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Abstract 

While analysis of the vulnerability of rail transport systems has received considerable 

attention in the literature over several decades, few previous studies offer a holistic view of 

how hazards and their mechanism in railway accidents make rail transport systems 

vulnerable in different jurisdictions and time periods. Although railway accident reports and 

recommendations are proposed by independent investigators to reveal relevant hazards and 

vulnerabilities after accidents to maintain a safer railway operational environment, 

practitioners and researchers suffer from the need to deal with a large amount of textual data 

given that most railway safety-related information is recorded and stored in the form of text. 

This also means there is no general model for incorporating a range of data sources and 

requiring only limited human intervention in the literature. Hence, there is a growing need for 

accurate estimations of the vulnerability of railway transport and for effective mitigation 

strategies.  

This thesis extends knowledge on the vulnerability of the railway system by exploring the 

underlying hazards and building rigorous and automated models to enlarge the database by 

applying state-of-the-art techniques. The conceptual frameworks HazardMap and RecoMap 

were developed to overcome this gap, using open-sourced Natural Language Processing 

(NLP) topic models BERTopic and the Structural Topic Model (STM) for the automated 

analysis of textual data to extract critical insights. The topic modelling depicts the 

relationships between hazards, railway accidents and investigator recommendations and is 

further extended and integrated with the existing risk theory and epidemiological accident 

models. Empirical data was retrieved from official railway accident reports published by four 

countries: Australia - the Australian Transport Safety Bureau (ATSB), the UK - Rail Accident 

Investigation Branch (RAIB), the US - National Transportation Safety Board (NTSB) and 

Canada - the Transportation Safety Board of Canada (TSB). The railway accident ontology 
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is introduced to describe the nature of railway accidents and standardise the terminology 

used in different countries. Scoping workshops and a survey were conducted to evaluate the 

usefulness and consistency of railway practice. Case studies of the application to the risk at 

level crossings and the platform–train interface risks are provided to illustrate how the models 

proposed work with real-world data.  

HazardMap shows that hazards share partly part of similar mechanisms across countries, 

implying that they share similar characteristics and result in similar vulnerabilities and railway 

accidents. On the other hand, RecoMap reveals that the concept of triple-loop learning is 

insufficient in the railway industry of the investigated countries, implying that current practices 

might result in railway accidents that could have been prevented by learning from other 

jurisdictions and implementing corresponding mitigation measures in advance. The scoping 

workshops and survey also revealed that the current approach primarily concentrates on 

jurisdiction-based analysis over time rather than learning across jurisdictions, indicating an 

emerging vulnerability across rail transport systems.  

The interpretation of findings supplemented by additional evidence and existing theories 

indicates the potentially emerging hazard of deterioration in railway safety and how current 

stable railway systems worldwide may become hazardous. Potential barriers to learning 

across jurisdictions and time might deteriorate the organisational safety culture and endanger 

railway safety unless further strategies are implemented to stimulate the learning culture. To 

address such obstacles, the HazardMap and RecoMap proposed are capable of automating 

hazard analysis with adequate accuracy to help stakeholders better understand hazards and 

help practitioners learn across jurisdictions and time. Further research could incorporate data 

from additional jurisdictions or from earlier time periods and the frameworks could be applied 

to road, aviation or maritime accidents. 
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1.  Introduction 

This chapter introduces the thesis in five sections: the background to the research,(Section 

1.1), the purpose of the thesis, derived questions and propositions (Section 1.2), the scope 

of the thesis (Section 1.3), limitations of the research; (Section 1.4) and the structure of the 

thesis (Section 1.5). 

1.1 Background 

Railway transportation plays an essential role in the functionality of our society, economy and 

environment. With the desire for sustainable transportation increasing dramatically in recent 

decades, the public has become increasingly interested in railway transportation for its high-

quality performance and better utilisation of scarce resources (Szymula & Bešinović, 2020). 

However, railway accidents significantly disrupt the transportation network and cause 

catastrophic impacts on society, such as fatalities, injuries and economic loss. A variety of 

theories and frameworks are proposed in the literature to understand the mechanism of 

railway accidents from various perspectives: epidemiological (Peters et al., 2018), systemic 

(Read et al., 2021; Santos-Reyes & Beard, 2009), causation and sequencing (Wullems et al., 

2013; Xia et al., 2012), and the barrier of energy (Huang et al., 2020). Many frameworks have 

been widely used in the railway industry and by railway accident investigation bodies. For 

instance, root cause analysis (RCA), the accident causation model, and systems theory are 

commonly used during railway accident investigations to identify the causal relations between 

(underlying) factors (ATSB, 2009; Dai & Wang, 2010; Kinnersley & Roelen, 2007; RAIB, 

2008). 

To better understand the relationship between railway accidents and their impact, there has 

been a rapid rise in the use of the term “vulnerability” in the context of transportation to 
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illustrate the consequences caused by a disruptive event or a railway accident (Bates et al., 

2014; Mattsson & Jenelius, 2015; Reggiani et al., 2015). Researchers have always seen 

vulnerability improvement as a process with three stages: pre-disruption investment, post-

disruption adaptive response, and post-disruption maintenance or re-construction (Turnquist 

& Vugrin, 2013). Pre-disruption investment is sometimes associated with risk management, 

which aims to strengthen the resilience of the railway system through identifying the hazards 

and applying strategies to prevent the disruptions from happening (Khoudour et al., 2011). 

On the other hand, post-disruption adaptive response and post-disruption maintenance are 

to control the negative impacts and maintain operations, which mainly focus on resource 

allocation and optimisation. From a risk management perspective, there is a strong 

association between controlling risk and improving the vulnerability of a system. The nature 

of risk contains two core elements: probability and consequences. Risk management aims to 

improve safety by either reducing the probability or mitigating the consequences. Meanwhile, 

vulnerability management is another side of the same coin, which aims to prevent the system 

from being vulnerable by eliminating hazardous factors and reducing the impact. The 

similarity between pre-emptive vulnerability and risk assessment has also been raised in 

previous studies (Pant et al., 2016; Peck, 2007). The relation between hazards, risk, 

vulnerability, accident, consequences, and the respective domain research area is illustrated 

in Figure 1-1. 
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Figure 1-1: The relationship between hazards, risk, vulnerability, accident, consequences and the respective domain research topics 

(extended from Rausand, 2013) 
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Recent developments in solutions for post-disruption adaptive response and post-disruption 

maintenance have a number of remarkable outcomes in terms of establishing the impact 

(Berche et al., 2009; Chang & Nojima, 2001), optimising the resource allocation (Boorjian et 

al., 2012; Liao et al., 2018), constructing quantifiable metrics (Kim & Song, 2018; Wang et al., 

2017) and building different scenarios (Turnquist & Vugrin, 2013; Villalba Sanchis et al., 

2020). However, pre-disruption investment is still poorly understood, and most studies have 

explored the consequence rather than identifying the hazards and estimating the probability 

of which hazards trigger the accident. Some studies also argue that the preparedness of 

repair resources helping to reduce the disruption time should be in the scope of pre-disruption 

investment (Goldbeck et al., 2020). However, the foundational factors triggering an accident 

are not considered in such studies, and the result from studies mentioned above has failed 

to provide a solid conclusion on preventing the system from being damaged. Nevertheless, 

studies considering that issue are only in single subject areas, such as climate (Binti Sa’adin 

et al., 2016; Lindgren et al., 2009; Oswald & Treat, 2013) or other specific components (An 

et al., 2011; Ettinger et al., 2016; Lamb et al., 2019) in the rail transport system. No horizontal 

study has been done in this context, meaning decision-makers are disadvantaged while 

managing risk and mitigating vulnerability. 

Our knowledge of identifying hazards and estimating the probability that each hazard triggers 

an accident is largely based on very limited data in the literature, as most studies have tended 

to focus on the impact management and resource allocation on the basis of assuming that 

the disruption has happened (which is also known as condition vulnerability (Dehghani et al., 

2014; Kim & Yeo, 2017). However, the knowledge to point out where hazards are in the 

railway system and how to prevent an accident from happening is still unsatisfactory from the 

perspective of operation and management. The railway safety and vulnerability require more 

improvement to provide stable and high-quality transport services. 
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1.2 Purpose of thesis 

The motivation of this thesis is to evaluate and improve the vulnerability of railway networks 

by introducing state-of-the-art techniques to analyse the legacy accident reports and extract 

critical insights to meet the needs of the railway industry. Although the current railway industry 

has implemented several strategies to reduce the vulnerability and reinforce prevention by 

importing novel technology (e.g., remote condition monitoring systems and inspection 

systems for railway wheelsets) and the process of risk management (e.g., risk management 

planning, risk response planning and risk monitoring and control (Patil et al., 2008)), railway 

accidents still occur with unexpected hazardous factors arising from either new applications 

or undetected hazards. Additionally, the effects of improvement strategies are seldom 

reviewed horizontally. The experience gained from historical accidents is rarely shared across 

jurisdictions in industry and academia (Nash, 2008), meaning significant investment does not 

have a widespread benefit. Furthermore, railway safety improvement strategies are often 

implemented after railway accidents occur, but coherent pre-disruption investment should be 

considered beforehand, and the hazards should be identified and controlled for a strong 

railway safety culture. 

To summarise, current solutions to improve railway safety are unsatisfactory and as they only 

concentrate on a particular case and make improvements based on that single case. It is 

noteworthy that the content of previous accidents is mostly recorded through text instead of 

numeric data, making them unsuitable for statistical analysis and making it difficult to extend 

horizontal knowledge in this context. Even in the context of academia, techniques to solve 

such issues are manually demanding and time-consuming due to the availability and 

analysability of the data. In practice, the poor communication between railway accident 

investigation bodies is seldom discussed and examined, and hazards might have been 

prevented if experience could be shared from one jurisdiction to another. For instance, the 
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railway driver–machine interaction was widely discussed in Europe in the early 2000s, and 

several improvements were introduced to avoid providing overloaded information and fault 

alarms (Panou et al., 2013; Young et al., 2006). On 23 October 2018, a passenger train 

derailment occurred in Taiwan in Asia. One of the causes of this accident was driver ignorance 

of alarms, as multiple alarms were raised at the same time resulting in driver unawareness 

of the speed limit. Similar accidents have occurred in Europe before, such as the derailment 

on 20 February 2010 in Leicestershire in the United Kingdom. This suggests that many 

accidents with high similarities occurred in various countries and could have been prevented 

by learning across jurisdictions and over time. 

This framework establishes the relation between the hazards identified from the original 

accident data and recommendations made to address these hazards. Some studies have 

raised the issue of interface failure context, most of which mainly consider a case study 

(Darroch et al., 2016) or only a conceptual framework (Kelly &Berger, 2006; Shokri et al., 

2012). The lack of input data might result in insufficient evidence and weaken the conclusion, 

which can be considered other hazards in terms of railway safety improvement. 

The identified research and practical gaps aforementioned are illustrated in Figure 1-2. This 

thesis seeks to address how to solve the present issues from the perspective of vulnerability 

improvement, state-of-the-art techniques, and practical applications. By combining all 

elements in Figure 1-2, the knowledge on railway vulnerability and risk management is 

expected to be broadened significantly. 
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Figure 1-2: Identified gaps and the respective explanation 
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To overcome gaps elaborated in Figure 1-2, some studies have leveraged the benefits of 

Natural Language Processing (NLP) and machine learning to consistently analyse a large 

body of textual data. NLP is the state-of-the-art technology that addresses the interface 

between human languages and computers by enabling a computer program to process a 

large amount of textual data through machine learning approaches. Several attempts to 

incorporate NLP into accident data analysis can be found in maritime, aviation and road 

safety to analyse crowdsourced textual data (Nelson et al., 2020; Syeda et al., 2019; Wang 

et al., 2017). Despite the extensive discussion of automated textual data analysis in the 

literature, the focus is mainly on building the NLP model rather than interpreting the result. 

Additionally, most studies in this context use the supervised learning approach, requiring a 

significant amount of manual effort to train the model (Sizov & Öztürk, 2013; Wang et al., 

2017). These limitations hinder researchers and practitioners from advancing the existing 

railway safety knowledge with the help of novel technologies. 

Therefore, the research objective of this thesis is to provide a holistic view of the nature of 

hazards in railway accidents and responses from railway industries across jurisdictions and 

across time by leveraging the power of NLP with little manual effort. Instead of establishing 

a customised model, this study only uses open-sourced and off-the-shelf toolkits for building 

the NLP model so that the result and contribution of this study can be duplicated and reused. 

The proposed models are implemented to analyse railway accident reports and 

recommendations, which are expected to offer another view on railway accidents from the 

hazard-centred perspective and advancing railway safety knowledge by enabling learning 

across jurisdictions and across time. 

To ensure the identified research gaps are well addressed in further analysis, several 

research questions and propositions are derived on the basis of the research purpose and 

shown in Table 1-1. Three research gaps are identified with corresponding research 
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questions and propositions, reflecting issues that might be overlooked in the literature. To 

sum up, this study argues that some hazards might share similar characteristics and 

attributes regardless of countries and jurisdictions (RQ1-1, RQ1-2) and result in similar 

vulnerabilities in different jurisdictions and times (RQ1-3). This implies that learning across 

jurisdictions might be able to mitigate hazards which have triggered accidents in other 

countries. Additionally, it is assumed that recommendations made by railway accident 

investigators might primarily focus on addressing operational issues and concentrate less on 

risks at the management level (RQ2-1), indicating the possibility of overlooking the 

importance of learning across jurisdictions and time (RQ3-1). Although there might be a 

transition in the style of making railway accident recommendations in each jurisdiction over 

time as the awareness of safety culture increases (RQ2-2), barriers to the railway industry 

learning across jurisdictions and time still exist (RQ3-2) and result in unexpected hazards 

(RQ3-3).  
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Table 1-1: Derived questions and propositions based on research gaps 

Research gap Research questions Proposition 

Limited understanding and 

comparison of hazards and their 

mechanism in railway accidents 

across jurisdictions 

RQ1-1: What is the difference in roles each 

hazard plays in various jurisdictions during 

railway accidents? 

Regardless of hazard taxonomy, certain hazards 

have similar attributes and have resulted in 

comparable railway accidents across different 

jurisdictions. 

RQ1-2: Do the same hazards occur in different 

jurisdictions and across time? 

There are some hazards sharing similar 

characteristics and occurring in different 

jurisdictions and across time. 

RQ1-3: Do those hazards result in similar 

vulnerabilities in different judications and 

times? 

Those hazards sharing similar characteristics 

and occurring in different jurisdictions and across 

time may result in similar vulnerabilities and 

railway accidents. 

Limited understanding of how 

railway accident investigators in 

different jurisdictions address 

hazards identified over time 

RQ2-1: How do recommendations made by 

railway accident investigators address hazards 

identified from the socio-technical perspective? 

Recommendations made by railway accident 

investigators might primarily focus on addressing 

operational issues and concentrate less on risks 

at the management level. 
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Table 1-1: Derived questions and propositions based on research gaps (continued) 

Research gap Research questions Proposition 

 RQ2-2: Is there a transition in the style of 

making railway accident recommendations in 

each jurisdiction over time? 

The style of making railway accident 

recommendations might change over time, 

resulting in a potential change in the way that 

recommendations are proposed. 

Limited understanding of the 

relationship between the 

learning behaviour in the railway 

industry and its impact on 

railway safety culture 

RQ3-1: Do railway accident report 

recommendations support the railway industry 

to learn across jurisdictions and time? 

Recommendations made in railway accident 

reports often overlook the importance of learning 

across jurisdictions and time. 

RQ3-2: What are potential barriers to the 

railway industry learning across jurisdictions 

and time? 

The railway industry has multiple barriers to 

learning across jurisdictions and time in the 

socio-technical hierarchy. 

RQ3-3: What hazard(s) might emerge if 

barriers to learning across jurisdictions and 

time remain unsolved? 

The absence of learning across jurisdictions and 

time might significantly impact safety culture. 
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1.3 Scope of thesis 

On top of that, this thesis aims to shed new light on the vulnerability of railway systems by 

exploring the underlying hazards and building a rigorous model to enlarge the database by 

applying state-of-the-art techniques. Current work mainly concentrates on reducing the 

vulnerability of the railway system by preventing railway accidents from happening, which is 

also known as the pre-disruption investment in the literature (Hua & Ong, 2017; Pant et al., 

2016). By following this approach, the complexity in major railway accidents should be 

decomposed in a logical way, and horizontal analysis conducted for the purpose of reducing 

the prevalence of accidents and contributing to enhanced learning between railway accident 

investigation bodies in different jurisdictions. 

Before investigating the critical components in pre-disruption investment, it is important to 

clarify what can be referred to as a railway accident. The term “railway accident” is defined 

as an accident or incident which occurs on railway property in so far as it is or may be relevant 

to the operation of the railway (RAIB, 2005); however, not every railway accident results in 

disruption and increases the vulnerability of the whole system. Therefore, the thesis focuses 

on railway accidents resulting in one of the following five outcomes: fatalities, major injuries, 

derailments, collisions, and other specified dangerous occurrences, such as the emission of 

toxic liquid. Those railway accidents containing one of these five outcomes are among the 

most commonly discussed and well-documented. Most importantly, they create an extreme 

impact on society, the economy, and the whole railway network, and the hazards triggering 

such railway accidents make the whole system vulnerable to operate. 

The scope of this thesis is the interactions between hazards, railway accidents, rail accident 

investigation bodies, railway industries and information and knowledge related to railway 

safety. The definitions of terms mentioned above are discussed in Section 2.1. The 
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information and knowledge flow, railway organisations of interest and their relations in the 

railway system and the research questions investigated in this study are shown in Figure 1-3. 

There are different hazards across countries triggering railway accidents, resulting in 

potential knowledge and information for railway industries to understand and analyse. Rail 

accident investigation bodies lead the investigation and generate knowledge (in the form of 

recommendations) for improving railway safety through organisational learning within country 

A. Despite no direct impact, similar railway accidents that have occur in other countries and 

knowledge generated might be valuable information and knowledge for the railway industry 

in country A. Such learning behaviours can be conducted by rail accident investigation bodies 

or railway organisations. Although there are several relations worth investigating in Figure 

1-3, this study only focuses on the relationship between hazards, railway accidents, 

knowledge generated by rail accident investigation bodies and the learning behaviour of 

railway industries.  
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Figure 1-3: The information and knowledge flow, railway organisations of interest and their relations in the railway system and the 

research questions investigated in this study 
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Multiple data resources are considered in this thesis to examine whether experience is 

shared effectively in the railway industry. However, the difference in railway systems, 

language in recording accidents, culture, and regulations would make the analysis 

inconsistent and create significant bias. Hence, only countries where investigation bodies 

have the following features are considered: 

(1.) The investigator must have a comprehensive documentation system to reduce the 

complexity of processing. The framework of the accident report must be clear and 

consistent in the temporal aspect. For instance, the jurisdiction has a law or regulation 

on the format of generating accident reports. 

(2.) The investigator must have been granted the independent authority to conduct the 

investigation. The investigation objective should aim to increase railway safety 

regardless of blame or liability.  

(3.) The investigator should have a foundational classification system regardless of how 

simple it is, to make it easier to merge data from different resources.  

(4.) The investigator must produce reports that contain recommendations, which focus on 

issues relating to railway safety, such as the implementation of specific training or 

policy, introducing new technology, or revising existing standard operating procedures. 

The recommendations must not contain inferences or conclusions of apportioning 

liability. 

(5.) Due to the limitation of the technique applied in this research, only data from native 

English-speaking countries is considered to ensure the performance of the model, 

which implies that reports must be written in English. The English language used in 

reports should be consistent regardless of time, the types of accident, or investigation 

engagement. For instance, the definition of derailment in each jurisdiction should not 

vary through time. 
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(6.) Due to the differences in the use of the English language, the model requires sufficient 

data to modify the parameters on the basis of the terminology each jurisdiction uses. 

Therefore, to ensure the performance of the model this study only considers 

investigators that have completed over 100 reports. 

Based on these requirements, four countries are considered, namely Australia, Canada the 

United Kingdom (UK) and the United States of America (US). 

1.4 Structure of the thesis 

This thesis is organised as follows:  

Following an introduction to the background, purpose and scope of this research, Chapter 2 

presents a comprehensive literature review in the context of vulnerability assessment, risk 

management, and the analysis of railway accident reports. The terminology is defined, and 

the boundaries of current studies are explored. An overview of how literature handles the 

issues of railway vulnerability and the gained results are presented and analysed. The 

analysis of railway accident reports in the literature and practice is reviewed. Last, the 

synthesis of findings is presented and the research gaps are confirmed.  

Chapter 3 reviews different approaches used in the analysis of the aforementioned contexts 

and discusses the research design of this thesis. The mechanism of NLP and its novel 

techniques are introduced, including approaches and resources required for training NLP 

models. Last, the concept of ontology design and knowledge graphs for practical applications 

in the literature are discussed. 

Chapter 4 elaborates on the development of the models. First, the framework of NLP models 

and applied data is introduced. Candidate approaches are compared. Second, entity linking 

strategies are designed to standardise terminology used in different countries. The 

development of ontology knowledge graphs used to address the entity linking task is depicted. 
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Next, the covariate analysis method provided by NLP models is discussed and demonstrated. 

Last, details of the scoping workshops and survey used to evaluate the models developed 

are presented. 

Chapter 5 and Chapter 6 concentrate on the analysis and the discussion of findings, starting 

with data acquisition and data pre-processing. Next, the analysis results of each country are 

described in detail, including the initial outcomes, model fine tuning, performance evaluation 

and justification. Subsequently, details of ontology, knowledge graph selection and entity 

linking are revealed with the example. Cross-sectional analysis of countries and investigators 

is conducted followed by the scoping workshops plan for evaluation. Last, HazardMap and 

RecoMap are proposed with the case study of level crossing accidents and the platform–train 

interface risk. 

Chapter 7 synthesises findings and discussion of previous chapters and further extends the 

discussion of potential implications based on the result. Learning behaviours in the railway 

industry are discussed, followed by knowledge flow within and across railway industries. A 

concept of an emerging underlying hazard is proposed indicating the potential deterioration 

of railway safety culture. The opportunity to overcome barriers mentioned above is discussed. 

Chapter 8 summarises findings, highlights contributions and limitations of this thesis and 

makes suggestions for future research. 
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2. Literature review 

This chapter presents a comprehensive review of current literature. First, there is a brief 

discussion of the historical context of vulnerability in the field of transportation research 

(Section 2.1). Second, popular assessment approaches in the field of analysing vulnerability 

are demonstrated (Section 2.1). Approaches relating to the context of the railway are also 

highlighted in this section. The next section concentrates on how a railway accident report is 

organised and the linkage to the evaluation of the vulnerability of a railway system. 

Jurisdictions are compared in how they investigate a railway accident and how they produce 

a report is included (Section 2.3). The frameworks applied to assess railway-related risk in 

the literature are introduced (Section 0). Last, the literature is synthesised, and the scope of 

this study is determined. 

2.1 The concept and elements of vulnerability 

To build a vulnerability analysis system for a railway transport system, several closely related 

topics are defined: vulnerability, resilience, robustness and reliability. These are popular 

keywords used in the context of vulnerability assessment literature. Typically, the definition of 

these keywords is modified based on the features or characteristics of the research. To 

discriminate between them, vulnerability is defined first followed by comparison with other 

keywords. 

Vulnerability is commonly defined as “the sensitivity of a system to threats and hazards” 

regardless of the research area (Rausand, 2013), such as evaluating the vulnerability of 

electric power delivery networks (Holmgren, 2004), building a risk measurement framework 

for vulnerable infrastructure (Haimes, 2006), and assessing the vulnerability of a road traffic 

system to guide maintenance priorities (Jenelius et al., 2006). Additionally, in order to do 

further numerical research, a group of studies has created a common awareness of a 
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definition of vulnerability from a quantitative perspective as in the following description: how 

much performance is diminished during a disruption (Berdica, 2002; Bešinović, 2020; Khaled 

et al., 2015; Yu et al., 2018; Zhang et al., 2018; Zhou et al., 2019). The meaning of 

performance varies depending on the research topic. For example, it can refer to the cost of 

travel when considering a road transport network (Jenelius et al., 2006), headway when in a 

railway transport network (Cadarso et al., 2013), and delivery time in a freight logistic network 

(Khaled et al., 2015).  

Sometimes the term vulnerability is slightly modified in response to a specific scenario. For 

instance, Laurentius (1994) and Berdica (2002) deem that vulnerability is a susceptibility for 

rare, big risks or the sudden, unpredicted occurrence, while Rausand (2013) suggested that 

vulnerabilities appear when a system begins to be destroyed until it totally collapses following 

small further stresses when the capacity reaches its maximum: “Little strokes fell great oaks”. 

The disadvantage of considering the probability of failure while analysing vulnerability is 

revealed by Sarewitz et al. (2003), who argue that the estimation of probabilities in the 

analysis of extreme events is impractical, and then propose the idea of conditional 

vulnerability (or exposure in other literature, see D’Este & Taylor (2003) and Jenelius et al. 

(2006)), which is used to calculate the aggregate result of consequences given a hazardous 

event occurs.  

Second, resilience has been commonly defined as “the capability to persist and absorb a 

disruption without affecting performance” in the context of general transport systems 

(Mattsson & Jenelius, 2015) or a specific transport system, such as a railway (Bešinović, 

2020). A slightly different operational definition of resilience has been made regarding the 

resources that a system requires to re-strike its balance between demand and supply (Zhou 

et al., 2019). When the research is considering the resilience of the socio-technical system 

like a healthcare system, then the objective would be the ability to absorb a disruptive event 
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or the time it takes to recover from shocks of disruptive events (Taysom & Crilly, 2017). On 

the other hand, when the subject switches to a transport network, then the performance to 

maintain functionality under disruptions or time and resources required to recover to normal 

status would be the focus. Additionally, if the research considers the temporal factor in 

resilience analysis, it might be referred to as resilience engineering research. Resilience 

engineering research is a paradigm for safety management, which offers a much broader 

socio-technical framework to cope with infrastructure threats and disruptions, including 

preparedness, response, recovery and adaptation (Patriarca et al., 2018; Worton, 2012). 

Another term that is similar to resilience is robustness. There is an inconsistent definition of 

robustness. For instance, Bešinović (2020) considers that in the context of the railway 

industry, robustness is the ability to mitigate impacts caused by disturbances, whereas 

resilience means the ability of a system to provide adequate service in normal conditions. 

However, Zhou et al. (2019) argue that robustness is the ability of a system to maintain itself 

in its original state regardless of the impact which the disruption creates; and once the impact 

makes a system unable to maintain normal status, then resilience would be considered as 

the main topic. Both of these studies support the idea that if an operational index is needed 

to evaluate the remaining level of performance under disruptions, then resilience research 

should be considered. But when it comes to robustness, Bešinović (2020) assumes the 

performance has been affected and regular service might not be provided, whereas Zhou et 

al. (2019) assume the performance remains the same during disruption. 

The apparent contradiction in definition might be caused by the different extent of disruption. 

Zhou et al. (2019) argue that the use of both the terms robustness and resilience depends 

on whether the network can provide the same performance while disrupted. If an event occurs 

and a transport network can still provide the same level of service, then the event is a 

disturbance (Nielsen, 2011) and robustness can be used in this context. On the other hand, 
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if an event happens and degrades a transport network , the event is referred to as a disruption 

(Nielsen, 2011) and the term resilience is used to estimate the impact of the event as a result. 

Note that resilience is considered from the aspect of performance or capability rather than 

the time a network takes to recover to normal status. In the context of time aspect, dynamic 

resilience (or namely rapidity) is used to describe the time that a system requires to return to 

a state of normal function after a severe perturbation, such as after an intentional terrorist 

attack (Pimm, 1984; Wang et al., 2016). 

The terms mentioned above can be shown diagrammatically, as proposed by McDaniels et 

al. (2008), in Figure 2-1.  

 

Figure 2-1: Relationship between vulnerability, resilience and robustness, revised from 

McDaniels et al. (2008) 

Assume P0 is a regular capacity of a transport system network, a disruption (e.g., terrorist 

attack) occurs at time ta and reduces the capacity to the most disrupted point P(𝑡𝑏) at time 

𝑡𝑏. The capacity gap between P0 and P(𝑡𝑏) is referred to as the vulnerability of the network. 

In addition, the rest capacity (P0 - P(𝑡𝑏)) is referred to as the resilience of the network. The 

vulnerability in a network stands for the susceptibility to a disruption resulting in a 

considerable reduction, whereas the resilience in a network stands for the rest capacity after 
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the degradation due to a disruption (Berdica, 2002; Mattsson & Jenelius, 2015; Szymula & 

Bešinović, 2020). On the other hand, when a disturbance occurs at time 𝑡𝑐 , the network 

absorbs the disturbance, and the capacity remains the same as usual. The potential loss of 

capacity absorbed by the network is robustness. The grey area derived from the dotted line 

and solid line implies that if resilience engineering is conducted to help improve the network 

when disruption is persisting, then the degree of impact on the aspect of rapidity and 

vulnerability will decrease. For instance, if the design of the rolling stock could absorb more 

impact which is caused by an explosion and prevent a derailment, then the cost of time will 

be reduced dramatically because no heavy machinery is required to handle the disruption. 

Reliability can be interpreted from the perspectives of demand and supply (Jenelius et al., 

2006). From the demand side, Taylor and D’Este (2007) made a clear distinction between 

reliability and vulnerability in a network. They considered that reliability focuses on 

connectivity, which refers to the probability that a specific trip between an origin–destination 

pair can be completed within a particular time. At the same time, vulnerability reflects the 

consequences (often measured by an index of accessibility) of the loss of a particular number 

of nodes or links in a network. Immers et al. (2004) defined reliability as the degree of certainty 

with which a passenger is able to estimate their travel time. From the demand side, reliability 

can be assessed by estimating the performance of a transport network. However, measuring 

the probability of disruptions has long been a challenge for researchers. For instance, the 

probability that a passenger finishes their trip in an estimated time, also known as travel time 

reliability, is difficult to estimate accurately (Bell & Iida, 1997; Taylor & D’Este, 2007). Another 

example is the probability that a network can successfully accommodate a given level of 

travel demand, also known as capacity reliability (Yang et al., 2000). Some studies claim that 

the issue of probabilities should be concerned more than consequences (Berdica, 2002; 
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Jenelius et al., 2006), while others choose to deal with this issue on the supply side regardless 

of probabilities. 

Mattsson and Jenelius (2015) provided a review of recent research and purely defined 

reliability in a theoretical way: the probability that there is still a path between a pair of nodes 

when one or more links or nodes are removed. Zhou et al. (2019) considered that reliability 

stands for the ability of a network to maintain its performance under the condition of disruption, 

which is similar to the previous statement about the term resilience. However, in either 

approach, the definitions all assume that a disruptive event happens and calculate the 

consequence as the proxy of reliability in a transport network. 

The main highlights and definitions of disruption in railway systems inferred through literature 

are summarised in Table 2-1.
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Table 2-1: Definition of terms relating to disruption in a railway system 

Terms Definition Source 

Vulnerability Descriptive definition:  

Sensitivity to threats and hazards, or a susceptibility to incidents that can result in 

considerable reductions of performance in a system. 

(Berdica & Mattsson, 

2007; Taylor & D’Este, 

2007) 

Operational definition:  

Based on the descriptive definition, it refers to how much performance is taken by a 

disruption. 

(Berdica, 2002; 

Bešinović, 2020; Khaled 

et al., 2015; Szymula & 

Bešinović, 2020; Zhang 

et al., 2018; Zhou et al., 

2019) 

Conditional 

vulnerability 

(Exposure) 

The aggregate consequences of a given hazardous event to a system. (D’Este & Taylor, 2003; 

Jenelius et al., 2006) 

Disruption An event or a series of events caused by external or internal factors that leads to 

substantial deviations from planned operations. From the perspective of risk 

management, a disturbance event turns into a disruption after it begins to lead to 

deviations. 

(Nielsen, 2011; Zhou et 

al., 2019) 

Disturbance A disturbance indicates an event that causes part of the railway operations to deviate 

from the operational plans, but the system can still provide the same level of service 

as usual. 

(Nielsen, 2011; Zhou et 

al., 2019) 

 

  



25 
 

Table 2-1: Definition of terms relating to the disruption in a railway system (continued) 

Terms Definition Source 

Reliability Demand side: 

Travel time reliability: The probability that a specific trip between an origin–destination pair can 

be completed within a specific time. 

Capacity reliability: The probability that a network can successfully accommodate a given level 

of travel demand. 

(Immers et al., 2004; 

Taylor & D’Este, 2007) 

Supply side: 

The probability that there is still a path between a pair of nodes when one or more links or nodes 

are removed. 

(Mattsson & Jenelius, 

2015) 

Resilience Descriptive definition:  

The ability of a transport system to prepare for and to withstand, absorb and adapt to shocks, 

and to recover from the consequences in a timely and efficient manner under disruptions. 

(Berdica, 2002; 

Mattsson & Jenelius, 

2015) 

Operational definition:  

The remaining capacity after the degradation due to a disruption. 

Dynamic 

resilience 

The rapidity with which a system returns to a state of normal function after a severe perturbation. (Pimm, 1984; Wang et 

al., 2016) 

Resilience 

engineering 

A subject offering a much broader socio-technical framework to cope with infrastructure threats 

and disruptions, including preparedness, response, recovery and adaptation. 

(Worton, 2012) 

Robustness The capability to withstand disturbances with an acceptable reduction in operating performance, 

measured by the potential decrease of capacity.  

(Pagani et al., 2019; 

Zhou et al., 2019) 

Rapidity The speed of recovery to normal status. (McDaniels et al., 2008) 

(un)satisfied 

demand 

If passengers need to wait for a train more than 5 minutes more than they do in a normal situation, 

then it is defined as an unsatisfied demand. 

(Piner & Condry, 2017) 
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2.2 Vulnerability assessment  

Since transport operators generally agree that recurring disruption is inevitable and usually 

followed by a series of consequences, assessing the vulnerability of a transport network has 

attracted increasing focus. This section reviews the theories proposed in the field of 

vulnerability analysis. The approaches applied in the context of vulnerability assessment are 

introduced. Generally, the methods used in literature can be broadly classified as the 

statistical approach, topological analysis, simulation and optimisation, and risk analysis 

(Bešinović, 2020; Zhou et al., 2019).  

2.2.1 Foundational theories applied in vulnerability assessment 

Before 1970 the concepts of vulnerability assessment and risk assessment were mainly 

treated in a qualitative way (Rausand, 2013). The quantitative approach began to be widely 

applied in this context after 1970 due to the development of probability theory. Probability 

theory allows researchers to express the risk of an accident in a specific situation as a number 

between 0 and 1 (Parzen, 1960). Another advantage of applying probability theory to risk 

assessment or vulnerability assessment is that the frequency and the condition of an event 

can be clearly displayed by using the same symbols and formulas. For example, the nature 

of uncertainty of an accident was well demonstrated through probability theory (see 

Apostolakis, 1990; Karimi & Hüllermeier, 2007, Silva et al., 2008) and subsequent 

applications used Bayesian network models and fault tree analysis.  

Since risk research has its origins in the qualitative perspective, one of the most widely used 

theories in this context was reliability theory (Bazovsky, 1961). Reliability theory aims to use 

either statistical approaches or mathematical models to manage the risk. Additionally, in order 

to optimise the performance of the systems, research in this context considers not only the 

purpose of the system, but also the economic context during operation (Barlow & Proschan, 
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1996; Pieruschka, 1963). However, reliability theory is a practice-oriented theory, which 

concentrates on the probability and the result of an accident. Compared with the identification 

of hazards, reliability theorists care more about how to estimate the reduction of ability to 

operate and repair (Barlow & Proschan, 1975). The interactions between hazardous 

elements, which might be the causes of an accident in a complex system, are less considered.  

To gain better understanding of the complexity of the interaction of hazards, the concept of 

system accident is proposed, which is also known as the normal accident theory (Perrow, 

1984). Normal accident theory assumes that a complex system (or socio-technical system) 

encounters accidents naturally and inevitably, and Perrow (1984) concludes two 

characteristics, interactive complexity and tight coupling, make a complex system sensitive 

to accidents. Interactive complexity means the interaction between more than two 

unexpected failures, and tight coupling means that each component in a system cannot be 

isolated or shut down independently due to the connection among them (Perrow, 1984; 

Rausand, 2013). Given the accident is inevitable, Perrow (1984) argues that the analysis 

should “focus on the properties of systems themselves, rather than on the errors that owners, 

designers, and operators make in running them”. In doing so, normal accident theory reckons 

that the interaction between elements in a complex system should be emphasised to increase 

the reliability.  

Normal accident theory has been heavily criticised that it does not provide any metrics to 

evaluate the interactive complexity and tight coupling (Sammarco, 2003), and for the 

underestimation of human error (Shrivastava et al., 2009; Vaughan, 1999). However, it still 

provides a distinct framework on organisational structure and situations during the period of 

an accident (Shrivastava et al., 2009). A distinct chart can be generated based on the 

interaction and coupling derived from normal accident theory, which helps classify industries 

depending on the complexity. A chart designed by Shrivastava et al. (2009) is shown in Figure 
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2-2. Rail transport is positioned in Quadrant 1, which represents a system which has linear 

interactions and tight coupling.  

 

Figure 2-2: Interaction/coupling chart, source: Shrivastava et al. (2009) 

Another popular theory which explains the complexity of systems is systems theory. Systems 

theory claims that every system has its own structure and purpose, and is influenced by the 

environment, other systems and even itself. The concept of systems theory assumes each 

technology would develop independently at first, but that all technologies would overlap with 

civil systems, social systems or technologies per se. A hierarchy of levels of organisations or 

systems would build up the complexity of the socio-technical system (Miles Jr, 1973). In terms 

of the application in the context of risk assessment or vulnerability assessment, the idea of 

the imposition of constraints and control loops in a system is widely considered to build the 

model. For instance, Leveson (2004) used systems theory as a foundational basis to build a 
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model for hazard analysis and accident prevention strategies. Moreover, a popular risk 

analysis model called systems theoretic accident model and process (STAMP) is derived 

from systems theory (see Section 6.1). In contrast to normal accident theory and reliability 

theory, systems theory can interpret the epidemiology of accidents in modern society 

comprehensively.  

2.2.2 Vulnerability assessment – statistical approaches 

The aim of the statistical approach is to derive a feasible model to interpret the data and 

highlight insights into historical disruptions. Three methods are mainly used in this context: 

data-driven approach, probabilistic risk assessment and experts’ judgment system. Each is 

briefly introduced. 

First, the data-driven approach uses historical data directly and analyses the data before use 

as a performance indicator (Bešinović, 2020). However, such a method requires sufficient 

data, there are only a few studies, and they are rare in a railway industry context. Hong et al. 

(2015) applied the multi-step methodology (Monte Carlo simulation) to estimate vulnerability 

on the basis of 30-year flood data in China, which is popularly considered a novel approach 

to estimate the vulnerability of a transport network. Diab and Shalaby (2020) used data from 

12,500 detailed metro rail incidents in 2013 from the City of Toronto, Canada. They built a 

linear and logistic regression model and identified that open-air tracks are four times more 

vulnerable than covered tracks in terms of number of delay incidents and total delay time. 

However, the availability of disruption data is extraordinarily difficult to collect (Alexakis et al., 

2014). Additionally, the statistical approach usually misestimates the probability of a rare 

disruption. 

Second, probabilistic risk assessment assumes the probability of a disruption follows a 

specific distribution. For instance, Cats et al. (2016) assessed public transport network risk 
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analysis considering exposure of the disruption. By assuming that frequency follows Poisson 

distributions and applying topological analysis, it is concluded that the vulnerability of a 

transport network should be estimated by the reduction of passengers’ welfare caused by the 

frequency and duration of the disruption. This approach is usually critiqued due to the inability 

to validate the fitness of distribution. 

Finally, the experts’ judgment system assumes that the actual probability of a disruption can 

be measured through objective data rather than subjective data based on the following 

reasons (An et al., 2011). First, the statistical methods are not able to handle the uncertainty 

of information. The insufficient number of disruptive events usually leads to significant bias 

when estimating the probability. Second, the statistical data does not exist or is not recorded. 

