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Abstract
Large-eddy simulations are used to evaluate mean profile similarity in the convective bound-
ary layer (CBL). Particular care is taken regarding the grid sensitivity of the profiles and
the mitigation of inertial oscillations in the simulation spin-up. The nondimensional gradi-
ents φ for wind speed and air temperature generally align with Monin–Obukhov similarity
across cases but have a steeper slope than predicted within each profile. The same trend has
been noted in several other recent studies. The Businger-Dyer relations are modified here
with an exponential cutoff term to account for the decay in φ to first-order approximation,
yielding improved similarity from approximately 0.05zi to above 0.3zi , where zi is the CBL
depth. The necessity for the exponential correction is attributed to an extended transition
from surface scaling to zero gradient in the mixed layer, where the departure from Monin–
Obukhov similarity may be negligible at the surface but becomes substantial well below the
conventional surface layer height of 0.1zi .

Keywords Surface layer · Convective boundary layer · Monin–Obukhov similarity ·
Large-eddy simulation

1 Introduction

Within the atmospheric boundary layer (ABL), the surface layer is unsurprisingly the
region directly above the Earth’s surface. This layer is often described in terms of its
properties—approximately constant flux, negligible rotation effects, and adherence to sur-
face scaling—rather than formally defined (Sutton 1953; Kaimal and Finnigan 1994). One
common convention is to assume the surface layer extends to the lowest 10% or so of the
ABL (Stull 1988; Garratt 1994), consistent with the depth of the logarithmic (log) region in
more general wall-bounded flows (Pope 2000).

With respect to the surface scaling property, the scaling of mean flow statistics within the
surface layer is given by Monin–Obukhov similarity theory (MOST, Monin and Obukhov
1954; Foken 2006)that extends the log law of the wall (von Kármán 1930; Prandtl 1932;
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Millikan 1938) to thermally stratified conditions. MOST predicts universal similarity for the
nondimensional mean gradients:

∂U

∂z

(
κz

u∗

)
= φm,

∂θ

∂z

(
κz

θ∗

)
= φh, (1)

where the gradients are normalized using the log law definition and functions for φ must be
determined empirically. Here, z is height above the surface,U (z) is the mean horizontal wind
speed, θ(z) is themean potential temperature, u∗ is the surface friction velocity scale, θ∗ is the
surface temperature scale, and κ is the von Kármán constant. The velocity and temperature
scales are related to the surface momentum flux as u′w′

s = −u2∗ and surface heat flux as
w′θ ′

s = −u∗θ∗ such that Eq. (1) is often referred to as the flux-gradient relations. Owing to
the assumed absence of other length, velocity, or temperature scales in the theory, φm and φh

are considered functions only of ζ = z/L defined using the Obukhov (1946) length:

L = u2∗θs
κgθ∗

, (2)

where θs is the mean surface temperature and g is the gravitational constant.
Following the introduction of MOST, evaluations of field measurements from meteoro-

logical towers have largely corroborated the surface layer theory and universality of φm(ζ )

and φh(ζ ). For a convective ABL (CBL) with L < 0 typical of daytime conditions, several
experimental campaigns and reevaluations proposed power-law relations for φm and φh with
some variability in the fitted parameters but a consistent general form for the functions (see,
e.g., Dyer and Hicks 1970; Businger et al. 1971; Carl et al. 1973; Yaglom 1977; Högström
1988; Wilson 2001; Katul et al. 2011). The most common of these empirical relations are
the Businger-Dyer profiles for convective conditions (Businger et al. 1971; Dyer 1974):

φm = (1 − 16ζ )−0.25,

φh = (1 − 16ζ )−0.5, (3)

where the values of the constants depend modestly on the analysis. Agreement of field
measurements withMOST and the empirical relations can be further improved by accounting
for additional effects not considered in the idealized theory, e.g. time-dependent variability
from large-scale turbulence (Salesky and Anderson 2020) and anisotropy due to complex
conditions (Stiperski and Calaf 2023).

More recently, direct numerical simulations and large-eddy simulations (LES) of the
CBL have produced consistent trends that support MOST to first-order approximation but
also reveal possible shortcomings: gradient statistics align with the Businger-Dyer profiles
when comparing results across different simulated conditions (Maronga and Reuder 2017),
but the decay in φ(ζ ) within each individual profile is steeper than predicted by Eq. (3),
demonstrating a lack of universality inφ(ζ ) (Khanna andBrasseur 1997; Pirozzoli et al. 2017;
Li et al. 2018). Accordingly, it has been proposed that surface layer gradients—particularly
for velocity — may additionally depend on the boundary layer depth due to the influence of
large-scale motions from the well-mixed layer that forms the bulk of the CBL (Khanna and
Brasseur 1997; Johansson et al. 2001). This idea is indirectly supported by observed trends
in field measurements that suggest a parameter space beyond ζ is required to account for
variability in gradient statistics (Salesky and Chamecki 2012).
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The connection between turbulent eddies in themixed layer and surface layer statistics has
been substantiated by several analyses of turbulent structure in theCBL.Conditional statistics
show that the steep decay in φ(ζ ) and deviations fromMOST noted above are predominately
associated with large-scale turbulent events such as downdrafts (Li et al. 2018; Fodor et al.
2019). In more general terms, these deviations are related to the modulation of near-surface
turbulence by buoyancy-driven eddies from aloft (Lemone 1976; Smedman et al. 2007; Gao
et al. 2016; Salesky andAnderson 2018; Liu et al. 2019;Dupont and Patton 2022). A signature
of the boundary layer depth also appears in the velocity and temperature spectra within and
above the surface layer (McNaughton et al. 2007; Chowdhuri et al. 2019).

There have been relatively few attempts tomodel themodulation of surface layer gradients.
Santoso and Stull (1998) modeled mean wind profiles with a power law and exponential
decay to achieve a smooth transition from the surface to the uniform mixed layer. Gryning
et al. (2007) combined surface scaling with a constant mixed layer length scale, but the
foremost goal was to extend similarity to higher positions above the surface layer. Salesky and
Anderson (2020) corrected Eq. (3) for local-in-time deviations due to large-scale fluctuations.
Li et al. (2021) quantified the deviation as a nonlocal transport through the framework of eddy
diffusivity models. Cheng et al. (2021) and Liu et al. (2022) both introduced a correction to
φ prescribed as a function of zi/L , where zi is the base height of the stable capping inversion
and is typically used to define the CBL depth.

One cautionary note regarding the previous findings and models is that several of the
studies used simulations confined to relatively low Reynolds number compared to the ABL
(Pirozzoli et al. 2017; Li et al. 2018; Fodor et al. 2019; Cheng et al. 2021). Considering the
log law only emerges for high Reynolds numbers (Marusic et al. 2013; Sillero et al. 2013;
Lee and Moser 2015), the results may reflect a combination of buoyancy effects and finite
Reynolds number corrections to the log law. Additionally, for wall-modeled LES studies the
grid convergence of surface layer statistics is often not scrutinized. The presence of these
limitations precludes a careful quantitative comparison of deviations from MOST observed
across the literature.

In the present work, recurring trends in φ(ζ ) observed from simulations are further eval-
uated using new LES of the idealized dry CBL. In consideration of the effects noted above,
the LES is for the inviscid limit and includes a detailed test of grid sensitivity. To account
for the observed trends, the dependencies of φm and φh in Eq. (1) are expanded to include zi
following the suggestion of Khanna and Brasseur (1997). The approach also considers recent
evidence of outer layer stratification influencing surface similarity under stable conditions
(Heisel and Chamecki 2023), except in this case the similarity is influenced by free convec-
tion in the mixed layer. The goal is to empirically explain the behavior of the simulated mean
profile statistics in the broader context of the transition from the surface layer to free con-
vection in the mixed layer, while also reconciling the simulation results with the widespread
support for MOST from field experiments discussed above. The proposed explanation—an
approximately exponential decay in φ as a function of z/zi—has a limited effect on statistics
very close to the surface where many field measurements are acquired, is qualitatively con-
sistent with the profile shapes seen in recent simulation studies, and accounts for the profile
transition between the surface and mixed layers with reasonable accuracy. The remainder of
the article is organized as follows: the new LES cases are described in Sect. 2; mean profile
similarity is assessed in Sect. 3; implications for resistance laws in the mixed layer and for
the definition of the surface layer are discussed in Sect. 4; finally, a summary is given in
Sect. 5.
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Table 1 Key scaling parameters for large-eddy simulations (LES) of the convective atmospheric boundary
layer (CBL) on a 1024 × 1024 × 512 numerical grid: imposed geostrophic wind speed Ug , imposed surface
heat flux Q∗, friction velocity u∗, surface temperature scaling θ∗, Obukhov length L , boundary layer depth
based on the capping inversion height zi , and bulk instability parameter zi /L

Case Ug (ms−1) Q∗ (Kms−1) u∗ (ms−1) −θ∗ (K) −L (m) zi (m) −zi /L (–)

A 15 0.1 0.81 0.12 415 1040 2.5

B 15 0.17 0.82 0.21 256 1080 4.2

C 15 0.24 0.83 0.29 188 1110 5.9

D 12 0.24 0.71 0.34 119 1110 9.3

E1 9 0.24 0.56 0.43 60 926 15.5

E 9 0.24 0.58 0.41 65 1110 17.0

F 6 0.24 0.44 0.54 29 1110 38.8

2 Large-Eddy Simulations

The present simulationswere conducted using standard practices for representing an idealized
dry convective ABL (see, e.g., Deardorff 1972; Moeng and Sullivan 1994; Sullivan et al.
1994; Noh et al. 2003; Salesky et al. 2017): a range of unstable conditions was achieved by
imposing different combinations of fixed surface heat flux Q∗ = w′θ ′

s and geostrophic wind
speed Ug , and the boundary layer was confined by a stable capping inversion. The inversion
was introduced through the initial temperature profile following Sullivan and Patton (2011),
which includes a uniform temperature in the boundary layer, a strong lapse rate Γ = 0.08
Km−1 in the range z = 1000 to 1100m, and a weaker lapse rate Γ = 0.003 Km−1 to form
the top-most capping inversion.

