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A dissipative particle dynamics (DPD) model is developed and demonstrated for studying dynamics in colloidal rod
suspensions. The solvent is modeled as conventional DPD particles, while individual rods are represented by a rigid
linear chain consisting of overlapping solid spheres which interact with solvent particles through a hard repulsive
potential. The boundary condition on the rod surface is controlled using a surface friction between the solid spheres
and the solvent particles. In this work, this model is employed to study the diffusion of a single colloid in the DPD
solvent, and compared with theoretical predictions. Both the translational and rotational diffusion coefficients obtained
at a proper surface friction show good agreement with calculations based on the rod size defined by the hard repulsive
potential. In addition, the system-size dependence of the diffusion coefficients show that theNavier-Stokes hydrodynamic
interactions are correctly included in this DPD model. Comparing our results with experimental measurements of the
diffusion coefficients of gold nanorods, we discuss the ability of the model to correctly describe dynamics in real nanorod
suspensions. Our results provide a clear reference point from which the model could be extended to enable the study of
colloid dynamics in more complex situations or for other types of particles.

I. INTRODUCTION

Colloid diffusion is a fundamental process that affects many
complex, non-equilibrium phenomena in colloidal suspen-
sions such as self-assembly1–4 and phoretic motion5–10. In
experiments, the diffusion of colloidal particles can be probed
using light scattering techniques11–13. However, with the pro-
liferation of colloidal particles of different shapes, composi-
tions, patterns and functionalities, especially in the nanoparti-
cle regime, interpreting the corresponding experimental data
becomes more difficult, and significant limitations appear with
regard to size, shape, concentration, time scale and polydis-
persity. On the other hand, computer simulations, due to their
precise control of particle attributes and direct information
about particle motion, have played a key role in interpreting
experimental results and in validating theories.

Previously, we presented an overlapping-sphere model for
rod-shaped colloidal particles and showed its versatility by
using itwithin efficient dynamic simulations to characterize the
phase behavior of hard-rod and rod-polymer suspensions14. In
this work, we focus on the dynamic properties of the colloidal
rods, specifically, the self-diffusion, and demonstrate that the
diffusion of rod-shaped particles can also be well captured by
this model, including hydrodynamic effects.

In most theoretical work and simulations, rod-shaped col-
loidal particles are simply modeled as a body with finite ex-
cluded volume : a hard cylinder of length ! and diameter
315–18, or a hard spherocylinder consisting of a cylindrical
segment of length (!−3) and diameter 3 cappedwith two hemi-
spheres19–21. However, accurately simulating rod dynamics in
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colloidal suspensions is still very challenging, mainly due to
the difficulty of accounting for the solvent in a way that is both
correct and efficient.
At the simplest level, the solvent can be taken into account

through Brownian dynamics (BD)19, in which the solvent
is implicitly represented via effective frictional and random
forces acting on the colloidal particles. At the same level
of accuracy, implicit-solvent dynamic Monte Carlo (DMC)
simulations can also be used20,21. Both BD and DMC sim-
ulations are computationally efficient, but require knowledge
of the short-time dynamics of a single rod, obtained either
from theory or experiment, to determine the friction and ran-
dom forces/torques acting on the rods19 or the elementary
(translational and rotational) move size of the rods21 in the
simulations. More severely, both techniques neglect hydro-
dynamic interactions (HIs) from other rods mediated by the
solvent, which can significantly alter dynamical correlations,
especially at high volume fractions. Unfortunately, as long-
ranged and multi-body interactions, HIs are difficult to treat
with analytical models and usually cannot be decomposed into
a pairwise sum of forces between rods.
In practice, with current computational resources, the only

feasible way to consider HIs is to coarse-grain the description
of the solvent22–25. Dissipative particle dynamics (DPD)26,27 is
one popular coarse-graining strategy, where eachDPD particle
represents a group of liquid molecules in which both Brownian
motion andHIs can be faithfully reproduced. TheDPDmethod
can be viewed as an extension of standard molecular dynamics
(MD), and thus is very easy to implement using existing MD
codes.
The original DPDmethod of Hoogerbrugge and Koelman28

was designed to model the colloidal particle as a rigid body of
many “frozen”DPDparticles suspended in a fluid composed of
free DPD particles. However, this type of DPD colloid particle
has a poorly defined surface due to the soft interaction, and the
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interaction between the colloid and the liquid is also difficult
to map onto simple theoretical models since it depends on the
detailed structure of the constituent particles in the colloid.
Here, inspired by the idea in Ref. 29, we use a core-shell
model in which the spheres constituting the rod are represented
as a hard core, which the liquid particle cannot penetrate,
surrounded by a friction shell, in which the liquid particles
interact with the sphere via additional friction and random
forces. As a result, the colloidal rod has a clearly defined size
and the liquid-solid boundary condition can be easily tuned.

As a first step, the present work focuses on the self-diffusion
of a single rod in the DPD liquid. Nevertheless, the HIs
between rods can still be investigated in our simulations via
the system-size effect.