Even if the data is available, it is hard to analyse due to lack of crucial information, 

fragmentation, inconsistency or a high level of uncertainty. Last, the existence of data relating 

to disruptive events can contradict the reputation of operators. Almost all disruption data is 

generated and recorded by operators themselves instead of third-party organisations. This 

makes disruption data not only confidential but also suspect. Many studies successfully 

estimate the probability of a disruption by conducting expert assessment. For example, 

Alexakis et al. (2014) overcame the difficulty relating to the issue of probability by applying 

expert assessment and the cellular automata Markov model to evaluate and predict the 

probability of landslides in Cyprus and An et al. (2011) determined the relative importance of 

the risk contributions in the context of the railway industry through expert judgment. 

Nevertheless, the issue of how to evaluate the probability of a disruption is gradually 

emerging; however, there is no known study which tries to analyse disruption in a microscopic 

scale. Even though some studies consider the probability when analysing the risk of a 

disruption instead of conditional vulnerability in the context of the railway industry, there is no 

research on analysing the causality between infrastructure and disruptions deeply. Hence, 
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this thesis applies state-of-the-art techniques to overcome such difficulties. By filling this 

research gap, through the research in this thesis, we will be able to better understand how a 

disruption occurs and try to prevent and even predict disruption in the future. 

2.2.3 Vulnerability assessment – topological analysis 

While the mentioned literature suffers from a lack of data to apply statistical analysis, there 

are many studies which apply the concept of conditional vulnerability to evaluate a critical 

transport network, which allows them to build an assessment model without considering the 

probability of disruptive events. Consequently, this approach fits with topological analysis 

perfectly. Mattsson and Jenelius (2015) indicate that two traditional ways are topological 

vulnerability analysis of transport networks and system-based vulnerability analysis of 

transport networks, both of which allow researchers to assess the vulnerability in a 

quantitative way and also to avoid considering the probability of disruption.  

There are many studies that successfully estimate the vulnerability of a transport network by 

topological analysis. Pagani et al. (2019) mapped the resilience and robustness of a public 

transport system network by considering peak hour and different types of railway systems 

and conducted topological analysis along with the concept of food webs. Zhang et al. (2018) 

assessed the resilience of metro networks and optimised recovery strategy by calculating 

how a node affects the connectivity and passenger flow in a network. The impact caused by 

removing a node is deemed as the vulnerability of the network as a result. Sun et al. (2018) 

applied the date of automated fare collection to analyse the cascading failures considering 

loading and redistribution. By considering the degree, betweenness and strength of nodes, 

the weak points in a network are recognised. Lin et al. (2020) established factors affecting 

passengers’ behaviours under unplanned service disruption by building a nested logit model 

using stated preference data in Guangzhou, China and the result showed passengers have 

a higher possibility of mode shift when the disruption duration is long, occurs at peak hours 
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and there are no alternative routes in the metro system. The study demonstrated what kinds 

of factors affect the decision-making of individual passengers during a disruption.  

However, traditional topological analysis usually estimates the vulnerability of a network by 

calculating the connectivity of the affected origin–destination(O-D) pairs of a network after 

one or more nodes are removed from the network. First, it is commonly accepted that 

topological analysis applied in transport systems is not allowed to consider the behavioural 

response to disruption. Distinctly, we cannot consider how an individual passenger in the 

network reacts to the disruptive event, such as to what extent they reroute their trip and 

change their trip (Bešinović, 2020; Jenelius et al., 2006; Mattsson & Jenelius, 2015; Zhou et 

al., 2019). Additionally, topological analysis inevitably assumes not only the severity and 

frequency of disruptions are equal, but also that the condition of each node (or station when 

referring to a railway network) is the same. In other words, it only considers the result of the 

removal of each node and link regardless of its characteristic. Nevertheless, the type of 

disruption varies depending on the type of station (underground, ground or elevated station) 

and the time of year. For example, the exposure of trespass in a ground station is relatively 

higher than in an underground station. The exposure of leaf fall in autumn is relatively higher 

than in other seasons. This implies that the vulnerability of a network would depend on 

various attributes, which also implies the probability of disruptive events might be totally 

different from each other. 

2.2.4 Vulnerability assessment – simulation and optimisation 

In the context of either vulnerability or resilience of a complex system, some research looks 

at this issue from a numerical perspective. To simplify the complexity of a system, studies in 

this field aim to turn the performance of resilience into several metrics for further analysis. 

This approach to evaluation can be split into four types: data-driven models, topological 

models, simulation models, and optimisation models (Bešinović, 2020). Sometimes the 
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probability theory models and fuzzy logic models are discussed in this context (Zhou et al., 

2019); however, both approaches perform well on disassembling the sequence of incidents 

rather than ranking the performance of a system in terms of the resilience. Although all 

approaches mentioned above are quantitative methods, the four approaches described by 

Bešinović (2020) and the two approaches described by Zhou et al. (2019) have a completely 

different theoretical foundation. The first four approaches use reliability theory to interpret the 

concept of resilience, whereas the last two use probability theory to gain an understanding of 

how an accident happens. Having introduced the idea of data-driven models and topological 

models, simulation models and optimisation models are described in the remainder of this 

section. 

First, simulation models are commonly applied in the analysis of large-scale transportation 

networks (Zhou et al., 2019). Due to the large-scale application, simulation models tend to 

use graph theory and modify the question in a topological way, which overcomes some 

constraints of a pure topological approach, such as the issue of operations dynamics 

(Bešinović, 2020). However, due to the complexity of simulation analysis, the literature only 

concentrates on a limited number of disruption analyses in a single study. The strength of 

simulation models is that it allows meaningful feedback in a given situation or strategies 

(Osei-Asamoah & Lownes, 2014). In the context of road transport, large-scale simulation can 

allow decision-makers to assess the link criticality of road networks (Kim & Yeo, 2017). 

However, the simulation is not only time-consuming, but also has massive data requirements 

(Bešinović, 2020), which makes it difficult to conduct and apply in practice.  

On the other hand, the optimisation approach in assessing resilience derives the metrics to 

evaluate the resilience of either network-wide and scenario-specific cases by mathematical 

optimisation models (Bešinović, 2020). The objective of optimisation models in transportation 

research is mostly to address questions from the demand side or supply side. For questions 
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from the demand side, it mainly concentrates on the choice of the path made by the road 

users or passengers. For instance, Szymula and Bešinović (2020) built an optimisation model 

to address the vulnerability of railway networks by considering both stranded and routed 

passengers; Sun et al. (2018) estimated the risk of stations in Beijing’s rail network during a 

disruption by considering the redistribution of passenger flow, and Hong et al. (2017) 

considered the different level of passenger intermodal transfer distance preference between 

bus systems and subway systems to build a model to estimate the vulnerability of the public 

transport network. Studies which consider the demand side in transportation research are 

hard to conduct due to the difficulty of acquiring passengers’ preferences. In contrast, there 

are many studies that aim to estimate the vulnerability of the system from the supply side. 

Researchers in this context divide a disruption into three sections: preparedness, response, 

and recovery (Zhou et al., 2019). The trade-offs between performance and resource 

allocation are widely discussed, for example, to optimise the benefit of resilience engineering 

in preparedness (Berle et al., 2011; Lämmel et al., 2010; Liao et al., 2018), to minimise the 

cost during the disruption or during the response (Jin et al., 2014; Marzuoli et al., 2016), and 

to estimate the performance of decisions in the recovery period following a disaster life cycle 

(Eid & El-adaway, 2017; Kaviani et al., 2017; Zhang & Miller-Hooks, 2015). The popularly 

used estimators (or dependent variables) in the context of rail and road transport from the 

demand side and supply side are shown in Table 2-2.
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Table 2-2: Estimators of performance in transport networks considered in previous studies 

 Estimators 

(in context of rail transport) 

Estimators 

(in context of road transport) 

Demand side 

• Number of (un)satisfied demands 

• Total delay of passenger (mins) 

• Total welfare (dollar)  

• Number of (un)satisfied demands 

• Total delay of passengers (mins) 

• Increased distance (km) 

• Total welfare (dollar) 

Supply side 

(perspectives 

of operators) 

• Remaining transport capacity (% of volume) 

• Cancelled/long-delayed transport services (no. of trains) 

• Recovery time (mins/hours/days) 

• Change in travel time (mins) 

• Frequency and duration of disruption*  

• Number of deaths or injuries  

• Service frequency (frequency-based service) (sec/mins) 

• Average shortest paths (km) 

• Backup capacity (PCU) 

• Change in travel time (mins) 

• Frequency and duration of disruption* 

• Passenger load (%) 

• Passenger delay (mins) 

• Number of deaths or injuries  

• Recovery time (mins/hours/days) 

• Traffic flow (PCU/hour) 

Supply side 

(perspectives 

of managers) 

• Revenue vehicle-km (dollar) 

• Number of deaths or injuries 

• Recovery time (mins/hours/days) 

• Yearly disruption duration (mins) 

• Repair/flow cost (dollar) 

• Recovery time (mins/hours/days) 

• Number of deaths or injuries  

*can be once per day/month/year, depending on type of disruptive event
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Both simulation and optimisation approaches can provide sufficient numerical results for 

decision-makers to do a further cost-benefit analysis. However, they cannot provide insights 

into the probability of events. The shortage limitation might result from the use of reliability 

theory in this context. Although the outcome of a disruption can be perfectly understood and 

estimated, the real risk is still unknown without assessing the probability of the disruption. 

2.2.5 Vulnerability assessment – risk analysis 

Compared with the concept of conditional vulnerability, risk analysis puts more emphasis on 

what could happen in the future. Literature usually associates risk with the answers to the 

following questions: what can go wrong?, what is the probability of that occurring?, and what 

are the consequences? (Kaplan & Garrick, 1981; Lemos, 2020; Rausand, 2013). A risk 

analysis is the application to provide the answer to these questions. In this section, the words 

of risk analysis are first introduced using an actual incident as an example (Section 2.2.5.1). 

The approaches of risk analysis adopted are then discussed(Section 2.2.5.2), and the 

association with vulnerability is also demonstrated (Section 2.2.5.3). 

2.2.5.1 The words of risk analysis: an example 

To clearly understand the process of risk analysis, the words used in this context should be 

first defined. A railway accident scenario of a signal passed at stop and near miss at 

Deansgate-Castlefield tram stop in Manchester (RAIB, 2020) is used to define each term in 

risk analysis. Definitions in the following contents are revised from the work of Rausand 

(2013). 

This incident is summarised by RAIB (2020) as the following description: 

“At around 17:19 hrs on 17 May 2019, a tram passed through the centre platform of 

Deansgate-Castlefield tram stop on the Manchester Metrolink system, without making its 



37 
 

scheduled stop. The tram exited the platform at around 9 mph (14 km/h) and then passed a 

stop signal. This placed it in the path of a second tram, which was approaching a junction as 

part of a signalled movement. The driver of the second tram saw the first tram approaching 

and was able to stop in time to avoid a collision.” (RAIB, 2020) 

First, many events are mentioned in the report. An event is generally considered as the 

component which occurs in a particular place during a particular interval of time in a sequence. 

For instance, “a tram passed through”, “tram stop on” and “without making its scheduled stop” 

can be defined as an event. Among all events in a railway accident scenario, an initial event 

refers to the beginning of the scenario, whereas an end event refers to the end of the scenario. 

In this case, “a tram passed through the centre platform of Deansgate-Castlefield” is the initial 

event, and “was able to stop in time” is the end event. Another popular word applied to 

describe an initial event is a hazardous event. However, every event which is suggested as 

the potential cause of subsequent events which might damage the system can be a 

hazardous event. For example, regardless of the initial event mentioned above in this case, 

“approaching a junction as part of a signalled movement” can also be referred to as a 

hazardous event. 

Second, to illustrate the accident scenario and the events more distinctly, the term “hazard” 

is commonly used to outline the source or condition resulting in harm per se or with a 

particular combination. A hazard can be property, interface, system, material or even 

procedure. It would damage nothing until out of control or triggered by another event. In this 

case, hazards can be “a tram”, “junction” or “the driver”. Regardless of hazards, enabling 

events and conditions are the events that enable hazards to become potentially harmful. In 

other words, the scenario can be put closer to the end event through the combination of 

enabling events and conditions and hazards. For example, “without making its scheduled 

stop” might be an enabling event. 
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However, only identifying hazards and enabling events and conditions is not enough to gain 

insight into an accident. Hence, active failures and latent conditions are commonly analysed 

in previous studies (Baysari et al., 2008; Madigan et al., 2016; Morais et al., 2020; Wiegmann 

& Shappell, 2017; Zhou & Lei, 2018). Active failures refer to the event(s) which trigger an 

unplanned event, and latent conditions refer to the hazardous components which have been 

existing but not yet contributed to an accident. In this example, the active failure could be the 

unawareness of the driver, and the latent conditions might be the poor design of the signalling 

system (which could have stopped the first tram automatically). 

Third, even though there is no actual collision in this case, it could have happened due to the 

unusual action of the first tram. Therefore, such an incident is called a near miss, which 

means the event sequence could have developed until it ends with an accident, but it did not. 

In terms of incident, the literature concludes there are two meanings: the first one is an 

alternative word to near miss; another one is events which occurred in the past. In contrast, 

an accident means the sequence of unwanted events really results in damage to the tangible 

asset. For instance, if the second driver did not see the first tram and crashed into it, the 

outcome might be derailment, injury or even fatality, turning this event from incident or near 

miss into an accident. “Consequence probability” has also been proposed to refer to the 

probability of the near miss turning into an accident from a statistical point of view (An et al., 

2011). 

Last, the risk analysis would consider the consequence of an incident. Each hazardous event 

will result in a series of potential consequences associated with their probabilities. The effects 

of consequences could be fatality, injury and damage of property. Some studies even 

consider other long-term impacts, such as environment (Jones, 2001), society (Dreyer et al., 

2010) and economic (Rosoff & von Winterfeldt, 2007). Generally, the severity is used to 

describe the seriousness of the consequences regardless of their measurements. In this case, 
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if the collision really happens and results in derailment and injury, then “derailment” and “injury” 

are the sequences. On the other hand, the cost of repairing, healing and recovering the 

system is the severity of the consequence. 

The words used in risk analysis example discussed above are summarised in Table 2-3.
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Table 2-3: Summary of words used in risk analysis as applied to RAIB (2020), with definitions revised from Rausand (2013) 

Terms Definitions Examples 

An accident 

scenario  

A sequence of events beginning with initial event and 

ending up with undesired consequence 

signal passed at stop and near miss, Deansgate-

Castlefield tram stop, Manchester 

Event The component which occurs in a particular place during 

the particular interval of time in a sequence 

“a tram passed through…”, “tram stop on…” 

Initial event The beginning of the accident scenario “a tram passed through the centre platform of 

Deansgate-Castlefield” 

End event The end of the accident scenario “…was able to stop in time” 

Hazardous 

event 

Every event which is suggested as the potential cause of 

events 

“…approaching a junction as part of a signalled 

movement” 

Hazard The source or condition which can result in harm per se or 

with certain combinations 

Property, interface, system, material or procedure 

Enabling 

events and 

conditions 

Event that enables hazards to become potentially harmful “without making its scheduled stop” 

Active 

Failures 

Event(s) which triggers unplanned event The unawareness of the driver 

Latent 

Conditions 

The hazardous components which have been existing but 

not yet contributed to an accident 

Poor design of signalling system 

Accidents The sequence of unwanted events really results in damage 

to tangible assets 

If the second tram really crashes into the other 

tram 
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Table 2-3: Summary of words used in risk analysis as applied to RAIB (2020), with definitions revised from Rausand (2013) 

(continued) 

Terms Definitions Examples 

Incidents 1. The same definition as “near miss” 

2. Events which occurred in the past 

“…was able to stop in time to avoid a collision” 

Near miss The event sequence can have developed until it ends with 

an accident, but it does not 

See example of “incidents” 

Consequence 

probability 

The probability of the near miss turning into an accident The incident has 80% chance to become a 

collision  

Consequence The damage made by a hazardous event Derailment and injury 

Severity The seriousness of the consequences regardless of their 

measurements 

Cost of derailment and injury 
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2.2.5.2 Methods for risk analysis 

Researchers in risk analysis have devoted much work to mitigate the impact of accidents. 

One popular approach is to reveal the causes of previous accidents in the case they repeat 

themselves, also known as sequential accident models (Rausand, 2013). Hence, many 

models have been proposed for the purpose of understanding the causality of accidents. One 

of the first models in the risk analysis field was Heinrich’s domino theory (Heinrich, 1941), 

which argues that an accident consists of a series of events and a linear one-to-one 

progression would eventually lead to an unexpected result (Kim & Yoon, 2013; Rausand, 

2013). Subsequently, Heinrich’s domino was revised by Bird and Germain (1986) and 

Rasmussen and Svedung (2000) and some critical components have been added such as 

the concept of property loss (Bird & Germain, 1986) and hazardous environment (Rasmussen 

& Svedung, 2000).  

A considerable number of requests have been made to construct the sequential model in a 

system-based way (Reason, 1990, 2000; Rosoff & von Winterfeldt, 2007), leading to many 

accident analysis models. Of these models, it has been widely agreed that Reason’s Swiss 

cheese model has been very influential (Kim & Yoon, 2013; Zhou & Lei, 2018). The Swiss 

cheese model proposes that an accident is triggered by the combination of a series of active 

failures and specific latent conditions (Reason, 1990). Reason (1990) described the barriers 

as the cheese slices, and the active failure or latent condition as the hole in a slice. Once all 

barriers are penetrated at the same time (holes), the unexpected accident would happen 

(Reason, 1990). This model first breaks down the isolated event into active factors and latent 

conditions, which allows decision-makers to learn from previous accidents and control risk by 

identifying hazardous conditions beforehand.  

Nowadays, the complexity of railway systems has increased dramatically due to the 

development of technology. Thus, several complex models have been designed to explore 
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accidents from different levels and perspectives including man–technology–organisation 

(MTO) analysis for analysing the importance of humans, technology and organisation within 

an accident (Sklet, 2002), the management oversight and risk tree (MORT) approach for 

analysing an accident in a deductive way (Johnson, 1973), and the software–hardware–

environment–liveware (SHELL) model for clarifying the relationship between the environment, 

infrastructure and human factors (Wiegmann & Shappell, 2017).  

Despite many critical factors that have been identified in the literature, such as human error 

(Baysari et al., 2008; Morais et al., 2020; Wiegmann & Shappell, 2017), organisational failure 

(Shappell & Wiegmann, 2000), infrastructure failure (Little, 2002; Restrepo et al., 2009) and 

environment hazards (Dawson et al., 2016; Hong et al., 2015), only limited studies have 

concentrated on the role interface plays in an accident. It has been proven that interface can 

significantly influence the process safety management system (Kelly & Berger, 2006), 

regardless of the physical or organisational interface. For physical interface, the importance 

of the people, property and protection interfaces of urban underground railway infrastructure 

and its environment at different levels of consideration has been revealed (Darroch et al., 

2016, 2018). For organisational interfaces, the issue of organisation interface management 

in the context of a construction project (Li & Guo, 2011; Parraguez et al., 2016) or large project, 

such as projects in the petroleum industry (Milch &Laumann, 2018, 2019; Ventroux et al., 

2017), have been widely discussed. Additionally, there is a small group of studies that 

aggregate empirical studies and build theory (Jiang & Kong, 2013; Johnsen et al., 2006). 

Existing studies on organisation interface management and suggested best practice for 

improving safety at cultural interfaces proposed by Johnsen et al. (2006) are shown in Table 

2-4 and Table 2-5 respectively. 
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Among all studies relating to interface management, only a few of them see the topic of 

organisational interfaces from the perspective of risk management. Although some studies 

have tried to manage the risk raised by the failure of interfaces within the organisation or 

between organisation and environment (Cedergren, 2013; Pires & Mosleh, 2011), the 

causality of the interface failure has never been clearly explored.  
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Table 2-4: Literature on organisation interface management 

Object Data resource Methodology Result Resource 

Dealing with urban space issues from 

both engineering and legal 

perspectives 

Interviews and 

primary and 

secondary 

sources 

A case study – 

Glasgow subway 

A conceptual framework for describing 

three principal interfaces identified as 

presence, property and protection. 

(Darroch et 

al., 2016) 

Exploring interface between 

underground urban transport 

infrastructure and its environment and 

how they could and should be 

managed effectively 

London 

Underground 

Ltd. Plan 

A case study – A 

building over the 

metropolitan line 

north of Farringdon 

station 

Understanding the presence, property, 

and protection interfaces of urban 

underground infrastructure and its 

environment at different levels of 

consideration. 

(Darroch et 

al., 2018) 

Proposing a process-based approach 

for interface management of mega 

capital projects 

N/A Interface 

management 

Steps for building Interface 

Management System have been 

developed. 

(Shokri et 

al., 2012) 

Identifying the critical “interfaces” 

between the many participants in a 

process safety management system 

N/A Interface 

management 

Basic steps to analyse critical interfaces 

and implement measures to manage 

them have been developed. 

(Kelly & 

Berger, 

2006) 

Construct the comprehensive 

evaluation index system of 

organisation interface management of 

construction project 

Experts 

consultation 

AHP framework Developing an AHP framework which 

contains 25 quantification evaluation 

indexes. 

(Li & Guo, 

2011) 
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Table 2-4: Literature on organisation interface management (continued) 

Object Data resource Methodology Result Resource 

Propose a new approach that 

characterises process interfaces 

as organisation networks 

A biomass power 

plant project 

Clustering 

analysis 

Revealing a relationship between the 

structure and composition of the process 

interfaces and reported interface problems. 

(Parraguez et 

al., 2016) 

Gain better understanding on 

interface management theory and 

synergetic theory 

Literature review Proposing an operation Model of 

Collaborative Management of Organisation 

Interface of Large-scale Projects. 

(Jiang & 

Kong, 2013) 

Propose a new approach to 

improve collaboration between 

interdependent actors (oil and gas 

projects) 

Pazflor project Actors/ Design 

Structure 

Matrix 

Identifying the vulnerability of the 

collaboration between actors and the 

detection of complex phenomena. 

(Ventroux et 

al., 2017) 

Revealing challenges related to 

implementation of 

recommendations from accident 

investigations 

Swedish railway 

sector 

Interview/case 

study 

Two factors are found: 

1.  A trade-off between being insider and 

outsider to the industry. 

2.  A trade-off between micro-level and 

macro-level factors. 

(Cedergren, 

2013) 

Exploring how interorganisational 

complexity is managed on a 

petroleum-producing installation 

Norwegian 

petroleum 

industry 

Semi-

structured 

interviews 

Interorganisational challenges are identified: 

1.  Coordinating work processes among 

companies. 

2.  Variations in experience among sharp-

end workers from sub-contractor 

companies. 

(Milch & 

Laumann, 

2018) 
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Table 2-4: Literature on organisation interface management (continued) 

Object Data resource Methodology Result Resource 

Improving safety at cultural 

interfaces 

International 

Union of 

Railways (UIC) 

Questionnaires/ 

exploration of 

scenarios/ 

STEP diagram 

See Table 2-5. Suggested best practice for 

improving safety at cultural interfaces proposed 

by Johnsen et al. (2006) 

(Johnsen et 

al., 2006) 

Organisational interface 

failures: A historical 

perspective and risk analysis 

framework  

N/A N/A Three failure categories in terms of interface: 

1. Communication interfaces 

2. Coordination interfaces 

3. Collaboration interfaces 

(Pires & 

Mosleh, 

2011) 

Investigating petroleum 

incidents considering the 

interfaces between companies 

22 reports from 

Norwegian 

Continental 

Shelf 

Braun and 

Clarke's version 

of thematic 

analysis 

Four themes were identified: 

1.  Ambiguities in roles and responsibilities 

between personnel from different companies. 

2.  Inadequate processes to ensure sufficient 

competence across interfaces. 

3.  Inadequate quality control routines across 

organisational interfaces. 

4.  Communication breakdowns between 

companies. 

(Milch & 

Laumann, 

2019) 
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Table 2-5: Suggested best practice for improving safety at cultural interfaces proposed by 

Johnsen et al. (2006) 

Key elements Definition / Example 

No tolerance of “Grey areas’’ of 

responsibility. 

To have clarity in task definitions and 

responsibilities across interfaces. 

Obligation to report any condition that could 

imply a risk for other companies. 

To share databases regarding safety events 

and the resulting recommendations among 

all parties. 

The use of protocols or formalised 

communication templates. 

To reduce difficulties in understanding 

through pre-determined protocols and 

forms. 

Harmonisation of procedures by project 

teams across organisational boundaries. 

Groups should meet face-to-face, to 

establish standard procedures and create 

confidence and common understanding. 

Common rules and procedures. To decide on one set of rules and change 

this as little as possible. 

Intensive standardised training for 

operators, focusing on communication and 

handling of deviations. 

To establish standard mental models and 

understanding that can be shared among 

the operators. 

A similar model for identifying and 

managing risks and the resources to 

control risks. 

To systematically address most difficult 

issues in the conceptualisation of risk 

management. 

Sharing experience To share experiences to provide an 

opportunity to learn from each other. 

2.2.5.3 Risk analysis in the context of the railway industry 

Risk analysis in the context of the railway industry usually concentrates on either the role 

latent conditions play in an accident (Elms, 2001; Leveson, 2004; Madigan et al., 2016), or 

how an accident occurs in terms of active failure (Baysari et al., 2008; Elms, 2001; Kim & 

Yoon, 2013; Zhou & Lei, 2018). The aim of the former is to focus on how to build a model to 

explore the importance of latent factors in an accident, whereas the latter aims to emphasise 

the sequential accident model, which can help to integrate knowledge from historical 

incidents and gain an understanding on how to prevent accidents in the future. 
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For the model which emphasises latent factors, the human factors analysis and classification 

system (HFACS) is widely applied in this context (Baysari et al., 2008; Raslear, 2006; Yu et 

al., 2018; Zhou & Lei, 2018). HFACS is a well-known model derived from Reason’s Swiss 

cheese model and man-made disasters theory (Turner & Pidgeon, 1997). HFACS was first 

introduced to analyse aviation accidents, which only highlights specific active failures and 

latent conditions (Shappell &Wiegmann, 2000). However, due to the similarity between the 

aviation and railway industries in terms of causes of accidents, HFACS has also been 

popularly applied in railway safety (Baysari et al., 2008; Kim & Yoon, 2013; Zhou & Lei, 2018). 

Another popular model is systems theoretic accident model and process (STAMP), which 

argues that the cause of an accident is not events, but a lack of constraints. The risk can be 

well controlled once the chain of constraints in an organisation is appropriately managed 

(Leveson, 2004). STAMP is popularly used in case studies, such as the China–Jiaoji railway 

accident (Ouyang et al., 2010), the China–Yongwen railway accident (Song et al., 2012) and 

high-speed railway accidents (Liu et al., 2015). 

On the other hand, studies in the field of sequential accident models either apply frameworks 

built on the basis of complicated models (Baysari et al., 2008; Madigan et al., 2016; Zhou & 

Lei, 2018), or purely conduct graphical models to demonstrate the causality between factors, 

such as Bayesian networks (Castillo et al., 2016; Kim & Yoon, 2013) and fault tree analysis 

(Huang, Liu, et al., 2020; P. Liu et al., 2015). However, due to the difficulty of acquiring 

statistical data, most studies in this field derive the model based on only one or a few cases, 

which has been criticised for lack of validity due to insufficient data (Kim & Yoon, 2013; Zhou 

& Lei, 2018). Despite these criticisms, proponents stress the importance of gaining the 

probability of each event within an accident by enlarging the scale of the database and 

building the model by highlighting the critical elements in each accident manually. For 

instance, Kim and Yoon (2013) conducted 80 rail accident investigation reports from the UK 
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and extended the HFACS model shown as Figure 2-3; and Zhou and Lei (2018) analysed 

407 railway accidents or incidents in China. Existing studies in this context are integrated in 

Table 2-6. 

Although it seems that previous studies have successfully analysed accident reports 

manually, which is large enough for further statistical analysis, such a labour-intensive 

analysis method has limitations. For instance, for a cross-country analysis, the volume of 

data invlovded would be extremely huge, and the cost associated with retrieving and 

processing such data would be unaffordable. Additionally, to propose and test a model with 

new variables they need to be abstracted from reports, all the data needs to be read again. 

The reason for the difficulty of obtaining data in an efficient way may be due to a lack of 

knowledge on how to apply state-of-the-art technology to help acquire data, which in turn, 

can result in a number of gaps in the existing literature. This is explored in this thesis and 

details of the technology used are introduced in the following chapter. 

 
Figure 2-3: The framework and occurrence rate of incident components proposed by Kim 

and Yoon (2013) 
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Table 2-6: Existing studies in the context of railway risk analysis 

Object Data resource Methodology Result Source 

Understand the 

relationship between 

active and latent 

factors 

78 incident reports 

5 types of incident 

(UK) 

Expert judgment (raters) 

HFACS 

Highlight latent factors at 

the supervisory and 

organisational levels. 

Suggest a new factor – 

operational environment. 

(Madigan et 

al., 2016) 

Identifying human 

errors associated with 

rail accidents/incidents 

in Australia 

40 rail safety investigation reports 

(Australian Transport Safety 

Bureau, Office of Transport 

Safety Investigations, Victorian 

Department of Infrastructure, 

Queensland Transport) 

Expert judgment (raters) 

HFACS 

Nearly half the incidents 

resulted from an 

equipment failure. 

Most of these were the 

product of inadequate 

maintenance or monitoring 

programs. 

(Baysari et al., 

2008) 

Summarising the 

nature of the rail 

safety management 

problems 

Dimension of rail safety problems 

Focus on management, be distributed, be differentiable, be heavily dependent on human 

factors, have both internal and external consequences, be reasonably simple, be transparent, 

be subject to external scrutiny 

(Elms, 2001) 

Presenting a new 

accident model based 

on systems theory 

concepts 

Model is derived from control 

theory 

The cause of an accident is not events, but a lack of 

constraints. Systems Theoretic Accident Model and 

Process (STAMP) is built based on control loops and 

process models. 

(Leveson, 

2004) 
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Table 2-6: Existing studies in the context of railway risk analysis 

Object Data resource Methodology Result Source 

Propose an accident 

causation model for 

the railway industry 

80 accident reports from RAIB 

(UK) 

Manually reconstruct event 

sequences and calculate the 

occurrence rate 

Shown in Figure 2-3 (Kim & Yoon, 

2013) 

Exploring paths 

between categories in 

HFACS 

407 railway accident/incident 

reports in China 

Expert judgment (raters) 

HFACS 

Using statistical analysis to 

determine significant 

associations in HFACS 

(Zhou & Lei, 

2018) 
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2.3 Analysis of railway accident reports 

According to the literature reviewed in previous sections, the outcome of each incident can 

be easily estimated through numerical analysis, such as optimisation, simulation and 

topological approaches. However, the probability of each component in an accident is still not 

fully understood. Although literature has tried to apply probability theory to address this issue, 

it suffers from the lack of analysable statistical data. Conversely, there are sufficient data 

items in textual format. In the context of railway safety in practice, each incident has been 

recorded in detail by the independent investigator from its jurisdiction. The documentation 

and the writing style are different among different jurisdictions. For instance, the framework 

of railway accident reports would be different between investigators from the US and the UK. 

Additionally, the English language used in different jurisdictions is not quite the same, which 

increases the difficulty of doing textual analysis. To address the issues abovementioned, this 

section introduces the characteristics of railway accident reports by independent investigators 

from various jurisdictions. The issue of doing textual analysis and the linguistic problem is 

discussed in Chapter 3. 

2.3.1 The jurisdictions of the railway industry 

Once a railway accident occurs the relevant accident investigation body begins to investigate. 

The aims of the investigator will vary according to jurisdiction and are foundationally different 

and can be broken down into two categories based on their purpose: the first one is to conduct 

the investigation to improve railway safety and to prevent further accidents; the other one is 

to apportion blame and liability. In this section, the jurisdictions of railway accident 

investigators in the United Kingdom, the United States, Australia, and Canada are introduced. 

These four countries all have a sound documentation system of incident reporting and several 

railway accident investigation organisations, which are worth further research. 
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2.3.1.1 United Kingdom 

There are several railway accident investigators in the United Kingdom with different 

jurisdictions, including the Rail Accident Investigation Branch (RAIB), the Crown Office and 

Procurator Fiscal Service (COPFS) in Scotland, the police and other safety authorities.  

The investigation of railway accidents is conducted by either the local railway safety regulator 

or the railway company. After the Ladbroke Grove rail crash in October 1999, a requirement 

for an independent rail accident investigation unit was raised by the public. Subsequently, 

RAIB was established to independently investigate accidents causing death, serious injuries 

or extensive damage. Additionally, any non-serious railway accident or incident is also eligible 

for RAIB to conduct an investigation (RAIB, 2019). The establishment of RAIB has made a 

clear distinction between the prosecution-oriented and safety development-oriented 

investigator. RAIB offers the technical investigation into the causality and consequence of an 

accident (RAIB, 2005). The outcomes of the RAIB investigation usually turn into the critical 

input of prosecuting bodies’ investigations or the basis of further regulation (RAIB, 2005). 

Additionally, the authority whom recommendations are addressed to is required to provide 

sufficient action on the recommendations made by RAIB.  

On the other hand, the purpose of other investigators like Scotland’s COPFS, the police and 

other safety authorities is neither to apportion blame and liability or bring about prosecution 

if there has been a breach of the law. Most of them are prosecuting bodes, which might result 

in a report overemphasising the allocation of responsibility. For instance, procurators fiscal 

and the police in Scotland conduct criminal and death investigations as appropriate, which 

usually turn into a criminal prosecution and a fatal accident report. 
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2.3.1.2 United States 

The National Transportation Safety Board (NTSB) has independent jurisdiction over 

investigating railway accidents at the national level. Although NTSB mainly emphasises the 

investigations of civil aviation accidents, it is also in charge of major accidents in other modes 

of transportation (NTSB, 2016). As with the independent railway accident investigators in 

other countries, NTSB is not responsible for any regulatory agency. The only purpose of 

NTSB is to investigate the railway accident solely, and offer appropriate recommendations, 

which could help railway operators or regulators to improve safety. 

However, unlike the clear jurisdiction over the investigation of civil aviation accidents in the 

United States (NTSB, 2014a), the responsibility of NTSB in a railway context is ambiguous. 

NTSB claims that it would investigate “Any accident that occurs in connection with the 

transportation of people or property that, in the judgment of the NTSB, is catastrophic, 

involves problems of a recurring nature or would otherwise carry out the intent of its 

authorizing statutes” (Lauby, 2016; NTSB, 2016), and NTSB also proposes to have primary 

jurisdiction over railway accidents or incidents resulting in death or severe property damage 

(NTSB, 2016). In other words, accidents which NTSB refuses to investigate would be taken 

over by either the local safety authorities, or the United States Federal Railroad 

Administration (FRA), which is charged with promulgating, developing and enforcing rail 

safety regulations (FRA, 2010).  

In some cases, multiple jurisdictions would conduct their own investigation into the same 

incident separately. Therefore, the way each investigator analyses the accident and the 

conclusion made by different investigators would depend on their jurisdictions. For instance, 

there are two accident investigation reports for the CSX freight transportation derailment and 

fire incident in August 2017, conducted by NTSB (NTSB, 2020) and FRA (FRA, 2020). 

However, this case covers the issue of not only derailment, but also weather alerts and 
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hazardous materials. In terms of the conclusions, FRA simply suggested that defective 

equipment did not lead to the cause or severity of the accident (FRA, 2020), whereas NTSB 

claimed it is still undertaking the investigation and will make recommendations to FRA, the 

Pipeline and Hazardous Materials Safety Administration, CSX Transportation, the 

Brotherhood of Locomotive Engineers and Trainmen, the International Association of Sheet 

Metal, Air, Rail and Transportation Workers, and Trinity Industries (NTSB, 2020).   

2.3.1.3 Australia 

The investigation of railway accidents is selective, depending on the interests of jurisdictions. 

The Australian Transport Safety Bureau (ATSB) plays the role of improving railway safety by 

investigating railway accidents independently at a national level and formulating appropriate 

recommendations. As with other national railway accident investigators in other countries 

introduced above, the ATSB aims to conduct “no-blame” investigations according to a breach 

of the law (ATSB, 2009; Transport Safety Investigation Act 2003 (Cwlth), 2016). Instead, 

ATSB concentrates on how to enrich the understanding of accidents and safety management 

and leaves apportioning blame or liability to other safety authorities.  

However, ATSB does not investigate all incidents occurring in railway systems. Only 

accidents which can provide further insight are considered to be investigated. For instance, 

if one accident has been identified as a repetitive event in nature, it would not be investigated. 

Another case is that once early evidence has indicated the accident is caused by a criminal 

act, then ATSB would leave the jurisdiction over the investigation to the police (ATSB, 2009). 

Despite ATSB having no legislative power to make recommendations into compulsory 

implementations, ATSB is still eligible to require a detailed response toward the 

implementation of recommendations and to disclose to the public (ATSB, 2009).  
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In addition, there are other safety authorities in Australia which conduct railway accident 

investigations, such as state and territory rail regulators, policy makers, and railway operators. 

However, most of them investigate to bring about a prosecution intentionally, which means 

their reports mainly discuss the apportionment of liability. 

2.3.1.4 Canada 

The Transportation Safety Board of Canada (TSB), established in 1990, is the agency of the 

Government of Canada with full jurisdiction over investigating aviation, rail, marine and 

pipeline transportation. According to TSB, except for the Department of National Défense and 

the Royal Canadian Mounted Police, it is the only authority that has jurisdiction over 

conducting transportation accident investigation to find the causes and contributing factors of 

the accident (TSB, 2014a). This indicates TSB can be considered as the only organisation 

which is able to enhance transportation safety by investigating accidents. The reporting 

system and documentation are well-designed, and the TSB reports are suitable for 

conducting further analysis, such as text analysis. The recommendations TSB makes are not 

about blame. 

2.3.1.5 Other jurisdictions 

Apart from the jurisdictions mentioned above, there are several railway accident investigators 

in other countries. Some of them not only have jurisdiction over investigating transportation 

accidents but have also been authorised to conduct investigations without considering 

allocating liability. For instance, the Dutch Safety Board (DSB) in the Netherlands, formed in 

2005, has jurisdiction over the various transport sectors and in the fields of defence, industry 

and trade, healthcare and more; the Taiwan Transportation Safety Board (TTSB) in Taiwan, 

formed in 1998, is an independent government agency which is responsible for investigating 

major transportation accidents in aviation, railways, waterways and highways in Taiwan; the 
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Aviation and Railway Accident Investigation Board (ARAIB) in South Korea is independently 

in charge of investigating aviation and railway accidents; and the Japan Transport Safety 

Board (JTSB), formed in 2008, has full authority to investigate transportation accidents and 

increase the safety of transportation. 

Table 2-7 compares jurisdictions and their objectives from different countries. 

Table 2-7: Investigating jurisdictions and their objectives from four countries 

Country Jurisdiction Objectives 

United Kingdom 

RAIB 
Improving railway safety and preventing 

further accidents 

COPFS, Scotland Apportioning blame and liability, bringing 

about a prosecution if there has been a 

breach of the law 

Other safety 

authorities 

United States 

NTSB 

Improving railway safety and preventing 

further accidents, especially for those with 

death or severe property damage 

FRA Mixed objective with the power of regulation 

Other safety 

authorities 

Apportioning blame and liability, bringing 

about a prosecution if there has been a 

breach of the law 

Australia 

ATSB 
Improving railway safety and preventing 

further accidents 

Other safety 

authorities 

Apportioning blame and liability, bringing 

about a prosecution if there has been a 

breach of the law 

Canada 

TSB 
Improving railway safety and preventing 

further accidents 

Other safety 

authorities 

Apportioning blame and liability, bringing 

about a prosecution if there has been a 

breach of the law 

2.3.2 Principal content of railway accident reports made by jurisdictions 

The writing style of railway accident reports from different investigators varies, and is based 

on the act made in its jurisdiction. Almost all investigators provide not only a preliminary report 
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when the very first findings are available, but also a finalised report once the whole 

investigation is done. This section introduces the content of the railway accident report from 

the investigators. To reduce the complexity of the analysis, only finalised reports are 

considered. 

2.3.2.1 RAIB, UK 

RAIB conducts an investigation in accordance with the Railways (Accident Investigation and 

Reporting) Regulations 2005 (RAIB, 2005). The act also regulates the principal content of the 

report. The report first provides a summary of the investigation, which briefly outlines the 

descriptive facts such as the occurrence, synopsis and the consequences. The direct 

contributing factors, underlying causes, and main recommendations must also be 

summarised. The summary of the accident is explicitly disclosed, including the involved trains, 

people, organisations and facilities. Immediate facts of the occurrence are also revealed. 

