + x24.

Proof. Firstly, we claim that

(θ − s1)(θ − s3) = θ(θ − a)

(
r2 − x21

θ
+

(a− 1)

θ − a
x24

)
(4.43)

for all θ ̸= 0, a. Both the left and right hand sides of (4.43) are monic quadratic functions
of θ. Further, both expressions have roots at θ = s1, s3. This is easily verified for the right
hand side by using the coordinate transform (4.29) and the condition r2 = 1.
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Let Hpd(z) be a Heine-Stieltjes polynomial of degree d with roots z1, z2, . . . , zd in factored
form, i.e.

Hpd(z) = (z1 − z)(z2 − z) . . . (zd − z). (4.44)

Combining (4.43) with (4.44) gives the desired result.

■

Note that we have solved the canonical Heun equation (4.34). To write the combined
solution to (4.31a) and (4.31b), we include the normalisation factor by recalling ψ1 =

(1− s1)
|m|/2W1. For the s3 equation, since s3 ≥ 1 we have ψ3 = (s3 − 1)|m|/2W3. Hence, the

combined solution to (4.5) in prolate coordinates is the product

ψ1ψ2ψ3 = (1− s1)
|m|/2(s3 − 1)|m|/2Hpd(s1)Hpd(s2)e

imϕ. (4.45)

This yields the following Lemma.
Lemma 27. Expressed in Cartesian coordinates, the product ψ1ψ2ψ3 in (4.45) can be written as the
following D̃ degree homogeneous polynomial where D̃ = 2d+ |m|:

ΦD̃(x) = (a− 1)|m|/2 (x2 + i sign(m)x3)
|m|

d∏
k=1

zk(zk − a)

[
x21
zk

− r2 + x24
1− a

zk − a

]
(4.46)

and m ∈ [−D̃, D̃] is an integer.

Proof. Using the definition of prolate coordinates in (4.29) we obtain

(1− s1)
m/2(s3 − 1)m/2 =

[
(a− 1)(x22 + x23)

]m/2
.

We also know that eimϕ =

(
x2+ix3√
x22+x

2
3

)m
. Combining this with (4.42) and (4.45) gives the

product in (4.46). For homogeneity, given that r2 =
∑4

i=1 x
2
i , it is clear that all terms in

(4.46) are of degree D̃ = 2d+ |m|.

■

Like in the ellipsoidal case, there are 16 discrete symmetry classes of ΦD̃ corresponding to
parity about each of the xi axes. However, we note that a simple parity flip of either x2 or
x3 for the the complex phase (x2 + ix3)

m would not necessarily yield a materially different
wave function depending on the parity of m.

To address this, we note that for odd m we have ℜ(x2 + ix3)
m = x2P (x

2
2, x

2
3) and

ℑ(x2 + ix3)
m = x3Q(x22, x

2
3) where P and Q are some polynomials of degree (m − 1)/2.

These therefore give solutions which are odd about the x2 (x3) axes and even about x3 (x2)
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respectively. Similarly, we note that for even m we have ℜ(x2 + ix3)
m = P̃ (x22, x

2
3) and

ℑ(x2+ ix3)m = x2x3Q̃(x22, x
2
3) where P̃ and Q̃ are polynomials of degree m/2 and (m−2)/2

respectively. The former give solutions which are even about both x2 and x3 and the latter
those which are odd about both of these axes.

In the following discussion, we only focus on the discrete symmetries about the x1 and x4

axes. This is because symmetries about the x2 and x3 axes are encoded in taking the real
and imaginary components of the wave function, in conjunction with a parity choice of m,
as just described. This is similar in other degenerate systems (oblate, spherical, etc).

Let µ = (µ1, µ4) where µi ∈ {0, 1} and µi being 1 (0) denotes a solution odd (even) about
the xi axis. For these symmetries, we consider the change of dependent variable in (4.37)
given by ϕ1 = s

µ1/2
1 (a − s1)

µ1/2W1 and ϕ3 = s
µ4/2
3 (a − s3)

µ4/2W3 which corresponds
to multiplication of the total wavefunction by xµ11 x

µ4
4 . Doing so gives a resulting Heun

equation with parameters shown in Table 4.4.

Denote by Hpµd (z) solutions to (4.34) corresponding to the µ symmetry class. Let the
product Hpµd (s1)Hp

µ
d (s3)e

imϕ, when converted back to Cartesian coordinates, be given by
Φµ

D̃
(x). As with the ellipsoidal case, we set

Ψµ
D(x) := xµ11 x

µ4
4 Φµ

D̃
(x) (4.47)

where D := D̃ + µ1 + µ4 and m ∈ [−D,D] is an integer for all symmetry classes. Note that
(4.46) is a special case of Ψµ

D(x) with µ = (0, 0).
Lemma 28. The Ψµ

D(x) are D degree, homogeneous harmonic polynomials and the energy
eigenvalue is given by E = D(D + 2).

Proof. The proof that Ψµ
D(x) satisfy (4.5) is identical to the ellipsoidal case. For the energy

eigenvalue, we note that a necessary condition for polynomial solutions is for the three-term
recurrence relation (4.39) to vanish. This forces Ci = 0 in (4.40), leading to the condition

α = −d+ 1

2
(µ1 + µ4). (4.48)

Substituting (4.48) into the expression for α in (4.36) gives the desired result.

■

From (4.48) we observe that for the (0, 0) and (1, 1) symmetry classes, α is a negative integer
while for the (0, 1) and (1, 0) classes, α is a negative half integer. Further, we note that fixing
a value of E (in turn fixing D) enforces a parity relationship between E and m for a given
symmetry class. For even (odd) E, m must be even (odd) for the (0, 0) and (1, 1) classes
while m must be odd (even) for the others.
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(µ1, µ4) α̃ β̃ γ̃ δ̃ ε̃ q̃

(0, 0) α β γ δ ε q

(1, 0) α+ 1− γ β + 1− γ 2− γ δ ε (1− γ)(aδ + ε) + q

(0, 1) α+ 1− ε β + 1− ε γ δ 2− ε γ(1− ε) + q

(1, 1) 2 + α− γ − ε 2 + β − γ − ε 2− γ δ 2− ε q + 2 + aδ − ε− γ(1 + aδ)

Table 4.4: Parameters of (4.34) for the various symmetry classes.

(µ1, µ4) E even E odd
(0, 0)

(
D
2 + 1

)2 (
D+1
2

) (
D+3
2

)
(1, 0)

(
D
2 + 1

)
D
2

(
D+1
2

)2
(0, 1)

(
D
2 + 1

)
D
2

(
D+1
2

)2
(1, 1)

(
D
2

)2 (
D+1
2

) (
D−1
2

)
Table 4.5: Number of states for each symmetry class and each parity of E.

As in the ellipsoidal case, we can compute the total number of states for a fixed energy E as
well as that for each symmetry class.
Lemma 29. Fix an energy E = D(D + 2). Then the total number of eigenstates is given by

N = (D + 1)2. (4.49)

The total number of eigenstates for each symmetry class is shown in Table 4.5.

Proof. Assume D is even and consider the (µ1, µ4) = (0, 0) symmetry class; the other cases
are proven in a similar manner. We observe that |m| ranges over theD+1 values −D,−D+

2, . . . , 0, . . . , D − 2, D since |m| is required to be an even integer based on our condition for
α. For a fixed energy and the relationship between d and |m| this enforces, we have a total
of D−|m|

2 + 1 states for a given m.

Summing the total number of states over all possible values of m gives

N even
(0,0) =

(
D

2
+ 1

)
+ 2×

(
D

2
+

(
D

2
− 1

)
+ · · ·+ 1

)
=

(
D

2
+ 1

)
2.

Repeating a similar procedure for all other symmetry classes gives the desired result.
Regardless of the parity of D, summing over each column of Table 4.5 gives (4.49).

■

As with the ellipsoidal case, we have ℏ as the inverse of an integer, namely ℏ = 1
D+1 .

