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Abstract

This thesis delves into the domain of 3D data analysis, an area of immense significance

in fields including computer graphics, virtual reality, and medical imaging. While 2D data

has been extensively studied in computer vision, 3D data introduces an additional layer of

complexity, either due to an added spatial dimension or a temporal aspect in video data. This

research focuses on three forms of 3D data: point clouds, human meshes, and face videos.

In point cloud analysis, we focus on key tasks including classification, segmentation,

and semantic segmentation. We first investigate medical point clouds, where we propose a

transformer-based model with a novel attention mechanism and a graph reasoning module

for classification and segmentation tasks. We also introduce a method for rotation-invariant

feature learning, improving analysis robustness and computational efficiency.

Moving to 3D human modeling, our work explores text-guided human texture generation.

Traditional 3D modeling techniques often fall short in capturing the nuanced textural details

of human models. We use a deep learning framework, combining diffusion generative

models with physically based rendering and a 3D coordinate network. This method generates

high-quality textures and ensures they align semantically with input texts.

In the realm of face video data, we begin by proposing a generative adversarial network

pipeline for synthesizing faces and predicting micro-expression labels. We also introduce

a large-scale face video dataset, complete with textual descriptions, and present a novel

text-to-face generation model using bidirectional transformers and an innovative video token

technique. Our experiments demonstrate both the superiority of our method and the high-

quality face dataset.

Overall, this thesis contributes significantly to 3D data processing, showing great potential

in point cloud analysis, 3D human modeling, and face video processing, promising research

and practical advancements.
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CHAPTER 1

Introduction

Three-dimensional (3D) data represents information that exists in three dimensions or axes,

where 3D data take into account not only length and width but also depth or height, often used

to describe objects or environments in the real world. 3D data plays an increasingly crucial

role in numerous domains, including autonomous driving, computer graphics, and medical

imaging [64, 249, 39].

Traditional forms of 3D data include 3D mesh models and 3D point clouds [90, 203]. However,

for a thorough investigation of 3D data, we follow [90] which considers a video as 3D data,

where time is considered as the third dimension along with spatial dimensions (width and

height) of the frames. In this thesis, we consider three forms of 3D data: 3D point clouds, 3D

human meshes, and face videos. Despite the substantial potential of these data types, their

unique characteristics pose significant challenges. In this section, we give brief introductions

and challenges, respectively.

FIGURE 1.1. Specific data Forms of three-dimensional data. We give detailed type
of data examined this thesis: point clouds, human meshes, and face videos.

1
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1.1 3D Point Clouds

Point cloud data, due to its unstructured and unordered nature, requires specialized handling.

Key challenges in point cloud analysis include the handling of noise, the need for computa-

tional efficiency, and the extraction of semantic understanding from complex 3D structures.

This is particularly evident in tasks such as classification and segmentation [67]. The advent

of deep learning methods specifically for 3D methods [164, 166, 231, 86] has provided a

pathway to address these challenges. For example, PointNet [164] directly feeds the 3D

coordinates of points into the convolution-based network and presents a better performance

on shape classification than project-based methods [165, 142, 237], which regularize the

structure of 3D points by voxelization or projection, leading to the loss of intrinsic geometric

information.

1.1.1 Challenges

Although recent advancements in point cloud analysis have demonstrated great success on

the shape classification and segmentation tasks, there still remains challenges:

• Existing models can perform well on general 3D datasets, but they could fail on

medical point clouds due to the domain gap and the irregular topology introduced in

medical data.

• 3D objects are normally rotated and their poses are unknown in real scenarios, which

can largely impact the deep learning models that are sensitive to rotations.

In the following, we give more detailed analyses of the abovementioned challenges. We give

our solutions for dealing with medical point clouds in Chapter 2 and rotated point clouds in

Chapter 3.



1.1 3D POINT CLOUDS 3

FIGURE 1.2. Visualization of data difference between medical and non-medical point
clouds. Top part: 3D medical point clouds in IntrA [249] with complex and diverse
topology. Bottom part: 3D general point clouds in ModelNet40 [237] with informative
semantic structures and symmetry.

1.1.2 Medical Point Clouds

Medical point cloud data has become increasingly critical in numerous applications related

to healthcare and medical research, spanning from surgical planning to diagnostic analysis,

and from patient-specific implant design to the development of prosthetics [249]. Accurate

pathological segments of medical data are important for disease diagnosis and treatment.

However, 3D medical data can contain incomplete pathological structures, which are hard to

distinguish from healthy parts within an object.

For point clouds of general objects (bottom part of Figure 1.2), they usually present a similar

pattern for non-medical datasets. In contrast, as shown in the top part of Figure 1.2, medical

point clouds of the same class have more diverse and complex shapes in geometry and

topology, which introduce difficulties for object classification or segmentation. Insufficient

samples of medical data also make it difficult to learn distinctive shape descriptors. Hence,
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it is essential to design an effective deep learning method which can demonstrate good

performances on medical data and also generalize well on non-medical data.

1.1.3 Rotated Point Clouds

A particular challenge in the analysis of 3D point clouds is rotation invariance. In many

real-world applications, the same object or scene can be observed from different angles or

orientations, resulting in rotated versions of the same point cloud. This can significantly

affect the performance of learning algorithms that are sensitive to input orientation, leading to

inconsistent and unreliable results. As shown in Figure 1.3, PointNet trained with 3D objects

in the canonical pose fails to recognize the same object seen from a random angle.

FIGURE 1.3. Errors introduced to model capability on shape classification, part
segmentation, and model retrieval by unknown rotations on rotation-sensitive deep
learning models such as PointNet [164].

To embed rotation invariance property to existing methods for point cloud analysis, a straight-

forward way is augmenting training data with massive rotated point cloud samples which,

however, requires a large memory capacity and exhibits limited generalization ability to

unseen data [103]. Recently, some approaches have been proposed to embed the network with

rotation invariance. Works such as [59, 43, 253] project 3D raw points to meshes and process

data with spherical convolutions. However, they are still sensitive to rotations due to point

cloud projections and lack equivariant non-linearity. Therefore, others propose to replace raw
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FIGURE 1.4. Data structure difference between 3D meshes and 3D point clouds,
where 3D meshes present connectivity information between vertices and face inform-
ation, while point clouds are sparse without connectivity information. Models (public
domain) by Keenan Crane.

points with rotation invariant features as model inputs. RI-GCN [103] designs features based

on local reference frames (LRFs), i.e., a local coordinate system. Although local geometric

cues between points are preserved, the loss of global information could hinder the model

performance. Further works such as [116, 256] utilize features from both local and global

domains, which however did not investigate how to fully integrate knowledge from these two

domains. Therefore, developing an effective method for rotated point cloud processing is

urgent.

1.2 3D Human Meshes

As another primary representation of 3D data, a 3D mesh is a collection of vertices, edges,

and faces that define the shape of a 3D object. The vertices are points in 3D space, edges are

lines connecting pairs of vertices, and faces are polygons formed by three or more connected

edges. Unlike point clouds that are sparse and have no connectivity information as shown in

Figure 1.4, 3D meshes contain connectivity information, which means that each vertex, edge,

and face knows what it is connected to. This information can help in identifying the structure

of the object. Moreover, 3D meshes include topological consistency, enabling operations such

as smoothing, simplification, and parametrization can be performed on them, which is useful

in applications like computer graphics and geometric modeling.



6 1 INTRODUCTION

In this thesis, we focus on human meshes, as opposed to general meshes, which offers

several important advantages and opportunities for research and application, largely due to

the significance of human models in many domains. For example, detailed 3D human mesh

models enable sophisticated human-computer interaction [211], and in the realm of computer

graphics, human meshes can lead to more accurate and natural-looking character models and

animations [213].

1.2.1 Challenges

Here we present the challenges associated to human mesh models, so that we would like to

address to make the human mesh modeling more practical and useful in real world scenarios:

• Most human mesh models contain no textures (see Figure 1.5), such as ScanDB [71]

and Caesar [88], while texture acts an important role as human perception is particu-

larly sensitive to the texture. Designing a high-quality and detailed texture is also a

challenging task.

In the following, we give more detailed analysis of the challenges about 3D human mesh

modeling as well as texture generation. We present our solutions in Chapter 4.

1.2.2 3D Human Texture Generation

The domain of 3D human texture estimation has seen remarkable advancements in recent

years. Some approaches [4, 5, 6] address this challenge by employing multi-view images

as input, from which they synthesize 3D avatar textures by merging textures derived from

varying perspectives. Alternatively, other methods [7, 271, 163] reconstruct human textures

using monocular images. However, these works typically require 3D supervision obtained

through 3D scanning, a process that is both labor-intensive and costly. Recent methods

address this problem without 3D labels [244, 62], which are more applicable for real-world

usage. However, they still lack control over the texture generation process as the final results

are completely determined by the input image.
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FIGURE 1.5. Dataset visualization of (a) Caesar [88] and (b) ScanDB [71]. Caesar
contains 4300 registered meshes of 6890 vertices and 12K triangles. ScanDB contains
550 full body 3D scans of 114 subjects, each of which are scanned in at least 9 poses
sampled randomly from 34 poses.

Input Base Mesh Human Mesh

Input text: a man in a navy suit 
with a tie and belt

Textured Human Mesh

Texture 
Generation

Shape 
Generation

FIGURE 1.6. Overview of our methods for human avatar texturing, where we generate
human textures given the rendered shape geometry and the input text again for high-
quality and detailed textured human generation.
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To generate textures to a high degree of freedom, as shown in Figure 1.6, we consider textual

descriptions a direct and convinient way for 3D avatar texture synthesis, where rendered

human avatar contains high-quality and detailed textures semantically aligned with input

texts. Due to the success of text-to-image generation which leverages the diffusion generative

model [159, 80] and Score Distillation Sampling (SDS) [162], the parametric human image

generator using the 2D diffusion model as a prior can be optimized. Hence, zero-shot 3D mesh

texturing guided by textual descriptions are made possible. However, generating a texture map

for a 3D human avatar in a zero-shot manner is challenging due to two reasons. First, SDS

tends to guide the model to converge towards a specific mode, resulting in over-smoothed or

blurry human body parts, or rendered human image not being faithfully semantic with the

input texts. Second, the generated texture maps are often semantically unaligned with the

human mesh surface or missing textures for complex garment details.

Generating a 3D human texture is normally posed as an image inpainting task (i.e., TEX-

Ture [175] and Text2tex [31]), which utilize the prior knowledge of two Stable Diffusion

models [176] for incremental texture inpainting. However, the alignment of rendered images

under different viewpoints could not be guaranteed for the human texture generation task.

Moreover, due to the lack of knowledge of the human meshes, complex garment details such

as clothes wrinkles may not be textured, or textures of different clothing items can be hard to

distinguish and merged together. On the other hand, methods such as Latent-Paint [144] or

Fantasia3D [34] capitalize on SDS by distilling the prior information of a pre-trained diffusion

model for texture generation via differentiable rendering. Although the meshes can produce

textures aligned to human meshes, they also produce unfaithfully semantic textures with input

texts. Moreover, despite the usefulness of SDS, one of the primary issues associated with

SDS is its gradient direction might converge to a specific mode, which causes non-detailed

and over-smoothed body parts.
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1.3 Face Videos

When we traditionally consider a video, we consider it as a 2D sequence of images, while it

is more appropriate to consider video as 3D data, where two dimensions represent the spatial

information (height and width) of each frame, and the third dimension is time, representing

the sequence of frames. This spatial-temporal nature of videos makes them a form of 3D

data [90].

In this thesis, we study take face videos as our main research object. Studying face videos in

the deep learning domain holds great potential and significance due to two reasons: 1) Emotion

recognition: Human facial expressions are a rich source of non-verbal communication that

carry essential information of the emotional state of a person. Deep learning models trained

on face videos can identify subtle emotion changes (i.e., micro-facial expression recognition)

and help in contributing to fields such as human-computer interaction, psychology, and health

care [202]; 2) Synthesis and editing: Deep learning models can generate or modify face videos,

which is crucial for research purposes, movie production, animation, or game development.

1.3.1 Challenges

Here we present existing challenges when processing face video data:

• General deep learning-based models can recognize and generate fake videos with

macro-expressions. However, developing a model for micro-expressions recognition

and synthesis can be more challenging than macro-expressions, because micro-

expressions display unconscious feelings with low facial expression density that is

hard to be accurately perceived by deep learning models.

• Although video generation models conditioned on texts are flourishing in video

generation and editing. However, face-centric text-to-video generation remains a

challenge due to the lack of a suitable dataset containing high-quality videos and

highly relevant texts, resulting in generated face videos of low-quality or low control

on the generated face videos using textual descriptions.
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In the following, we give more detailed analysis of the challenges related to video-based

micro-expressions recognition tasks and text-guided face video generation task. Detailed

solutions are to be presented in Chapters 5 and 6.

1.3.2 Micro-Expression Face Video

Video-based micro-expressions (MEs) contain subtle facial expression change that can be

hardly perceived by untrained observers, making it a challenging task. It has attracted an

increasing number of researchers into the study of micro-expression recognition (MER) due

to its practical applications in lie detection and disease diagnosis [156, 143, 235]. There have

already been many successful works proposed for general expression recognition (also known

as macro-expression recognition), but the domain of MER is poorly-explored mainly due to 1)

existing methods cannot handle facial expressions with low density and 2) lack of large-scale

ME datasets to support extensive MER studies.

Hand-engineered methods such as Facial Action Coding System (FACS) [44] are applied

to recognize facial expressions. FACS focuses on muscles that produce facial expressions

and measures the movement with the help of action units (AUs). Two systems are further

developed: the Micro Expression Training Tool (METT) and Subtle Expression Training

Tool (SETT) [96]. However, the best classification accuracy achieved by METT/SETT is

still not satisfactory because the result is heavily affected by humans, making the detection

unconvincing and unstable. Local binary pattern (LBP) and local quantized pattern (LQP) are

later developed [143], and LBP with three orthogonal planes (LBP-TOP [265]) has shown

superiority in processing facial images. However, these geometry-based methods rely heavily

on the proposed images and can be easily affected by global changes.

With the development of deep learning technologies, works have been proposed based on data-

driven approaches utilizing the convolutional neural network (CNN) for micro-expression

recognition [101, 130, 209]. However, CNN-based methods are invariant to translations and

are unable to encode positional relations and and orientation information of different facial
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entities. Furthermore, due to the data scale limitation of facial expression samples, data-driven

model performance can be heavily constrained.

1.3.3 Text-guided Face Video Generation

Text-driven general video generation has recently garnered significant attention in the field

of computer vision and computer graphics. By using text as input, video content can be

generated and controlled, inspiring numerous applications in both academia and industry [119,

13, 171, 151].

However, text-to-video generation still faces many challenges, particularly in the face-centric

scenario where generated video frames often have weak relevance to input texts [12, 272, 141,

3]. We believe that one of the main issues is the absence of a well-suited facial text-video

dataset containing high-quality video samples and text descriptions of various attributes highly

relevant to videos.

Constructing a high-quality facial text-video dataset poses several challenges, mainly in three

aspects: 1) Data collection. The quality and quantity of video samples largely determine the

quality of generated videos [230, 155, 41, 178]. However, obtaining such a large-scale dataset

with high-quality samples while maintaining a natural distribution and smooth video motion is

challenging. 2) Data annotation. The relevance of text-video pairs needs to be ensured. This

requires a comprehensive coverage of text for describing the content and motion appearing

in the video, such as light conditions and head movements. 3) Text generation. Producing

diverse and natural texts are non-trivial. Manual text generation is expensive and not scalable.

While auto-text generation is easily extensible, it is limited in naturalness.

Besides the effect brought by face-centric dataset, existing methods for conditional video

generation often generate face video of low quality [68, 131, 119]. Most of the methods

apply conditional GAN variations to video data. Despite certain achievements, they face the

following constraints: (1) The generator network utilizes 3D transposed convolution layers,

resulting in the synthesized videos of fixed length only. (2) Their model inputs are designed

to take videos of low resolution, displaying results solely at a 64×64 resolution. (3) Encoded
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video and text features are simply concatenated for further processing, which could cause

information loss and could be difficult to extract rich text-video relations.

Hence, developing a new dataset including paired texts and face videos and designing an

effective methods for text-conditioned face video generation is quite urgent.

1.4 Thesis Contributions and Organization

In this thesis, we take further research to tackle the challenges in all three mentioned 3D data

types: point clouds in Section 1.1.1, human meshes 1.2.1, and face videos 1.3.1. Based on

different learning objectives, the main body of this thesis is divided into four parts to address

the challenges observed in the abovementioned three kinds of data types.

In Chapter 2, we propose a deep learning-based model to deal with medical point clouds,

where we design a transformer-based architecture to process the irregular data topology

and the data domain gap imposed by medical point clouds as mentioned in Section 1.1.1.

Our method is constructed with a novel transformer-based model, specifically tailored to

analyze intricate structures in medical point cloud data, such as those found in organ-specific

scans or disease-specific anomalies. Our attention module improves existing techniques by

augmenting contextual information and summarizing local responses at the query, thereby

capturing a comprehensive picture of both local context and global content feature interactions.

Recognizing that insufficient training samples in medical data can lead to poor feature

learning, we introduce two modules to address this issue: 1) We utilize position embeddings

to accurately understand local geometric structures; 2) We deploy multiple graph-based

reasoning blocks to examine the global knowledge propagation over feature channels to

enrich feature representations. The content of this chapter is based on my previous work [7]

in the publication list.

In Chapter 3, we propose a novel method to extract rotation invariant features from randomly

posed point cloud samples, such that we could tackle the problem mentioned in Section 1.1.1.

We consider rotation invariance as a variant of point cloud registration task and proposes an
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effective framework for rotation invariance learning by firstly encoding low-level rotation

invariant shape descriptors extracted from local patches and global topology. We then

introduce a novel position encoding module that leverages angle differences between different

reference frames to align the features learned from local and global ranges. The aligned

features are integrated by a customized attention mechanism which is embedded in our

transformer architecture design, with a final feature integration module to ensure the rotation

invariance by using a contrastive loss function. The content of this chapter is based on our

previous publication [3] in the publication list.

We address the problem associated with 3D human meshes on texturing in Chapter 4, where

we generate human textures conditioned on textural descriptions. Due to Score Distillation

Sampling (SDS) introduced in [162] along with prior information of the pre-trained text-

to-image diffusion model [176], zero-shot 3D content generation conditioned on textual

descriptions are made possible. Inspired by physically based rendering (PBR) and the

Bidirectional Reflectance Distribution Function (BRDF) [98], we propose our method to

synthesize human avatar textures given the mesh model and the textual descriptions in a

zero-shot manner. We design a novel score function based on a pre-trained depth-to-image

diffusion model [80, 176], which enables the generation of high-quality rendered human

images. In addition, we employ a coordinate-based network (i.e., Instant-NGP [154]) to

estimate the BRDF model for surface materials prediction, which ensures the generated

texture is semantically aligned with human mesh surfaces. Our rendering model is made

differential with BRDF for photorealistic human texturing. The content of this part is based

on [1] in our publication list.

In Chapter 5, we tackle the challenge of generating and classifying micro-expression face

videos. Specifically, we present a method for video-based micro-expression recognition

and synthesis problem. We first use an encoder-decoder network to learn the original data

distribution with identity information, where a Graph Reasoning Module (GRM) is applied

between the encoder and decoder networks for effective feature learning. We then use a

Generative Adversarial Network (GAN) [63] to synthesize new face samples. By combining

the identity-aware embedding and the class label, our GAN can generated new face samples
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with controlled micro-expressions in an identity-aware manner. Lastly, we propose an

approach based on the Capsule network [180] to encode the translation and relative position

information between different facial entities. The Capsule network is used for two purposes:

1) It enables the micro-expression recognition with a classifier; 2) It acts as an essential

module for GAN as a discriminator to distinguish whether the input data is fake or real. This

chapter is developed based on our publication [6] in the publication list.

In Chapter 6, we introduce a large-scale facial text-to-video dataset and a text-guided face

video generation method for realistic face video generation. First, we introduce the detailed

step of data collection, analysis and an automatic generation pipeline for textual descriptions

given each face video. Second, we propose a generation framework conditioned on textual

descriptions, where we utilize quantized representations for videos [176], and employ a

bidirectional transformer [210]. The transformer takes both text and video tokens as inputs to

generate discrete video tokens. To enhance video quality and ensure consistency, we introduce

a novel video token, which is trained through a self-learning mechanism. We also introduce

text interpolation on temporal domain to improve the alignment between textual descriptions

and generation videos. The methods, results, and discussions in this chapter are based on our

published work [2] in our publication list.

In Chapter 7, we draw our conclusions from the research presented in this thesis, encapsulating

the key findings, their implications, and the value of our work. Furthermore, recognizing that

the field of 3D data analysis continues to evolve, we also outline future research directions.



CHAPTER 2

Deep Learning-based Analysis for Medical Point Clouds

The inherent complexity of point cloud data, especially for its unstructured and unordered

nature, necessitates the use of specialized tools and techniques for its effective analysis.

Challenges related to point cloud analysis include the mitigation of noise, the need for efficient

computational strategies, and the extraction of salient semantic insights from complex 3D

geometries, etc. The advent of deep learning methods[164, 166] specifically designed for

handling 3D data provides a promising strategy to tackle these obstacles. In this chapter,

we aim to address the issue proposed in medical point clouds. Specially, we introduce an

attention-based network with graph neural networks to examine the irregular topology and

complex shape of medical point clouds. Our method demonstrates superior results on medical

point cloud classification and segmentation tasks, and also perform well on general point

cloud datasets when compared to existing SoTA methods.

2.1 Introduction

Inspired by the success of Transformer in both natural language processing and computer

vision domains [55, 25, 53, 210], we propose an attention-based model for the medical point

cloud processing. Self-attention is inherently order-invariant because attentional weights

between the query and key remain the same if the input order is changed, which introduces

permutation invariance, making it suitable for handling 3D point clouds. Moreover, attention

can model long-range dependencies and learn expressive features. Based on these perspectives,

we decide to analyze the medical point clouds based on attention layers. To address the issue

of the irregular layout intrinsic to medical data, we augment the input feature with contexts
15
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from local neighborhood before each attention module, making our network context-aware.

Meanwhile, the contextual information at query is further summarized via convolution to

generate holistic geometric features. Moreover, due to the small-scale medical dataset

compared to general ones, we learn diverse positional embeddings at query, key and value,

and we propose Multi-Graph Reasoning to concurrently establish multiple channel graphs

over the same feature nodes, with variant learnable adjacency matrices to enrich feature

expressions.

Contributions of this work for addressing 3D medical point clouds are summarized as follows:

(1) We propose a Transformer-based network, namely 3DMedPT, to capture local context

interactions via attention, and introduce convolution into Transformer to summarize

global point features to obtain global content exchange within medical point clouds.

(2) We apply positional embeddings to address the irregular geometries of medical data.

(3) We design Multi-Graph Reasoning which captures global relations among feature

channels to enrich the representational power of medical features at deep layers.

(4) Our model ranks the 1st in both classification and segmentation tasks in IntrA bench-

mark and reveals good generalization ability on ModelNet40 and ShapeNetPart.

2.2 Literature Review

2.2.1 3D General Point Clouds

Existing methods propose 3D deep learning models for general point clouds. Methods such

as [164, 166, 128] apply point-wise Multi-Layer Perceptrons (MLPs) to analyze the 3D

points. PointNet [164], as shown in Figure 2.1, is a pioneer and fundamental that processes

3D general point clouds with shared MLPs, where the geometry information is further

aggregated via pooling layers. However, PointNet is unable to extract point relations within

local geometry, which degrades the model performance on segmentation. Later work such as

PointNet++ [166] as shown in Figure 2.2 investigates the underlying geometry by grouping

information from local geometry. Other works [118, 231, 199, 218] handle point clouds
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FIGURE 2.1. Model architecture of PointNet [164].

FIGURE 2.2. Model architecture of PointNet++ [166], which effectively extracts
geometric information from local shape regions in a hierarchical manner.

with continuous convolutional kernels, while others [223, 243, 217] utilize graphs and graph

convolution for point-wise feature encoding to learn local 3D structures. However, these

methods all adopt MLPs to process point features, which constrains the model ability in

capturing more expressive shape information.

Later works such as [200, 197] are purely based on MLPs, which explore the strength of MLPs

for processing 3D point clouds. MLP-mixer [200] and Synthesizer [197] are two pioneers in

this stream that are solely built based on MLPs. PointMixer [38] is the first work that uses

MLP-like structures for point cloud analysis, where the query point feature is aggregated and
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FIGURE 2.3. 3D models of intracranial aneurysm segments from IntrA [249].

updated from different dimensions. However, PointMixer cannot perform well on the shape

classification task.