Then, records of investigations and inquiries are provided as the evidence, including rules 

and regulations, man–machine–organisation interface, and the safety management system, 

etc. Finally, the analysis and conclusions are made, and recommendations are stated. 

2.3.2.2 NTSB, US 

The conduct of rail accident reports by the NTSB is under the Guidance on Style for NTSB 

Written Products (NTSB, 2014b). The role of documentation NTSB applies is not only 

accidents in the field of railways, but also other modes of transport, such as aviation, marine 

and pipeline transport. The body of a report is relatively rigorous compared with investigators 

in other jurisdictions, and has an executive summary, body of the report, factual information, 

analysis, conclusions and recommendations. The content under each heading is strictly 

regulated and the terminology must be consistent in the documentation. The contributing 

factors NTSB considers are comprehensive, including personnel information, train and 
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mechanical information, operational information, management information, meteorological 

information and medical and pathological information (for more details, see NTSB, 2014b). 

2.3.2.3 FRA, US 

Compared with the investigation conducted by the NTSB, the structure of railroad accident 

reports by the FRA is simple. The content only consists of a synopsis (which has the same 

content as the summary in other jurisdictions), general information, sketches, narrative, 

analysis and conclusion. Moreover, FRA conducts a “FRA factual railroad accident report”, 

which only aims to recognise the probable cause and contributing factors rather than give 

recommendations. Interestingly, the information FRA provides mainly contains active factors 

like human errors and infrastructure failure. The people and equipment involved in an incident 

are detailed. On the contrary, latent conditions, such as safety culture or organisational 

management, are not mentioned in the reports. 

2.3.2.4 ATSB, Australia 

ATSB produces investigation and accident reports based on Railway Accident Investigation 

Guidelines for Railway Network Owners, Railway Operators, and Emergency Services 

Personnel (ATSB, 2009), which incorporates the Transport Safety Investigation Act 2003. The 

writing style of ATSB is similar to RAIB, and reports also contain a summary, the investigation, 

findings, conclusions and recommendations. Contributing factors are also revealed in the 

report, but only active factors are included. For instance, in the report of the derailment of 

grain train 8838N at Narwonah, New South Wales in October 2017, ATSB only concluded 

that poor track condition resulted in the derailment, and maintenance of defects in this section 

of track cannot successfully prevent the reoccurrence of defects (ATSB, 2020). However, the 

latent conditions behind this fact, such as the failure of organisational communication, are not 

revealed by ATSB, making the railway system unable to prevent such an accident efficiently.  
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Despite the lack of understanding on latent conditions, ATSB has comprehensive 

documentation system on the recommendations it makes. Once ATSB makes 

recommendations in an incident, they are saved in an online repository called “Rail safety 

issues and actions,” which contains all the recommendations from previous railway accident 

investigations conducted by ATSB previously. ATSB also provides audio of its reports on its 

website, so details of the accident reports can also be “listened” to. 

2.3.2.5 TSB, Canada 

Under the Canadian Transportation Accident Investigation and Safety Board Act (S.C. 1989, 

c. 3), the reports conducted by TSB do not have a specific writing style. Instead, the 

framework of accident report TSB uses depends on the scale of the accident. For instance, 

the difference of scale between an incident that destroyed 40 buildings and 53 vehicles (TSB, 

2014b) and an incident of Main-track train derailment (TSB, 2019) is significant. On the other 

hand, because of the lack of regulated writing style, the content of reports also varies 

depending on the team conducting the investigation.  

However, TSB has two remarkable elements in its documentation. First, TSB tracks whether 

the recommendations it has made are satisfied or not, and all information is put on the “Rail 

transportation safety recommendations” website (see TSB, 1990). TSB monitors the 

execution of each recommendation until it meets the criteria of Satisfactory. Second, TSB 

occasionally lists in its reports previous cases that are similar to the incident.   

Table 2-8 summarises the contents of accident reports from different investigators.  
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Table 2-8: Summary of contents of accident reports from different investigators 

 RAIB NTSB FRA ATSB TSB 

Summary √ √ √ √ √ 

Narrative √ √ √ √ √ 

Detail/Result √ √ √ √ √ 

Causality analysis √ √ √ √ √ 

Sketches ∆ ∆ √ ∆ ∆ 

Similar cases (if available) √ X X X √ 

Recommendations √ √ X √ √ 

Near miss √ X X ∆ √ 

International comparisons X X X X X 

Note: √: always, ∆: limited, X: never. 

2.3.3 Revealed and unrevealed factors in literature about the causes of railway accidents  

Most studies apply a framework derived from other contexts to do an empirical analysis in 

the field of the railway industry. Hence, some prevalent factors which have been identified in 

other contexts have been widely accepted in the railway field, including human factors (Kim 

& Yoon, 2013; Zhou & Lei, 2018), technical or design failure (Kinnersley & Roelen, 2007; Yu 

et al., 2018), organisational issues (Clarke, 1998) and environmental impact (Hong et al., 

2015). For human factors, a considerable number of studies have identified several critical 

factors and constructed many comprehensive models in terms of blame (Whittingham, 2004), 

reliability (DeFelice & Petrillo, 2011), and inappropriate performance (Kyriakidis et al., 2015). 

The human error has been considered to be a significant cause of most accidents within 

human factors (Woods & Cook, 2003). Recent research focuses on the interpretation of 

human errors from the perspective of Ergonomics and Human Factors (EHF). It concludes 

that there has been a shift from human performance to systems ergonomics and suggests 

the promotion of proactive system design incorporating human behaviours and reactions 

(Carayon et al., 2013; Read et al., 2021). 
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For technical or design failure, these factors are seldom discussed independently (Fan et al., 

2015), but literature usually explores technical or design failure factors through exhaustive 

analysis (Kim & Yoon, 2013). Historically, the difficulty of classifying the content of railway 

accidents and gaining analysable statistical data means that the literature seldom conducts 

a comparison among all variables, given that the number of railway accident reports is 

sufficient to offer more insights. Nevertheless, the textual data in accident reports previously 

needed to be analysed manually, which limited the number of attributes considered in the 

literature. 

Organisational issues are usually considered as part of human error, especially since the 

HFACS model deems organisational influences as one factor which would affect human 

behaviours (Baysari et al., 2008; Madigan et al., 2016; Zhou & Lei, 2018). Last, environmental 

factors have usually been considered as an independent research topic, and case study is 

popularly used to gain an understanding of different environmental impacts, such as floods 

(Hong et al., 2015) and sea-level rise (Dawson et al., 2016). 

Regardless of many studies which have discovered elements which would trigger a railway 

accident individually, none of them have looked at railway accidents from the perspective of 

interface failure. Several safety-oriented industries have considered this issue as a critical 

factor, such as petroleum and aviation (see Table 2-4). However, in the railway safety 

literature reviewed, this issue has not been highlighted. Without an understanding of 

interfaces failure, decision-makers could be left in a void in terms of analysing railway 

accident reports because they only take individual factors into account instead of considering 

the elements caused by the interface of two or more factors. 

Last, the recommendations made by each jurisdiction are seldom discussed in a railway 

safety context. Literature mainly concentrates on the role the investigator plays in a railway 

accident. For instance, it has been revealed that investigators have difficulty in determining 
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the scope of recommendations and allocating responsibility for the tasks derived from 

recommendations (Cedergren, 2013). Additionally, previous studies have not only found that 

the reason an accident always repeats itself is the lack of systematically studying learning 

and understanding even though the same recommendations have been made every time 

after an accident (Drupsteen & Hasle, 2014; Wrigstad et al., 2014), but also emphasised the 

gap between the recommendations made by investigators or academia and implementation 

by industry (Brath, 2020; Underwood & Waterson, 2013).  

2.3.4 Current applications for safety recommendations in the railway industry 

Most railway bodies are jurisdiction-based industry, they are supervised by the railway 

authority in their jurisdictions. The rail investigation body is the branch of the railway authority, 

which aims to investigate accidents and make recommendations to enhance railway safety. 

The public body or authority to whom a recommendation is addressed in the jurisdiction must 

make appropriate reactions and provide the details of measures to secure implementation 

(RAIB, 2019). The reports and the status of the recommendations are openly published as 

well. Despite the increased awareness of the importance of how to efficiently implement 

recommendations, in the context of railway safety management can be seen to have ignored 

the issue of the efficiency of learning across jurisdictions due to several issues, such as 

language barriers and legal obligations. For instance, the recommendations by RAIB are not 

an official mandate for other regimes. Additionally, the lack of synchronisation in terms of 

accidents and recommendations among jurisdictions exposes the railway industry to risks. 

Such a knowledge gap increases the vulnerability of the railway industry and allows an 

accident more likely to re-occur. 

In contrast, several international industries, such as civil aviation and the nuclear energy 

industry, have recognised this issue and funded international organisations to make a series 

of regulations for operators in the industry to prevent serious accidents. For instance, the 
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International Civil Aviation Organisation (ICAO) has been authorised to maintain an 

administrative and expert bureaucracy to standardise air transport policy. Although the ICAO 

claims that it is not an international aviation regulator, the Chicago Convention on 

International Civil Aviation and other countries spontaneously follow the Articles and Annexes 

provided by ICAO to ensure the best safety performance (ICAO, 1944).  

Several international railway safety organisations, such as International Railway Safety 

Council (IRSC) and International Union of Railways (IUR), have members from many 

countries. IUR has even set up a standard of terminology and data, which is also known as 

the UIC leaflet. However, the power of these institutions is not significant because, unlike the 

aviation industry, the railway industry primarily follow regulations within its jurisdiction. 

Railway companies in each jurisdiction do not receive any punishment if they do not follow 

the guideline established by the international railway safety organisation. Hence, the 

connection between jurisdictions is poor, resulting in inefficient delivery of knowledge relating 

to railway safety, and the risk eventually emerges.  

In conclusion, the lack of awareness of learning across jurisdictions in the railway arguably 

results in poor understanding of railway safety management in terms of knowledge delivery. 

An in-depth understanding of estimating the efficiency of sharing railway accident knowledge 

may be crucial to improving overall railway safety around the world. In order to overcome the 

difficulty of sharing knowledge, some researchers have considered applying textual data 

(reports) directly to gain horizontal insights through the state-of-the-art technique of Natural 

Language Processing (NLP).  

2.3.5 Application of NLP in the context of railway safety 

The development of NLP allows researchers to identify insights from accidents and 

disseminate the information efficiently. NLP is a technique that enables a computer to analyse 
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textual data and generate a summary or horizontal conclusion through reading an enormous 

number of words in articles. The extracted information can be the input for further downstream 

analysis (more details are given in Chapter 3). NLP has been widely used in many contexts, 

such as finance (Xing et al., 2018; Yang et al., 2020; Yildirim et al., 2019), healthcare (Bayat 

et al., 2009; Khetan et al., 2020) and the chemical industry (Du et al., 2020; Luo et al., 2018; 

Zhang et al., 2016). 

The studies of accident causality analysis in literature are usually qualitative analysis or 

limited case study (Ouyang et al., 2010; Santos-Reyes & Beard, 2006; Santos-Reyes & 

Beard, 2009), and quantitative analysis of accident causality analysis requires labour-

intensive data setup (Kim & Yoon, 2013; Kyriakidis et al., 2015; Zhou & Lei, 2018). With the 

growing knowledge in the context of NLP, researchers turned to seek solutions from the field 

of computer science. In the early stage, several models were designed to classify accident 

reports into several categories, like human error, technology issues and organisation issues 

(Heidarysafa et al., 2019; Li et al., 2018; Syeda et al., 2017; Yu et al., 2018). The approaches 

of supervised and unsupervised learning have been applied on the document-level causal 

classification, and the conceptual model is demonstrated as Figure 2-4. Although dealing with 

the causality extraction problems from the document-level perspective is intuitive, actual rail 

accidents contain several dimensional failures instead of one single cause. Hence, such an 

approach would oversimplify the content of accident reports, and the natural causality 

between elements in a rail accident would not be revealed.  
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Figure 2-4: The concept of document-level causal classification 

To understand the complex causality demonstrated in the accident reports, researchers 

began to switch the scale of analysis from document level to sentence level. Several studies 

designed models to identify the characteristics of the sentences and to extract “causes” and 

“results/effects” from chosen sentences in rail accident reports (Hua et al., 2019; Li et al., 

2018). The conceptual framework of the models used is demonstrated in Figure 2-5. However, 

the performance of these models is limited. The main reason might be that actual accident 

reports contain a very complex structure of sentences, and important connections exist 

between sentences in the reports. If the model only considers causes and results rather than 

the connections between sentences, the causality still cannot be explained explicitly.  

 

Figure 2-5: The concept of sentence-level causality extraction 

Accident causality analysis studies in the context of the railway domain are still limited, and 

the result of the models designed in this context cannot fully provide insights into accidents. 

However, a small group of researchers in the context of chemistry have applied linguistic 

analysis in the model to analyse the causality of chemical accidents. Surprisingly, the result 

was improved significantly after several techniques of linguistic information extraction were 

considered (Du et al., 2020). In the context of information extraction, Semantic Role Labelling 
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(SRL) and Semantic Dependency Parsing (SDP) are the most powerful concepts to handle 

the causality within sentences. SRL and SDP are demonstrated in Figure 2-6 and Figure 2-7. 

SRL aims to assign labels to words or phrases in a sentence that indicate their semantic role 

in the sentence, such as that of an agent, goal or result, whereas SDP focuses on identifying 

semantic relationships between words in a sentence that form a graph. However, although 

these linguistic techniques have the potential to extract causality from accident reports in an 

efficient way, the connection between machine learning and linguistic analysis is still weak. 

Furthermore, the use of the output of such linguistic approaches is still unknown in terms of 

causality analysis, which might result in inappropriate understandings on the meaning of the 

original reports. The overview of the literature in the context of the railway industry through 

NLP applications is shown in Table 2-9. 

 

A0: causers or experiencers, A1: patient, C-A1: result, AM-ADV: adverbial of the patient, 

AM-LOC: location of the patient 

Figure 2-6: The concept of sentence-level causality extraction with linguistic analysis tool 

 

Figure 2-7: Demonstration of Semantic Dependency Parsing 

Some criticisms relating to the use of NLP have emerged and been discussed in the literature. 

Among these criticisms, the major challenge remains the data quality and annotation. Many 

studies suffer from the restricted scale of labelled and consistent data for training the NLP 
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model (Kim & Yoon, 2013; Kyriakidis et al., 2015; Zhou & Lei, 2018), resulting in limited 

insights and an inability to expand the scale of analysis. Another critical criticism is on the 

issue of data privacy and security (Worton, 2012). As railway safety data might contain 

sensitive information, legal and ethical obligations to protect the information from leaking to 

software providers must be prioritised to secure privacy. However, the abovementioned 

concerns could be addressed by leveraging unsupervised learning-based approaches to train 

the offline NLP model. Such an approach could avoid the heavy requirement of data 

annotation and restrict the data usage to individual devices rather than other servers. A more 

comprehensive method to secure data privacy is to follow the instructions designed by 

research ethics committees or praties, offering diverse perspectives of protecting data used. 
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Table 2-9: Overview of literature in the context of the railway industry through NLP applications 

Purpose Approach 
Data 

Result/ Performance Source 
Input Output 

Propose a taxonomy framework for railway 

accidents and a classification system 
Text mining 

Documents, n=392 

(Written in Chinese) 

Classification  

(6 clusters) 

No performance of the model is 

revealed in the original paper 

(Yu et al., 

2018) 

Classify the sentences in accident reports 

into two categories: accident description 

(AD) and causal analysis (CA) 

Deep learning 

(M-CNN model) 

Labelled sentences, 

n=1044(AD)/943(CA) 

(Written in Chinese) 

Classification 

(AD or CA) 
P*: 0.980, R*: 0.990, F1*: 0.985 

(Hua et al., 

2019) 
Identify and extract the cause and result 

events (i.e., given the sentence is: A results 

in B, the algorithm needs to identify A 

(cause) and B (result) respectively) 

Named Entities 

Recognition 

Labelled sentences  

N=943(CA) 

Classification 

(cause or 

result) 

Cause: P*: 0.819, R*: 0.834, F1*: 

0.826 

Result: P*: 0.815, R*: 0.859, F1*: 

0.812 

Propose a topic modelling approach and a 

classification model 
Unsupervised 

Learning NER 

Documents, n=298 

(Written in English) 

Classification 

(Factor of 

causes) 

No performance of the model is 

revealed in the original paper 

(Syeda et 

al., 2017) 

Extract entities from accident reports Named Entities 

Recognition 

Documents, n=1066 

(Written in Chinese) 
Classification 

Causes: P*: 0.7948, R*: 0.7339, F1*: 

0.7664 

(Li et al., 

2018) 

Cluster the cause of rail accidents Supervised 

Learning 

Documents, n=40164 

(Written in English) 

Classification (6 

clusters) 
F1: 0.71 

(Heidarysafa 

et al., 2019) 

Extracting entities from accident reports Supervised 

Learning 

Documents, n=120 

(Written in Chinese) 

Classification 

(12 clusters) 

No performance of the model is 

revealed in original paper 

(Wu et al., 

2020) 

Obtain evolution sequences of events in 

chemical accidents 

Supervised 

Learning 

Documents, n=5867 

(Written in English) 
Causality F1: 0.85 

(Du et al., 

2020) 

*P: Precision, R: Recall, F1: F1-score
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2.3.6 Application of the ontology in the context of railway safety 

Ontology is a branch of the knowledge management system, which aims to capture the 

domain knowledge of interests and support the interpretation of information by mapping the 

concepts logically. The railway safety domain has gained significant benefit from the 

application of ontologies. Due to the complexity of railway accident data, the literature widely 

uses the ontology approach to express the knowledge in the railway context for further 

analysis or decision-making (Cao et al., 2019; Debbech et al., 2020; Tutcher, 2015).  

To obtain a valid ontology for specific objectives, the purpose of the ontology needs to be 

defined carefully, and the methods applied should be designed in a rigorous way. All 

ontologies stem from the upper-level ontology consisting of the general concepts that are 

commonly used in given domains, which are allowed to be used and represent other 

knowledge domains in similar structures (Debbech et al., 2020). The upper-level ontologies 

can also be considered as the starting point for formulating the definitions. On the other hand, 

the depiction-level ontologies developed from the upper-level ontology are built to 

demonstrate the specific knowledge or property contained in the upper-level ontology. The 

knowledge map can be linked to the actual data to provide the practical insights in the railway 

safety context through the development of the upper-level and depiction-level ontology.  

Several ontologies are developed in the literature to represent the particular domain 

knowledge in the railway context, such as the lingual ontology for the purpose of extracting 

safety content from multi-lingual free-text safety incident reports (Hughes et al., 2019), the 

ontologies for supporting the capitalisation and exploitation of produced knowledge from 

accident records (Cao et al., 2019; Maalel et al., 2012b, 2012a), and for the purpose of a 

decision-making support system during the disruption (Wu et al., 2020). Other studies review 

the used ontologies to depict and aggregate the knowledge map (Hulin et al., 2016; Katsumi 
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& Fox, 2018; Tutcher, 2015). More studies applying the ontology in the railway context are 

shown in Table 2-10. 

However, most railway safety data is recorded through unstructured text with solid description 

but with solid description on the sequence of events and the insights. The challenge of 

integrating data from multiple, unrelated sources into a unique framework for panel analysis 

results in the difficulties of exploring the knowledge in the context of railway safety (Katsumi 

& Fox, 2018). Before the development of the NLP technique, researchers needed to manually 

read the reports and extract the components to build the further model for horizontal analysis 

(Baysari et al., 2008; Wullems et al., 2013). The domain of interested knowledge is 

constrained in specific concepts, such as human error or infrastructure failure. To overcome 

the difficulty, some studies have applied NLP to handle the textual data. For instance, 

Figueres-Esteban et al. (2016) designed an NLP model to map the structure of reports and 

use the records Close Call System to determine the risky factors based on the frequency of 

the terms. Another example is Cao et al. (2020), who built an NLP model to transform 

unstructured records into the components in the pre-designed ontology and identify the risk 

source level of records. 

Other issues of developing the ontology are the standardisation and the scalability. To 

enhance the reuse of ontologies, the Web Ontology Language (OWL) was established to 

specify the language and the formation used in building an ontology with the foundations in 

Description Logic (Baader et al., 2003). The axioms applied in Description Logic notation 

constrain the proposed taxonomy, which improves the readability and understandability of 

the designed ontology (Debbech et al., 2020). To discriminate the classes, properties and 

individuals in the ontology, the relationship is defined through notions of the subclass, 

conjunction, disjunction and negation, which allow us to categorise a particular object to a 

specific class based on the necessary and/or sufficient conditions (Katsumi & Fox, 2018). 
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Figure 2-8 shows an example of an OWL representation of vehicles. The sufficient conditions 

for the notions of the 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑉𝑒ℎ𝑖𝑐𝑙𝑒 and the 𝑅𝑜𝑎𝑑–𝑟𝑎𝑖𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 are illustrated. The OWL 

indicates that road-rail vehicles are vehicles which have access to part of the road and 

railroad systems, whereas household vehicles are not road-rail vehicles, and vice versa. 

Through such logic demonstration, the interested entities can be well recognised, and the 

inference becomes possible once new entities are introduced. 

In terms of the scalability of the ontology, Grüninger et al. (1995) developed an ontology 

spectrum to illustrate the range of artefacts shown in Figure 2-9. The complexity of the 

expression on the specific domain increases toward the right end of the spectrum. The 

expressions at the left of the demarcation (syntactic, thesauri and metadata) only contain the 

concept of a particular individual without describing the relations. In contrast, the formal 

ontologies contain the element of inferring and reasoning, which allows the users to express 

the domain knowledge through a set of rigorous rules and help in automated reasoning of 

knowledge (also known as ontology learning) (Davies, 2010). However, the cost of 

complicated methods (the expressions on the right of the spectrum) is huge, and the 

scalability of the ontology would be restricted by either the size of the database or the 

performance of computational properties. Most previous studies fall in the Description Logic 

(OWL), RuleML (Rule Modelling Language) and SWRL (Semantic Web Rule Language) 

(Chimalakonda & Nori, 2020; Katsumi & Fox, 2018; Wu et al., 2020). Although the 

development of NLP has increased the momentum to move toward the right of the spectrum, 

the approaches are still controversial in the context of common logic (Asim et al., 2018; Shu 

et al., 2019), and the argument about recognising a computer’s ability in understanding 

natural languages is continuing (Konys, 2018; Lehmann & Völker, 2014). 
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Table 2-10: Studies applying the ontology in the railway context 

Purpose of using ontology Applied ontology Data Sources 

Extract safety content from multi-lingual free-text safety incident 

reports identifying specific classes of safety incident 

Lingual ontology 

 

5065 safety 

incident reports 

(Hughes et 

al., 2019) 

Using text network and graph database to map the structure of 

reports (like a word cloud with links)  

None (only apply sentences 

segmentation) 

150 records from 

Close Call System 

(Figueres-

Esteban et 

al., 2016) 

Building risk ontology and scenario-risk-accident chain model 

(Integration of accident-risk ontology and context ontology) 

Upper-level ontology + 

Depiction-level ontology 

101 railway 

accident reports 

(Cao et al., 

2019) 

Integrating the safety ontology for automobiles and railway vehicles 

from ISO 26262, EN 50126 and SIRF 

Upper-level ontology None (Hulin et 

al., 2016) 

Building a model to support the capitalisation and exploitation of 

produced knowledge retrieved from previous railway accident 

records 

Depiction-level ontology None (Maalel et 

al., 2012a) 

Mapping the potential parameters for building the ontology of 

accident scenario 

Depiction-level ontology 

(event-oriented) 

Used ontologies in 

the literature 

(Maalel et 

al., 2012b) 

Reviewing used ontology in the literature Upper-level ontology + 

Depiction-level ontology 

Used ontologies in 

the literature 

(Katsumi & 

Fox, 2018) 

Retrieving the information from reports and making a decision-

supporting system 

Upper-level ontology 120 metro accident 

reports 

(Wu et al., 

2020) 
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Table 2-10: Studies applying the ontology in the railway context (continued) 

Purpose of using ontology Applied ontology Data Sources 

1 Transforming unstructured records into the knowledge base 

created by formal accident reports. 

2 Identifying risk source level of records based on ranked formal 

reports through NLP techniques (classification). 

Upper-level ontology + 

Depiction-level ontology 

40,000 data 

records & 101 

recorded accident 

cases 

(Cao et al., 

2020) 

Proposing the instructions on integrating ontological data to monitor 

railway asset 

Upper-level, domain, and 

application ontologies 

None (Tutcher, 

2015) 

Proposing a formal ontology to describe the impact made by a 

disruption to travellers’ journeys 

Depiction-level ontology None (Corsar et 

al., 2015) 
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Figure 2-8: An example of an OWL representation of vehicles 

 

Figure 2-9: The ontology spectrum (Grüninger et al., 1995) 
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2.4 Synthesis of findings 

This chapter reviewed how literature deals with the problem of assessing vulnerability in the 

railway industry. The concept of vulnerability was discussed, and a list of definitions was 

summarised in Table 2-1. It is concluded that the conflict of definitions in literature in the 

context of vulnerability assessment is due to divergent points of view. For instance, the 

definition of vulnerability varies for descriptive and operational purposes.  

Subsequently, vulnerability assessment in the context of the transport system was reviewed 

in Section 2.1, and the foundational theory applied in this context was demonstrated. It is 

concluded that most of the studies have been completed on based on reliability theory and 

probability theory. Reliability theory mainly concentrates on reducing the vulnerability of a 

system by either increasing the resilience in preparedness or mitigating the impact after an 

accident. On the other hand, probability theory focuses on identifying the hazards and risky 

components in a system and revealing the possibility of the occurrence of each event. Hence, 

a considerable number of studies have been derived from either theory for different purposes. 

Several approaches have been designed to address the research questions under both 

theoretical bases, such as the statistical approach for research under probability theory, and 

the optimisation approach for research under reliability theory. However, through the 

increasing complexity of the socio-technical system, several theories have been built to 

understand the nature of the interaction, resulting in the unexpected outcome, within the 

system. Some valuable frameworks, like the SHELL and the HFACS models, have been built 

to interpret the incidents in a complex system, but the sequence of events and their probability 

remain unclear due to the difficulty of collecting analysable data. Moreover, according to the 

systems theory, interface weakness is one of the main factors that would lead the system to 

fail. However, the role that interface plays in the railway accident has not been fully 

understood in literature, which might make decision-makers underestimate the importance of 
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interface and make the system vulnerable. Therefore, the first identified research gap from 

this review is the lack of understanding on causes and sequences of railway incidents.  

On the other hand, the sequence of historical incidents has been well recorded by 

investigators in their jurisdiction. However, limited studies have applied such data to build a 

statistical model because of the difficulty of analysing textual data. Such limited knowledge 

on historical railway accident reports stems from a gap in the learning behaviour between 

railway accident investigators, which is the second gap identified in this thesis.  

Additionally, a growing number of studies have put much emphasis on railway safety through 

state-of-the-art NLP techniques, which results in a significant opportunity to eliminate the 

restrictions on the analysis of big textual safety-related data. Some initial outcomes have 

indicated the possibility of letting an algorithm classify railway accidents based on the 

features of original accident records (Hadj-Mabrouk, 2020; Syeda et al., 2017, 2019). 

However, the extraction of critical hazards, which might trigger the actual accident, is still on 

the basis of human determination, which is time-consuming and labour intensive (Kim & Yoon, 

2013; Zhou & Lei, 2018). Such limitations make the model unable to be updated after new 

railway accident cases or the development of technology. Nevertheless, the framework of 

required components is seldom set in previous studies (Li et al., 2018), which left the data 

unable to be reused and means further research has no standard to follow. 

For this reason, another group of researchers has devoted much effort to building a standard 

for mapping the domain knowledge of their interests and representing that as an ontology. 

The ontology has been widely applied in other contexts, such as chemistry (de Matos et al., 

2010; Krdzavac et al., 2019) and medicine (Arsene et al., 2011; Haendel et al., 2018). In the 

railway safety context, the ontology is conducted to express the lingual content (Hughes et 

al., 2019) and transform unstructured records into the components in the pre-designed 

structure (Cao et al., 2020). The ontology can provide a solid framework to indicate how the 
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NLP algorithm extracts the valid information from the original data and infers the relations 

between them. However, the combination of NLP and ontology applied in the railway safety 

context is rare, meaning the hazards not being identified efficiently. The ontology is not able 

to be updated based on the poor use of NLP techniques in the literature, making the result of 

ontology unable to be updated.   

Furthermore, the recommendations in the accident investigation reports play an essential 

role in improving railway safety in practice. However, the issue of learning from 

recommendations across jurisdictions has never been researched before. Poor interaction 

between different railway safety agencies in different jurisdictions might result in severe 

railway accidents occurring, accidents which could have been prevented by following the 

recommendations made in other locations. To overcome the difficulties mentioned above, the 

research reported in this thesis designs several NLP models to process existing accident 

reports. Chapter 3 discusses the methodology developed to achieve this. 
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3. Research design and methodology 

To automate the analysis of historical accidents and reveal the hazards in urban railway 

transport, Natural Language Processing (NLP) is used in this thesis to help analyse the 

textual information contained in the accident reports. This chapter provides the details of task 

identification and the methodology considerations, reviews and evaluation. The tasks 

required for answering the research questions are discussed and defined, followed by the 

introduction of potential candidate models of NLP, the introduction to the ontology design and 

the knowledge graph, and the evaluation of entity linking. The structure of the chapter is as 

follows: the research design process is designed (Section 3.1) and relevant tasks are defined 

(Section 3.2), followed by the introduction of Natural Language Processing (Section 3.3). 

Ontology design and the knowledge graph development are discussed (Section 3.4), and the 

synthesis of findings in this chapter is presented (Section 3.5). 

3.1 Research design process 

To address the research questions of this study, a mixed-methods design including both 

quantitative and qualitative approaches is proposed to provide a comprehensive 

understanding of railway safety across countries. Figure 3 1 depicts the research design 

process divided into a sequence of structured stages. The process begins with tasks 

definition (Section 3.2), ensuring the objectives of scope are closely aligned with the research 

questions. This is followed by data collection and pre-processing (Section 5.1 and 5.2), 

involving the sampling and preparation strategies. Subsequently, the following quantitative 

analysis involving NLP (Section 3.3) is separated into two parts: the BERTopic model and 

STM model (Section 4.1.1). Both approaches serve roles in analysing the main content and 

the recommendations of railway accident reports (See Figure 6-15). The quantitative analysis 

ends with the ontology and knowledge graph building (Section 3.4) which constructs a 

structured representation of the knowledge extracted from the data. 
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Figure 3-1: An overview of methodological approaches undertaken 

Next, the outcomes of quantitative analysis support the development of conceptual 

frameworks (Chapter 6), building the schematic representations and interpreting complex 

relationships between concepts extracted from the railway accident reports. The conceptual 

frameworks and NLP models are evaluated through scoping workshops and surveys. These 

qualitative approaches aim to connect the outcomes to the practice by engaging with 

practitioners in the railway safety industry. The feedback and comments collected are used 

to further refine the conceptual frameworks proposed and ensure the research outputs are 

closely aligned with the practical railway safety operation. Finally, the outcomes integration 
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and summary integrate the quantitative and qualitative findings and discuss potential 

underlying hazards within railway industry across jurisdictions (Chapter 7). 

3.2 Definitions of tasks 

To address research gaps discussed in the previous chapter, tasks and expected outcomes 

need to be identified before designing the methodological framework. First, an overview of 

the types of hazards is required. The model should be able to automatically identify critical 

hazards from railway accident reports (RQ1-1). The relations between hazards also need to 

be recognised for the purpose of understanding the mechanisms of hazards in each railway 

system, such as the impact of the failure of infrastructure or human behaviours on railway 

systems in different jurisdictions (RQ1-2). Next, the vulnerability that hazards cause across 

countries should be analysed and examined (RQ1-3). The different use of terminology should 

be addressed to ensure that all retrieved hazards link to correct entities in the developed 

knowledge (entity linking). For instance, the terms “level crossing” and “grade crossing” are 

expected to be linked to the same entities in the model for cross-country analysis (RQ1-3).  

A classification system for the recommendations made by investigators is required to 

understand how solutions are proposed to address hazards from the socio-technical 

perspective (RQ2-1). The temporal factor should be included to evaluate the trend of the style 

of making recommendations and the behaviour of learning across time in the railway industry 

(RQ2-2). Last, opinions from practitioners are collected and analysed with the outcomes of 

topic modelling to understand whether railway accident report recommendations support the 

railway industry to learn across jurisdictions and time (RQ3-1). All results are integrated with 

the literature review to reveal the barriers to the railway industry learning across jurisdictions 

and time (RQ3-2). 

In summary, the developed model needs to extract potential hazards from unstructured and 

unannotated railway accident reports from investigated countries. The model is also required 
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to conduct sensitivity analysis, temporal analysis, covariate analysis and identification of 

accidents with similar hazards. An ontology is designed to store the retrieved hazards. A 

knowledge graph model is developed to address the issue of different terminology used 

across countries. Scoping workshops and a survey are conducted to understand the 

feedback about models developed and the opinions of learning from practitioners in the 

railway industry. An overview of required functions and outcomes for the research questions 

is shown in Table 3-1. 

To satisfy the requirements, natural language processing, ontology development and the 

knowledge graph models are introduced in the following sections while the details of the 

scoping workshops and the survey are discussed in Chapter 4. Potential approaches using 

these techniques in the literature are reviewed, and a rigorous selection process is presented 

to determine methods used to build the model.
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Table 3-1: Overview of required functions and outcomes toward research questions proposed 

Research questions Analysis approaches Expected outcomes 

RQ1-1: What is the difference in roles each hazard 

plays in various jurisdictions during railway accidents? 

⚫ Hazard identification 

⚫ Topic modelling (hazards) 

⚫ Sensitivity analysis 

⚫ Hazard lists 

⚫ Relative topics (hazards) 

⚫ Occurrence of hazards 

RQ1-2: Do the same hazards occur in different 

jurisdictions and across time? 

⚫ Correlation analysis 

⚫ Temporal analysis (hazards) 

⚫ The trend of each hazard 

⚫ Correlation of hazards 

RQ1-3: Do those hazards result in similar 

vulnerabilities in different jurisdictions and times? 

⚫ Covariate analysis 

⚫ Identification of similar accidents 

⚫ Ontology development 

⚫ Knowledge graph model 

⚫ Correlation between hazards and 

organisations 

⚫ Similar cases across time 

⚫ Railway accident ontology 

⚫ Entity linking model 

RQ2-1: How do recommendations made by railway 

accident investigators address hazards identified from 

the socio-technical perspective? 

⚫ Topic modelling 

⚫ Systems theory 

⚫ Relative topics 

⚫ Distribution of each topic on the 

socio-technical framework 

RQ2-2: Is there a transition in the style of making 

railway accident recommendations in each jurisdiction 

over time? 

⚫ Temporal analysis (recommendation) ⚫ The trend of each 

recommendation topic 

RQ3-1: Do railway accident report recommendations 

support the railway industry to learn across 

jurisdictions and time? 

⚫ Topic modelling (recommendation) 

⚫ Scoping workshops and survey 

⚫ Relative topics (recommendation) 

⚫ Opinions from practitioners 

RQ3-2: What are potential barriers to the railway 

industry learning across jurisdictions and time? 

⚫ Interpretation of findings from this 

research supplemented by additional 

evidence 

⚫ A list of potential barriers and 

emerging underlying hazards  
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3.3 Introduction to natural language processing 

Natural language processing (NLP) is a research field aiming to build the connection between 

human beings and computers in natural language. The main concern of NLP is to make the 

computer understand human languages and enable human–computer interaction (Gudivada 

& Arbabifard, 2018). The origins of NLP can be tracked back to the 1950s (Nadkarni et al., 

2011), of which the purpose is to understand a large amount of textual data in an efficient 

way based on statistical techniques. Subsequently, the demand for text information retrieval 

increased and urged researchers to consider using artificial intelligence (AI) in analysing 

textual information. Hence, several NLP tasks were developed to response to industry, 

academia and government requirements. From the 1950s to 1970s, researchers have 

designed several approaches to solve some simple NLP tasks including Chomsky’s 1956 

theoretical analysis of language grammar (Chomsky, 1956) and Backus-Naur Form (BNF) 

notation (Aho et al., 1963) for identifying context-free grammar in articles. Another notable 

example is the concept of tokenisation which first raised in the 1970s (Nadkarni et al., 2011), 

aiming to propose a model that transforms text into tokens and generate a lookup dictionary. 

However, most methods before the 1970s required heavy human intervention and labour. 

NLP experienced a great revolution in the 1980s after the introduction of machine learning 

(ML) methods (Zhang, 2014). The ML method is prominent for the ability to deal with 

probability questions, and the hand-written rules used before the 1980s associated the 

probabilities directly by building a series of constraints in the algorithms. Another significant 

breakthrough was the construction of large, labelled bodies of text (corpora), which was used 

to finetune the parameters in ML algorithms according to foundational statistical approaches 

(Nadkarni et al., 2011). The application of ML also raised several critical concepts like 

decision trees and feature-vector (Salzberg, 1994).  
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Researchers combined linguistics and AI with the advent of big data to enable computers to 

understand the inherent complexity and causality in natural language (Gudivada & Arbabifard, 

2018; Krishnan & Rogers, 2015). To achieve this objective, several standardised sub-tasks 

in NLP were proposed for researchers to explore. Before the 2000s, the main NLP tasks were 

generally at text-level analysis, such as part-of-speech (POS) tagging, tokenisation, problem-

specific segmentation, spelling and grammatical error identification and recovery and named 

entity recognition (NER) (Nadkarni et al., 2011). The ML techniques have significantly 

impacted most of these tasks by introducing shallow models such as support vector machine 

(SVM) and logistic regression. The shallow models use the concept of word embeddings and 

transform the text into the numerical matrix with high dimensional features (Young et al., 

2018). The features contain linguistic information, such as grammar, phrases and slang. The 

performance of ML on NLP tasks is overwhelming but also comes with drawbacks, such as 

the requirement of hand-crafted features and time-consuming and extensive annotation, high 

error-susceptibility and limitations on understanding the sentence-level causality (Magnini et 

al., 2020; Mathews, 2019; Young et al., 2018). 

In recent decades, the development of deep learning (DL) architectures has been significant 

through the rapid growth of computer hardware. The trend is catalysed by the success of 

complex conceptual methodology, including word embeddings, the recurrent neural network 

(RNN) and multi-level features engineering (Mikolov et al., 2010; Young et al., 2018). 

Because of the automatic feature representation learning, the DL framework gradually 

replaced most state-of-the-art ML approaches in several text-level NLP tasks (Collobert et al., 

2011). Such advancement enables more difficult NLP tasks for researchers in either the 

computer science or linguistics context, including question-answering (Devlin et al., 2018), 

causality extraction (Fischbach et al., 2020; Khetan et al., 2020), language inference (Devlin 

et al., 2018) and language generation (Mathews, 2019). Hence, the paradigm in the NLP 
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context shifted to build complex deep learning-based algorithms to solve complex NLP tasks. 

In recent years, a number of conceptual solid deep learning frameworks, such as Sequence 

to Sequence framework, attention mechanisms and long short-term memory (LSTM), have 

been proposed, which improve the performance of the NLP task-oriented language models 

and significantly reduce the computational complexity (Devlin et al., 2018; Magnini et al., 

2020). 

Both ML and DL treat the textual information as a numerical analysis by transforming the text 

into a high-dimensional numerical vector. The difference between ML and DL is the number 

of architectures in the model. The ML framework only contains one data processing layer 

without any neural network, whereas the DL framework includes several neural network 

architectures with multiple data processing layers, like a convolutional neural network (CNN) 

and RNN (Dang et al., 2020; Howard & Gugger, 2020).  

On the other hand, the railway accident reports contain multiple dimensions, such as the 

description summary, causal chain analysis, accident analysis and recommendations. All 

contents are unstructured and unlabelled, and reports published in different jurisdictions may 

have other structures. The following sections review and compare off-the-shelf language 

models and training methods to select the appropriate approach that can address 

heterogeneous data and provide the required functions. 