Additional imposed parameters include the aerodynamic roughness length zo = 0.1 m
and Coriolis frequency f = 1 × 10−4 s−1. Six primary cases with varying Q∗ and Ug

and the resulting scaling parameters are summarized in Table 1. A seventh case (E1) is the
same as case E, but with the initial capping inversion positioned 200m lower as seen in
the zi values that were determined from the height of the minimum heat flux. The range
of simulated conditions span from relatively weak (−zi/L = 2.5) to moderately strong
(−zi/L = 39) convection. All cases employed a numerical grid with 1024 × 1024 × 512
points and corresponding domain dimensions of 12 × 12 × 2km.

Dimensional profiles of the mean horizontal wind speed and potential temperature are
respectively shown in Fig. 1a, b for the seven simulated cases. Every case exhibits an extensive
mixed layer with approximately uniform wind speed and air temperature, as well as an
entrainment layer centered around zi and anoverlying temperature inversion. The temperature
in the mixed layer increases with Q∗ and is highest for case E1 with a shallower CBL that can
be heated more quickly. Hereafter, each case is referred to using its alphabetical label A-F
indicated in the figure legends alongside the zi/L values. Unless otherwise noted, “velocity”
refers to the magnitude of the horizontal components Ux and Uy , and “temperature” refers
to the potential temperature. Further details on the numerical code and procedure used to
generate the Fig. 1 profiles are given below.

The LES flow solver and numerics are a modified version of the code by Albertson and
co-authors (Albertson 1996; Albertson and Parlange 1999; Porté-Agel et al. 2000). The
solver utilizes a staggered vertical grid for the vertical velocity component to optimize the
vertical differentiation with second-order-accurate finite differencing. Horizontal derivatives
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Fig. 1 Mean profiles for each LES case in Table 1. Columns correspond to the horizontal wind speed U =
(U2

x + U2
y )1/2 (a, c) and potential temperature θ (b, d). Rows correspond to dimensional height (a, b) and

relative height z/zi with logarithmic spacing (c, d) to show the near-surface trends. In this and later figures,
the legend corresponds to the zi /L stability parameter and alphabetical label for the cases in Table 1. The
temperature profiles in cases C, D, E, and F overlap in the outer layer due to the matching Q∗ and initial zi

are computed spectrally with full de-aliasing using zero padding. The flow is evolved through
time integration using the second-order-accurate Adams-Bashforth method. The boundary
conditions are periodic in the horizontal directions and zero penetration along the bottom and
top of the domain, with the top additionally employing stress-free conditions. Fluctuations in
the top 25% of the domain are damped to achieve the upper boundary conditions andmitigate
gravity waves (Nieuwstadt et al. 1993). Subgrid-scale (SGS) stresses are estimated using a
Lagrangian averaged scale-dependent model to represent the SGS eddy viscosity (Bou-Zeid
et al. 2005). The SGS heat flux is estimated using the same value as the local SGS eddy
viscosity along with a constant Prandtl number Prsgs = 0.4. A more detailed description is
given elsewhere (Kumar et al. 2006; Salesky et al. 2017).

The surface stress in the wall-modeled LES is estimated locally in space and time using
MOST and Eq. (3) for momentum (Moeng 1984). The wall model for u∗ is subject to so-
called overshoot and log-law mismatch (Mason and Thomson 1992; Brasseur andWei 2010;
Larsson et al. 2015). To mitigate this effect, the wall model was evaluated using velocity
values at 0.05zi rather than the first grid point (Kawai and Larsson 2012), where zi in this
case is based on the initial temperature profile and for simplicity does not change with time.
Based on a comparative test, it was found that using values farther from the surface reduces
the wall model overshoot but does not noticeably improve the convergence discussed below.

The final methodological considerations are the procedure to spin up the simulations from
initial conditions and the sensitivity of the results to grid resolution. Both of these aspects
are crucial to the repeatability and validity of the study and an extended discussion is given
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for each in the two subsections below. Statistical uncertainty is discussed later in Sect. 3 in
the context of the results.

2.1 Simulation Spin-up and Inertial Oscillations

A common approach for simulating the CBL is to impose an initially geostrophic velocity
field with no boundary layer, i.e. with Ux (z) = Ug and Uy(z) = 0. The simulations are
then spun up for a duration in the range of tw∗/zi ≈ 5 to 30 turnover times until statistics
appear stationary (see, e.g., Moeng and Sullivan 1994; Noh et al. 2003; Salesky et al. 2017;
Maronga and Reuder 2017; Li et al. 2018; Liu et al. 2023, among others), where zi and the
convective velocity w∗ (Deardorff 1970) represent properties of the large-scale eddies that
govern dynamics in the bulk of the CBL. While the reasoning in this approach is sound,
it neglects the presence of inertial oscillations resulting from the initial velocity field (e.g.,
Shibuya et al. 2014; Momen and Bou-Zeid 2017), noting the oscillations are not relevant to
free convection cases with no geostrophic wind.

When the Ux and Uy fields differ significantly from the quasi-equilibrium condition, an
oscillatory response arises from the Coriolis force and the oscillations dampen in time due
to the surface stress (Schröter et al. 2013). An example is shown in Fig. 2, where the trivial
initial profile in 2a (spin-up 1, yellow) results in an oscillating time evolution of average
surface shear stress τs (2b), mixed layer wind speed Um (2c), and stability zi/L (2d). The
same time evolution occurs during spin-up of the conventionally neutral ABL (Pedersen et al.
2014; Liu et al. 2021).

For the present example, case A in Table 1 is employed on a coarser 200 × 200×100
numerical grid with f = 1.4 × 10−4 s−1 increased to a typical polar value and the initial
inversion height reduced by 200m in the same manner as case E1. The latter two changes
were necessary to prevent the CBL from reaching the damping layer before completing an
inertial period 2π/ f . Parameters with overbars ( · ) indicate the long-term average value over
the full period.

Ending the simulations near tw∗/zi ≈ 20 when the statistics are momentarily stationary
would lead to shear stress and wind speed values that are significantly out of equilibrium
with the conditions given by Q∗, zo, Ug , f , and the initial zi . Of particular importance to
the present analysis is the Obukhov length L which varies by approximately 50% within the
first half oscillation for the example in Fig. 2d.

The amplitude of inertial oscillations can be reduced by using initial Ux and Uy velocity
fields that are closer to the quasi-equilibrium. To this end, an ad hoc procedure using mul-
tiple spin-up trials was developed to determine appropriate initial conditions for the final
simulations. For the initial velocity profiles of the second spin-up, the mean conditions at
t f = π in the first spin-up were rescaled along z to match the original zi as shown in the
inset of Fig. 2a. Additionally, the original initial temperature profile (Sullivan and Patton
2011) was used rather than a rescaled temperature profile in order to restore the two initial
inversion layers. The profile re-scaling and new spin-ups can be repeated as necessary until
the initial condition is close to the equilibrium. In Fig. 2, the oscillations are significantly
reduced for spin-up 2, and there are limited changes in the initial profiles and time evolution
between spin-ups 3 and 4, suggesting the proper initial velocity field has been reached. It is
also important to note that the wind speed and scaling parameters slowly increase over time
in Fig. 2b–d in response to the growth of the CBL through entrainment.

One consequence of the long spin-up trials is that a low-level jet can develop within the
entrainment layer directly above the heat flux minimum, particularly for weaker convection.

123



On the departure from Monin-Obukhov surface similarity... Page 7 of 27    28 

Fig. 2 Demonstration of the employed spin-up procedure and the impact of initial conditions on inertial
oscillations. For the initial velocity profiles in (a), the resulting average surface shear stress τs (b), mixed layer
wind speedUm (c), and stability zi /L (d) are plotted over time for one inertial period. During a given spin-up,
the velocity profiles at t f = π are rescaled to the original zi and used as the initial profiles for the subsequent
spin-up, as shown in the inset of a. Parameters with overbars ( · ) indicate the long-term average value over
the full period

This feature is not apparent from Ux and Uy for the profiles at t f = π in the inset of Fig. 2a
(yellow lines), and is more evident from the horizontal windmagnitudeU . The jet is excluded
from the rescaled profiles by assuming a linear trend in the top 100m of Ux and Uy as seen
in Fig. 2a. The jet is far from the region of interest below the mixed layer and understanding
its emergence is outside the scope of the present study.