2.2.2 3D Medical Point Clouds

Due to the Advent of a publicly available 3D intracranial aneurysm dataset (shown in Fig-

ure 2.3), IntrA [249], the investigations of points-based and mesh-based classification and

segmentation models using deep learning methods are made available. Different from 3D

general point clouds, the data collection in medical domain is inefficient and dataset size is

small. Although objects of arbitrary shapes can reveal critical information rather than simple

Euclidean geometry, the analysis and modeling of these objects of complex shapes need

special treatment. For medical point cloud processing, works such as [20, 73] directly borrow

PointNet/PointNet++ for vessel labeling and aneurysm segmentation, and [11] modifies Point-

Net with a hand-engineered geometry learning algorithm. Nonetheless, these works are still

MLP-based, and the issue of complex and incomplete geometry of medical data cannot be

well addressed. In contrast, we process medical point clouds based on Transformer network

in an effective manner.
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FIGURE 2.4. Scaled Dot-Product Attention (left) and Multi-Head Attention (right)
architectures taken from [210].

2.2.3 Transformer

Transformer [210] has shown great success in natural language processing (NLP) and ma-

chine translation tasks [53, 250], which also encourages popular applications for 2D image

processing [55, 25, 225, 132]. In the following, we review the implementation of the attention

mechanism introduced in Transformer within the context of 3D point clouds. The detailed

architecture for the attention mechanism is shown in Figure 2.4.

Suppose we are given an unordered set of N point features P ∈ RN×C with C feature

channels. Three matrices can be learned through linear mappings:

Q,K,V = PWq,PWk,PWv, (2.1)

where Q,K ∈ RN×Ck and V ∈ RN×Cv have output feature dimensions of Ck and Cv,

respectively, and Wq, Wk ∈ RC×Ck , and Wv ∈ RC×Cv are learnable weights. Following the

terms defined in [210], Q,K,V are noted as query, key, and value matrices, respectively, and

the self-attention operation is formulated as follows:

Attn(Q,K,V) = softmax
(
QK⊤
√
Ck

)
V. (2.2)



20 2 DEEP LEARNING-BASED ANALYSIS FOR MEDICAL POINT CLOUDS

As shown in Eq. 2.2, global attention weights calculated from Q and K have a time complexity

O(N2Cv) and space complexity O(N2 +NCk +NCv), which increase quadratically when

N increases and consumes much computational resources.

Due to the quadratic computational cost of attention matrix implementation, a large amount of

memory space is needed to deal with even short input sequences. A number of methods have

been devoted to designing efficient attention implementations. Works such as [179, 37, 105]

use sparse matrices with strict constraints for efficient attention computation. Other works [40,

15, 99, 216] employ kernel factorization or matrix factorization to reduce the computational

overhead.

Here we present the mathematical expressions of Lambda attention:

Attn(Q,K,V) = Q
(
softmax(K)⊤V

)
, (2.3)

where keys are normalized through the softmax function, and softmax(K)⊤V ∈ RCk×Cv is

termed as content lambda [15], where each query can interact with the content lambda in a

linear form. Therefore, the time and space complexities are O(NCkCv) and O(NCk+NCv+

CkCv), respectively, where the computational cost could be largely reduced when Ck ≪ N .

For efficient computation, we choose Lambda attention as our baseline model for medical

point cloud processing. Lambda attention [15] reinterprets the attention as similarity kernels

so that linear computations of attention are achieved, and axial-attention [216] decomposes

2D attention matrix into two 1D matrices along the width and height dimensions. Recently,

the Swin Transformer [132] uses shifted windows to save computational cost. However,

different from the initial purpose of Lambda attention in the 2D domain, we modify input

features by augmenting local contexts and relative positional bias to address the complex

topology and irregular geometries of 3D medical point clouds.

Most recently, several Transformer-based networks have been proposed for general 3D

point cloud analysis. PCT [66] utilizes input embedding and offset attention to improve the

network behavior. Point Transformer [266] modifies vector attention with relative positional

embeddings to construct hierarchical attention layers for point cloud analysis. In this work,
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we propose an attention-based model that specifically works for medical point clouds with

good generalization ability on non-medical datasets as well.

Convolutions have also been introduced into the Transformer block to utilize the effective-

ness of CNNs, either by replacing multi-head attentions with convolution [228] or adding

more convolutional layers to capture local correlations [232, 133]. Different from all the

previous works, we propose convolution operation (i.e., EdgeConv [223]) solely on query

features to summarize local responses from unordered 3D points to generate global geometric

representations, of which the purpose is totally opposite to [133].

2.2.4 Graph-based Reasoning

We first review the idea of Graph Convolutional Network (GCN). Given the edge E and nodes

V in a graph G = (V , E), the goal is to learn a function of signals/features on the graph

with (1) a feature matrix X ∈ RN×D, where N is the number of nodes and D is the feature

dimension, and (2) an adjacency matrix A ∈ RN×N that describes the relation of nodes in

the graph. Using the input feature and the adjacency matrix, the aim is to learn a node-level

output Z ∈ RN×F , where F is the output feature dimension and graph-level output can be

summarized via pooling [57]. Then we can use the non-linear function to represent each

layer:

H(l+1) = f(H(l), A), (2.4)

where H(0) = X and H(L) = Z, with L being the number of layers. Then the layer-wise

propagation function is defined as:

f(H(l), A) = σ
(
AH(l)W (l)

)
, (2.5)

where W (l) is the weight matrix for l-th layer, and σ is a non-linear activation function (e.g.,

ReLU). For details about GCN, please read [104].

Recently, graph convolutions [104] have been adopted to capture relations between objects.

Graph-based reasoning has been adopted to achieve global relation reasoning over 2D image

graphs [261]. However, general graph convolutions can only be safely applied when node
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connections are known, reasoning over point clouds is challenging since no link information

between nodes is present. Super-point graph [110] constructs graphs over 3D points with

huge computational costs. Inspired by [140], we construct graphs on feature channels to

avoid dealing with a large number of points. Moreover, to address the insufficient training

samples in medical domain, we propose to construct multiple reasoning graphs over the same

point features in parallel with learnable adjacency matrices for enriched global information

learning.

2.3 Methods

We firstly explain how to embed local contexts for unordered 3D point clouds via contextual

information augmentation and how to summarize local responses at query. Relative positional

embeddings are then proposed to handle local geometry of medical data. Finally, we propose

Multi-Graph Reasoning (MGR) on feature channel domains to enrich the representations of

learned features. Our model architecture is shown in Figure 2.5.

FIGURE 2.5. Detailed architecture of our attention module in 3DMedPT, where KNN
and FPS denote k-nearest neighbor and farthest point sampling operations [166],
respectively.
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2.3.1 Local Context Augmentation

Although self-attention is able to model long-range dependencies over the global domain, it

cannot aggregate local information, which is essential in point cloud analysis [66]. However,

different from regular layouts such as 2D images where spatially neighboring pixels usually

have high semantic correlations, 3D point clouds are unordered and nearby points can have

no geometric or semantic relations due to permutation variance. Hence, instead of using

local attention [170] which may constrain the model’s receptive field, we reform the input

feature before each attention layer by defining a local context region, with the assumption

that spatially closed points in Euclidean coordinates can have some relations for geometric

study. We thus follow the idea of PointNet++ [166] by firstly downsampling the points using

farthest point sampling (FPS) and then group features from local contexts as DGCNN [223].

Specifically, given xyz coordinates of N input points P = {pi ∈ R3}Ni=1 and the corres-

ponding features F = {fi ∈ RCin}Ni=1 with Cin feature channels, the whole process can be

formulated as follows:

N (pi) = KNN(P, ||pi − pj||22), pj ∈ PS,

f ′i = [fj − fi, fi]j∈N (pi) ∈ RK×2Cin ,
(2.6)

where PS is a point set downsampled from P using FPS, KNN(·) is K-nearest neighbor

function, [·, ·] is concatenation, and f ′i is the augmented feature with local contexts. In this

case, f ′i can now retain the locality property.

2.3.2 Convolution at Query

This convolution operation proposed at query has two purposes: (1) it allows us to aggregate

local responses and update geometric features at query; (2) Since global interaction should

be considered between the query and content lambda softmax(K)⊤V, so it is natural to

capture global features from query. Therefore, we introduce convolution (i.e., EdgeConv) to

Transformer to generate global query information.
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FIGURE 2.6. Modified attention module with MGR, where SL denotes the self-loop
and residual connection is applied to compensate the low-level information loss. All
dotted components imply different designs with the original Lambda attention [15].

Formally, the query tensor is obtained from the updated features F′ = {f ′i}Ni=1 ∈ RN×K×2Cin

by using EdgeCov:

Q = EdgeConv(F′)Wq ∈ RN×Ck , (2.7)

where Wq ∈ R2Cin×Ck . In this case, the local information is integrated into Q, then we apply

linear projections on flattened F′ to compute K and V as follows:

K = Flatten(F′)Wk ∈ R(N×K)×Ck ,

V = Flatten(F′)Wv ∈ R(N×K)×Cv ,
(2.8)

where Wk ∈ R2Cin×Ck and Wv ∈ R2Cin×Cv . Based on the above modifications, we show an

improved version of Eq. 2.3 in a per-point form as:

yi = qi

(
softmax(ki)

⊤vi

)
, (2.9)

where yi ∈ RCv is the layer output, ki ∈ RK×Ck and vi ∈ RK×Cv .
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FIGURE 2.7. The overall architecture of 3DMedPT for medical point cloud analysis.
Numbers in black, blue, and orange indicate the point number, the feature dimension
for classification, and the feature dimension for segmentation. LCA and RPE denote
local context augmentation and relative positional embedding, respectively.

2.3.3 Relative Positional Embedding

As mentioned in [266], positional information is critical for 3D point cloud processing.

Especially for medical data where the structure is incomplete and complex, embedding

positional bias encourages the model to focus on local geometry. In this work, we use relative

positional information since computing absolute positions requires storing an ordered list

before and after point permutations, which increases the computational overhead. In addition,

we integrate the relative positions from local contexts with input feature as we empirically

find that using addition cannot give the best result. Therefore, we define learnable relative

positional embedding as follows:

hi = σ
(
[pj − pi]j∈N (pi)

)
∈ RK×Ch ,

f ′i = [fj − fi, fi,hi]j∈N (pi),
(2.10)

where σ(·) is an MLP.

However, learning accurate positional bias is quite hard when dataset is too small [206], which

is our case when dealing with medical data. we therefore apply different MLPs σ(·) to learn

positional information at query, key, and value positions for accurate and complex medical

geometry learning. As illustrated in Figure 2.5, we improve Lambda attention by introducing

positional bias terms at a modest cost to address the irregular geometric traits lurking inside

medical data.
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2.3.4 Multi-Graph Reasoning

Feature representations are critical for model performance, especially when dealing with

insufficient training samples, which is often the case in medical domain. In our method,

we propose to enrich the feature representations by exploiting global relations of content in

deep layers of our attention block with a Multi-Graph Reasoning (MGR) module based on

graph reasoning [35] and graph convolutions [104]. As suggested in [140], graphs can be

constructed on feature channels by learning graph nodes from channels, which could save the

computational cost for the case of large input numbers. In contrast to [140] that only a single

graph is established over channels, we design an MGR module to initialize multiple graphs

simultaneously with learnable adjacency matrices, enhancing the diversity of node features via

various graph states. As shown inside the pink box of Figure 2.6, MGR is adapted on values

to replace the original positional encoding part in the last attention layer, where neighboring

information augmentation is intentionally ignored for global information aggregation and

relational interactions. Hence, the output Fout of MGR module can be formulated as:

Fout = [ReLU
(
(V + I)ai

)
]i∈Ck

, ai ∈ RCv×Cv , (2.11)

where I is the identity matrix, indicating that the self-loop of each node is introduced. Ck

graphs and the corresponding adjacency matrices ai are concurrently computed from Cv

channel nodes, such that contextual interactions between nodes can be modeled and structural

relations are captured for feature learning.

2.4 Experiments and Results

In this section, we present our experimental results on medical 3D points (IntrA [249]). We

also test the generalization ability on non-medical 3D point clouds (ModelNet40 [233] and

ShapeNetPart [252]). Extensive experiments for ablation studies are conducted as well.
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2.4.1 Datasets

IntrA. IntrA [249] is a 3D medical point cloud dataset for binary classification and part

segmentation to distinguish blood vessels and aneurysms, which contains mesh and point

representations of the data structure. It contains 103 3D models of entire brain vessels,

which are reconstructed from 2D MRA images of patients, and 1909 blood vessel segments

which contains 1694 healthy vessel segments and 215 aneurysm segments for diagnosis. 116

aneurysm segments are divided and annotated manually by medical experts; We use the point

cloud with overall 2025 samples for classification. Five-fold cross-validation was adopted

with F1-score and per-class testing accuracy as evaluation metrics.

ModelNet40. ModelNet40 [233] has been a benchmark dataset in many deep learning-based

3D data analysis tasks. The dataset comprises 3D CAD models from various categories such

as tables, chairs, sofas, beds, and many other common objects, which consists of 13,211 3D

synthetic models for general objects, with 9843 training samples and 2468 testing samples

ranged within 40 classes. We uniformly sample 1024 points only with 3D coordinates as

input features, and shuffle the points as in [166].

ShapeNetPart. ShapeNetPart [252] is a commonly-used benchmark for part segmentation

of 3D shapes. The dataset contains 3D models across various categories, and each model is

annotated with distinct part labels. For instance, a chair might be segmented into parts such

as the backrest, seat, and legs. ShapeNetPart covers 16 shape categories: airplane, bag, cap,

car, chair, earphone, guitar, knife, lamp, laptop, motorbike, mug, pistol, rocket, skateboard,

and table. In total, it contains 16,880 3D samples with 14,006 training and 2874 testing data,

where there are 50 parts across the 16 categories, each category having 2-6 parts. We sample

2048 points from each object and use mean intersection over union averaged across 16 classes

(cls. mIoU) as the evaluation metric.

2.4.2 Evaluation Metrics

To evaluate the classification performance of our methods in an unbiased manner, we follow

the evaluation metrics proposed in [249] by using F1-score and per-class testing accuracy.
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The mathematical expression for the F1 score is:

F1 =
2× Precision × Recall

Precision + Recall
, (2.12)

where Precision is the number of true positive predictions (TP) divided by the sum of the true

positive and false positive predictions (FP). Recall is the number of true positive predictions

divided by the sum of the true positive and false negative predictions (FN).

The mathematical expression for the per-class testing accuracy for a particular class i is:

Accuracyi =
TPi + TNi

TPi + FPi + FNi + TNi

, (2.13)

where TN denotes the number of instances of other classes correctly not classified as class i.

For evaluation of segmentation performance, we leverage mean intersection over union

(mIoU), which provides an average measure of the overlap between the predicted segmentation

and the ground-truth labels for all classes. The mathematical expression for mIoU is:

mIoU =
1

C

C∑
c=1

IoU(c),

IoU(c) =
Intersection(c)

Union(c)
,

(2.14)

where Intersection(c) is the number of pixels/voxels that are correctly predicted for class c,

and IoU(c) is the total number of pixels/voxels that are actually of class c plus the number of

pixels/voxels that are wrongly predicted as class c. C is the number of total classes.

2.4.3 Implementation Details

The overall model architecture for 3D object classification and part segmentation is shown

in Figure 2.7. In our overall network model, the input feature dimension Cin is set to 3

representing 3D normal vectors, and if there is no normal vectors, Cin will be the xyz

positions. The output feature dimension Cout is set to 2 for classifying and segmenting

blood vessels or aneurysms, with binary cross entropy as the loss function. As shown in

Figure 2.7, we follow the architecture of PointNet++ for classification, where points are
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downsampled and features are embedded with locality, followed by the attention module to

enhance interactions between local contexts and global contents. MGR is applied to further

enrich the feature representations with graph reasoning, and maxpooling is employed to

summarize the information while being insensitive to permutation as a symmetric function.

For segmentation, we adopt a DGCNN-like network. Each MLP block contains a linear

mapping layer, batch normalization layer and ReLU. To address bottleneck issues caused

by a small Cv, the multi-query algorithm [15] is utilized so that h different query heads are

constructed and concatenated, deriving a new output feature yi ∈ RhCv .

2.4.4 3D Object Classification

We first examine the model behavior on IntrA and then investigate our model on ModelNet40.

IntrA. As shown in Table 2.1, our method reaches the highest accuracies of 94.06% with 512

points for aneurysm (A.) and 99.24% with 1024 points for blood vessel (V.) detection by using

the PointNet++ backbone, which overpass the original work by 0.7% and 6.3% respectively.

Our 3DMedPT achieves the best F1 score of 0.936 with 1024 points, which outperforms

its Transformer counterpart PCT by 2.4%. It is also 3.3% and 9.1% higher than the latest

attention-based works: PAConv [242] and AdaptConv [267], showing the superiority of our

method on 3D medical point cloud analysis.

ModelNet40. Our performance compared to other SoTA methods is listed in Table 2.2. It can

be observed that we achieve an accuracy of 93.4%, which overpasses most typical point-based

designs [241, 231, 223]. Additionally, our model performance is better than some networks

based on attention algorithms (e.g., Set Transformer [111], PAT [248] and Point2Sequence

[126]), and our model is also better than the Transformer counterpart PCT [66] with a much

smaller model size (see Table 2.6). Our classification accuracy is lower than recently proposed

Point Transformer [266] by only 0.3%, while this small gap validates the good generalization

ability of 3DMedPT. Hence, our design can not only deal with medical dataset with complex

topology such as blood vessels or aneurysms, but also distribute the excellence to regular 3D

shapes.
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TABLE 2.1. Classification results of per-class accuracy and F1-score on healthy
vessel segments (V.) and aneurysm segments (A.) with all input features. Results are
averaged across all 5 folds.

Method #Points V. (%) A. (%) F1

PointNet [164]
512 94.45 67.66 0.691
1024 94.98 64.96 0.684
2048 93.74 69.50 0.692

PointNet++ [166]
512 98.52 86.69 0.893
1024 98.52 88.51 0.903
2048 98.76 87.31 0.902

PointCNN [118]
512 98.38 78.25 0.849
1024 98.79 81.28 0.875
2048 98.95 85.81 0.904

PointConv [231]
512 99.21 91.96 0.915
1024 98.89 83.57 0.883
2048 98.61 90.47 0.883

SO-Net [115]
512 98.76 84.24 0.884
1024 98.88 81.21 0.868
2048 98.88 83.94 0.885

SpiderCNN [245]
512 98.05 84.58 0.869
1024 97.28 87.90 0.872
2048 97.28 84.89 0.866

DGCNN [223]
512 95.22 60.73 0.658
1024 95.34 72.21 0.738
2048 97.93 83.40 0.859

GS-Net [241]
512 98.55 83.84 0.873
1024 98.78 83.08 0.872
2048 98.39 85.74 0.882

PCT [66]
512 99.03 89.07 0.911
1024 98.87 89.71 0.914
2048 98.96 89.49 0.917

PAConv [242]
512 98.53 89.00 0.904
1024 98.98 89.71 0.906
2048 98.19 85.74 0.882

AdaptConv [267]
512 97.58 79.99 0.809
1024 99.05 82.90 0.858
2048 97.87 75.94 0.799

3DMedPT
512 99.02 94.06 0.920
1024 99.24 93.26 0.936
2048 99.07 93.49 0.931
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TABLE 2.2. Classification results on ModelNet40 with different input types and point
numbers.

Method Input #Points Acc. (%)
Set Transformer [111] xyz 5k 90.4
PointCNN [118] xyz 1k 91.7
DGCNN [223] xyz 1k 92.2
Point2Sequence [126] xyz 1k 92.6
GS-Net [241] xyz 1k 92.9
RS-CNN [129] xyz 1k 92.9
SO-Net [115] xyz 2k 90.9
KPConv [199] xyz 7k 92.9
PCT [66] xyz 1k 93.2
AdaptConv [267] xyz 1k 93.4
PAConv [242] xyz 1k 93.6
Point Transformer [266] xyz 1k 93.7
PAT [248] xyz + norm 1k 91.7
PointConv [231] xyz + norm 1k 92.5
PointASNL [247] xyz + norm 1k 93.2
PointNet++ [166] xyz + norm 5k 91.9
SpiderCNN [245] xyz + norm 5k 92.4
3DMedPT xyz 1k 93.4

2.4.5 3D Part Segmentation

We then validate the segmentation ability of our model on both IntrA and ShapeNetPart, with

the same data augmentation method as Secection 2.4.4.

IntrA. There are a total of 116 annotated samples for part segmentation task in IntrA, where

the boundary lines are grouped into aneurysm segments, making it a binary segmentation task.

Five-fold cross-valuation is still applied with evaluation metrics based on Point Intersection

over Union (IoU) and Sørensen–Dice cefficient (DSC). Results are reported in Table 2.3.

It can be seen that we achieve the highest IoU and DSC values of 94.82% and 97.29% for

parent vessels segmentation with 512 input points. Meanwhile, our 3DMedPT also has the

best performance on the aneurysm segmentation with 1024 points, resulting in IoU and DSC

values of 82.39% and 89.71%. Our work outperforms PAConv and AdaptConv by a large

margin by 4.7% and 9.5% on A. IoU and 2.8% and 4.2% on V. IoU, which exhibits our

superiority on medical data.
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FIGURE 2.8. Qualitative comparisons on IntrA segmentation. Ground-truth samples
are shown in the first column for reference.

To further examine the model behavior, we qualitatively evaluate our approach with respect

to some recent works such as PAConv. Ground-truth samples are shown in the 1st column

for reference in Figure 2.8. As can be seen, when the aneurysm takes a large size ratio of

the blood vessel (row 1), our model performs the best and PCT cannot fully understand the

shape of aneurysm, while PCT gives the similar segmentation results as ours in other cases

(rows 2-3). However, we can see that the latest work PAConv totally fails when complicated

structures are encountered (row 2).

More visual results on the segmentation of IntrA are shown in Figure 2.9 based on our best

model, which are compared to the corresponding ground-truth annotations for comprehens-

iveness. As shown in Figure 2.9, our method achieves fairly precise segmentation results on

most cases, however, few undesired results might appear especially when the size ratio of

aneurysms becomes smaller than the healthy blood vessels, or when the 3D structure topology

becomes complicated.
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FIGURE 2.9. Segmentation comparisons between ground-truth annotations and the
outputs generated from the 3DMedPT on IntrA dataset. Good segmentation results
are shown above the red line and some failed cases are shown below the red line.

ShapeNetPart. Table 2.4 presents detailed per-class results and the overall cls. mIoU of our

DGCNN backbone. We achieve the overall value of 84.3%, which is 0.4% lower than PAConv

but 1.1% higher than AdaptConv. Although we cannot achieve the best result, our model
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TABLE 2.3. Segmentation results of each point-based network. V. and A. represent
parent vessel segments and aneurysm segments.

Method #Points IoU (%) DSC (%)
V. A. V. A.

PointNet [164]
512 73.99 37.30 84.05 48.96
1024 75.23 37.07 85.00 48.38
2048 74.22 37.75 84.17 49.59

PointNet++ [166]
512 93.42 76.22 96.48 83.92
1024 93.35 76.38 96.47 84.62
2048 93.24 76.21 96.40 84.64

PointCNN [118]
512 92.49 70.65 95.97 78.55
1024 93.47 74.11 96.53 81.74
2048 93.59 73.58 96.62 81.36

SO-Net [115]
512 94.22 80.14 96.95 87.90
1024 94.42 80.99 97.06 88.41
2048 94.46 81.40 97.09 88.76

SpiderCNN [245]
512 90.16 67.25 94.53 75.82
1024 87.95 61.60 93.24 71.08
2048 87.02 58.32 92.17 67.74

PointConv [231]
512 94.16 79.09 96.89 86.01
1024 94.59 79.42 97.15 86.29
2048 94.65 79.53 97.18 86.52

GS-Net [241]
512 90.06 64.48 94.62 74.54
1024 90.93 66.29 95.10 78.85
2048 91.06 65.76 95.15 75.06

PCT [66]
512 92.49 78.09 96.08 85.84
1024 92.05 78.12 95.85 86.77
2048 91.66 77.10 95.43 86.02

AdaptConv [267]
512 90.45 70.25 96.01 80.60
1024 90.69 75.26 94.92 84.40
2048 90.97 75.08 95.05 84.72

PAConv [242]
512 91.97 78.66 95.66 87.57
1024 90.34 74.31 94.54 83.16
2048 92.20 70.59 95.81 79.18

3DMedPT
512 94.82 81.80 97.29 89.25
1024 94.76 82.39 97.25 89.71
2048 93.52 80.13 96.59 88.69

shows great performance in the class-wise segmentation results where we achieve the best in

cap and mug. Considering the performance gaps among ours, PAConv and AdaptConv on

the IntrA segmentation task, we claim that our model can generalize well to general datasets.