3.3.1 Building the language model – Let the computer read the text 

This section reviews the language model for solving the NLP tasks. The evolution of how a 

machine understands natural language has advanced dramatically in recent decades, 

especially after the introduction of DL techniques. To ensure the proposed methodology in 

this thesis leverages state-of-the-art models, the language model’s history is introduced first, 

followed by critical mechanisms and techniques.  
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The development of language models may be divided into the following periods: the 

application of statistical approaches (one-hot representation), word embeddings 

(distributional similarity-based representations), and language models (contextualised/ 

dynamic word embeddings). 

3.3.1.1 Statistical approaches 

In the early NLP development stage, the meaning of each word was delivered by using the 

bag of words (BoWs) or one-hot encoding (Harris, 1954). The fundamental method of the 

distributional structure mentioned is to assign a representation for each word by counting the 

occurrence of each word in a pre-set BoWs, containing a range of elements. For instance, 

assume a dataset d = [“I love NLP”, “She loves NLP”, “NLP requires several techniques”]. 

After the pre-processing, the input data would be d’ = [“I love nlp”, “she love nlp”, “nlp require 

technique”], and the BoWs would be D = [“I”, “she”, “love”, “nlp”, “require”, “technique”]. Finally, 

the one-hot representation of each word is as shown in Table 3-2. 

Table 3-2: The demonstration of BoWs 

 I she love nlp require technique 

d’[1] 1 0 1 1 0 0 

d’[2] 0 1 1 1 0 0 

d’[3] 0 0 0 1 1 1 

one-hot 

representation 

1 1 2 3 1 1 

Subsequently, the one-hot representation was criticised due to the absence of semantic 

differences between words. Identical equal weights are considered in each word regardless 

of the semantic meaning. Hence, the concepts of term frequency (TF) (Luhn, 1957) and 

inverse document frequency (TF-IDF) (Jones, 1972) were introduced to enable the one-hot 

representation to consider the weight of each word across the collection of BoWs.  
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The TF approach can calculate how many times a term is used in one document, which 

equals the frequency of a term divided by the total number of existing terms. The TF of a term 

in a report can be calculated by Equation 3-1. 

𝑇𝐹𝑡,𝑟 =
𝐹𝑡,𝑟

𝑇
                  Equation 3-1 

where 𝐹𝑡,𝑟 is the frequency of a term 𝑡 in the report 𝑟, whereas 𝑇 is the total number of 

terms in the report 𝑟. The TF approach is feasible only while using one report. The TF-IDF 

approach should be conducted when multiple reports are used, allowing the consideration of 

the importance of a term in the whole database as shown in Equation 3-2. 

𝑊𝑡,𝑟 = 𝑇𝐹𝑡,𝑟 ∗ (𝑙𝑜𝑔 (
𝐷+1

𝐷𝑡+1
) + 1)              Equation 3-2 

where 𝐷 is the total number of reports, and 𝐷𝑡 is the number of times the term 𝑡 appears 

in the whole database. However, the original result from the previous process is still limited 

in terms of description (Heidarysafa et al., 2019). For instance, the original result might not 

recognise the term “train” and “rolling stock” as the same entity. The term “rolling stock” might 

be divided into two meaningless terms “rolling” and “stock”. Additionally, the weight given by 

TF-IDF cannot capture the actual word meaning. The lexical meaning of a word should 

contain the related words as well. To consider the relationship between words, the co-

occurrence vector was proposed to contribute to the one-hot representation and convert text 

into a sparse matrix (Lund & Burgess, 1996). Although there are several drawbacks in both 

TF-IDF and co-occurrence vector, both techniques still provided a pivotal statistical measure 

for researchers and were popularly used until the development of word embeddings (Hakim 

et al., 2014; Neto et al., 2000; Soleimani et al., 2019).  
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3.3.1.2 Word embeddings 

To overcome the obstacles derived from statistical approaches, word embeddings (or 

distributional vectors) were introduced and captured the meaning of a word by reading its 

neighbouring words and giving the word a low-dimensional vector (Young et al., 2018). The 

similarity can be measured by calculating vectors through approaches like cosine similarity. 

To gain the word embedding of the data, the word2vec method designed by Mikolov et al. 

(2013) is widely applied in natural language analysis.  

The word2vec model contains two sub-models: continuous bag-of-words (CBOW) and skip-

gram model. The CBOW calculates the meaning of the target word through the surrounding 

context words across a window of specific size k, whereas the skip-gram model predicts the 

context words surrounding the target word. All words in the dataset are offered a series of 

weights based on their features. The conceptual framework of word2vec is shown in Figure 

3-2. Given the original input text is “I like natural language processing”, and the window size 

k is 2, the left part is the mechanism of CBOW, and the target in this demonstration is “natural”. 

Since the window size is 2, then the context words “I”, “like”, “language” and “processing” 

would be the basis of the definition of the target word “natural”. The right part, which is the 

mechanism of the skip-gram model, predicts the words surrounding the word “natural”. ML or 

DL would train the parameters in the projection layer, and the result matrix represents the 

vector of each word in the input dataset. Figure 3-3 shows the demonstration of the result of 

the training. Given that the words in this model have n features, each parameter represents 

the weight the target word has in that feature. The 1 × 𝑛  matrix is the high-dimensional 

vector of the target word.
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Figure 3-2: The conceptual framework of word2vec, source: Belkacem et al. (2017) 

 

Figure 3-3: Demonstration of the projection layer (word embedding)
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The conceptual framework of word2vec has inspired the design of the following language 

models. However, while this approach can identify the similarity of words, it cannot 

understand the relationship between the word and other sentences or documents, and the 

issue of co-reference resolution cannot be solved easily. The sequence of the sentence is 

not considered yet at this stage. Additionally, the sentiment of the word cannot be detected. 

For instance, the results of terms, such as positive and negative, sometimes have the same 

embedding (Young et al., 2018) due to the similarity of the neighbour words. 

3.3.1.3 Language model (dynamic word embedding) 

To overcome the issue of similarity raised by distributional vectors, the concept of recurrent 

neural networks (RNN) is introduced to NLP applications. The RNN is a type of neural 

network approach which bases the prediction on previous predictions (Elman, 1990). In other 

words, the result of word prediction would be “memorised” and becomes the basis of the 

prediction of the next word. Because the characteristic of memory allows capturing the 

inherent sequential nature of language, RNN is popularly used to deal with sequential NLP 

problems (Mikolov et al., 2010). As the demonstration shows in Figure 3-4, the RNN allows 

the model to learn the meaning of each word by sequentially reading the content.  

The hidden layer of RNN contains accumulated crucial elements from previous steps. 

However, the parameters in the hidden layer would either explode or vanish while the width 

of RNN is increasing, also known as the vanishing gradient. Because each iteration in RNN 

refers to the error function with respect to the current weight, the weight would vanish after 

several multiplications and make the neural network unable to update the parameters in 

hidden layers. To handle this issue, two popular sub-networks are built into the RNN 

framework: long short-term memory networks (LSTM) (Gers, 1999) and gated recurrent unit 

(GRU) (Chung et al., 2014). 
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Figure 3-4: The conceptual framework of RNN (revised from Graves, 2013) 

The LSTM (Figure 3-5) network contains three primary parameters: input gate, output gate 

and forget gate. The input gate determines whether the previous result would be input in this 

iteration; the forget gate determines whether the information should be programmed in this 

iteration, and the output gate determines whether the output should be passed to the next 

iteration or not (Hochreiter & Schmidhuber, 1997). Such a mechanism can avoid vanishing 

and exploding while processing the word embedding by controlling each gate’s parameter. 

 

Figure 3-5: The mechanism of long short-term memory (LSTM) (Greff et al., 2017)  
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The GRU is the advanced version of LSTM, having most LSTM functions but only two 

parameters: update gate and reset gate (Cho et al., 2014). Figure 3-6 illustrates the 

mechanism of GRU where r represents reset and z represents update. The reset gate 

determines whether the input would be kept, and the update gate determines whether the 

output would be passed to the next iteration or not. 

 

Figure 3-6: The mechanism of GRU (Chung et al., 2014) 

The RNN applied LSTM and GRU cells in its network can improve the performance on 

understanding the sequential text considering the order of the words without the concerning 

vanishing gradient issue, which allows the model to understand the co-reference resolution 

and distinguish the different meanings of the same word in a different context. Figure 3-7 

shows the mechanism of how the RNN model learns the word “strike”, which is similar to the 

word “collision” and “crash” in the same sentence.  

 

Figure 3-7: Illustration of how the RNN model applied LSTM or GRU analyses a word 
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Through significant improvement in computing power and computational techniques like 

parallelisation and deep learning, a new mechanism of programming “attention networks” 

was developed (Vaswani et al., 2017). Attention-based networks apply the linear combination 

of input and output tokens, allowing different lengths between the encoder and decoder 

(Bahdanau et al., 2015). Traditional word embedding-based models condense the original 

text in sentence-level analysis, creating significant bias if the input is too long or contains 

diverse topics (Young et al., 2018). The attention mechanism allows the output layer of the 

network to refer to the vectors of input data. The function of attention can be considered as a 

query and a series of key-value pairs to an output, and the queries (Q), keys (K), values (V) 

and the outputs are all single-dimensional vectors. The output is calculated by the weighted 

sum of the values, where the weights are based on the function of the query and the 

correlated keys (Vaswani et al., 2017). 

The encoder-decoder architecture of the “Transformer” model proposed by Vaswani et al. 

(2017) uses Multi-Head Attention, which is a process performed by several Scaled Dot-

Product Attention cells (h times, more details can be found in Vaswani et al. (2017)) in parallel 

with considering multiple dimensions of variables. The architecture of the Attention models is 

shown in Figure 3-8. 
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Figure 3-8: The mechanism of Scaled Dot-Product Attention (left) and Multi-Head Attention 

(right) (Vaswani et al., 2017) 

The architecture of the Transformer is shown in Figure 3-9. The encoder of the Transformer 

contains multi-head attention and a full-connected feed-forward layer, and the decoder takes 

the output of the encoder in this iteration and an additional output of the decoder in the 

previous iteration as input to generate the final output of this iteration. The Transformer 

achieved state-of-the-art results in several NLP downstream tasks with other techniques and 

has been used in designing the framework of the language models. 



97 
 

 

Figure 3-9: The structure of Transformer (Vaswani et al., 2017) 

Since the development of deep learning, all mechanisms are allowed to work in the same 

architecture model, which allows the researcher to build a language model that can handle 

NLP downstream tasks with the best result. Several popular language models are designed 

using RNN architecture and LSTM, GRU and Transformer cells, such as embeddings from 

language models (ELMo) (Peters et al., 2017), OpenAI generative pre-trained transformer 
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(OpenAI GPT) (Alt et al., 2019) and bidirectional encoder representations from transformers 

(BERT) (Devlin et al., 2018). The deep network of each language model is shown in Figure 

3-10. 

The performance of each language model is examined with several corpora and benchmark 

databases. The BERT model has been considered the best model so far in dealing with the 

NLP problem (Devlin et al., 2018). BERT is a language model which Google developed, and 

consists of the techniques of deep learning, Transformer, machine learning and neural 

network. The BERT is a pre-trained model applying the masked language model (MLM) and 

next sentence prediction (NSP). MLM refers to the meaning of each word is given by other 

content in the document, and Figure 3-11 shows the mechanism of how BERT recognises a 

word. The masked words in both sentences are “strike”, and the BERT model calculates the 

most relevant word based on other texts in the sentence. The result demonstrates that the 

model can tell the difference between the word “strike” in a different sentence, implying that 

the polysemy issue (one word with multiple but related meanings) can be overcome through 

the masked language model. On the other hand, next sentence prediction means the 

probability that sentence will be connected to another sentence. The main task of next 

sentence prediction is to capture the relationship between two sentences. According to Devlin 

et al. (2018), the next sentence prediction task is specifically choosing two sentences and  

enabling the BERT model to predict whether another sentence actually follows one sentence. 
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*Trm: Transformers 

Figure 3-10: Differences in pre-training model architectures, source: Devlin et al. (2018) 
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Figure 3-11: Demonstration of masked language model (MLM) 
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The original BERT had two versions: the base version contains 110 million parameters with 

12 Transformer blocks, 768 hidden layers and 12 self-attention heads; and the large version 

contains 340M parameters with 24 Transformer blocks, 1024 hidden layers and 16 self-

attention heads. The cost of training each model is enormous. Fortunately, both pre-trained 

models are available online for developers to solve different tasks. Several studies using 

BERT to solve NLP problems with better performance have been published in recent years 

(Ganesh et al., 2020; Khetan et al., 2020).  

The input embedding of BERT is shown in Figure 3-12. To ensure the BERT model can handle 

various downstream tasks, the input representation considers the input data’s token 

embeddings, segment embeddings and position embeddings along with the identification 

tokens [CLS] and [SEP], which are used as the aggregation of sequential representations. 

The WordPiece embeddings with a 30,000 token vocabulary are applied in generating the 

token embeddings (Wu et al., 2016). 

 

Figure 3-12: The input embedding of BERT (Devlin et al., 2018) 

Since the powerful open-resourced model BERT was released in 2019, researchers have 

started to use it to overcome previous limitations in solving NLP problems. For instance, the 

concept of the MLM approach that BERT applies is extended to eliminate the requirement of 

labour-intensive data labelling. The MLM is able to find the top predicted words of the selected 
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topic, and the predicted words become the basis of classification (Meng et al., 2020). The 

BERT model is also applied to handle the causality extraction task with considerable 

performance. The model designed by Khetan et al. (2020) on the basis of pre-trained BERT 

can detect the “Cause-Effect” sentence, the position of events in the sentence and predict 

the events. The corpus SemEval 2007 (Beamer et al., 2007), SemEval 2010 (Hendrickx et 

al., 2010) and ADE datasets (Gurulingappa et al., 2012) are used, all of which contain “Cause-

Effect” annotations.  

The subsequent sections illustrate the process of training an NLP model with different 

architectures and purposes. 

3.3.2 Training an NLP model 

To retrieve the knowledge of interest, a model must be trained to convert textual data into 

machine-readable data. Several machine learning-based approaches are established in the 

literature: rule-based approach, supervised learning, semi-supervised learning, and 

unsupervised learning.  

3.3.2.1 Rule-based approach 

The rule-based approach aims to explore the features of natural language and set a number 

of linguistic patterns manually to extract explicit or implicit clues. The patterns can be 

generated by lexico-semantic analysis, syntactic analysis or customised design, depending 

on the interests of the research. This implies that the required components for training a 

model via the rule-based approach are patterns and rules rather than labelled data. For 

example, the snowball search algorithm is one of the classic rule-based approaches, which 

aims to extract relations by defining seed causative verbs and identifying all connected 

subjects and objects, then searching the corpus again to find the new causative verbs 

connecting to these subjects and objects again. All selected candidates are evaluated by 
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similarity measurement and relation-pair with a similarity score over a specified threshold 

considered a true relation (Alashri et al., 2018; An et al., 2019; Heindorf et al., 2020). By 

applying such approaches and the assumption, the causation can be concluded as a 

sequential flow to elaborate on the nature of a specific type of accident. 

Although building up comprehensive patterns and rules is extremely time-consuming, in a 

specific context, the rule-based approach usually leads to higher performance than the 

machine learning approach. Given that the rule-based approach does not require labelled 

data and railway accident reports or records are highly homogeneous in terms of terminology 

and writing style, such an approach has strong potential in the railway accident causation 

analysis context. 

3.3.2.2 Supervised learning 

Supervised learning uses labelled data (such as railway accident data with the types of 

causes as a tag on each datapoint) during the entire training process, and the output model 

will predict the unseen data based on the way that training data is labelled. For instance, a 

model to predict the expected number of railway disruptions is trained by feeding the model 

the historical railway disruption data and assigning the locations and duration of the railway 

disruption as predicted targets (Yap & Cats, 2019). In the railway accidents analysis context, 

the labels used can be whether a hazard is involved, or what correlations of hazards exist in 

an accident. However, several studies argue that training a supervised learning model can 

match or exceed human performance only when the training dataset has more than 10 million 

samples (Goodfellow et al., 2016; Yang et al., 2021), and the size of annotated data for causal 

relation extraction benchmark is still not satisfactory to train a powerful learning model. 

Complex causation tasks will cause a higher risk of failing to retrieve an acceptable model 

via supervised learning without adequate labelled data. 
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3.3.2.3 Semi-supervised learning 

On the other hand, semi-supervised learning is trained with only a small amount of labelled 

data and a large amount of unlabelled data. Because only limited labelled data is available, 

several assumptions or pre-defined relations borrowed from rule-based studies are required 

to guide the model on prediction. For instance, Lee et al. (2021) divided the data into normal 

and abnormal conditions before training a model for predicting the structural integrity of a 

railway bridge. Despite taking advantage of the benefits of rule-based and supervised 

learning approaches, the design of the model becomes complicated and has seldom been 

considered in causation extraction tasks due to the heterogeneity of required data, including 

labelled data and rules.  

3.3.2.4 Unsupervised learning 

Unsupervised learning is trained on unlabelled data only, and the model is forced to classify 

the data by modelling topics and building imaginative content. The user needs to interpret the 

outcome based on the nature and background knowledge of input data. For instance, Lasisi 

and Attoh-Okine (2020) leveraged unsupervised learning and experts’ knowledge to predict 

rail track geometry defects. The performance of machine learning models mostly depends on 

training data and the quality of labelled data. Despite no requirement of labelled data for 

training a model via unsupervised learning, the performance might not be satisfactory, and 

manual interpretation is needed (Xie et al., 2019; Yamashiro & Nonaka, 2019). Hence, 

researchers using this approach must have the domain knowledge to reason the results of 

unsupervised learning. Nevertheless, the causations might not be available by only training 

one model because only similar topics are extracted without further information, suggesting 

the relations between extracted topics need to be associated with each other manually. 
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3.3.3 The trade-off between approaches to railway accident analysis 

To select the most feasible approach for conducting a railway accident analysis, the goals of 

research must be set, and the nature of railway accidents and the way reports are written 

must be understood. First, railway accidents have features of low occurrences but rich 

information in each datapoint, suggesting that sentence-level causation analysis should be 

preferred rather than document-level causation analysis unless either specific goals are set, 

or the number of data items is satisfactory (Fischbach et al., 2020). Second, each record 

might have individual chapters or sections with various purposes, which could be analysed 

separately. However, this issue can be addressed by using unsupervised learning 

approaches because the purpose of sentences in each chapter is expected to be significantly 

different. For instance, the purpose of the summary chapter of a report is to present the 

overview of the accident, whereas the recommendation chapter elaborates on the 

improvements for the railway industry. 

Table 3-3 summarises the critical features of each approach. Different tasks and types of 

datasets significantly influence the selected approach. In the context of railway accident 

analysis, most datasets are recorded in an unstructured way. Therefore, the consistency of 

the data needs to be estimated before conducting a rule-based approach. The resources for 

annotation are another critical factor in determining if the (semi-) supervised learning based 

approach is applicable or not. An inappropriate decision might result in poor performance or 

unreasonable outcomes (Yang et al., 2021).  

To sum up, supervised learning and semi-supervised learning approaches have strong 

performance on predicting unseen data and allow users to narrow the results down to a set 

of categories of interests. However, intensive labour is required to annotate the data and the 

performance of the model heavily replies on the quality of annotation and the quantity of data. 

The purpose of the model in this thesis focuses on extracting hazards rather than prediction 
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annotated data is also not available, and the quantity of railway accident reports is not 

satisfactory. Therefore, supervised learning and semi-supervised training are not considered 

to be applied. On the other hand, a rule-based approach offers higher performance on 

consistent data and ability of reasoning and interpretation. The challenge lies in the obstacles 

of setting comprehensive rules for extracting hazards of interests and the constraints on the 

structure of input data. Because railway accident reports from four countries are used, 

significant type II errors might occur due to various lexicons and writing styles. Last, despite 

the risks of black box issues while training and the manual interpretation of outcomes, the 

unsupervised learning based approach addresses the difficulty of annotation and allows 

users to extract potential hazards from heterogeneous data without heavy human intervention. 

Thus, the unsupervised learning based approach is selected to train the NLP model. More 

discussion about the implementation of unsupervised learning and the risk management of 

interpretation and evaluation is presented in the next chapter. 
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Table 3-3: Overview of critical features for rule-based, (semi-) supervised learning based and unsupervised learning based approaches 

 Rule-based approach (Semi-) Supervised learning based 

approach 

Unsupervised learning based approach 

Method Manually set a series of rules, such as 

lexico-semantic patterns, to extract the 

hazards from unstructured data.  

 

Manually annotate data and let the machine 

determine patterns to identify hazards based 

on labels from unstructured data. Pre-setting 

rules for the computer to predict is possible.  

Directly input data and let the machine 

determine patterns without seeing any labels to 

extract hazards. The combination of several 

models is possible to achieve the goal.  

Data ⚫ Pre-designed rules ⚫ Structured/labelled data ⚫ Unstructured/plain text 

Pros ⚫ The ability of reasoning and 

interpretation 

⚫ Being able to build a labelled corpus 

⚫ Higher performance on data in the 

same context 

⚫ Efficient and consistent 

⚫ Requiring less computational power 

and time 

⚫ The ability to identify unforeseen patterns 

⚫ The ability to predict the unseen text (in 

the same context) 

⚫ Less human intervention after finalising 

the model 

⚫ Flexibility to analyse new data 

⚫ Several publicly available off-the-shelf 

tools  

⚫ No requirements for data annotation 

⚫ The ability to analyse the unstructured text 

without labels 

⚫ Less human intervention while training 

⚫ Allowance of heterogeneous data 

⚫ Several publicly available off-the-shelf tools 

Cons ⚫ Requiring experts or professional 

knowledge to set rules 

⚫ Possibly missing or underestimating 

(type II error) 

⚫ Less flexibility to analyse new data 

⚫ Requiring (expert-) annotated training 

data 

⚫ Black box issues while training 

⚫ Higher requirements of data for complex 

hazards 

⚫ Heavy reliance on manual interpretation 

⚫ Black box issues while training 
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Table 3-3: Overview of critical features for rule-based, (semi-) supervised learning based and unsupervised learning based approaches 

(continued) 

 Rule-based approach (Semi-) Supervised learning based 

approach 

Unsupervised learning based approach 

Builds ⚫ Manually design 

 

⚫ Manually design 

⚫ Off-the-shelf tools 

⚫ Knowledge databases 

⚫ Manually design 

⚫ Off-the-shelf tools 

⚫ Knowledge databases 

⚫ Combinations of models 

Ref. Alashri et al. (2018); An et al. (2019); 

Heindorf et al. (2020); Yang et al. 

(2021) 

Goodfellow et al. (2016); Yang et al. 

(2021); Lee et al. (2021); Yap & Cats 

(2019) 

Lasisi & Attoh-Okine (2020); Xie et al. 

(2019); Yamashiro & Nonaka (2019) 
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3.4 Introduction to the ontology design and the knowledge graph 

The term “ontology” is borrowed from the philosophy that refers to the science that describes 

entities and their relations in the real world (McGuinness & Harmelen, 2004). In other contexts, 

ontology has been developed into a tool presenting the domain knowledge of their interests. 

Considering that the nature of railway accidents has been recognised as a linear-interacting 

and tight-coupling system (Shrivastava et al., 2009), the contributing factors in a railway 

accident involve several animate and inanimate components which are governed by multiple 

stakeholders and organisations.  

In addition to the direct causes, the underlying factors like poor management policies and 

decisions are also held accountable in an accident for creating an unsafe operational 

environment as a catalyst. Accidents occur through a series of structured failures, negligence, 

or underlying environmental factors. The complicated and multiple causes of a railway 

accident make it difficult to understand the hazards and the triggers of the accident in a 

comprehensive way. Additionally, the ontology with explicitly defined semantics could help 

researchers to transcribe the unstructured text into machine-readable languages, which can 

support knowledge management and reasoning services on integration, data validation and 

inference (Katsumi & Fox, 2018). Hence, the ontology is imported to illustrate the map of 

railway accidents. 

To describe the entities and the way they relate to each other, the ontology contains six core 

components: individuals, classes, attributes, relations, function terms, and axioms. The 

definition of each component is shown in Table 3-4. Consequently, a structured model is built 

to express the domain knowledge of the ontology consisting of the aforementioned critical 

components (Debbech et al., 2020). Let O be the ontology considered as a 6-tuple:  

𝑂 = {𝐼, 𝐶, 𝐴𝑡𝑡, 𝑅, 𝐹, 𝐴}                    Equation 3-3 
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where 𝐼, 𝐶, 𝐴𝑡𝑡, 𝑅, 𝐹 𝑎𝑛𝑑  𝐴  represent individuals, classes, attributes, relations, function 

terms and axioms, respectively. The purpose of the ontology is to be able to illustrate the 

nature of railway accidents in the real world and be extendable. 

Table 3-4: Critical components and examples in an ontology (revised from Reyes-Peña & 

Tovar-Vidal, 2019) 

Name Description 

Individuals The base unit of an ontology, representing any concrete object or 

abstract individual. i.e., staff, train, passenger. 

Classes 

(concept) 

Representing a group of different individuals sharing common 

characteristics. i.e., train is the class of all trains, or any abstract which 

can be described by the criterion for being a train. 

Attributes Representing something expressing a fact that is specific to an object. 

i.e., train has a “train number”, a “conductor”. 

Relations Referring to the relationship between components in an ontology 

structure. 

Function terms Objects with the purpose of retrieving information from other objects. 

Axioms Consisting of restrictions, rules, or other logic correspondences 

definitions to ensure the ontology has valid structure and 

relationships. 

3.4.1 The design of ontology  

To design an ontology meeting the interests of stakeholders (i.e., the railway industry and the 

railway safety agencies), rigorous processes should be built to ensure a convincing result. 

Table 3-5 shows the process of modelling a domain ontology, containing phrases of 

specification, conceptualisation and evaluation. 
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Table 3-5: The process of modelling an ontology for a specific domain context (revised 

based on Brusa et al., 2006; Reyes-Peña & Tovar-Vidal, 2019) 

Phrase Task Description 

Specification The ontology goal and 

scope 

Defining the goal of the ontology and 

specifying the boundary 

Domain description Describing the domain of the ontology 

Motivating scenarios 

and competence 

questions 

Creating the scenario description for 

modelling the informal logic knowledge 

Ontology granularity Deciding the number of attributes in the 

ontology 

Conceptualisation Extending the ontology 

by increasing data 

Applying the designed algorithm to identify 

and classify the entities 

Re-identification of 

classes, relations and 

attributes 

Reviewing and modifying connections 

between concepts 

Evaluation Verification Determining whether the ontology meets 

the requirement of the competency 

questions defined in the specification 

phrase 

Validation Determining whether the ontology can 

represent the knowledge of interests 

comprehensively 

3.4.1.1 Specification 

For the implementation of the specification, first the goal and the scope of the designed 

ontology should be clarified, followed by the determination of applied data and type of 

ontology. In the literature, experience-based and evolutive approaches are widely used to 

develop an ontology (Brusa et al., 2006). The experience-based approach aims to build 

conceptualised ontology via workshops or consulting subject matter experts (Tutcher, 2015) 

or based on proposed ontologies in the literature (Corsar et al., 2015; Katsumi & Fox, 2018; 

Maalel et al., 2012b). On the other hand, evolutive approaches develop ontologies with 

iterative processes and extend them with real-world cases. For instance, Cao et al. (2019) 
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developed an ontology for railway risk analysis and a scenario–risk–accident chain model by 

integrating present ontologies and extending them with railway accident cases; and Wu et al. 

(2020) developed a decision-making support system based on the case-based metro 

accident ontology.  

In addition, developed ontology can be classified into four sub-modules depending on 

different purposes: upper-level ontology, domain-level ontology, depiction-level ontology and 

application ontology (Corcho & Gómez-Pérez, 2000; Sintek & Decker, 2002). An upper-level 

ontology aims to cover general entities and provide definitions of concepts at the abstract 

level. The upper-level ontology is the root of other ontologies and promises to be extended 

to domain ontologies by offering basic elements and their relations in the real world. On the 

other hand, domain-level ontology further illustrates how entities in a field of interest relate to 

each other. For instance, a railway accident domain ontology should be able to elaborate on 

the causality between trains, risks, hazards and other entities (Cao et al., 2019). To extract 

such causality, depiction-level ontology is required to bridge the gap between domain-

ontology and data. The depiction-level ontology classifies entities extracted from data into a 

map and describes factors involved in the domain of interest. For instance, the railway 

organisations participating in a railway accident are expected to be identified and associated 

with the built ontology. Last, the application ontology is the final product of the developed 

ontology and is prepared to be used in other projects or research. A review of application 

ontologies is recommended to understand the existing knowledge framework and determine 

whether to reuse and extend these ontologies (Hulin et al., 2016).  

A review of existing developments of ontologies in the railway context is synthesised (Table 

3-6). Most upper-level ontologies1 are based on subject matter experts’ knowledge, and only 

 
1 Upper-level ontology: a general ontology that describes the sequences of an accident in a temporal way. 
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limited depiction-level ontologies2  are proposed due to highly labour-intensive analysis. 

Despite some trials to implement NLP to automate the process of ontology generation, the 

issue of heterogeneous data languages remains unaddressed in the development of general 

ontology (Cao et al., 2020; Hughes et al., 2019). Nevertheless, merging the published 

ontologies in Table 3-6 for integrating railway risk knowledge is extremely challenging due to 

the absence of uniform rules and protocols. These obstacles might hinder researchers and 

practitioners from understanding and extending state-of-the-art knowledge. 

  

 
2 Depiction-level ontology: an ontology that describes things involved in an accident (sometimes with 
solutions or recommendations). 
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Table 3-6: Overview of the development of ontology in the railway context 

Purpose of using ontology Applied ontology Data Sources 

Extract safety content from multi-lingual free-text safety 

incident reports to identify specific classes of safety incident 

Lingual ontology 5065 safety incident 

reports 

(Hughes et al., 

2019) 

Using text network and graph database to map the structure of 

reports  

None (only apply 

sentences segmentation) 

150 records from the 

Close Call System 

(Figueres-Esteban 

et al., 2016) 

Building risk ontology and scenario-risk-accident chain model 

(integration of accident-risk ontology and context ontology) 

Upper-level ontology and 

depiction-level ontology 

101 railway accident 

reports 

(Cao et al., 2019) 

Integrating the safety ontology for automobiles and railway 

vehicles from ISO 26262, EN 50126 and SIRF 

Upper-level ontology Subject matter 

experts 

(Hulin et al., 2016) 

Mapping the potential parameters for building the ontology of 

accident scenario 

Depiction-level ontology 

(event-oriented) 

Used ontologies in 

the literature 

(Maalel et al., 

2012b) 

Reviewing used ontology in the literature Upper-level ontology and 

depiction-level ontology 

Used ontologies in 

the literature 

(Katsumi & Fox, 

2018) 

Retrieving the information from reports and making a decision-

making supporting system 

Upper-level ontology 120 metro accident 

reports 

(Wu et al., 2020) 

Transforming unstructured records into the structured 

knowledge created by formal accident reports and identifying 

risk source level of records based on ranked formal reports 

through NLP techniques (classification) 

Upper-level ontology and 

depiction-level ontology 

40,000 data records 

& 101 recorded 

accident cases 

(Cao et al., 2020) 

Proposing the instructions on integrating ontological data to 

monitor railway assets 

Upper-level, domain, and 

application ontologies 

Subject matter 

experts 

(Tutcher, 2015) 

Proposing a formal ontology to describe the impact made by a 

disruption on travellers’ journeys 

Depiction-level ontology Used ontologies in 

the literature 

(Corsar et al., 

2015) 
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3.4.1.2 Conceptualisation 

To ensure developed ontology covers comprehensive knowledge in scope, the re-

identification of classes, relations and attributes is required to improve the structure of the 

ontology by integrating concepts and refining existing ontologies (Kotis & Vouros, 2005). First, 

an upper-level ontology is introduced and further finetuned to a domain ontology by 

consulting and reviewing domain knowledge. Subsequently, the entities in the railway 

accident reports should be linked to corresponding concepts as instances. For instance, the 

entity “track” is expected to be connected to the concept “rail infrastructure”. A model for the 

iterative process of entity identification and linking is designed and illustrated in Sections 3.4.2 

and 3.4.3. Next, connections at each level are reviewed and modified by merging or extending 

concepts and their instances. An example of relationships between levels in an ontology is 

shown in Figure 3-13.
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Figure 3-13: An example of ontologies, concepts and instances 
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3.4.1.3 Evaluation of the ontology 

The evaluation consists of two parts: verification and validation. The verification aims to 

ensure the definitions used in the ontology are implemented correctly in the real world and 

three factors are examined manually: inconsistency, incompleteness and redundancy 

(Lovrencic & Cubrilo, 2008). Inconsistency focuses on whether the structure of the ontology 

and the definitions of each concept meet the logical requirements. Incompleteness refers to 

the completion of entities, concepts and their relations for representing the knowledge of 

interests. Redundancy examines the ability of ontology to discriminate entities with multiple 

definitions or different types of terminology to the same concept. On the other hand, validation 

ensures that the created model is compliant with the real world. Lovrencic and Cubrilo (2008) 

suggest that an application ontology concentrating on real-world cases should be developed 

and that comparing the created ontology and application ontology indicates whether the real-

world cases are fully illustrated. 

3.4.2 Knowledge graphs 

To address the heterogeneity of railway terminology used in different countries, knowledge 

graphs are introduced to standardise extracted mentions and convert them to the correct 

entity before connecting to developed railway accident ontology. The knowledge graph is a 

graph-based knowledge derived from large-scale data, aiming to represent real-world entities 

and their relations from a multi-dimensional perspective (Chen et al., 2020; Liu et al., 2021). 

In the Semantic Web context, a knowledge graph is constructed for the machine to conduct 

reasoning and inference over present knowledge to answer queries (Kejriwal, 2019; Kume & 

Kozaki, 2021). To address the issues of heterogeneous knowledge graphs, the Semantic 

Web and World Wide Web Consortium (W3C) standards were developed as a universal 

machine-readable data framework to help the growth and dissemination of knowledge graphs. 

A knowledge graph consists of a finite set of resource description framework (RDF) triples, 
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containing a subject, a relation and an object. For instance, a piece of knowledge that 

“Network Rail and Australian Rail Track Corporation are railway infrastructure managers in 

different countries” can be expressed as two RDF triples: (Network Rail, is_a, railway 

infrastructure manager) and (Australian Rail Track Corporation, is_a, railway infrastructure 

manager). 

Knowledge graphs can be considered a large ontology with the RDF as a basic unit of stored 

knowledge and allows the descriptions of elements through the taxonomies of classes and 

properties. Due to the uniform standards, knowledge graphs are flexible enough to be reused, 

published, extended and linked to data of interest. Several public and cross-domain 

knowledge graphs have been published in recent years with semantical structures, including 

DBpedia, Freebase, OpenCyc, Wikidata and YAGO. All of these knowledge graphs are freely 

accessible, registered in online dataset catalogues and have well-established practices for 

interlinking structured data to demonstrate knowledge (Färber et al., 2018). End users are 

allowed to interact with data in the knowledge graphs or use the programmatical web interface 

as the initial ontology for further extension. Previous studies have applied this as the 

foundation of developed knowledge. Metzke et al. (2013) developed a semantic complex 

event processing for logistics to detect meaningful events (such as a flood) within the 

transportation route based on the DBpedia top-level ontology. Abdullah et al. (2017) used 

DBpedia to retrieve the semantic meaning from the recorded voice of control tower operators 

and pilots to identify aviation safety-related events. Several data-driven ontologies have also 

borrowed the RDF protocols and constructed knowledge networks from knowledge graphs 

for NLP tasks, such as entity disambiguation (Alpizar-Chacon & Sosnovsky, 2019; Kume & 

Kozaki, 2021) and question answering (Sakor et al., 2020).  

To connect the data with entities in the knowledge graphs, entity linking is introduced and 

potential interface issues in the literature are discussed. 
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3.4.3 Entity linking 

To disambiguate heterogenous railway terminology and link entities to the ontology using 

knowledge graphs, the sub tasks of entity linking are introduced: mention detection, 

candidate generation and entity disambiguation.  

Mention detection (MD) is a task to identify potential entity mentions in the data (Broscheit, 

2020), which is also an essential step prior to a variety of NLP downstream tasks such as 

name entity recognition and co-reference resolution (Yu et al., 2019). The mentions refer to 

any possible representation of entities, including gazetteer (a geographical dictionary), 

people’s names and co-reference (Lata et al., 2022). Other mentions might direct to the same 

entity; for instance, level crossing and grade crossing indicate the same concept.  

Candidate generation (CG) refers to the task of retrieving entity candidates for each mention 

from knowledge graphs (Broscheit, 2020). All potential entities in knowledge graphs are 

reviewed and candidates for linking to mentions extracted from the previous step are 

recognised. One word with more than one meaning might obtain multiple outcomes from CG. 

For example, using the word “train” in CG might result in two entities as candidates: the rolling 

stock, and the process of improving the level of awareness of an individual. 

Last, entity disambiguation (ED) is a task leveraging contextual information of data to 

determine the linked entity to a mention (Broscheit, 2020). Several types of semantic and 

syntactic clues are applied to score extracted candidates and address mention ambiguity. For 

example, considering the sentence “The train on platform 3 goes to the Blue Mountains and 

is departing at 16:30”, words surrounding the mention “train” mostly link to the facility of rail 

transport, gazetteer and time. Therefore, the model for entity disambiguation is expected to 

assign this mention to the entity “rolling stock”.  
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3.4.4 Evaluation of knowledge graph selection and entity linking 

Despite the increasing trend of developing professional domain-knowledge graphs with 

uniform standards in many fields, the issues of the quality of updates, maintenance of 

knowledge graphs and entity linking tools have been noted. For instance, Labusch and 

Neudecker (2020) published a powerful BERT-based repository for entity linking and 

demonstrated high-quality knowledge graphs but these are currently unavailable due to the 

lack of maintenance and an out-of-date programming environment. To address these issues, 

a considerable number of studies evaluate the quality of knowledge graphs by designing a 

series of metrics from various dimensions (Chen et al., 2020; Issa et al., 2021). In practice, 

Färber et al. (2018) have summarised a set of operational criteria based on the needs of 

knowledge graph users, including intrinsic data quality (Piscopo & Simperl, 2019; Shenoy et 

al., 2022), contextual data quality (Piscopo & Simperl, 2019; Zhang et al., 2019), 

representational data quality (Frey et al., 2019; Piscopo & Simperl, 2019), and accessibility 

(Li et al., 2018; Piscopo & Simperl, 2019). Each dimension reflects different considerations 

of the quality, and trade-off between metrics is inevitable while selecting knowledge graphs 

due to the conflict between dimensions. For instance, one knowledge graph meeting the 

requirement of “the knowledge graph covers a basic population of general knowledge” might 

inevitably violate the criteria “RDFs in the knowledge graph do not contain empty nodes” due 

to the possible absence of linked real-world data. 

To ensure that selected knowledge graphs meet needs of interests, the following seven 

requirements are included: high consistency for processing big data, only limited domains of 

interests, high quality of the RDFs’ structure, capability of comparison with other knowledge 

graphs, a low number of absent entities, capability to handle intensive enquiries, and inclusive 

of temporal information. The evaluation process derived by Färber et al. (2018) is adopted. 

More details are presented in Chapter 4. 
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3.4.5 Application of the ontology in the context of railway safety 

A considerable number of ontologies in the railway context have been published and used by 

industry and academia. An overview of existing railway-domain ontologies can be found in 

Table 3-7 (industry sources) and Table 3-8 (academic sources). Most proposed industry 

ontologies address specific topics, such as semantic rail data integration (IT2Rail), standards 

for sharing infrastructure data across organisations (RailTopoModel), and common 

languages exchange of file formats (IFC Rail). On the other hand, ontologies developed by 

academic researchers mainly emphasise analysis of operational risks and interface between 

data resources.  