The joint spectrum (mℏ, λℏ2) is obtained for fixed Ẽ and total degree d by numerically
computing the eigenvalues of the matrix (4.40) to obtain d eigenvalues q and hence λ for
given m. We use Mathematica’s Eigenvalue[] command and the numerics is fast and
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accurate for moderately large D = 2d + |m| ≈ 20. Since the matrices (4.40) are not self
adjoint, substantially larger d results in non-trivial numerical error.

An example of the joint spectrum is shown in Fig. 4.5 a) below. We have chosen D = 20

giving ℏ = 1
21 and a total of (20 + 1)2 = 441 total eigenstates. The blue, orange, red and

cyan points correspond to the (0, 0), (1, 0), (0, 1), (1, 1) symmetry classes respectively. Since
we have chose an even value of E (and thus D) we observe states of the (0, 0) and (1, 1)

symmetry classes only along even m. Similarly, along odd m only the (1, 0) and (0, 1) states
are present. Had we chosen an odd E then orange/red dots would be seen along even m

and vice versa. We also show the classical boundary of the momentum map in black. As
mentioned, this is a semi-toric system and an isolated rank-2 critical point of focus-focus
variety is located at (mℏ, λℏ2) = (0, 1). This is shown as the magenta dot.

From the same reasoning used to obtain (4.27), we obtain the following formulae for the
actions

J1,pro =
1

π

ˆ min(r1,1)

0
p1ds1 J2,pro =

1

π

ˆ 1

0
p2ds2 J3,pro =

1

π

ˆ a

max(1,r2)
p3ds3 (4.50)

where, using (4.30), for j = 1, 3

p2j =
Ẽs2j +

(
λ+ Ẽ + (a− 1)m2

)
sj − λ

4sj(sj − 1)2(sj − a)
(4.51)

and (r1, r2) denote the roots of p2j with 0 ≤ r1 ≤ 1 ≤ r2 ≤ a. Note that J2 simplifies to
m = |ℓ23|. Like for the ellipsoidal system, the prolate actions also satisfy (4.28). The action
map for the prolate system is shown in Fig. 4.5 b) where the magenta dot corresponding
to the focus-focus point is located at 2

π (sin
−1( 1a), 0,

π
2 − sin−1( 1a)). Eigenstates with m = 0

have J1 = 0 and are hence on the boundary of the triangle. The reason for this is that the
discrete symmetry reduced action variables in the quantum setting would require to impose
Neumann boundary conditions.
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Figure 4.5: a) Prolate spectrum with D = 20, a = 2.4 and a total of 212 eigenstates. Different
symmetry classes are represented with different colours. Note the focus-focus critical value
shown in magenta. b) Action map corresponding to the joint spectrum.

Since the classical integrable system is semi-toric and has a focus-focus point, we expect
the corresponding joint spectrum to exhibit quantum monodromy. This is shown in Fig.
4.5 a). A unit cell is parallel transported around the focus-focus critical value. Denote the
basis vectors of this unit cell as v1 (vertical) and v2 (horizontal). As the cell completes a
full loop, we observe a basis transformation where v1 remains unchanged but v2 is updated
to v2 + 2v1. In a similar vein to our previous work [DDN21], we have the following basis
transformation (

v
′
1

v
′
2

)
=

(
1 0

ω 1

)(
v1

v2

)
(4.52)

where ω = 2. As was observed in [DDN21], when considering the symmetry classes one
at a time, ω = 1 whereas combining them two at a time gives ω = 2. Finally, in Fig. 4.6
we show the projection of the joint spectrum in the action variables onto either the (m,J1)

or (m,J3) axes (and plotting the signed m instead of |m|). The resulting polygons are two
different representations of the semi-toric polygon invariant with the cut above and below
the focus-focus point.
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Figure 4.6: a) The semi-toric polygon in the prolate case D = 20, a = 2.4; projection of the
actions onto the (m,J1) axes, b) Projection onto the (m,J3) axes.

4.3.2. OBLATE COORDINATES

Degenerating either the two largest (e3 = e4) or smallest (e1 = e2) semi major axes gives
rise to the oblate coordinates on S3. They are equivalent under sending ei → −ei and then
translating and scaling. In this paper we only address the former case and normalise the ei
with (e1, e2, e3 = e4) = (0, 1, a).

From [KM86], an explicit representation of oblate coordinates is

x21 =
s1s2
a

x22 =
− (s1 − 1) (s2 − 1)

a− 1

x23 =
(s1 − a) (s2 − a) s3

a (a− 1)
x24 =

(s1 − a) (s2 − a) (1− s3)

a (a− 1)

(4.53)

where 0 ≤ s1, s2 ≤ 1 ≤ s3 ≤ a. A possible Stäckel matrix is given by

Φobl =
1

4


− 1

(s1−1)(s1−a) − 1
(s1−1)s1(s1−a)

(1−a)a
(s1−1)s1(s1−a)2

− 1
(s2−1)(s2−a) − 1

(s2−1)s2(s2−a)
(1−a)a

(s2−1)s2(s2−a)2

0 0 − 1
(s3−1)s3

 . (4.54)

From [NDD23] and similar to the prolate system, we have the following.
Lemma 30. Separating the Hamilton Jacobi equation in oblate coordinates using the Stäckel matrix
(4.54) and subsequently reducing by H gives a two degree of freedom integrable system on S2 × S2

with integrals

Gobl = aℓ212 + ℓ213 + ℓ214 M = ℓ234

and Poisson structure BX,Y as given in (4.3).

Using (4.54) and a computation similar to the prolate case we have the following
Lemma.
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Lemma 31. Separating the Schrödinger equation (4.5) in oblate coordinates (4.53) gives the
following ODEs

ψ
′′
j +

1

2

(
1

sj
+

1

sj − 1
+

2

sj − a

)
ψ

′
j +

−Es2j +
(
λ+ aE − (a− 1)m2

)
sj − aλ

4sj(sj − 1)(sj − a)2
ψj = 0 for j = 1, 2

(4.55a)

ψ
′′
j +

1

2

(
1

sj
+

1

sj − 1

)
ψ

′
j +

m2

4sj(1− sj)
ψj = 0 for j = 3

(4.55b)

where (m,λ) are spectral parameters.

Again, the equation for ψ3 in (4.55b) can be converted to the trivial equation (4.32) using
the same transformation as for prolate. This yields a discrete spectral parameter m ∈ Z
which represents quantised angular momentum in the (x3, x4) plane with solutions eimϕ.
As with the prolate system, the separated ODEs can also be obtained by degenerating the
generalised Lamé equation.
Lemma 32. The separated equations for the oblate system (4.55a) and (4.55b) smoothly degenerate
from those of the ellipsoidal system.

Proof. The proof is identical to that of prolate but uses the transformation

(e4, s3, p3) = (e3 + ε, e3 + εs̃3,
p̃3
ε
)

and taking the limit as ε→ 0. For more detail, see [NDD23].

■

Equation (4.55a) is an example of a Heun equation.
Lemma 33. By the change of dependent variable ψj = (z−a)|m|/2Wj , (4.55a) can be written in the
form of (4.34) where γ = δ = 1

2 , ε = 1 + |m|, q = 1
4 (|m| − λ) and α, β as in (4.36). In particular,

we have

W
′′
j +

(
1

2z
+

1

2(z − 1)
+

1 + |m|
z − a

)
W

′
j +

(−E + |m|(|m|+ 2))z − (|m| − λ)

4z(z − 1)(z − a)
Wj . (4.56)

LetHpd(z) be a Heun polynomial solution to (4.56) of degree d and let z1, . . . , zd be its roots.
Many of the results for prolate apply for the oblate system which we state in the following
Lemma.
Lemma 34. The combined solution to (4.55a) and (4.55b) is the product

ψ1ψ2ψ3 = (a− s1)
m/2(a− s2)

m/2Hpd(s1)Hpd(s2)e
imϕ. (4.57)
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(µ1, µ2) α̃ β̃ γ̃ δ̃ ε̃ q̃

(0, 0) α β γ δ ε q

(1, 0) α+ 1− γ β + 1− γ 2− γ δ ε q + (1− γ)(aδ + ε)

(0, 1) α+ 1− δ β + 1− δ γ 2− δ ε q + (1− γ)(aδ + ε)

(1, 1) α+ 2− γ − δ β + 2− γ − δ 2− γ 2− δ ε q + 2a(1− γ) + 2(1− γ)ε

Table 4.6: Parameters of (4.34) for the various symmetry classes of the oblate system.