Qualitative results are shown in Figure 2.10.
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FIGURE 2.10. Segmentation comparisons between ground-truth annotations and the
outputs generated from the 3DMedPT on ShapeNetPart dataset.
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TABLE 2.5. Positional embeddings in 3DMedPT evaluated on F1-score. RPEk, RPEq

and RPEv indicate relative positional embeddings at the key, query and value.

RPEq RPEk RPEv F1
A 0.905
B ✓ 0.924
C ✓ 0.915
D ✓ 0.921
E ✓ ✓ 0.920
F ✓ ✓ 0.917
G ✓ ✓ 0.928
H ✓ ✓ ✓ 0.936

2.4.6 Ablation Study

In this section, we first examined the contribution of positional embeddings, and then invest-

igated our model robustness on noise and compared the efficiency with some typical methods

from Table 2.1. Unless specified, all experiments are conducted on IntrA dataset for the 3D

object classification with the first fold as the testing set and the others as the training set, and

1024 points are sampled for fast computation.

Positional Embeddings. To investigate the effectiveness of the relative positional embedding,

different models are established and F1 scores are averaged across all folds and reported

in Table 2.5. Model A is the design where no positional bias is introduced in the attention

block, and we examine the cases when positional embedding is shared at all three positions

individually (models B → D). More investigations are done when positional embedding is

introduced at any two positions (model E → G) or query, key, and value (model H).

We can see from Table 2.5 that without embedding position information, our model can still

achieve a reasonable performance due to the design of our local context augmentation module.

Besides, introducing positional bias does improve the model performance when comparing

model A with any others. We find that introducing positional bias terms to all positions (model

H) gives us the best result with the F1 score of 0.936 across all 5 folds, which indicates that

more accurate positional information is learned via learning mapping in all query, key and

value positions.
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TABLE 2.6. Model complexity of 3DMedPT for the IntrA classification, where model
parameters are in the unit of millions and throughput is reported in examples per
second.

Method #Params Throughput F1
PointNet++ [166] 1.75M 245 ex/s 0.769
DGCNN [223] 1.81M 365 ex/s 0.738
PCT [66] 2.73M 471 ex/s 0.872
AdaptConv [267] 1.76M 230 ex/s 0.806
PAConv [242] 2.32M 507 ex/s 0.866
3DMedPT 1.54M 843 ex/s 0.922

Model Efficiency. Computational costs of different models compared with 3DMedPT were

explored in terms of the model size and processing speed. As shown in Table 2.6, we achieved

the highest performance with the smallest model size which only contains 1.54M model

parameters, processing 843 examples per second. Although the processing speed of PointNet

[164] is the fastest, it cannot perform as well as other models at a lower computational

speed. Moreover, our Transformer counterpart PCT [66] requires more trainable parameters

to achieve a relatively good performance, with a slower processing speed than ours.

Robustness Analysis. We demonstrated our model robustness to the point density by using

sparser points as the network input from 2048 to 128 points. We compared our results with

several works in Figure 2.11 (left), where all networks were trained with 1k points on IntrA.

The absolute dropping difference from 2048 to 128 points of our method is 6.7%, which is

the same as our Transformer counterpart PCT, while we reached the best F1 score on all

experiments with different numbers of input points. For the noise resistance investigation,

we introduced different numbers of noisy 3D points with random positions during model

testing following [247]. As can be seen from Figure 2.11 (right), 3DMedPT is more robust

to noise compared with some latest works PAConv [242] and AdaptConv [267] under all

testing environments. The absolute difference between no noise and 50 noisy points for our

model is 11.3%, which is smaller than PCT with the value of 14.5%, presenting our excellent

robustness ability to the noise.
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FIGURE 2.11. Left: Comparison on different numbers of input points. Right:
Comparison on different numbers of noisy points.

2.5 Discussion

We design the model in a way that only deals with 3D structures, and our design only focuses

on the difference between 3D medical models and general models (i.e., cars, airplanes). This

is the limitation when applying our model to different medical data.

In addition, we have conducted different experiments on 3D point clouds, we follow PointNet

[164] to implement a sanity check on the proposed method with experiments on a 2D medical

data RetinalOCT [100].

RetinalOCT involves 2D gray-scale images of retinal diseases, which is comprised of 4

diagnosis categories with 108,318 training and 1,000 testing samples from 633 patients,

leading to a multi-class classification task. To make it compatible for training with our model,

we convert 2D image pixels to 2D points. Specifically, we firstly resize each image to 256x256

and use Sobel filters to detect the edges of each image, with (x, y) assigned by (row, col) of

each pixel and z = 0. The number of points for each data sample is fixed and determined by

the average value of all point sets obtained from all images. During training, we normalize

each point set to a unit cube of [-1, 1] and use data augmentation following IntrA.

In Table 2.7, it can be seen that when compared with ResNet-18/50 baselines [75] with

3D convolutions and an open-source AutoML tool (AutoKeras [92]). The highest testing
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TABLE 2.7. Classification results on RetinalOCT with different methods.

Method Input Type Acc. (%)
Pre-trained InceptionV3 [100] pixels 96.6
ResNet-18 [75] pixels 95.8
ResNet-50 [75] pixels 96.1
AutoKeras [92] pixels 96.3
PointNet [164] points 87.5
DGCNN [223] points 87.9
PCT [66] points 87.2
3DMedPT points 87.9

accuracy is achieved by [100] where InceptionV3 [196] is applied and pre-trained on ImageNet.

Although we can outperform PointNet, DGCNN, and PCT in medical point clouds dataset, we

can only achieve similar performance with these methods on RetinalOCT. Moreover, there are

noticeable performance gaps between our approach and CNN-based methods. We argue that

it is the information loss due to the data type conversion (i.e., image resizing and ignorance

of pixel intensity) that causes the performance difference. In the future, we plan to dvelop a

universal method that can work well on both 2D and 3D medical datasets.

2.6 Summary

In this chapter, we propose a Transformer network for 3D medical point cloud analysis,

namely 3DMedPT, which can model long-range dependencies of global contents via the

convolutional operation introduced at query to summarize local feature responses, and local

context interactions based on lambda attention modified with local context augmentation.

Variant relative positional information for query, key and value is encoded to capture the

complex structure of medical data. Global interactions between features are obtained from

channel space where multiple graphs are constructed to model diverse graph states, improving

the expressiveness of feature information. Our model performs the best in 3D medical object

classification and part segmentation tasks. Moreover, extensive analyses on general 3D point

cloud datasets have validated the good generalization ability of our model.
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From a larger perspective, the segmentation and classification tasks for the medical point

clouds are not limited to intracranial aneurysm treatment. With the significant improvement

proposed by our method, we believe that it will contribute to the medical or biomedical

domains.



CHAPTER 3

Deep Learning-based Analysis for Rotated Point Clouds

Besides dealing with medical point clouds, we also examine that using existing 3D deep

learning-based method, it is hard for them to classify the raw point clouds that are not in the

canonical poses. As mentioned in Section 1.1, the pose information of scanned point clouds

is normally unknown in real-world scenarios. Existing deep learning-based methods [164,

166] are unable to process randomly rotated point clouds, as they are trained on 3D objects of

canonical poses. Hence, methods that are able to extract features invariant to random rotations

are in urgent need. Recent investigations on rotation invariance for 3D point clouds have been

devoted to devising rotation invariant feature descriptors or learning canonical spaces where

objects are semantically aligned. Examinations of learning frameworks for invariance have

seldom been looked into.

In this chapter, we propose a novel method to extract rotation invariant shape features

given randomly rotated point clouds. Specifically, we review the rotation invariance in

terms of point cloud registration and propose an effective framework for rotation invariance

learning via three sequential stages, namely rotation invariant shape encoding, aligned feature

integration, and deep feature registration. We first encode shape descriptors constructed

with respect to reference frames defined over different scales, e.g., local patches and global

topology, to generate rotation invariant latent shape codes. Within the integration stage, we

propose Aligned Integration Transformer to produce a discriminative feature representation by

integrating point-wise self- and cross-relations established within the shape codes. Meanwhile,

we adopt rigid transformations between reference frames to align the shape codes for feature

consistency across different scales. The features are integrated in a deep level and registered

to both rotation invariant shape codes to maximize feature similarities, so that rotation

42
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invariance is preserved and shared semantic information is implicitly extracted from shape

codes. Experimental results on rotated point cloud datasets show that our proposed methods

outperform SoTA models by a large margin.

3.1 Introduction

With the development of recent deep learning models for 3D point clouds process, it is

still difficult to directly apply these models to real world data because raw 3D point clouds

are normally captured from different viewing angles, resulting in unaligned data samples,

which inevitably impact the deep learning models which are sensitive to rotations. Therefore,

rotation invariance becomes an important research topic in the 3D domain.

To address the problem, a straightforward way is to directly learn a model given raw 3D objects

to augment training data with massive rotations, which however requires a large memory

capacity and exhibits limited generalization ability to unseen data of random poses [103].

There are attempts to align a 3D object to a canonical pose [89, 43], or to learn rotation robust

features via equivariance [49, 138], while these methods are not rigorously rotation invariant

and present noncompetitive performance on 3D shape analysis. To maintain consistent model

behavior under random rotations, some methods [263, 28, 239] follow [56] to handcraft

rotation invariant point-pair features. Others [262, 114, 264] design robust features from

equivariant orthonormal bases.

In this section, we propose our framework in Figure 3.1 with three sequential stages, namely

rotation-invariant shape encoding, aligned feature integration, and deep feature registration.

Firstly, we (a) construct and feed point pairs with different scales as model inputs, where we

consider local patches Pℓ with small number of points and global shape Pg with the whole 3D

points. Hence, the final feature representation can be enriched by information from different

scales. Low-level rotation-invariant descriptors are thus built on reference frames and encoded

to generate latent shape codes Fℓ and Fg following recent point cloud registration (PCR)

work [160]. Secondly, we (b) introduce a variant of transformer [210], Aligned Integration

Transformer (AIT), to implicitly integrate information from both self- and cross-attention
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branches for effective feature integration. In this way, information encoded from different

point scales is aggregated to represent the same 3D object. Moreover, we consider Fℓ and

Fg as unaligned since they are encoded from unaligned reference frames. To address the

problem, we follow the evaluation technique proposed in PCR, where we use relative rotation

information (T) with learnable layers to align Fℓ and Fg for feature consistency. Finally, to

ensure rotation invariance of the integrated feature U, we follow PCR to (c) examine the

correspondence map of (Fg, U) and (Fℓ, U), such that the mutual information between a

local patch of a 3D object and the whole 3D object is maximized, and rotation invariance is

further ensured in the final geometric feature.

Source Points P! Target Points P"

T

F! F"

TI

Registered 𝐏𝐬

PCR

Aligned Integration
Transformer

Registration

Registered 𝐔

Local & Global Descriptors

Local Patches Pℓ Global Shape P$

Fℓ F%

U

RI

T

Ours

Re
gi
st
ra
tio

n
In
te
gr
at
io
n

En
co
di
ng

Correspondence
Mapping

Correspondence
Mapping

Correspondence
Mapping

Shape Descriptors

Registration

FIGURE 3.1. Frameworks of our design (left) and robust point cloud registration
(right), where TI and RI are transformation invariance and rotation invariance, and T
is the rigid transformation. The dotted line indicates the computation of T between
reference frames.

The contributions of our work are summarized as follows:

(1) To our knowledge, we are the first in developing a PCR-cored representation learning

framework towards effective rotation invariance studies on 3D point clouds.
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(2) We introduce Aligned Integration Transformer (AIT), a transformer-based architec-

ture to conduct aligned feature integration for a comprehensive geometry study from

both local and global scales.

(3) We propose a registration loss to maintain rotation invariance and discover semantic

knowledge shared in different parts of the input object.

3.2 Literature Review

3.2.1 Rotation Robust Feature Learning

Networks that are robust to rotations can be equivariant to rotations. Works such as [59, 43]

project 3D data into a spherical space for rotation equivariance and perform convolutions in

terms of spherical harmonic bases. Others [192, 194] learn canonical spaces to unify the pose

of point clouds. Recent works [138, 49, 93] vectorize the scalar activations and mapping SO(3)

actions to a latent space for easy manipulations. Although these works present competitive

results, they cannot be strictly rotation-invariant. Another way for rotation robustness is

to learn rotation-invariant features. Handcrafted features can be rotation-invariant [263,

28, 33, 239], but they normally ignore the global overview of 3D objects. Others use

rotation-equivariant local reference frames (LRFs) [262, 198, 103] or global reference frames

(GRFs) [114] as model inputs based on principal component analysis (PCA). However, they

may produce inconsistent features across different reference frames, which would limit the

representational power. In contrast to abovementioned methods with rotation robust model

inputs or modules, we examine the relation between rotation invariance and PCR and propose

an effective framework.

3.2.2 3D Point Cloud Registration

In our thesis, we only consider about rigid registration assuming that 3D objects would not be

deformed during the classification or segmentation processes. Specifically, given a pair of

LiDAR scans, 3D PCR requires an optimal rigid transformation to best align the two scans.
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FIGURE 3.2. The pipeline of a general registration method (i.e., iterative closest point
(ICP) [16]).

Mathematically, we consider two point clouds: source data P = {p1, p2, ..., pn|p ∈ R3}

and target data Q = {q1, q2, ..., qn|q ∈ R3}. The task of rigid registration is to find a

transformation to align P with Q, and the transformation consists of a rotation matrix R and

translation matrix T. The mathematical process is shown as follows:

algorithm: R,T = Reg_func(P,Q)

final result: P ′ = {p′i} = {R · pi +T}, i = 1, 2, ..., n
(3.1)

where Reg_func is a rigid registration function that estimates the rotation and translation

matrices based on P and Q.

Despite the recent emerging of ICP-based methods [16, 222] as shown in Figure 3.2, we follow

robust correspondence-based approaches in our work [50, 257, 167, 160], where rotation

invariance is widely used to mitigate the impact of geometric transformations during feature

learning. Specifically, both [160] and [167] analyze the encoding of transformation-robust

information and introduce a rotation-invariant module with contextual information into their

registration pipeline. All these methods showing impressive results are closely related to

rotation invariance. We hypothesize that the learning framework of rotation invariance can be

similar to PCR, and we further prove in experiments that our network is feasible and able to

achieve competitive performance on rotated point clouds.
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3.2.3 Contrastive Learning with 3D Visual Correspondence

Based on visual correspondence, contrastive learning aims to train an embedding space where

positive samples are pushed together whereas negative samples are separated away [74].

The definition of positivity and negativity follows the visual correspondence maps, where

pairs with high confidence scores are positive otherwise negative. Visual correspondence

is important in 3D tasks, where semantic information extracted from matched point pairs

improves the network’s understanding on 3D geometric structures. For example, PointContrast

[238] explores feature correspondence across multiple views of one 3D point cloud with

InfoNCE loss [207], increasing the model performance for downstream tasks. Info3D [183]

and CrossPoint [1] minimize the semantic difference of point features under different poses.

We follow the same idea by registering the deep features to rotation-invariant features at

intermediate levels, increasing feature similarities in the embedding space to ensure rotation

invariance.

3.3 Methods

Given a 3D point cloud including Nin points with xyz coordinates P = {pi ∈ R3}Nin
i=1 , we

aim to learn a shape encoder f that is invariant to 3D rotations: f(P) = f(RP), where

R ∈ SO(3) and SO(3) is the rotation group. RI can be investigated and achieved through three

stages, namely rotation-invariant shape encoding (Section 3.3.1), aligned feature integration

(Section 3.3.2), and deep feature registration (Section 3.3.3).

3.3.1 Rotation-Invariant Shape Encoding

In this part, we first construct the input point pairs from local and global scales based on

reference frames, following the idea of [160] to obtain low-level rotation-invariant shape

descriptors from LRFs and GRF directly. Then we obtain latent shape codes via two set

abstraction layers as in PointNet++ [166].



48 3 DEEP LEARNING-BASED ANALYSIS FOR ROTATED POINT CLOUDS

Rotation Invariance for Local Patches. To construct rotation-invariant features on LRFs,

we hope to construct an orthonormal basis for each LRF as p ∈ R3×3. Given a point pi and

its neighbor pj ∈ N (pi), we choose #»xi
ℓ = #      »pmpi/∥ #      »pmpi∥2, where pm is the barycenter of

the local geometry and ∥ · ∥2 is L2-norm. We then define #»zi
ℓ following [201] to have the

same direction as an eigenvector, which corresponds to the smallest eigenvalue via eigenvalue

decomposition (EVD):

Σℓ
i =

|N (pi)|∑
j=1

αj (
#    »pipj) (

#    »pipj)
⊤ ,

αj =
d− ∥ #    »pipj∥2∑|N (pi)|

j=1 d− ∥ #    »pipj∥2
,

(3.2)

where αj is a weight parameter, allowing nearby pj to have large contribution to the covariance

matrix, and d is the maximum distance between pi and pj . Finally, we define #»yi
ℓ as #»zi

ℓ × #»xi
ℓ.

RI is introduced to pi with respect to its neighbor pj as pℓij =
#    »pipj

⊤Mℓ
i . The latent shape code

Fℓ ∈ RN×C is obtained via PointNet++ and max-pooling.

Rotation Invariance for Global Shape. We apply PCA as a practical tool to obtain rotation in-

variance in a global scale. Similar to Eq. 3.2, PCA is performed by 1
N0

∑N0

i=1(
#      »pmpi)(

#      »pmpi)
⊤ =

UgΛgUg⊤, where pm is the barycenter of P, Ug = [ #»u1
g, #»u2

g, #»u3
g] and Λg = diag(λg

1, λ
g
2, λ

g
3)

are eigenvector and eigenvalue matrices. We take Ug as the orthonormal basis Mg =

[ #»x g, #»y g, #»z g] for GRF. By transforming point pi with Ug, the shape pose is canonicalized as

pgi = piM
g. Proof of the rotation invariance of pgi is omitted for its simplicity, and Fg ∈ RN×C

is obtained following PointNet++.

Sign Ambiguity. EVD introduces sign ambiguity for eigenvectors, which negatively impacts

the model performance [22]. The description of sign ambiguity states that for a random

eigenvector #»u , #»u and #»u ′, with #»u ′ having an opposite direction to #»u , are both acceptable

solutions to EVD. To tackle this issue, we simply force #»zi
ℓ of LRF to follow the direction of

#  »opi, with o being the origin of the world coordinate. We disambiguate basis vectors in Mg

by computing an inner product with #      »pmpi,∀i ∈ N0. Taking #»x g for example, its direction is
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conditioned on the following term:

#»x g =


#»x g, if Sx ≥ N0

2

#»x ′g, otherwise
, Sx =

N0∑
i=1

1[⟨ #»x g, #      »pmpi⟩], (3.3)

where ⟨·, ·⟩ is the inner product, 1[·] is a binary indicator that returns 1 if the input argument

is positive, otherwise 0. Sx denotes the number of points where #»x g and #      »pmpi point to the

same direction. The same rule is applied to disambiguate #»y g and #»z g by Sy and Sz. Besides,

as mentioned in [114], Mg might be non-rotational (e.g., reflection). To ensure Mg a valid

rotation, we simply reverse the direction of the basis vector whose S value is the smallest.

3.3.2 Aligned Feature Integration

Transformer has been widely used in 3D domain to capture long-range dependencies [255]. In

this section, we introduce Aligned Integration Transformer (AIT), an effective transformer to

align latent shape codes with relative rotation angles and integrate information via attention-

based integration [36]. Within each AIT module, we first apply Intra-frame Aligned Self-

attention on Fℓ and we do not encode Fg, which is treated as supplementary information to

assist local geometry learning with the global shape overview. We discuss that encoding Fg

via self-attention can increase model overfitting, thus lowering the model performance. We

will validate our discussion in Section 3.4.7. Inter-frame Aligned Cross-attention is applied

on both Fℓ and Fg, and we use Attention-based Feature Integration module for information

Aggregation.

Intra-frame Aligned Self-attention. Point-wise features of Fℓ are encoded from unaligned

LRFs, so direct implementation of self-attention on Fℓ can cause feature inconsistency during

integration. To solve this problem, rigid transformations between distinct LRFs are considered,

which are explicitly encoded and injected into point-wise relation learning process. We begin

by understanding the transformation between two LRFs. For any pair of local orthonormal

bases Mℓ
i and Mℓ

j , a rotation can be easily derived ∆Rji = Mℓ
iM

ℓ
j
⊤ and translation is defined

as ∆tji = oℓi − oℓj , where oℓi/j indicates the origin.



50 3 DEEP LEARNING-BASED ANALYSIS FOR ROTATED POINT CLOUDS

𝑾𝒄𝒂
𝒗 𝑾𝒄𝒂

𝒌 𝑾𝒔𝒂
𝒒 𝐞𝒄𝒂𝜶 𝑾𝒄𝒂

𝜶

𝑭()
ℓ/,

𝐹ℓ/,

𝑨𝒄𝒂𝒂𝒕𝒕𝒏: 𝑁×𝑁 𝑨𝒄𝒂𝒓𝒐𝒕: 𝑁×𝑁

𝑨𝒄𝒂: 𝑁×𝑁

𝐹,/ℓ

𝑾𝒔𝒂
𝒗 𝑾𝒔𝒂

𝒌 𝑾𝒔𝒂
𝒒

𝐤𝒔𝒂: 𝑁×𝑑 𝐪𝒔𝒂: 𝑁×𝑑𝐯𝒔𝒂: 𝑁×𝐶

𝐞𝒔𝒂𝜶 𝑾𝒔𝒂
𝜶

𝑭()
ℓ/,

𝐹ℓ/,

𝑨𝒔𝒂𝒂𝒕𝒕𝒏: 𝑁×𝑁 𝑨𝒔𝒂𝒓𝒐𝒕: 	𝑁×𝑁

𝑨1): 𝑁×𝑁

𝑁×𝑁×𝑑 𝑁×𝑑𝐯𝒄𝒂: 𝑁×𝐶 𝐤𝒔𝒂: 𝑁×𝑑 𝐪𝒄𝒂: 𝑁×𝑑

(a) Intra-frame Aligned Self-attention (b) Inter-frame Aligned Cross-attention

𝐚𝐝𝐝𝐢𝐭𝐢𝐨𝐧

𝐦𝐚𝐭𝐫𝐢𝐱	𝐩𝐫𝐨𝐝𝐮𝐜𝐭

𝐬𝐮𝐛𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧

𝐚𝐝𝐝𝐢𝐭𝐢𝐨𝐧

𝐦𝐚𝐭𝐫𝐢𝐱	𝐩𝐫𝐨𝐝𝐮𝐜𝐭

𝐬𝐮𝐛𝐭𝐫𝐚𝐜𝐭𝐢𝐨𝐧

FIGURE 3.3. Illustrations of (a) Intra-frame Aligned Self-attention and (b) Inter-
frame Aligned Cross-attention modules. Note that we only present processes for
computing Foa in both modules.

Although ∆Rji is invariant to rotations, we do not directly project it into the embedding

space, as it is sensitive to the order of matrix product: ∆Rji ̸= ∆Rij , giving inconsistent

rotation information when the product order is not maintained. To address this issue, we

construct our embedding via the relative rotation angle ∆αji between Mℓ
i and Mℓ

j , which

is normally used in most PCR works [251, 160] for evaluations. The relative rotation angle

∆αji is computed as:

∆αji = arccos

(
Trace (∆Rji)− 1

2

)
180

π
∈ [0, π], (3.4)

where it is easy to see that ∆αji = ∆αij . We further apply sinusoidal functions on ∆αji to

generate N2 pairs of angular embeddings eα ∈ RN×N×d for all N points as:

eαi,j,2k = sin

(
∆αji/tα
100002k/d

)
, eαi,j,2k+1 = cos

(
∆αji/tα
100002k/d

)
, (3.5)

where tα controls the sensitivity to angle variations.
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Finally, we inject eα into offset attention and learn intra-frame aligned feature Fℓ
IAS via

self-attention as follows:

Fℓ
IAS = ϕ

(
Fℓ

oa

)
+ Fℓ, Fℓ

oa = Fℓ − ∥ SM(Asa)∥1vsa,

Asa = Aattn
sa +Arot

sa ,

Aattn
sa = qsak

⊤
sa, A

rot
sa = qsa(e

α
saW

α
sa)

⊤,

(3.6)

where qsa/ksa/vsa = FℓWq
sa/F

lWk
sa/F

lWv
sa, Wα

sa ∈ Rd×d is a linear projection to refine

the learning of eαsa, and Asa is the attention logits. The same process can be performed for Fg

by swapping the index ℓ and g. Detailed illustrations are shown in Figure 3.3 (a).