However, most ontologies released from academic studies are one-time based and not 

updated after publication. Original repository and applied protocols are not available due to 

the lack of use and maintenance. For the industry ontologies, the maintenance may stop after 

the end of projects unless there is private support from organisations. Most ontologies for the 

purpose of data integration across projects stop being updated because of the disappearance 

of demand, such as InteGRail for offering a standard for data interchange across European 

Union projects, and SMART-RAIL for exchanging rail freight knowledge with other projects 

under SHIFT2Rail. Limited industry ontologies are active with the aim of sharing and 

standardising railway infrastructure data (RailTopoModel and RailML) and signalling data 

(EULYNX) across European countries. Nevertheless, inconsistent RDF formats and manual 

rules are applied to reviewed railway domain ontologies, resulting in another obstacle for 

further reuse. An example is the ontology for railway operational accidents which manually 

extracts the knowledge entities and their relations in accordance with the check lists and 

standards proposed by Liu et al. (2021). Despite a comprehensive data connection between 

RAIB reports ranging from 2005 to 2015 and the ontology, further supplementary data has 

not able to be implemented due to limited revealed methods and customised RDF standards.
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Table 3-7: Rail domain ontologies – Industry sources 

Domain Project name Description Year of latest 

update 

Data 

Integration 

Ontologies 

InteGRail Offering a standard for data interchange within Europe via Network 

Statement Checker Ontology (NSO) 

2008 

IT2Rail (part of SHIFT2Rail) Providing IT solutions for semantic rail data integration 2018 

SMART-RAIL  

(part of SHIFT2Rail) 

Providing integrated knowledge to improve rail freight services 2018 

RaCoOn  

(part of Capacity4Rail) 

Demonstrating the ontology-based data integration considering 

various European sub-systems  

2017 

ST4RT Improving the interoperability based on Shift2Rail project 2018 

Standards 

of rail data 

formats 

RailTopoModel (RTM) Standards for sharing of infrastructure data across organisations, 

established and maintained by Union Internationale des Chemins de 

Fer (UIC) 

Now 

RailML Offering the XML-based standard for railway infrastructure data 

exchange based on RTM 

Now 

EULYNX Offering standardised signalling systems interface based on RTM Now 

IFC Rail Offering a common language to exchange file format with rail-

specific parameters 

2021 

Others Open Rail Data Open data from the rail industry in Great Britain, maintained by 

Network Rail and National Rail 

2019 
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Table 3-8: Rail domain ontologies – Academic sources 

Ontology domain Description Reference 

Heavy haul railway domain risk 

ontology 

Classifying factors and establishing the top-level risk ontology (Cao et al., 

2019) 

Railway data integration ontology Developing seamless integration of railway data (Lewis, 2015) 

Common safety ontology for railway 

vehicles 

Building top-level railway safety ontology based on ISO 26262, EN 50126 

and SIRF (the German Standard for railway vehicles) 

(Hulin et al., 

2016) 

Railway accident scenario ontology Establishing operational railway accident ontology from the perspectives of 

error in system, hardware, software and human 

(Maalel et al., 

2012b) 

Railway derailment ontology Developing the derailment ontology based on case studies (Zhao et al., 

2022) 

Multi-lingual railway accident ontology Integrating railway accident data written in different languages (Hughes et al., 

2019) 

Ontology for dysfunctional railway 

analysis 

Building ontology for railway dysfunctional analysis based on Unified 

Foundational Ontology (UFO) 

(Debbech et al., 

2020) 

Rail topology ontology Constructing rail infrastructure ontology via XML-based data formats and 

UML-based object-oriented models 

(Bischof & 

Schenner, 2021) 

Rail-road incidents ontology creation 

and upgrade 

Building ontology via data-driven machine learning approaches and 

structured data 

(Pramanik et al., 

2021) 
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3.5 Scoping workshops and surveys as tools for outcome evaluation 

This section outlines the qualitative approach adopted involving scoping workshops and 

surveys to identify the scope of research and evaluate the outcomes of models developed in 

previous sections. Workshops and surveys have been widely employed in the literature as 

dual mechanisms to gather comprehensive feedback from both technical and end-user 

perspectives (Beamer et al., 2007; Roberts et al., 2013; Worton, 2012). This approach acts 

as an effective way to bridge the gap between research and practice and develops the needs 

of practitioners. 

3.5.1 The workshop and survey design 

To help validate the approach proposed and ensure the developed model meets the railway 

industry’s needs, a scoping workshop with interactive sessions and follow-up survey was 

selected to facilitate in-depth discussions. The workshop includes a showcase containing the 

outcome of the model designed in this study with the objectives of both the workshop and 

survey aligned with the models’ outcomes and relevant literature. The workshop is designed 

as a 4-hour event, expecting to cover three aspects: finding dissemination, roundtable 

discussion, and take-out survey. The finding dissemination section concentrates on sharing 

the findings of the models. Exercises aiming to observe how participants interpret and 

understand the models are also included. Participants are given keywords and representative 

documents and asked to name the topics. They are encouraged to elaborate on how they 

interpret the topics and relationship with their day-to-day operation. The roundtable 

discussion focuses on feedback and interpretation. Participants are encouraged to connect 

the models with practical operation and identify potential contributions of the models as well 

as any issues. 
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The participant’s survey is designed based on the outcomes of models and theoretical 

underpinnings of organisational learning framework in the literature (discussed further in 

Section 7.2). The aims of the survey are to validate the outputs from the workshop and offer 

opportunities to provide individual experience and feedback. Key themes are identified from 

the review of the literature and relevant topics identified from topic models, covering the 

following topics: background information, information receiving, information processing and 

information disseminating. Questions in the surveys are open-ended addressing possibilities, 

barriers and future directions. The outlines of the participants’ survey are illustrated in 

Appendix A (Section 9.1). A pilot survey was conducted and distributed to academics for 

checking the appropriateness (discussed further in Section 4.2). 

3.5.2 Sampling strategies 

For the expected characteristics of participants, no specific characteristic was required other 

than at least 10 years of experience in the railway industry. The relevant fields of the railway 

industry include infrastructure provider/owner, infrastructure maintainer/contractor, operators 

– managers and workers, regulatory authority (government, railway safety board, accident 

investigator), and consultant (third-party, academia). The expected number of participants in 

each workshop was 10 to 15 but not limited. However, the threshold of minimal work 

experience could be lowered if the number of participants is far lower than expected. 

Participants were invited to select the preferred time zone for their participation. 

The selective sampling strategy was applied to curate a list of workshop participants. 

Invitations are sent to members of major transportation community mailing lists, comprising 

professionals engaged with transportation technology, policy, and innovation. The mailing 

lists include, but were not limited to, the Universities’ Transport Study Group (UTSG), a 

professional discussion forum for public transport researchers and practitioners, and the 

Australasian Transport Research Forum (ATRF), the principal transport research forum in 
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Australasia. Several private invitations were also sent to experts in specific contexts, such as 

railway safety and natural language processing. 

3.5.3 Analysis of workshop and survey outputs 

The qualitative data generated from the workshop contains two parts: the observation of 

exercises and the roundtable discussion. The observation content is used to extract the 

attitude of participants toward the usefulness of models and demands for practical 

implementation of participants. Such data will become critical inputs when refining the models. 

A series of labels representing topics are also expected to be extracted by the researcher 

and used in the roundtable discussion and survey. On the other hand, the roundtable 

discussion mainly covers the usefulness of the models and underlying issues in topics. 

Subsequently, the content is coded with an in-depth reading of the transcribed data. The 

codes are closely aligned with the opportunity, challenges and insightful findings for practical 

use. The codes reflect the underlying perspectives of participants, identify existing issues and 

reveal the potential solutions. Finally, these codes are integrated with the conceptual 

frameworks proposed (see Section 7.2) to mitigate the gap between the practice and 

academia. 

The survey primarily focuses on how the information is received, processed and 

disseminated by the railway industry across countries. As questions are open-ended and 

involve more individual experience, the survey is analysed by manually reading, extracting 

codes used in the workshop and classifying them into existing conceptual frameworks 

proposed. After this, participants’ perspectives and understandings of information reception, 

processing, and dissemination are reviewed and compared with the outcomes of workshops 

and the quantitative outcomes of models. This combination ensures a consistent and holistic 

view. 
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3.6 Synthesis of findings 

This chapter has provided a detailed introduction to the mechanisms of natural language 

processing models and various training approaches. A comprehensive discussion of the 

concept of word embedding for textual data and the state-of-the-art language models 

synthesised the availability of resources and potential limitations. Comparing training 

approaches derived from the review of the literature helped determine the appropriate 

method to address the restrictions of the data. The benefits and drawbacks of the rule-based, 

(semi-) supervised learning based and unsupervised learning based approaches were 

revealed to address the obstacle of practical implementation.  

In addition, the concept of ontology has been discussed. The present railway-related 

ontologies and the process for developing an ontology have been investigated to understand 

the reusability of existing ontologies. Despite a number of accident-based and risk-based 

ontologies in the academic literature (Cao et al., 2019; Debbech et al., 2020; Hughes et al., 

2019), the findings suggest that there is no ontology to describe the interfaces between 

entities and organisations involved in railway accidents that can be reused and extended the 

research in thesis. Last, the concept of knowledge graphs and their application in the 

literature and practice has been demonstrated. The entity linking process was also introduced 

as the solution of the interface between knowledge graphs and real-world data. Additionally, 

the process for evaluating existing knowledge graphs was discussed to ensure the quality of 

the developed ontology.  

To address the identified methodological issues and answer the research questions, the next 

chapter elaborates on strategies developed and the process of building models for the 

automation of railway accident analysis. 
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4. The development of models for the automation of railway 

accident analysis 

This chapter introduces a series of models for the automation of railway accident analysis. 

This chapter expands on the discussion of the previous chapters to show how the research 

objectives and research questions of the thesis are addressed. The structure of the chapter 

is as follows: the framework of model with topic modelling and entity linking strategy is 

discussed (Section 4.1), followed by the evaluation of model using scoping workshop and 

survey (Section 4.2). The synthesis of findings in this chapter is presented (Section 4.3). 

4.1 Framework of model 

This section shows details of the proposed analysis flow, consisting of the topic modelling, 

entity linking strategy, covariate analysis, temporal analysis, and the evaluation of developed 

models. Railway accident reports from the four different countries (UK, USA, Canada and 

Australia, as introduced in Section 2.3) are first put into topic modelling to extract potential 

hazards or risks. Subsequently, the heterogeneous terminology used in different areas is 

standardised with the proposed entity linking strategy. Covariate analysis and temporal 

analysis allow us to understand how the identified hazards and risks have the potential to 

influence the railway industry across countries. Last, the developed model is evaluated and 

reviewed by a workshop and survey. 

4.1.1 Topic modelling 

Topic modelling is a practical application in information retrieval and the NLP to categorise 

text into domain topics and rank documents over topics (Dornick et al., 2021; Roque et al., 

2019; Yang & Anwar, 2016). A topic model reveals the relationship between topics and 

documents by different features, such as the probability of occurrence of words and high 

dimensional word embeddings (see Section 3.3.1 and 3.3.2). The model assumes that a 



129 

document contains a collection of underlying themes, and the distribution of words in the 

document over the whole corpus might derive topics representing these underlying themes. 

A set of keywords is identified to reflect underlying topics and their trend, which is informative 

statistics for further methodological and practical applications (Blei & Mcauliffe, 2007). 

A topic model can be trained in several ways, including supervised learning, semi-supervised 

learning and unsupervised learning. To ensure high automated analysis and avoid human 

intervention, unsupervised learning approaches are selected to build the topic model. A 

considerable number of off-the-shelf programming packages for advanced NLP applications 

are developed and publicly available, such as Spacy for deep learning workflows and pre-

trained language models (Choi et al., 2015; Jugran et al., 2021), StanfordNLP for toolkits 

used in developing extendable pipeline and pre-trained models (Manning et al., 2014), and 

NLTK for a wide range of libraries for statistical NLP and data preprocessing purposes (Bird 

& Loper, 2004). Several package-oriented programming models are developed based on 

these packages and the state-of-the-art technologies introduced in Chapter 3 and result in 

significant improvements of performance in the topic modelling contexts, such as the 

structural topic model (STM) (Kwayu et al., 2021; Li et al., 2011; Roberts et al., 2019) and 

BERTopic model (Grootendorst, 2022). The following sections elaborate on the details and 

applications of the STM and BERTopic models. 

Structural topic model 

The structural topic model (STM) is an unsupervised learning based probabilistic topic 

modelling method derived from the latent Dirichlet allocation (LDA). The LDA is a generative 

statistical model that classifies documents based on the observations of each individual word 

collected in the documents and assumes that the topic of each document is derived from the 

aggregation of the words in that document. Suppose a word is a basic item from a set of 

vocabulary indexed by {1, 2,…, V}, a document (w) is a sequence of N words noted by w = 
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(w1, w2, … , wN), and a corpus is a set of M documents noted by D = {w1, w2, … , wM}. Assume 

documents (D) are created by a random combination of latent topics, characterised by a 

specific distribution over words (N) and follow a generative probabilistic model (Blei et al., 

2003). The generation of each document (di) in a corpus D follows the consecutive theorems: 

(1.) The number of words N is chosen by a Poisson (ζ) distribution. 

(2.) A random parameter θ drawn from a Dirichlet (α) distribution is chosen to represent 

the proportions of topics in one document. 

(3.) For each word wn in N words within one document, a random topic zn is assigned to 

wn drawn from a multinomial (θ) distribution. 

(4.) For each topic zn, proportions of each word are drawn from another multinomial 

distribution 𝑝(𝑤𝑛|𝑧𝑛, 𝛽) , where 𝛽  is a parameter representing the proportions of 

words in one topic. 

The basic LDA model is commonly applied and virtualised as explained by Blei (2012) and 

shown in Figure 4-1. Assuming that the dimensionality of the Dirichlet distribution is a fixed 

and known value k representing the number of topics, the 𝛽 can be parameterised as a 

𝑘 × 𝑉 matrix for mapping the probabilities of words based on the bag-of-words approach. 

Blei (2012) also notes that N is an independent variable, and its randomness is ignored during 

the development of the LDA model. Thus, the probability density of the proportions of topics 

in one document retrieved from the Dirichlet (α) distribution can be illustrated as: 

𝑝(𝜃|𝛼) =
Γ(∑ 𝛼𝑖

𝑘
𝑖=1 )

∏ Γ(𝛼𝑖)𝑘
𝑖=1

× 𝜃1
𝛼1−1

⋯ 𝜃𝑘
𝛼𝑘−1

           Equation 4-1 

where Γ(x) is the Gamma function and 𝛼𝑖 is a k-vector mapping the distribution of topics. 

Equation 4-1 reflects two “plates” in Figure 4-1, representing documents (M) and the recurring 

choice of words and topics in one document. The outer plate represents the association 

between all documents (M) and the random parameter θ drawn from a Dirichlet (α) 
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distribution, whereas the inner plate illustrates the association between all words (N) in one 

document and random topics zn drawn from a multinomial (θ) distribution. Therefore, the link 

between topics and words appearing in each document is built. On the other hand, another 

parameter 𝛽 is estimated to identify the link between the proportions of words in one topic. 

The joint distribution of θ for a set of words w and topics z can be expressed as: 

 𝑝(𝜃, 𝑧, 𝑤|𝛼, 𝛽) = 𝑝(𝜃|𝛼) × ∏ 𝑝(𝑧𝑛|𝜃)𝑝(𝑤𝑛|𝑧𝑛, 𝛽)𝑁
𝑛=1             Equation 4-2 

In this case, key parameters 𝛼  and 𝛽  can be inferred with a Bayesian approach by 

estimating the posterior distribution of known variables from the original corpus (Kuhn, 2018). 

 

Figure 4-1: The concept of the LDA model illustrated as a “plate” diagram (Blei et al., 2003)  

The LDA has been widely improved and implemented in accordance with the context of 

interests. For example, Li et al. (2018) advanced the structure of the LDA model by training 

a word2vec embedding on the dataset. The journal articles dataset was partitioned into 

summary, method and conclusion according to the cosine similarity of embeddings. A 

weighted topic embedding is created to improve the accuracy of the clustering result. Another 

example is that Guo et al. (2019) improved the accuracy of LDA by partitioning the documents 

into paragraphs and applying weighted summation to obtain the predicted topics. Despite the 

convenience of retrieving document-level information delivered by the LDA, the assumption 
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that the probability of the occurrence of one word within one document is fixed after the LDA 

model is developed restricts the flexibility of analysis. For instance, estimated parameters 𝛼 

and 𝛽 are not allowed to be sensitive to temporal factors or other potential covariates (Kuhn, 

2018). 

The STM is developed on the same statistical basis as the LDA in addition to allowing 

correlations of external factors among topics. The main difference lies in the pre-generalised 

linear models derived from the nature of the data used while estimating parameters. In doing 

so, the parameter θ is not applied to all documents equally drawn from the Dirichlet (α) but 

from the logistic-normal distribution to estimate the topical prevalence on document-level data. 

Furthermore, the assumption is that fixed parameter 𝛽 (distribution of topics over words) 

should be addressed by replacing the multinomial distribution with a multinomial logit model 

for estimation. Mathematically, the parameter (𝛽𝑑,𝑘,𝑣) for an individual word v in document d 

within the topic k should be as the following equation for capturing the influence of covariate 

data (Roberts et al., 2013): 

𝛽𝑑,𝑘,𝑣 ∝ exp (𝑚𝑣 + 𝜑𝑣
.,𝑘 + 𝜑𝑣

𝑦,.
+ 𝜑𝑣

𝑦,𝑘
)           Equation 4-3 

where 𝑚𝑣 is the baseline occurrence of word v, the 𝜑𝑣
.,𝑘

 is the effect of topic k, the 𝜑𝑣
𝑦,.

 is 

the effect of covariate y, and the 𝜑𝑣
𝑦,𝑘

 is the mixed effect among topic k and covariate y. Thus, 

the plate diagram (Figure 4-1) can be further extended in Figure 4-2. The main distinction lies 

in the prior estimation of parameter θ during topic prevalence analysis and additional 

consideration of covariate variables in topical content. More mathematical details and 

theorems can be found in Roberts et al. (2013). The STM is more suitable than the LDA for 

analysis of railway accident reports because critical covariates are usually disclosed and 

discussed in reports, such as the occurrence of time and the involved mode of rail transport 

and organisations. These critical covariates can offer valuable insights for better 

understanding the nature and prevalence of railway accidents across time. For instance, the 
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STM may provide the difference in how platform–train interface incidents occur on a light rail 

system and other modes of rail transport. The trend of how it happens may also be revealed 

by supplementing the occurrence of time as an additional covariate in STM temporal analysis. 

 

Figure 4-2: The concept of the structure topic model illustrated as a “plate” diagram 

(Roberts et al., 2013) 

To ensure the performance of the developed model, two metrics are introduced as indicators: 

semantic coherence and exclusivity. The semantic coherence is a measurement determining 
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the occurrence of individual words and the co-occurrence of the pairs of distinctive words. 

For instance, the thesis dataset has terms “freight train” and “passenger train” with the same 

word “train”, and a distinct topic should be able to detect this and assign these two words to 

different topics. On the other hand, exclusivity means the extent to which the model is able 

to assign one critical keyword to one topic with a high level of appearing possibility and ensure 

the possibility of appearing is low in other topics. A higher semantic coherence usually leads 

to lower exclusivity and vice versa. A model with a lower number of topics (k) would have 

higher semantic coherence because a limited number of topics and words are used for 

estimation. However, it would lead to lower exclusivity as well because the option of critical 

keywords is limited. When the k increases, the semantic coherence would decrease, whereas 

the exclusivity increases because more topics are available for assigning distinct keywords. 

Once k is equal to the number of words in the vocabulary (V), the exclusivity will become 

almost infinite, and the result will not offer any valuable insight. To reach a balance between 

semantic coherence and exclusivity by determining a suitable number of topic k, Equation 4-

4 covered by both metrics is designed in this thesis to estimate the balanced performance of 

the developed STM. 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖 = (
𝑆𝐶𝑖−𝑆𝐶𝑚𝑎𝑥

𝑆𝐶𝑚𝑖𝑛−𝑆𝐶𝑚𝑎𝑥
 ) × (

Exclusivity𝑖−Exclusivity𝑚𝑎𝑥

Exclusivity𝑚𝑖𝑛−Exclusivity𝑚𝑎𝑥
 )           Equation 4-4 

where 𝑆𝐶𝑖  represents the semantic coherence of the i model, 𝑆𝐶𝑚𝑎𝑥  and 𝑆𝐶𝑚𝑖𝑛  are the 

highest and lowest semantic coherence values in all models respectively, Exclusivity𝑖 

represents the exclusivity of the i model, Exclusivity𝑚𝑎𝑥 and Exclusivity𝑚𝑖𝑛 are the highest 

and lowest exclusivity values in all models respectively, allowing us to select the model with 

the lowest marginal effect on semantic coherence and exclusivity for a range of k. 

BERTopic model 

Although the STM provides additional functions for understanding underlying themes and 

trends of a corpus, the foundation of the language model used in the development of STM is 
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based on bag-of-words representations. The bag-of-words approach treats each word 

individually regardless of the relationships between words, hindering the model from taking 

account of the context and semantic information in the text. To address this issue, a growing 

number of researchers use the word embedding representation to accurately capture the 

contextual information of textual data in the NLP field (Dang et al., 2020; Han & Eisenstein, 

2019; Heidarysafa et al., 2019). The semantic information can be adequately captured by 

vectorising texts. 

The BERTopic is a topic model adopting the BERT (see Section 3.3.1.3) pre-trained language 

model (Devlin et al., 2018) to retrieve high-dimension vectors of texts for clustering. For 

implementation, topics are generated through three steps: text vectorisation with a pre-

trained language model, dimension reduction for optimising the modelling process, and topic 

representations with custom class-based TF-IDF (c-TF-IDF).  

For the text vectorisation with a pre-trained language model, documents in the corpus are 

embedded in vector space with high dimensions, allowing semantical comparisons. For 

instance, the sentences “The train stops before the signal” and “The train fails to stop before 

the signal” will have a longer semantical distance in vector space than the representation 

created by the bag-of-words approach. The Sentence-BERT (SBERT) framework (Reimers 

& Gurevych, 2019) is used to convert texts into dense vector representations, which has been 

commonly applied to NLP tasks and achieved high performance (Ganesh et al., 2020; 

Labusch & Neudecker, 2020; Ly et al., 2020). The author of BERTopic also states that the 

language model used in BERTopic is exchangeable so that the performance can be 

continuously improved through the development of NLP techniques (Devlin et al., 2018). 

Once the dense vectors are generated, the spatial distance between data becomes less 

meaningful due to the multidimensions of local and global features. Therefore, the Uniform 

Manifold Approximation and Projection (UMAP) technique is introduced to reduce the 
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dimensionality by projecting vectors to lower dimensional space (McInnes et al., 2018). 

Subsequently, the Hierarchical Density-Based Spatial Clustering of Applications with Noise 

(HDBSCAN) is used to cluster vectors in lower dimensional space (McInnes et al., 2017). 

The advantage of HDBSCAN is allowing noise to be modelled as outliers, avoiding unrelated 

documents being sorted to topics and influencing the representations of topics. The clustering 

approach can be replaced by other algorithms in the interest of accuracy and computational 

time. 

Last, each identified cluster is assigned to one topic with a distribution of keywords. To 

highlight the difference between clusters, the custom class-based TF-IDF (c-TF-IDF) is used 

to rank keywords by the combination of term frequency (TF) and inverse document frequency 

(IDF) (Devlin et al., 2018; Hakim et al., 2014). The weight of a term (t) over documents sorted 

to a topic (c) can be expressed as Equation 4-5: 

𝑊𝑡,𝑐 = 𝑡𝑓𝑡,𝑐 × log (1 +
𝐴

𝑡𝑓𝑡
)                    Equation 4-5 

where tf is the term frequency and A is the average number of keywords per topic. The output 

reflects the importance of a term in one topic rather than in one document, allowing us to 

understand the distributions of keywords on each topic. Furthermore, Equation 4-5 can be 

extended for dynamic topic modelling to reflect the evolution of topics over time. For instance, 

a topic relating to “over speeding” and “SPAD” can be found across the corpus, but the term 

“Eurotunnel” might not be found in documents before 1994 (the date of opening). Such 

variance has been mixed, hindering researchers from understanding the temporal effect of 

“over speeding” and “SPAD” on the term “Eurotunnel”. To overcome such difficulties, Devlin 

et al. (2018) modified the calculation of the weight 𝑊𝑡,𝑐  by creating a local temporal 

representation at time i with the original equation. 

𝑊𝑡,𝑐,𝑖 = 𝑡𝑓𝑡,𝑐,𝑖 × log (1 +
𝐴

𝑡𝑓𝑡
)           Equation 4-6 
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Equation 4-6 adds an additional dimension to the weight and enables the representation of 

local variables without modifying the parameters of the trained BERTopic model and clustered 

documents. An overview of processes for establishing a BERTopic model is illustrated in 

Figure 4-3. 
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Figure 4-3: Overview of workflows for developing a BERTopic model 
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Unlike the STM, the parameter required to be set by users in the BERTopic model is not the 

number of topics but the minimum cluster size (MCS). The minimum cluster size determines 

the extent to which the HDBSCAN condenses the cluster hierarchy while connecting words 

for potential topics, which directly influences the number of outliers and the number of 

identified topics. Figure 4-4 shows the distribution of the number of documents over each 

topic. The number of identified outliers (which are assigned as topic -13 and drawn on the 

left of the red line) almost dominates 50% of all documents. On the other hand, most topics 

(after topic 20) contain a very limited number of documents. Such an imbalanced result 

suggests that either an inappropriate minimum cluster size is set, or an inappropriate dataset 

is used. 

 

Figure 4-4: Distribution of the number of documents over each topic using BERTopic on the 

recommendations proposed by RAIB reports (see Section 5.1 and 5.2 for more details of 

RAIB dataset) 

 
3 In python programming, the index -1 refers to the last items of a list. Therefore, outliers are distributed to 
topic -1 which is the last group of a topic list.  
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It has not been commonly agreed how to determine the minimum cluster size to retrieve a 

balanced outcome. Devlin et al. (2018) argued that setting minimum cluster size as 15 can 

lead to better performance for general data analysis. In this thesis, a variety of minimum 

cluster size values are tested for each dataset used. Outcomes of models with a lower 

number of outliers and smoother distribution of documents over all topics are manually 

selected. 

Comparison and selection of applied models 

Despite a growing body of evidence in the literature showing that word-embedding-based 

NLP models outperform traditional statistics-based models (Angelov, 2020; Grootendorst, 

2022; Han & Eisenstein, 2019; Lata et al., 2022; Ly et al., 2020), the selection of approaches 

used for topic modelling context via unsupervised learning still heavily relies on the 

characteristics of data. From the perspective of clustering methods (Figure 4-5), BERTopic 

identifies a topic by drawing lines to distinguish words in different topics on the higher 

dimension. On the other hand, the STM obtains topics by iteratively simulating potential topic 

locations based on word occurrence in each document. Therefore, BERTopic tends to actively 

connect datapoints close to each other and assign datapoints far from others as outliers. In 

contrast, the STM keeps modifying the grouping strategies by moving the “angle” of each 

topic without considering the distance between datapoints. BERTopic might be suitable for 

the data retrieved from various sources and concentrating on multiple contexts, while the 

STM might provide more valuable insights if the heterogeneity of data sources and 

terminology used is low. 
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Figure 4-5: Concept of clustering approach used by BERTopic (left) and STM (right) 

Another notable difference between the STM and BERTopic is the dimensionality of 

processed data during clustering. The dimensionality refers to information representing the 

meaning of words. Higher dimensionality can distinguish words from greater granularity but 

also increase the computational time during the training process. For the bag-of-words 

approach used by the STM, the dimensionality is equal to the volume of vocabulary used in 

the data. Each word is treated individually and uniquely regardless of words with similar 

meanings. For instance, “rail” and “track” are identified as two independent words in the STM 

even though they share part of the concept that supports wheels to roll on. On the other hand, 

the word-embedding-based approach (BERT) identifies the meaning of one word by 

considering the words in the same document. The higher dimensionality of the word-

embedding-based approach allows the model to store the characteristics of each word from 

different dimensions. BERT, one of the most popular language models, uses 768 dimensions 

for machines to understand the context of texts (Devlin et al., 2018). For instance, the words 

“rail” and “track” share the similar distribution of dimensions given that these two terms 

frequently appear in the same context. 

The dimensionality of processed data plays an important role in determining the granularity 

of input data. In other words, the decision of whether to split documents into sentences before 

developing analysis needs to be made for the appropriate balance between the level of 
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captured information from texts and computational requirements. An example of 

dimensionality of 339 processed railway accident reports published by the RAIB containing 

13,077 vocabularies and 15,294 sentences is illustrated (Table 4-1).  

For the STM, the dimensionality is associated with the volume of vocabulary. Thus, the 

transferred data matrix is sparse, not sensitive to the length of documents, and contains only 

“1” and “0” (Pennington et al., 2014). On the other hand, the BERT-based model compresses 

input data and expresses each datapoint with 768 dimensions regardless of the number of 

words in one document, implying that long documents might be over-condensed, and much 

information will be lost during transformation. Although the literature has not suggested the 

appropriate data length for BERT model transformation, a full railway accident report 

containing different contextual sections and over 10,000 words might be too rich to be 

compressed into (the popularly used) 768 variables. A large-size dense matrix also requires 

heavy multiplications and increases already long computational time; for instance, 260,352 

multiplications must be done to develop a BERT-based model with a 339 × 768 matrix for 

document-level analysis. Last, the BERTopic model introduces the uniform manifold 

approximation and projection (UMAP) technique to project higher dimensional features to 

lower dimensional expressions. Although part of the information is sacrificed, the outcome 

retrieved from compressed higher dimensional features provides additional characteristics 

for topic modelling and requires less time for model development (Grootendorst, 2022; 

McInnes et al., 2018).   
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Table 4-1: A demonstration of the dimensionality of processed data over different 

approaches on the railway accident reports published by the RAIB 

Data – railway accident 

reports (RAIB) 

STM BERT only BERT+UMAP 

(BERTopic) 

Dimension (input) –  

document level 

(339, 13,077)* (339, 768) (339, 3) 

Dimension (input) –  

sentence level 

(15,294, 13,077)* (15,294, 768) (15,294, 3) 

Dimension (output) – 

document level 

(339, n)** (a, b, 768)*** (a, b, 3)*** 

Dimension (output) –  

sentence level 

(15,294, n) (a, b, 768)*** (a, b, 3)*** 

*Sparse matrix, **number of topics, ***a: number of clusters; b: number of clustered documents 

To select the appropriate approach, the structure of railway accident reports should be 

analysed. Generally, railway accident reports consist of abstract, summary, analysis, 

conclusions and recommendations sections. Each section illustrates the railway accident 

from different perspectives. For instance, the abstract and summary sections describe the 

general information, fact of events, sequence of occurrences and consequences, whereas 

analysis, conclusions and recommendations emphasise the observations, investigations and 

comments made by investigators. In addition, a mixture of critical information is also outlined, 

including causal factors, underlying factors, contributing factors, and identified hazards. All of 

these indicate that a railway accident report contains a wide range of heterogeneous 

information that might not be fully captured by the document-level analysis. One document 

may also include more than one topic, so assigning one document to a single topic via 

document-level analysis might not be realistic. Nevertheless, the terminology used in the 

huge corpus may not be consistent over time, implying the STM based on the bag-of-words 

approach might not be applicable. Therefore, BERTopic used for sentence-level topic 

modelling is selected as the method for the railway accident reports analysis in this thesis. 

On the other hand, BERTopic might not be suitable for the recommendation dataset given 
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that a strong semantic homogeneity of descriptions is commonly found, leading BERTopic to 

extract such features and recognise others as outliers. For example, consider the following 

recommendations from the RAIB recommendations dataset (see Section 5.3.2 for more 

details about the RAIB recommendations dataset): 

⚫ It is expected that Network Rail will take account of principles identified by recent 

research when modifying crossings. 

⚫ Network Rail should review the design of long hoods that can be fitted at level 

crossings and implement any necessary changes identified to make them more 

effective. 

⚫ When addressing risks identified by the implementation of the revised process, 

Network Rail should prioritise the implementation of required mitigation measures to 

level crossings where consequences of operator error are severe and not protected 

by engineered safeguards. 

The recommendations above are assigned to the same topic by BERTopic because the 

semantic meaning of Network Rail’s obligation on level crossing risks is detected by words in 

bold, including “expected”, “should”, “Network Rail” and “level crossings”. However, the topic 

of interest in this study is “how” recommendations address the risk. Keywords with underline 

including “review”, “implementation” and “principles” should be identified and assigned to 

topics. In this case, the STM might be more applicable because the occurrence of words is 

more meaningful than the semantic context information. Therefore, the STM is applied to the 

analysis of the recommendations in this thesis.  

4.1.2 Entity linking strategy 

There are several approaches for standardising identical mentioned entities with different 

terms, such as named entity recognition (Li et al., 2020; Settles, 2003; Wu et al., 2020) and 
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information retrieval (Balali et al., 2021; Gudivada & Arbabifard, 2018). However, most 

models in the literature are developed by supervised learning with a large amount of labelled 

data, complicated training algorithms and powerful machines. No pre-trained model in a 

railway-specific context has been developed in the literature. To address the issue without 

training a supervised learning model, this study develops a series of alternative strategies to 

achieve the objective of standardisation. 

Next, the overview of the entity linking strategy was illustrated as depicted in Figure 4-6. The 

initial railway accident ontology was established by collecting existing ontologies published 

in the literature or railway industry and manually reviewing railway accident reports. 

Subsequently, the knowledge graphs were introduced for identifying and disambiguating 

potential entities from the railway accident report corpus. A framework for selecting the 

appropriate knowledge graph was borrowed from the literature, and the result shows that 

Wikidata meets the requirements of this study. The off-the-shelf API toolkit Tagme was used 

to identify potential candidates for the other entities supplemented in the railway accident 

ontology and provide the interface between the original railway accident reports and Wikidata. 

An additional context-sensitive disambiguation process based on the graph theory was 

proposed on the basis of the existing framework to augment the power of the proposed model 

on entity detection and entity linking. Last, the railway accident ontology linked to real-world 

data was finalised. A notable limitation of the derived ontology is that an entity that does not 

exist in Wikidata may not be extracted and found. The primary use of the proposed ontology 

is to standardise the heterogeneous terminology used in different countries. In addition, the 

ontology is also expected to bridge the gap between the identified keywords from the topic 

modelling and the original railway accident reports (Figure 4-7). The output of the topic 

modelling is in the form of individual words, which are difficult to interpret. However, the 
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associated entities of each keyword can help better understand the true meaning of retrieved 

keywords by linking keywords back to the original reports. 

 

Figure 4-6: Overview of the proposed entity linking strategy 

 

Figure 4-7: Bridge between identified entities and keywords from the topic modelling 

4.1.2.1 The proposed conceptual framework for entity linking 

The proposed conceptual framework for addressing the entity linking task is illustrated in 

Figure 4-8. First, an ontology describing the nature of railway accidents, potential underlying 
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factors and systematic interactions between railway organisations is developed (Figure 4-9). 

Second, a knowledge graph (described in Section 3.4.2) is selected with a comprehensive 

process proposed in the literature. The knowledge graph is presented as an ontological 

framework and linked to the designed railway accident ontology to build a hierarchy ontology. 

Only limited properties are extracted to reduce computational time. Third, an off-the-shelf 

system Tagme is implemented for addressing mention detection (MD) and candidate 

generation (CG) tasks (Ferragina & Scaiella, 2010). Subsequently, a custom entity 

disambiguation (ED) strategy is proposed to exclude irrelevant entities. Finally, the remaining 

entities are linked to the knowledge graph as instances. Therefore, the framework is able to 

connect terms with the same concepts automatically. 

This thesis adopts the evolutive approach to build the railway accident ontology. The objective 

of this ontology is to provide a map for the entity linking model to connect the terms and 

entities of interest; outline entities involved and the general mechanism of risks in events; 

and identify the existing interfaces within the railway industry from the socio-technical 

perspective. The scale of developed ontology might not cover all concepts but is sufficient for 

addressing the entity linking task and standardising terminology. 
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Figure 4-8: Illustration of the proposed conceptual framework to address the entity linking task 
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Figure 4-9: The designed railway accident ontology
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4.1.2.2 Establishing and refining the railway accident ontology 

To start with, an initial railway accident upper-level ontology is established after reviewing 

existing upper-level ontologies developed in the railway safety literature (Section 3.4.5). 

Subsequently, ten railway accident reports published by the RAIB are randomly selected and 

reviewed carefully as the initial map. Critical entities are manually identified and extracted to 

build the depiction-level ontology. The ontology is further extended with topics identified by 

developed topic models and the selected knowledge graphs.  

Specifically, the process of establishing and refining the ontology is: 

(1.) Collect published rail domain ontologies in the literature or the railway industry. 

(2.) Review collected ontologies and initialise railway accident ontology. 

(3.) Initialise the classes, properties and statements in the ontology. 

(4.) Select open-sourced knowledge graphs (KGs) as the interface between the rail 

accident reports and the ontology. 

(5.) Build the metrics for the evaluation of knowledge graphs. 

(6.) Use the off-the-shelf Tagme package to identify the potential entities (or instances) 

and their RDFs from railway accident reports. 

(7.) Review the RDFs of entities from railway accident reports. Irrelevant entities with 

classes and properties are removed. 

(8.) Identified entities with properties instanceOf (wdt:P31) and subClassOf (wdt:P279) 

and linked to railway-related domains in the knowledge graphs are extracted and 

added to existing railway accident ontology after manual reviews (Snowball search) 

(Kume & Kozaki, 2021). 

(9.) Further extend and evaluate the railway accident ontology by context-sensitive 

disambiguation. 

(10.) Finalise the railway accident ontology. 
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4.1.2.3 Knowledge graph selection and evaluation 

Next, a KG needs to be selected to connect the potential entities in texts to the railway 

accident ontology. Several KGs are publicly available and popularly used in the literature. For 

instance, Matthew English (2018) developed an extendable schema for constructing 

annotated corpus with Wikipedia Toolkit API and Stanford Named Entity Recogniser. Wikidata, 

a collaborative knowledge graph, containing common knowledge of open data, has been 

applied to address the issue of the homogeneity of terminology used (i.e. rail traffic controller, 

train dispatcher, train controller, signalman) and ambiguation (i.e., conductor, conductor track). 

To select the appropriate KGs, the KG quality and evaluation framework proposed by Färber 

et al. (2018) is applied (Table 4-2). Five KGs used in the literature are identified for evaluation: 

DBpedia, Freebase, OpenCyc, Wikidata and YAGO (Augenstein et al., 2016; Elsahar et al., 

2018; Färber et al., 2018; English, 2018; Sakor et al., 2020). 

The evaluation consists of four dimensions: intrinsic, contextual, representational data quality, 

and accessibility. The intrinsic dimension measures whether the data can be assessed 

independently from its context. The selected KG should be correct, reliable, free of error, 

consistent with accumulated knowledge, and accepted to be corrected. On the other hand, 

the contextual dimension highlights the usability of the KG from the perspective of end users. 

The selected KG must offer broad and deep knowledge with timeless updates and display in 

an intuitive order. The representational data quality dimension measures the extent to which 

data in the KG is human- and machine-readable without ambiguous concepts. Last, the 

accessibility dimension ensures that the KG is fully open-sourced and linked to other KGs 

with appropriate interfaces. The selected KG with high accessibility should be available, 

retrievable and reusable regardless of time and number of requests. Table 4-2 summarises 

the evaluation framework and describes each criterion. 
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Despite the completion of the evaluation framework, not all criteria should be treated equally 

due to the nature of tasks needed during the development of the entity linking model for the 

railway context. First, entities in the KG should be accurate, cover a wide range of contexts 

and be connected to other entities with reliable sources. Railway accident reports might 

contain mixed contexts, such as meteorology, physics, aerodynamics and engineering. The 

KG is expected to cover terms mentioned in the reports and have the corresponding correct 

concept describing the identical entity used in original reports. Second, the KG should provide 

alternative vocabulary under the same entity. The purpose of the entity linking is to 

standardise the different terminology used in railway accident reports across countries. More 

alternatives empower the model to identify more heterogeneous terms and potentially 

increase the performance. Last, the KG should be fully open-sourced with high computer 

readability and consistency. The KG is used to iterate multiple times on a variety of inquiries 

for disambiguation purposes. The interface between the KGs and the developed model also 

must exchange information efficiently for higher programming stability. 

After determining the required characteristics, each criterion in the KG quality and evaluation 

framework is reviewed carefully, and a different level of consideration is assigned to each 

criterion based on the requirements. The result of evaluating KG candidates is shown in Table 

4-3. The score of each criterion is extracted from the original work of Färber et al. (2018). The 

consideration is valued by this study based on the aforementioned requirements. A criterion 

labelled with “High” is weighted three times as much as the base score, while “Medium” is 

weighted two times as much as the base score and a criterion labelled “Low” is treated equally 

to the original score. The Unweighted Average (UA) of the KG k is calculated by Equation 4-

7. 