Expressed in the original Cartesian coordinates using (4.53), (4.57) is a homogeneous polynomial of
total degree D̃ = 2d+ |m| given by

ΦD̃ = (a(a− 1))m/2 (x3 + isign(m)x4)
|m|

d∏
k=1

zk(zk − 1)

(
r2 − x21

zk
a− a− 1

zk − 1
x22

)
. (4.58)

Proof. The proof follows the same logic as used for the prolate system. To obtain (4.58), we
note the use of the following identity:

(θ − s1)(θ − s2) = θ(θ − 1)

(
r2 − x21

θ
a− a− 1

θ − 1
x22

)
,

which holds since both sides are monic quadratic polynomials in θ that vanish at θ = s1, s2.

Using the definition of oblate coordinates in (4.53) and observing that eimϕ =

(
x3+ix4√
x23+x

2
4

)m
,

the result follows.

■

As with the prolate system, we only consider the 4 discrete symmetry classes about the
x1 and x2 planes. Let µ = (µ1, µ2) where µi ∈ {0, 1} and µ1 (µ2) being 1 (0) denotes
a solution odd (even) about the x1 (x2) axis. To investigate these symmetries, consider
the change of dependent variable in (4.56) given by ϕ1 = s

µ1/2
1 (a − s1)

µ1/2W1 and ϕ2 =

s
µ2/2
2 (a−s2)µ2/2W2 which corresponds to multiplication by xµ11 x

µ2
2 . This change of variables

leads to a Heun equation (4.34) with parameters given in Table 4.6. As in the prolate
example, denote by Hpµd (z) solutions to (4.34) for the symmetry class µ and let the product
Hpµd (s1)Hp

µ
d (s2)e

imϕ, when converted back into Cartesian coordinates, be given by Φµ

D̃
(x).

Set
Ψµ
D(x) := xµ11 x

µ2
2 Φµ

D̃
(x) (4.59)

where D = D̃ +
∑2

i=1 µi. Again, (4.58) is a special case with µ = (0, 0). Following the same
argument used in prolate, we have the following Lemma.
Lemma 35. The Ψµ

D(x) are D degree homogeneous, harmonic polynomials and the energy
eigenvalue is given by E = D(D + 2).
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For a given energy the total number of eigenstates is computed using the same methodology
as for the prolate case.
Lemma 36. For a fixed value of D, the total number of eigenstates is given by N = (D + 1)2. The
number of states for each symmetry class given in Table 4.6 is the same as that shown in Table 4.5.

Using the three term recurrence (4.40) and the same methodology for prolate, we find the
joint spectrum. In Fig. 4.7 a) we show the joint spectrum (mℏ, λℏ2) for D = 20 and a = 2.4.
As in the prolate system, we have ℏ = 1

D+1 and a total of 441 total eigenstates. The blue,
red, orange and cyan points correspond to the (0, 0), (1, 0), (0, 1) and (1, 1) symmetry classes
respectively.

We also show the classical outline of the momentum map in black. Unlike the prolate
system, this is not a semi-toric system. One interesting feature of the joint spectrum is
the existence of period doubling. A quantum consequence of this is the near-degeneracy in
the upper chamber.

-1.0 -0.5 0.5 1.0
mℏ

0.5

1.0

1.5

2.0

2.5

λℏ2

Figure 4.7: a) Joint spectrum of the oblate system (mℏ, λℏ2) for D = 20 and a = 2.4 showing
a total of 441 states. b) Corresponding action map. Note that light blue (cyan) and orange
states are hidden by the nearby degenerate red and blue states in the upper chamber.

To compute the actions, we use the same methodology as for the prolate system. Doing so
gives the following three continuous actions:

J1 =
2

π

ˆ min(r1,1)

0
p1ds J2 =

2

π

ˆ min(r2,a)

max(r1,1)
p2ds J3 = |ℓ34|

where

p2i =
−Ẽs2i + (Ẽa+ g − (a− 1)m2)si − ag

4si(si − 1)(si − a)2
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for i = 1, 2, r2 ≥ 1 and 0 ≤ r1 ≤ r2 ≤ a. The action map corresponding to the joint spectrum
in Fig. 4.7 a) is shown in b). Again, we note that J1 + J2 + J3 = 1.

4.3.3. LAMÉ COORDINATES

The Lamé coordinates are unique compared to the other singly degenerate coordinate
systems (oblate, prolate) since they are an extension of ellipsoidal coordinates from S2 onto
S3. Consequently, while prolate and oblate coordinates have symmetry group SO(2), the
Lamé coordinates have the larger symmetry group SO(3).

As with oblate, there are two possible (yet equivalent) ways to define Lamé coordinates.
Either the largest three ei become equal, or the smallest three. We choose the former and
define Lamé coordinates by

x21 = s1 x22 =
(1− s1)(s2 − f1)(s3 − f1)

(f2 − f1)(f3 − f1)

x23 =
(s1 − 1)(f2 − s2)(f2 − s3)

(f1 − f2)(f2 − f3)
x24 =

(s1 − 1)(f3 − s2)(f3 − s3)

(f2 − f3)(f3 − f1)
(4.60)

where 0 ≤ s1 ≤ 1 and 0 ≤ f1 ≤ s2 ≤ f2 ≤ s3 ≤ f3 with real parameters fi.

A possible Stäckel matrix is given by

σLamé =
1

4


1

s1(1−s1)
−1

s1(1−s1)2 0

0 1
(f3−s2)(s2−f2)

1
(f3−s2)(s2−f2)(s2−f1)

0 1
(f3−s3)(s3−f2)

1
(f3−s3)(s3−f2)(s3−f1)

 (4.61)

with corresponding integrals obtained by separation as

F = ℓ212 + ℓ213 + ℓ214, G = f1ℓ
2
34 + f2ℓ

2
24 + f3ℓ

2
23.

As in the other coordinates, reduction byH gives a two degree of freedom integrable system
(F,G) on S2 × S2 with Poisson structure BX,Y . The integral F is a result of the SO(3)

symmetry. Using (4.61) and the same methodology used in the previous systems, we obtain
the following separated ODEs

ψ
′′
1 +

1

2

(
1

s1
+

3

s1 − 1

)
ψ

′
1 +

f − Es1
4s1(1− s1)2

ψ1 = 0 (4.62a)

ψ
′′
k +

1

2

(
1

z − f1
+

1

z − f2
+

1

z − f3

)
ψ

′
k +

(f − E)z + g

4(z − f1)(z − f2)(z − f3)
ψk = 0 k = 2, 3

(4.62b)

The separated equations can also be obtained by smoothly degenerating the generalised
Lamé equation.
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Lemma 37. Equations (4.62a) and (4.62b) arise from smoothly degenerating the separated
generalised Lamé equations in (4.7).

Proof. From [NDD23], it is known that the transformation

(e1, e2, e3, e4) =

(
−1

ε
, f1, f2, f3

)
(4.63)

(s1, p1) =
(
f2 −

s1
ε
, εp1

)
(4.64)

defines a canonical transformation that smoothly degenerates the classical ellipsoidal
system into that for Lamé. Further, applying (4.63) and taking the limit as ε→ 0 gives

(η1, η2) =

(
−2H − F

ε
,−G

ε

)
. (4.65)

Substituting (4.63), (4.64) and (4.65) into (4.7) and and considering dominating terms of ε
gives the degenerated ODEs (4.63) and (4.64).