The paper is organized as follows: In Sec. II, we briefly
review the continuum theory for the diffusion coefficient of
rod-shaped colloidal particles and discuss corrections due to
the system-size effect. We introduce our model and simulation
method in Sec. III and present the simulation results and a
comparison with theoretical predictions in Sec. IV. A brief
summary of the key results is given in Sec. V.

II. THEORY

A. Continuum theory for diffusion of rod-shaped particles

In order to compare our simulation results with theory, we
use relations that allow calculation of the theoretical diffusion
coefficients based on the particle size. In 1979 and 1980,
Tirado and García de la Torre17,18 derived the equations to
calculate the diffusion coefficient of a cylindrical particle of
length ! and diameter 3 in a liquid under the stick boundary
condition (BC) in the framework of continuum theory. In the
theory, the translational diffusion coefficients for motion along
the longitudinal and transverse dimensions (� ‖ and �⊥), and
for the motion in a random direction (�C ) can be expressed as

� ‖ = :�) (ln ? + a ‖)/(2c[!), (1)
�⊥ = :�) (ln ? + a⊥)/(4c[!), (2)
�C = :�) (ln ? + aC )/(3c[!), (3)

where :� is the Boltzmann constant, ) is the temperature, [
is the dynamic viscosity of the liquid, and ? is the aspect ratio
with ? = !/�. Meanwhile, the rotational diffusion coefficient
for the orientation of the long axis (�A ) can be written as

�A = 3:�) (ln ? + aA )/(c[!3). (4)

In Eqs. 1–4, a ‖ , a⊥, aC and aA are the so-called end-effect
corrections, which are functions of ?, and are given by

a ‖ = −0.207 + 0.980/? − 0.133/?2,

a⊥ = 0.839 + 0.185/? + 0.233/?2,

aC = 0.312 + 0.565/? − 0.1/?2,

aA = −0.662 + 0.917/? − 0.05/?2.

(5)

This theory has been used as a fundamental tool to analyze
diffusion processes in experimental and computational stud-
ies30–39, and has been argued to be applicable to rod-shaped
particles with, approximately, 2 < ? < 3040.

B. System-size dependence

The continuum theory of Tirado and García de la Torre
gives the translational/rotational diffusion coefficient of a rod-
shaped particle far from any other particles or boundaries. Our
simulations are performed using boxes with periodic boundary
conditions (PBC), and the HIs between the colloidal particle
and its periodic images can cause significant system-size ef-
fects on the diffusion coefficients.
For a single spherical particle in a cubic periodic box with

edge length !1>G , i.e., assuming that the particle and its peri-
odic images are arranged in a simple cubic array, the corrected
translational diffusion coefficient can be written in terms of an
expansion of the volume fraction q = c33/(6!3

1>G
)41–43,

�C ,%�� =

{
�C ,0& stick,

�C ,0&&
′ slip.

(6)

where & =
(
1 − 1.7601q1/3 + q − 1.5593q2) and & ′ = (3 +

�q)/2 with � = 27.9 ± 0.4. Here, �C ,0 is the diffusion coeffi-
cient in an infinitely large box for the stick BC, which is given
by the well-known Stokes-Einstein (SE) relation44,45

�
(�,BC82:
C = :�)/(3c[3), (7)

with 3 the diameter of the spherical particle. Note that Eq. 6
can also lead to the SE relation for the slip BC at q → 0, i.e.,
�
(�,B;8 ?
C = :�)/(2c[3).
Analogously, the corrected rotational diffusion coefficient

can be expressed as46

�A ,%�� = �A ,0 (1 − q), (8)

where �A ,0 is the rotational diffusion coefficient with no
system-size effect. For spherical particles with a stick BC,
�A ,0 is given by the Stokes-Einstein-Debye (SED) relation47

�(��A = :�)/(c[33). (9)

In order to apply the same corrections to rod-shaped parti-
cles, we treat the rod as a sphere which has the same diffusion
coefficient. The diameter of the equivalent sphere (i.e. the
effective diameter 3) can be obtained by rewriting Eqs. 3 and
4 into the same forms as Eqs. 7 and 9, and are given by the

3C = !/(ln ? + aC ),
3A = !/ 3

√
3(ln ? + aA ).

(10)

for the translational diffusion and the rotational diffusion, re-
spectively. Consequently, we expect that the system-size effect
on the diffusion coefficient of rod-shaped particles is also given
by Eqs. 6 and 8 with q = q = c3

3/(6!3
1>G
), �C ,0 = �C in

Eq. 3, and �A ,0 = �A in Eq. 4.
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FIG. 1. Schematic illustration of all colloidal particles used in this
work. The colloidal spheres of diameter 3 are represented by a single
solid sphere of the same diameter, while the colloidal rods of diameter
3 and aspect ratio ? = !/3 are modeled as a rigid body made up of
several overlapping solid spheres of the same diameter. For the rods,
the distance between consecutive solid spheres is fixed at Δ; = 0.5,
and the direction of the long axis is indicated by the unit vector û.