𝑈𝐴(𝑘) =
∑ 𝑚𝑖(𝑔)𝑛

𝑖=1

𝑛
                  Equation 4-7 
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where 𝑚𝑖  is the criteria in the KG quality and evaluation framework, n is the number of 

criteria. The Weighted Average (WA) can be calculated by Equation 4-8. 

𝑊𝐴(𝑘) =
∑ 𝑤𝑖×𝑚𝑖(𝑔)𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

               Equation 4-8 

where 𝑤𝑖  is the consideration indicators. 𝑤𝑖  is 3 for the consideration “High”, 2 for the 

consideration “Medium”, and 1 for the consideration “Low”. 

Overall, Wikidata exceeds other KGs on an unweighted and weighted average, indicating 

that Wikidata generally performs well on each dimension and satisfies requirements. 

Therefore, Wikidata is selected as the base for the KG for addressing the entity linking model.
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Table 4-2: Knowledge graph (KG) quality and evaluation framework (revised based on Färber et al., 2018) 

Metrics Description Aspects of quality 

Intrinsic dimension – Accuracy 

Syntactic validity of RDF documents RDFs in the KGs are created via standardised 

tools. 

Consistency of data type 

Syntactic validity of literals Values stored are syntactically valid and 

consistent. 

Consistency of data type 

Semantic validity of triples The statements of entities are held true or from 

trusted sources. 

Trustworthiness of data 

Intrinsic dimension – Trustworthiness 

Trustworthiness on KG level Approaches of data curation and insertion. Trustworthiness of data 

Trustworthiness on statement level Statements are written via provenance 

vocabulary. 

Consistency of data type 

Using unknown and empty values Unknown and empty values are permitted. Format of data 

Intrinsic dimension – Consistency 

Check of schema restrictions during insertion of 

new statements 

Examining schema restrictions before inserting 

new statements is required. 

Consistency of data type 

Consistency of statements – class constraints Examining class restrictions before inserting new 

statements is required. 

Consistency of data type 

Consistency of statements – relation constraints Examining relation restrictions before inserting 

new statements is required. 

Consistency of data type 
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Table 4-2: Knowledge graph (KG) quality and evaluation framework (revised based on Färber et al., 2018) (continued) 

Metrics Description Aspects of quality 

Contextual dimension – Relevancy 

Creating a ranking of statements Statements can be expressed from temporal 

perspective. 

Trustworthiness of data 

Contextual dimension – Completeness 

Schema completeness Classes and relations meet the gold standard. Completeness of data 

Column completeness The instances of a class have the same relations. Consistency of data type 

Population completeness The KG covers a basic population of general 

knowledge. 

Completeness of data 

Contextual dimension – Timeliness 

Timeliness frequency of the KG The KG is updated continuously. Trustworthiness of data 

Specification of the validity period of statements The validity period of statements is disclosed Format of data 

Specification of the modification date of 

statements 

The modification date is specified. Format of data 
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Table 4-2: Knowledge graph (KG) quality and evaluation framework (revised based on Färber et al., 2018) (continued) 

Metrics Description Aspects of quality 

Representational data quality – Ease of understanding 

Description of resources Human-understandable resources/tags are 

available. 

Format of data 

Labels in multiple languages Resources/tags are available in multiple 

languages. 

Completeness of data 

Understandable RDF serialisation Alternative RDF serialisation is available. Format of data 

Self-describing URIs Descriptive URIs are available. Format of data 

Representational data quality – Interoperability 

Avoiding blank nodes and RDF reification RDFs in the KG do not contain empty nodes. Completeness of data 

Provisioning of several serialisation formats Alternative RDF format is available. Format of data 

Using external vocabulary Vocabulary used to represent RDFs is consistent. Consistency of data type 

Interoperability of proprietary vocabulary Vocabulary used to represent RDFs contains 

interlinks. 

Format of data 
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Table 4-2: Knowledge graph (KG) quality and evaluation framework (revised based on Färber et al., 2018) (continued) 

Metrics Description Aspects of quality 

Accessibility dimension – Accessibility 

Dereferencing possibility of resources RDFs can be resolvable via HTTP. Consistency of data type 

Availability of the KG Requests to the KG are restricted. Usefulness 

Provisioning of public SPARQL endpoint Complex queries are allowed via SPARQL. Usefulness 

Provisioning of an RDF export RDF dump is available and downloadable. Usefulness 

Support of content negotiation Ambiguous search is allowed. Usefulness 

Linking HTML sites to RDF serialisations RDFs are represented in HTML links. Format of data 

Provisioning of KG metadata Metadata of the KG is machine-readable. Format of data 

Accessibility dimension – License 

Provisioning machine-readable licensing 

information 

The license information is machine-readable and 

available. 

Format of data 

Accessibility dimension – Interlinking 

Interlinking via owl:sameAs Cross-KGs links are available. Format of data 

Validity of external URIs External links are resolvable. Format of data 
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Table 4-3: The result of evaluating knowledge graph (KG) candidates (based on the result of Färber et al., 2018) 

Metrics DBpedia Freebase OpenCyc Wikidata YAGO Consideration 

Intrinsic category – Accuracy      

Syntactic validity of RDF 

documents 

1 1 1 1 1 High 

Syntactic validity of literals 0.994 1 1 1 0.624 Low 

Semantic validity of triples 0.990 0.995 1 0.993 0.993 High 

Intrinsic category – Trustworthiness      

Trustworthiness on KG level 0.5 0.5 1 0.75 0.25 High 

Trustworthiness on statement level 0.5 1 0 1 1 High 

Using unknown and empty values 0 1 0 1 0 Medium 

Intrinsic category – Consistency      

Check of schema restrictions 

during insertion of new statements 

0 1 0 1 0 High 

Consistency of statements – class 

constraints 

0.875 1 0.999 1 0.333 High 

Consistency of statements – 

relation constraints 

0.992 0.451 1 0.500 0.992 High 
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Table 4-3: The result of evaluating knowledge graph (KG) candidates (based on the result of Färber et al., 2018) 

(continued) 

Metrics DBpedia Freebase OpenCyc Wikidata YAGO Consideration 

Contextual category – Relevancy      

Creating a ranking of statements 0 1 0 1 0 High 

Contextual category – Completeness      

Schema completeness 0.905 0.762 0.921 1 0.952 Medium 

Column completeness 0.402 0.425 0 0.285 0.332 High 

Population completeness 0.93 0.94 0.48 0.99 0.89 Low 

Contextual category – Timeliness      

Timeliness frequency of the KG 0.5 0 0.25 1 0.25 Medium 

Specification of the validity period 

of statements 

0 1 0 1 1 Low 

Specification of the modification 

date of statements 

0 1 0 0 0 Low 

Representational data quality – Ease of 

understanding 

     

Description of resources 0.704 0.972 1 0.999 1 Low 

Labels in multiple languages 1 1 0 1 1 Low 

Understandable RDF serialisation 1 1 0 1 1 Low 

Self-describing URIs 1 0.5 1 0 1 Low 
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Table 4-3: The result of evaluating knowledge graph (KG) candidates (based on the result of Färber et al., 2018) 

(continued) 

Metrics DBpedia Freebase OpenCyc Wikidata YAGO Consideration 

Representational data quality – Interoperability      

Avoiding blank nodes and RDF 

reification 

0.5 0.5 0.5 0 0.5 Medium 

Provisioning of several serialisation 

formats 

1 0 0.5 1 1 Low 

Using external vocabulary 0.61 0.108 0.415 0.682 0.134 High 

Interoperability of proprietary 

vocabulary 

0.150 0 0.513 0.001 0 Medium 

Accessibility category – Accessibility      

Dereferencing possibility of 

resources 

1 0.437 1 0.414 1 High 

Availability of the KG 0.996 0.999 1 0.999 0.731 High 

Provisioning of public SPARQL 

endpoint 

1 0 0 1 1 Low 

Provisioning of an RDF export 1 1 1 1 1 Low 

Support of content negotiation 0.5 0 0 1 1 Medium 

Linking HTML sites to RDF 

serialisations 

1 1 0 1 1 Low 

Provisioning of KG metadata 1 0 1 0 0 Low 

Accessibility category – License      

Provisioning machine-readable 

licensing information 

1 0 0 1 0 Low 
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Table 4-3: The result of evaluating knowledge graph (KG) candidates (based on the result of Färber et al., 2018) 

(continued) 

Metrics DBpedia Freebase OpenCyc Wikidata YAGO Consideration 

Accessibility category – Interlinking      

Interlinking via owl:sameAs 0.251 0 0.382 0 0.310 High 

Validity of external URIs 0.929 0.908 0.894 0.957 0.956 High 

Unweighted Average 0.683 0.603 0.496 0.752 0.625  

Weighted Average* 0.675 0.622 0.560 0.734 0.616  

*Assuming the weights of consideration are: High = 3, Medium = 2, Low = 1
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4.1.2.4 Wikidata 

Wikidata (formerly Freebase) is an open-sourced and collaboratively edited set of KG 

covering general knowledge. The expression of knowledge in Wikidata is based on 

ontological logic, including concept, property and value. The information provided by Wikidata 

can be interpreted by both humans and machines, allowing end users to conduct further 

analysis, such as enquiring via the Wikidata Query Service and Dumping Service to extend 

the Wikidata functions. Wikidata has drawn considerable attention in academia recently, 

especially in the biomedical and medical context. Many studies have considered Wikidata as 

a validated corpus for analysis and contributor to the knowledge map (Tharani, 2021; Turki 

et al., 2019; Waagmeester et al., 2020, 2021). Waagmeester et al. (2020) also validated that 

Wikidata, as continuously updated and community-maintained KG, meets the principles of 

Findability, Accessibility, Interoperability and Reusability (FAIR) and has strong potential to 

be applied to scientific research. 

In the transportation context, some studies have applied publicly available KGs, such as 

DBpedia4, as the foundation for their research purpose. Metzke et al. (2013) developed a 

semantic complex event processing for logistics to detect meaningful events (such as a flood) 

on a transportation route. DBpedia is used as a top-level ontology with slight modification. 

Abdullah et al. (2017) used DBpedia to retrieve the semantic meaning from the recorded 

voice of control tower operators and pilots to identify aviation safety-related events. 

For the entity linking model, this thesis only leverages the knowledge network and Wikidata 

Query Service API to extract connections between entities of interest. The content, 

 
4 DBpedia is a project aiming to extract structured data from Wikipedia and publish them in RDF formats to 
provide a series of services around the extracted data, for instance, the SPARQL enquiring system and a 
number of mappings to external ontologies, an ontology itself. 
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explanation and other information of entities on Wikidata are not considered to simplify the 

process and ensure the consistency of data.  

4.1.2.5 Tagme – the open-sourced on-the-fly annotation of short text 

To extract potential entities in text, the off-the-shelf API Tagme is introduced to address the 

MD and CG question. Tagme is a toolkit for augmenting structure-free text by connecting text 

to the relative knowledge hyperlinks under the Wikipedia framework, enabling users to 

recognise the sequence of terms and assign an unambiguous entity to identified terms 

without training a supervised learning NLP model. Wikipedia pages are selected for the 

catalogue used to categorise the entities due to the high-quality entities and strong networked 

structure (Ferragina & Scaiella, 2010; Hasibi et al., 2016). The Tagme toolkit also produces 

flexible outcomes allowing end users to conduct further analysis. 

For the MD, the Tagme compares the input text with all Wikipedia pages exclusive of 

disambiguation pages, redirect pages and other irrelevant pages, and extracts a set of 

potential entities 𝐴𝑡  for each term that might be connected to the Wikipedia entity. 

Subsequently, the probability of generated candidates is calculated based on relativeness, a 

metric measuring the overlap between the in-linking pages in Wikipedia. The voting scheme 

is used in Tagme, a concept of pairwise comparison between candidates. The voting process 

can be illustrated as Equation 4-9. 

𝑣𝑜𝑡𝑒𝑏(𝑝𝑎) =
∑ 𝑟𝑒𝑙(𝑝𝑏,𝑝𝑎)×𝑃𝑟(𝑝𝑏|𝑏)𝑝𝑏∈𝑃𝑔(𝑏)

|𝑃𝑔(𝑏)|
                      Equation 4-9 

where a, b denotes two Wikipedia entities with the page 𝑝𝑎 and 𝑝𝑏 and ambiguous set of 

pages 𝑃𝑔(𝑎)  and 𝑃𝑔(𝑏) . The 𝑟𝑒𝑙(𝑝𝑏 , 𝑝𝑎)  represents the relativeness of 𝑝𝑎  and 𝑝𝑏 . The 

𝑣𝑜𝑡𝑒𝑏(𝑝𝑎) refers to the possibility that instead of assigning to the entity a, the entity b has 

more chances of being correct. Note that if only one candidate is identified during the CG, 
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the 𝑃𝑟(𝑝𝑏|𝑏) and |𝑃𝑔(𝑏)| are equal to 1 so the 𝑣𝑜𝑡𝑒𝑏(𝑝𝑎) is equal to 𝑟𝑒𝑙(𝑝𝑏, 𝑝𝑎), implying 

the entity does not have more than one meaning. 

However, the outcome of Tagme might still be ambiguous, and the CG process does not 

consider the context-wide feature. For instance, considering the short sentence, “The near 

miss was reported at 15:32”, Tagme identifies the near miss as a popular rock band rather 

than an incident. To address this issue, this thesis further extends the CG process by 

proposing the context-sensitive disambiguation process. 

4.1.2.6 The context-sensitive disambiguation process 

Consider a collection of entities identified by Tagme from a set of documents, and each entity 

has been linked to a Wikipedia page. For each Wikipedia page, several hyperlinks are 

connected to the mentioned in-text entities linking to other Wikipedia pages. For instance, the 

text in the Wikipedia page “Classification of railway accidents” must contain a hyperlink “rail” 

directing to another Wikipedia page “Rail transport”. We extract all hyperlinks contained in all 

linked Wikipedia pages and construct a network with dots representing Wikipedia pages and 

edges describing hyperlinks between pages. 

Next, the Degree of Centrality (DoC) and Eigenvector Centrality (EC) based on the graph 

theory is introduced to calculate the importance of each dot (Bonacich, 2007; Kwayu et al., 

2021; Lin et al., 2021). Assuming that railway accident reports have substantial homogeneity 

in the same context, the most relevant entity is expected to be linked many times on the 

network. For example, the entity “near miss” for the incident is expected to be linked with the 

hyperlink more than the entity “Near Miss” for the rock band.  

The DoC is a conventional measure counting the number of edges one dot has (Hansen et 

al., 2019). For standardisation, the DoC of one dot 𝑣 is calculated as Equation 4-10. 

𝐷𝑜𝐶𝑣 = ∑
𝑃𝑚𝑖𝑛,𝑣,𝑡

𝑀(𝑣)−1

𝑀(𝑣)
𝑡=1,𝑡≠𝑣              Equation 4-10 
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where 𝑀(𝑣) is the set of neighbours of the dot 𝑣, Pmin,v,t represents the minimum number 

of transfers between dots v and t. 

On the other hand, the EC of one dot 𝑣 is calculated based on the centrality of its neighbours 

(Equation 4-11). 

𝐸𝐶𝑣 =
1

𝜆
× ∑ 𝐸𝐶𝑡𝑡∈𝑀(𝑣)             Equation 4-11 

where 𝑀(𝑣)  is the set of neighbours of the dot 𝑣  and 𝜆  is a constant representing the 

eigenvalues of the graph.  

The entity on the network with the highest DoC is selected as the solution for disambiguation. 

If more than one entity has the highest DoC, then the entity with the highest EC is selected. 

However, if more than one entity has the same DoC and EC or the DoC and EC of all entities 

are 0, then these entities are reviewed manually before selecting the solution of 

disambiguation. An overview of the process is in Figure 4-10. 

 

Figure 4-10: Illustration of context-sensitive disambiguation process 

4.1.3 Covariate analysis 

The STM advances topic modelling by introducing the covariate and sensitivity analysis, 

allowing users to understand the effect of a factor on topics. There are three types of covariate 

analysis offered by the STM: Difference, Point estimate and Continuous.  
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Difference analysis estimates the mean difference in topic proportions among two different 

values of the binary covariate, revealing where the selected word is prevalent among all 

topics. Taking the entity “Network Rail” as an example, we first search the occurrence of the 

entity as a covariate and identify topics containing high proportions of this entity compared 

with other text with statistical significance. All the selected topics are considered to have high 

relation with the entity “Network Rail” (Figure 4-11). 

 

Figure 4-11: A demonstration of difference covariate analysis using Network Rail as the 

factor 

Point estimate analysis measures the mean topic proportions for each value of the covariate, 

revealing the different proportions of each categorical covariate on a specific topic. An 

example is illustrated as Figure 4-12. Suppose we create a factor with three categories: high, 

medium and low appearance of the keyword “Network Rail”. Then the Point estimate 

covariate analysis can show that most of the documents sorted to topic 3 mention the 

keyword at a higher level of occurrence. 
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Figure 4-12: A demonstration of point estimate covariate analysis using Network Rail as the 

factor 

Continuous analysis estimates how topic proportions influence over a continuous covariate, 

revealing the trend of the effect brought by selected keywords on the topic. Figure 4-13 shows 

an example of Continuous covariate analysis over topics 3 and 30. The occurrence of 

keyword “Network Rail” has a positive correlation with the documents assigned to topic 30 

but has a negative correlation with topic 3. This might imply the keyword “Network Rail” is 

frequently used on documents assigned to topics 3 and 30, but a considerably higher 

frequency is found in only topic 30. 
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Figure 4-13: A demonstration of continuous covariate analysis using Network Rail as the 

factor 

4.1.4 Temporal analysis 

The STM can also reveal the prevalence of topics over time. Figure 4-14 depicts the trend of 

the recommendations related to “sharing knowledge with organisations” made by ATSB over 

time (see Section 5.2 for more details of the ATSB dataset). The solid line represents the 

mean, and the dotted lines are the standard deviation. 
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Figure 4-14: A demonstration of temporal analysis using the recommendation dataset of 

ATSB reports 

4.2 Evaluation of the model – the scoping workshop and survey 

Despite the mathematical indicators proposed in this chapter for measuring the performance 

of the developed model, the evaluation of the usefulness and consistency of the railway 

practice still required the involvement of experts. Two online workshop sessions were 

arranged, each of them comprised two main topics: organisational interaction within the 

railway industry in the context of receiving, processing and disseminating rail safety-related 

knowledge; and feedback on this research and the potential for further implementation. 

Specifically, we aim to achieve the following objectives: 

Part I: 
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(1.) Confirming how railway accident reports and investigations influence the 

industry’s day-to-day operation. 

(2.) Understanding how rail safety-related knowledge is obtained, processed and 

disseminated by the industry. 

(3.) Understanding how the railway industry improves its safety system in the light of 

railway accident reports, and who or what would be involved. Additionally, would 

be the lessons learned by the industry? 

(4.) Understanding what type of information the railway industry needs when 

improving railway safety and how each participant’s role affects the needs. 

Part II: 

(1.) Presenting the current work and results and collecting feedback. 

(2.) Understanding how the participants interpret the results from the model and 

discovering the pros and cons from the industry’s perspective. 

The workshops were held virtually. All content, including the discussion and the survey before, 

during and after this workshop, was recorded but anonymised. Since the initial number of 

expressions of interest was below 10 during private invitation, so open registration was in 

place and the threshold of minimal work experience was lowered to 1 year. All participants 

involved in four countries (the UK, Australia, China and Taiwan) were unidentifiable in both 

the recording and further analysis. The details of the workshops are shown in Table 4-4. The 

process of invitation started with asking for expressions of interest (EOI) from specialist 

organisations The workshop and the survey were approved by the Human Research Ethics 

Committee at the University of Sydney (the approval letter can be found in Section 9.2). All 

responses were entirely confidential. Data processing and secure storage followed the 
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University’s research code of conduct and research data management policy. All comments 

and suggestions were welcome before, during and after the workshop through email. For the 

convenience of participants from different time zones, there were two identical sessions. The 

content of each session was the same. One session was chaired by Dr Geoffrey Clifton 

(Senior Lecturer, ITLS) and one by Professor John Nelson (Chair in Public Transport, ITLS). 

The pilot survey was distributed to and reviewed by two academics for evaluation. Minor 

modifications relating to the structure of the questions and terminology used were amended. 

Table 4-4: Details of the two workshops 

 Session 1 Session 2 

UTC-time Friday, 8 April 2022, 

10:00:00 

Monday, 11 April 2022, 

23:00:00 

New York Friday, 8 April 2022,  

06:00 – 07:30 

Monday, 11 April 2022, 

19:00 – 20:30 

London Friday, 8 April 2022,  

11:00 – 12:30 

Tuesday, 12 April 2022, 

00:00 – 01:30 

Sydney Friday, 8 April 2022,  

20:00 – 21:30 

Tuesday, 12 April 2022, 

09:00 – 10:30 

Wellington Friday, 8 April 2022,  

22:00 – 23:30 

Tuesday, 12 April 2022, 

11:00 – 12:30 

The information was expected to be extracted through the roundtable discussion, Q&A 

session after the presentation and a take-out survey. Two types of exercises were included 

to extract the participants’ judgment. The first exercise was to ask participants to determine 

the topic’s content by providing the keywords or the extracted articles from the topic model. 

The second exercise was to ask participants to judge the pre-set name of a group of articles. 

These exercises were the main session to evaluate the performance of the developed model 

from the perspective of railway practice. The lead researcher presented how the model was 

developed and what the outcome looked like, followed by a roundtable discussion relating to 

how participants interpreted the result of the model, the consistency of the presented 
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knowledge and further potential application in practice. Outcomes of the discussion is 

summarised in Section 5.6.1. 

4.3 Synthesis of findings 

This chapter has synthesised the development of models for the automation of railway 

accident analysis. The proposed analysis processes, including the topic modelling, entity 

linking strategy, covariate analysis, temporal analysis, and the evaluation of developed 

models, have been explained. Potential candidates and the selected approach for use in this 

thesis were compared.  

For the topic modelling, the mechanism and the used NLP model of each approach were 

illustrated. A comparison between candidates from the perspective of dimensionality of 

processed data was provided and analysis toolkits and outcomes were described. BERTopic 

was selected to analyse railway accident reports at the sentence level due to the ability to 

capture higher semantic features and the compatibility of analysing short to medium-length 

of text, whereas the STM was selected to analyse railway accident recommendations at the 

sentence level given the relatively high level of homogeneity on the writing style of 

recommendations and limited semantic features. Demonstrations on applying the covariate 

analysis and temporal analysis were also provided. 

The entity linking strategy in the study involved the creation of a railway accident ontology by 

collecting existing ontologies and reviewing accident reports. Knowledge graphs were used 

to identify and disambiguate entities from these reports. An API toolkit Tagme is used to 

identify additional entities, and a context-sensitive disambiguation process is proposed to 

enhance entity detection and linking. The main purpose of the ontology is to standardise 

terminology and connect identified keywords from topic modelling with original accident 

reports, making the keywords more interpretable by linking them to relevant entities. 
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Last, a scoping workshop and survey were described. The workshops were arranged with 

industry experts to evaluate the developed model. The roundtable discussion, Q&A session 

after the presentation and a take-out survey were used to collect criticisms and comments 

from the perspective of the railway industry. In addition, participants’ interpretations, 

judgments and expectations were extracted and observed.  

  



174 

 

5. Initial analysis and topic modelling 

This chapter illustrates the application of the methods presented in Chapter 4 and develops 

novel frameworks for depicting the nature of hazards, railway accidents and 

recommendations from railway accident reports with real-world case studies. The structure 

of the chapter is as follows: the process of data acquisition is discussed (Section 5.1), 

followed by the data pre-processing (Section 5.2). The overview of individual country analysis 

is presented (Section 5.3), and the ontology, knowledge graph selection and entity linking are 

elaborated (Section 5.4). Next, the cross-country analysis is discussed (Section 5.5), followed 

by the evaluation of model through workshops and survey (Section 5.6). Last, the synthesis 

of findings is presented. 

5.1 Data acquisition 

To demonstrate the application of the proposed models, railway accident reports published 

by independent railway accident investigation bodies from four countries are used: Australia, 

Canada, the UK and the US. Railway accident reports complied by independent railway 

accident investigation organisations are regulated by a national legal framework and provide 

unbiased and blame-free details for promoting a railway safety culture. Despite the 

differences in writing styles and terminology used, all reports consist of the summary of the 

accident, the analysis, the investigation, key findings, conclusions and recommendations (if 

applicable). The database provided by investigators covers various periods of time. For the 

best understanding of railway accident knowledge and model performance, all retrievable 

railway accident reports in PDF format from the official websites of the investigated countries 

were retrieved. Data from the ATSB and TSB was retrieved from their websites directly 

because the full text is provided and crawlable via HTML. Scanned files were removed due 

to the technical difficulties of recognising the text. The following steps were applied to clean 

the data: 
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(1.) Remove the pages of the preface, cover, table of contents, appendices, and other 

irrelevant pages. 

(2.) Remove sentences only for structure purposes, such as headers, footers, page 

numbers, annotations, and other irrelevant content. 

(3.) Remove tables and figures. 

(4.) Split the data into sentences. 

(5.) Remove sentences with no analysable information. Sentences with at least one of the 

following features were removed (Fischbach et al., 2020): 

a. The sentence starts with or contains “Figure” or “Table”. 

b. The sentence starts with a page character or “Chapter”. 

c. The sentence consists of less than 50 characters and does not end with “.”, “?” 

or “!”. 

d. The sentence consists of a group of at least 4 successive “.” characters 

(deletion of entries in the table of contents). 

(6.) Remove sentences which begin with “Note” but are not followed by “that” (Fischbach 

et al., 2020). 

(7.) Remove text that begins with “(figure …” and ends with “..)” in sentences. 

(8.) Remove the fronter and footer. 

(9.) Extract recommendations as another independent dataset5. 

Original reports were split into the railway accident dataset and the recommendations dataset 

at the sentence level. Table 5-1 shows the overview of the processed railway accident dataset. 

The RAIB published a series of review reports, such as the Investigation into the safety of 

automatic open level crossings on Network Rail’s managed infrastructure (RAIB, 2011). 

These reviews overlapped with published reports and were excluded from the dataset. The 

 
5 The NTSB and RAIB provide an independent recommendations dataset in an editable form and it was used 
directly. 
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ATSB and TSB provide the full text of railway accident reports on their websites and reports 

were retrieved directly. Despite the availability of early reports published by the NTSB, 

scanned files were retrieved and they are excluded from the dataset due to the difficulties of 

converting them into editable text. 

Table 5-1: Overview of the processed railway accident dataset 

Body No. of 

reports 

No. of 

sentences 

Period 

covered  

Note 

RAIB 339 124,990 2005–2019 Review reports are removed. 

ATSB 250 84,679 1999–2021 
Reports are retrieved from 

website directly. 

NTSB 274 92,406 1996–2021 
Reports earlier than 1996 are 

scanned files. 

TSB 415 104,720 1993–2021 
Reports are retrieved from 

website directly. 

Total 1,278 406,795  

Table 5-2 summarises the processed recommendations dataset at the sentence level. 

The number of recommendations made by the TSB is limited because the TSB only 

publishes recommendations at the highest level of accidents with severe consequences. 

Similar circumstances can be found in the ATSB dataset given that only identified risks 

are highlighted without publishing recommendations directly, offering the railway industry 

the flexibility to propose strategies for managing risk factors. Another note is that the 

NTSB provides an independent recommendations dataset ranging from 1966 to 2020 

and stored in an editable way. Therefore, all recommendations are retrieved to 

understand the composition of recommendations across time.  
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Table 5-2: Overview of the processed recommendations dataset 

Body No. of 

sentences 

Period 

covered  
Note 

RAIB 4,807 2005–2019 All reports are linked to corresponding 

recommendations. 

ATSB 1,074 1999–2021 Only a limited number of reports lead to 

recommendations. 

NTSB 3,185 1966–2020 Reports earlier than 1996 are scanned files, but the 

recommendations dataset is independent, editable and 

retrievable from 1966 to 2020. 

TSB 76 1991–2021 Only a limited number of reports lead to 

recommendations. 

5.2 Data pre-processing 

The data pre-processing is only applicable to the STM because the performance of the 

clustering model based on bag-of-word embedding methods strongly relies on the data 

quality. The noise, such as the duplication of content or flaws in raw data, would be clustered 

by the STM as well during the analysis and influences the outcome significantly. On the other 

hand, BERTopic uses the Sentence-BERT (SBERT) framework, allowing users to convert the 

input data into dense vectors with pre-set processes and pre-trained language models 

without manual intervention (Reimers & Gurevych, 2019). The noise is kept in the data at this 

stage but will be identified and labelled as outliers during follow-up clustering approaches. 

The data pre-processing for the STM consists of the following steps: lowercasing, digital 

number removing, punctuation removing, and stemming. The R package textProcessor is 

implemented in the STM. The metadata is associated with processed text by the quanteda 

package, converting data into a document-term matrix and holding covariates at the 

document level (Benoit et al., 2018). Other libraries under quanteda also provide a wide range 

of functions, such as reading data in multiple forms. The output can be directly fit into STM 

functions. 
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5.3 Overview of individual country analysis 

The following section provides an overview of analysis results from the four investigated 

countries using the BERTopic model for topics and the STM for recommendations. 

5.3.1 RAIB, UK – BERTopic model for topics 

To establish an appropriate BERTopic model for the RAIB dataset, the number of topics needs 

to be determined by selecting a proper minimum cluster size (MCS). The larger cluster size 

leads to a small number of topics and vice versa. There is no common agreement on 

determining the best MCS yet in the literature. Thus, this study uses the coherence value and 

the distribution of the number of sentences over each topic to determine the MCS. Figure 5-1 

and Figure 5-2 show the coherence score over different MCS values and the distribution of 

the number of sentences over each topic with varying values of MCS on the RAIB dataset, 

respectively. The first topic in Figure 5-2 refers to the outlier group. The more sentences 

sorted to the first group indicate that more outliers are identified under the MCS value. The 

coherence score drops significantly after the MCS reaches 25.  

On the other hand, the number of outliers also increases dramatically as the MCS value rises. 

Although MCS 5 has a lower number of outliers and higher coherence score, an excessive 

number of topics and higher homogeneity might occur and disrupt the following topics’ 

interpretation given the low threshold of making a group is set. Instead, MCS 15 has a 

relatively high coherence score and the second-lowest number of outliers. Furthermore, the 

distribution of the number of sentences over each topic is similar to other higher MCS values, 

implying a balanced topic distribution. Therefore, the MCS is set to 15 to build the BERTopic 

model for the RAIB dataset. 
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Figure 5-1: Coherence score over different minimal cluster size (MCS) values (RAIB) 

 

Figure 5-2: Distribution of the number of sentences over each topic with different minimum 

cluster size (MCS) values (RAIB) 

Table 5-3 shows the extracted topics with high occurrence and associated keywords after 

removing irrelevant topics. The name of each local topic is assigned in accordance with the 

identified keywords and their occurrence probabilities. For instance, the top 5 keywords with 

the highest occurrence probability in topic 6 are “mph”, “kmh”, “speed”, “maximum” and 

“permitted”, indicating that sentences clustered into this topic are relevant to the topic “speed”. 

Therefore, the topic name “speed” is assigned to topic 6. In addition, some topics at a lower 
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level (local topics) have correlation or causality and might be integrated to describe a concept 

at a higher level (interval and global topics). For example, topic 6 and topic 42 seem to have 

causal relation because the emergency brake might be triggered by speeding. Therefore, the 

name of the interval topic for topics 6 and 42 is given as “emergency brake at high speed”. 

To aggregate multiple interval topics and generate the interpretation of events during the 

railway accident, several relevant interval topics are further integrated to describe the causal 

chain of events. The BERTopic model can illustrate the distance between topics via the inter-

topic distance diagram (Figure 5-3) and provide a potential combination of latent topics for 

understanding the nature of railway accident types. For instance, topics 6, 42, 27, 11 and 30 

are integrated to describe trains that apply the emergency brake at high speed due to the 

Automatic Warning System (AWC) isolation or work site hazards.  

However, extracted topics might be ambiguous or irrelevant to the railway accident because 

the input data is set at the sentence level. Thus, the coefficient of variance (CV) is introduced 

to address this issue and understand the distribution of topics over documents. The CV is 

calculated as the following: 

𝐶𝑉 = 𝜎𝑖
2/𝜇𝑖                  Equation 5-1 

where 𝜎𝑖
2 refers to the variance of sentences under topic i over documents and 𝜇𝑖 refers to 

the mean of the number of sentences under topic i over documents. The higher CV indicates 

the topic has a uniform distribution over documents, implying a general topic that can be 

commonly found in railway accident reports. For instance, the topic 6 “speed” in Table 5-3 

has a CV value of 2.85, showing that the speed of objects involved is a commonly 

investigated element in railway accidents. Another example is topic 27 in Table 5-3 with a CV 

value of 137.83, suggesting most sentences under this topic come from a small number of 

documents with similar characteristics. 
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In the RAIB dataset, several distinct topics are identified with high CV values at interval or 

global levels such as platform–tram interface (topic 0-1), track–wheel interface (topic 17), and 

work site safety and hazards with engineering units. Figure 5-3 also shows the distribution of 

identified intervals and global topics. The x-axis and y-axis are the dimensions that the 

BERTopic model extracts for clustering and only used for computer calculation purposes.  
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Table 5-3: Topic descriptions and coefficient of variance (CV) of RAIB dataset 

Topic Topic – local Topic – interval Topic – global CV 

6 Speed Emergency brake at high 

speed 
Trains apply emergency 

brake at high speed due 

to 1) AWC isolation, 2) 

work site hazards 

2.85 

42 Emergency brake 2.63 

27 
Automatic Warning System (AWS) 

isolation/ active 

AWS isolation due to error 

warning/ failure of signal 

system 

137.83 

11-1 Sounded horn 
9.68 

11-2 Train horn Work site safety and hazards – 

site workers 30 Site lookout 18.20 

12 CCTV, monitor/recording Unawareness of 

platform–tram interface 

or pedestrians on track/ 

level crossing due to 

fatigue or incomplete 

monitoring system 

22.01 

1 Fatigue 71.97 

0-1 

Trams / pedestrian Platform–tram interface/ 

striking pedestrian 

164.65 

0-2 Trams / Sandilands* Tram-specified accident (i.e., Overturning) 

2 
Communication – Signaller (radio, 

GMR-S, etc.…) 
1. Signaller–driver interface 

2. Staff training / knowledge 

21.21 

4 Driver knowledge, training, instruction 15.17 

13 Time 
Background information 

1.90 

25 Location 1.66 
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Table 5-3: Topic descriptions and coefficient of variance (CV) of RAIB dataset (continued) 

Topic Topic – local Topic – interval Topic – global CV 

17 Sanding / adhesion Track–wheel interface Relation between set of units 

and track–wheel interface 

110.49 

20 Set/type of train (single, multiple, diesel, electric unit) 4.41 

15 Suspension system (bogie, wheel…) 
Cause and result of flange climbing 

10.91 

36 Contact between flange and gauge 5.39 

28 Deaths and injuries 
Consequence of accidents 

4.44 

40 Property loss 0.70 

48 Grinding repairs 
Track inspection/ recording/ 

maintenance 

89.55 

14 Track maintenance/inspection 
Track defects inspection 

15.05 

49 Track geometry faults 13.05 

39 Bolts failure 
Design failure of the switch 

1. Failure of signalling 

system  

2. Failure of on-board 

equipment 

3. Failure of infrastructure 

96.27 

47 (Nonadjustable) Stretcher bar 216.13 

32 Wire–pantograph interface Faults of wire–pantograph 

interface and inactive power 

system protection 

111.29 

37 
Power system protection (circuit 

breaker) 
47.98 

29 Failure mode of the axle Axle 315.86 

33 Holdfast panel–sleeper interface  Level-crossing infrastructure 296.53 

18 Switch interlocking system Signalling system 169.99 

46 Obstacle detection of doors Door system 14.15 
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Table 5-3: Topic descriptions and coefficient of variance (CV) of RAIB dataset (continued) 

Topic Topic – local Topic – interval Topic – global CV 

9 Weather conditions 
Natural disasters 

4.22 

10 Natural hazards (landslip, flood…) 35.86 

22 
PICOP (Person in Charge of 

Possession) 
Work site safety and hazards – 

on-track possession 

Work site safety and hazards 

with engineering units 

28.31 

43 SSOW (Safe System of Work) 21.99 

44 
Engineering units – RGU (Rail 

Grinding Unit) 

1. Conditions of engineering 

units 

2. Incidents and 

recommendations relating to 

engineering units 

237.67 

3 
Engineering units – RRV (Road Rail 

Vehicles) 
110.58 

21 Engineering units – track trolley 75.05 

45 Drugs and alcohol test** Drug and alcohol conditions of the staff 3.04 

35 Shunters/shunting activity Hazards and regulations relating to shunters 46.08 

16 Fire hazards 
Fire incidents and response 

437.23 

31 Emergency service systems  12.31 

19 
COSS (Controller of Site Safety), 

driver 

COSS–driver interface 

Work site safety – COSS–

driver interface and planning 

10.47 

41 
COSS and site safety planning Work site safety and hazards – 

site workers 
5.23 
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Table 5-3: Topic descriptions and coefficient of variance (CV) of RAIB dataset (continued) 

Topic Topic – local Topic – interval Topic – global CV 

7 Declarative – risk assessment 
Recommendations made by the RAIB on hazards identification 

and risk assessment 

2.32 

34 
Hazards identification and risk 

assessment 
3.26 

38 Earthworks*** Infrastructure maintenance 

strategy and further improvement 

Incidents and 

recommendation relating to 

Network Rail 

28.90 

5 Recommendations for Network Rail  10.68 

24 Network Rail’s safety issues 2.42 

* The occurrence of such a specific keyword is partly because of high level of reference. 

** Although this topic may imply the existence of drug and alcohol hazards, we can only infer that this is an issue of concern for the RAIB and will always conduct a test 

after the occurrence of incidents.   

*** According to the RAIB, earthworks refers to “a collective term for cuttings, embankments and natural slopes”.   
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Figure 5-3: Inter-topic distance map of identified topics of the RAIB dataset 
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5.3.2 RAIB, UK – STM for recommendations data 

For the STM model, the number of topics influences the performance of the model and needs 

to be estimated carefully. An iterative analysis sets the topic numbers from 5 to 50 and each 

model’s performance is recorded using Equation 4-4. The results shown in Figure 5-4 suggest 

that using 26 topics for the RAIB recommendation dataset results in the best performance. 

Figure 5-5 illustrates the extracted keywords with the highest occurrence probability and the 

assigned name of each topic. The interpretation is completed by reviewing keywords and 

representative sentences from the perspective of recommendations for railway accidents 

rather than the nature of railway accidents. For instance, although the keywords “cross”, “user” 

and “level” in topic 22 might refer to the mechanism of level crossing accidents, the name 

“review of consideration of design and standard for level crossing safety” is assigned to 

highlight the representation of other keywords and the real meaning of sentences sorted to 

this topic. Several identified topics of recommendations have been widely discussed in the 

railway accident studies and recommendation analysis in the literature, such as removal of 

the hazard (assessment and measurement), enhancement of design, enhancement of design 

assurance and approvals, steps to address safety culture (attitudes and behaviours), 

management process, enhancement of procedures, and training and competency (Braut et 

al., 2014; Cedergren & Petersen, 2010; Hulme et al., 2019; Tretten & Candell, 2021; Zhan & 

Zheng, 2016). However, other topics including standardisation of process and operation, 

cooperation, lesson learned processes, and documentation are seldom discussed. 

 



188 

 

 

Figure 5-4: Sematic coherence and exclusivity score for each topic number (RAIB)
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Figure 5-5: Extracted topics and keywords of the RAIB recommendation dataset from the STM
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5.3.3 ATSB, Australia – BERTopic model for topics 

Figure 5-6 shows the coherence score over different MCS values on the ATSB dataset. The 

coherence score reaches its peak when the MCS is 10 and decreases as the MCS increases 

beyond that point. The coherence score fluctuates around 0.58 and continues to decline after 

the MCS value reaches 30. On the other hand, Figure 5-7 indicates that when MCS is 10, 

the result shows fewer outliers and smooth distribution of topics. Therefore, the MCS is set 

to 10 to build the BERTopic model on the ATSB dataset. 