■

Equation (4.62a) has regular singularities at s1 = 0, 1,∞ meaning that it is of the
hypergeometric type. We observe that the form as written in (4.62a) is not canonical. The
roots of the indicial equation at s1 = 1 are

r± =
1

4

(
−1±

√
1 + 4E − 4f

)
, (4.66)

where r− < 0 < r+. To change (4.62a) into canonical form, we make the change of
dependent variable ψ1 → y(1 − s1)

r+ followed by the change of independent variable
s1 = x21, yielding the well known Gegenbauer equation

(1− x21)y
′′ − (2u+ 1)x1y

′
+ n(n+ 2u)y = 0 (4.67)

where u = 1
2(1 +

√
1 + 4E − 4f) and

n = −1

2

(√
4E − 4f + 1−

√
4E + 4 + 1

)
. (4.68)

From [AS92, MF53], it is known that polynomial solutions to (4.67) occur when n is an
integer. These are known as the Gegenbauer polynomials Cun(x1) where n denotes the
degree of the polynomial.

The equation in the s2, s3 variables is known as the Lamé equation, a special case of the
Heun equation. As with the previous degenerate cases, we simplify by mapping (f1, f2, f3)

to (0, 1, a) where a > 1. The parameters (f1, f2, f3) in (4.62b) can be mapped to (0, 1, a) by a
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Möbius transformation, then the Riemann symbol is given by

S2,3 =


0 1 a ∞

0 0 0 α; z

1/2 1/2 1/2 β


where α, β = 1

4

(
1±

√
1 + 4E − 4f

)
and q = g/4. The Lamé equation is typically written as

follows [BE55]:

W
′′
+

1

2

(
1

ξ
+

1

ξ − 1
+

1

ξ − k−2

)
W

′
+

bk−2 − ν(ν + 1)ξ

4ξ(ξ − 1)(ξ − k−2)
W = 0 (4.69)

where k = 1√
a

, b = g/a and ν = 1
2

(√
4E − 4f + 1− 1

)
= 2β − 1 with ν ≥ −1/2 and 0 < k <

1. Polynomial solutions of the Lamé equation are known as Lamé polynomials [ASSU14]
and we denote them as Lpd(z) where the subscript d signifies the solution’s degree. Note
that ν being a non negative integer is a necessary condition for polynomial solutions.
Lemma 38. Solutions to (4.62b) are polynomial iff E = D̃(D̃+2) where D̃ = 2d+n is an integer.

Proof. From [Vol99] we know that polynomial solutions are only obtainable for (4.62b) if

f − E

4
= −d(d+ 1

2
). (4.70)

Combining (4.70) and (4.68) gives the result.

■

Using (4.70), we know that r+ in (4.66) simplifies to d, ν = 2d, α = −d, β = 2d + 1
2 and

u = 2d+ 1. Denote the full solution ψ = ψ1ψ2ψ3 to (4.62a) and (4.62b) as

ψ = (1− s1)
dC2d+1

n (x1)Lpd(s2)Lpd(s3). (4.71)

We have the following Lemma.
Lemma 39. Expressed in the original Cartesian coordinates, ψ is a homogeneous polynomial of
degree D̃. Specifically, we can rewrite (4.71) as

ΦD̃(x) = rnC2d+1
n

(x1
r

) 3∏
i=1

d∏
k=1

(zk − fi)
d∏

k=1

3∑
i=1

x2i+1

zk − fi
(4.72)

where the zk are the roots of the Lamé polynomials Lpd, (f1, f2, f3) = (0, 1, a) and r2 =
∑

i x
2
i .
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Proof. From the definition of the Lamé coordinates (4.60), it is easily seen that

(zk − s2)(zk − s3) =
(zk − f1)(zk − f2)(zk − f3)

1− x21

(
x22

zk − f1
+

x23
zk − f2

+
x24

zk − f3

)
.

Taking the product over all d roots and using r2 = 1 along with s1 = x21 gives (4.72). To
prove homogeneity, we note that

C2d+1
n (x1) = rnC2d+1

n (
x1
r
) (4.73)

and so the argument of the Gegenbauer polynomial will be of degree 0. We observe that rn

will be of degree n in the xi and C2d+1
n (x1r ) will only consist of terms whose powers have

the same parity as n. Thus, we have shown that (4.72) is homogeneous and polynomial.

■

As with the previous systems, let µ = (µ2, µ3, µ4) where µi ∈ {0, 1} denote a symmetry
class where µi = 0 represent the wavefunction odd about the xi axis and even otherwise.
Consider the change of dependent variable

ϕj =
3∏
i=1

(sj − fi)
µi+1/2ψj (4.74)

where j = 2, 3 in (4.62b). This is equivalent to multiplying the original solution by
xµ22 x

µ3
3 x

µ4
4 . Note that performing this change of variables in the Lamé equation (4.62b)

results in a Heun equation of the form (4.34) with parameters for each symmetry class µ

as shown in Table 4.7.

For the Gegenbauer equation (4.67), we note that the independent variable is x1 and so
parity about this axis is determined simply by the parity of the Gegenbauer polynomial
Cun(x1), which is determined by n. We let µ1 = 1 if n is odd and µ1 = 0 otherwise.

For a given symmetry class µ, denote by Lpµd (z) solutions to (4.34) with parameters given
in Table 4.7. We consider the product Φµ

D̃
(x) = C2d+1+U

n (x1)Lp
µ
d (s2)Lp

µ
d (s3) where U =∑3

i=1 µi+1. Finally, we set
Ψµ
D(x) := xµ22 x

µ3
3 x

µ4
4 Φµ

D̃
(x) (4.75)

where D = n+ D̃ + U . As before, (4.72) is a special case of (4.75) with µ = (0, 0, 0).
Lemma 40. The Ψµ

D(x) are homogeneous polynomial eigenfunctions of the original Laplacian (4.5)
and the energy is given by E = D(D + 2).

Proof. Proving Ψµ
D(x) is an eigenfunction follows the same argument as the previous cases.

To compute the energy for a given symmetry class µ, we combine the parameters of Table
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4.7 with the results of [Vol99] to get a more general form of (4.70), namely

f − E + U(U + 1)

4
= −d(d+ 1/2 + U). (4.76)

Combining (4.76) and (4.68) gives the result for E. Similarly, we have that u = 2d+ 1 + U .

■

µ α̃ β̃ γ̃ δ̃ ε̃ q̃

(0, 0, 0) α β γ δ ε q

(1, 0, 0) α+ 1− γ β + 1− γ 2−γ δ ε q + (1− γ)(aδ + ε)

(0, 1, 0) α+ 1− δ β + 1− δ γ 2− δ ε q − aγ(δ − 1)

(0, 0, 1) α+ 1− ε β + 1− ε γ δ 2− ε q + γ(1− ε)

(1, 1, 0) α− γ − δ + 2 β − γ − δ + 2 2−γ 2− δ ε q−a(γ+δ−2)−γε+ε
(1, 0, 1) α− γ − ε+ 2 β − γ − ε+ 2 2−γ δ 2− ε q−γ(aδ+1)+aδ−ε+2

(0, 1, 1) α− δ − ε+ 2 β − δ − ε+ 2 γ 2− δ 2− ε q+γ(−aδ+a− ε+1)

(1, 1, 1) α−γ−δ−ε+3 β−γ−δ−ε+3 2−γ 2− δ 2− ε q− a(γ+ δ− 2)− γ−
ε+ 2

Table 4.7: Symmetry class µ and corresponding Heun (Lamé) equation parameters for
which the resulting polynomial is an eigenfunction.

From the above, it is clear that for a fixed energy E, only 8 of the 16 discrete symmetry
classes for the Lamé system can be present. If E is even, then the symmetry classes SE
given in (4.21) are present. Conversely, if E is odd, we have the remaining 8 symmetry
classes SO from (4.22). Note that while we have omitted µ1 from the definition of µ in our
discussion of the Lamé systems so far, this symmetry is accounted for in the parity of n
which is set by the value of D. When addressing all symmetry classes below, we will write
µ̃ = (µ1;µ2, µ3, µ4) to highlight this fact.