III. MODEL AND METHOD

A. Model for colloids and solvent

In our model, the liquid is explicitly modeled as dissipative
particle dynamics (DPD) particles each with the mass <. All
DPD particles interact with each other via a conservative force
F�8 9 , a dissipative force F�8 9 and a random force F'8 9 given by

F�8 9 = 0(1 − A8 9/A2)r̂8 9 A8 9 < A2

F�8 9 = −W(1 − A8 9/A2)2 (r̂8 9 · v8 9 )r̂8 9 A8 9 < A2

F'8 9 =
√

2:�)W(1 − A8 9/A2)\8 9ΔC−1/2r̂8 9 A8 9 < A2

(11)

between beads 8 and 9 . Here, A8 9 = |A8 9 | is the centre-to-
centre distance between two particles 8 and 9 , r̂8 9 = r8 9/A8 9 is
the unit vector pointing between the two beads, and W is the
dissipative constant, v8 9 is the vector difference in velocities
between the two beads, \8 9 is a Gaussian white noise variable
with \8 9 = \ 98 , and ΔC is the simulation time step. All these
three forces vanish when A8 9 ≥ A2 with A2 the cut-off distance.
Hereafter, all quantities are reported in their reduced units with
A2 as the length unit, :�) as the energy unit, < as the mass
unit, g = A2

√
</(:�)) as the time unit.

The rod-shaped colloids are described as pseudo-hard sphe-
rocylinders with total length ! and diameter 3. In our model,
these spherocylinders are represented by the model we de-
veloped previously for studying phase behavior in rod and
rod-polymer suspensions14: individual rods are represented
by a rigid linear chain consisting of overlapping solid spheres
of diameter 3 with their centers distributed uniformly on a line
segment of length (!−3) (see Fig. 1 for examples).
The solid spheres have two interactions with the DPD liquid

particles: (i) a hard-core interaction to prevent liquid particles

(a)

(b)

d

!

FIG. 2. Interactions between a solid sphere of diameter 3 and a liquid
particle: (a) Modified Mie potential (Eq. 12) at different values 3.
(b) The surface friction coefficient (b;B) in Eq. 13 as a function of
the center-to-center distance at W;B,0 = 10 for various values of 3.
For all lines, the solid parts represent the results in the friction shell
(i.e. 3/2 < A < 3/2 + X) while the transparent parts are the results
in the “hard” core (i.e. A < 3/2). Inset: Schematic illustration of
the core-shell model for the solid sphere, which is represented by
a central hard core of diameter 3 surrounded by a friction shell of
thickness X.

penetrating the sphere; and (ii) an effective interaction due
to the surface friction to control the liquid-solid boundary
condition48. In ourmodel, the hard-core interaction is replaced
by a continuous pseudo-hard-core potential in the form of a
modified Mie potential with exponents (50, 49), i.e.,

* (A8 9 ) = 50
(
50
49

)49
Y

[(
f

A8 9 − Δ

)50
−

(
f

A8 9 − Δ

)49
]
+ Y (12)

truncated at A2DC = (50/49)f + Δ . Here, Y is the interaction
energy, f is the interaction distance with f = 1, Δ is the
shifted distance with Δ = 3/2 − 1. This modified Mie(50, 49)
potential can remain the same shape for spheres with different
sizes [see Fig. 2 (a)]. In addition, we set the rod density
equal to that of the liquid, i.e. dA = d; , and therefore the
mass of each rod sphere is <A = d;+/# with the rod volume
+ = c32 [3 + 1.5(! − 3)]/6.

The sphere/solvent friction is modeled as a piar dissipative
force which directly depends on the relative velocity between
the solid sphere and the liquid particle (v8 9 )48, i.e,

F�8 9 = −b;B (A8 9 )v8 9

= −W;B (1 −
A8 9

3/2 + X )v8 9

= −W;B,0
3/2 + X
X
(1 −

A8 9

3/2 + X )v8 9 A8 9 < 3/2 + X

(13)

Here, b;B is the surface friction coefficient, and W;B is the
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(a) (b)

FIG. 3. Two typical simulation boxes used in this work. Each box
contains one colloidal sphere (a) or one colloidal rod (b) in the liquid.
Colloidal particles are orange while the liquid particles are blue.

friction constant, which is an adjustable parameter that char-
acterizes the strength of the surface friction and can be used to
vary the slip length. The position-dependent function b;B (A8 9 )
is a monotonically decreasing function of the distance, and
vanishes at a cutoff (3/2 + X) to mimic the finite range of the
surface interaction. As a result, this force acts in a friction
shell of thickness X around the sphere [see inset in Fig. 2 (b)].
Note that W;B is corrected for spheres with different sizes by
the multiplier (3/2+X)/X so that b always has the same values
in the friction shell [see Fig. 2 (b)]. Additionally, a stochastic
force obeying the fluctuation-dissipation theorem is required
to ensure the correct equilibrium statistics, i.e.,

F(8 9 =
√

2:�)b;B (A8 9 )\8 9ΔC−1/2 · v8 9/E8 9 , (14)

with E8 9 = |v8 9 |.
Note that the core-shell model described above differs

slightly from our previous one14 as well as the one in Whittle
et al.’s work29. The latter two models use the same friction
force in the shell as the dissipative term in the original DPD
model (Eq. 11), which implies that when a DPD liquid particle
passes all the way through the friction shell of the solid sphere,
the friction disappears unless there is a radial component to
the velocity49,50, which leads to poor control of the boundary
condition on the solid surface.