While Fig. 2 is predominately for demonstration purposes, the same spin-up procedure
was employed for the cases in Table 1 to approximately determine the quasi-equilibrium
wind profiles. For each simulated condition, four spin-up trials were completed on a grid
with 200 × 200 × 100 points: the first with initial conditions Ux = Ug and Uy = 0, and
the subsequent trials using the rescaled profiles as described above. The rescaled profiles
resulting from the fourth trial were then used as initial conditions for the final simulations. It
may be possible to expedite the determination of quasi-equilibrium conditions using existing
methods not employed here. These options include initializing Ux and Uy based on an
approximation of the cross-isobar angle and generating profiles using a single-columnmodel
(Ghan et al. 2000). Inertial oscillations in the latter option can be reduced by separating the
equations based on the geostrophic “background” flow and the boundary layer deviations
(Gutman 1973).

The final simulations were spun-up on a larger grid with 400 × 400 × 200 points for
approximately tw∗/zi ≈ 15 turnover times. This duration ranges from 140 to 180 physical
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Table 2 Numerical grids used to test the resolution convergence of flow statistics for cases A, C, and E in
Table 1

Nx × Ny × Nz (–) Lx × Ly × Lz (km) Δx × Δy × Δz (m) Δ/zi (–)

100 × 100 × 50 12 × 12 × 2 120 × 120 × 40 0.080

200 × 200 × 100 12 × 12 × 2 60 × 60 × 20 0.040

400 × 400 × 200 12 × 12 × 2 30 × 30 × 10 0.020

600 × 600 × 300 12 × 12 × 2 20 × 20 × 6.7 0.013

800 × 400 × 400 12 × 12 × 2 15 × 15 × 5 0.010

1024 × 1024 × 512 12 × 12 × 2 12 × 12 × 3.9 0.0078

Grid properties include the number of nodes N j along each direction j = x , y, and z, the domain size L j ,

corresponding grid resolutionΔ j , and effective resolutionΔ = (ΔxΔyΔz)
1/3 relative to the inversion height

for case A. Results reported in the later results are based on the finest resolution

minutes for the different cases and is long enough for the flux profiles to develop, but short
enough to avoid interference of the damping layer on the growing CBL. Because the initial
Ux and Uy profiles are close to the equilibrium in the final spin-up, the inertial oscillations
are minimized and it is not necessary to simulate a full inertial period.

After the spin-up, the velocity and temperature fields were interpolated onto the final grid
with 1024 × 1024 × 512 points, and the simulations were continued for an additional 70
physical minutes. A short period is required for small-scale turbulence to develop within
the finer grid, such that the first 10min are excluded from the analysis. The time-averaged
statistics for each case were computed across the last 60min of the simulations. The time-
averaged statistics are featured in Fig. 1 and all later results.

2.2 Grid Sensitivity of Near-Surface Statistics

For wall-modeled LES, flow statistics near the surface can be significantly biased by the wall
model and grid resolution. To avoid inclusion of such biases in the analysis, the present section
assesses the specific range of heights near the surface where the mean and gradient statistics
are approximately converged with respect to grid resolution. More general discussions of
grid resolution effects and mesh sensitivity are available elsewhere (e.g., Davidson 2009;
Sullivan and Patton 2011; Berg et al. 2020; Wurps et al. 2020).

To test the sensitivity of results to grid resolution, cases A, C, and E from Table 1 were
repeated for the series of grid sizes summarized in Table 2. For a given case, all resolutions
used the same initial velocity profiles and spin-up as determined from Sect. 2.1, with the
different resolution introduced for the final 70min of simulation. The sensitivity analysis
only directly uses the two finest grids, but the additional coarser grids are useful for identify
general trends discussed later in the context of the results.

Mean profiles of wind speed and air temperature are shown in Fig. 3 for all tested grid
sizes, with a vertical discplacement between different cases for visualization. The profiles
are plotted as the diabatic term (Panofsky 1963):

ψm = log

(
z

zo

)
− κ

U

u∗
=

−ζ∫
−zo/L

1 − φm(ζ ′)
ζ ′ dζ ′,
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Fig. 3 Nondimensional mean wind speed (a) and air temperature (b) with varying grid resolution for cases A
(top), C (middle) and E (bottom). Means are expressed as the diabatic termψ defined in Eq. (4). Short vertical
lines indicate the start of the converged region where the change in ψ is less than 1% between the finest two
grids. The means are normalized using the von Kármán constant κ = 0.39

ψh = log

(
z

zo

)
− κ

θ − θs

θ∗
=

−ζ∫
−zo/L

1 − φh(ζ
′)

ζ ′ dζ ′, (4)

that quantifies the difference between the local mean value and the log law, whereψ increases
with convection. The value used here for the von Kármán constant is κ = 0.39 (Marusic et al.
2013).

To more directly compare the profiles across resolution, the normalization in Fig. 3 uses
fixed scaling parameters u∗ and θ∗ from the finest grid size rather than the parameter values
resulting from each individual resolution. While there is an order of magnitude increase in
resolution from the coarsest to finest grids in Table 2, the corresponding increase in u∗ is
only 6.0% for case A and 2.6% for case E. The difference in u∗ between the two largest grids
is 0.14% for case A and 0.15% for case E.

The criterion used to determine the converged region of the mean profiles is the percent
difference in ψ between the grids with 800 × 800 × 400 points and 1024 × 1024 × 512.
Specifically, the difference in ψ must be less than 1% for this 28% increase in resolution.
The vertical lines in Fig. 3 indicate the lowest height where this criterion is met, which varies
from 0.04zi (case E) to 0.06zi (case A). The converged regions for cases B and D were
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Fig. 4 Nondimensional gradients of velocity (a) and air temperature (b) with varying grid resolution for cases
A (top), C (middle) and E (bottom). Gradients are expressed as φ defined in Eq. (1). Short vertical lines indicate
the start of the converged region where the change in φ is less than 0.01 between the finest two grids

inferred through interpolation, and the lower height in meters for case E was directly used
for cases E1 and F. Later figures either exclude statistics in the near-surface region where
convergence is not observed or clearly differentiate the unconverged results. Finally, while it
is not apparent from Fig. 3, the mean wind speed and air temperature in the mixed layer are
converged for the 600 × 600 × 300 grid in case A, and at coarser resolutions for stronger
convection.

A similar assessment is made for the nondimensional gradient profiles φ(z) in Fig. 4. The
general concave shapeof the profiles at the surfacematches closelywith previous observations
(e.g., Bou-Zeid et al. 2005; Maronga and Reuder 2017) and demonstrates that the influence
of the wall model, SGS model, and near-surface resolution extends well beyond the first
grid points. The criterion used here for convergence of the gradient statistics is that the
difference in φ must be less than 0.01 between the grids with 800 × 800 × 400 points
and 1024 × 1024 × 512. Using the same 1% threshold as above was found to be overly
conservative given the very small magnitude of the derivatives far from the surface and
would result in the defined converged regions beginning at moderately higher positions. The
trends beginning near 0.8zi in Figs. 3 and 4 correspond to the start of the entrainment layer
that is outside the scope of the present similarity analysis.
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Under weak convection in case A, the gradient statistics do not converge within the
traditional surface layer below 0.1zi . There is also some uncertainty in the convergence across
the lower half of the CBL, as the slope in φ appears to decrease with increasing resolution
across the region with positive gradient. In moderate convection, both the upper portion of
the surface layer and the outer layer exhibit grid convergence for the relatively fine resolution
employed here. Figure4 demonstrates the challenge in using wall-modeled LES to critically
evaluate near-surface behavior with a high degree of certainty. Accordingly, the conclusions
drawn in the present work are confined to robust trends that extend beyond the surface layer
and across all cases. The general findings are not contingent on the weakly convective cases
that may not have reached mesh independence above the surface layer. With the threshold of
0.01, the converged regions of φ begin approximately 20 to 30 points away from the surface.
The exact number of points is expected to depend on numerous variables including the LES
wall and SGS models, grid size, grid aspect ratio, and convergence criterion, such that the
quantitative outcomes of Figs. 3 and 4 are considered to be specific to this study.

3 Mean Velocity and Temperature Similarity

The profiles in Fig. 1, generated using the spin-up procedure outlined in Sect. 2.1, exhibit
convergence with respect to grid resolution in the upper portion of the surface layer as
discussed in Sect. 2.2. Similarity in the region with converged statistics, including in the
convective matching layer above the surface layer, is now evaluated in further detail. The
upper half of the CBL is excluded from the results due to weak top-down effects from the
entrainment layer that yield negative φ values as seen in Fig. 4.

3.1 Comparison with Businger-Dyer Relations

The diabatic mean wind speed and air temperature profiles predicted by the Businger-Dyer
relations in Eq. (3) result directly from the integration in Eq. (4) (Paulson 1970):

ψm = 2 log

(
1 + x

2

)
+ log

(
1 + x2

2

)
− 2 tan−1 x + π

2
,

ψh = 2 log

(
1 + x2

2

)
, (5)

Here x = φ−1
m = (1 − 16ζ )0.25 and the contribution ψ(−zo/L) from the lower limit of the

integral is neglected under the condition −zo/L � 1. In Figs. 5a, b, the relations in Eq. (5)
are compared with ψ computed directly from the LES profiles using Eq. (4). The range of
heights included for each profile in Fig. 5a, b spans from the bottom of the converged region
identified from Fig. 3 up to 0.3zi . The upper limit extends beyond the traditional definition
for the surface layer and is included for consistency with the later analysis. The height 0.1zi
is indicated in all figures where necessary to facilitate the distinction of trends within and
above the traditional surface layer. While Eq. (5) appears to conform to the general shape of
each LES profile, there is a distinct stability trend in which the profiles become increasingly
offset from the prediction with weakening convection.