Inter-frame Aligned Cross-attention. Semantic information exchange between Fℓ and

Fg in the feature space is implemented efficiently by cross-attention [29]. Since Fℓ and

Fg are learned from different coordinate systems, inter-frame transformations should be

considered for cross-consistency between Fℓ and Fg. An illustration of the cross-attention

module is shown in Figure 3.3 (b), which indicates that the computation of inter-frame aligned

feature Fℓ
IAC via cross-attention follows a similar way as Eq. 3.6 by replacing all subscripts

sa by ca. As illustrated in Figure 3.3 (b), Aca is cross-attention logits containing point-wise

cross-relations over point features defined across local and global scales. eαca ∈ RN×d is

computed via Eq. 3.4 and Eq. 3.5 in terms of the transformation between Mℓ
i and Mg. To this

end, the geometric features learned between local and global reference frames can be aligned

given eαca, leading to a consistent feature representation.

Attention-based Feature Integration. Instead of simply adding the information from both

Fℓ and Fg, we integrate information by incrementing attention logits. Specifically, we apply

self-attention on Fℓ with attention logits Asa and cross-attention between Fℓ and Fg with

attention logits Aca. We combine Asa and Aca via addition, so that encoded information of

all point pairs from a local domain can be enriched by the global context of the whole shape.

The whole process is formulated as follows:

U = ϕ (Foa) + Fℓ,

Foa = Fℓ − ∥ SM(Asa +Aca)∥1(vsa + vca).
(3.7)
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Hence, intra-frame point relations can be compensated by inter-frame information communic-

ation in a local-to-global manner, which enriches the geometric representations.

3.3.3 Deep Feature Registration

Correspondence mapping [221, 160] plays an important role in PCR, and we discuss that

it is also critical for achieving RI in our design. Specifically, although Fℓ and Fg are both

rotation-invariant by theory, different point sampling methods and the sign ambiguity will

cause the final feature not strictly rotation-invariant. To solve this issue, we first examine the

correspondence map:

m (X ,Y) =
exp

(
Φ1(Y)Φ2(X )⊤/t

)∑N
j=1 exp (Φ1(Y)Φ2(xj)⊤/t)

, (3.8)

where Φ1 and Φ2 are MLPs that project latent embeddings X and Y to a shared space, and t

controls the variation sensitivity. It can be seen from Eq. 3.8 that the mapping function m

reveals feature similarities in the latent space, and it is also an essential part for 3D point-

level contrastive learning in PointContrast [238] for the design of InfoNCE losses [207],

which have been proven to be equivalent to maximize the mutual information. Based on this

observation, we propose a registration loss function Lr = Lℓ
r+Lg

r , where Lℓ
r and Lg

r represent

the registration loss of (Fℓ,U) and (Fg,U). Mathematically, Lℓ
r is defined as follows:

Lℓ
r = −

∑
(i,j)∈M

log
exp

(
Φ1(Uj)Φ2(f

ℓ
i )

⊤/t
)∑

(·,k)∈M exp
(
Φ1(Uk)Φ2(f ℓi )

⊤/t
) . (3.9)

The same rule is followed to compute Lg
r . Although we follow the core idea of PointContrast,

we differ from it in that PointContrast defines positive samples based on feature corres-

pondences computed at the same layer level, while our positive samples are defined across

layers.

The intuition for the loss design is that the 3D shape is forced to learn about its local region

as it has to distinguish it from other parts of different objects. Moreover, we would like to

maximize the mutual information between different poses of the 3D shape, as features encoded

from different poses should represent the same object, which is very useful in achieving RI in
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SO(3). Moreover, the mutual information between Fℓ and Fg is implicitly maximized, such

that shared semantic information about geometric structures can be learned, leading to a more

geometrically accurate and discriminative representation.

3.4 Experiments and Results

We evaluate our model on 3D shape classification, part segmentation, and retrieval tasks

under rotations, and extensive experiments are conducted to analyze the network design. We

follow [59] for evaluation: training and testing the network under z-axis (z/z); training under

z-axis and testing under arbitrary rotations (z/SO(3)); and training and testing under arbitrary

rotations (SO(3)/SO(3)).

3.4.1 Datasets

In this work, we use two datasets for the classification task: ModelNet40 [233] and ScanOb-

jectNN [205], one dataset for the part segmentation task: ShapeNetPart [252], and one dataset

for the shape retrieval task: ShapeNetCore55 [27]. Please refer to Section 2.4.1 for the details

of ModelNet40 and ShapeNetPart.

ScanObjectNN. ScanObjectNN consists of 3D point clouds of objects segmented from

the ScanNet scenes [46], which is particularly suited for benchmarking 3D point cloud

classification task in real-world scenario. It contains around 15,000 objects that are categorized

into 15 categories with 2902 unique object instances. Detailed samples of ScanObjectNN are

present in Figure 3.4.

ShapeNetCore55. ShapeNetCore55 contains a selection of categories from the ShapeNet

dataset, with each category containing a number of 3D models, which is suitable for bench-

marking 3D shape retrieval tasks, including two categories of datasets: normal and perturbed.

Detailed samples of ShapeNetCore55 are shown in Figure 3.5.
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FIGURE 3.4. Visualization of ScanObjectNN dataset.

FIGURE 3.5. Visualization of ShapeNetCore55 dataset.

3.4.2 Evaluation Metrics

For the classification and segmentation tasks, we follow the evaluation metrics mentioned in

Section 2.4.1 by using the accuracy score and mIoU respectively to evaluate performances of

different methods. For the shape retrieval task, we use the common metric to evaluate the

performance: mean Average Precision (mAP). The mathematical expression for mAP is:

mAP =
1

Q

Q∑
q=1

AP(q),

AP(q) =
1

number of relevant items for q

N∑
k=1

P (k)× δ(k),

R(k) =
number of relevant items among the top k retrieved items

total number of relevant items
,

P (k) =
number of relevant items among the top k retrieved items

k
,

(3.10)
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where P (k) denotes precision, indicating the proportion of true positive retrievals to the total

retrieved items within the top k selected items. R(k) denotes recall, the proportion of true

positive retrievals to the total number of actual relevant items within the top k selected items.

AP(q) denotes Average Precision, which computes the average precision values at the ranks

where a relevant item is retrieved. δ(k) is an indicator function that is 1 if the item at rank k

is relevant and 0 otherwise/

3.4.3 Implementation Details

For all three tasks, we set the batch size to 32 for training and 16 for testing. We use

farthest point sampling to re-sample the points from the initial 10k points to 1024 points for

classification and retrieval and 2048 points for segmentation. Random point translation within

[−0.2, 0.2] and re-scaling within [0.67, 1.5] were adopted for augmentation. We trained the

model for 250 epochs with tα = 15 and t = 0.017. SGD is adopted as the optimizer, where

the learning rate was set to 1e-2 with momentum of 0.9 and weight decay of 1e-4. Cosine

annealing was applied to reschedule the learning rate for each epoch. For classification and

retrieval, we used one RTX2080Ti GPU with PyTorch for model implementation, and we

used two GPUs for the segmentation task. The normal vector information is ignored for all

experiments.

3.4.4 3D Object Classification

Synthetic Dataset. We first examine the model performance on the synthetic ModelNet40

[233] dataset. We sample 1024 points from each data with only xyz coordinates as input

features. Hyper-parameters for training follow the same as [66], except that points are

downsampled in the order of (1024, 512, 128) with feature dimensions of (3, 128, 256). We

report and compare our model performance with state-of-the-art (SoTA) methods in Table 3.1.

Both rotation sensitive and robust methods achieve great performance under z/z. However, the

former could not generalize well to unseen rotations. Rotation robust methods like SFCNN

[172] achieve competitive results under z/z, but their performance is not consistent on z/SO(3)
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TABLE 3.1. Classification results on ModelNet40. All methods take raw points of
1024× 3 as inputs.

Rotation Sensitive z/z z/SO(3) SO(3)/SO(3)
PointNet [164] 89.2 16.2 75.5
PoinNet++ [166] 89.3 28.6 85.0
PCT [66] 90.3 37.2 88.5
Rotation Robust z/z z/SO(3) SO(3)/SO(3)
SFCNN [172] 91.4 84.8 90.1
RIConv [263] 86.5 86.4 86.4
SRINet [195] 87.0 87.0 87.0
ClusterNet [28] 87.1 87.1 87.1
PR-InvNet [256] 89.2 89.2 89.2
RI-GCN [103] 89.5 89.5 89.5
GCAConv [262] 89.0 89.1 89.2
RI-Framework [116] 89.4 89.4 89.3
VN-DGCNN [49] 89.5 89.5 90.2
SGMNet [239] 90.0 90.0 90.0
[114] 90.2 90.2 90.2
OrientedMP [138] 88.4 88.4 88.9
ELGANet [65] 90.3 90.3 90.3
Ours 91.0 91.0 91.0

TABLE 3.2. Classification results on ScanObjectNN OBJ_BG.

Method z/SO(3) SO(3)/SO(3)
PointNet [164] 16.7 54.7
PointNet++ [166] 15.0 47.4
DGCNN [223] 17.7 71.8
PCT [66] 28.5 45.8
RIConv [263] 78.4 78.1
RI-GCN [103] 80.5 80.6
GCAConv [262] 80.1 80.3
RI-Framework [116] 79.8 79.9
LGR-Net [264] 81.2 81.4
VN-DGCNN [49] 79.8 80.3
OrientedMP [138] 76.7 77.2
Ours 86.6 86.3

and SO(3)/SO(3) due to the imperfect projection from points to voxels when using spherical

solutions. We outperform the recent proposed methods [138, 239, 49] and achieve an accuracy

of 91.0%, proving the superiority of our framework on classification.
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GT

Ours

RI-GCN

RIConv

VN-DGCNN

FIGURE 3.6. Segmentation comparisons on ShapeNetPart, where ground-truth
samples are shown for reference. Red dotted circles indicate obvious failures on
certain classes, and purple circles denote the slight difference between our design and
VN-DGCNN.

TABLE 3.3. Segmentation results on ShapeNetPart. The second best results are
underlined.

Method z/SO(3) SO(3)/SO(3)
PointNet [164] 38.0 62.3
PointNet++ [166] 48.3 76.7
PCT [66] 38.5 75.2
RIConv [263] 75.3 75.5
RI-GCN [103] 77.2 77.3
RI-Framework [116] 79.2 79.4
LGR-Net [264] 80.0 80.1
VN-DGCNN [49] 81.4 81.4
OrientedMP [138] 80.1 80.9
Ours 80.3 80.4
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Real Dataset. Experiments are also conducted on a real-scanned dataset, i.e., ScanObjectNN.

We use OBJ_BG subset with the background noise and sample 1,024 points under z/SO(3)

and SO(3)/SO(3). Table 3.2 shows that our model achieves the highest results with excellent

consistency with random rotations.

3.4.5 3D Part Segmentation

Shape part segmentation is a more challenging task than object classification. We use

ShapeNetPart [252] for evaluation, where we sample 2048 points with xyz coordinates as

model inputs. The training strategy is the same as the classification task except that the

training epoch number is 300. Representative methods such as PointNet++ and PCT are

vulnerable to rotations. Rotation robust methods present competitive results under z/SO(3),

where we achieve the second best result of 80.3%. Moreover, qualitative results shown in

Figure 3.6 present that we can achieve visually better results than VN-DGCNN in certain

classes such as the airplane and car.

3.4.6 3D Shape Retrieval

We further conduct 3D shape retrieval experiments on ShapeNetCore55 [27]. We only use the

perturbed part to validate our model performance under rotations. We combine the training

and validation sets and validate our method on the testing set following the training policy of

[59]. Experimental results are reported in Table 3.4, where the final score is the average value

of micro and macro mean average of precision (mAP) as in [184]. Similar to the classification

task, our method achieves SoTA performance.

3.4.7 Ablation Study

3D Semantic Segmentation. To check our model’s effectiveness on real-world large scenes,

additional experiments are conducted on S3DIS dataset [10], which includes six indoor areas

of three different buildings. Each point is labeled by one of the 13 categories (e.g., ceiling,

chair or clutter). Following the same pre-processing steps as [166, 223], each room is divided
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TABLE 3.4. Comparisons of SoTA methods on the 3D shape retrieval task.

Method micro
mAP

macro
mAP Score

Spherical CNN [59] 0.685 0.444 0.565
SFCNN [172] 0.705 0.483 0.594
GCAConv [262] 0.708 0.490 0.599
RI-Framework [116] 0.707 0.510 0.609
Ours 0.715 0.510 0.613

TABLE 3.5. Semantic segmentation results (mIoU) on S3DIS area-5.

Method z/z z/SO(3) SO(3)/SO(3)
PointNet [164] 41.1 4.1 29.3
DGCNN [223] 48.4 3.6 34.3
RIConv [263] 22.0 22.0 22.0
LRG-Net [264] 43.4 43.4 43.4
Ours 51.2 51.2 51.2

TABLE 3.6. Module analysis of AIT and loss functions. Fg∗ means encoding Fg via
Intra-frame Aligned Self-attention.

Model eαsa eαca Fg∗ Asa +Aca Lℓ
r Lg

r Acc.
A ✓ ✓ ✓ 90.0
B ✓ ✓ ✓ ✓ 90.6
C ✓ ✓ ✓ ✓ 90.2
D ✓ ✓ ✓ ✓ ✓ ✓ 90.2
E ✓ ✓ ✓ ✓ 90.4
F ✓ ✓ ✓ 90.0
G ✓ ✓ ✓ ✓ 90.2
H ✓ ✓ ✓ ✓ 90.6
Ours ✓ ✓ ✓ ✓ ✓ 91.0

into 1m×1m blocks and for each block 4096 points are sampled during training process. We

use area-5 for testing and all the other areas for training. The quantitative results are shown in

Table 3.5 following [264], where it shows that under random rotations, our model outperforms

LGR-Net by 7.8%, showing a more effective way to process large indoor scenes. For a more

intuitive understanding of our model performance, qualitative results are shown in Figure 3.7

for reference.



60 3 DEEP LEARNING-BASED ANALYSIS FOR ROTATED POINT CLOUDS

Input GT Ours

ceiling floor wall beam column window door table chair sofa bookcase board clutter

FIGURE 3.7. Visualization of semantic segmentation results on S3DIS area-5. The
first row is the original inputs, the second row is the ground-truth samples and the last
row is our predicted results.

Effectiveness of Transformer Designs. We examine the effectiveness of our transformer

design by conducting classification experiments under z/SO(3). We first ablate one or both

of the angular embeddings and report the results in Table 3.6 (models A, B, and C). Model

B performs better than model C by 0.4%, which validates our design of feature integration

where Mℓ
i is used as the main source of information. When both angular embeddings are

applied, the best result is achieved (i.e., 91.0%). Moreover, we validate our discussion in

Section 3.3.2 by comparing models D and E. We demonstrate in model D that when encoding
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FIGURE 3.8. Left: Results on Gaussian noise of zero mean and variant standard
deviation values. Right: Results on different numbers of noisy points.

Fg in the same way as Fℓ, the model performance decreases, which indicates that encoding Fg

via self-attention will increase the model overfitting. Finally, we examine the effectiveness of

our attention logits-based integration scheme by comparing our model with the conventional

method (model E), which applies self- and cross-attention sequentially and repeatedly. We

observe that our result is better than model E by 0.6%, indicating that our design is more

effective.

Registration Loss. We sequentially ablate Lg
r and Lℓ

r (models F, G, and H) to check the

effectiveness of our registration loss deign. Results in Table 3.6 demonstrate that we can

still achieve a satisfactory result of 90.0% without feature registration. Individual application

of Lg
r and Lℓ

r shows the improvement when forcing the final representation to be close to

rotation-invariant features. Moreover, it can be seen that model H performs better than model

G, which indicates that intermediate features learned from the global scale are important for

shape classification. The best model performance is hence achieved by applying both losses.

Noise Robustness. In real-world applications, raw point clouds contain noisy signals. We

conduct experiments to present the model robustness to noise under z/SO(3). Two experiments

are conducted: (1) We sample and add Gaussian noise of zero mean and varying standard

deviations N (0, σ2) to the input data; (2) We add outliers sampled from a unit sphere to each

object. As shown in Figure 3.8 (left), we achieve on par results to RI-Framework when std is
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FIGURE 3.9. Network attention on PointNet++, RI-GCN and our model.

low, while we perform better while std increases, indicating that our model is robust against

high levels of noise. Besides, as the number of noisy points increases, most methods are

heavily affected while we can still achieve good results.

Visualization of Rotation Invariance. We further examine RI of learned features. Specific-

ally, we use Grad-CAM [187] to check how the model pays attention to different parts of data

samples under different rotations. Results are reported in Figure 3.9 with correspondence

between gradients and colors shown on the right. RI-GCN presents a good result, but its

behavior is not consistent over some classes (e.g., vase and plant) and it does not pay attention

to regions that are critical for classification (see toilet), showing inferior performance to ours.

PointNet++ shows no resistance to rotations, while our method exhibits a consistent gradient
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FIGURE 3.10. t-SNE of the aggregated U with z/SO(3) (Left) and SO(3)/SO(3)
(Right). Clusters indicate good predictions in object classification.

distribution over different parts with random rotations, indicating our network is not affected

by rotations.

Visualization of U. To better present the discriminability of the learned features, we sum-

marize the shape feature representation U by maxpooling and visualize it via t-SNE [208].

Experiments are conducted on object classification under z/z and z/SO(3). Only the first 16

classes are selected for a clear representation purpose as shown in Figure 3.10. Although

it is difficult to correctly separate all categories, we can see that some shape classes can

be perfectly predicted, and the overall representation ability of U under different testing

protocols is satisfactory and consistent.

3.5 Discussion

We have demonstrated in Section 3.4 that our method is robust to the white noise and number

of points, but we have also examined that our method can be sensitive to randomness and the

implementation is not quite efficient. In the following, we conduct two additional experiments

on model randomness and model complexity and discuss our model performances under these

two different circumstances.
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TABLE 3.7. Variance and Mean values of different model performances on Model-
Net40 with z/SO(3).

Model A B C
Acc. (%) 89.8±0.2 90.4±0.2 90.1±0.1
Model D E F
Acc. (%) 89.8±0.4 90.1± 0.3 89.6±0.4
Model G H Best
Acc. (%) 90.0±0.2 90.3±0.3 90.8±0.4

Influence of Randomness. We first examine the robustness of our model to 3D point clouds

of random poses. The mean and variance values of performances are reported in Table 3.7,

where the total training epochs remain the same as the previous designs. We can see that

although our best model can achieve the best performance of 90.8%, it is quite sensitive to

point clouds of different poses with a variance of 0.4%. When compared to other designs

such as models A, B, and C, they all have a relatively lower model variance than our best

model, which indicate that it is hard for our best model to achieve a stable performance when

given different raw point clouds.

Model Complexity. Inference model sizes of different methods along with the corresponding

construction time for LRFs and inference speed are reported in Table 3.8. The construction

time measured in seconds shows time cost for different models generating their low-level

rotation-invariant shape features, where we record the total time for local and global rep-

resentation constructions of RI-Framework and our work. As can been seen, our proposed

method takes a relatively longer time than most methods, and our model parameters is the

largest amongst all compared methods, indicating that further designs are needed to solve this

TABLE 3.8. Model complexity construction time for LRFs, and inference speed on
ModelNet40 with z/SO(3), where [114] is considered without test time augmentation.

Method Params (M) Times (s) Speed (ins./s) Acc (%)
RIConv [263] 0.68 0.041 396.4 86.4
RI-GCN [103] 4.19 0.057 139.1 89.5
RI-Framework [116] 2.36 0.134 43.1 89.4
VN-DGCNN [49] 2.77 - 77.3 89.5
Li et al. [114] 2.76 0.047 35.8 90.2
Ours 3.11 0.043 205.3 91.0
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issue, and the trade-off between the accuracy and inference speed is hard to balance. We will

investigate the model design for a much high accuracy and faster speeds in the future work.

3.6 Summary

In this chapter, we rethink and investigate the close relation between rotation invariance and

point cloud registration, based on which we propose a PCR-cored learning framework with

three stages. With a pair of rotation-invariant shape descriptors constructed from local and

global scales, a comprehensive learning and feature integration module is proposed, Aligned

Integration Transformer, to simultaneously effectively align and integrate shape codes via self-

and cross-attentions. To further preserve rotation invariance in the final feature representation,

a registration loss is proposed to align it with intermediate features, where shared semantic

knowledge of geometric parts is also extracted. Extensive experiments demonstrated the

superiority and robustness of our designs.

In addition, the designed PRC-cored learning framework can be applied to large-scale point

cloud datasets, and we have demonstrated the ability of our model in chapter 3 when we apply

it to semantic3d dataset, which is a large-scale point cloud classification benchmark. The

current challenge to consider is that due to the use of attention mechanism, the computational

cost could be quite high when more points are handled, which leads to a large model.

Moreover, based on study of [139], it is easy for a large model to forget the knowledge that it

has learned at the early stage, so this also introduces another difficulty. In future work, we

will examine efficient methods for invariance learning on large-scale point clouds.



CHAPTER 4

Deep Learning-based Modeling for 3D Human Mesh Texturing

This chapter concentrates on the realm of 3D human meshes, which presents numerous

intriguing research prospects and advantages, primarily due to the pivotal role of human

models across multiple domains. For example, in the computer graphics field, human meshes

can foster more precise and lifelike character models and animations [213]. This emphasis on

human meshes not only bolsters our understanding of the human form, but also enriches the

practical applications of 3D modeling and interaction. However, a large number of human

mesh datasets, such as Caesar [88] and ScanDB [71], ignore human mesh textures during data

collection stage, which heavily hinders the progress in the human texturing domain. Hence, it

is an urgent need to develop an automatic generation pipeline for the human mesh texturing.

In this chapter, we focus on text-guided human texture generation using deep learning-based

methods, and we reveal our analysis and investigations on human mesh generation.

4.1 Introduction

The task of developing 3D human avatars from text or visual cues has been a complex and

difficult problem in the fields of 3D data analysis. Previous methods have often relied on

intricate and costly equipment to create high-quality avatar models. Nevertheless, these

techniques necessitate the use of multi-perspective images or depth maps, which are typically

beyond the budget of consumer-level applications. Alternatively, some works [181, 182] make

use of neural networks to estimate viable avatar models from a single image. However, these

methods are constrained by the accessibility of appropriate images and they lack the capability

to be modified once an image has been selected as a reference. Significant progress has been
66
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made in text-to-3D shape generation. Some methods are proposed for general objects [162,

121], and some are specifically for 3D human avatars [24, 83, 91]. Success of these methods

rely on text-to-image generation, which leverages the diffusion model [80, 176], and Score

Distillation Sampling (SDS) [162] combined with differentiable 3D representations [147, 14].

In our study, we utilize 3D scene representations that are more conducive to generating high-

quality 3D human textures from textual descriptions. We firstly go through some existing

methods on text-guided human mesh and texture generation in Section 4.2, where we propose

our main designs based on a current method named Fantasia3D [34], which enables us to

generate detailed and high-quality 3D human textures. In Section 4.3, we propose to address

a primary issue associated with SDS, which usually causes over-smoothed and low-quality

textures. Our main idea is to denoise the unclear gradient direction provided by the SDS loss.

We handle this from two points of view. Firstly, we propose Denoising Score Distillation

(DSD), which introduces a negative gradient component to modify the SDS, which could

correct the SDS gradient direction iteratively for detailed and high-quality texture generation.

Then, to enable geometry-aware texture generation, we utilize geometric guidance which

provides rich details of the mesh surface to guide the DSD precisely, and use spatial-aware

texture shading models [98] to guarantee the quality of rendered visual results. Finally, we

validate our proposed methods on extensive experiments in Section 4.4.

The contributions of this chapter are summarized as follows:

(1) We introduce Denoising Score Distillation, a diffusion-based denoising score using

negative image-text pairs for high-fidelity texture generation aligned to textual

descriptions.