We have the following observation.
Lemma 41. Chebyshev polynomials of the second kind are the eigenfunction corresponding to the
joint spectrum point (f, g) = (1− ℏ2, 0).

Proof. For µ = (0, 0, 0), we have from (4.76) the relation f = E − 4d(d + 1/2). When d = 0

one obtains f = E which gives f = 1 − ℏ2 (after normalisation by ℏ) and g = 0. This gives
Chebyshev polynomials of the second kind Un(x1) since Un(x1) = C1

n(x1). Note that in the
limit ℏ → 0 this joint spectrum point becomes the degenerate point (1, 0) for the classical
system.

■
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Lamé Polynomial Corresponding Symmetry µ

Ec2m2d (z, k
2) (0, 0, 0)

Ec2m+1
2d+1 (z, k2) (1, 0, 0)

Es2m+1
2d+1 (z, k2) (0, 1, 0)

Ec2m2d+1(z, k
2) (0, 0, 1)

Es2m+2
2d+1 (z, k2) (1, 1, 0)

Ec2m+1
2d+2 (z, k2) (1, 0, 1)

Es2m+1
2d+2 (z, k2) (0, 1, 1)

Es2m+2
2d+3 (z, k2) (1, 1, 1)

Table 4.8: Lamé polynomials solutions to (4.77) and their corresponding symmetries given
in Table 4.7.

The Lamé equation (4.69) can be transformed by the change of independent variable ξ =

sn2(z, k) into the following form:

W
′′
+ (b− ν(ν + 1)k2sn2(z, k))W = 0. (4.77)

This form of the Lamé equation has regular singular points at 2pK+(2q+1)iK
′
whereK,K

′

are the complete elliptic integrals of the first kind with moduli k and
√
1− k2 respectively

and p, q ∈ Z.

From [ASSU14], it is known that there are 8 polynomial solutions to (4.77) if ν is a non-
negative integer. These are shown in Table 4.8 where m = 0, 1, . . . , ν and Ecmd , Es

m
d are

known as the Lamé functions [EMOT55]. Since ξ = si = sn2(z, k), we are able to connect
these eigenfunctions to Lpµd (z) as given in Table 4.7.

The total number of states for each symmetry class is shown in Table 4.9 below. Here
we use the notation (µ1;µ) to represent a state with parity given by µ1 about the x1

axis and odd about one remaining axis given by µ. E.g. (1;µ) represents the classes
(1; 0, 0, 1), (1; 0, 1, 0), (1; 1, 0, 0). Similarly, we have (µ1;µ, ν) and so forth. The number of
states are computed using similar methods to those shown in the prolate case.

Summing the relevant entries for a given parity of the energy shows that the total number of
states for a given energy E = D(D+2) is given by (D+1)2. To compute the joint spectrum
for a given E, we use the parameters shown in Table 4.7 and the recurrence relationship
given in Lemma 25. An example for even and odd energies is shown in Fig. 4.8. As with
the other cases such as ellipsoidal and prolate, we have ℏ = 1

D+1 . As with the prolate and
oblate systems, since the matrices involved are not self adjoint, larger values of D lead to
numerical instability.
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Number of States E

(1;µ) D(D + 2)/8 Even
(1; 1, 1, 1) D(D − 2)/8 Even
(0; 0, 0, 0) (D + 2)(D + 4)/8 Even
(0;µ, ν) D(D + 2)/8 Even
(1; 0, 0, 0) (D + 1)(D + 3)/8 Odd
(1;µ, ν) (D + 1)(D − 1)/8 Odd
(0;µ) (D + 1)(D + 3)/8 Odd

(0; 1, 1, 1) (D + 1)(D − 1)/8 Odd

Table 4.9: Number of states per symmetry class and corresponding energy parity.

0.5 1.0 1.5 2.0
gℏ2

0.2

0.4

0.6

0.8

1.0

fℏ2

0.5 1.0 1.5 2.0
gℏ2

0.2

0.4

0.6

0.8

1.0

fℏ2

Figure 4.8: Joint spectrum (f, g) in the Lamé case with (f1, f2, f3) = (0, 1, 2.4) for a) even
energy with D = 20 and b) odd energy with D = 21 thereby representing all 16 symmetry
classes. Correspondence between the coloured dots and symmetry class are the same for
the ellipsoidal system shown in Table 4.3.

The actions of the Lamé system are given by the following

J1 =
2

π

ˆ f

0
p1ds, J2 =

2

π

ˆ min(r2,f2)

f1

p2ds, J3 =
2

π

ˆ f3

max(f2,r2)
p3ds

where r2 = g
1−f and

p21 =
f − Ẽs1

4(s1 − 1)2s1
p2i =

(f − Ẽ)si + g

4(si − f3)(si − f2)(si − f1)

for i = 2, 3. The first action simplifies to

J1 = 1−
√
1− f. (4.78)

The image of spectra shown in Fig. 4.8, under the action map is shown in Fig. 4.9. Unlike
the prolate and oblate cases, there are no states on the boundary. There is a single state
located near the top corner (f, g) = (1− ℏ2, 0).
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Figure 4.9: Joint spectrum in the Lamé case in action variables corresponding to the joint
spectra shown in Fig. 4.8 a) and b).

4.3.4. SPHERICAL COORDINATES

Spherical coordinates (also known as poly-spherical coordinates) are a further degeneration
of prolate, oblate or Lamé coordinates and possess both an SO(2) and SO(3) symmetry.
Unlike prolate coordinates, spherical coordinates - despite having a global S1 action - are
not semi-toric since they have a degenerate point. This point corresponds to the critical
values at which the global action is not differentiable, and the pre-image of the critical
value is a sphere. We will see that there is a simple eigenfunction built from Chebyshev
polynomials that is related to this sphere.

Spherical coordinates can be obtained from the Lamé case by setting either f1 = f2 or
f2 = f3. These result in different coordinate systems, respectively called the 12 and 23

spherical systems and are related to each other via a permutation of coordinates. Similarly,
setting a = 1 in both the prolate and oblate cases gives the 23 and 12 spherical systems
respectively. See [NDD23] for more details.

In this paper we focus on the 23 spherical system, defined by

x21 = s1 x22 = (1− s1)s2

x23 = (1− s1)(1− s2)s3 x24 = (1− s1)(1− s2)(1− s3), (4.79)

where 0 ≤ sk ≤ 1 for all k = 1, 2, 3. Unlike the previously described systems, the spherical
coordinates are relatively simple and separation can be done "by hand", without the use
of a Stäckel matrix. The classical integrals obtained by separation are (F, ℓ234) where F =

ℓ212 + ℓ213 + ℓ214. Note this is the same F as in the Lamé system. The separated ODEs are
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ψ
′′
1 +

1

2

(
3

s1 − 1
+

1

s1

)
ψ

′
1 +

λ− Es1
4s1(1− s1)2

ψ1 = 0 (4.80a)

ψ
′′
2 +

(
1

2s2
+

1

s2 − 1

)
ψ

′
2 +

(λ− E)(s2 − 1)−m

4s2(1− s2)2
ψ2 = 0 (4.80b)

ψ
′′
3 +

1

2

(
1

s3
+

1

s3 − 1

)
ψ

′
3 +

m

4s3(1− s3)
ψ3 = 0. (4.80c)

The equation for ψ3 (4.80c) can be converted to the trivial equation (4.32) with the coordinate
transformation s3 = cos2(ϕ). Using this and periodic boundary conditions, we find that
m ∈ Z and ψ3 = eimϕ where ϕ = arctan(x3x4 ).

As for the previous degenerate systems, we have the following Lemma.
Lemma 42. The system of separated equations in (4.80a), (4.80b), (4.80c) can be obtained from
either those of the Lamé system (4.62a), (4.62b) or those of the oblate system (4.55a), (4.55b).