B. Simulation method

Figure. 3 shows two examples of the simulation boxes used
to investigate the diffusion of colloidal particles in this work.
Each box is cubic and contains one colloidal sphere or rod
and many liquid particles. Periodic boundary conditions were
applied in all directions. The box size was varied to investi-
gate the system-size effect on the simulation results, and the
number of liquid particles was chosen so that the bulk liquid
density was d; = 3. All simulations were carried out us-
ing the parallel software package LAMMPS51 in an isochoric,
isothermal (#+)) ensemble with the dimensionless tempera-
ture :�)/Y = 1. The velocity-Verlet algorithm was used to
integrate the equations of motion with a time step ΔC = 0.005.
All simulations were performed with W = 100, 0 = 25 for the
DPD forces ( Eq. 11) and X = 0.5 for the friction force (Eq. 13).

H

vtop

!

(a)

(b)

FIG. 4. (a) Relation between the slip length 1 and the surface friction
parameter W;B,0 at different apparent shear rates ¤W = EC>?/�. Inset:
Simulation box used to determine 1. A stick boundary condition can
be implemented at W;B,0 ≈ 10/3. (b) Shear viscosity [ of the DPD
liquid as a function of the inverse box length 1/!1>G (bottom scale)
for # = 81 − 24000 liquid particles (top scale). The horizontal dash
line indicates the average value (2.57) and the corresponding standard
deviation (±0.02).

C. Slip and stick boundary conditions

The slip BC is implemented with no surface friction (i.e.,
W;B,0 = 0). For the stick BC, we determined the appropriate
W;B,0 by measuring the slip length on a flat wall in a cubic
simulation box with edges !1>G = 8 (see insert in Fig. 4).
There is a bottom wall at I(G, H) = 0 and a top wall at I(G, H) =
� = !1>G . Both walls were fixed, and interact with the liquid
particles via the terms described in Eq. 12 with Δ = −1 and
in Eqs. 13 and 14. Here, A8 9 is the distance between the liquid
particle and the wall in the I direction. A Couette flow is
produced by imposing a constant force in the G-direction on all
liquid particles with I > � − 2. The top wall is a slip one with
W;B,0 ≡ 0. The slip length 1 on the bottomwall for a given W;B,0
is defined as the extrapolation length of the velocity profile, i.e.,
the distance from the wall at which the liquid velocity equals 0.
We changed the magnitude of the force imposed on the liquid
particles to obtain the values of 1 at different apparent shear
rates ¤W = EC>?/� with EC>? the liquid velocity near the top
wall. As shown in Fig. 4 (a), when the apparent shear rate is
small enough, the slip length 1 does not change significantly
with ¤W, and we conclude that the stick BC can be implemented
on a flat solid surface by using W;B,0 ∼ 10/3. Because the slip
length can be smaller on a curved solid surface52–54, which
also appears to be the case with our model (see Fig. S1 in the
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supplementary material), several values of W;B,0 ≥ 10/3 were
tried for the case of the stick BC in our simulations.

D. Determining the viscosity of the liquid

The shear viscosity of the liquid ([) is calculated using the
Green-Kubo formula55 in simulations with a box consisting
of pure DPD liquid. We performed the simulation at various
system sizes with 81-24000 liquid particles, using runs with
duration of 105g, and obtained [ = 2.57±0.02 [see Fig. 4 (b)].
No significant system-size dependence on the shear viscosity
exists in our model, which is consistent with previous studies
for Lennard-Jones fluids and TIP3P water42,56.

E. Determining the diffusion coefficient of colloidal particles

The translational diffusion coefficient can be evaluated from
the mean-square displacement (MSD) of the colloidal particle
using the following equations

〈ΔA2
‖ (C)〉 = 〈|(r(C0 + C) − r(C0)) · û(C0) |2〉 = 2� ‖C,

〈ΔA2
⊥ (C)〉 = 〈|(r(C0 + C) − r(C0)) × û(C0) |2〉 = 4�⊥C,

〈ΔA2 (C)〉 = 〈|r(C0 + C) − r(C0) |2〉 = 6�C C,

(15)

where r is the position of the center of mass of the colloidal
particle, û is a unit vector along the long axis of the rod (see
Fig. 1), C is the time, C0 is the reference time, and the brackets
〈. . . 〉 indicate averaging over all C0.
Analogously, the rotational diffusion is quantified through

the rotationalmean-square displacement (RMSD) during time
interval C as follows

〈Δ ®i2 (C)〉 = 〈| ®i(C0 + C) − ®i(C0) |2〉 = 4�A C. (16)