(2) We employ semantically aligned 2D depth signals and spatially-aware rendering

functions for geometry-aware texture generation and realistic avatar rendering.

(3) Through comprehensive experiments, we prove the efficacy of our method over

existing texture generation techniques.
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4.2 Literature Review

4.2.1 Score Distillation Sampling

Due to the introduction of SDS and the text-to-image diffusion model, 3D content generation

is made possible where neural representations of the 3D content can be differentiable, i.e.,

NeRF [147] or DMTet [189]. In this part, we will go through the implementation of SDS in full

detail. Given an input image x, instead of directly performing the forward/backward diffusion

process on x, an image encoder is used first to encode the image to a latent space [176],

resulting in a latent code z.

A denoising U-Net ϵϕ with model parameters ϕ is then used to encode and decode the latent

code z with a text embedding y introduced at the bottleneck of the U-net. In addition, a

timestep t ∼ U(0, I) is uniformly sampled to add the white Gaussian noise ϵ ∼ N (0, I) into

z. The diffusion loss can be mathematically formulated as:

LDiff(z, y, t) = w(t)∥ϵϕ(zt, y, t)− ϵ∥22, (4.1)

where w(t) is a weighting function that depends on the timestep t, and zt refers to the noisy

version of z via an iterative forward diffusion process given by zt =
√
αtz+

√
1− αtϵ, with

αt being the noise scheduler.

To enable high quality generation, classifier-free guidance (CFG) [81] is used that jointly

learns text-conditioned and unconditioned models through a guidance scale parameter ω.

During inference, the two models are used to denoise the image as follows:

ϵ̂ϕ (zt, y, t) = (1 + ω)ϵϕ (zt, y, t)− ωϵϕ (zt, t) . (4.2)

Given a differentiable rendering function gθ with parameters θ, which renders 3D avatar

models into 2D images, the gradient of the diffusion loss function with respect to the rendering

function parameters θ is:

∇θLDiff = w(t) (ϵ̂ϕ (zt, y, t)− ϵ)
∂ϵ̂ϕ(zt, y, t)

∂zt

∂zt
∂θ

. (4.3)
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As demonstrated in [162], omitting the U-Net Jacobian term leads to effective gradient for

optimizing gθ, so the final SDS score function is:

∇θLSDS = w(t) (ϵ̂ϕ (zt, y, t)− ϵ)
∂zt
∂θ

. (4.4)

The purpose of SDS is to generate samples via optimization from a text-guided diffusion

model.

4.2.2 Physically-Based Rendering

Given a textureless mesh with vertex positions, face indices, and texture coordinates, our task

is to generate photorealistic surface rendering based on the diffusion model. For this purpose,

we choose the Physically-Based Rendering model. Specifically, we apply spatially-varying

BRDF and differential rendering functions to make the whole pipeline suitable for realistic

texture generation.

Diffuse SV-BRDF. We follow [98] to employ simple diffuse model (i.e., Lambertian or Phong

models) for low computational cost. Moreover, to enable differential rendering process, we

use a simple multi-layer perceptron σ(·) and a positional encoding network γ(·) to predict

spatially varying albedo term kd = σ(γ(xp)) ∈ R4 as:

fd(xp) =
kd

π
. (4.5)

Specular SV-BRDF. For the specular part, we use Cook-Torrance microfacet specular shading

model [45] to characterize the physical properties of an object’s surface. In addition, we

employ the material model from [23] for easy rendering:

fs(l,v) =
DFG

4(n · l)(n · v)
, (4.6)

where n is the surface normal, l the input light vector and v the view direction. The terms D, F

and G represent the normal distribution function, the Fresnel term and geometric attenuation.

As mentioned in [23] that specular reflectance is related to roughness r and metallic term m,

where r serves as a parameter of D and pre-filtered environment map [98]. The metalness
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term m presents the dielectric and conductor reflectance. The specular reflectance at normal

incidence ks = m · kd + (1−m) · 0.04 serves a parameter of F .

Following the same idea as in diffuse SV-BRDF, we use MLP and positional encoding to

predict the specular related terms (r,m) = σ(γ(xp)) ∈ R2. Formally, we use the same MLP

and positional encoding network to predict diffuse and specular reflectance terms given the

surface point xp: (kd, r,m) = σ(γ(xp)) ∈ R5.

Rendering. We apply Image-Based Lighting model with the aforementioned SV-BRDFs to

render 2D image pixels:

R(xp, l) =

∫
H

Li(l)(fd + fs) (l · n) dl, (4.7)

where Li(l) is the incident radiance, H = {l : l · n ≥ 0} demotes a hemisphere with incident

light and surface normal. For fast rendering purpose, we employ the differentiable split-sum

approximation of Eq. 4.7 and pre-compute a 2D look-up texture map.

4.2.3 3D Shape and Texture Generation

There has been a recent surge of interest in the field of generating 3D shapes and textures.

One line of methods, such as Text2Mesh [145], Tango [112], and CLIP-Mesh [152], utilize

CLIP-space similarities as an optimization objective to create novel 3D shapes and textures.

GET3D [61] trains a model to generate shape and texture via a DMTet [189] mesh extractor

and 2D adversarial losses.

Shape Generation. A recent approach called DreamFusion [162] introduces the use of

pre-trained diffusion models to generate 3D NeRF [147] models based on a given text prompt.

The key component in DreamFusion is the score distillation sampling (SDS), which uses a

pre-trained 2D diffusion model as a critique to minimize the distribution of the predicted

and ground-truth Gaussian noise, thus the 3D scene can be optimized for desired shape and

texture generation. An recent method, named Fantaisia3D [34], disentangles the 3D human

generation into shape and texture generation processes, which can generate high-quality 3D

meshes by using normal maps. As depicted in Figure 4.1, we follow the design of Fantasia3D
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(a) A man wearing a suit (b) Ironman

FIGURE 4.1. Generated results of human avatars guided by textural descriptions
using modified Fantasia3D [34], where human prior information (i.e., SMPL) is
injected during the training pipeline. Input texts are shown below the rendered images.

to generated human mesh models conditioned on input texts. Although the shape can be

deformed to a large extent, the generated human shapes cannot remain consistent for the

disjoint parts. The observed results indicate that current technologies for text-to-human shape

generation is still far from satisfaction and the generated shapes are not semantically aligned

to the input textual descriptions.

Texture Generation. In the context of texture generation, Latent-NeRF [144] demonstrated

how the same SDS loss can be employed in the latent space of the diffusion model to generate

textures for 3D meshes and then decoded to RGB for the final colorization output. Besides,

both TEXTure [175] and Text2Tex [31] proposed a non-optimization method with progressive

updates from multiple viewpoints to in-paint the texture over the 3D mesh models.

Human-specific shape and texture generation methods also follow the same ideas that use

either CLIP similarity between the generated human image and the textural descriptions [83]

or directly leverage SDS for iterative shape and texture generation [107, 258, 91]. Besides,

they also employ human body model prior, i.e., SMPL [137], for effective human avatar

generation. However, most generated human textures are over-smooth and of low quality,

which we argue is caused by the unstable guidance provided by SDS. In this work, we present
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FIGURE 4.2. Overview of our proposed model for text-to-human texture generation.
Given an input text and a human mesh model, we generate a avatar texture to match
the textual description. To achieve this, we propose Denoised Score Distillation
with a negative pair of image and text prompts to guide the gradient direction for
detail texture generation that is semantically aligned to the input text. We utilize a
coordinate-based network with SV-BRDF to learn the material-related parameters
(i.e., kd, r, and m) with depth maps for geometry-aware texturing. Finally, camera
position is shifted with semantically adapted text input to refine the face region.

an approach that utilizes a modified SDS for the generation of high-quality, detailed textures

while incorporating geometry-aware texturing techniques for intricate garment detailing.

4.3 Methods

4.3.1 Denoised Score Distillation

Given a textureless human avatar, our task is to generate surface textures conditioned on input

texts. Due to SDS and neural representation of 3D avatar [147], zero-shot human texture

generation is made possible. We observe that using SDS only for human texturing can cause

over-smoothed body parts and cannot be fully semantically aligned to the input text.

We address the issue brought by SDS by proposing a new method, Denoised Score Distillation,

for detailed human avatar texturing of high quality. Specifically, when presented with input
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text embedding y and the corresponding image x with the latent code z, we aim to refine

the gradient ∇θLSDS in Eq. 4.4 to a direction, so that the rendered avatar contains a detailed

texture mapping that is semantically aligned to the input text. Mathematically, our DSD score

function is formulated as:

LDSD = w(t)
(
∥ϵϕ(zit, y, t)− ϵ∥22 − λ∥ϵϕ(ẑi−1

t , ŷ, t)− ϵ∥22
)
, (4.8)

where we introduce a negative pair of image with latent code ẑ and text with embedding

ŷ. λ is a weighting parameter. Both zit and ẑi−1
t have a superscript i indicating the training

iteration and share the same timestep t and noise ϵ, allowing us to use the same U-Net for

noise prediction. Then the gradient of LDSD over the model parameter θ is:

∇θLDSD = w(t)
(
ϵ̂ϕ (zt, y, t)− ϵ− λ(ϵ̂ϕ (ẑt, ŷ, t)− ϵ)

)∂zt
∂θ

= w(t)
(
ϵ̂ϕ (zt, y, t)− λϵ̂ϕ (ẑt, ŷ, t)− (1− λ)ϵ

)∂zt
∂θ

,

(4.9)

where we have omitted the U-Net Jacobian matrix following [162].

As depicted in Figure 4.2, we employ the negative image x̂i−1 derived from the preceding

training iteration, where we consider x̂i−1 a negative version of xi as it contains more noise

signals. The inclusion of the negative image within the computation process of ∇θLDSD yields

two significant advantages. Firstly, ẑi−1
t can reinforce the memory of the rendered human

image during long time training, so that the final output can still be semantically aligned to the

input text. Secondly, the incorporation of the negative image improves the model’s capacity to

learn complex geometries, thus facilitating the generation of clear boundaries between varying

garment types. For negative prompts, we use the common prompts such as disfigured, ugly,

etc. However, we would adapt existing prompts based on a test run, infusing refined negative

prompts based on the observed output. For instance, if artifacts emerge within rendered hand

regions, we append “bad hands" to the prompt set. In contrast to the indirect application of

negative prompts in Stable Diffusion, we inject the negative prompt embedding directly into

∇θLDSD. This strategy effectively minimizes artifact presence in the rendered human images,

thereby enhancing the quality of the generated output.



74 4 DEEP LEARNING-BASED MODELING FOR 3D HUMAN MESH TEXTURING

Through the integration of both negative image and prompts, we successfully manipulate the

existing SDS gradient in Eq. 4.4 to guide the model convergence towards a mode that yields

highly detailed and qualitative textures, which also remain semantically aligned to the input

text. Further analyses and insights into this approach are provided in our ablation study.

4.3.2 Geometry-aware Texture Generation

To accurately texture the details proposed by complex garments, we leverage depth map

as a fine-grained guidance. Therefore, we employ a pre-trained depth-to-image diffusion

model [176] rather than the general version, so that the generated avatar could follow the

same depth values of the given surface mesh. Based on the depth-aware diffusion model, we

find that the direct application of SDS tends to guide the model towards a specific mode [224],

resulting in over-smoothed and noisy garment texture mappings. In addition, the generated

texture is not semantically aligned to input prompts as the belt texture is not clearly presented

in the rendered image. We also employ the differentiable rendering process and coordinated-

based neural networks for more detailed geometry learning during the texture generation

process. In addition, as depicted in Figure 4.3, we apply texture dilation on UV islands for to

reduce texture seams for more smooth rendering.

(a) Rendered Image (b) Texture map 𝑘! (c) Texture map 𝑘"

FIGURE 4.3. Generated texture maps for the diffuse term kd and specular term ks.
Texture dilation on UV islands is only applied on kd to reduce texture seams.
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4.3.3 Semantic Zoom

Human perception is particularly sensitive to distortions and artifacts in facial features.

However, texturing human avatars in a full-body context often results in degraded facial

details. To address this issue, we enhance the human prior during the optimization process

by semantically augmenting the prompt [83]. For instance, we pre-pend “the face of” to the

beginning of the prompt to direct more attention to this region. Simultaneously, every four

iterations, we shift the look-at point of the camera to the face center and semantically zoom

into the facial region, which refines facial features and improves the overall perception of the

rendered avatar.

4.4 Experiments and Results

4.4.1 Datasets

In this chapter, we utilize the RenderPeople dataset [174] as the input, where we intentionally

dismiss the original textures given in the dataset. RenderPeople includes real-world scanned

human data with both high- and low-resolution mesh options. For texturing tasks, we employ

the low-resolution models where the number of vertices is only 30k for an efficient model

training.

4.4.2 Evaluation Metrics

We apply both user study and CLIP score for the evaluation of the generated texture quality.

Specifically, for user study, we pick several rendered images and the corresponding texts for

evaluation. Totally, 345 users are picked with responses received. Each user is asked with two

questions: (Q1) How closely does the result match the text description; (Q2) How realistic

is the generated result. We ask users to rank their score from 1 to 5, where 1 indicates the

most dissatisfied result and 5 indicates the most satisfied result. For CLIP score, we follow

the same implementation of [168].
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4.4.3 Implementation Details

We implement the SV-BRDF network in Figure 4.2 as a two-layer MLP with 32 hidden units.

We train and optimize our method on one Nvidia RTX 3090 GPU for 6000 iterations. We use

the AdamW optimizer with a learning rate of 1 × 10−3 for texture generation. We employ

semantic zoom and shift our camera position to the face regions every 4 training iterations.

We compare our model to recent state-of-the-art baseline models, including Latent-Paint [144],

TEXTure [175], and Fantasia3D [34] with the appearance modeling part only. We modify

Fantasia3D to ensure the vertex positions remain fixed whiling generating textures. We also

compare our model performance with a recent method for realistic human avatar generation,

DreamHuman [107], to further validate the effectiveness of our design. Although the human

mesh model is not publicly available, we use the same text prompts as in DreamHuman to

evaluate the quality of human textures with similar human mesh models.

4.4.4 Qualitative Results

As depicted in Figure 4.4, we compare our qualitative results against baseline models. Latent-

Paint is unable to capture the semantics of the objects, which results in failed or blurry

textured avatars. TEXTure generates relatively better results than Latent-Paint, while it still

suffers from inconsistent textures. Fantasia3D performs well given certain input texts as

in Figure 4.4 (a) and (c). By using SDS which causes the unstable loss gradient direction,

Fantasia produces unrealistic samples with noisy textures in most cases. In contrast, our

model can output realistic textured avatars with high-quality and detailed textures, which

are aligned to input texts and consistent with the geometry. We further compare our results

with DreamHuman in Figure 4.5. We observe that using the same text input, our model

generates textured avatars with more high-frequency details, such as the cloth wrinkles, which

is different from DreamHuman where the textures are over-smoothed. Moreover, in both

experiments, our model can consistently generate high-quality human faces. We attribute

our advantage over the aforementioned baseline models to the proposed DSD score function,
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Latent-Paint TEXTure Fantasia3D Ours

(a) A man wearing a shirt

(b) A young man wearing a turtleneck

(c) A woman in a jogging suit

(d) A young woman in a dress

(e) A full-body shot of a boy with afro hair

FIGURE 4.4. Qualitative comparisons on RenderPeople [174] for textured human
avatars against Latent-Paint [144], TEXTure [175], and Fantasia3D [34]. Our genera-
tion contains the best texture quality with high-frequency details and consistent with
input textual descriptions.
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(a) An Asian man wearing a navy suit

(c) A woman wearing a short jean skirt and a 
cropped top

(e) A senior black person wearing a polo shirt

(b) A black woman dressed in gym clothes

(d) A man wearing a hoodie

(f) A young man wearing a turtleneck

FIGURE 4.5. Qualitative comparisons with DreamHuman [107]. As DreamHuman is
not publicly available, we pick similar mesh models from RenderPeople [174] and
download the results from the published paper.

which guides the gradient in a direction that mitigates the over-smoothing artifacts commonly

introduced by SDS.

4.4.5 Quantitative Results

To investigate the alignment between the rendered human avatars and the input texts, we

leverage the CLIP score [168]. As shown in Table 4.1, we compare our method against the

baseline models and report the mean CLIP score. Specifically, we generate six frontal images

from all textured avatars, each separated by a 30-degree interval. we observe that our model

outperforms all baseline models, where our result is higher than Latent-Paint by the largest
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TABLE 4.1. Quantitative comparisons of mean CLIP score between baseline models
and ours for textured human avatars. ∆ denotes the percentage by which our model
outperforms the indicated method.

Method Mean CLIP Score ∆ (%)
Latent-Paint 24.11 19.99
TEXTure 25.34 14.17
Fantasia3D 27.10 6.75
Ours 28.93 -
DreamHuman 25.79 12.25
Ours 28.95 -

TABLE 4.2. User study results of baseline models and ours. ∆ denotes the percentage
by which our model outperforms the indicated method.

Method Score ∆ (%)
Latent-Paint [144] 1.21±0.46 180.99%
TEXTure [175] 1.46±0.54 132.88%
Fantasia3D [34] 1.94±0.78 75.26%
DreamHuman [107] 3.00±0.80 13.33%
PaintHuman (Ours) 3.40±1.09 -

margin of around 19.99%. Such improvements demonstrate that our proposed DSD is capable

of generating more realistic textures on complex human meshes, and is better aligned to the

input texts.

Moreover, we conduct user studies for more accurate quantitative analysis. Collected results

are reported in Table 4.2 including mean scores and standard deviations, which indicate that

our PaintHuman model outperforms the other baselines. More qualitative results are shown in

Figure 4.6.

4.4.6 Ablation Study

To validate the effectiveness of our proposed components, we use “a man in a suit with a belt

and tie" as an example text prompt for the ablation study. Results of alternative settings are

shown in Figures 4.7, 4.8, and 4.9.
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(a) A barefoot man in short sleeves (b) A female doctor

(c) A black woman dressed in gym clothes (d) A senior black person wearing a polo shirt

(e) A man in a ski coat (f) A man in a long-sleeve shirt

(g) A man in a T-shirt and shorts with slippers (h) A woman in a T-shirt

FIGURE 4.6. Additional rendered results on RenderPeople [174] for textured human
avatars guided by textual descriptions, where the corresponding input text is shown at
the bottom of each sample.

Firstly, the efficacy of our DSD is verified through several comparisons. As shown in

Figure 4.7(a), we note that employing SDS for human texturing often results in over-smoothed

body parts and fails to fully align with the input text semantically, where the belt region is
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(a) SDS (b) SDS + Depth

(c) SDS + Depth + NegPrompt (d) DSD + Depth

FIGURE 4.7. Rendered results of textured Human avatars based on (a) SDS, (b) SDS
with the depth map, (c) SDS with the depth map and negative prompts, and (d) DSD
with the depth map. The dashed boxes indicate the mismatch between the texture
and the textual descriptions, and the solid boxes denote human parts with low-quality
textures.

neglected. The addition of depth map guidance in Figure 4.7 also struggles to address this

issue. Moreover, by adding negative prompts, Figure 4.7(c) demonstrates that the rendered

image is able to include more high-frequency details, but is not aligned with the input text, and

some parts are devoid of texturing. In contrast, as shown in Figure 4.7(d), an image rendered

using our DSD effectively mitigates the over-smoothing issue and results in a high-quality,

detailed human avatar.

We further examine the effectiveness of BRDF shading model. As shown in Figure 4.8 (b),

we render the result with the Spherical Harmonic model (SH) [21], resulting in less realistic

textures with noticeably noisy color distributions at the borders between different garments.

However, using BRDF can give us smooth and clear textures.
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(a) w/ BRDF (b) w/ SH

FIGURE 4.8. Ablation study on different shading models. (a) Fully-proposed method
with BRDF; (b) Fully-proposed method with Spherical Harmonic model (SH).

FIGURE 4.9. Importance of semantic zoom. The left image shows the generated
avatar with semantic zoom, while the right image employs no semantic zoom.

Finally, as shown in Figure 4.9, our usage of semantic zoom on the face region significantly

enhances the overall texture quality. Notably, the method enables the presence of intricate

facial features, contributing to a more realistic representation.
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(a) a girl with pink hair, bursting 
with vivid color

(b) a man wearing a T-shirt with a 
cute bear drawn on it

FIGURE 4.10. Texture generation with challenging text prompts.

4.5 Discussion

Our proposed DSD can guide the texture generation process to a specific mode where the

synthesized textures are semantically aligned to both input texts and complex geometry, and

the textures are detailed.

In terms of practical use in industry, our design can quickly generate 3D models based on

input texts with time less than 1 hour, which largely reduce the time expense. In addition, our

output formats follow the standard of the industry and can be edited by the designers to fix

some artifacts or to fit their requirements. Our method could offer an unprecedented level of

personalization, allowing users to create unique avatars or objects simply by describing them

in text.

However, our model currently cannot reflect fine-grained text prompts quite well. For example,

as shown in Figure 4.10, when inputting texts that describe fine-grained properties, our model

cannot render 3D models that reflect the prompts 100%. The limitation is caused by the ability

of the language model that we use in our design, which could be improved by using a larger

language model.

Moreover, we present our failed cases in Figure 4.11 to show that the proposed DSD is not

able to handle all complex cases. As can be seen from Figure 4.11 (c), when the given human
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avatar is not in a canonical pose and when the hand gestures are quite complex, our model

fails to paint the hand region, which also leads to the failure of the face region. Moreover, as

shown in Figure 4.11 (d), our model can sometimes generate bad results on objects which

can reflect light. For example, the snowboarding goggles are not accurately textured. Future

works are essential to improve the current model performance.

(a) A man wearing a scrub (b) A woman wearing a coat with a hat and scruff

(c) A man wearing a coat (d) A man in a heavy suit coat

FIGURE 4.11. failure cases when using DSD for texture generation. Input textual
descriptions for each sample are shown below the rendered images, where we show
the front, side, and back views of the human avatar renderings.

4.6 Summary

In this chapter, we propose a zero-shot text-to-human texture generation model. We present

Denoised Score Distillation, a novel method that refines gradient direction and produces

high-quality and detailed human textures aligned to the input text. To ensure the semantic

alignment between the mesh and texture, we leverage a pre-trained depth-to-image diffusion

model and a coordinate-based network for surface material prediction, with a spatially-varying
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bidirectional reflectance distribution function for photorealistic human texturing. We also

enhance facial details through semantic zooming. Extensive experiments demonstrated the

effectiveness of our designs.



CHAPTER 5

Deep Learning-based Analysis for Micro-expression Face Videos

Face videos, as another type of 3D data, form a significant domain in 3D data analysis and

processing and has far-reaching implications in numerous areas such as facial recognition,

emotion detection, generation. With the rapid development of deep learning technologies, face

video analysis is becoming increasingly critical, owing to the temporal and spatial information

it encompasses that single image data fails to capture.

While the potential of face video data is evident, its analysis presents unique challenges.

As the challenges mentioned in Section 1.3.1, we aim to address the dataset issue by firstly

proposing a generative model for face videos with micro-expressions, where we have utilized

and proposed a model based on a generative adversarial network (GAN) [63] in combination

with a Capsule network for two subtasks: fake data discrimination and micro-expression

recognition. Experimental results indicate that our GAN-based model can generate face

videos that assists in recognizing facial micro-expressions

In this chapter, we explore the importance of the face video generation in the context of 3D

data analysis, and how novel deep learning-based methodologies can be employed to harness

this type of data more effectively.

5.1 Introduction

Video-based micro-expressions (MEs) display unconscious feelings that can be hardly per-

ceived by untrained observers, making it a challenging recognition task. Due to the practical

application of video-based micro-expression recognition (MER) in the domain such as lie
86
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detection and disease diagnosis [156, 143, 235], analysing face video data containing micro-

expressions is quite important. However, since micro-expression face data is hard to collect,

deep learning-based methods for MER cannot achieve a satisfactory result. Therefore, to

address this issue, we introduce a module for micro-expression synthesis (MES) to increase

the number of existing micro-expression face samples and introduce a simple classifier for

MER task.

Before the application of deep learning algorithms, hand-engineered methods for recogniz-

ing MEs are used. For example, Facial Action Coding System (FACS) [44] is applied to

recognize facial expressions, which pays attention to muscles that produce the expressions

and measures the movement with the help of action units (AUs). Local binary pattern (LBP)

and local quantized pattern (LQP) are later developed [143], and LBP with three orthogonal

planes (LBP-TOP [265]) has shown superiority in processing facial images. However, these

geometry-based methods rely heavily on the proposed images and can be easily affected by

global changes.