The displacement between cases is amplified in the gradient φ profiles shown in Figs. 5c,
d. Consistent with previous observations, the general trend across cases appears to follow a
curve similar to the Businger-Dyer profiles, but the decay in φ along each individual profile
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Fig. 5 Nondimensional profiles as a function of ζ = z/L , compared to Businger-Dyer relations (thin lines) in
Eqs. (3) and (5). Rows correspond to the meanψ (a, b) computed from Eq. (4) and gradient φ (c, d) computed
from Eq. (1), and columns correspond to momentum (a, c) and heat (b, d). Shaded regions in (c, d) represent
95% confidence intervals for statistical uncertainty in the mean gradients. Each profile includes heights from
the bottom of the converged region determined in Sect. 2.2 up to 0.3zi , and short lines indicate the height
z = 0.1zi for reference

is significantly steeper (Maronga and Reuder 2017; Pirozzoli et al. 2017; Li et al. 2018).
Unlike the referenced studies, however, the entirety of each φ curve is below the Businger-
Dyer profiles. This difference is likely due to a combination of excluding the near-surface
points from the present cases and the significant effect of inertial oscillations on the relevant
normalization parameters u∗ and L as seen in Fig. 2.

The shaded regions in Figs. 5c, d represent 95% confidence intervals for the mean gradient
statistics. The intervals are estimated from the formula t95σφ/

√
N , where σφ is the standard

deviation of observed gradients over the 60-minute simulation period, N is the number of
independent observations, and t95 is the Student’s t value that depends on the confidence
level and N . The independent observations N vary between 10 (moderate convection) and
20 (weak convection) across cases based on integral time scales computed from turbulent
spectra. The steep decay in φ noted above and the separation of the curves in Fig. 5 both
exceed the statistical uncertainty.

Figure 5 demonstrates that MOST and ζ alone cannot fully account for the LES profile
trends. Scaling adjustments to the definitions of ζ and/or φ are required for the profiles within
the surface layer to collapse along a common curve within the uncertainty bounds. At the
same time, alignment with Businger-Dyer relations in field experiments and across different
cases in simulation studies suggest that Eq. (3) provides a reasonably accurate foundation for
similarity in the mean profiles. In the following section, the trends in φ are considered in the
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Fig. 6 Nondimensional gradient profiles as a function of z/zi . Rows correspond to logarithmic (a, b) and
log-linear (c, d) axis scaling, and columns correspond to momentum φm (a, c) and heat φh (b, d). Transparent
regions of each curve are considered unconverged for the present resolution based on the assessment in Fig. 4

context of the extended profile to identify a possible similarity framework that is compatible
with these past and present findings.

3.2 Gradient Profile Trends

The nondimensional φ profiles in Fig. 5c, d are replotted in Fig. 6 as a function of relative
position z/zi within the CBL. The axes are shown with both logarithmic (top) and log-linear
(bottom) scaling to facilitate interpretation of the profile shapes in different regions. The
transparent extension of each curve is the region that did not meet the resolution convergence
criterion detailed in Sect. 2.2 and Fig. 4.

The velocity gradients approaching the mixed layer exhibit incomplete statistical conver-
gence, leading to modest random error along the profiles. Recalling that the observed values
φ � O(0.1) are the product of the gradient and the height z ∼ O(100m) in Eq. (1), the
dimensional gradient is exceedingly small in this region. Additional computing resources are
not currently available to continue the simulations for a longer duration. Conclusions made
from the gradient statistics are limited to trends that exceed the observed variability within
each profile.

For the region near and below 0.1zi in Fig. 6a, b, there is noticeable curvature in the profile
for weak convection in case A, but φ(z) increasingly resembles a power law with increasing
convection. Further, the slope of the profiles, i.e. the exponent of the power law, does not
vary across the tested cases. These trends are consistent with the form of the Businger-Dyer
profiles in Eq. (3), where the contribution of 1 vanishes with increasing convection and the
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power law exponent is assumed constant. With respect to grid resolution, the approximate
power law in φ(z) under moderate convection is only apparent for the two largest grids tested
in Table 2.

At higher positions, the mean gradients in Fig. 6a, b appear to be governed by an
sharp decay in φ that results in the cutoff φ(z=0.4zi ) ≈ 0. The position of the cutoff is
approximately constant as a fraction of zi , whereas the start of the cutoff seen in Fig. 5c,
d unambiguously varies with L . This has important implications for the approach to free
convection and −ζ → ∞: rather than the mixed layer starting at lower positions and free
convection reaching closer to the surface with decreasing L , Fig. 6 suggests the near-surface
region maintains a fixed height and φ decreases with increasing convection until it vanishes
in the free convection limit.

The shape of φ approaching the mixed layer in Fig. 6c, d is approximately linear, particu-
larly for the temperature. The linear trend implies a logarithmic decay in φ and a dimensional
gradient that resembles − log(z)/z. The height where the logarithmic decay gains leading
order importance over the approximate power law appears to depend on stability and emerges
at lower heights for the weaker convection cases. Importantly, the decay observed here is
specific to a CBL with a well-defined mixed layer as seen in Fig. 1. For the tested grid sizes
in Table 2, the logarithmic trend begins to appear with an overestimated slope for the grid
with 400 × 400 × 200 points, and the slope is approximately converged for the grid with
600 × 600 × 300 points.

The trends in Fig. 6, i.e. the consistency with Eq. (3) closer to the surface and the logarith-
mic decay approaching the mixed layer height, show the potential to augment the existing
Businger-Dyer profiles with an additional term that enforces the decay in φ with increasing
z/zi . In this sense, the term is a correction for the transition between the surface and mixed
layers, where previous findings (e.g., Salesky and Chamecki 2012; Pirozzoli et al. 2017; Li
et al. 2018) and Fig. 5 indicate the correction is necessary even within the traditional surface
layer below 0.1zi . The existing model corrections for φ discussed in the introduction do not
account for the specific trends observed in Fig. 6. For instance, the corrections based on
zi/L displace φ by a constant value for a given case and do not consider the shape of the
cutoff (Cheng et al. 2021; Liu et al. 2022). The cutoff is also not well described by an inverse
summation of length scales (Gryning et al. 2007). A preliminary effort to empirically model
the gradient cutoff is given in the following section.

3.3 Preliminary Model for Extended Similarity

Deeper within the ABL in the roughness sublayer (RSL), the mean profiles are influenced by
complex turbulent drag and mixing interactions associated with the local surface roughness.
In this sublayer, it is standard to correct for the mean similarity in a multiplicative manner as
φm(ζ )ϕm(z/z∗), where φm accounts for atmospheric stability and ϕm is a correction based
on the relative position within the RSL depth z∗ (e.g., Garratt 1980; Cellier and Brunet 1992;
Mölder et al. 1999). The most common functional form for ϕ is an exponential that models
the decay in the gradient within the RSL as the surface is approached (Garratt 1980; Harman
and Finnigan 2007; Mo et al. 2022). The same form is adopted here, except the purpose of
the exponential in this case is to ensure the gradient decreases towards zero approaching
the mixed layer rather than within the RSL. Santoso and Stull (1998, 2001) also used an
exponential cutoff correction to the mean profiles to enforce a smooth transition to uniform
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mixed layer values. The revised similarity relations are given as:

φm(ζ, z/zi ) = (1 − bmζ )−0.25 exp

(
−cm

z

zi

)
,

φh(ζ, z/zi ) = ah(1 − bhζ )−0.5 exp

(
−ch

z

zi

)
, (6)

where a, b, and c are fitted constants and the leading constant ah for temperature accounts
for the turbulent Prandtl number. The exponent values in Eq. (3) are adopted here, noting
that testing a wide range of exponents resulted in values within ±0.05 of 0.25 and 0.5 and
only a nominal increase in the coefficient of determination R2 for the fit. The exponential is
included in the definition of φ in Eq. (6) rather than as a separate ϕ function because it is part
of the same stability correction. The constant c determines the height relative to zi where the
exponential becomes small. A value c > 2 is expected such that the cutoff function decreases
to small values within the lower half of the CBL.

To evaluate the applicability of the revised similarity relations, the expressions for φ in
Eq. (6) and their integral ψ defined in Eq. (4) were fitted to the LES profiles. The integral for
ψ was computed numerically in the absence of a simple analytical solution. The reason for
including ψ in the fitting procedure is to assess the extension of φ down to z = zo. While
the near-surface region cannot be fitted directly, Eq. (6) must have the correct cumulative
magnitude below the fitted region in order to align with the LES profiles for ψ .

The cost function for the nonlinear fitting algorithm was the total residual between the
predicted and observed φ and ψ values compiled for all cases simultaneously. The fit result
therefore represents the range of convective conditions rather than any individual case. The
fitting procedure was conducted separately for the velocity and temperature statistics. Due to
the complexity of the equations and the use of numerical integration, the algorithmwas unable
to converge when multiple parameters were undefined. Accordingly, the fit was designed to
optimize c with a and b as prescribed inputs, and was repeated for a range of a and b values.
The values presented here are those with the highest resulting R2, with am = 1 assumed
for velocity. As noted above, the power law exponents in Eq. (6) were also varied before
the traditional values were selected for simplicity. Finally, heights up to 0.3zi were included
in the fits under the assumption that Eq. (6) approximates the transition across an extended
range up to the convective mixed layer.