Here, ®i(C) =
∫ C
0 Δ ®i(C

′)3C ′ with Δ ®i(C ′) a vector with direc-
tion given by û(C) × û(C + C ′) and with magnitude given by
cos−1 [û(C) · û(C + C ′)] during the time interval C ′. With this
definition, RMSD is unbounded and the diffusion coefficient
can be evaluated in a large time range57,58.
Moreover, in order to obtain better statistics, rather than

using a single long trajectory, we gather a large number of
short trajectories for each colloidal particle (at least 200) with
a duration of 1000g and only use data from the last 500g of
each for the calculations. This means that the MSD/RMSD in
Eqs. 15 and 16 are also averaged over all these independent
trajectories. Figure S2 in the supplementary material shows
some examples of the linear fitting of the MSD/RMSD used
to determine the corresponding diffusion coefficients.

IV. RESULTS AND DISCUSSIONS

A. Colloidal spheres

As a test of our model, we first studied the diffusion of
spherical colloids with 3 = 1−6 (see Fig. 1 for the spheres and

FIG. 5. Dimensionless translational diffusion coefficient (�̃C =
V�C[3) for colloidal spheres with various values of 3 obtained from
the simulations with different box sizes [characterized by the vol-
ume fraction q = c33/(6!3

1>G
)] at W;B,0 = 0 (empty symbols),

W;B,0 = 10/3 (half-filled symbols) and W;B,0 = 20/3 (solid symbols).
The dash-dot (dash) line represents the results of continuum theory
at slip (stick) BC obtained from Eq. 6 and 7. The colored bands show
values within ±20% of the theoretical predictions.

Table S1 in the supplementary material for the corresponding
simulation boxes). Figure 5 shows the dimensionless trans-
lational diffusion coefficient (�̃C = V�C[3 with V = 1/:�))
obtained from simulations with different box sizes under slip
BC (i.e. W;B,0 = 0) and stick BC (i.e. W;B,0 = 10/3 and 20/3).
The corresponding results calculated from the continuum the-
ory (Eqs. 6 and 7) are also plotted.
Firstly, we find good agreement between the simulation re-

sults and theoretical values. Only for the smallest sphere with
3 = 1 and the slip BC are the simulation results (�̃C ∼ 0.33
for q1/3 < 0.2) much larger than the theoretical predictions.
This indicates that as the colloid approaches the size of the
DPD solvent, the drag force from the solvent is substantially
reduced compared to the theoretical predictions. This colloid-
size effect becomes weak for larger colloids, but can still be
observed at the slip BC as a systematic decrease in �C as 3
increases. In the case of the stick BC, simulation results of �̃C
do not significantly depend on the sphere size, implying that
the colloid-size effect is more important for the form drag due
to the pressure field (i.e. the overall drag at the slip BC) than
for the friction drag due to the shear stress field (i.e. the major
drag at the stick BC).
Secondly, the theoretical �̃C at the stick BC can be well

reproduced in the simulationswhen a surface friction of W;B,0 =
10/3−20/3 is imposed between the solid and the solvent (also
see Fig. S3 in the supplementarymaterial for �̃C at larger W;B,0).
This range of W;B,0 is only slightly larger than the appropriate
value for a flat solid surface [see Fig. 4 (a)], indicating that the
stick BC does not break down even for the smallest spheres in
our model. However, even at W;B,0 = 20/3, we do not observe
a strict stick BC on the solid surface from the velocity profile
around a solid sphere (see Fig. S1), and the excellent match
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between the simulation results and theoretical values may be
caused differences between the bulk viscosity and the local
“microviscosity” experienced by the colloidal particles59.
Thirdly, the system-size effect on �̃C described by Eq. 6 is

also well described by our model over the range of volume
fraction that we considered with only some small discrepan-
cies in the presence of stick BC at large volume fractions.
There are a couple of important points to note here. The first
is that Eq. 6 clearly breaks down at high volume fractions: it
predicts �C = 0 around q1/3 ∼ 0.65 (i.e. q ∼ 0.27), which
is well below the lowest solid densities (q ∼ 0.52 and 0.56
for simple cubic packing and random loose packing, respec-
tively). This breakdown is because Eq. 6 does not consider
lubrication or quadrupolar effects which become important at
short range43. It is therefore logical for our model to deviate
from Eq. 6 at higher volume fractions. The second point is
that our simulations depart from Eq. 6 near q1/3 ∼ 0.4. This
is close to the critical volume fraction for colloids in a sim-
ple cubic lattice separated by a surface-to-surface distance of
3A2 (i.e. q1/3 = 0.32 − 0.54 for 3 = 2 − 6). This distance
is approximately twice the thickness of the interface region
(i.e. 1.0 − 1.5A2 , see Fig. S1 in the supplementary material),
implying that the non-uniform solvent near the colloids may
be starting to affect the HIs. This means that for q1/3 > 0.4,
the applicability of any model is likely to depend on whether it
provides a reasonable description of the solvent structure near
the colloids.