With the development of deep learning technologies, lots of works have been proposed based

on data-driven approaches for MER [101, 130, 209]. For example, ELRCN [101] adopts the

model architecture of [54] with enriched features to capture subtle facial movements from

frame sequences. Moreover, methods utilize the optical flow to enhance the model perform-

ance. STSTNet [123] extracts three optical features for lightweight network construction.

Dual-Inception [268] learns the facial MEs with the help of horizontal and vertical optical

flow components. ME-Recognizer [130] obtains optical features to encode the subtle face

motion with domain adaptation, which achieves the 1st place in MEGC2019 [186]. However,

CNN-based methods are invariant to translations and do not encode positional relations, and

orientation information of different facial entities is also ignored. Furthermore, due to the

quantity limit of ME samples, the model performance is heavily constrained.

In addition, the size limitation of current ME datasets (i.e., SMIC [117], CASME II [246], and

SAMM [48]) puts a constraint on deep learning methods that can hardly derive benefits from

small scale datasets. We propose to increase the number of data samples by adopting GAN [63]

and the variants [148, 157, 169], which have shown significant generative capabilities in
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FIGURE 5.1. The model pipeline for GAN [63].

various vision application fields. Moreover, we utilize a graph convolution network [104]

for facial parts relation learning, where we construct graphs on the feature dimension for

dynamic feature relation learning.

The main contributions are summarized as 3-fold:

(1) We develop an Identity-aware and Capsule-Enhanced Generative Adversarial Net-

work with graph-based reasoning, namely ICE-GAN, for MES and MER.

(2) We design a generation module that produces face videos with controllable MEs

based on identity information and a graph reasoning module.

(3) We introduce a capsule-enhanced discriminator to distinguish image authenticity

and predict micro-expression labels, with position-insensitive issues alleviated by

the capsule-based algorithm to improve the MER accuracy.

5.2 Literature Review

5.2.1 Generative Adversarial Network

Introduced by Goodfellow [63], GANs are a type of unsupervised learning model that

consist of two neural networks, the Generator and the Discriminator, working adversarially

to outperform each other (see Figure 5.1). The generator network creates fake data samples,

trying to produce data that come from the same distribution as the training set. Meanwhile,

the discriminator network aims to distinguish between samples from the true data distribution

(training set) and the face data created by the generator. Here, we give a review of GANs.
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Give a latent variable z sampled from a normal distribution N (0, I), the generator G aims to

map the latent variable to the data space, while the discriminator D outputs a single scalar

representing the probability whether the input data comes from the real data or the generator.

They are trained in a min-max game, where the generator tries to fool the discriminator,

and the discriminator tries to correctly classify real from fake samples. The mathematical

expressions for the generator and the discriminator are shown as follows:

Discriminator: ∇θd

1

m

m∑
i=1

[
logD

(
x(i)

)
+ log

(
1−D

(
G
(
z(i)
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z(i)

)))
,

(5.1)

where θd is the learnable model parameters for the discriminator, θg the learnable model

parameters for the generator, and i indicates the i-th sample among totally m samples.

Various improvements have been proposed to address the initial issues associated with GANs,

such as mode collapse, vanishing gradients, and training instability. Radford et al. [169]

proposes the Deep Convolutional GAN (DCGAN), which introduces architectural constraints

that improving the training dynamics. Arjovsky et al. [9] present the Wasserstein GAN

(WGAN) that utilizes the Earth Mover’s distance, providing a more stable training process

and preventing mode collapse. Later works develop Conditional GANs (CGANs) [148],

where both the generator and discriminator are conditioned on some auxiliary information

like class labels or data from other modalities, enabling the generation of data with specified

characteristics.

Existing datasets for the micro-expression recognition task constrain the development of

data-driven methods as the number of data samples is too small, resulting in overfitting during

the inference stage. To enlarge the current dataset, GANs are applied to generate unseen

videos by modeling the training data distribution, where distribution mappings are learned by

the generator and the authenticity of inputs is determined by the discriminator. So far there

have been tremendous extensions of GANs, and applications of GANs on the ME domain are

also explored [124, 236]. For example, optical flow images are generated via GAN to enlarge

the dataset in [124], and real facial images are produced based on action units intensity in
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FIGURE 5.2. Detailed model architecture of the capsule network [220, 180].

[236]. Our method is inspired by Auxiliary Classifier GAN (ACGAN) [157] to generate

unseen MEs based on image features with controllable categories, which can be of high

quality and high discriminability.

5.2.2 Capsule Network

Different from conventional CNNs, capsule network contains capsules which consider the

spatial hierarchy between features, ensuring that patterns are recognized in the context of

their spatial relationship. The capsule network is translation equivariant, which presents a

competitive learning capacity considering the relative pose and position information of object

entities in the image. Moreover, instead of pooling layers used in CNNs, capsule network

uses a dynamic routing mechanism to decide where to send the output. This ensures that

the network considers the spatial relationships between features. Capsule network tends to

be more robust against adversarial attacks compared to CNNs, and can achieve a better or

comparable performance with fewer parameters than CNNs. The model design of the capsule

network is depicted in Figure 5.2.

Ertugrul et al. [158] manages to encode face poses and AUs at different view angles with the

help of a single capsule. LaLonde et al. [109] develop a deconvolutional capsule network with

U-net architecture [177] which achieves a good result in object segmentation. [209] is the first

work that manages to use capsule-based architecture for MER, whose model performance

is better than the LBP-TOP baseline and several CNN models. In contrast, we propose our
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FIGURE 5.3. Architecture of the proposed ICE-GAN framework for MES and MER
tasks, where Genc and Gdec represent the encoder and decoder part of generator, and
D denotes the capsule discriminator.

discriminator design which is enhanced by capsule network to implement multiple tasks: to

check whether the input image is real or fake and to predict the ME labels.

5.3 Methods

The overall architecture is shown in Figure 5.3. The onset image Xon is regarded as the

neutral face with the lowest expressive intensity. U-net like generator is used to modulate

Xon with side information (i.e., random noise z and class label c) and produce the output

Xsyn with a desired class, preserving the identity knowledge. The real apex expressive faces

Xapex and Xsyn are adopted to train our capsule-enhanced discriminator, which is a multi-

tasking component for authenticity checking between Xapex and Xsyn, and for expression

classification. More details are elaborated in the following sections.

5.3.1 Micro-Expression Synthesis via Identity-aware Generator

We propose an identity-aware generator G based on the encoder-decoder structure as shown

in Figure 5.4, which can preserve the identity feature and produce outputs with preferable

classes during MES, with the help of side information. The encoding procedure explores
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facial attributes from onset neutral inputs Xon via a series of hierarchical convolutional layers,

resulting in intermediate feature maps f enc
i:1,2,...,6 ∈ RCi×Hi×Wi at the i-th convolutional layer,

where Ci, Hi, and Wi denote the channel, height, and width of the feature map, respectively.

Furthermore, we decide to utilize f enc
i by processing and propagating the intermediate

information from the encoder Genc to decoder Gdec for more realistic image generation, as

these local features contain trivial knowledge such as 2D face geometries and non-trivial

knowledge that is useful for the expression generation. So, we propose to use a reasoning

module based on graphs, namely graph reasoning module (GRM), to capture facial part

relations to reduce artifacts.

Instead of leveraging skip connections to directly transfer the multi-scale spatial information,

we design to firstly flatten the spatial dimension and directly apply self-attention on feature

channels to learn a channel map. Moreover, we propose to use graph convolution to better

reason the relationships between feature channels by treating the channel map as a graph,

which is named as the channel graph, so that global interdependencies between intermediate

facial attributes can be captured from local feature responses.

The detailed architecture is displayed on the yellow box of Figure 5.4. Based on the feature

map f enc
i ∈ RCi×Hi×Wi after convolution, we can construct a spatial graph with the node

number Ns = Hi ×Wi and node feature Cs = Ci. Inspired by [229], super-nodes with richer

expressiveness are formed by a transformation function T (·) to generate a new feature map

f̂ enc
i ∈ RCi×N̂s , and empirically, T (·) is chosen as a convolutional operation. To learn global

relations between different facial encodings, self-attention is applied to calculate a similarity

mapping of features based on f̂ enc
i , which can be formulated as:

M = ϕ(f̂ enc
i )θ(f̂ enc

i )T , (5.2)

where both ϕ(·) and θ(·) are linear mappings. We take the similarity mapping M ∈ RCi×Ci

as a channel graph, which has a set of node features m = {mj:1,2,...,Ci
∈ R1×Ci}. In our case,

we define M as an undirected and fully connected graph.
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To reason over the whole channel graph, we utilize a GCN [104] to learn edge features and

update node features. As the initial edge feature between two nodes is unknown and undefined,

we propose to set up a self-learning adjacency matrix A ∈ RCi×Ci , which can be randomly

initialized following the normal distribution and updated during back-propagation. The whole

process can be expressed as:

M̂ = σ((A+ I)MW ), (5.3)

where σ is an activation function, identity matrix I is added to construct self-looping, and

W ∈ RCi×Ci and A ∈ RCi×Ci denote the weight and adjacency matrices, which are both

learnable.

We then project the updated graph M̂ back to the same feature space of f enc
i through an

inverse projection function T−1(·). Lastly, the residual connection is employed to compensate

the high-level semantics relations with the low-level information. The final output gdeci of the

graph reasoning module is represented as:

gdeci = f enc
i ⊕ T−1(M̂). (5.4)

The last layer of Genc is the bottleneck layer that learns a compressed representation of the

input data, termed as identity-aware embedding e ∈ R320×1×1. As a controlling term for

expression generation, the class label c is concatenated with e and random noise z to form a

synthesis seed s ∈ R423×1×1, which is fed into the decoding part where the spatial dimensions

of feature maps are expanded and feature channels are reduced. Thus the decoding feature

maps fdec
i:1,2,...,6 can be obtained with the help of deconvolution operation h(·) [136]. Moreover,

gdeci will be further concatenated with fdec
i so the learned relational information from latent

feature space can be leveraged to improve synthetic image quality. The i-th upper layer

feature map (for i ∈ [2, 6]) can be represented as:

fdec
i−1 = h(gdeci ⊕ fdec

i ). (5.5)
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FIGURE 5.4. The encoder-decoder framework of our proposed generator G, where
the detailed implementations of the graph construction and global reasoning are
illustrated within the yellow box.

5.3.2 Micro-Expression Recognition via Capsule-Enhanced

Discriminator

Unlike CNNs operating over single scalars, capsule network attends to vectors, of which

lengths are used to represent the existence probabilities of each entity in a given image.

We design a multi-tasking discriminator for sample authenticity checking and ME label

classification enhanced by capsule network, which enables the learning of richer visual

expressions and more sensitive to the geometric encoding of relative positions and poses of

entities than conventional CNNs, dubbed a capsule-enhanced discriminator.

Figure 5.5 presents the detailed architecture. The facial attributes are encoded via PatchGAN

for faster learning, which are then fed into PrimaryCaps to encapsulate the information at a

lower level. Vectors generated from PrimaryCaps are coupled and used to activate the capsules

in the next layer. Two following capsules, namely AdvCaps and ExpCaps, are designed for

two separate sub-tasks: (1) AdvCaps distinguishes the real expressive images Xapex from the

synthetic ones Xsyn, and (2) ExpCaps predicts the corresponding micro-expression labels of

input images. Furthermore, a reconstruction network [180] is desired for a performance gain

by regularizing the training of ExpCaps.
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FIGURE 5.5. The capsule-enhanced discriminator D of our proposed method, where
Nprim denotes the number of primary capsules, dprim, dexp, and dadv represent the
dimension of each PrimaryCaps, ExpCaps, and AdvCaps, respectively.

5.3.3 Model Objective

Generator Objective. A two-term identity-preserving loss Lip is adopted to capture the

identity information embedded in Xon (via Genc) and thus to synthesize distinctive samples

Xsyn (via Gdec). One term of Lip is selected as the pixel-wise reconstruction loss Lpixel to

improve the generated image quality. We empirically use L1 penalty over L2 penalty to

establish direct supervision on Xsyn. Meanwhile, we preserve a perceptual similarity between

Xon and Xsyn during MES as in [94] by introducing a perceptual loss Lper, which is adopted

as the second term in Lip to preserve the facial styles with regards to different subjects. With

the help of a cost network which is usually implemented as a pre-trained CNN, Lper can be

easily estimated and minimized over high-level feature representations associated with Xon

and Xsyn. The overall representation of Lip(G) can be described as:

Lip(G) = Lpixel(G) + αLper(G). (5.6)



96 5 DEEP LEARNING-BASED ANALYSIS FOR MICRO-EXPRESSION FACE VIDEOS

Discriminator Objective. The training of the capsule-enhanced discriminator is optimized

by the margin loss Lmargin as suggested in [180], which can enlarge the feature distance of

different facial expressions. Lmargin can be obtained via:

Lmargin(D) = Tkmax(0,m+ − ∥vk∥)2 +

λk(1− Tk)max(0, ∥vk∥ −m−)2,
(5.7)

where Tk = 1 if expression class k exists otherwise 0, while m+ and m− are the upper

and lower margins and vk is the vector output of capsules that being activated to class k.

Moreover, the mean square error is employed as the loss function Lrec in the reconstruction

network to regularize the training procedure. Hence, the classification-related loss Lcls for

our capsule-enhanced discriminator is summed as:

Lcls(D) = Lmargin(D) + βLrec(D). (5.8)

Overall Objective. As we treat GAN as our baseline, the optimization process between the

generator and discriminator is described as a min-max game [148]. The learning objective

Lgan can be formulated as:

Lgan = min
G

max
D

V (D,G) = Ex∼px [log(D(x|y))] +

Ez∼pz [1−D(G(z|c))],
(5.9)

where x and y indicate the real images and the real labels, while z and c denote the random

noise and fake labels.

Overall, the total loss function of our proposed ICE-GAN can be summarized as:

Ltot = λadvLgan(D,G) + λmesLip(G) + λmerLcls(D), (5.10)

where λadv, λmes, and λmer are multi-tasking weight parameters of the proposed tasks includ-

ing GAN optimization, identity-aware MES, and capsule-enhanced MER.
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5.4 Experiments and Results

5.4.1 Datasets

Evaluations are conducted on the MEGC2019 cross-database benchmark, which consists of

three publicly available ME datasets: SMIC [117], CASME II [246], and SAMM [48].

SMIC: SMIC dataset consists of 164 micro-expression clips with 16 participants in the

recording experiment, with a high speed camera of 100 fps used to record the short duration

of micro-expressions. A sample from SMIC dataset is shown in Figure 5.6.

FIGURE 5.6. Extracted video samples from SMIC dataset [117].

CASME II: CASME II dataset consists of 247 micro-expression samples from 24 participants,

and the samples are selected from nearly 3,000 elicited facial movements. CASME II has

a sampling rate of 200 fps, which provides more detailed information on the facial muscle

movements. In addition, the sample resolution in CASME II is 280× 340. An extracted video

sample from CASME II is shown in Figure 5.7.

FIGURE 5.7. A demonstration of the frame sequence in a micro-expression from
CASME II [246].
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SAMM: SAMM dataset consists of 133 micro-expression video clips from 28 participants.

SAMM has a sampling rate of 200 fps with the recorded face frame resolution set to 2040×

1088, which has the highest frame resolution amongst all three datasets. A video sample from

SAMM is shown in Figure 5.8.

FIGURE 5.8. A video sequence from SAMM dataset 5.8.

5.4.2 Evaluation Metrics

In our case, frames in all 3 datasets are categorized into 3 classes of positive, negative, and

surprise with the Leave-One-Subject-Out (LOSO) validation method. LOSO is conducted

for subject-independent evaluation, i.e., the evaluation is repeated each time for all subjects

accordingly, until each subject is split alone as the 1-subject testing dataset and the remaining

subjects as the training dataset. We firstly conduct experiments based on cross-database

evaluation (CDE), we follow the implementation in [186] by using the Unweighted F1-score

(UF1) and Unweighted Average Recall (UAR) to make a fair comparison. We then evaluate

the model performance only on CASME II and SAMM for single-database evaluation (SDE)

using F1-score following [236].

5.4.3 Implementation Details

Data Preprocessing. We firstly cropped out face regions by conducting facial landmark

detection repeatedly to locate and refine the positions of 68 facial landmarks [76], ending up

with a bounding box decided by the refined 68 landmarks with toolkit 1. We then followed

1https://pypi.org/project/face-recognition/

https://pypi.org/project/face-recognition/
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[209] to find the onset and apex frames in SMIC because annotated positions of onset and

apex frames are only available in CASME II and SAMM. Moreover, we chose the neighboring

four images around the apex image for each subject to augment the existing data, where we

assumed that they all have the same expressive intensity. Finally, these cropped face images

were resized to 128×128 in grayscale.

Model Implementation. The multi-tasking weight parameters in 5.10 are set as follows:

λadv = 0.1, λmes = λmer = 1. Two reweighting ratios α and β are set to 0.1 and 5e-4. We set

the noise dimension Nz to 100 and class label dimension Nc to 3 as we only have 3 classes.

The discriminator includes a 70×70 PatchGAN followed by Nprim = 8 PrimaryCaps with

dimension dprim = 16 and two sub-capsules for classification purposes (dadv = 256 and dexp =

32). m+, m−, and λk in 5.7 are set to 0.9, 0.1, and 0.5. Adam is selected as the optimizer to

train our network, with momentums b1 and b2 set to 0.9 and 0.999, respectively. The learning

rate is initialized as 1e-3 and decays using a cosine annealing schedule. The batch size is

set to 16 with 100 training epochs. The end-to-end training procedure of ICE-GAN was

implemented in Pytorch with one Nvidia RTX2080Ti GPU.

5.4.4 Quantitative Analysis of MER

We compare the model performance against SoTA methods from MEGC2019 benchmark

[186] using CDE. The results of UF1 and UAR are reported in Table 5.1. It can be observed

that ICE-GAN outperforms approaches from MEGC2019 benchmark, where UF1 and UAR

scores are improved by 10.9% and 12.9% compared to the best method [130].

The baseline (i.e., LBP-TOP) in Table 5.1 adopts hand-crafted features and receives a lower

result compared to deep learning methods. CapsuleNet [209] utilizes capsule network to

achieve an acceptable result, and the remaining works (i.e., [123, 268, 130]) propose their

designs based on optical flows. The superior performance of our design can be attributed to

the expanded size of the database and the global relations of facial attributes which are learned

on channel graphs. Although ME-Recognizer [130] captures spatiotemporal information from
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TABLE 5.1. MER results on the MEGC2019 benchmark and separate datasets in
terms of UF1 and UAR with LOSO cross-database evaluation.

Method MEGR 2019 SAMM SMIC CASME II
UF1 UAR UF1 UAR UF1 UAR UF1 UAR

LBP-TOP [265] 0.588 0.578 0.395 0.410 0.200 0.528 0.702 0.742
CapsuleNet [209] 0.652 0.650 0.620 0.598 0.582 0.587 0.706 0.701
Dual-Inception [268] 0.732 0.727 0.586 0.566 0.664 0.672 0.862 0.856
STSTNet [123] 0.735 0.760 0.658 0.681 0.680 0.701 0.838 0.868
ME-Recognizer [130] 0.788 0.782 0.775 0.715 0.746 0.753 0.829 0.820
ICE-GAN 0.874 0.883 0.879 0.883 0.782 0.801 0.895 0.904

TABLE 5.2. Comparisons with the latest graph-based and attention-based approaches
in terms of F1-score with LOSO single-database evaluation.

Method CASME II SAMM
MicroAttention [214] 0.539 0.402
MER-GCN[135] 0.303 0.283
AU-GACN[236] 0.355 0.433
ICE-GAN 0.585 0.623

facial movements between onset and apex images, the intra-class information is ignored for

each subject.

Our model also achieves the highest scores for individual dataset evaluation. For SAMM,

ICE-GAN overpasses ME-Recognizer by 13.4% in UF1 and 23.5% in UAR. The performance

in CASME II has improved by 8.0% and 10.2% for UF1 and UAR respectively. However, the

improvement on SMIC is not as large as the previous two datasets because there is no clear

annotation about onset or apex frames, which cannot give representative information about

the subject.

We compare our method with the latest SoTA works following SDE. The model performance

of F1-score for 3-category classification is reported in Table 5.2. Compared to MicroAttention

[214], since we capture the long-ranged interactions between different facial regions based on

graph reasoning, our method achieves a higher F1-score with 8.5% improvement on CASME

II and 54.0% on SAMM. MER-GCN [135] and AU-GACN [236] are graph-based methods

that reason over AU nodes, while our ICE-GAN achieves a better performance with F1-scores

improved by 64.8% and 43.9% compared to AU-GACN, which indicates that our way of
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constructing graphs over intermediate feature channels can give more representative relational

information between facial attributes than directly reason over AU graphs.

5.4.5 Qualitative Analysis of MES

Generated Video frames are shown in Figure 5.9a, where comparisons between synthetic

and real images of four different subjects are demonstrated. We only show the peak frame

here instead of the whole video frames as it can be hard to distinguish the difference between

adjacent frames when given the whole video. The results indicate that the generated faces

achieve no significant artifacts and are basically at the same level as real samples regarding

the authenticity, where light conditions are preserved in the images as well.

To better examine synthetic samples, we implement Norm2-based difference between Xsyn

and Xon and focused on AU-related face regions. Figure 5.10 presents activated regions

shown in red boxes for positive and surprising faces, while negative expressions have more

than one kind of MEs and therefore their patterns are difficult to be visualized explicitly.

Practically, facial expressions relate to many muscle movements, so multiple AUs can be

activated simultaneously. For positive classes, green boxes drawn around the eye area indicate

the activation of AU6, and the ones around the lip corner indicate AU12 and AU25. For

surprising samples, AU1, AU2, and AU5 are activated, which are all prototypical AUs critical

for the recognition of positive (i.e., happy) and surprise micro-expressions, according to FACS

[44].

5.4.6 Ablation Study

Extensive experiments are implemented to validate the component design of ICE-GAN. The

following studies were examined on the full dataset including SMIC, CASME II, and SAMM,

which was further randomly split into a training set with 48 subjects and a testing set with 20

subjects.



102 5 DEEP LEARNING-BASED ANALYSIS FOR MICRO-EXPRESSION FACE VIDEOS

(A
)

(B
)

F
IG

U
R

E
5.

9.
(a

)C
om

pa
ri

so
ns

be
tw

ee
n

re
al

sa
m

pl
es

an
d

ge
ne

ra
te

d
sa

m
pl

es
by

IC
E

-G
A

N
fo

rf
ou

rd
iff

er
en

ts
ub

je
ct

s.
N

eu
tr

al
im

ag
es

ar
e

lis
te

d
fo

rr
ef

er
en

ce
.(

b)
Sy

nt
he

tic
im

ag
es

X
sy

n
ge

ne
ra

te
d

by
di

ff
er

en
tm

od
el

de
si

gn
s.



5.4 EXPERIMENTS AND RESULTS 103

FIGURE 5.10. Norm2-based difference between Xsyn and Xon. Green boxes indicate
the subtle muscle movements associated with action units.

TABLE 5.3. Experimental analyses of G and GRM designs on the full dataset split in
a subject-wise manner. SC, SE, and GR represent the skip connection, squeeze-and-
excitation, and graph reasoning.

Model D Gdec Genc SC SE GR UAR UF1
A ✓ 0.425 0.423
B ✓ ✓ 0.651 0.660
C ✓ ✓ ✓ 0.705 0.707
D ✓ ✓ ✓ ✓ 0.717 0.724
E ✓ ✓ ✓ ✓ 0.719 0.732
F ✓ ✓ ✓ ✓ 0.761 0.769

Analysis of Generator. Three models are examined to verify the effectiveness of our generator

in Table 5.3. Model A is the baseline that just uses a discriminative model for MER. Model

B includes a DCGAN-like generator [169], where UAR and UF1 are increased by 53.2%

and 56.0% compared to model A, which validates the usefulness of GAN to expand the data

size. Model C achieves UAR of 0.705 and UF1 of 0.707 based on an encoder-decoder like

structure, which proves the advantage of encoding expressive representations of the input

data.
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Analysis of Graph Reasoning Module. To validate the excellence of the graph-based

reasoning module, we compare its performance with skip connections (model D) and squeeze-

and-excitation (SE) module [215] (model E) in Table 5.3. Skip connections simply propagate

low-level multi-scale spatial information from encoder to decoder side, however, there is no

relation learning or reasoning on latent feature space. Thus, model D can only achieve UAR of

0.717 and UF1 of 0.724. Results shown in model E indicate that SE module helps the model

modulate the channel interdependencies, and model capability is increased compared to model

D with only skip connections. Moreover, by constructing graphs based on feature channels

and learning global relations on local facial features, the model performance has been further

improved in the final design (model F). Our model achieves the best performance with UAR

of 0.761 and UF1 of 0.769, which indicates that relational information between different

facial features reasoned from local responses contributes significantly when generating unseen

faces.