The preliminary values resulting from the fit to the velocity profiles arebm ≈ 22, cm ≈ 3.7,
and R2 = 0.974. The values for the temperature profiles are ah ≈ 0.93, bh ≈ 14, ch ≈ 2.9,
and R2 = 0.992. The higher R2 for temperature is likely due in part to the additional
fitted parameter ah and the better statistical convergence of φ in Fig. 6 relative to velocity.
Owing to the lack of near-surface points, the present values for ah and b are not suggested
as replacements to existing values. Further, the difference between cm ≈ 3.7 and ch ≈ 2.9
is not given a physical interpretation here. It may result simply from the fact that the smaller
Businger-Dyer exponent −0.25 for momentum requires a larger cutoff correction to have
similar φ near the mixed layer. The main outcome of the fit is to demonstrate the systematic
improvement of the profile prediction with the inclusion of a z/zi cutoff.

Figure 7 compares the mean profiles predicted from the integral of Eq. (6) (dashed lines)
with the LES profiles. The dotted lines in Fig. 7a, b are Eq. (6) with the fitted values, but
excluding the exponential cutoff. When plotted as ψ , these dotted lines collapse along the
solid black lines in Fig. 7c, d defined by the integral of the equations given in the legend.

The expression with the exponential cutoff leads to significant improvements in the align-
ment with the LES profiles in Fig. 7a, b across all heights within the converged region,
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Fig. 7 Comparison of LES mean profiles (thick lines) with the best fit of the Eq. (6) integral (dashed lines)
and the same equation without the exponential cutoff (dotted lines). Rows correspond to the mean value (a,
b) and the diabatic term ψ (c, d), and columns correspond to momentum (a, c) and heat (b, d). Transparent
regions of the curves in (a, b) are considered unconverged for the present resolution based on the assessment
in Fig. 3. Each profile in (c, d) includes heights from the bottom of the converged region up to 0.3zi , and short
lines indicate the height z = 0.1zi for reference

particularly for heights above 0.1zi . While there are some discrepancies, most notably for
cases A and F, the predictions resulting from Eq. (6) provide a reasonable approximation of
the mean profiles for an extended range from below 0.1zi to above 0.3zi and near the start
of the convective mixed layer.

The diabatic term ψ in Fig. 7c, d demonstrates the departure of the mean profiles from
surface layer similarity as a result of the decay in the gradients along z/zi . The dashed lines
representing Eq. (6) all begin at ψ(z = zo) = 0 and become increasingly dissimilar from
Monin–Obukhov scaling similarity with increasing z/zi , i.e. the ψ values spread farther
apart. This dissimilarity is well predicted by the exponential cutoff correction.

Figure 8 evaluates the gradient profiles predicted from Eq. (6) (dashed lines) in the same
manner as the mean values in Fig. 7. As before, the dotted lines in Fig. 8a, b exclude the
exponential cutoff and are equivalent to the solid black lines in Fig. 8c–f defined by the
equations in the legends.

Equation (6) matches closely with the φ curves in Fig. 8a, b compared to the Businger-
Dyer profiles without a cutoff correction. However, the exponential cutoff does not fully
account for the entirety of the gradient decay, as seen in the deviations from the LES profiles
that emerge between 0.2 and 0.3zi . As discussed previously, the dimensional value of the
gradients in this range of heights is very small such that the discrepancy may be of limited
practical importance. For instance, the discrepancy in φ approaching the mixed layer is not
readily seen in the Fig. 7a, b mean profiles.
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Fig. 8 Comparison of LES φ profiles (thick lines) with the best fit of Eq. (6) (dashed lines) and the same
equation without the exponential cutoff (dotted lines). Rows correspond to the profiles plotted versus z/zi (a,
b), plotted versus ζ (c, d), and after compensating for the exponential cutoff (e, f). Columns correspond to
momentum (a, c, e) and heat (b, d, f). Transparent regions of the curves in a, b are considered unconverged for
the present resolution based on the assessment in Fig. 4. Each profile in c–f includes heights from the bottom
of the converged region up to 0.3zi , and short lines indicate the height z = 0.1zi for reference

The plots of φ(ζ ) in Fig. 8c, d show the departure from Monin–Obukhov similarity in
the LES profiles compared with the prediction from the exponential cutoff. The exponential
cutoff closely approximates the decay in the gradients within and above the surface layer for
the fitted cases. To collapse the nondimensional gradients along a single curve, it is necessary
to group the gradient and cutoff correction as φ exp (cz/zi ). The product, shown in Fig. 8e, f,
now aligns reasonably well with the Businger-Dyer profiles. Most of the residual differences
occur near 0.3zi and are due to the discrepancies seen in Fig. 8a, b and discussed above.

Figure 8 provides promising evidence for expanding the similarity parameter space to
include z/zi . The correction in Eq. (6) provides profile predictions for an extended range
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approaching the mixed layer and may account for the departures from MOST observed in
previous simulation studies (Khanna and Brasseur 1997; Pirozzoli et al. 2017; Li et al. 2018).
However, the generality of the results remain unproven at this point and further comparison
with other simulations andmeasurements is required. In particular, the exponential formof the
correction may be specific to the use of the Businger-Dyer profiles to functionally represent
MOST. Alternate empirical relations with a steeper decay for strong convection with large ζ

would require a different correction. However, the necessity to expand the parameter space
to achieve universality of profiles in Fig. 8 is independent of the empirical MOST function
used.

If Eq. (6) is applicable beyond the present cases, one interesting note is that the cutoff
correction is independent of stability. The LES cases in Table 1 span the transition from
relatively weak convection with thermal rolls to moderately strong convection with cells
(Etling and Brown 1993; Atkinson and Zhang 1996; Khanna and Brasseur 1998; Salesky
et al. 2017). For the current results, the correction at a given height z/zi is the same regardless
of the convective regime, indicating that the different large-scale structures (i.e. rolls or cells)
impinging on the surface layer reduce the average gradient by the same fraction.

4 Discussion

4.1 Implications for Mixed Layer Resistance Dependencies

While there is extensive theory for resistance laws in the geostrophic drag and heat transfer
across the entire ABL (see, e.g., Monin 1970; Yamada 1976; Arya 1977), there are relatively
fewer studies relating mean wind speed Um and temperature θm in the convective mixed
layer to surface properties. The predicted scaling for Um/u∗ and (θm − θs)/θ∗ depends on
underlying assumptions, in particular regarding the bottom height zm of the mixed layer. The
dependencies of the mean values can be inferred by evaluating the mean profiles at the base
of the mixed layer z = zm :

Um

u∗
= 1

κ

[
log

(
zm
zo

)
− ψm

(
zm
L

,
zm
zi

)]
,

θm − θs

θ∗
= 1

κ

[
log

(
zm
zo

)
− ψh

(
zm
L

,
zm
zi

)]
. (7)

Equation (7) is a direct outcome of the definition for the diabatic term in Eq. (4), noting that
traditional approaches do not include the z/zi correction for ψ . If zm ∝ zi is assumed in
Eq. (7), the resulting mixed layer values depend directly on both log (zi/zo) and ψ(zi/L)

(Garratt et al. 1982). Alternatively, if the z/zi correction is excluded and zm ∝ −L is
assumed based on arguments of local free convection (Wyngaard et al. 1971), the result in
Eq. (7) depends solely on log (−L/zo) (Zilitinkevich et al. 1992; Liu et al. 2023). This same
dependency has been derived for a mixed layer velocity scale using matched asymptotic
expansions with three scaling layers spanning the surface layer and no assumptions for zm
(Tong and Ding 2020).

The results in Sect. 3.2 and Fig. 6 yield zm ≈ 0.4zi for all LES cases based on the
logarithmic decay of the gradients. Considering Eq. (6) aligns with the mean profiles up to
the mixed layer in Fig. 7a, b, the present findings indicate that the mixed layer values in
Eq. (7) should depend on both zi/zo and zi/L in a complex manner. To test this, the mixed
layer mean values at zm = 0.4zi are shown in Fig. 9. The values in Fig. 9 are insensitive to
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Fig. 9 Dependence of the mean velocity Um and temperature θm in the convective mixed layer. Rows corre-
spond to themean values versus L/zo (a,b) and their diabatic terms versus zi /L (c,d), and columns correspond
to velocity (a, c) and temperature (b, d). Results are included for the present LES and two reference LES
studies indicated by open symbols, where each are compared to predicted values based on Eq. (6) indicated
by closed transparent symbols. Observed and predicted values are based on the mixed layer bottom height
zm = 0.4zi . Symbol color corresponds to zi /zo

the choice of zm/zi within the range 0.4−0.8 due to the uniformity of the mixed layer seen
in Fig. 1. Because Um and θm are mean values, the purpose of Eq. (7) and Fig. 9 is to assess
the dependencies discussed above and not to define new velocity and temperature scales for
the mixed layer. Included in Fig. 9 for comparison are the predicted values from numerical
integration of Eq. (6) up to zm . It may be possible to evaluate further the integral definition for
ψ(zm/L, zm/zi ) (see, e.g., Physick and Garratt 1995; De Ridder 2010), but for the present
discussion the primary concern is the log (zm/zo) term in Eq. (7) that is already uncoupled
from ψ .