Note that in our model the single colloidal sphere repre-
sented by a mass point has no angular momentum, so the
corresponding rotational diffusion coefficient cannot be ob-
tained.

B. Colloidal rods

We then studied the diffusion of the rod-shaped colloids
shown in Fig. 1 in different sized boxes (see Table S1 in the
supplementary material) using either slip BC (i.e. W;B,0 = 0) or
stick BC (i.e. W;B,0 = 10/3 and 20/3). Figure 6 shows the di-
mensionless translational and rotational diffusion coefficients
(�̃C = V�C[3C and �̃A = V�C[3

3
A ), obtained from simulations

and from continuum theory (see Table S2 in the supplemen-
tary material for the effective diameters), as a function of the
effective volume fraction (qC and qA ). Note that the theoretical
calculations based on Eqs. 1-5 are only valid for the stick BC.

For �̃C , we also see good agreement between the simulation
results and theoretical values (±20%) when q1/3

C < 0.3 at both
W;B,0 = 10/3 and 20/3. These results indicate that: i) theoret-
ical predictions of �̃C for colloidal rods can be reproduced by
our model faithfully at the stick BC; ii) the system-size effect
can be well described by treating these short rods as equiv-
alent spheres with the same diffusion coefficients at relative
low volume fractions (i.e. q1/3

C < 0.3), and the Navier-Stokes
HIs between these colloidal rods are correctly included in our
model. Note that the discrepancies at q1/3

C > 0.3 may be not
entirely caused by the non-uniform solvent around the rods.
The maximum packing density of rods is higher than that of

(a)

(b)

FIG. 6. Dimensionless (a) translational and (b) rotational diffu-
sion coefficient (i.e. �̃C = V�C[3C and �̃A = V�C[3

3
A ) for col-

loidal rods with various values of 3 obtained from simulations with
different box sizes [characterized by the effective volume fraction
q = c3

3/(6!3
1>G
)] at W;B,0 = 0 (empty symbols), W;B,0 = 10/3

(half-filled symbols) and W;B,0 = 20/3 (solid symbols). The dash line
represents the results of continuum theory at stick BC obtained from
Eqs. 1-10. The colored bands show values within ±20% of the theo-
retical predictions. The red dash-dot line in (a) shows a linear fit to �̃C
of colloidal rods with 3 ≥ 2 that have the slip BC. The experimental
diffusion coefficients for gold nanorods from Ref. 31 by Rodriguez-
Fernandez et al. (cross symbols) and Ref. 39 by Nixon-Luke et al.
(plus symbols) are plotted in the grey region.

spheres, which means that the diffusion constant should de-
viate more strongly from the continuum scaling than in the
sphere case. Thus, it is difficult to exactly determine the con-
sistent region between our model and the continuum theory,
but at least for q1/3

C < 0.4, our model still shows reasonable
results compared to the the theoretical calculations.
For the case of the slip BC, �̃C for rods with 3 ≥ 2 ap-

pear to lie on a single curve as a function of qC , suggest-
ing a universal relationship for the system-size effect at the
slip BC. Our simulation results give a linear relationship with
�C = (−1.04q1/3

C + 1.10)�(�,B;8 ?C . For small rods with 3 = 1,
the strong colloid-size effect causes the universal relationship
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to break down.
Moreover, the ratios between �C along the longitudinal and

transverse dimensions (� ‖/�⊥) obtained from simulations
with the stick BC show considerable scatter, but still cluster
around the expected trend vs. !/3 (see Fig. S4 in the supple-
mentary material).

For �̃A , we find that the simulation results with W;B,0 = 10/3
are larger than the theoretical values with the stick BC, espe-
cially for small and short rods (e.g. 3 = 1, ! = 2; 3 = 2, ! = 4
and 3 = 3, ! = 6). This is attributed to the fact that in our
overlapping-sphere model for rods, the velocity at the ends is
simply represented by the center-of-mass velocity of the end
spheres, and thus the friction-drag on a rotating rod is artifi-
cially reduced. Such artificial end-effects are less important
for long rods (e.g. 3 = 1 and ! = 6), and can be offset by in-
creasing the surface friction between the solid spheres and the
solvent particles. For example, when W;B,0 = 20/3, we obtain
better agreement between the simulation results and theoreti-
cal values. Moreover, the system-size effect on �̃A at the stick
BC also exists in the simulations, and agrees with the theo-
retical prediction at sufficiently small volume fractions (i.e.
q

1/3
A < 0.4). Therefore, both the translational and rotational

diffusion of colloidal rods as described by the continuum the-
ory can be faithfully reproduced by our model at W;B,0 = 20/3,
which is comparable to W;B,0 = 10/3 for the stick BC on a flat
solid surface.