 

Figure 5-6: Coherence score over different minimum cluster size (MCS) values (ATSB) 
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Figure 5-7: Distribution of the number of sentences over each topic with different minimum 

cluster size (MCS) values (ATSB) 

Table 5-4 shows the extracted topics with a high probability of occurrence, associated 

keywords, and the CV values after removing irrelevant topics. Several distinct topics are 

identified, such as buckling hazards (topics 6, 11), rail creeps (topics 35, 43, 34), signal 

conditions (topics 13, 29) and level crossing hazards (topics 37, 39). Figure 5-8 illustrates the 

inter-topic distance map and indicates several interface issues identified by the investigator, 

such as the driver–train interface. In addition, it seems that buckling, failure of axles, flange 

climbing, and rail creep might have significantly impacted the Australian railway system 

because several relevant topics are identified by the BERTopic model.
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Table 5-4: Topic descriptions and coefficient of variance (CV) of ATSB dataset 

topic Topic – local Topic – interval Topic – global CV 

33 Description of gross mass and containers on wagons 
Background information 

of incidents Freight train 

derailment incidents 

8.62 

46 
Description of train information (length, number of 

crew…) 

0.73 

14 Consequence of wagons after derailment 
Consequent of derailment 

3.50 

48 Details of bogies’ condition during derailment 5.36 

45 Track infrastructure details 4.25 

17 Organisations receiving the draft of the accident report 0.54 

6 Conditions of ballast crib and shoulder  
Buckling hazards Derailment due to 

buckling hazards and 

flange climbing 

50.15 (9) 

11 Conditions of sleeper 43.47  

8 Flange climb accident 
Flange climb hazards 

31.94 

27 The gauge condition prior to accidents 15.18 

44 Infrastructure maintenance regime and inspection Monitoring asset condition via fault monitoring 

and maintenance regimes 

4.96 

47 Track patrols/ inspection 5.71 

23 Bearing failure 

Failures of axle 

33.46 

10 Conditions of axle bearing Ineffective axle inspection 

system 

118.56 (5) 

25 Defects inspection (continuous ultrasonic testing) 14.52 

40 Asset Standards Authority (ASA)/ buffer stop 

Asset owner–leaser interface 

35.55 

28 Chicago Freight Car Leasing Australia (CFCLA)/ draft key 63.93 (8) 

36 Falling jumbo coils 137.36 (4) 
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Table 5-4: Topic descriptions and coefficient of variance (CV) of ATSB dataset (continued) 

topic Topic – local Topic – interval Topic – global CV 

35 Rail creep/ monuments High temperature 

hazards to tracks 
Derailment due to rail 

creep 

20.60 

43 Track temperature 5.78 

34 Determined environmental conditions 1.22 

18 Conditions of battery cells 

Wire–pantograph interface 

221.72 (1) 

21 
Conditions of Overhead Line Equipment (OHLE)/ circuit 

breaker 

178.10 (2) 

2 Speed of the train Conditions of the train 

Investigation into 

level-crossing 

accidents 

4.71 

5 Data logger/ Hasler data On-board recorders 6.08 

1 Sounded horn/ audibility Events during level 

crossing incidents 

22.20 

22 Driver behaviour during level crossing 16.34 

24 Sighting distance/ viewing angle Design of level crossing 10.43 

13 Conditions of signal/ turnout indication/ colour light 
Signal condition during accidents 

32.26 

29 Signal displaying during accident 23.54 

19 Train conditions 2.29 

31 Consequence of the accident Fatal/ severe/ minor injuries 3.71 

26 Collision accidents 
Collision between 

trains on track 

1.72 

41 Description of train’s movement Driver–train controller 

interface 

5.89 

42 Special Proceed Authority (SPA) 47.22 (10) 
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Table 5-4: Topic descriptions and coefficient of variance (CV) of ATSB dataset (continued) 

topic Topic – local Topic – interval Topic – global CV 

9 Track Occupancy Authority (TOA) 
Worksite safety – worker–

train interface 

Worksite safety 

planning – staff, 

signalling systems, 

and trains 

100.17 (6) 

16 Protection Officer (PO) arrangements 
Worksite safety – 

worksite safety planning 
21.55 

4 Network Control Office (NCO) and crew 
NCO–crew/driver interface 

24.28 

7 Shunt operations 74.91 (7) 

37 Australian Level Crossing Assessment Model 
Level crossing hazard mitigation strategy 

8.15 

39 Level crossing safety 20.18 

12 Alcohol and drugs tests 
Conditions of staff during 

the rail safety work 

Human factors 

examination 

2.55 

0 Fatigue investigation Distraction due to fatigue 28.21 

15 Medical examinations and fitness of standards 
Medical qualification 

reviewing 
41.82 

30 Maintenance of competency (MOS) assessment (training, knowledge gaining for staff) 161.10 (3) 

32 V/Line Pty Ltd Specific organisations mentioned in reports with 

high frequency 

9.94 

3 Queensland Rail (QR) 17.86 

20 SPAD events due to violation of rules or procedures 29.24 
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* Note: The x and y dimensions in this diagram are the results of reduced dimensionality with UMAP. Features in higher dimensions are squeezed and only interpretable 

by computers rather than humans. 

Figure 5-8: The inter-topic distance map of identified topics of the ATSB dataset 
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5.3.4 ATSB, Australia – STM for recommendations data 

For the ATSB, making recommendations on investigated railway accidents is selective. 

Instead, relevant organisations involved and proactive safety actions conducted by operators 

are thoroughly reviewed before any formal recommendation is made (ATSB, 2011). The 

ATSB only publishes descriptions of safety issues and proactive actions in place if a 

recommendation is made, resulting in missing data in the recommendation dataset. 

Therefore, only 291 recommendations are found in the ATSB dataset, and other reports only 

disclose accepted proactive actions (n = 191) and safety advisory notices (n = 44). For 

instance, in the accident report Level crossing collision between truck and passenger train 

8753, Phalps Road, Larpent, Victoria, on 13 July 2016 (ATSB, 2019), the ATSB published the 

safety issue:  

“The interaction between V/Line and the Colac Otway Shire Council was ineffective at 

addressing identified sighting issues at the Phalps Road level crossing.” 

Subsequently, proactive actions were received from V/Line Pty Ltd: 

“V/Line has established a new rail interface team that has been tasked with actively 

engaging Councils.” 

On the other hand, Colac Otway Shire Council also advised the following action: 

“Colac Otway Shire Council advised that it was committed to its working relationship with 

V/Line and documenting solutions agreed by each party. The Council advised it would seek 

to clarify those crossings with outstanding sighting issues and investigate short-to-medium 

term solutions for implementation.” 

The ATSB states that safety actions have been taken to address the safety issue and closed 

this issue. For the best consistency of input data, this study only uses 291 recommendations 
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for building the STM. Figure 5-9 shows the sematic coherence and exclusivity score over 

each topic number in the ATSB recommendation dataset. The number of topics is determined 

as 21 due to the best balance between semantic coherence and exclusivity. 

 

Figure 5-9: Sematic coherence and exclusivity score over each topic (ATSB) 

The extracted topics, keywords and assigned topic names are illustrated in Figure 5-10. 

Frequently proposed recommendations are reviewing communication technology, 

exchanging knowledge with other organisations, and undertaking risk mitigation strategies. A 

notable finding is that a more significant proportion of the sentences are sorted to the topic 

“request to take action to address identified safety issue”, implying that some passive 

recommendations are made to remind about compliance with existing rules or procedures.
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Figure 5-10: Extracted topics and keywords of the ATSB recommendation dataset from the STM 
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5.3.5 NTSB, US – BERTopic model for topics 

For the NTSB dataset, 394 reports published between 1967 to 2022 were retrieved. Of those, 

120 reports published before 1995 are scanned documents and were removed, leaving 274 

documents to be analysed. 

Figure 5-11 shows the NTSB dataset’s coherence score over different MCS values. The 

coherence score reaches its lowest point when the MCS is 25 and peaks when the MCS is 

40. The coherence score drops again after the MCS is beyond 40. On the other hand, Figure 

5-12 indicates that the number of outliers is around 1,400 when the MCS is below 30 and 

over 2,000 when the MCS is above 40. Despite a higher number of outliers, this study set the 

MCS to 40 as a significant improvement of the coherence score on the NTSB dataset. 

 

Figure 5-11: Coherence score over different minimum cluster size (MCS) values (NTSB) 
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Figure 5-12: Distribution of the number of sentences over each topic with different minimum 

cluster size (MCS) values (NTSB) 

Table 5-5 shows the extracted topics with a high probability of occurrence, associated 

keywords, and the CV values after removing irrelevant topics in the NTSB dataset. Similar to 

the ATSB dataset, the issue of the interface between frontline workers is found (topics 43, 9, 

27). In addition, accidents relating to freight trains and tank cars (topics 48, 14, 40) are 

identified and extracted as significant topics as well. The hazard of level crossings plays an 

essential role in the NTSB dataset with the discussion of types of level crossings (topics 10, 

36, 22, 31) and the mechanism of level crossing accidents (topics 29, 37). The emergency 

response after accidents is also highlighted with high frequency (topic 0). Figure 5-13 

illustrates the NTSB dataset’s inter-topic distance map of identified topics. Other topics are 

about the radio communication and the CV value is relatively low, implying that much 

emphasis is put on crew and staff communication during the investigation. Additionally, some 

rare elements, such as hazards impacting infrastructure (topics 19, 20) and subway 

environment control systems (topics 16, 47), are identified by the model, indicating a 

distinguishing mechanism of railway accidents is found.
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Table 5-5: Topic descriptions and coefficient of variance (CV) of NTSB dataset 

topic Topic – local Topic – interval Topic – global CV 

2 Event, audio and image recorder 27.784 

29 Occurrence of emergency brake Speed at the occurrence of 

emergency brake 

Grade crossings hazards 

1.982 

37 Speed of the train recorded 1.346 

15 Condition of the signal aspect 
Issue of grade crossings 

design 

8.127 

49 
Pre-emption/ “all-red-flash” design of grade 

crossings  

69.527 

10 High-risk private highway–railroad grade crossings 
Hazard of private highway–

railroad grade crossings 

37.728 

36 
Bus driver training about grade crossing in school 

district 

126.415 

22 Sounded horn/ audibility 
General grade crossings 

hazards 

9.221 

31 
Hazard of stopping within the boundary of the 

crossing 

24.689 

28 Consequence of derailment 
Condition of the train 

2.270 

44 Components/ units of the train 2.718 

16 Conditions of the tunnel ventilation system Subway environment control 

system 

Subway environmental 

hazards 

263.979 

47 Electrical arcing due to water intrusion 65.671 

24 Pressure of brake/ relief valve 
Failure of brake system 

On-board equipment 

hazards 

53.505 

38 Air leakage from the brake pipe 27.027 
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Table 5-5: Topic descriptions and coefficient of variance (CV) of NTSB dataset (continued) 

topic Topic – local Topic – interval Topic – global CV 

6 Working conditions of staff 9.596 

18 Weather conditions 6.019 

48 Unsafe offloading practices of solvent blend wastes  

Tank cars hazards 

141.007 

14 Cracked or broken joint bars/ bolts Tank cars failure and 

certifications 

42.103 

40 Specifications for tank cars 83.276 

30 Damages to assets 2.297 

19 Bridges’ capacity to carry floods 
Hazards of bridges Infrastructure hazards 

254.145 

20 Escorting permit loads 231.054 

8 Parasitic oscillation of track circuit modules 
Failures of trains’ circuits 

474.935 

25 Failures of emergency windows/ doors 29.753 

11 Organisational culture of safety oversight Rail safety oversight 

framework 

Worksite hazards 

115.046 

42 Regulation of State oversight agency 27.552 

3 Installation of Positive Train Control 22.892 

17 Unsafe work practices culture of Amtrak’s management 
Safety culture 

82.881 

33 Safety Management Manual and safety culture 21.074 
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Table 5-5: Topic descriptions and coefficient of variance (CV) of NTSB dataset (continued) 

topic Topic – local Topic – interval Topic – global CV 

46 Operating rules for employees Requirements of 

employees’ conditions Hazards of 

employees’ medical 

conditions 

12.903 

1 Drug, alcohol, and toxicology test 20.740 

32 Efficiency of tests 3.610 

23 Colour vision test 
Medical conditions 

56.817 

39 Obstructive sleep apnoea 19.730 

13 Conditions of track inspections 
Switches and tracks 

hazards 

26.078 

4 Conditions of switches 
Failure of switches 

46.900 

35 Subdivision of tracks 1.607 

12 Fatalities and injuries 3.544 

26 Interface between conductors and railroad cars 
Conductors’ failure 

3.764 

41 Conditions of conductors 2.433 

0 Emergency response after accidents 
Emergency response of train operators 

53.744 

21 Operation of CSX Transportation and MARC Train 53.055 

43 
Track warrant authority (interface between train crews and 

the dispatchers) 

Interface between train crews and the dispatchers 

50.307 

9 Usage of cell phones and text messages 46.934 

27 
Radio communications between crew members and 

dispatchers 

3.936 
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Figure 5-13: The inter-topic distance map of identified topics of the NTSB dataset 
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5.3.6 NTSB, US – STM for recommendations data 

Figure 5-14 shows the sematic coherence and exclusivity score over each topic number in 

the NTSB recommendation dataset. The number of topics is set to 12 for the best combination 

of sematic coherence and exclusivity score. Figure 5-15 illustrates the extracted topics and 

keywords of the NTSB recommendation dataset from the STM. A considerable amount of 

focus is put on cooperation with organisations within the railway industry, implying less 

intervention and restrictions on the approach operators apply to address identified hazards. 

Furthermore, assisting research and programs is also mentioned in high frequency, which 

might indicate the promotion of cooperating with third parties and producing a comprehensive 

solution. Another note is that assigning specific methods to address identified hazards is 

rarely found in the NTSB recommendations and most of them are supportive of the railway 

industry. 
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Figure 5-14: Sematic coherence and exclusivity score over each topic number (NTSB)
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Figure 5-15: Extracted topics and keywords of the NTSB recommendation dataset from the STM
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5.3.7 TSB, Canada – BERTopic model for topics 

Figure 5-16 shows the TSB dataset’s coherence score over different MCS values. The 

coherence score increases dramatically and reaches a plateau when the MCS is 30. 

Subsequently, the improvement in the coherence score is limited after the MCS is beyond 35. 

On the other hand, Figure 5-17 shows that the number of outliers increases significantly after 

the MCS is beyond 30. Therefore, the MCS is set to 30 to build the model on the TSB dataset. 

 

Figure 5-16: Coherence score over different minimum cluster size (MCS) values (TSB) 
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Figure 5-17: Distribution of the number of sentences over each topic with different minimum 

cluster size (MCS) values (TSB) 

Table 5-6 describes the extracted topics with a high probability of occurrence, associated 

keywords, and the CV values after removing irrelevant topics in the TSB dataset. The topic 

relating to the interface between crew and staff (topics 4, 17, 19, 25) is identified as in the 

results of other datasets. The difference between the concept of “human fatigue” (topic 0) 

and “machine fatigue” (topic 46) is identified and discriminated by BERTopic, indicating the 

superiority of using the word embedding method compared to the bag-of-words approach. 

Some specific topics relevant to the hazards to freight trains are also revealed, such as 

excessive truck shunting (topic 27) and the risk of flammable materials (topic 18), which might 

indicate the potential risks of the development of the freight rail industry. Figure 5-18 

illustrates the TSB dataset’s inter-topic distance map of identified topics. Topics relating to 

the derailment of freight trains have been clustered into a dense group on the left-hand side. 

Another strong topic “safety management system” is clustered as well, indicating the intention 

of developing a systematic railway safety management. Notably, the hazard of worksite safety 
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is not identified by BERTopic, indicating the relatively low discussion of this topic in the TSB 

investigations.
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Table 5-6: Topic descriptions and coefficient of variance (CV) of TSB dataset 

topic Topic – local Topic – interval Topic – global CV 

46 Fracture surface due to fatigue 
Rail fracture surface hazards 

Rail fracture hazard 

2.931 

48 Rail fracture 2.629 

9 Condition of tie plates and secured spikes 
Overview of track information 

8.048 

38 Track information 0.340 

1 Emergency brake application 
Occurrence of emergency brake 

18.540 

11 Brake pipe pressure 74.668 

21 Conditions of air brake tests 
Brake tests before departing 

CROR on special 

instructions 

45.119 

28 Certified car inspector 3.083 

10 Application of hand brakes CROR on brake and 

movement 

77.484 

26 Canadian Rail Operating Rules (CROR) 2.360 

37 Yard assignment description 
Interface between workers in the yard 

17.613 

43 Failure of transfer between yardmasters  16.337 

3 Derailment of freight cars 
Derailment of freight trains 

3.449 

42 Location where locomotive came rest 0.909 

6 Malfunction of switches 
Defects on rail tracks 

50.734 

34 Damage on tracks 0.793 

14 L/V ratios of single-wheel 
Measurement on rail wheel 

17.482 

36 Observation of wheel flange marks 1.261 
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Table 5-6: Topic descriptions and coefficient of variance (CV) of TSB dataset (continued) 

topic Topic – local Topic – interval Topic – global CV 

22 Wheel Impact Load Detector (WILD) 

Wheel overloading hazards Wheel–bearing system 

interface 

28.267 

32 
Risks associated with Transcona wheel shop loose 

wheels 

74.013 

27 
Excessive truck hunting/ Constant Contact Side 

Bearings 

46.425 

35 Alert for roller bearing temperature 27.467 

8 Sounded horn/ audibility 

Grade crossings hazards 

27.738 

2 Warning devices/ rules of grade crossing Drivers’ interface at grade 

crossings 

44.698 

13 Behaviour of grade crossing users (driver) 8.368 

4 
Interface between Rail Traffic Controllers and crew 

members 
Interface between RTC and 

others 
Communications hazards 

54.549 

17 Interface between foreman and RTC 35.120 

19 Display of indication signals 17.111 

25 Radio communications 5.056 

40 Hazards related to train marshalling 14.556 

24 Absence of on-board voice recorders 126.765 

7 Emergency response 
Hazards of poor design of emergency exits and response 

19.017 

16 Failure of emergency exit (on board) 54.740 
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Table 5-6: Topic descriptions and coefficient of variance (CV) of TSB dataset (continued) 

topic Topic – local Topic – interval Topic – global CV 

5 Flood/ drainage system 59.779 

39 Failure of the thermite weld 23.253 

0 Fatigue 
Hazards of fatigue 

32.543 

31 Risk of memory lapse 4.147 

18 Risk of flammable materials 15.346 

20 Safety management system 53.215 
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Figure 5-18: The inter-topic distance map of identified topics of the TSB dataset 
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5.3.8 TSB, Canada – STM for recommendations data 

The railway accident investigations conducted by the TSB are classified into six classes 

according to their relative importance, complexity, and potential for yielding safety lessons 

(TSB, 2022). Each class has different complexity, level of investigation, processes, and target 

timeline. For instance, class 1 is a safety issue-related investigation with common features 

that have formed a pattern over a period and raise or might raise significant risks based on 

the result of statistical analysis. This type of investigation takes about 730 days (2 years) 

before the finalisation of the report. Another example is class 4, a limited-scope investigation 

of accidents resulting in significant consequences, attracting the public’s attention but having 

limited learning points. In this case, no finding or recommendation will be proposed. Notably, 

only class 2 investigations are required to result in recommendations given that making 

recommendations is optional in other types of investigations. 

To better understand the nature of hazards in Canada, railway accident reports classified as 

class 1 to 4 are collected, starting from 1991 to 2022 (available period from the TSB website). 

415 reports and 73 recommendations (exclusive of the same recommendation for different 

cases) were retrieved. 

Figure 5-19 shows the sematic coherence and exclusivity score over each of topic number 

on the TSB recommendation dataset. Due to the limited TSB recommendation data, the curve 

cannot reflect the real performance of the STM given that the model may cluster each input 

data to an individual topic and result in high semantic coherence and exclusivity. To address 

this issue, the number of topics is set to 5 to ensure sufficient sentences are sorted to each 

topic. 
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Figure 5-19: Sematic coherence and exclusivity score over each topic (TSB) 

Figure 5-20 illustrates the extracted topics and keywords of the TSB recommendation dataset 

from the STM. The TSB dataset comprises recommendations requesting the examination 

and reassessment of current procedures rather than developing new rules or processes. On 

the other hand, limited suggestions are given to cooperate with organisations within the 

railway industry. Furthermore, most recommendations are directed to individual railway 

companies, assigning an objective to resolve identified hazards. Last, interfering 

recommendations such as assigning specific methods to organisations involved are not 

identified, implying the TSB tends to primarily propose supportive advice and retains a large 

degree of flexibility for the railway industry.
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Figure 5-20: Extracted topics and keywords of the TSB recommendation dataset from the STM 
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5.4 The ontology, knowledge graph selection and entity linking 

To address the interface between railway accident investigation reports, Wikidata and railway 

accident ontology, the Wikidata Graph Builder is introduced to determine the connections 

between entities. The Wikidata Graph Builder is a tool visualising the construction of an item 

and its properties on the Wikidata ontology (Nielsen, 2019). The input items and properties 

can be any entity on Wikidata, and the Wikidata Graph Builder builds a class tree with the 

input item at the centre and the property as edges. For example, Figure 5-21 illustrates the 

class tree generated by the Wikidata Graph Builder with the input entity “rail freight company” 

(the blue dot) and property “subclass of” (edges). The entity “rail freight transport” is the 

subclass of the concept “rail transport” and “land transport and transport via pipelines” at the 

higher hierarchy of the Wikidata ontology. 

On the other hand, entities that are the subclass of “rail freight transport” are also extracted, 

such as the entity “double-stack rail transport”. The class tree is further extended by extracting 

entities having the property “subclass of” of the identified concepts until the root entity. Note 

that each concept or entity listed on the class tree contains a series of instances not included 

in the diagram for a concise view. For example, entities “Bowmans Rail”, “One Rail Australia” 

and “SCT Logistics” can be found as instances of the concept “rail freight transport” in the 

Wikidata ontology.



219 
 

 

Figure 5-21: Class tree generated by the Wikidata Graph Builder with the entity “rail freight company” and property “subclass of”  
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Subsequently, the designed railway accident ontology is further extended by connecting 

relevant entities to concepts in the Wikidata ontology. The linked concepts are carefully 

selected to meet the scale of the description. For instance, the “transport company” concept 

from the Wikidata ontology is selected to link to our entity “organisation”. However, the entity 

“train operating company” might be feasible to be used as well considering that the railway 

industry constitutes a wide range of organisations such as rolling stockholders and rail vehicle 

manufacturers, a concept at a higher level might be appropriate to cover all entities of interest.  

On the other hand, several properties are available in the Wikidata ontology. However, only 

the property “instance of” is applied to connect entities identified by the Tagme tool because 

it reveals the hierarchy structure of the ontology. Table 5-7 shows railway companies 

identified by Tagme from the ATSB dataset. The issue of incorrectly identifying certain entities 

with the same name, such as the Southern Railway in the UK in Table 5-7, could be 

addressed by using the context-sensitive disambiguation process (Section 4.1.2.6). 

Additionally, at least one corresponding Wikidata page must be connected to the identified 

entity because Tagme is established based on the Wikidata SPARQL query service. As a 

result, the original data is linked to the Wikidata ontology and railway accident ontology. 

Figure 5-22 illustrates the extended designed railway accident ontology connecting to the 

Wikidata ontology. Grey boxes with solid outlines indicate that the designed railway accident 

ontology concept is connected to the Wikidata ontology. In contrast, grey boxes with dotted 

outlines refer to the connected concepts in the Wikidata ontology with the Q-value 

identification. Note that not all concepts are linked to the Wikidata ontology but only concepts 

with overlapped definitions are connected. Thus, the connected ontology can be applied to 

address the difficulty of various railway terminology used in different countries.
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Table 5-7: Extracted railway company from ATSB dataset 

 Property (wdLabel) Class (ps_Label) Entity (from) 

0 instance of railway company Line 

1 instance of railway company SCT_Logistics 

2 instance of railway company NSW_TrainLink 

3 instance of railway company Aurizon 

4 instance of railway company Queensland_Rail 

5 instance of railway company Pacific_National 

6 instance of railway company Sydney_Trains 

7 instance of railway infrastructure manager Australian_Rail_Track_Corporation 

8 instance of railway company Atchison,_Topeka_and_Santa_Fe_Railway 

9 instance of railway company Metro_Trains_Melbourne 

10 instance of railway company TasRail 

11 instance of railway company Genesee_&amp;_Wyoming_Australia 

12 instance of railway company AN_Tasrail 

13 instance of railway company FreightLink 
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Table 5-7: Extracted railway company from ATSB dataset (continued) 

 Property (wdLabel) Class (ps_Label) Entity (from) 

14 instance of railway company Buenos_Aires_Great_Southern_Railway 

15 instance of operator of last resort Northern_(train_operating_company) 

16 instance of train operating company Northern_(train_operating_company) 

17 instance of train operating company Connex_Melbourne 

18 instance of railway infrastructure manager Railtrack 

19 instance of railway company Southern_Railway_(UK) 
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Figure 5-22: The extended designed railway accident ontology connecting to the Wikidata ontology 
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5.5 Cross-country analysis 

To understand the difference of the nature of railway accidents between countries, the cross-

country analysis is conducted based on the outcome of each STM and BERTopic model. 

5.5.1 Cross-sectional analysis – railway accidents 

First, topics from investigated countries with high possibilities of occurrence as discussed in 

previous sections are extracted and reviewed. Second, keywords under each topic are linked 

to the designed railway accident ontology and keywords under topics from investigated 

countries with mentions (original keywords in the text) connected to the same entities are 

highlighted. These topics, mentions and connected entities are reviewed manually, and 

similar topics are further labelled as having a connection to indicate the overlapped elements 

found in railway accident investigation reports of two countries. Other topics without being 

connected are labelled as country-specific topics. Last, a comparison between topics 

discussed by each investigation body can be mapped. 

Figure 5-8 shows an example of the comparison between identified topics from railway 

accident reports published by ATSB and RAIB. Some potential differences in the railway 

accident mechanism can be observed. For instance, in the ATSB dataset buckling hazards, 

high temperature hazards to tracks and rail creep/monuments hazards are highlighted along 

with the jumbo coils, implying the impact of heavy freight trains and the high temperature on 

tracks. In contrast, in the RAIB dataset there is wide discussion of sanding and adhesion 

issues and holdfast panel–sleeper interface, which might indicate the hazard of the interface 

between wheels and tracks due to the extreme weather conditions or heavy autumn leaf fall 

disruption in a short space of time. Nevertheless, the highlighted topics of platform–tram 

interface/striking pedestrian and trams also suggest a higher level of discussion in the UK on 
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passenger train accidents rather than freight train accidents. This case has shown different 

fundamental issues that the two countries of Australia and the UK encounter.  

Despite some differences in hazards found between countries, a holistic view of the 

mechanisms that each hazard interacts with others and results in a railway accident is absent. 

For instance, buckling hazards, high temperature hazards and jumbo coils seem to have a 

causal relationship to cause a railway accident. However, the extent to which each hazard 

contributes to a railway accident is not identified yet. Nevertheless, only topics with high 

possibilities of occurrence are extracted and illustrated in Table 5-8. Other minor but critical 

elements might be overlooked by only analysing topics with high occurrences given that each 

railway accident is triggered by different causes (Cozzani et al., 2004). Figure 5-23 shows 

the example of a joint hazard “groundwater” combined with other hazards in different 

countries. Each country experienced railway accidents due to this hazard in different ways 

and addressed it with various approaches. For example, the RAIB in the UK takes the 

groundwater as an external circumstance and controls the risk by improving the drainage 

assets. In contrast, the ATSB in Australia investigates the structure of railway tracks and 

introduces temporary speed restrictions to the influenced sections. As a result, topics shown 

in Figure 5-23 are identified as having a lower probability of occurrences and being ignored 

from the outcomes although the potential connections to the mechanism of the railway 

accident might be substantial. Therefore, a systematic view of hazards is required to address 

this issue and ensure a comprehensive map of the mechanisms of railway accidents. More 

details are introduced in Sections 6.2 and 6.3. 
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Table 5-8: Comparison between identified topics from railway accident reports published by ATSB and RAIB 

ATSB (Australia) only RAIB (UK) only  Common to ATSB and RAIB 

• Conditions of battery cells 

• Description of gross mass and 

containers on wagons 

• Buckling hazards 

• Asset owner–leaser interface 

• Jumbo coils 

• High temperature hazards to tracks 

• Rail creep/ monuments 

• Data logger/ Hasler data 

• Driver behaviour during level 

crossing 

• Sighting distance/ viewing angle 

• Conditions of signal/ turnout 

indication/ colour light 

• Signal displaying during accident 

• Medical examinations and fitness of 

standards 

• SPAD events due to violation of 

rules or procedures 

• CCTV, monitor/ recording 

• Sanding/adhesion 

• AWS isolation active 

• Platform–tram interface/ striking 

pedestrian 

• Trams 

• Bolts failure 

• Stretcher bar 

• Holdfast panel–sleeper interface  

• Obstacle detection of doors 

• Natural hazards (landslip, flood…) 

• Conditions of engineering units 

• Earthworks 

• Speed 

• Emergency brake 

• Sounded horn 

• Train horn 

• Site lookout 

• Fatigue 

• Communication – Signaller (radio, 

GMR-S, etc) 

• Driver knowledge, training, instruction 

• Cause and result of flange climbing 

• Grinding repairs 

• Track defects inspection 

• Wire–pantograph interface 

• Conditions of Overhead Line Equipment 

(OHLE)/ circuit breaker 

• Failure mode of the axle 
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Figure 5-23: An example of a joint hazard “groundwater” combined with other hazards in four countries 
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5.5.2 Cross-sectional analysis – investigators 

The investigating body of each country conducts the railway accident analysis and proposes 

recommendations in accordance with the nature of the accident to improve railway safety. 

Learning how recommendations are designed to address hazards in the railway system 

across countries can be beneficial to prevent similar accidents from occurring in other 

countries. This section highlights the primary trend of recommendations proposed by each 

country, and the frequency of co-reference between investigated countries is also discussed. 

Note that only a significant increasing or decreasing trends are discussed. 

Figure 5-24 shows an increasing number of recommendations related to the review process, 

suggesting more review requirements on existing designs and procedures are found in the 

RAIB dataset in recent years. Note that the solid line indicates the mean of the probability of 

the occurrence of the topic, whereas dotted lines refer to the variance. Another noteworthy 

observation is that several topics relevant to cross-organisational learning behaviour are 

identified, including process standardisation, communication for lessons learned, and 

learning from other sources (Figure 5-25). The process standardisation refers to ensuring the 

consistency of adopted procedures across organisations, whereas communication for 

lessons learned and learning from other sources mean learning across time and jurisdictions, 

respectively. An upward trajectory can be found in process standardisation and 

communication for lessons learned, implying that RAIB highlights the importance of mitigating 

the difference of applied processes and ensures lessons of previous accidents are addressed 

to increase railway safety. Recommendations related to learning from other sources were 

commonly made before 2016 but are rarely suggested after 2016. 

On the other hand, a decreasing trend in the number of passive recommendations is found 

in the ATSB dataset (Figure 5-26), indicating a switch from passive suggestions to distinct 

instructions made by ATSB to address identified hazards. For the cross-organisational 
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learning-related topic, only the topic of sharing knowledge with organisations is identified. 

The trend suggests a gradual decline, implying the focus has been shifted to individual control 

of each railway organisation regarding addressing risks. 
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Figure 5-24: The trend of topic 22 and topic 2 in the RAIB recommendations dataset 
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Figure 5-25: The trend of cross-organisational learning topics in the RAIB recommendations dataset 
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Figure 5-26: The trend of topic 4 in the ATSB recommendations dataset 
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Next, the result of the NTSB recommendations dataset indicates a sharp rise in the number 

of recommendations related to the cooperation between local authorities and other 

organisations (Figure 5-27). There has been no significant trend in making recommendations 

of introducing new technology or advanced train control systems in cooperation with local 

authorities before 2000. However, this topic has drawn much attention since early 2017 and 

maintains a steady increase. On the other hand, a consistent pattern of promoting 

cooperation with other organisations is observed in topic 5, implying the investigator believes 

that most identified risks can be addressed by encouraging organisations in the railway 

industry to share experiences and come up with solutions. For the cross-organisational 

learning-related topics, three topics are identified and shown in Figure 5-28. A marked fall is 

identified in assisting research and programs and dissemination (of railway safety knowledge) 

but cooperating with other organisations is the exception to this trend, showing a slight 

increase in recent years. This observation might indicate that NTSB believes sharing the 

knowledge of railway safety and addressing identified risks in cooperation with others can 

ensure that the railway industry can thoroughly learn lessons. Furthermore, NTSB also 

devotes efforts to promoting individual research programs' assistance and introduces other 

resources for different perspectives of addressing railway risks.
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Figure 5-27: The trend of topic 8 and topic 5 in the NTSB recommendations dataset 
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Figure 5-28: The trend of cross-organisational learning topics in the NTSB recommendations dataset 



236 
 

Last, a gradual increase in the number of recommendations related to developing and 

implementing guidelines and procedures made by TSB is observed (Figure 5-29). The 

number of these types of recommendations experienced a surge in 2015 and kept climbing 

after then. On the other hand, a topic related to cross-organisational learning behaviours, 

“cooperate for standardisations”, is identified despite the relatively low possibility of 

occurrences. Finally, it is worth noting that the overall variances of the result from the TSB 

recommendations dataset are comparatively more significant than other countries due to the 

limited input data. 

Overall, the culture of learning across organisations is observed from the investigated 

countries. RAIB and NTSB put much emphasis on promoting learning across organisations 

and time given that the increasing number of relevant topics is identified. Although similar 

topics related to learning across organisations and across time are also found in the ATSB 

and TSB datasets, a gradual decline in the possibility of occurrences might indicate that less 

emphasis is placed on this. 

Apart from the behaviour of learning across organisations, this study is also interested in the 

learning behaviour between investigating bodies, which is seldom discussed in the literature. 

Learning across countries benefits railway safety by understanding unseen risks and finding 

relevant solutions in advance. 
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Figure 5-29: The trend of topic 1 and topic 5 in the TSB recommendations dataset 
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Figure 5-30 illustrates the frequency of co-reference between RAIB, NTSB, TSB and ATSB 

(solid arrows) and the relation between cooperating organisations within the same area 

(dotted lines arrows). The number of analysed railway accident reports of each investigator 

is shown in brackets. The co-reference is identified by counting works published by other 

organisations in the reference section of a railway accident report. The number under each 

arrow refers to the frequency of references to the publication of another organisation. The 

circular arrow indicates the frequency of self-reference. 

Of the 415 TSB reports, 45 of them referenced reports published by the NTSB at least once. 

Of the 250 ATSB reports, 40 reports referenced other investigators. Among all the references, 

five were to the RAIB, 29 were to the NTSB, and six were to the TSB. Of the 339 RAIB reports, 

only four reports referenced other investigators, including to the ATSB one time, the NTSB 

three times and the TSB one time. Last, of the 274 NTSB reports, five reports referenced the 

TSB. 

First, a very limited number of co-references are identified in railway accident reports 

published by RAIB. However, the number of self-references is the highest compared with 

others, reflecting the increasing trend of topic 3 “communication for lesson learned” in Figure 

5-25. NTSB reports are similar with a high frequency of self-references and low co-references 

to others. Note that many co-references from NTSB to FRA might not be considered a 

potential cross-organisational learning behaviour given that NTSB is responsible for reacting 

to or commenting on actions taken by FRA. Additionally, a comparatively large number of 

references from ATSB and TSB to NTSB are identified, implying that both investigators 

consider similar cases that occurred in other countries before conducting the investigation 

and analysis. Despite the observed behaviour of self-references, the low frequency of co-

references might indicate insufficient learning behaviour across jurisdictions. 
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This section has provided an overview of the recommendations proposed and the trend of 

each type of recommendation over time across the four investigated countries. A distinct 

finding is that each country has various cross-organisational learning behaviours, constituting 

different railway safety learning cultures. The analysis of co-reference and self-reference also 

shows the same result. Despite the identified different styles of making recommendations, a 

comprehensive distribution of all topics and the role each topic plays in a socio-technical 

system are still absent. Therefore, the following sections advance the finding from BERTopic 

and the STM with the existing theories in the literature to provide another perspective to 

illustrate the relationship between railway hazards and recommendations made by 

investigators. 
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Figure 5-30: The frequency of co-references between RAIB, NTSB, TSB and ATSB (solid arrows) and the relation between cooperating 

organisations (dotted arrows) 
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5.6 Evaluation of model – workshops and survey 

As discussed in Section 4.2, two scoping workshops and a survey were arranged to ensure 

that the model developed met the needs of practitioners in the railway industry and to 

understand potential improvement for further research. The mechanisms and the outcome of 

the model were presented, and feedback was collected to determine the design of advanced 

applications. How organisations in the railway industry process the information flow was also 

observed during the workshops and by the survey. 

5.6.1 Outcome of the scoping workshops 

The first scoping workshop was conducted with seven participants having a range of 

experience in the railway industry from 2 years to over 21 years. In the second workshop, six 

participants had experience ranging from 5 years to over 21 years. The participants 

represented a diverse range of roles, including consultant, assistant professor, accident 

investigator, human factor specialist, transport planner, research analyst, and safety 

programs and initiatives personnel. The number of respondents was limited due to the 

challenges of recruitment, but the outcome was deemed to be suitable for the purposes of 

the research. Recognising that this represents only a small group of informed participants, 

we are satisfied that a suitable range of views prevalent in the industry given the diversity in 

roles and years of experience was captured within the sample and contributed to a 

comprehensive understanding of the railway safety industry's challenges and perspectives. 

Additionally, all participants were fully engaged during the workshops and survey and 

provided rich and in-depth insights from their practical experience, ensuring robust and 

reflective findings.  

The survey and workshops were primarily conceived as the adjunct to the evaluation of the 

model developed. However, highly valuable content was observed, such as the potential 
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pattern of learning behaviours of the railway industry and the attitude toward railway safety. 

For example, costs associated with incidents and the relationship between costs and 

keywords attracted significant interest during the survey and workshops. Furthermore, 

participants confirmed that reviewing historical railway accidents would help them understand 

related situations and the root causes of railway accidents. The selection of reviewed reports 

is based on the experience and knowledge of investigators. Additionally, several “classic” 

railway accidents with critical insights or severe consequences were highlighted as frequently 

cited case studies during the investigation process. These responses might indicate the 

potential way that the railway industry transfers railway accident reports into knowledge. 

For the take-out survey, all participants were encouraged to fill out all questions after the 

workshops. Six respondents were collected, and all questions were adequately answered. 

All data collected was associated with the information flow of the railway industry (see Figure 

7-1) and used to support the understanding of the learning behaviours in the railway industry. 

5.6.2 Analysis and discussion 

This section discusses the comments and recommendations collected in the workshops and 

the learning behaviours observed in the survey. Elements analysed in both sources are 

compared to ensure the outcomes are interpreted reliably. 

5.6.2.1 Workshops 

First, several pieces of valuable aspects of feedback related to the interpretation were 

collected from both workshops while introducing the raw outcomes of the topic modelling. A 

technical dictionary for the railway terminology and jargon might be required for a better 

understanding of extracted keywords and topics given that end users might be confused by 

words not ordered in a logical way. Presenting the outcome systematically or as several 

summarised sentences might be more desirable. Additionally, the distribution of keywords 
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under a topic presented with the occurrence might be helpful in turning the outcome into 

human-readable knowledge in the decision-making processes. Connecting keywords 

extracted to the topic that users are interested in and relative knowledge was also identified 

as a critical function. Participants made several suggestions regarding the design of diagrams 

presenting the result of topic models to strengthen the readability. 

Practitioners in both workshops also indicated that a number of taxonomy and knowledge 

systems had been developed and applied in practice. For instance, the UK’s Rail Safety and 

Standards Board (RSSB) has used NLP and machine learning to estimate the risk of railway 

accidents. A railway hazard list has been developed by RSSB based on their approaches to 

ensure it is less prone to omissions. The RAIB has also established a memory system storing 

findings of the previous investigation for statistical purposes, such as the distribution of 

causes and consequences. On the other hand, practitioners in session 2 workshop pointed 

out that the Contributing Factors Framework has been published to identify systemic safety 

issues contributing to an accident and applied to practical railway operation. However, each 

industry has its own taxonomy of hazards based on the definition of interest, implying that the 

interface between existing hazard identification and analysis systems in each jurisdiction 

needs to be addressed before aggregating knowledge from different sources. External 

conditions that cause the hazard to trigger a railway accident should be considered as well 

to comprehensively understand the interaction between hazards. 