The velocity statistics in Fig. 9 are supplemented with results from two recent LES studies
(Tong and Ding 2020; Liu et al. 2023). The Tong and Ding (2020) points only represent their
LES cases with the Kosović (1997) SGS model. Further, the Um values reported in Tong
and Ding (2020) are a velocity scale for the mixed layer that differs in value from the mean
velocity (see, e.g., their Fig. 3), such that the Um values used in Fig. 9 were inferred from
their CBL profiles. The differing log-linear slope in Fig. 9a for the present LES and the cases
from Liu et al. (2023) indicate that log (−L/zo) is not the sole determinant of Um/u∗. In
particular, increasing zi/zo leads to a vertical shift in the resistance value.

The predicted values (closed symbols) for the external references use the same parameter
values fitted to the present LES. The combination of the corrected similarity expression in
Eq. (6) and the fixed height zm = 0.4zi lead to an accurate prediction of the differing trends
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Fig. 10 Depiction of the transition region between the top of the surface layer zSL and the bottom of the mixed
layer zm . a Value of the exponential cutoff in the gradient profiles for momentum and heat. b Contribution of
both surface scaling and mixed layer free convection events to the mean gradients within the transition region,
where the relative contribution of each varies with height in conjunction with the cutoff function in a

noted above for Fig. 9a. The alignment with the reference studies is promising regarding the
potential generality of the exponential cutoff correction.

The roughness dependence leading to a vertical shift in the mixed layer resistance value
can be offset by plotting the diabatic term ψm as in Fig. 9c. In this format, the data are
approximately aligned along a common curve, noting that the residual differences may be
due in part to the spin-up procedure that can significantly affect L (Fig. 2) and differences
between SGS models as observed in Tong and Ding (2020). Importantly, ψ will also vary
with roughness as zo becomes large, but zo � zm for these data and its contribution to ψ is
negligible.

Figure 9 supports zm ∝ zi and the dependence ofUm/u∗ on both zi/zo and zi/L . However,
the combination of Eqs. (6) and (7) do not form a drag law and further work is required to
develop the result into a velocity scale. Further, no conclusion canbemade for temperature due
to lack of independent data across a range of zi/zo. The mixed layer temperature resistance
is included for the present LES in Fig. 9b, d for completeness.

4.2 Implications for the Surface Layer Height

The extended logarithmic decay of φ as the gradients vanish to zero in Fig. 6 provide a
consistent criterion for defining the bottom of the mixed layer where free convection occurs,
but defining the top of the surface layer zSL is more ambiguous. The z/zi cutoff correction in
Eq. (6) is non-negligible within the full range of heights analyzed here, from approximately
0.05zi up to zm , where the correction is required to account for simulation trends observed
in Fig. 8 and in previous studies (e.g., Khanna and Brasseur 1997; Pirozzoli et al. 2017; Li
et al. 2018). Upon further considering the nonlocal contribution of large-scale eddies to the
decay in the gradients at these heights (Li et al. 2018; Fodor et al. 2019), it is possible that
the extended range from zSL (not yet defined) to zm is a transition region resulting from the
coexistence of local and nonlocal eddies governed by different mechanisms and scales. Here,
the exponential cutoff approximates the transition in themean profiles fromMonin–Obukhov
similarity in the surface layer to the zero gradient condition characterizing the mixed layer.
This transition is depicted in Fig. 10.

Assuming the exponential cutoff and fitted constant c in Fig. 10a represents the appropriate
correction to surface similarity, the correction is less than 10% only for heights in the lowest
few percent of the CBL depth. For zi ∼ O(1km), these heights correspond to the lowest
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30m or so of the atmosphere where many field measurements are sampled. On one hand,
this indicates that the correction is not significant for many previous field campaigns and
explains why the original Businger-Dyer profiles align well with experimental data to within
the uncertainty and scatter of the results. On the other hand, a 10% correction at 0.03zi is
non-negligible and emphasizes the need to reconsider the conventional height for zSL .

Derivations for the generalized log law U/u∗ = κ−1
[
log (z/zo) − ψm(ζ )

]
in the inertial

sublayer of the ABL often rely on asymptotic matching between the surface conditions
and the outer layer where the velocity defect follows Rossby-number similarity (see, e.g.,
Blackadar and Tennekes 1968; Hess 1973). These derivations use the assumption z/zi → 0
(i.e. z � zi ) to define zSL ∼ 0.1zi and do not consider the extensive uniformly mixed layer
in convective conditions. Owing to the influence of the mixed layer on near-surface statistics,
a new assumption z/zm → 0 for the surface layer depth is suggested here. While it may be
possible to formalize a revised asymptotic matching between the surface conditions and the
mixed layer, the matching is complicated by the dependence of the mixed layer resistance
on surface properties as seen in Eq. (7).

In Fig. 10, the approximation zSL ≈ 0.1zm ≈ 0.04zi is applied under the assumption
that zSL � zm is required for the contribution of nonlocal eddies to the gradient—and the
resulting correction factor—to be small. However, the correction is greater than 10% at this
height such that amore stringent definitionmay bewarranted.A formal framework is required
to address this issue of surface layer height in a more rigorous manner. Regardless of the
exact definition for zSL , the traditional estimate zSL = 0.1zi is insufficient for convective
conditions based on the growing body of evidence discussed in the introduction.

The question of defining zSL is complemented by recent evidence that mean profile simi-
larity in the surface layer of the stable ABL also depends on the boundary layer depth (Heisel
and Chamecki 2023). While the flow structure for stable conditions is considerably differ-
ent, the same general reasoning applies: z-less stratification above the surface layer indirectly
influences the gradients below 0.1zi . Here, free convection turbulence above the surface layer
influences the gradients below 0.1zi in a more direct manner.

The transition region depicted in Fig. 10b coincides with the regime previously discussed
as a local free convection layer (Tennekes 1970; Kader and Yaglom 1990) or convection
matching layer (Panofsky 1978; Kaimal and Finnigan 1994). However, formulations for
those layers do not transition smoothly into the uniformly mixed layer (Panofsky 1978),
unlike the present work and similar studies of the so-called radix layer (Santoso and Stull
1998, 2001). There is also a distinction in the observed scaling, at least for the first-order
statistics. In the traditional local convection layer with −L � z � zi , the z scaling is still
relevant but the velocity and temperature variables no longer depend on u∗ (Wyngaard et al.
1971). In the present study, the exponential cutoff reduces the gradient based on the relative
position within the transition region, but does not alter the scaling for φ or ζ . As an analogy,
the fluxes −u′w′/u2∗ decay with z/zi but scale with u∗ throughout the CBL depth. In this
sense, the gradients maintain their surface scaling up to zm despite the incomplete similarity
due to the z/zi correction demonstrated in Fig. 8.

This z/zi correction corresponds to the presence of large-scale eddies such as downdrafts
(Li et al. 2018) and updrafts (Fodor et al. 2019) whose governing scale w∗ is oriented along
z (Deardorff 1970). Within the mixed layer, the ensemble of these predominately vertical
motions results in zero mean gradient. If the free convection events that extend into the
transition region also have a collective mean gradient close to 0, the events would contribute
to a decrease in the overall φ without incurring a statistically meaningful transition in scaling
from u∗ to w∗. The decrease in φ would then directly depend on the relative probability of
free convection events that increases with height in a manner consistent with the exponential
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in Fig. 10a. Importantly, the same argument cannot be extended to the higher-order variance
statistics and an analysis of the variances is outside the scope of the present work.

There is uncertainty in Fig. 10 with respect to changes in the behavior with increasing
instability. The present analysis suggests the exponential cutoff and parameter c do not
vary with zi/L . As noted previously, this suggests the correction and the relative gradient
contributions are independent of changes in the eddy topology from roll structures to vertical
cells. Further, with zm ∝ zi the surface-scaling region in Fig. 10bmust increasingly resemble
the mixed layer turbulent structure in order for the surface layer to vanish in free convection.
These implications should be evaluated across a wider range of zi/L and for a greater number
of cases before conclusions are drawn.

5 Summary

The present work uses a series of seven LES cases to study mean profile similarity in the
lower half of the convective boundary layer. The cases represent a dry, barotropic idealized
CBL under weak to moderately strong convection with mid-latitude Coriolis frequency, a
stable capping inversion, and a well-defined mixed layer. An ad hoc spin-up procedure is
used to mitigate inertial oscillations in the final simulations (Fig. 2), and the grid converge
of near-surface profile statistics is closely examined (Figs. 3 and 4).

The new LES cases reveal the same qualitative trends in the nondimensional gradients
φ seen in other recent simulation-based studies (Fig. 5): the results generally align with
Monin–Obukhov similarity across the different cases, but the individual profiles each exhibit
a steeper slope that precludes universal similarity in φ(ζ ) (Pirozzoli et al. 2017; Maronga
and Reuder 2017; Li et al. 2018). In other words, MOST captures variability in φ across a
range of L and fixed z, but does not fully account for the variability across z for fixed L . The
behavior of the φ profiles above the surface layer indicates that the steeper slope is associated
with a broader trend in z/zi that reduces the gradient towards 0 at the height of the mixed
layer (Fig. 6).