Analysis of Synthesis Quality. Moreover, synthetic image qualities from models B, C, and F

are visualized in Figure 5.9b. The differences between models B and C demonstrate that finer

identity-related attributes can be preserved via the encoder-decoder architecture. With the

help of graph-based global reasoning, more high-frequency signals can be passed smoothly

through multi-scale connections (e.g., light condition) and artifacts are largely reduced.

Analysis of Discriminator Design. We then exploit the impact of the dimension dexp of

ExpCaps on MER, within a range of [8, 16, 32, 64, 128]. As observed in Table 5.4, we obtain

the best performance when setting dexp to 32, with UAR of 0.761 and UF1 of 0.769. Besides,

we compare the capsule-enhanced design with its CNN-based counterparts by replacing

the two-layer capsule network with a two-layer CNN, while maintaining the architecture of

PatchGAN. The performance of CNN-based discriminator is reported in the first row in Table

5.4. To make a fair comparison of the difference in terms of model size, we increased the

number of neurons in the two-layer CNN and examined the performance of the enlarged

CNN-based discriminator (second row) on the MER task. As reported in Table 5.4, our

capsule-enhanced discriminator outperforms its CNN counterparts by a large margin in terms

of UAR and UF1, validating that translation equivariance introduced by capsule helps MER.
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TABLE 5.4. Ablation studies on the discriminator design. DCNN and DCE denote
CNN-based and capsule-enhanced discriminators.

Method UAR UF1 #Params
DCNN 0.356 0.321 6.7 MB
DCNN with comparable size 0.432 0.455 85.6 MB
DCE with dexp = 8 0.730 0.740 85.7 MB
DCE with dexp = 16 0.704 0.723 85.9 MB
DCE with dexp = 32 0.761 0.769 86.4 MB
DCE with dexp = 64 0.726 0.732 87.5 MB
DCE with dexp = 128 0.713 0.730 89.6 MB

FIGURE 5.11. Failure cases when dealing with SMIC, CASME II, and SAMM
datasets.

5.5 Discussion

In this work, we propose to generate face videos with micro expressions by using a conditional

GAN network. Although our model performance on face expression recognition has achieved

good results on all datasets mentioned in this work (i.e., SMIC, CASME II, and SAMM),

our proposed model still fails when encountering face videos where the involved human is

wearing eyeglasses. Some failed examples are shown in Figure 5.11, we can see that our

model can easily fail and produce bad results when the region of eyes are largely covered by

the eyeglasses, hence future work is required to ignore the overlapping objects and put more

focus on the face regions.

5.5.1 Ethical Concerns

The application of deep learning in micro-expression recognition, especially in sensitive areas

like lie detection and disease diagnosis, raises several ethical concerns, primarily related to
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privacy and consent. Potential ethical concerns and the corresponding solutions are listed

below:

(1) Privacy Protection: Ensuring the privacy of individuals whose facial video data is

used is paramount. This involves anonymizing data, where personal identifiers are

removed. Techniques like differential privacy, where the data is altered slightly to

prevent the identification of individuals, are also used.

(2) Informed Consent: It is crucial to obtain informed consent from participants whose

data is used in research. This means they are fully aware of how the data will be used,

the purpose of the research, and the potential implications. In some cases, especially

in public datasets or surveillance applications, obtaining individual consent might be

challenging, and researchers need to navigate these complexities ethically.

(3) Bias and Fairness: Deep learning models can be biased based on the data they are

trained on. Researchers need to make sure that the datasets are diverse and represent-

ative to avoid biased outcomes, which can have serious implications, especially in

lie detection.

5.6 Summary

In this chapter, we propose a model framework which consists of an identity-aware generator

with global graph reasoning on local channel graphs for micro-expression synthesis and a

capsule-enhanced discriminator for micro-expression recognition. We design a generator

that encodes distinguishable facial attributes with side information to control expressions

and synthesizes realistic samples by a graph reasoning module, where a channel graph is

established via self-attention and global relations between long-ranged facial features are

captured. Furthermore, we present a discriminator which improves recognition ability by

capturing part-based position-specific face characteristics. Experiments on several datasets

demonstrate that our method outperforms SoTA methods by a large margin.



CHAPTER 6

Deep Learning-based Analysis for Text-Guided Face Video Generation

Label-conditioned face video generation has been examined for quite a long time, with variants

of GAN-based models generating realistic face videos. However, rather than generating face

videos using labels, we discuss that the model ability to create realistic videos from textual

descriptions is also important, since texts act as a natural way to explicitly control the generated

video content. However, text-to-video generation still faces many challenges: current video

datasets have no corresponding textual descriptions, which hinders the development of the

designing deep learning-based methods.

In this chapter, we explore the importance of the face video generation in the context of 3D

data analysis, and how novel deep learning-based methodologies can be employed to harness

this type of data more effectively. We propose a new large-scale facial text-video dataset to

assist designing deep learning-based methods for face video generation guided by textual

descriptions. Moreover, we propose a novel method based on BERT [53] for face video

generation in a zero-shot manner, where the generated face videos are semantically aligned to

the input texts as well as consistent in the temporal domain. Extensive experiments validate

that our text-guided generation model can effectively produce realistic and consistent face

videos, with detailed controls offered by input texts.

6.1 Introduction

Text-guided video generation has recently gained significant attention in the fields of computer

vision and computer graphics. By using text as input, video content can be generated and

controlled, inspiring numerous applications in both academia and industry [119, 13, 171,
107
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151]. However, text-to-video generation still faces many challenges, particularly in the face-

centric scenario where generated video frames often lack quality [68, 131, 119] or have

weak relevance to input texts [12, 272, 141, 3]. We believe that one of the main issues is the

absence of a well-suited facial text-video dataset containing high-quality video samples and

text descriptions of various attributes highly relevant to videos.

This chapter presents CelebV-Text, a large-scale, diverse, and high-quality dataset of facial

text-video pairs, to facilitate research on facial text-to-video generation tasks. CelebV-Text

comprises 70,000 in-the-wild face video clips with diverse visual content, each paired with 20

texts generated using the proposed semi-automatic text generation strategy. The provided texts

are of high quality, describing both static and dynamic attributes precisely. The superiority

of CelebV-Text over other datasets is demonstrated via comprehensive statistical analysis

of the videos, texts, and text-video relevance. The effectiveness and potential of CelebV-

Text are further shown through extensive self-evaluation. A benchmark is constructed with

representative methods to standardize the evaluation of the facial text-to-video generation

task.

The main contributions of this work are summarized as follows:

(1) We propose CelebV-Text, the first large-scale facial text-video dataset with high-

quality videos, as well as rich and highly-relevant texts, to facilitate research in facial

text-to-video generation.

(2) Comprehensive statistical analyses are conducted to examine video/text quality and

diversity, as well as text-video relevance, demonstrating the superiority of CelebV-

Text.

(3) A series of self-evaluations are performed to demonstrate the effectiveness and

potential of CelebV-Text.

(4) A new benchmark for text-to-video generation is constructed to promote the stand-

ardization of the facial text-to-video generation task.
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6.2 Literature Review

6.2.1 Diffusion Models

A diffusion model is a type of generative model that captures the joint distribution of data

in a stochastic process. The goal is to learn the data distribution, which can then be used to

sample new data points. This is done by transforming a simple noise distribution into the data

distribution using a series of learned transformations.

The overall diffusion process is illustrated in Figure 6.1. Formally, we can consider a dataset

X = {x1, x2, . . . , xn} drawn from an unknown distribution P (x). The diffusion model

starts from a known simple distribution P0, typically a standard Gaussian distribution, and

transforms this distribution to match P (x) through a series of noise adding (forward diffusion)

and denoising steps (reverse diffusion) [191]. The forward diffusion process is formulated as

follows:

xt =
√
1− βt · xt−1 +

√
βt · ε, ε ∼ N (0, I), (6.1)

where xt is the noisy data at time step t, xt−1 is the data from the previous step, ε is noise

sampled from a standard multivariate Gaussian, and βt is a noise schedule hyperparameter that

determines how much noise to add at each step. The reverse diffusion process is formulated

as:

q(xt−1|xt) = N (xt−1;µ(xt, t), σ(xt, t)
2 · I), (6.2)

where µ(xt, t) and σ(xt, t) are the mean and standard deviation of the denoised data, predicted

by U-Net [177]. During training, the model optimizes the parameters of the U-Net to maximize

FIGURE 6.1. Diffusion model process cited from [80].
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the log-likelihood of the data:

L =
∑
t

log q(xt−1|xt). (6.3)

In the inference stage, the model generates new data by sampling from the simple distribution

P0 and transforming the sample according to the learned transition operator [80].

6.2.2 Text-to-Video Generation

Text-driven video generation, which involves generating videos from text descriptions, has

recently gained significant interest as a challenging task. Mittal et al.. [151] first introduced

this task to generate semantically consistent videos conditioned on encoded captions. Other

studies, such as [52, 13, 161], attempt to generate video samples conditioned on encoded text

inputs. However, due to the low richness of text descriptions and the small number of data

samples, the generated video samples are often at low resolution or lack relevance with the

input texts.

More recently, several works [226, 69, 212, 84, 85, 227, 120] have employed discrete latent

codes [58, 159] for more realistic video generation. Some of these works treat videos as a

sequence of independent images [227, 120, 84, 69], while Phenaki [212] considers temporal

relations between each frame for a more robust video decoding process. Another branch of

studies leverage diffusion models for text-to-video generation [82, 70, 79, 190], which require

millions or billions of samples to achieve high-quality generation.

While text-to-video generation methods are rapidly evolving, they are generally designed

for generating general videos. Among these methods, only MMVID [69] has conducted

specific experiments with face-centric descriptions. One possible reason for this is that facial

text-to-video generation requires more accurate and detailed text descriptions than general

tasks. However, there is currently no suitable dataset available that provides such properties

for face-centric text-to-video generation.
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6.2.3 Multimodal Datasets

Existing multimodal datasets can be categorized into two classes: open-world and closed-

world. Open-world datasets [122, 185, 188, 32, 8, 240, 108, 269, 146, 47, 125, 151] are widely

used for text-to-image/video generation tasks. Some of them have manual annotations [122,

188, 240, 108, 47] and part of them are directly collected from the Internet, such as sub-

titles [185, 146]. Closed-world datasets are mostly composed of images or videos collected

in constrained environment with corresponding information such as text. CLEVR [95] is a

synthetic text-image dataset produced by arranging 3D objects with different shapes under a

controlled background. While MUGEN [72] is a video-audio-text dataset that was collected

using CoinRun [42] by introducing audio and new interactions. The corresponding text is

produced by human annotators and grammar templates.

Multimodal face datasets also exist. Modified MUG [2] is a closed-world text-video dataset

that contains 1,039 videos with subjects showing different emotions, where the text descrip-

tions are generated from facial emotions using a fixed template [102]. MM-Vox [69] contains

19,522 face videos from VoxCeleb [155], with 36 facial attributes manually labeled follow-

ing CelebA [134] and text descriptions generated via Probabilistic Context-Free Grammar

(PCFG) [234]. However, both datasets only contain language descriptions related to static

facial attributes without considering the temporal state change (i.e., emotion or action) presen-

ted in the original face videos. Moreover, the limited label annotations restrict the diversity of

the text descriptions, making them sub-optimal for studying the text-to-video generation task

on the face domain. CelebV-HQ [270] is the latest high-quality face video dataset that covers

facial annotations, including appearance, movement, and emotion. However, it only provides

discrete labels and timestamps, with no text descriptions.

6.3 Methods

In this part, we propose an efficient pipeline, as shown in Figure 6.2, to construct CelebV-Text,

including Data Collection & Processing, Data Annotation, and Semi-auto Text Generation.
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FIGURE 6.2. Pipeline of our dataset construction process. The pipeline includes
data collection & processing, data annotation, and semi-auto text generation.

6.3.1 Data Collection & Processing

Collection. We follow the same strategy as CelebV-HQ [270] due to its effectiveness in

large-scale high-quality data collection. Specifically, we firstly generate a large number of

queries, including human names, movie titles, vlogs and so on, to retrieve videos that contain

human faces with temporally dynamic state changes and abundant facial attributes. Our data

are collected from open world with videos downloaded from online resources. Videos with

low resolution (< 5122), low time duration (< 5s), and having appeared in CelebV-HQ are

filtered out.

Processing. To sample high-quality and diverse video clips from our raw collections, similar

steps are followed as CelebV-HQ [270] with modifications. We first filter out video clips with

bounding box regions less than 5122 rather than resize them to the same resolution. In this

way, clips are not upsampled or downsampled hence the video quality would not be affected,

which leads to various resolutions of collected videos: 56.4% with 5122 ∼ 10242, and 43.6%

for 10242+. To reduce the face area noise when the background changes, we further change
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the video splitting strategy. In addition to our focus on the same human motion [17] and

identity [51] present in adjacent frames, we split the video into different clips when the

background changes by a toolkit 1.

6.3.2 Data Annotation

The annotation process is a core part in CelebV-Text construction, which would greatly

affect the relevance of text-video pairs, as our designed text templates heavily depend on the

annotation results. Here, we first describe how we design attributes, and then give details

about the annotation strategy for face videos.

Attributes Design. Temporal dynamic is the key difference between images and videos.

However, as shown in Table 6.1, most face video datasets focus on static attributes where

attribute information does not change over time, such as appearance. Dynamic attributes that

change over time, such as emotion and face actions, are often neglected. In the following, we

decouple face videos into static and dynamic categories and details are given as follows.

1) Static. The current dataset [69] only considers static information such as the appearance

attribute, which includes 40 classes as CelebA [134]. In contrast, we define static information

to include three types of attributes: general appearance, detailed appearance, and light condi-

tions. General appearance attributes follow the same definition as CelebA [134]. Detailed

appearance attributes including five classes are proposed for realistic face generation, i.e.,

scar, mole, freckle, dimple, and one-eyed. We define light conditions in a restricted manner to

include light color temperature [77] and brightness [18], with a total of 6 classes.

2) Dynamic. Here, we design three dynamic attributes, i.e., action, emotion, and light

directions. For action attributes, we follow CelebV-HQ [270] and expand their action list by

two classes, i.e., squint and blink. For emotion attributes, we select the 8 emotion setting in

Affectnet [153], including neutral, anger, contempt, disgust, fear, happiness, sadness, and

surprise. For light direction attributes, we derive and modify classes from [97] and give

6 light direction classes. Moreover, as shown in Table 6.1, CelebV-HQ [270] is the only

1https://github.com/Breakthrough/PySceneDetect

https://github.com/Breakthrough/PySceneDetect
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dataset giving timestamps of dynamic attributes. Following their idea, we densely annotate

all dynamic attributes of CelebV-Text with the start and end time.

Automatic and Manual Annotation. Based on our attributes design, we find that some attrib-

utes can be annotated automatically (e.g., appearance) while some need manual annotations

(e.g., timestamps of dynamic attributes). Considering the dataset quality and cost of expense,

our annotation strategy includes both automatic and manual annotations.

For automatic annotation, we first investigate algorithms and select designed attributes that can

be automatically annotated. We then test different algorithms on our dataset and keep those

giving annotation accuracy of 85% or higher. This process yields all light condition labels,

all appearance labels, and all emotion labels suitable for automatic annotation. Automatic

annotation results can be further revised by human workers to improve accuracy in a less

costly way.

For manual annotation, we hire and train human workers following [270] to annotate attributes

that are filtered out by an automatic annotation process. In this case, we manually annotate

dynamic attributes, i.e., action and light directions, to give both class labels and exact

timestamps. In addition, it is hard to represent detailed appearance attributes by the discrete

label, e.g., the characteristics of scars or moles. We therefore ask annotators to give a natural

description for each attribute, describing exact positions relative to face parts. These designs

greatly enhance the relevance between the final text and the video.

6.3.3 Semi-auto Text Generation

Multimodal text-video datasets collect texts via three common methods: subtitles [12, 146,

272], manual-text generation [219, 108, 8, 32, 240], and auto-text generation [72, 13, 85].

However, it is difficult for the individual method to generate texts with high relevance to

videos, natural expression, and high diversity. Specifically, although subtitles are easy to

obtain, they can pose weakly relevant text-video pairs and introduce noise, making the dataset

quality hard to control. Moreover, manual-text generation method is time and cost consuming,

as natural language descriptions are required for each video. In this case, increasing the
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data scale is quite hard as more workers are needed to describe new videos, which does not

meet the efficiency and scalability of annotation. Finally, auto-text generation is flexible

and scalable, as abundant texts can be simultaneously generated given annotation results of

collected videos. However, the diversity, complexity, and naturalness of generated texts can

be impacted by the designed grammar templates.

To this end, we propose a semi-auto template-based text generation strategy that combines both

manual-text and auto-text generation methods. Specifically, as mentioned in Section 6.3.2,

manual-texts are required to describe detailed appearance attributes. Annotated attribute

information is fed into our designed template for auto-text generation.

To make our template as natural as possible, we first ask each annotator to describe 10 different

face videos for each attribute. We then analyze the grammar structure (i.e., parse tree banks)

along with online corpora following [106, 30], and find the most three common grammar

structures for each attribute. Finally, we utilize probabilistic context-free grammar [193, 234]

and modify the grammar structures to design our own templates. Texts are generated based on

templates with synonym replacement using NLTK [19] to increase our generation diversity.

6.3.4 MMVID-interp

Due to the difficulty in modelling state change [190, 85], we apply test-time interpolation to

MMVID [69], named MMVID-interp, to improve the text encoding and better understand the

dynamics. We follow [13] to apply test-time interpolation to MMVID [69] to improve text

encoding and better understand the dynamics. Specifically, given the text input describing

dynamic attribute changes, we manually split the dynamic description into two sentences, i.e.,

S1 and S2. S1 contains the description about the appearance and the first dynamic attribute,

and S2 contains the description about the appearance and the second dynamic attribute. Let tS1

and tS2 denote the feature representation obtained from the text encoder used in MMVID [127].

In this case, the description about appearance is repeated twice, so that the text encoding of it

can be emphasized and improved, making the generation process more stable on preserving

face identities. During the sampling process, the encoded text condition t is obtained by a
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FIGURE 6.4. Dataset quality distribution. The metrics used are BRISQUE [150]
and VSFA [113] respectively.

linear interpolation between tS1 and tS2:

ti = (1− αi)tS1 + αitS2 , (6.4)

where αi is proportional to the text sequence length. Our modification is simple and will be

improved in the future.

6.4 Experiments and Results

6.4.1 Datasets

In this section, we compare our proposed CelebV-Text dataset against existing datasets, i.e.,

CelebV [230], CelebV-HQ [270] and MM-Vox [69] and so on, in various perspectives.
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TABLE 6.1. In-the-wild face video dataset comparison. The symbol “#” indicates
the number. The abbreviations “Res.”, “Dura.”, “App.”, “Cond.”, “Act.”, “Emo.”, and
“Dir.” stand for Resolution, Duration, Appearance, Condition, Action, Emotion, and
Direction, respectively. The “half checkmark” denotes that CelebV-HQ consists of
action attributes with no timestamp.

Datasets Meta Information Attribute Labels TextStatic Dynamic

#Samples Res. Dura. General
App.

Detail
App.

Light
Cond. Act. Emo. Light

Dir. Auto Manual

CelebV [230] 5 256×256 2hrs @
@
@

@
@
@

@
@
@VoxCeleb2 [41] 150,480 224×224 2442hrs

CelebV-HQ [270] 35,666 512× 512 68hrs ✓ ✗ ✗ ✓ ✗ ✗ ✗
MM-Vox [69] 19,522 224×224 323hrs ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗

CelebV-Text 70,000 512×512+ 279hrs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Video Distribution. We briefly compare the overall statistics of existing face video data-

sets [230, 41, 270, 69] in Table 6.1. As reported, CelebV-Text contains 70, 000 video clips

with a total duration of around 279 hours. Each video is accompanied by 20 sentences

describing all 6 designed attributes. Compared to CelebV [230], CelebV-Text has a larger

scale and higher resolution. Although VoxCeleb2 [41] has more samples than CelebV-Text,

its video distribution is limited as most videos are mainly talking faces. Moreover, video

samples of both CelebV-HQ [270] and CelebV-Text are collected in open-world with diverse

queries so that they are rich in distribution, while CelebV-Text has about 2 times video data,

more video attributes, and highly relevant text descriptions. Finally, compared to the only

existing facial text-video dataset MM-Vox [69], CelebV-Text overpasses MM-Vox in terms of

scale and quality.

TABLE 6.2. Multimodal retrieval results. Clip2Video [60] is leveraged to measure
the text-video relevance via retrieval experiments. Bold values indicate the best results,
underlined ones indicate the second best.

Text ⇒ Video Video ⇒ Text

Description Dataset R@1(↑) R@5(↑) R@10(↑) MdR(↓) MnR(↓) R@1(↑) R@5(↑) R@10(↑) MdR(↓) MnR(↓)

(a) App.
MM-Vox [69] 1.5 9.0 15.7 52.0 68.8 2.0 9.2 14.6 43.0 57.8
CelebV-HQ [270] 5.9 19.2 29.7 27.0 52.2 7.2 20.7 32.4 27.0 46.9
CelebV-Text 6.1 21.3 35.5 26.3 49.1 7.4 20.7 29.9 26.6 48.3

(b) App.+Emo. CelebV-HQ [270] 6.5 20.1 30.8 25.0 48.0 7.9 25.5 38.8 17.0 37.0
CelebV-Text 6.6 23.4 37.1 26.0 47.6 8.1 27.2 34.7 18.2 38.3

(c) App.+Emo.+Act. CelebV-Text 6.9 24.1 39.2 25.8 46.7 8.0 27.6 37.1 16.7 36.1

Attributes Distribution. In order to better present the distribution of different attributes in

CelebV-Text, we pick and divide general appearance, action, and light direction attributes
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This man with grey hair has a big nose and bags under eyes. He is wearing eyeglasses 
and earrings, with freckles above the eye areas. The man is firstly gazing for a short 
time and then he wags his head for a short time, and finally he keeps gazing for the 
rest of the time. He firstly remains neutral for a long time and then he turns angry for 
the rest of the time. The video is slightly dark in warm light. The light direction is 
front lighting for the whole time.

a man has bags under eyes , receding hairline and straight hair . 
he is wearing goatee . he is chubby . he has beard , arched 

eyebrows and black hair.
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FIGURE 6.5. Text distribution. CelebV-Text achieves better performance in both
4-gram and number words distribution.

into groups. Specifically, all 40 general appearance classes are divided into 5 groups shown in

Figure 6.3 (a). Facial features (e.g., double chin, big nose, and oval face) account for the most

portion around 45%. The elementary group is twice large than the beard type, accounting for

around 25% and 12%, respectively. Fewer samples are located to the hairstyle and accessories

groups, taking around 10% and 8%, respectively. Besides, action attributes are divided into

5 groups in Figure 6.3 (b), where it is clear that head-related actions account for the largest

portion of around 60%, followed by eyes-related actions of around 20%. The interaction

group (e.g., eat), feeling group (e.g., smile), and daily group (e.g., sleep) account for around

9%, 7%, and 4%, respectively. Finally, for light directions (Figure 6.3 (c)), most samples

contain the front lighting and the remaining ones are evenly distributed.
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TABLE 6.3. Number of unique POS tags. The numbers of unique POS tags for
MM-Vox, CelebV-HQ, and CelebV-Text.

Dataset #Verb #Adj. #Noun #Adv.

MM-Vox [69] 5 20 38 0
CelebV-HQ [270] 10 24 50 6
CelebV-Text 96 78 174 24

Video Quality Distribution. We follow [270] to analyze the quality of our collected videos.

To demonstrate the superiority of CelebV-Text, we compare with MM-Vox [69] and CelebV-

HQ [270], where mean BRISQUE [150] and VSFA [113] are used to evaluate the image and

video quality, respectively. Image quality of all datasets is shown in Figure 6.4 (a), where

CelebV-Text and CelebV-HQ achieve comparable quality, higher than MM-Vox by a large

margin. Video quality of all datasets is shown in Figure 6.4 (b), where CelebV-Text has the

best quality, which is due to the effect of the video split method mentioned in Section 6.3.1,

alleviating the discontinuity during background transitions.