In Fig. 6, we also plot experimental results for the diffusion
coefficients of gold nanorods in dilute aqueous solutions from
Ref. 31 by Rodriguez-Fernandez et al. and Ref. 39 by Nixon-
Luke et al.. When converting these results into dimensionless
units, we have taken a 4 nm thick double-layer of CTAB (i.e.
cetyltrimethylammonium bromide) around the rods to calcu-
late the effective rod length and diameter. The same idea
was employed in Ref. 5 where a 10 − 15 nm thick PVP (i.e.
poly-vinylpyrrolidone) layer was included in the effective rod
dimensions in order to obtain reasonable agreement with the
continuum theory. We can see that better agreement between
the experimental and the calculated values can be achieved for
most experimental results when the gold core plus the CTAB
bilayer are treated as a whole rigid body and a stick BC is
applied. This is especially clear for the smaller rods studied
in Ref. 31 (see Fig. S5 in the supplementary material for the
comparison without CTAB bilayer corrections).

We note, however, that there is not universal agreement on
how the CTAB bilayer affects the effective dimensions of the
rods. In Ref. 34, Michael Glidden et al. claimed that including
the CTAB bilayer in the effective nanorod size is unnecessary
or even incorrect in their analysis. The appropriate thickness
of the CTAB bilayer is also unclear: Rodriguez-Fernandez et
al. used a value of 4 nm in their analysis, while in Ref. 35, the
authors used a value of 2 nm to obtain the best match between
theoretical predictions and the measured data; and both of
these two values differ from the thickness measured in another
experiment (i.e., 3.0 − 3.4 nm)60. One possible explanation
for this inconsistency is that the morphology of the bilayer
depends on the CTAB concentration and varies from paper to
paper.

In the nanoscale regime, many factors that influence the

diffusion coefficient (such as breakdown of the stick BC, vari-
ations of local “microviscosity” experienced by the colloids,
and changes in hydrodynamic size in different environments)
could be present in any given case, and it is difficult to figure
out the exact causes of small departures from the continuum
theory. Considering these uncertainties, we find that the con-
tinuum theory applies fairly well for nanorods when some
reasonable corrections are taken into account. Thus, our DPD
model, which can well reproduce the diffusion behavior of
colloidal rods described by the continuum theory in dilute so-
lutions, should be a useful tool for studying the dynamics of
rod-shaped nanoparticles, including phenomena such as self-
assembly and phoretic transport.

V. CONCLUSIONS

In this work, we have developed a coarse-grained model
for colloidal rod suspensions based on the dissipative parti-
cle dynamics (DPD) method: while the solvent is explicitly
represented by conventional DPD particles, the colloidal rods
are modeled as a rigid chain of overlapping solid spheres that
interact with the solvent particles via a hard repulsive poten-
tial. In addition, a surface friction is employed to control the
boundary condition at the rod/solvent interface. Diffusion co-
efficients obtained using this model, for both colloidal spheres
and rods, were compared with continuum theory.
Both the translational diffusion coefficient for colloidal

spheres and the translational/rotational diffusion coefficients
obtained for rods show good agreement with theoretical calcu-
lations based on the size defined by the hard repulsive potential
at the slip/stick boundary. The results show the same depen-
dence on system size as predicted by the continuum theory for
volume fractions where q1/3 < 0.4, showing that the Navier-
Stokes hydrodynamic interactions are also correctly included
in the model in this concentration range. At higher concentra-
tions, our model shows a logical departure from the continuum
theory, with its accuracy likely to depend on how well it ac-
counts for non-uniformities in the solvent structure around the
colloid.
Many experiments show that the diffusion of gold nanorods

in dilute solutions can be well described by continuum theory
as long as a reasonable correction to their effective hydrody-
namic sizes is considered based on the thickness of the ligand
layer around them. Thus, our model should be applicable
to the study of other dynamic phenomena in such nanorod
suspensions.
Compared to implicit-solvent methods such as BD19 and

DMC simulations21, our model with explicit solvent particles
is more computationally expensive, but it has a clear advan-
tage for solving some problems in which hydrodynamics must
be taken into account. For example, for the colloidal trans-
port driven by an electric field (i.e. electrophoresis) or a so-
lute concentration gradient (i.e. diffusiophoresis)61, treating
solvent dynamics explicitly is necessary to obtain the correct
colloidal dynamics62. On the other hand, compared to explicit-
solvent models with other coarse-graining strategies, such as
the lattice Boltzmann (LB) method63, stochastic rotation dy-
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namics (SRD)22, and Fluid Particle Dynamics (FPD)64, the
DPD model naturally describes Brownian dynamics and is
readily extended to more complex system such as charged sus-
pensions. For example, we have recently used our DPD model
to study the oriented assembly of charged gold nanorods in the
presence of an electric field10.
More generally, the current work provides a clear starting

point from which the model could be extended to explore
the solution dynamics of other colloidal particles (e.g. Janus
rods37 or helical rods65) and in more complex situations (e.g.
in more concentrated suspensions66 or in confined spaces67).