Proof. For the Lamé system (4.62a), (4.62b), the transformation (s3, p3) → (f2 + s̃3ε, p̃3/ε)

is canonical. This, coupled with f3 → f2 + ε and a corresponding transformation of the
integrals followed by the normalization (f1, f2) = (0, 1) yields the result. For the oblate
direction, a similar method with (a, s3, p3) = (1+ε, 1+εs̃3, p̃3/ε) in (4.55a) and (4.55b) gives
the result.

■

Next, we turn our attention to the non trivial equations. For ψ1 in (4.80a), we observe
that it is of hypergeometric type. It has 3 regular singularities - two finite poles at s1 =

0, 1 and the third at infinity. To assist in finding polynomial solutions, we transform the
equation for ψ1 using the change of dependent variable ψ1 = (1 − s1)

1
4
(−1+X)W1 where

X =
√
1 + 4E − 4λ, followed by the change of independent variable s1 = x21. This yields

the Gegenbauer equation

(1− x21)W
′′
1 − 2x1(2u+ 1)W

′
1 + n(n+ 2u)W1 = 0 (4.81)

where u = 1
2(1 +X) and

n = −1

2
(1− 2

√
1 + E +X). (4.82)

Gegenbauer polynomial solutions to (4.81), denoted by Cun(x1), are obtained when n1 is a
non negative integer.

Repeating a similar process for ψ2 in (4.80b), we again note the equation is hypergeometric
with regular singularities at 0, 1 and infinity. The change of independent variable s2 = x2 :=
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x22
r̃2

where r̃ := x22+x
2
3+x

2
4 gives the Associated Legendre equation written as follows

(1− x2)ψ
′′
2 − 2xψ

′
2 +

(
ℓ(ℓ+ 1)− m2

1− x2

)
ψ2 = 0 (4.83)

where ℓ(ℓ+ 1) = E − λ, i.e.

ℓ =
1

2
(−1 +

√
1 + 4E − 4λ). (4.84)

In (4.83), ℓ and m are referred to as the degree and order respectively of the Associated
Legendre equation. Non trivial non singular solutions Pmℓ (x) are yielded when both ℓ and
m are integers. Further, said solutions are polynomial only if m is an even integer. For
polynomial solutions, both n and ℓ from (4.82) and (4.84) respectively must be integers.
Solving these simultaneously for E gives

E = D(D + 2) (4.85)

where D = ℓ+ n. Using (4.85) with (4.84) gives analytic values of the eigenvalue λ as

λ = D(D + 2)− ℓ(ℓ+ 1) (4.86)

Using (4.86), we also have
X = 2ℓ+ 1 (4.87)

along with u = ℓ+ 1. Combining the above, we have the following Lemma.
Lemma 43. For a fixed value of D = n+ ℓ, the combined wavefunction solution to (4.5), expressed
in Cartesian coordinates, is the homogeneous polynomial given by the product

ΨD(x) = rnr̃ℓ

(
x3 + ix4√
x23 + x24

)m
Cℓ+1
n

(x1
r

)
Pmℓ

(x2
r̃

)
(4.88)

where r̃2 = r2 − x21.

Proof. First, we note as before eimϕ = ( x3+ix4√
x23+x

2
4

)m. The associated Legendre polynomials

Pmℓ (x) can be written in the form (see, e.g., [DLMF, 14.7])

Pmℓ (x) =
(−1)m

2ℓℓ!
(1− x2)m/2

dℓ+m

dxℓ+m
(x2 − 1)ℓ . (4.89)

Thus the denominator
√
x23 + x24

m
in the Lemma cancels with r̃m(1 − x22/r̃

2)m/2. The
remaining terms produce a homogeneous degree ℓ − m polynomial in x2 and r̃2 − x22 =

x23 +x24. We note that rnCℓ+1
n (x1r ) is homogeneous of degree n and so it follows that (4.88) is

homogeneous of degree D = n+ ℓ.
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■

Let µ = (µ1, µ2) where µi ∈ {0, 1} and µ1 (µ2) being 1 (0) denotes a solution odd (even)
about the x1 (x2) axis. As with the Lamé system, we note that both the Gegenbauer and
Associated Legendre equations have independent variables x1 and x2 respectively and
thus their parity about these axes will be determined by that of n and ℓ − m respectively.
Consequently, a fixed value of D enforces a relationship between n, ℓ and m.

We note that ℓ = 0 forces D = n and m = 0. Consequently, we recover Chebyshev
polynomials of the second kind as C1

n(x1) = Un(x1). The corresponding state on the joint
spectrum is (m,λ) = (0, 1 − ℏ2), which becomes the classical degenerate point in the limit
of ℏ → 0. Depending on the parity of E, this corresponds to either the (0, 0) symmetry (if E
is even) or (1, 0) if E is odd.

Fixing an energy E allows us to compute the joint spectrum for the spherical system. An
example of the joint spectrum (m,λ) is shown in Fig. 4.10 a). The degenerate point is shown
in magenta at (0, 1).

From [NDD23], it is known that the actions of the spherical system are given as
follows:

J1 = 1−
√

1− f J2 =
√
1− f −m J3 = m (4.90)

where f is a value of the integral F . In Fig. 4.10 b) we show the corresponding action map
to the joint spectrum shown in a).

-1.0 -0.5 0.5 1.0
mℏ

0.2

0.4

0.6

0.8

1.0

λℏ2

Figure 4.10: a) The joint spectrum in the spherical case with D = 30. Blue, red, orange and
cyan represent the (0, 0), (1, 0), (0, 1) and (1, 1) symmetries respectively. There are 312 = 961
states in total. b) The corresponding spectrum in action variables (4.90).
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4.3.5. CYLINDRICAL COORDINATES

Cylindrical (or Hopf, or doubly cylindrical) coordinates are a further degeneration of oblate
coordinates, found by setting e1 = e2 in addition to e3 = e4. The relationship between
Cartesian and cylindrical coordinates is given by

x21 = s1s2 x22 = s2(1− s1)

x23 = s3(1− s2) x24 = (1− s2)(1− s3).
(4.91)

The separated equations are given by

ψ
′′
1 +

1

2

(
1

s1
+

1

s1 − 1

)
ψ

′
1 +

m2
1

4s1(1− s1)
ψ1 = 0 (4.92a)

ψ
′′
2 +

(
1

s2 − 1
+

1

s2

)
ψ

′
2 +

m1(s2 − 1)− (m2 + E(s2 − 1))s2
4s22(1− s2)2

ψ2 = 0 (4.92b)

ψ
′′
3 +

1

2

(
1

s3
+

1

s3 − 1

)
ψ

′
3 +

m2
2

4s3(1− s3)
ψ3 = 0 (4.92c)

where m1,m2 are spectral parameters. The equations in ψ1 and ψ3 in (4.92a) and (4.92c) are
reducible to the trivial equation (4.32) with the trigonometric transformation used for the
previous systems. This, along with periodic boundary conditions, give m1,m2 ∈ Z with
solutions ψ1 = eim1ϕ1 and ψ3 = eim2ϕ3 where ϕ1 = arctan(x2x1 ) and ϕ3 = arctan(x4x3 ).

In (4.92b), the equation in ψ2 is of hypergeometric type. The change of dependent variable

ψ2 = s
|m1|
2

2 (1− s2)
|m2|
2 y and independent s2 = 1−x

2 variables yields

y
′′
+

(
1 + |m1|
x− 1

+
1 + |m2|
x+ 1

)
y
′
+

−E + 2 |m1| (|m2|+ 1) +m2
1 +m2

2 + 2 |m2|
4(x2 − 1)

y = 0

whose Riemann symbol is given by

SCyl =


−1 1 ∞

0 0
1

2

(
−
√
E + 1 + |m1|+ |m2|+ 1

)
;x

− |m2| − |m1|
1

2

(√
E + 1 + |m1|+ |m2|+ 1

)
 .