Text Comparisons. In addition to a large number of video samples, text descriptions of

CelebV-Text are longer and more detailed than those in MM-Vox [69] and CelebV-HQ [270]

(see Figure 6.5 (a)), where the average text length of MM-Vox, CelebV-HQ, and CelebV-Text

are 28.39, 31.06, and 67.15. Distributions of Celeb-HQ and MM-Vox are close, but there are

more words in CelebV-Text to describe a video due to the comprehensive annotation.

To validate the linguistic diversity of the generated texts, comparisons are conducted among

the three datasets following [219]. Specifically, we report the unique part-of-speech (POS)

tags (i.e., verb, noun, adjective, and adverb) of the three datasets in Table 6.3. Obviously,

due to our comprehensively designed attribute list and the number of templates, CelebV-Text

presents a wider variety of text styles, covering a broader range of face attributes that are

static or dynamic in the temporal domain.

In addition, we further examine the naturalness and complexity of our texts compared to

MM-Vox, where we modify [254] to calculate the type-token vocabulary curve for all captions.

As shown in Figure 6.5 (b) where unique 4-grams are selected as the types [219], it is evident
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FIGURE 6.6. Qualitative results of facial text-to-video generation. The generated
samples are given texts describing (a) the static attribute and (b) dynamic attribute.

that due to our grammar structures and synonym replacement, the linguistic naturalness

(vocabulary use) and complexity (vocabulary size) of our CelebV-Text are much better.

6.4.2 Evaluation Metrics

In order to evaluate the performance of different baseline models on our proposed dataset, we

apply the FVD [204], FID [78] and CLIPSIM [226] to evaluate the fidelity and generation

quality of the generated videos.

For the computation of FVD, suppose we are given a video x, we first use the Inflated 3D

ConvNet (I3D) [26] to extract a feature vector f(x). We then fit a multivariate Gaussian
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distribution to the features of the real videos X and generated videos G, with mean and

covariance given by µx, Σx and µg, Σg respectively. The FVD between X and G is then

defined as the Frechet Distance between these two Gaussian distributions:

FVD(X,G) = ||µx − µg||2 + Tr(Σx +Σg − 2(ΣxΣg)
1/2), (6.5)

where ||.|| denotes the Euclidean norm, Tr is the trace of a matrix (the sum of the diagonal

elements), and (ΣxΣg)
1/2 is the matrix square root of the product of the two covariance

matrices, which can be computed via the singular value decomposition.

FID is a metric for evaluating the quality of images generated by generative models. In this

section, we use FID to examine the per-frame generation quality within the output videos.

The mathematical expression for FID is similar to Eq. 6.5.

We follow the same computation of CLIPSIM as [226]:

CLIPSIM(t, v̂) =
1

N

N∑
n=1

CLIP(t, v̂(n)), (6.6)

where t is the input text and v̂ is the generated video with N frames. CLIP is the CLIP

network from [168].

6.4.3 Implementation Details

We train our network in two separate stages. In the first stage, we train the autoencoder model

from VQGAN model [159]. Specifically, we finetune the autoencoder based on our collected

image frames, with f = 16 (which is the patch size) and |Z| = 1024 (which is the vocabulary

size of the codebook). In the second stage, we finetune the BERT model using face video data,

where we randomly select 16 frames from a given face video and we set the number of the

generated frame to be 8. For long-sequence generation output, we apply a frame interpolation

tool from Google [173] to interpolate from 8 to 32 frames for presentation.
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He has bushy eyebrows, beard and wavy hair. He has got 5 o'clock shadow and brown hair. He has bags under 
eyes and sideburns with mustache.

FIGURE 6.7. Qualitative results on three facial text-video datasets. Red and
yellow regions indicate the missing of “bags under eyes" and the existence of “wavy
hair" and “bags under eyes".

6.4.4 Text-to-Video Generation

To show the benefits brought by our text descriptions which depict both static and dynamic

attributes, we conduct experiments to show the effectiveness of CelebV-Text. Experiments are

mainly based on a recent open-sourced state-of-the-art method, MMVID [69], and compared

with CogVideo2 [84], which is a large-scale pretrained text-to-video model, trained on millions

of text-image/video pairs.

Static Face Video Generation. To validate the effectiveness of our facial text-video dataset

in static attributes, we use the models stated above to generate videos conditioned on general

appearance, face details, and light conditions descriptions, respectively. Specifically, we

first train MMVID [69] from scratch solely on CelebV-Text. We then generate 3 input texts

including individual descriptions of each of the static attributes. Generated texts are fed into

both MMVID [69] and CogVideo [84] and corresponding video outputs are examined.

Visualization results of general appearance are shown in Figure 6.6 (a), which prove the

effectiveness of our dataset. We observe that although CogVideo can output the face video

2We choose CogVideo [84] as the representative large-scale model for comparison, since the inference code
and pretrained models of other large-scale methods (e.g., CogVideo [84], Phenaki [212], Imagen Video [79],
and Make-A-Video[190]) are not public.



124 6 DEEP LEARNING-BASED ANALYSIS FOR TEXT-GUIDED FACE VIDEO GENERATION

given a text description, the text-video pair is not quite relevant, such as “bags under eyes”

and “wavy hair”. However, MMVID [69] produces videos with high relevance to input texts,

containing all attributes described in the text. More results are shown in Figure 6.8.

Dynamic Face Video Generation. We follow the above experimental setting and leverage

MMVID-interp to validate the effectiveness of our dataset with dynamic attribute changes

(i.e., emotion, action and light direction). In Figure 6.6 (b), we observe that CogVideo fails

to reflect the temporal change described in the input text, i.e., smile → turn. However, both

MMVID [69] and MMVID-interp trained on CelebV-Text can successfully model the dynamic

attribute changes, which demonstrates the effectiveness of our dataset. In addition, we find

that MMVID [69] cannot preserve some attributes well (e.g., earrings), while MMVID-interp

can stabilize the sampling process, validating the effectiveness of our modification.

Note that CogVideo [84] has a much larger model size (∼ 100 times larger than MMVID [69])

and is trained on much large text-video data (∼ 75 times larger than CelebV-Text). However,

video samples produced by CogVideo [84] shown in Figure 6.6 are of a lower quality than

the ones by MMVID [69] trained solely on CelebV-Text, where generated faces are not in a

high relevance to input texts, demonstrating the effectiveness of our facial text-video dataset.

More generated video samples with dynamic attribute changes are shown in Figure 6.10 and

Figure 6.9.

6.4.5 Benchmarks

As the domain of text-to-video generation is currently thriving, there exists only one bench-

mark in the face domain, MM-Vox [69]. We expand [69] and construct a benchmark of

facial text-to-video generation tasks on three datasets: MM-Vox [69], CelebV-HQ [270] with

texts generated by our templates, and CelebV-Text. We choose two representative methods3,

TFGAN [13] and MMVID [69], to evaluate their performances on all datasets.

3Other methods, e.g., CogVideo [84], Phenaki [212], Imagen Video [79], and Make-A-Video[190] are not
included since their training codes are not public so far.
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The woman is wearing lipstick. She has wavy hair, bags under eyes, and arched eyebrows.

The man has 5 o'clock shadow and beard. A man is young and has wavy hair.

He has a double chin and black hair. He is wearing eyeglasses.

The woman has straight blond hair. She is young. She has arched eyebrows and is wearing lipstick.

FIGURE 6.8. More sampled results from MMVID with input texts describing general
appearances.
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She has long and wavy hair. She has arched eyebrows and she is wearing lipsticks. The woman begins with an 
angry face and then a happy face.

FIGURE 6.9. Qualitative results of facial text-to-video generation. The video
samples are generated given texts describing dynamic emotion.

Quantitative Results. For thorough benchmark construction, we evaluate baseline methods

given variant texts including static and dynamic attributes. We use FVD [204] (temporal

consistency), FID [78] (individual frame quality), and CLIPSIM [226] (text-video relevance)

as evaluation metrics following [69] and report detailed results for appearance, action, and

emotion in Table 6.4. Evaluation steps are repeated over ten runs with mean values and

standard errors reported as well.

It can be seen from Table 6.4 that MMVID [69] obtains good FVD/FID/CLIPSIM metrics

over TFGAN [13] which fails to generate reasonable video outputs. In addition, when input
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The young man has 5 o’clock shadow and arched eyebrows. The light direction is first front light and then 
side lighting with 90 degrees to the right face. 

FIGURE 6.10. Qualitative results of facial text-to-video generation on dynamic
descriptions. The video samples are generated given texts describing dynamic light
directions.

texts contain descriptions about a dynamic state change in the temporal domain, the generated

video quality by MMVID [69] decreases, which encourages future methods to focus more

on cross-modal understanding and consistent video generation. Moreover, the performance

of MMVID-interp is better than MMVID [69] on all metrics, validating the effectiveness of

our modification mentioned in Section 6.4.4. Due to challenges posed by our dataset and

text-to-video generation task, there is still considerable room to improve.

Qualitative Results. Video samples generated from MMVID [69] trained on different datasets

are shown in Figure 6.7, where all video frames are of 1282. We can see that video samples
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generated by MMVID [69] trained on different datasets are of high quality with temporal

consistency. However, MMVID [69] trained on MM-Vox [69] can sometimes fail to generate

attributes mentioned in the input texts.

6.4.6 Ablation Studies

Text-Video Relevance. To quantitatively validate our text-video relevance, we conduct

text-video retrieval tasks on three datasets: MM-Vox [69], CelebV-HQ [270], and CelebV-

Text. Rather than use conventional frame-wise clip score as most works [212, 79, 190], we

follow [60] to compute feature similarities between texts and videos with the consideration of

temporal dynamics, which reflects accurate multimodal interactions across the two modalities.

Recall at rank K (R@K), median rank (MdR), and mean rank (MnR) [259, 60, 149] are used

as evaluation metrics, where the higher R@K, the lower median rank and mean rank indicate

better performance.

We first examine the performance given texts with descriptions of general appearance in

Table 6.2 (a). Results of CelebV-HQ and CelebV-Text are both better than MM-Vox for

two retrieval tasks, which indicates our designed templates can produce texts more relevant

to videos than MM-Vox. We further add descriptions about dynamic emotion changes to

CelebV-HQ and CelebV-Text in Table 6.2 (b). Similar results are achieved in both datasets,

which reflects that our annotation accuracy on static appearance attributes is as good as

CelebV-HQ. Finally, we append action descriptions to CelebV-Text in Table 6.2 (c), which

achieves the best performance on most metrics, verifying the relevance between our generated

texts and video samples.

6.5 Discussion

CelebV-Text can only be used for research purposes. The raw videos will not be released,

while the data annotations, links of raw videos, and data processing tools will be released,

following a strict legality check procedure of our institution. Note that, our data annotation

does not include any personal biometric information (e.g., identity), only generic attribute
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TABLE 6.4. Benchmark of text-to-video generation on different datasets. ↓ means
a lower value is better and ↑ means the opposite.

(A) Quantitative results on general appearance descriptions.

Dataset Method FVD(↓) FID(↓) CLIPSIM(↑)

MM-Vox [69] TFGAN [13] 502.28 ± 1.66 760.24 ± 16.01 0.165 ± 0.022
MMVID [69] 65.79 ± 1.81 38.81 ± 3.66 0.170 ± 0.020

CelebV-HQ [270] TFGAN [13] 428.04 ± 1.76 616.24 ± 17.45 0.168 ± 0.021
MMVID [69] 73.65 ± 1.43 63.86 ± 3.66 0.172 ± 0.019

CelebV-Text TFGAN [13] 403.04 ± 1.34 589.24 ± 16.46 0.177 ± 0.012
MMVID [69] 66.69 ± 1.35 58.70 ± 4.67 0.198 ± 0.014

(B) Quantitative results on dynamic descriptions of CelebV-Text.

Dataset Method FVD(↓) FID(↓) CLIPSIM(↑)

CelebV-Text
App.+Emo.

TFGAN [13] 442.30 ± 2.56 623.17 ± 18.88 0.158 ± 0.024
MMVID [69] 82.78 ± 1.47 61.58 ± 3.99 0.176 ± 0.008
MMVID-interp 72.87 ± 1.23 41.57 ± 3.56 0.182 ± 0.010

CelebV-Text
App.+Act.

TFGAN [13] 571.34 ± 4.54 784.93 ± 20.13 0.154 ± 0.028
MMVID [69] 109.25 ± 2.11 82.55 ± 4.37 0.174 ± 0.019
MMVID-interp 80.81 ± 2.55 70.88 ± 4.77 0.176 ± 0.020

information such as gender, hair color, and motion is annotated. Moreover, synthetic videos

generated in this chapter do not show bias or certain biometric information (e.g., big lips or

big nose), which alleviates the ethical issues. CelebV-Text can be used for deepfakes, while it

also can be used for the forgery detection task to prevent this issue. We will strictly control

the application and acquisition procedure of CelebV-Text, to avoid possible misuse and abuse.

In the future, we will utilize synthetic face generation framework to generate synthetic face

videos to overcome the ethical shortcomings of existing real-world face video datasets.

6.5.1 Ethical Concerns

We have to deal with ethical issues when introducing CelebV-Text in the context of potential

deepfake creation, and we have to implement controls and ethical safeguards to prevent misuse

and ensure responsible use in both research and industry. The plans are listed as follows:

(1) Access Restrictions: Limiting access to the dataset can be a primary control. Re-

searchers might require users to go through an application process, where they
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specify their intended use of the data. This process could include background checks

or affiliations with recognized institutions.

(2) Use Agreements: Users might be required to sign use agreements or terms of

service that explicitly forbid malicious use of the data, such as creating deepfakes for

deceptive purposes. Violation of these agreements would have legal consequences.

(3) Ethical Review and Compliance: Ensuring that all uses of CelebV-Text undergo eth-

ical review, especially for sensitive applications like deepfake creation. Compliance

with ethical standards and guidelines set by professional organizations or regulatory

bodies would be mandatory.

(4) Watermarking and Traceability: Embedding digital watermarks into the dataset can

help in tracing the origin of any deepfakes created using CelebV-Text. This aids in

accountability and discourages misuse.

(5) Educational and Awareness Initiatives: The research paper might also propose

initiatives to educate users about the ethical implications of deepfakes and the

importance of responsible usage. This could include workshops, seminars, or online

resources.

6.6 Summary

We have proposed CelebV-Text, a large-scale, high-quality, and diverse facial text-video

dataset with static and dynamic attributes. CelebV-Text contains 70, 000 video clips, each of

which is accompanied by 20 individual sentences describing both static and dynamic factors.

Through extensive statistical analysis and experiments, we have demonstrated the superiority

and effectiveness of CelebV-Text. In the future, we plan to further enlarge CelebV-Text in

both scale and diversity. We may further explore several new tasks based on CelebV-Text,

such as fine-grained control of video face, adaptation of general pretrained models to the face

domain, and text-driven 3D-aware facial video generation.



CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we propose to study the urgent problems of different forms of 3D data using

deep learning-based methods: point clouds, human meshed, and face videos. The challenges

encountered in each form of 3D data and the solutions proposed herein underline the signific-

ance and potential of integrating deep learning techniques in 3D data analysis. By examining

various disciplines such as computer graphics, virtual reality, and medical imaging, this thesis

presents an innovative blend of deep learning techniques to enhance the analysis of 3D data.

We first propose a transformer-base architecture for medical point cloud analysis in Chapter 2.

To address the intricate topologies and discrepancies inherent in medical point cloud data,

we integrate an enhanced attention module for fast and effective computation and a novel

technique, which leverages position embeddings and graph-based reasoning blocks for feature

modeling. Our design can effectively tackle the issue posed by limited training samples in

medical point clouds, and extensive experiments validate the superiority of our model.

For the analysis of general point cloud data in a real-world scenario with random poses,

we propose to extract rotation invariant features from the raw point clouds in Chapter 3.

The pipeline of our model design considers rotation invariance as a variant of point cloud

registration task and we proposes an effective framework for rotation invariance learning. By

defining different geometric regions, such as local and global reference frames, we can extract

shape descriptors that are invariant to local and global regions. We further integrate and

align the two features by leveraging a transformer architecture. The integrated final feature is
131
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ensured to be rotation invariant based on a novel contrastive loss function. By incorporating

the our novel learning framework, our method outperforms other advanced methods in point

cloud classification, part segmentation and retrieval by a large margin.

The method proposed in Chapter 4 aims at solving the texturing of 3D human mesh models

conditioned on textural descriptions. For effective gradient loss direction, we modify SDS

and propose a new score function named DSD, which incorporates a negative pair of image

and text to iteratively guide the gradient direction during training. In addition, to ensure

the generated textures can be semantically aligned to the given geometry, we leverage the

geometric depth signal during diffusion to enable the modeling of complex garment details.

Furthermore, we propose a learnable network using 3D vertex positions to estimate the

BRDF functions and predict the surface material parameters for more accurate texturing. By

leveraging physically based rendering techniques and 3D point cloud network, we could

generate realistic human avatar textures aligned to input texts, thus successfully producing

high-quality 3D human avatars. The conducted user studies indicate that our generated results

achieve a better performance than existing SoTA methods.

The final part of our investigation includes face video data. In chapter 5, we introduce a model

tailored for video-based micro-expression synthesis and recognition, comprising an identity-

aware generator and a capsule-enhanced discriminator. The generator adeptly encodes

facial attributes and synthesizes high-quality samples through a graph reasoning module.

Meanwhile, our capsule-based discriminator excels in capturing face characteristics vital

for micro-expressions. Empirical evaluations on various datasets demonstrate our method’s

significant superiority over state-of-the-art techniques in the micro-expression domain.

Having explored micro-expression facial data, we transition into face video generation in

Chapter 6 and examine the generation task of face videos. The collection and publication

of a large-scale face video dataset for the text-to-face generation task mark a significant

contribution of this thesis. By proposing a novel application of bidirectional transformers and

a new video token training technique, we are able to effectively generate high-quality and

consistent face videos conditioned on textual descriptions.
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In essence, this thesis serves as a testament to the immense potential of deep learning in

3D data processing. By navigating through point cloud analysis, 3D human modeling, and

face video generation, we have proposed solutions that not only augment the computational

efficiency and semantic understanding but also enhance the scalability of 3D data analysis

techniques. We believe that the strides made in this thesis will open avenues for future

research and practical applications in the rapidly evolving domain of 3D data analysis.

7.2 Ethical Concerns

We provide some insights into the challenges and potential strategies related to ensuring

the ethical use and limitations of future deep learning methods, especially in the context of

generating content based on textual descriptions:

(1) Misinformation and Manipulation: Deep learning models are capable of generating

realistic content from textual descriptions can be used to create convincing fake im-

ages, videos, or narratives. This poses a significant risk in spreading misinformation

or propaganda. To address this, implementing strict usage guidelines, developing

detection tools for AI-generated content, and educating users about the potential for

such misuse are essential steps. Watermarking AI-generated content can also help

distinguish it from authentic human-generated content.

(2) Privacy Concerns: Generating content based on personal data or creating realistic

representations of individuals without consent raises privacy issues. To solve this

issue, enforcing privacy-preserving practices, such as anonymization or aggregation

of data, ensuring data is used ethically, and obtaining explicit consent from individu-

als whose data is used, are key measures. Compliance with privacy regulations like

GDPR is also critical.

(3) Intellectual Property and Copyright: Deep learning models can generate content

that infringes on existing intellectual property rights, such as replicating copyrighted

material. To solve this, developing algorithms to recognize and respect copyright
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boundaries, educating users about intellectual property laws, and implementing

filters to prevent copyright violations are essential.

(4) Bias and Fairness: AI models can perpetuate or amplify biases present in their

training data, leading to unfair or discriminatory outcomes. Diversifying training

datasets, implementing fairness checks, and conducting regular audits to identify and

mitigate biases are important. Involving diverse groups in the development process

can also help address this issue.

(5) Regulatory Compliance: Keeping up with evolving regulations and ensuring com-

pliance can be challenging for rapidly advancing AI technologies. The potential

strategy to address this is to stay informed about regulatory changes, engaging with

policymakers, and actively participating in the regulatory discussion are essential for

compliance and shaping future guidelines.

7.3 Future Work

We suggest some potential directions using deep learning methods for the challenges that we

have mentioned of all three different types of 3D data: point clouds, human meshes, and face

videos.

For point cloud analysis, there are two separate ways for medical and rotated point clouds: 1)

For medical point clouds, we can combine the information learned from 2D rendered medical

images and textual descriptions with the raw 3D point clouds for comprehensive information

learning. For example, by leverage the prior information from vision-language pre-training

methods such as CLIP [168], recent works [260, 87] are proposing to learn effective point

cloud features by using the textural descriptions, rendered 2D images, and 3D points to

transfer the CLIP knowledge to 3D vision, which outperforms all previous learning methods;

2) For rotated point clouds, instead of directly learning rotation invariant features, we can

disentangle the point clouds for rotation invariant shape and rotation equivariant pose learning.

As shown in [33], the disentangled learning of rotation invariance and rotation equivariance
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allows more flexible model design, resulting in better performances on rotated classification

and segmentation tasks.

For human mesh modeling, we propose two directions for future research: 1) Human shape

generated conditioned on textual descriptions is a potential task. Although existing meth-

ods [83, 91] cannot generate human avatars with detail garment details, their use of the human

parameter model [137] opens a way for high-quality human shape generation. A recent

method [258] has shown great performance on human avatar generation with detailed clothes

conditioned on textual descriptions. We believe that with the help of the differentiable 3D

representation [147], more high-quality text-guided human avatars can be generated; 2) With

the introduction of large language models and variants of fine-tuned diffusion generative

model, human texture generation can be made more realistic and can be fine-grained by

detailed textual descriptions.

For face video analysis, we have proposed two methods which leverage GAN and transformer

with auto-encoders respectively for face video generation. We believe that using a diffusion

model rather than the GAN or auto-encoders can lead to an enhanced generation output. With

the development of large language models, the models can be enabled with more accurate

text information, which could result in the generated videos more aligned to the input text.

Moreover, the text-to-image diffusion generation networks could increase the quality of

generated videos. Specifically, CogVideo [84] leverages a private language model for texting

encoding, which leads to outstanding generated videos that are semantically aligned to the

input texts. Make-A-Video [190] utilizes prior information from text-to-image models to

achieve high-quality video generation. Hence, we believe that future researches on language

models and diffusion models can enhance the generation quality of face videos.
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APPENDIX i

Appendix

Abbreviations

SoTA: State-of-The-Art

3D: Three-dimensional

AU: Action Unit

NLP: Natural Language Processing

FPS: Farthest Point Sampling

KNN: K Nearest Neighbors

GCN: Graph Convolutional Network

MGR: Multi-Graph Reasoning

PCR: Point Cloud Registration

AIT: Aligned Integration Transformer

PCA: Principal Component Analysis

ICP: Iterative Closest Point

EVD: Eigenvalue Decomposition

SGD: Stochastic Gradient Descent

mIoU: mean Intersection over Union

mAP: mean Average Precision

LRF: Local Reference Frame

GRF: Global Reference Frame

SMPL: Skinned Multi-Person Linear Model

NeRF: Neural Radiance Field

LBS: Linear Blend Skinning

SDS: Score Distillation Sampling

DSD: Denoising Score Distillation

PBR: Physically-Based Rendering

BRDF: Bidirectional Reflectance Distribution Function

CFG: Classifier-Free Guidance
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SH: Spherical Harmonic

ME: Micro-Expression

MER: Micro-Expression Recognition

MES: Micro-Expression Synthesis FACS: Facial Action Coding System

METT: Micro Expression Training Tool

SETT: Subtle Expression Training Tool

LBP: Local Binary Pattern

LQP: Local Quantized Pattern

LBP-TOP: Local Binary Pattern with Three Orthogonal Planes

CNN: Convolutional Neural Network

GAN: Generative Adversarial Network

DCGAN: Deep Convolutional Generative Adversarial Network

WGAN: Wasserstein Generative Adversarial Network

CGAN: Conditional Generative Adversarial Network

ACGAN: Auxiliary Classifier Generative Adversarial Network

GRM: Graph Reasoning Module

LOSO: Leave-One-Subject-Out

CDE: Cross-Database Evaluation

UF1: Unweighted F1-score

UAR: Unweighted Average Recall

SDE: Single Database Evaluation

SE: Squeeze-and-Excitation

PCFG: Probabilistic Context-Free Grammar

POS: Part-Of-Speech

FID: Frechet Image Distance

FVD: Frechet Video Distance

MdR: Median Rank

MnR: Mean Rank
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