SUPPLEMENTARY MATERIAL

See supplementary material for velocity profiles around a
colloidal sphere in a flow field, determining the diffusion co-
efficient from the MSD/RMSD, size of simulation boxes, ef-
fective diameter of colloidal rods, translational diffusion co-
efficients of colloidal spheres at larger surface frictions, ratio
of translational diffusion coefficient along the longitudinal and
transverse dimensions, and comparison between experimental
diffusion coefficients of nanorods and theoretical predictions
without CTAB bilayer corrections.
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SUPPORTING INFORMATION

1. Velocity profiles around a colloidal sphere in a flow field

(a) (b)

FIG. S1. The (a) density and (b) velocity profiles for the liquid particles near a solid sphere with 3 = 2 in a flow field at different values of
W;B,0. The orange block represents the solid core and the grey block represents the friction shell. The simulations were performed with a cubic
box of size !1>G = 8 with a solid sphere fixed at the center. A constant force along +G acted on all liquid particles during the simulations,
resulting in a flow field with the apparent shear rate ¤W ∼ 0.01 (or ln ¤W ∼ −4.6). In (b), EG shows the liquid velocity perpendicular to the H − I
plane crossing the center-of-mass of the solid sphere as shown in the insert figure.

2. Determining the diffusion coefficient from the MSD/RMSD

(a) (b)

FIG. S2. Linear fitting of the (a) MSD and (b) RMSD obtained from simulations of the colloidal rod with 3 = 2 and ! = 4 in a box of size
!1>G = 20 at W;B,0 = 20/3. The slopes of the linear fits show the corresponding translational diffusion coefficient �C ∼ 0.007 A2

2g
−1 and

rotational diffusion coefficient �A ∼ 0.0012 g−1.
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3. Size of simulation boxes

TABLE S1. Size of simulation boxes used for each colloidal particle.

shape diameter (3) length (!) aspect ratio (?) box size (!1>G)
1 1 1 4, 5, 6, 8, 12, 20
2 1 1 4, 5, 6, 8, 12, 20

sphere 3 1 1 5, 6, 8, 12, 20
4 1 1 6, 8, 12, 20
5 1 1 8, 12, 20
6 1 1 8, 12, 20
1 2 2 4, 5, 6, 8, 12, 20
1 3 3 5, 6, 8, 12, 20
1 4 4 6, 8, 12, 20
1 5 5 8, 12, 20

rod 1 6 6 8, 12, 20
2 4 2 6, 8, 12, 20
2 5 2.5 8, 12, 20
2 6 3 8, 12, 20
3 6 2 8, 12, 20

4. Effective diameter of colloidal rods

TABLE S2. Effective diameter of the equivalent sphere for each colloidal rod.

diameter (3) length (!) aspect ratio (?) effective diameter for �C (3C ) effective diameter for �A (3A )
1 2 2 1.58 1.77
1 3 3 1.89 2.30
1 4 4 2.18 2.82
1 5 5 2.46 3.33
1 6 6 2.73 3.83
2 4 2 3.17 3.54
2 5 2.5 3.47 4.08
2 6 3 3.78 4.61
3 6 2 4.75 5.32
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5. Translational diffusion coefficients of colloidal spheres at larger surface frictions

FIG. S3. Dimensionless translational diffusion coefficient (�̃C ) for colloidal spheres with various values of 3 obtained from simulations with
different box sizes at W;B,0 = 30/3 (empty symbols), W;B,0 = 50/3 (half-filled symbols) and W;B,0 = 100/3 (solid symbols). The dash-dot (dash)
line represents the results of continuum theory at slip (stick) BC obtained from Eq. 6 and 7. The colored bands show values within ±20% of
the theoretical predictions.

6. Ratio of translational diffusion coefficient along the longitudinal and transverse dimensions

FIG. S4. Ratio of translational diffusion coefficient along the longitudinal and transverse dimensions (� ‖/�⊥) for colloidal rods obtained
from simulations at W;B,0 = 10/3 (half-filled symbols) and W;B,0 = 20/3 (solid symbols). The dash line is the theoretical prediction according
to Eqs. 1, 2 and 5.

7. Comparison between experimental diffusion coefficients of nanorods and theoretical predictions without CTAB bilayer
corrections
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(a) (b)

FIG. S5. The same as that of Fig. 6 in main text, except that the thickness of CTAB bilayer is not included in the effective rod dimensions when
scaling the experimental data.


	A dissipative particle dynamics model for studying dynamic phenomena in colloidal rod suspensions
	Abstract
	Introduction
	Theory
	Continuum theory for diffusion of rod-shaped particles
	System-size dependence

	Model and method
	Model for colloids and solvent
	Simulation method
	Slip and stick boundary conditions
	Determining the viscosity of the liquid
	Determining the diffusion coefficient of colloidal particles

	Results and discussions
	Colloidal spheres
	Colloidal rods

	Conclusions
	supplementary material
	Acknowledgments
	Data Availability Statement
	Supporting Information
	Velocity profiles around a colloidal sphere in a flow field
	Determining the diffusion coefficient from the MSD/RMSD
	Size of simulation boxes
	Effective diameter of colloidal rods
	Translational diffusion coefficients of colloidal spheres at larger surface frictions
	Ratio of translational diffusion coefficient along the longitudinal and transverse dimensions
	Comparison between experimental diffusion coefficients of nanorods and theoretical predictions without CTAB bilayer corrections