Polynomial solutions to ψ2 are obtained when an index at infinity vanishes. This leads to
the condition

1

2

(
−
√
E + 1 + |m1|+ |m2|+ 1

)
= −d (4.93)

which gives the quantised energy
E = D(D + 2)

where D = 2d+ |m1|+ |m2|. These solutions, denoted by P (|m1|,|m2|)
d (x), are the well known
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Jacobi polynomials.

The combined wavefunction solution to (4.5) is therefore

ψ = P
(|m1|,|m2|)
d (x)eim1ϕ1eim2ϕ3 . (4.94)

Lemma 44. For a given D = 2d + |m1| + |m2|, the total wave function (4.94) in the original
Cartesian coordinates is a harmonic homogeneous polynomial of degree D given by

ΨD = r2d(x1 + i sign(m1)x2)
|m1|(x3 + i sign(m2)x4)

|m2|P
(|m1|,|m2|)
d

(
x23 + x24 − x21 − x22

r2

)
.

(4.95)

Proof. Using the definition of cylindrical coordinates in (4.91), we note that s2 = x21 + x22.
Since x = 1− 2s2 and r2 =

∑
i x

2
i , the argument of the Jacobi polynomial follows. Similarly,

rewriting the exponential terms in (4.95) using this definition and cancelling terms gives the
final result. To prove homogeneity, we note that the argument of the Jacobi polynomial is
of degree 0 and so the final degree of ΨD will be |m1|+ |m2|+ 2d = D.

■

Note that for m1 = m2 = 0 we recover the Legendre polynomials P 0
d (x) = P

(0,0)
d (x). For

m1 = m2 we recover Gegenbauer polynomials C ld(x)/P
(l+1/2,l+1/2)
d = const, i.e. they are the

same up to normalisation, see, e.g. [Sze75].

Since there are two continuous S1 symmetries, the discrete symmetries of (4.95) are
represented by the parity of m1 and m2. Note that D − 2d = |m1| + |m2| has the same
parity as D and E. In particular this implies that m1 = m2 = 0 is only possible for even D
and E.

An example of the joint spectrum is given in Fig. 4.11 a) with D = 20. The total number of
eigenstates is (D + 1)2 = 441.

Two of the spectral parameters are trivial angular momenta: (J1, J3) = (|m1| , |m2|). As
J1 + J2 + J3 = 1, the remaining action J2 is easily found. In Fig. 4.11 b) an example of the
action map for the corresponding spectrum in a) is shown.
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Figure 4.11: a) Joint spectrum with D = 20. b) Corresponding action map.



Chapter 5

Conclusion and Further Work

In this thesis we have studied the connections between separable integrable systems, their
corresponding quantum systems and the resulting special function solutions. In doing
so, we have made connections that reveal deep insights about both the classical and
quantum mechanics, along with their respective discrete and continuous symmetries. A
common theme throughout all chapters has been the study of both classical and quantum
monodromy. We hope that the examples in this thesis will be instrumental to further work
in this field.

In Chapter 2 we studied the free particle on R3. Separating the Schrödinger equation
in prolate spheroidal coordinates yields the spheroidal wave equation, a special case of
the confluent Heun equation. Employing symmetry reduction, quantum operators on
L2(S

2) whose joint spectrum exhibit quantum monodromy were obtained. Taking the semi-
classical limit, a semi-toric integrable system on T ∗S2 was recovered. This possesses a non
degenerate focus-focus point, thereby proving the existence of both classical and quantum
monodromy. To our knowledge, this is the first analysis of quantum monodromy using well
known asymptotic expansions for the eigenvalues of the spheroidal wave equation.

Our study of the free particle and the spheroidal wave equation leads us to the question:
what classical system would, when quantised, generate the most general confluent Heun
equation? This inquiry motivates the work of Chapter 3. Here, we investigate the Harmonic
Lagrange Top which is the well known Lagrange Top with an added quadratic potential.
Separating the Schrödinger equation yields the most general confluent Heun equation,
known in the physics literature as the Teukolsky master equation. We show that the
quantum operators obtained by this separation have a joint spectrum which also exhibits
quantum monodromy. However, unlike for the free particle system, this feature is only
present for certain parameter choices related to the moments of inertia of the Lagrange
Top.

We turn our attention in Chapter 4 to geodesic flow on S3 as a natural extension to our
free particle work on R3. Here, we separate the Schrödinger equation in the 6 orthogonal
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separable coordinates on S3: ellipsoidal, prolate, oblate, Lamé, spherical and cylindrical.
Unlike the free particle and Harmonic Lagrange Top, for all 6 coordinate systems, the
separated ODEs on S3 (a compact manifold) are Fuchsian type, i.e., all singularities are
regular. The most general of these separable coordinates are the ellipsoidal coordinates
and the ODEs that arise are known as the generalised Lamé equation. All other ODEs that
arise were shown to be obtained via degeneration from the generalised Lamé equation.
We obtained a variety of special function solutions, namely the generalised Lamé wave
functions, Heun and Gegenbauer polynomials. Numerical computations yielded the joint
spectra of each quantum system. Finally, the monodromy that arises from the system
obtained by separation in prolate coordinates is studied. Unlike the free particle and
Harmonic Lagrange Top, the ODEs here are Heun equations.

Our work on S3 can be expanded to higher dimensional spaces, in particular S4. In doing
so, a more general notion of monodromy can be defined and investigated. Further study
can also be done investigating the connection between the confluent equations obtained on
the non compact manifolds for the free particle and Harmonic Lagrange Top, and those
obtained by separation on S3.



Chapter A

Appendix

A.1. ELLIPSOIDAL COORDINATES ON S2

In these remaining sections we compare our results on S3 to the more familiar S2.
Ellipsoidal coordinates on S2 are defined as follows:

x21 =
(s1 − e1)(s2 − e1)

(e2 − e1)(e3 − e1)
x22 =

(s1 − e2)(s2 − e2)

(e1 − e2)(e3 − e2)
x23 =

(s1 − e3)(s2 − e3)

(e1 − e3)(e2 − e3)
. (A.1)

where 0 ≤ e1 ≤ s1 ≤ e2 ≤ s2 ≤ e3. Separating (4.5) in these coordinates gives the following
separated equations

ψ
′′
i +

1

2

(
1

si − e1
+

1

si − e2
+

1

si − e3

)
ψ

′
i +

−Esi + λ

4(si − e1)(si − e2)(si − e3)
ψi = 0 (A.2)

for i = 1, 2. Equations (A.2) for i = 1, 2 are the Lamé equations studied in section 4.3.3 and
so we denote their polynomial solutions by Lpd(si). Classically, the integrals obtained by
separation are

(I1, I2) = (ℓ212 + ℓ213 + ℓ223, e3ℓ
2
12 + e2ℓ

2
13 + e1ℓ

2
23).

A combined solution to (4.5) in ellipsoidal coordinates is given by

ψ = Lpd(s1)Lpd(s2) (A.3)

where there are d = n1 + n2 total roots of ψ with n1 occurring in the interval [e1, e2] and n2
in [e2, e3].
Lemma 45. Written in Cartesian coordinates, ψ in (A.3) is a homogeneous ℓ̃ := 2d degree
polynomial

Φl̃ =

(
3∏
i=1

d∏
k=1

(zk − ei)

)
d∏

k=1

3∑
i=1

x2i
zk − ei

(A.4)
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where the zk are solutions of

3∑
i=1

1/4

zk − ei
+

d∑
j=1,j ̸=k

1

zk − zj
= 0.

Inspecting (A.4), it is clear there are 8 symmetry classes in total (even/odd parity about
each of the xi axes). Let µ := (µ1, µ2, µ3) where µi ∈ {0, 1} represent a symmetry class of
the solution (A.4) where µi = 1 signifies a solution odd about the xi axis and even otherwise.
As with the S3 ellipsoidal case, we consider these symmetries by performing the change of
variables

ϕj =
3∏
i=1

(sj − ei)
µi/2ψj (A.5)

in (A.2). Let solutions to the transformed (A.2) for a given symmetry class µ be given by
Φµ

l̃
(x) and set

Ψµ
ℓ (x) := xµ11 x

µ2
2 x

µ3
3 Φµ

l̃
(x) (A.6)

We then have the following Lemma.
Lemma 46. The Ψµ

ℓ (x) are eigenfunctions of the Schrödinger equation (4.5) and the energy is given
by E = ℓ(ℓ+ 1) where ℓ := 2d+

∑3
i=1 µi.