To account for this trend, the well-known Businger-Dyer profiles are revised in Eq. (6)
with an exponential cutoff similar to corrections for similarity in the roughness sublayer
(Garratt 1980; Harman and Finnigan 2007). The revised expressions, with fitted parameters
cm ≈ 3.7 and ch ≈ 2.9 for the exponential term exp (−cz/zi ), result in significantly improved
similarity for the mean (Fig. 7) and gradient (Fig. 8) profiles from approximately 0.05zi up
to the mixed layer near 0.4zi . The correction is expected to be small close to the surface
where most point measurements are acquired in field experiments, which may explain why
the consistent z/zi trend seen in simulations is not readily apparent from field observations.
Further, the parameter space probed by field measurements often spans a wide range of L at
a limited series of fixed heights, which as noted above can yield curves that closely follow
MOST relations.

In addition to the improved similarity, there are three important implications arising from
the revised relations in Eq. (6). First, the mean values in the mixed layer depend on both
log (zi/zo) and ζ (Fig. 9). Second, the exponential correction accounts for an extended
transition region in the mean profiles between the surface layer and the mixed layer (Fig. 10),
where this region is strongly influenced by large-scale buoyancy-driven eddies (Li et al.
2018; Fodor et al. 2019). Owing to the effect of these eddies, the correction only becomes
small for z/zi ∼ O(0.01), such that the common assumption of 0.1zi for the surface layer
height is too large for idealized convective conditions. Third, the start of the mixed layer
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at a fixed fraction of zi (Fig. 6) suggests the surface layer turbulent structure changes with
increasing convection in order to match the mixed layer under free convection, but extending
the analysis to stronger convection is required to validate the last point.

While the fitted results in Figs. 7 and 8 are promising, the present analysis includes a
limited number of cases and lacks reliable statistics in the bottom half of the surface layer. In
particular, modest grid dependence is observed across the surface layer for weak convection
in case A (Fig. 4). Equation (6) is thus considered to be a preliminary effort to model the
trends in φ observed in Figs. 5 and 6. Several other functional forms were evaluated to
more accurately account for the logarithmic decay in φ, but the collective profile data were
found to be prone to overfitting, where the functional dependencies were borne by the fitted
parameters. Accordingly, the proposed correction is limited to an extension of the widely-
tested Businger-Dyer profiles, and the correction has only one nondimensional parameter (cm
or ch) that has a clear physical interpretation corresponding to the height where the cutoff
reaches a given magnitude. Importantly, the present quantitative correction depends on the
empirical profiles being corrected, i.e. Businger-Dyer, O’KEYPS, or another alternative.
However, the lack of universality in φ(ζ ) in Fig. 5 and the necessity to include z/zi in mean
profile similarity are general findings that do not depend on the specific empirical relations.
Further analysis with additional datasets may support a more sophisticated model that better
matches the full gradient cutoff up to 0.4zi in Fig. 8a, b, but for the available data in the
present study only a simpler model is warranted.
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Kosović B (1997) Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary

layers. J Fluid Mech 336:151–182. https://doi.org/10.1017/S0022112096004697
Kumar V, Kleissl J, Meneveau C, Parlange MB (2006) Large-eddy simulation of a diurnal cycle of the atmo-

spheric boundary layer: atmospheric stability and scaling issues. Water Resour Res 42(6):W06D09.
https://doi.org/10.1029/2005WR004651

Larsson J, Kawai S, Bodart J, Bermejo-Moreno I (2015) Large eddy simulation with modeled wall-stress:
recent progress and future directions. Mech Eng Rev 3:1–23. https://doi.org/10.1299/mer.15-00418

Lee M, Moser RD (2015) Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. J Fluid
Mech 774:395–415. https://doi.org/10.1017/jfm.2015.268

Lemone MA (1976) Modulation of turbulence energy by longitudinal rolls in an unstable planetary boundary
layer. J Atmos Sci 33(7):1308–1320

Li Q, Gentine P, Mellado JP, McColl KA (2018) Implications of nonlocal transport and conditionally averaged
statistics on Monin-Obukhov similarity theory and Townsend’s attached eddy hypothesis. J Atmos Sci
75(10):3403–3431. https://doi.org/10.1175/JAS-D-17-0301.1

Li Q, Cheng Y, Gentine P (2021) Connection between mass flux transport and eddy diffusivity in convec-
tive atmospheric boundary layers. Geophys Res Lett 48(8):e2020GL092073. https://doi.org/10.1029/
2020GL092073

LiuL,GaddeSN, StevensRJAM(2021)Geostrophic drag law for conventionally neutral atmospheric boundary
layers revisited. Q J R Meteorol Soc 147(735):847–857. https://doi.org/10.1002/qj.3949

Liu L, Gadde SN, Stevens RJAM (2023) The mean wind and potential temperature flux profiles in convective
boundary layers. J Atmos Sci 80(8):1893–1903. https://doi.org/10.1175/JAS-D-22-0159.1

Liu S, Zeng X, Dai Y, Shao Y (2019) Further improvement of surface flux estimation in the unstable surface
layer based on large-eddy simulation data. J Geophys Res 124:9839–9854. https://doi.org/10.1029/
2018JD030222

Liu S, Zeng X, Dai Y, Yuan H, Wei N, Wei Z, Lu X, Zhang S (2022) A surface flux estimation scheme
accounting for large-eddy effects for land surface modeling. Geophys Res Lett 49(23):e2022GL101754.
https://doi.org/10.1029/2022GL101754

Maronga B, Reuder J (2017) On the formulation and universality of Monin-Obukhov similarity functions for
mean gradients and standard deviations in the unstable surface layer: results from surface-layer-resolving
large-eddy simulations. J Atmos Sci 74(4):989–1010. https://doi.org/10.1175/JAS-D-16-0186.1

Marusic I, Monty JP, HultmarkM, Smits AJ (2013) On the logarithmic region in wall turbulence. J FluidMech
716(R3):1–11. https://doi.org/10.1017/jfm.2012.511

Mason PJ, Thomson DJ (1992) Stochastic backscatter in large-eddy simulations of boundary layers. J Fluid
Mech 242:51–78. https://doi.org/10.1017/S0022112092002271

123

https://doi.org/10.1007/s10546-006-9145-6
https://doi.org/10.1175/JAS-D-22-0260.1
https://doi.org/10.1007/BF00119875
https://doi.org/10.1017/S0022112090002129
https://doi.org/10.1103/PhysRevLett.107.268502
https://doi.org/10.1063/1.3678331
https://doi.org/10.1017/S0022112097006277
https://doi.org/10.1017/S0022112096004697
https://doi.org/10.1029/2005WR004651
https://doi.org/10.1299/mer.15-00418
https://doi.org/10.1017/jfm.2015.268
https://doi.org/10.1175/JAS-D-17-0301.1
https://doi.org/10.1029/2020GL092073
https://doi.org/10.1029/2020GL092073
https://doi.org/10.1002/qj.3949
https://doi.org/10.1175/JAS-D-22-0159.1
https://doi.org/10.1029/2018JD030222
https://doi.org/10.1029/2018JD030222
https://doi.org/10.1029/2022GL101754
https://doi.org/10.1175/JAS-D-16-0186.1
https://doi.org/10.1017/jfm.2012.511
https://doi.org/10.1017/S0022112092002271


   28 Page 26 of 27 M. Heisel, M. Chamecki

McNaughton KG, Clement RJ, Moncrieff JB (2007) Scaling properties of velocity and temperature spectra
above the surface friction layer in a convective atmospheric boundary layer. Nonlinear Process Geophys
14(3):257–271. https://doi.org/10.5194/npg-14-257-2007

Millikan CM (1938) A critical discussion of turbulent flows in channels and circular tubes. In: Proceedings of
the fifth international congress for applied mechanics. Wiley

Mo Z, Liu CH, Chow HL, Lam MK, Lok YH, Ma SW, Wong FL, Yip PY (2022) Roughness sublayer over
vegetation canopy: a wind tunnel study. Agric For Meteorol 316(108):880. https://doi.org/10.1016/j.
agrformet.2022.108880

Moeng CH (1984) A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J
Atmos Sci 41(13):2052–2062

Moeng CH, Sullivan PP (1994) A comparison of shear- and buoyancy-driven planetary boundary layer flows.
J Atmos Sci 51(7):999–1022

Mölder M, Grelle A, Lindroth A, Halldin S (1999) Flux-profile relationships over a boreal forest - roughness
sublayer corrections. Agric For Meteorol 99:645–658. https://doi.org/10.1016/S0168-1923(99)00131-8

MomenM,Bou-ZeidE (2017)Analytical reducedmodels for the non-stationarydiabatic atmospheric boundary
layer. Boundary-Layer Meteorol 164:383–399. https://doi.org/10.1007/s10546-017-0247-0

MoninAS (1970) The atmospheric boundary layer. Annu Rev FluidMech 2:225–250. https://doi.org/10.1146/
annurev.fl.02.010170.001301

Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the atmosphere near the ground. Trudy
Akad Nauk SSSR Geophiz Inst 24(151):163–187

Nieuwstadt FTM,Mason PJ, Moeng CH, Schumann U (1993) Large-eddy simulation of the convective bound-
ary layer: a comparison of four computer codes. Turbulent Shear Flows, vol 8. Springer, New York, pp
343–367. https://doi.org/10.1007/978-3-642-77674-8_24

NohY, CheonWG, Hong SY, Raasch S (2003) Improvement of the K-profile model for the planetary boundary
layer based on large eddy simulation data. Boundary-Layer Meteorol 107:401–427. https://doi.org/10.
1023/A:1022146015946