Similar to the S3 ellipsoidal and Lamé system, for a fixed value of ℓ, only four of these
symmetries appear at any time. When ℓ is even, these are the (0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)
classes (blue, purple, orange, gray respectively in Fig. A.1 a)) while for odd ℓ we have the
(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1) classes (red, green, cyan, brown). Note that E is always
even.

We demonstrate an example of this in Fig. A.1 a) and b) with ℓ = 20 and ℓ = 19 respectively
and (e1, e2, e3) = (0, 1, 2.4). The joint spectrum is obtained using the same three term
recurrence relations from Lemma 25 used to find the prolate, oblate and Lamé spectra.

0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5

Figure A.1: Example spectra with a) ℓ = 20 and b) ℓ = 19 respectively and (e1, e2, e3) =
(0, 1, 2.4).

For ellipsoidal coordinates on the 2−sphere, consider a fixed value of the energy on (E2), the
corresponding eigenvalues λ, as well as an energy on the 3−sphere (E3) and eigenvalues
for the Lamé system (f, g). Comparing (A.2) and (4.62a) for k = 1, 2, it is clear that

E2 = f − E3 λ = g.
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This can be geometrically interpreted as follows: each joint spectrum for the ellipsoidal S2

system (such as those shown in Fig. A.1) corresponds to a horizontal slice of the Lamé joint
spectrum (see Fig. 4.8), where the slice is specified for a given combination of (f,E3).

A.2. SPHERICAL COORDINATES ON S2

Spherical coordinates on S2 are defined as follows:

x21 = s1 x22 = (1− s1)s2 x23 = (1− s1)(1− s2) (A.7)

where 0 ≤ s1 ≤ s2 ≤ 1. Separating the Hamilton-Jacobi equation gives classical integrals
(I1, I2) = (ℓ212 + ℓ213 + ℓ223, ℓ

2
12) while doing so for the Schrödinger equation (4.5) yields the

following ODEs

ψ
′′
1 +

1

2
(
1

s1
+

2

s1 − 1
)ψ

′
1 +

−Es1 + (E −m2)

4s1(s1 − 1)2
ψ1 = 0 (A.8a)

ψ
′′
2 +

1

2
(
1

s2
+

1

s2 − 1
)ψ

′
2 +

m

4s2(s2 − 1)
ψ2 = 0 (A.8b)

where (E,m) are spectral parameters. The change of independent variable s22 = cos2 ϕ

transforms (A.8b) to the trivial equation (4.32) with solution eimϕ and the associated
boundary conditions force m ∈ Z.

As with the previous degenerate systems, we have the following Lemma.
Lemma 47. The spherical ODEs (A.8a), (A.8b) can be obtained by degenerating those arising from
ellispoidal coordinates (A.4)

For the equation in ψ1 (A.8a), the change of independent variable s1 = x21 transforms (A.8a)
into the form of the associated Legendre equation given in (4.83) where E = ℓ(ℓ + 1) is
always even and ℓ is an integer. Polynomial solutions are this given by the Associated
Legendre polynomials Pmℓ (x1). We have the following Lemma.
Lemma 48. For a given energy E = ℓ(ℓ + 1) the wave function of the Schrödinger equation (4.5)
in spherical coordinates on S2 is one of the following degree ℓ harmonic homogeneous polynomials

Ψℓ = rℓ

(
x2 + ix3√
x22 + x23

)m
Pmℓ

(x1
r

)
, (A.9)

where m = −ℓ, . . . , ℓ.

Proof. The form of (A.9) is obtained by recognising eimϕ =

(
x2+ix3√
x22+x

2
3

)m
. Harmonicity

is clear and homogeneity follows by noting that Pmℓ is degree ℓ in its argument but the
argument x1/r is degree 0 in terms of the Cartesian coordinates. Moreover, x22+x

2
3 = r2−x21
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and so the denominator (x22+x
2
3)
m/2 cancels with a factor in rmPmℓ (x1/r) and the remaining

polynomial in x1/r is of degree ℓ−m.

■

For discrete symmetries reflecting parity about the x1 axis, we let µ ∈ {0, 1} denote the
solution which is even (0) or odd (1) about the x1 axis. The symmetry is even when ℓ −m

is even, and odd otherwise. We note that, like for the spherical S3 system, for a fixed ℓ

and fixed symmetry class only every 2nd m is allowed so that the parity of ℓ −m remains
fixed.

A.3. ELLIPSOIDAL S3 QUANTISED ACTIONS

Here, we show the quantised actions for each symmetry class µ originally presented in Fig.
4.4 a) and b). The number of eigenstates per symmetry class is given in Table 4.2. For a
legend to convert between colour and symmetry class, see Table 4.3.

Figure A.2: Actions for each symmetry class shown in Fig. 4.2 a).
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Figure A.3: Actions for each symmetry class shown in Fig. 4.2 b).
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[PVuN12] A. Pelayo and S. Vũ Ngo. c. First steps in symplectic and spectral theory of
integrable systems. Discrete and Continuous Dynamical Systems, 32(10):3325–
3377, May 2012. 10
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[VuN07] S. Vũ Ngo. c. Moment polytopes for symplectic manifolds with monodromy.
Advances in Mathematics, 208(2):909–934, 2007. 22

[WD02] H. Waalkens and H. R. Dullin. Quantum monodromy in prolate ellipsoidal
billiards. Ann. Physics, 295:81–112, 2002. 23

[Whi37] E. T. Whittaker. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies.
Cambridge University Press, Cambridge, 4 edition, 1937. 54, 56

[WW65] E. T. Whittaker and G. N. Watson. A Course of Modern Analysis. Cambridge
University Press, Cambridge, 4th edition, 1965. 21

[XRY01] H. Xiao, V. Rokhlin, and N. Yarvin. Prolate spheroidal wavefunctions,
quadrature and interpolation. Inverse problems, 17(4):805, 2001. 29

[Zha17] L. Zhao. Spherical and Spheroidal Harmonics: Examples and Computations. Phd
thesis, The Ohio State University, 2017. 29



BIBLIOGRAPHY 137

[Zou92] M. Zou. Kolmogorov’s condition for the square potential spherical pendulum.
Physics Letters A, 166(5-6):321–329, 1992. 54

[Zun97] N. T. Zung. A note on focus-focus singularities. Differential Geom. Appl.,
7(2):123–130, 1997. 22, 42


	Contents
	List of Figures
	Abstract
	Introduction
	Overview
	Hamiltonian Mechanics
	Quantum Mechanics
	Differential Equations

	The Spheroidal Harmonics System
	Introduction
	The Free Particle
	The Spheroidal Harmonics Integrable System
	Quantum monodromy in prolate spheroidal harmonics
	Laplace-Runge-Lenz and C. Neumann
	Momentum map of the spheroidal harmonics systems

	The Harmonic Lagrange Top
	Introduction
	Heavy Symmetric Top
	Torus action
	Reductions
	Euler Angles
	Bifurcation diagram
	Quantum Mechanics of the Harmonic Lagrange Top

	Quantum Integrable Systems arising from Separation of Variables on S3
	Introduction
	Ellipsoidal Coordinates and the Generalised Lamé Equation
	Degenerate Systems
	Prolate Coordinates and the Heun Equation
	Oblate Coordinates
	Lamé Coordinates
	Spherical Coordinates
	Cylindrical Coordinates


	Conclusion and Further Work
	Appendix
	Ellipsoidal Coordinates on S2
	Spherical Coordinates on S2
	Ellipsoidal S3 Quantised Actions