Obukhov AM (1946) Turbulence in an atmosphere with a non-uniform temperature. Trudy Inst Theor Geofiz
AN SSSR 1:95–115

Panofsky HA (1963) Determination of stress from wind and temperature measurements. Q J R Meteorol Soc
89(379):85–94. https://doi.org/10.1002/qj.49708937906

Panofsky HA (1978) Matching in the convective planetary boundary layer. J Atmos Sci 35(2):272–276
Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable

atmospheric surface layer. J Appl Meteorol Climatol 9(6):857–861
Pedersen JG, Gryning SE, Kelly M (2014) On the structure and adjustment of inversion-capped neutral

atmospheric boundary-layer flows: large-eddy simulation study. Boundary-Layer Meteorol 153:43–62.
https://doi.org/10.1007/s10546-014-9937-z

Physick WL, Garratt JR (1995) Incorporation of a high-roughness lower boundary into a mesoscale model for
studies of dry deposition over complex terrain. Boundary-Layer Meteorol 74:55–71. https://doi.org/10.
1007/BF00715710

Pirozzoli S, Bernardini M, Verzicco R, Orlandi P (2017) Mixed convection in turbulent channels with unstable
stratification. J Fluid Mech 821:482–516. https://doi.org/10.1017/jfm.2017.216

Pope SB (2000) Turbulent Flows, 1st edn. Cambridge University Press, Cambridge
Porté-Agel F, Meneveau C, ParlangeMB (2000) A scale-dependent dynamic model for large-eddy simulation:

application to a neutral atmospheric boundary layer. J FluidMech 415:261–284. https://doi.org/10.1017/
S0022112000008776

Prandtl L (1932) Zur turbulenten strömung in röhren und längs platten. Ergebn Aerodyn Versuchsanst 4:18–29
Salesky ST, AndersonW (2018) Buoyancy effects on large-scale motions in convective atmospheric boundary

layers: implications for modulation of near-wall processes. J Fluid Mech 856:135–168. https://doi.org/
10.1017/jfm.2018.711

Salesky ST, Anderson W (2020) Coherent structures modulate atmospheric surface layer flux-gradient rela-
tionships. Phys Rev Lett 125(12):124501. https://doi.org/10.1103/PhysRevLett.125.124501

Salesky ST, Chamecki M (2012) Random errors in turbulence measurements in the atmospheric surface layer:
implications for Monin-Obukhov similarity theory. J Atmos Sci 69(12):3700–3714. https://doi.org/10.
1175/JAS-D-12-096.1

Salesky ST, Chamecki M, Bou-Zeid E (2017) On the nature of the transition between roll and cellular organi-
zation in the convective boundary layer. Boundary-Layer Meteorol 163:41–68. https://doi.org/10.1007/
s10546-016-0220-3

Santoso E, Stull R (1998) Wind and temperature profiles in the radix layer: the bottom fifth of the convective
boundary layer. J Appl Meteorol Climatol 37(6):545–558

123

https://doi.org/10.5194/npg-14-257-2007
https://doi.org/10.1016/j.agrformet.2022.108880
https://doi.org/10.1016/j.agrformet.2022.108880
https://doi.org/10.1016/S0168-1923(99)00131-8
https://doi.org/10.1007/s10546-017-0247-0
https://doi.org/10.1146/annurev.fl.02.010170.001301
https://doi.org/10.1146/annurev.fl.02.010170.001301
https://doi.org/10.1007/978-3-642-77674-8_24
https://doi.org/10.1023/A:1022146015946
https://doi.org/10.1023/A:1022146015946
https://doi.org/10.1002/qj.49708937906
https://doi.org/10.1007/s10546-014-9937-z
https://doi.org/10.1007/BF00715710
https://doi.org/10.1007/BF00715710
https://doi.org/10.1017/jfm.2017.216
https://doi.org/10.1017/S0022112000008776
https://doi.org/10.1017/S0022112000008776
https://doi.org/10.1017/jfm.2018.711
https://doi.org/10.1017/jfm.2018.711
https://doi.org/10.1103/PhysRevLett.125.124501
https://doi.org/10.1175/JAS-D-12-096.1
https://doi.org/10.1175/JAS-D-12-096.1
https://doi.org/10.1007/s10546-016-0220-3
https://doi.org/10.1007/s10546-016-0220-3


On the departure from Monin-Obukhov surface similarity... Page 27 of 27    28 

Santoso E, Stull R (2001) Similarity equations for wind and temperature profiles in the radix layer, at the
bottom of the convective boundary layer. J Atmos Sci 58(11):1446–1464

Schröter JS, Moene AF, Holtslag AAM (2013) Convective boundary layer wind dynamics and inertial oscilla-
tions: the influence of surface stress. Q J R Meteorol Soc 139(676):1694–1711. https://doi.org/10.1002/
qj.2069

Shibuya R, Sato K, Nakanishi M (2014) Diurnal wind cycles forcing inertial oscillations: a latitude-dependent
resonance phenomenon. J Atmos Sci 71(2):767–781. https://doi.org/10.1175/JAS-D-13-0124.1

Sillero JA, Jiménez J, Moser RD (2013) One-point statistics for turbulent wall-bounded flows at Reynolds
numbers up to δ+ ≈ 2000. Phys Fluids 25(105):102. https://doi.org/10.1063/1.4823831

SmedmanAS,HögströmU,Hunt JCR, Sahlée E (2007)Heat/mass transfer in the slightly unstable atmospheric
surface layer. Q J R Meteorol Soc 133(622):37–51. https://doi.org/10.1002/qj.7

Stiperski I, Calaf M (2023) Generalizing Monin-Obukhov similarity theory (1954) for complex conditions.
Phys Rev Lett 130(12):124001. https://doi.org/10.1103/PhysRevLett.130.124001

Stull RB (1988) An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht.
https://doi.org/10.1007/978-94-009-3027-8

Sullivan PP, Patton EG (2011) The effect of mesh resolution on convective boundary layer statistics and
structures generated by large-eddy simulation. J Atmos Sci 68(10):2395–2415. https://doi.org/10.1175/
JAS-D-10-05010.1

Sullivan PP, McWilliams JC, Moeng CH (1994) A subgrid-scale model for large-eddy simulation of planetary
boundary-layer flows. Boundary-Layer Meteorol 71:247–276. https://doi.org/10.1007/BF00713741

Sutton OG (1953) Micrometeorology. McGraw-Hill, New York
Tennekes H (1970) Free convection in the turbulent Ekman layer of the atmosphere. J Atmos Sci 27(7):1027–

1034
TongC,DingM (2020)Velocity-defect laws, log law and logarithmic friction law in the convective atmospheric

boundary layer. J Fluid Mech 883:A36. https://doi.org/10.1017/jfm.2019.898
Wilson DK (2001) An alternative function for the wind and temperature gradients in unstable surface layers.

Boundary-Layer Meteorol 99:151–158. https://doi.org/10.1007/BF00221826
Wurps H, Steinfeld G, Heinz S (2020) Grid-resolution requirements for large-eddy simulations of the atmo-

spheric boundary layer. Boundary-Layer Meteorol 175:179–201. https://doi.org/10.1007/s10546-020-
00504-1

Wyngaard JC, Coté OR, Izumi Y (1971) Local free convection, similarity, and the budgets of shear stress and
heat flux. J Atmos Sci 28(7):1171–1182

Yaglom AM (1977) Comments on wind and temperature flux-profile relationships. Boundary-Layer Meteorol
11:89–102. https://doi.org/10.1007/BF00221826

Yamada T (1976) On the similarity functions A, B and C of the planetary boundary layer. J Atmos Sci
33(5):781–793

Zilitinkevich SS, Fedorovich EE, Shabalova MV (1992) Numerical model of a non-steady atmospheric plan-
etary boundary layer, based on similarity theory. Boundary-Layer Meteorol 59:387–411. https://doi.org/
10.1007/BF02215460

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1002/qj.2069
https://doi.org/10.1002/qj.2069
https://doi.org/10.1175/JAS-D-13-0124.1
https://doi.org/10.1063/1.4823831
https://doi.org/10.1002/qj.7
https://doi.org/10.1103/PhysRevLett.130.124001
https://doi.org/10.1007/978-94-009-3027-8
https://doi.org/10.1175/JAS-D-10-05010.1
https://doi.org/10.1175/JAS-D-10-05010.1
https://doi.org/10.1007/BF00713741
https://doi.org/10.1017/jfm.2019.898
https://doi.org/10.1007/BF00221826
https://doi.org/10.1007/s10546-020-00504-1
https://doi.org/10.1007/s10546-020-00504-1
https://doi.org/10.1007/BF00221826
https://doi.org/10.1007/BF02215460
https://doi.org/10.1007/BF02215460

	On the Departure from Monin–Obukhov Surface Similarity and Transition to the Convective Mixed Layer
	Abstract
	1 Introduction
	2 Large-Eddy Simulations
	2.1 Simulation Spin-up and Inertial Oscillations
	2.2 Grid Sensitivity of Near-Surface Statistics

	3 Mean Velocity and Temperature Similarity
	3.1 Comparison with Businger-Dyer Relations
	3.2 Gradient Profile Trends
	3.3 Preliminary Model for Extended Similarity

	4 Discussion
	4.1 Implications for Mixed Layer Resistance Dependencies
	4.2 Implications for the Surface Layer Height

	5 Summary
	Acknowledgements
	References