The link between hazards and risk management was also highlighted in the discussion. 

Participants in the session 1 workshop believed that data has been fully disseminated across 

jurisdictions because all reports are publicly available. However, converting data into 

knowledge requires extensive human efforts in consistent analysis and professional 

knowledge. Specifically, mitigating the gap between systems during the analysis is 

challenging given that the nature of the system designed and control approaches with various 
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levels of services significantly influence the mechanism and consequences of a railway 

accident despite the same hazards being involved. Such barriers hinder practitioners from 

effectively learning from other jurisdictions. 

Last, several organisational factors have also been identified as playing a critical role in the 

knowledge transformation process. The railway industry has been divided into many 

organisations in various disciplines functioning individually. The focus of each discipline is 

based on the organisational objective so the interface derived might result in poor cooperation. 

Such issues might be dynamic due to the change of legislation and regulations, leading to 

different styles of negotiation between stakeholders during the accident investigation stage 

and recommendations made. Therefore, the data related to organisational factors collected 

from historical reports needs to be standardised for further knowledge processing and 

dissemination. 

Overall, participants in the workshops reached a consensus that learning across time has 

been implemented in the railway industry. Several comprehensive railway taxonomy systems 

have been developed based on historical railway accidents in each jurisdiction. The limitation 

lies in heavy human intervention and a labour-intensive analysis process for maintaining and 

updating existing knowledge in accordance with new railway accidents. On the other hand, 

practitioners think that learning across jurisdictions might be helpful once barriers to learning 

are fully addressed. For example, the consistency of data from different sources would 

determine the quality of the analysis. The standardisation process is also needed to mitigate 

the existing and external knowledge gap. Organisational factors such as the legislation and 

regulations over jurisdictions and over time should be considered to understand how they 

interact with hazards. Given that the complicated nature of a railway accident involves many 

hazards and underlying factors in a complex system, processing and disseminating such 

knowledge might become an unaffordable task for an individual organisation. 



245 
 

5.6.2.2 Survey 

The take-out survey primarily concentrated on the nature of learning behaviours in the railway 

industry and how information is transferred to knowledge and disseminated. The questions 

were divided into four parts: background information, knowledge receiving, knowledge 

processing and knowledge dissemination (see Section 9.1). Because a minimum 1 year of 

experience working in the railway industry was a criterion, only eligible workshop participants 

were invited to fill out the survey. Of the six respondents, three were working in the 

government sector, two were consultants and one was from academia. Respondents’ 

experience in the railway industry ranged from 6 years to 55 years.  

Respondents believe that the “unknown knowns” are the critical elements expected to be 

retrieved for the information receiving. The source frequently used is primarily jurisdiction-

based and known reports or other statistical data within the jurisdiction. The external source 

is mainly academic papers or analysis reports. Several respondents stated that “we only deal 

with our own issues/data as it is not transferable to anywhere else” and “Yes, we review 

accident reports from other countries, review for transferrable learning for [our] Rail, and 

produce a bulletin summary of incidents and learning”, indicating that the transferability of 

knowledge is the critical element for the railway industry to determine whether to learn across 

jurisdictions. On the other hand, legislative factors and regulations are another consideration 

before using knowledge from other jurisdictions because the reliability and accuracy of this 

information might need to be further validated. 

Next, the responses to knowledge processing were diverse based on the role each 

respondent plays. A UK participant stated that the UK’s Rail Safety and Standards Board 

would help other organisations in the railway industry to analyse railway accident reports and 

extract valuable knowledge. Another respondent claimed that organisations in the railway 

industry understand the importance of analysing investigation reports, but aggregated data 
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is unavailable for supporting the decision-making process. Additionally, respondents believed 

that the time required to review railway accident reports would vary based on professional 

skills, experience, and the purpose of the review. However, it is agreed that manual review is 

time-consuming during the analysis. These responses potentially indicate the awareness of 

this issue but the lack of willingness or ability to process data. In contrast, a consensus view 

on the expected outcome of processing knowledge is observed, including contributing factors, 

underlying causes, actions required to mitigate hazards, similar railway accident cases and 

recommendations made after accidents. To obtain this knowledge, the existing process 

adopted by the railway industry applies several theoretical supporting tools such as Bowtie, 

Swiss cheese, Risk control hierarchy and Incident Cause Analysis Method (ICAM). 

Last, engagement and information dissemination has been found to be restricted by the 

legislative framework in the railway industry. Responses like “contractors will often claim legal 

privilege over a significant investigation making them reluctant to share information relating 

to that incident”, “difficulties of the willingness to engage (on both sides)” and “difficulties of 

the access to all appropriate data” indicate that the dissemination and engagement are 

motivated by contracts or the supervisory relationship within the railway industry. In the UK, 

the Rail Safety and Standards Board (RSSB) is funded by organisations in the railway 

industry as the agency body to engage with regulators, such as receiving recommendations, 

reviewing standards, and conducting safety analysis. Furthermore, the authority-centralised 

reporting and accident investigating system is observed because practitioners believe that 

the authority, such as the investigation body and local regulator, would lead the safety 

improvement process. The legislative framework also regulates the accident disclosure, so 

the information flow is mostly controlled by norms. Therefore, the process of converting the 

railway accident into knowledge and disseminating findings is mostly managed by the 

investigation body at the railway socio-technical system. 
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5.6.3 Summary of findings from scoping workshops and survey 

Material generated by the workshops and survey has shaped the outline of the learning 

behaviours and the safety culture of the railway industry. However, only concentrating on 

workshop or survey material might lead to misunderstanding and oversimplifying of the 

natural behaviour and interaction of a complex system.  

The workshops revealed barriers to converting overcrowded external sources into 

organisational knowledge, such as the lack of proper technical support and legislative 

framework. The survey further identified the heavy human labour and high professional skills 

required for knowledge transformation. Furthermore, the restriction placed by the legislative 

framework of the jurisdiction was frequently mentioned in the survey during the information 

receiving and disseminating stages. The railway authority primarily determines the use of 

data sources and information dissemination. Such a supervisory system might limit the 

motivation of organisations in terms of proactive railway safety improvement. 

On the other hand, the workshops and survey also revealed that the information processing 

system in the railway system is mature in the context of jurisdiction-based analysis. Accident 

information can be transferred into knowledge by leveraging safety theoretical frameworks 

and tools and converted into data of interest, such as the causes of accidents and underlying 

factors. In addition, most information processing tasks have been standardised to ensure the 

outcome of the investigation is consistent with prior reports. 

To sum up, the railway industry has devoted considerable effort to improving railway safety 

by systematically understanding how a railway accident occurs. Historical railway accidents 

have been analysed and converted into desirable data forms for further analysis. However, 

such progress becomes stagnant due to the fast change of external factors and the lack of a 

modern data analysis process, causing practitioners to ineffectively transform new 
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information into knowledge. Nevertheless, the legislative framework may have resulted in 

practitioners’ concerns regarding handling information flow related to railway accidents and 

caused the passive reporting attitude. The development of such a safety culture might have 

a negative impact in the long term. 

5.7 Synthesis of findings 

This chapter elaborated the application of proposed methods to the four investigated 

countries. Over 1,200 railway accident reports, containing 400,000 sentences (Table 5-1), 

published by the national railway accident investigation bodies of four countries were 

analysed. The indicator coefficient of variance (CV) was proposed and applied to the 

BERTopic model to discriminate distinguished topics from common ones, enabling the 

identification of specific hazards. Scoping workshops and a survey were conducted to collect 

suggestions from practitioners in the railway industry to understand further improvement on 

the model developed. Various types of hazards were identified by each country, showing the 

difference in encountered mechanisms of railway accidents and the approaches to address 

them. For instance, tram-related accidents dominate the RAIB dataset, whereas freight train-

related accidents are more common in the ATSB dataset. 

Additionally, the STM was applied to the recommendation dataset of the four countries. The 

trend of making recommendations and the focus of each investigating body were revealed. 

The RAIB tends to make recommendations relevant to improving existing systems by 

reviewing processes, regulations and standards, and updating the monitoring or measuring 

approaches. On the other hand, the ATSB proposes a significant number of 

recommendations requesting to take action on safety issues identified without direct 

instructions, offering high flexibility to the railway industry in decision-making. Next, 

recommendations about cooperating with other organisations and local authorities are more 

common in the NTSB dataset, suggesting a solid promotion of learning and sharing 
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knowledge between organisations in the railway industry in the US. Last, Canada’s TSB 

focuses on the measurement of ensuring effective procedures and designs are in place to 

mitigate hazards.  

Overall, recommendations related to the introduction or modification of procedures and 

monitoring systems without discussing the real motivation of behaviours, indicating 

systematic reviews of the railway safety culture are absent. In addition, reviewing compliance 

with existing procedures or regulations implicitly indicates a blame culture that is the opposite 

of the promises made by investigators. Nevertheless, the observations of effectiveness and 

the absence of day-to-day analysis, operation and maintenance are frequently proposed 

without discussing the underlying factors or synthesising previous accidents and findings. 

The effect of such recommendations might not be beneficial for long-term railway safety due 

to the absence of inherent motivation.  

To conduct the cross-sectional analysis, the ontology, knowledge graphs and entity linking 

were integrated into the designed railway accident ontology to standardise the different 

terminology used in the investigated countries. Mentions of one entity can be identified by 

leveraging open access API and SPARQL query service without constructing a complicated 

named entity recognition model. The knowledge structure Wikidata was applied to mitigate 

the interface barrier between railway accident reports and the railway accident ontology, 

enabling us to extract critical elements in railway accident reports by using the context-

sensitive disambiguation process.  

Participants in the scoping workshops and survey revealed several issues. The major 

concerns discussed were the interpretability of the model’s outcome and transformability of 

data from external sources. The next chapter developed conceptual frameworks to address 

issues mentioned. 
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6. Novel conceptual frameworks proposed 

To comprehensively understand the relations between hazards, accidents and 

recommendations, this study further extends the findings retrieved from BERTopic and the 

STM by incorporating knowledge from other literature. A holistic view of the subject matter 

enables the identification of mechanisms and patterns that might not be revealed with a single 

data source. The results of advanced applications can be beneficial for developing machine 

learning based interpretations and improving railway safety. In addition, comments and 

suggestions received from the scoping workshop are also considered during the development 

of advanced applications. 

6.1 The relations between hazards, accidents and recommendations 

There have been a considerable number of studies discussing the relationship between 

hazards and accidents in the literature, such as the domino theory (Heinrich, 1941), Reason’s 

Swiss cheese model (Kim & Yoon, 2013; Zhou & Lei, 2018), and systems theory (Systems 

Theory). In recent years, growing attention has been drawn to interoperating the existing 

findings of railway accident mechanisms from a systematic perspective. For instance, the 

widely used systems theoretic accident model and process (STAMP) assumes that accidents 

are dynamic and complicated processes and direct and indirect control and causality are 

considered. Accidents are caused by inappropriate management, and the involved socio-

technical system is a control system, offering safety constraints to manage hazards (Gong & 

Li, 2018; Hulme et al., 2019; Ouyang et al., 2010). Another example is the AcciMap based on 

the system-theoretic process analysis (STPA), the causal analysis based on STAMP (CAST) 

and the Reason model. The AcciMap provides a holistic approach to showing 

interrelationships between causal (hazardous) factors at different levels and highlighting the 

problem areas. An exhaustive review of these foundational theories and risk analysis 
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frameworks in the context of risk analysis context was provided in Section 2.2.  

However, the discussed relationship does not involve the solutions applied to address risks. 

Many recommendations proposed by investigators aim to address hazards and prevent 

similar accidents from occurring, but only a limited number of studies put emphasis on 

building a comprehensive view of applied solutions worldwide, hindering practitioners and 

researchers from learning across jurisdictions and across time. Therefore, this study 

leverages the system theory and the outcome of our models to develop a novel framework 

for understanding the relationship between hazards, accidents and recommendations and 

illustrates the process in the following sections. 

6.2 RecoMap – a systematic view of recommendations 

The argument about modelling risk management by considering it to be a control problem 

and addressing issues from the perspective of a control structure inclusive of the society for 

each type of hazard begins with the work done by Rasmussen (1997) and has been ongoing 

for decades. Several studies have applied such a concept to real-world cases and proposed 

frameworks for interpretation (Arenius & Sträter, 2014; Grant et al., 2016; Yuyua et al., 2021). 

AcciMap is one of the commonly used frameworks representing the interactions between 

hazardous elements from different systems in a structured way, such as technology, human 

factors and environment (Stanton et al., 2019; Thatcher et al., 2019; Underwood & Waterson, 

2013; Wheway & Jun, 2021).  

Figure 6-1 illustrates the structures of AcciMap and the included elements, identifying the 

potential improvement rather than the responsibility for the railway accident. AcciMap also 

elaborates on the decision flow, including consequences and reactions from the top to the 

bottom of the system. However, this framework might not be applicable to the railway 

recommendations data because the shape of one recommendation covers several system 
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levels. For example, a recommendation for a railway accident suggesting learning across 

organisations might involve system levels at regulatory bodies, local governments and the 

railway industry. It might be difficult to implement this recommendation in the existing AcciMap. 

Nevertheless, AcciMap cannot visualise multiple types of recommendations and cannot 

describe the trend of decisions made by one organisation over time, hindering users from 

having a holistic map of all recommendations made by different countries and making the 

comparison.
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Figure 6-1: The structures of AcciMap and the included elements (Rausand, 2013) 
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To better understand the style of each investigator’s recommendations, the taxonomy of 

recommendations proposed by Karanikas (2016) is used to discriminate the recommendation 

type based on the extent to which the railway has the flexibility to address hazards identified 

by investigators. There are three types of recommendation proposed by Karanikas: 

assignment, action and reminder (Table 6-1). Assignment offers a distinct objective for 

organisations to come up with solutions and implementations and is considered a supportive 

recommendation. In contrast, an action might contain specific approaches assigned by the 

investigator to address hazards, limiting the flexibility of organisations to adopt solutions and 

be categorised as an interfering type of recommendations. Last, the reminder is another 

supportive recommendation, providing enormous flexibility to organisations in modifying the 

existing rules and procedures of the operation. 

There is no one-size-fits-all solution for addressing hazards in the railway industry given that 

each country uses a wide range of systems and has developed an inherent railway safety 

culture. In addition, recommendations also need to reflect the nature of the investigated 

railway accident and should be balanced between each type to ensure moderate flexibility in 

implementing solutions. 
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Table 6-1: Types of recommendations made (based on Karanikas, 2016) 

Recommendation type Description Example Role 

Assignment Assign an objective for 

organisations to resolve identified 

hazards 

Network Rail should identify and 

implement suitable measures to 

mitigate the risk of a runaway. 

Supportive 

Action Assign specific methods to 

address identified hazards 

Network Rail should amend its 

National Hazard Directory to include 

the access point alongside South 

Hampstead station. 

Interfering 

Reminder Remind about compliance with 

existing rules or procedures 

FRA should increase monitoring of 

their employees for compliance with 

existing applicable rules and 

procedures. 

Supportive 
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Next, this study slightly modifies the method of describing the role each recommendation 

plays in the railway system and proposes the customised model RecoMap to address the 

mentioned issues. Instead of showing the decision flow, RecoMap enables a variety of 

recommendations to fit at multiple system levels and describes the trend of each type of 

recommendation across different countries. Figure 6-2 shows the proposed RecoMap applied 

to the outcomes of the STM. The extracted topics are placed in the RecoMap in accordance 

with the covered systems, and the number of occurrences is labelled as well. The depth of 

the colour represents the time that most recommendations are sorted to the topic proposed. 

The light colour refers to early recommendations and dark colour to late recommendations. 

The railway system is divided into the organisational level and operational level, representing 

how the socio-technical system works in the railway industry. Therefore, RecoMap addresses 

the concern about aggregating findings and insights obtained from railway accidents in other 

jurisdictions, which was proposed by practitioners in the scoping workshop. Furthermore, 

practitioners can review what role each recommendation plays in the socio-technical 

framework and understand how the legislative framework and regulations influence railway 

safety in each jurisdiction by implementing the recommendations made. 
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Figure 6-2: The proposed RecoMap applied to the outcomes of the STM 
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Overall, RecoMap maps how investigators in different countries address identified hazards 

and lead the railway industry of each jurisdiction to improve railway safety. Common 

recommendations at the operational level are procedures of maintenance and inspection, 

consistency of testing processes, introducing state-of-the-art equipment, and reviewing 

existing designs and technologies. On the other hand, recommendations commonly 

proposed at the organisational level are process standardisation, cooperation with other 

organisations and dissemination of railway safety knowledge.  

A growing shift from addressing hazards at the operational level to the organisational level is 

found in ATSB and RAIB recommendations, implying the railway industry is gradually 

adopting system theory and control theory to improve railway safety and address risks from 

the perspective of an integrated whole. Such a trend might be beneficial in changing 

conditions for a system as complex as the railway system, providing useful predictive 

capabilities to adapt the railway system to a dynamic environment. On the other hand, NTSB 

consistently offers recommendations at the organisational level, in contrast to 

recommendations made by TSB. 

Several recommendations made by ATSB indicate detailed instructions at the operational 

level, such as the prioritisation of tasks, the management of workload and validation of the 

effectiveness of existing standards. This might imply that ATSB tends to propose interfering 

recommendations (the action type in Table 6-1) to address identified issues. However, most 

interfering recommendations are coloured in light, indicating a potential shift toward 

supportive recommendations at the organisational level. A similar shift can also be observed 

in RAIB, transferring from interfering recommendations such as improving physical 

equipment and assessments of individuals to design and standardisation of the system. 
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On the other hand, a considerable number of recommendations related to the cooperation 

between organisations and assisting research and programs are proposed by NTSB, 

implying a strong promotion of learning across jurisdictions and sharing the knowledge with 

other research organisations. The trend continues, along with recommendations relating to 

the dissemination of railway safety knowledge. It is also worth noting that NTSB consistently 

tends to propose precise but interfering recommendations, such as verifying existing systems 

and assisting research and programs.  

Last, the number of recommendations made by TSB is extremely limited because only their 

investigation of major railway accidents results in recommendations. In addition, most 

recommendations address hazards from the operational perspective and rarely are 

recommendations at the organisational level proposed, hindering how the railway industry 

deals with hazards as an integrated whole. 

Different combinations of the style and system level of recommendations might be feasible 

for different roles in the railway industry. Therefore, the roles that local railway regulators and 

national railway accident investigators play should be differentiated. For local regulators, 

operational recommendations might be appropriate to be proposed given the high 

homogeneity of railway systems and operations. In addition, local regulators have more 

experience and understanding of railway systems in their jurisdictions. The level of 

cooperation is higher than national railway accident investigators, indicating that interfering 

recommendations might be more efficient to improve railway safety.  

On the other hand, national railway accident investigators are able to instruct the whole 

railway industry, including local railway regulators. Therefore, the emphasis should be put on 

proposing a positive railway safety culture, disseminating railway safety knowledge and 

ensuring lessons are fully learned and applied to all relevant railway organisations across the 

country. In doing so, the recommendations made by national railway accident investigators 
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need to be supportive, offering organisations the best flexibility for local railway regulators 

and railway organisations to modify the day-to-day operation and gradually adopt new 

approaches to manage potential impacts. Furthermore, recommendations at the 

organisational level are suggested to be proposed by national railway accident investigators 

to enhance the communication and safety culture of the whole railway industry. Promoting 

learning behaviours and reducing the obstacle of the interface between organisations are 

also critical objectives to be achieved. Thus, proposing supportive recommendations to 

address hazards and manage risks from the organisational perspective might be most 

beneficial for railway safety from a national railway accident investigator. 

Table 6-2 shows the comparison matrix for the investigated countries between the style and 

system level of recommendations. Cells from the top left (dark grey) to the bottom right (light 

grey) represent the suggested combination of the style and system level of recommendations 

adopted by the investigator at the lower system level (i.e., local railway regulators) to the 

higher system level (i.e., national railway accident investigators). Each investigated country 

has been divided into two stages: the early stage and the current stage. Overall, the style of 

proposing recommendations of all countries at the early stage tends to be interfering at the 

operational level. Such a trend has gradually shifted to making supportive recommendations 

at the organisational level. However, the majority of recommendations made by NTSB are 

still interfering, and TSB thus far proposes most recommendations at the operational level. 

Therefore, it is suggested that investigators at different levels consider the role they play in 

the railway industry in their country before developing recommendations. 
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Table 6-2: Comparison matrix for investigated countries between the style and system level 

of recommendations 

Style 

System level 
Interfering Neutral Supportive 

Operational 
ATSB (early years) RAIB (early years) 

TSB (early years) 

TSB (current) 

Neutral NTSB (early years) RAIB (current) ATSB (current) 

Organisational NTSB (current)   

Apart from the style of making recommendations, learning behaviour also plays an essential 

role in advancing railway safety (Paul et al., 2018; Zhan & Zheng, 2016). Topics related to 

the learning across jurisdictions and across time are highlighted with red outlines (Figure 6-2), 

including lesson learned, communication, dissemination and cooperation. The result 

suggests that investigators gradually put emphasis on exchanging knowledge and learning 

across organisations within the jurisdiction in recent railway accident reports, indicating that 

the adjustment to correct mistakes (single loop learning6) and the identification of underlying 

factors (double loop learning6 have been fully implemented in the railway industry. However, 

the participation of people in making well-informed decisions to address complicated and 

dynamic risks (triple loop learning6) is not yet found in made recommendations. For instance, 

recommendations seldom review cultural dimensions. The idea of learning across 

organisations has been proposed, but investigators rarely remind the railway industry to 

 
6 The concept of single loop learning, double loop learning and triple loop learning is proposed by Romme 
and VanWitteloostuijn (1999), suggesting that traditional organisational learning and design (single and double 
loop learning) focus on risks having simple structural patterns. To understand and address the complexity and 
dynamics of changes, triple loop learning should be adopted to explore structural opportunities and promote 
the participation of people in making well-informed decisions. 
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understand the value of making these decisions and might result in a passive attitude toward 

railway safety. 

To sum up, the proposed RecoMap provides a holistic view of how different countries make 

recommendations, enabling the railway industry in other countries to learn potential 

approaches to address similar risks from these countries. The style of making 

recommendations suggests that the most appropriate style for each organisation might vary 

based on its role in the railway system. A shift from making interfering recommendations at 

the operational level to making supportive recommendations at the organisational level was 

also identified among investigated recommendations made by national railway accident 

investigators. Last, the learning behaviours were also observed, and the analysis suggests 

that the behaviour of triple loop learning is still insufficient in the railway industry of the 

investigated countries. Learning from recommendations might not be the only way to improve 

railway safety but understanding recommendations can help the railway industry understand 

how similar issues are addressed in other jurisdictions. 

6.3 The development of HazardMap 

Despite distinct topics identified by the BERTopic model, the relationship between each topic 

cannot be revealed, hindering users from understanding the mechanisms of railway accidents. 

Nevertheless, a considerable number of comments collected from the scoping workshops 

indicate that the outcome is difficult to interpret by merely reviewing the keywords of each 

topic. The discussion also covered that the nature of railway accidents is characterised by a 

series of hazards, so it might be unrealistic to look at an accident through a singular 

perspective. Therefore, the result of the BERTopic model is further extended by adding 

additional processes to address this issue. First, the distribution of the number of sentences 

over each topic on documents is extracted and condensed to a topic-document matrix. 

Second, we assume that the distribution of each topic over documents is the projection of the 
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extent to which this topic influences each railway accident. Multiple similar distributions 

indicate that these topics constitute a specific group of railway accidents with similar features. 

Therefore, the cosine similarity approach is applied to identify the similarity of distributions 

(Cheng et al., 2009; Qurashi et al., 2020). A topic–topic similarity matrix can be generated 

with each element between 0 and 1. A higher similarity score indicates that sentences under 

both topics are commonly used in the same group of documents.  

Next, a distribution of topics including the relationship can be mapped by setting a threshold 

for the similarity score, linking each topic and forming a series of clusters representing various 

hazards. The threshold for the similarity might be determined based on the nature of input 

data and analysis purposes. A higher threshold leads to scarce links between topics and 

forms a limited number of small clusters, whereas a lower threshold results in dense 

connections between topics and several large clusters containing almost all topics. Therefore, 

the threshold needs to be carefully determined by reviewing each outcome with a different 

similarity score.  

This study uses the RAIB dataset as an example for demonstrating the application. The 

threshold for the RAIB dataset is set as 0.5 due to the appropriate balance between the 

number of clustered groups and the well-distributed hazards. Figure 6-3 shows the 

distribution of relationship between hazards identified in the RAIB dataset. Each orange dot 

represents a topic identified by BERTopic and the link refers to the similarity score of two 

topics that is larger than the threshold. The name assigned to each cluster is based on the 

inference of keywords of linked topics. According to this result, more potential hazards are 

identified compared with the interpretation of topics having high possibilities of occurrences. 

The connection between topics is also revealed to illustrate the underlying causal relations in 

the hazard group. In addition, the cross-country analysis becomes applicable by extracting 
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the hazard of interests from different countries and comparing the mechanisms and causal 

relations. Two case studies are illustrated in the following sections. 

On the other hand, similar accidents still occur given that recommendations are made and 

adopted by the railway industry. Such situation might not be entirely relevant to the issue of 

how hazards are addressed but the way hazards are interpreted, indicating the need for a re-

interpretation of hazards in the railway safety context. Additionally, the distribution of the 

relationship between hazards constitutes each cluster by aggregating connected hazards, 

indicating the nature of the complexity of a hazard. Therefore, the hazard should be 

interpreted by elements involved rather than the hazard itself given that it would trigger 

another accident in combination with other hazards or in other dimensions. 

Assume that each hazard in the railway system is revealed in the form of accidents. A hazard 

must have multiple aspects that result in different types of accidents. Therefore, an addressed 

hazard might appear again after the combination with others, implying one hazard will never 

be fully addressed. However, reducing the caused impact by proposing appropriate 

recommendations toward accidents revealing part of the aspects of one hazard is still 

beneficial for improving railway safety. 

Based on this description, we can assume that each hazard has almost infinite aspects. For 

example, one aspect might result in an accident with the combination of other hazards and 

under specific conditions. Once the accident occurred, the impact would disrupt the railway 

system and recommendations are proposed to address the triggered aspect of this hazard 

by the investigator. After several occurrences of accidents and all controllable aspects are 

addressed, this hazard is considered to be mitigated to the lowest possible level.  
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Figure 6-3: Distribution of the relationship between hazards identified in the RAIB dataset 
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To visualise the description above, this study proposes HazardMap to help better understand 

the relationship between hazards, accidents and recommendations across countries. Figure 

6-4 illustrates the conceptualised framework HazardMap, inspired by the result of topic 

modelling (Figure 6-3). HazardMap is a data-driven and epidemiological factor-based 

framework, looking at railway accidents from a hazard-centred perspective. Hazards 

illustrated in HazardMap are derived from clusters of hazards, for example, the level crossing 

in Figure 6-3.  

Next, each hazard has a series of aspects illustrated as the outline of the oval consisting of 

continuous dots. Two types of dots surround the hazard: the unprotected aspect (coloured in 

red) and the protected aspect (coloured in black). The unprotected aspect refers to the 

potential possibility that this hazard triggers a railway accident under specific conditions or in 

combination with other hazards. The unprotected aspect might not be identified until it triggers 

an accident or preventative implementation is placed in advance. On the other hand, the 

protected aspect represents the hazard that would no longer trigger an accident from this 

dimension because it has been identified and fully addressed by introducing permanent 

solutions, such as applying state-of-the-art technology or improving relevant processes. Note 

that any implementation of new policies or strategies might result in another hazard while 

fully addressing an aspect of a hazard. 

Once a hazard triggers a railway accident (with the combination of other hazards or factors), 

the aspect would be highlighted in the HazardMap and connected to the triggered railway 

accident. Multiple aspects of hazards might trigger some railway accidents, for instance, 

accident 11 is triggered by aspects of hazard 1 and hazard 2. Subsequently, railway accident 

investigators would investigate and propose recommendations to address identified aspects 

of the hazard involved, aiming to prevent similar railway accidents from occurring again 

(converting red aspects into black). Some recommendations might also address hazards 
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identified by previous railway accidents and reinforce the prevention of hazards, which is 

illustrated as multiple arrows toward different accidents in the HazardMap.  

On the other hand, hazards are further categorised based on likelihood across countries. 

Some hazards can only be found in specific locations, such as autumn leaf falls in the UK 

and high temperatures hazards in Australia (see Table 5-8). On the other hand, hazards that 

can be classified into more than one country are shown as common hazards. Different 

aspects of these common hazards might affect the country-specific area and trigger a railway 

accident. Note that the locations of hazards on the HazardMap might move from one area to 

another to reflect the change in environment. For example, due to severe climate change the 

high temperature hazard might impact the UK railway system. In this case, the high 

temperature hazard might move from Australia to the common hazard area. 

Last, HazardMap, with the use of the ontology developed, also addresses several issues 

raised in the workshops and offers an effective approach to incorporate data retrieved from 

external sources. First, the technical dictionary for the railway terminology and jargon has 

been covered by the ontology. Although the model cannot directly offer a full list of terminology 

and jargon used in the dataset, the ontology enables users to conduct analysis across 

jurisdictions by standardising the terminology used in the topic of interest. Second, the 

existing hazards taxonomy developed by each railway industry can be further connected to 

the HazardMap across countries to discover potential aspects of hazards that are overlooked 

in the system. Finally, HazardMap also provides a consistent and standardised framework for 

practitioners to process and archive the railway accident knowledge acquired from the 

investigation with limited human intervention required. 
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Figure 6-4: HazardMap: The relations between hazards, accidents and recommendations across two countries 
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6.4 Temporal analysis – the time required for making recommendations 

Another potential hazard, which cannot be adapted to the HazardMap and has been 

overlooked in existing recommendations, is the gap between the occurrence of the accident 

and the publication of the recommendations. Aspects of hazards triggering one accident are 

identified and addressed after recommendations are made and implemented, but the railway 

system is exposed to these hazards during this investigation and reporting period. Although 

the time required to make recommendations depends on the nature of the investigated 

railway accident and immediate improvements might be in place as reactions, hazards at the 

system level still need comprehensive solutions and holistic strategies to be addressed. 

Therefore, railway accident investigators can either reduce the time required to make 

recommendations or consider recommendations made by other countries before the accident 

occurs. 

To understand the distribution of the time required to make recommendations and the method 

adopted to address hazards, this study further extends the RecoMap by combining types of 

recommendations and the time required to publish the railway accident report. Figure 6-5 

uses level crossing incidents investigated by the RAIB as an example to visualise how 

recommendations made in railway accidents relevant to level crossings and the different roles 

each recommendation plays in the RecoMap are distributed over time. According to Figure 

6-5, railway accidents relevant to level crossings require 1 to 2 years for investigation, and 

most recommendations concentrate on the design and standards for level crossing safety 

(topic 22). The promotion of appropriate measures for monitoring (topic 5) can be found 

between 2009 and 2015, implying that monitoring systems such as CCTV might be in place 

during this period and address some aspects of level crossing hazards. This reduces the 

occurrence of level crossing accidents from such aspects, and the same pattern can be found 
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in recommendations related to adding considerations to existing guidelines and assessment 

(topic 13). 

Note that the time of publication is used as the proxy of the time that the local railway industry 

receives recommendations given that the real informing time is barely available and each 

country might have various regulations on the interaction with other organisations during the 

investigation. In addition, Figure 6-5 only illustrates level crossing accidents investigated by 

the RAIB and cannot represent all level crossing accidents in the UK because the national 

railway accident investigation body investigates only a limited number of them. 

In summary, hazards in the railway system emerge along with many factors, such as the 

design of infrastructure, the safety culture, the way of operation and planning. Railway 

systems in different countries generate inherent hazards and aspects. However, similar 

hazards can still be found across countries, such as human error and track defects. Many of 

these hazards and aspects have been thoroughly discussed and mitigated in well-developed 

railway systems, and the experience can be used to mitigate the hazard before the 

occurrence of accidents. Therefore, HazardMap is proposed to describe the nature of railway 

accidents, allowing end users to have a comprehensive view of all identified aspects of 

hazards and corresponding recommendations around the world. In addition, the hazard of 

the gap between the occurrence of the accident and the publication of the recommendations 

is also highlighted. Railway accident investigation is a long process and might take years 

before reaching a conclusion. During this period of time, similar accidents caused by the 

same hazard might occur again. To mitigate such hazards effectively, proactively learning 

from other countries is critical to avoid such situations. The following sections offer case 

studies applying the techniques mentioned to real-world cases. 
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Figure 6-5: Level crossing incidents over time and frequency of recommendations (RAIB) 
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6.5 Case study I – level crossing accidents 

Level crossing accidents have been widely discussed in the literature and have significantly 

influenced railway safety for a long time (Adeolu et al., 2016; Blaho et al., 2020; Bureika et 

al., 2018; Liang et al., 2018; Salmon et al., 2013). However, cross-country analysis is seldom 

found in the literature. This case study provides a comprehensive view of how hazards 

relevant to level crossing accidents impact the railway system across investigated countries 

and solutions made by each railway accident investigation body. 

First, the HazardMap of each country for level crossing accidents is identified by developing 

the distribution of the relationship between hazards derived from the BERTopic model. Next, 

the threshold of covariance is set based on each distribution, which is set to 0.5 for the RAIB, 

NTSB and TSB datasets and 0.7 for the ATSB dataset. Once the distribution is generated, 

clusters relevant to the level crossing hazards are extracted manually. It is suggested to 

search relevant topics by starting with the top 50 topics and identifying the initial network. The 

network is further extended by looking at each document’s topic distribution mentioning topics 

in the initial network. Note that the network of interest might be connected to other clusters. 

Therefore, the boundary must be manually identified to exclude irrelevant topics. 

At this step, the threshold of the mentioning rate needs to be set to determine whether one 

document belongs to this network. A higher threshold results in a smaller number of selected 

documents with higher confidence of relativity and vice versa. To determine the best threshold 

of mentioning rate for each dataset, an initial rate can be set and documents with a 

mentioning rate close to the threshold should be manually reviewed. The threshold can be 

enlarged once most reviewed documents are irrelevant to the topic of interest and vice versa. 

Once relevant documents are retrieved, additional topics of interest can be further extracted 

to extend the network by reviewing dominant topics in documents. 
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An example of the extracted network for level crossing hazards in the NTSB dataset is 

demonstrated (Figure 6-6). The topic selected for identifying the initial network is topic 10: 

private crossings. Subsequently, the boundary is set after reviewing the relevance of topics 

on the edge as the initial network is connected to other clusters. Next, an initial threshold of 

the mentioning rate is set to 20%, and documents on the edge are reviewed. A final threshold 

is set to 10% and 36 documents are identified and labelled as level crossing (LC)-related 

incidents. Another relevant cluster containing two topics (topics 85 and 225) is also 

recognised after reviewing dominant topics in documents retrieved from the initial network. 

After establishing the distribution of topics and their relationship relevant to level crossing 

accidents of each country, heterogenous terminology used in each country is standardised 

with the developed ontology (Section 5.4). For instance, mentions of “level crossing” and 

“grade crossing” are linked to and presented as the entity “level crossing (Q171448)”. Topics 

with standardised names from investigated countries are clustered again based on the 

characteristics of hazards. Last, the HazardMap can be created by plotting hazards from each 

country with different colours for representations.  
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Figure 6-6: Distribution of topics and their relationship relevant to level crossing accidents published by the NTSB 
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There are 10 main hazards identified in HazardMap relevant to level crossing accidents 

investigated by national railway accident investigators: level crossing design (Figure 6-7), 

human factors, types of users, types of level crossings, external hazards, maintenance, and 

others (Figure 6-8), policy/management, employee training, and level crossing user 

education (Figure 6-9). Aspects of each hazard are coloured in accordance with identified 

countries. Overall, a significant number of aspects are observed in several hazards, including 

road signs, road users and policy/management. The RAIB and ATSB cover almost all aspects 

of hazards, and the NTSB places much emphasis on human factors. On the other hand, the 

TSB concentrates on types of users but overlooks the design of signs on the road and rail. 

The NTSB also investigated several potential behaviours of road users, such as stopping 

within the boundary and the regulation of users, whereas the ATSB focuses on the potential 

impact of the design of road signs and the condition of sighting distance. Thus, the difference 

in the approach that each country uses to address level crossing hazards between countries 

can be explored. 

Finally, a cross-validation of the level crossing case study is conducted by using the Australian 

Level Crossing Assessment Model (ALCAM). ALCAM is an assessment system for identifying 

potential risks related to level crossing systems in Australia and prioritising the upgrade of 

dangerous level crossings by evaluating each level crossing with risky factors. Factors used 

in the ALCAM are extracted to conduct the comparison with aspects and hazards in the 

HazardMap.  
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Figure 6-7: The applied HazardMap on level crossing accidents from four investigators – level crossing design 
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Figure 6-8: The applied HazardMap on level crossing accidents from four investigators – human factors, types of level crossings, external 

hazards, maintenance, types of users and others 
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Figure 6-9: The applied HazardMap on level crossing accidents from four investigators – policy/management, employee training, and level 

crossing user education 
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Overall, ALCAM focuses on distractions of road users, road and sign designs, types of road 

users and types of level crossing in detail. Results from our model cover almost all topics in 

the ALCAM but miss the following: proximity to sites or public facilities, the likelihood of 

vandalism to controls, seasonal/infrequent train patterns, train speed, train schedule and 

possible sun glare sighting. On the other hand, ALCAM places less emphasis on the 

conditions of road users, such as regulation on road users, improper vehicle brake 

maintenance and the absence of the use of winter tires. Suicide/trespass prevention and 

communication with emergency services are not included in ALCAM. Note that the lack of a 

characteristic in our model means the relation between this characteristic and level crossing 

is not significant from the analysis but may be substantial with other accidents. For instance, 

the connection between fatigue (road users and train drivers) and level crossing accidents is 

not found but the link with speeding is found. 

On the other hand, RecoMap can be developed by extracting recommendations for level 

crossing accidents and adopting the process described (Section 6.2). However, the NTSB 

dataset is exclusive because the railway accident reports are inconsistent with the 

recommendation sources provided by the NTSB. Specifically, the codes of the 

recommendation dataset do not fully match codes assigned to railway accidents, hindering 

us from connecting the recommendations to corresponding reports. The TSB dataset is also 

excluded due to the insufficient amount of data. 

Figure 6-10 shows the developed RecoMap on level crossing hazards based on 

recommendations proposed by the RAIB and ATSB. The RAIB has made a considerable 

number of recommendations relevant to the design and standardisation of level crossings, 

and an upward trend can be observed in recent years. Monitoring, inspection and 

maintenance also dominate the recommendations at the operational level. However, the 

number of recommendations related to learning and sharing knowledge is somewhat limited 
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in the RAIB, so the level crossing hazards are recognised as local risks heavily relying on the 

context.  

In contrast, the ATSB emphasises sharing knowledge with organisations in the railway 

industry, resulting in a series of independent railway level crossing safety groups and 

programs, such as the Regional Australia Level Crossing Safety Program. Therefore, a 

significant shift in the style of making recommendations to address level crossing risks is 

observed. Fewer recommendations have been made in recent years except for reviewing the 

effectiveness of the implemented programs and standards. Moreover, establishing 

independent railway level crossing safety management entities might be the ultimate solution 

made at the organisational level, providing high flexibility to collect data and conduct 

comprehensive analysis for addressing the risk as a whole. 

Although it might be difficult to evaluate the different approaches that each country applies 

and determine the best and universal solutions to mitigate level crossing hazards, such risk 

has been drawing much attention and evidence has shown that overall level crossing risk has 

been mitigated significantly in recent years (Evans, 2011; Read et al., 2013; Salmon et al., 

2016). However, understanding aspects of level crossing hazards and how they are 

addressed across jurisdictions helps maintain the level crossing risk within the affordable 

area and assists new railway transportation systems in developing a comprehensive 

framework to manage the identified hazards related to level crossings.
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* Level of transparency represents the trend of recommendations made from the early years to the late years. 

** The number followed by recommendations represents the occurrence of datapoints. 

*** Recommendations in red outline represent the consideration of engagements with other organisations. 

Figure 6-10: The developed RecoMap on level crossing hazards based on recommendations proposed by RAIB and ATSB 
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6.6 Case study II – the platform–train interface risk 

National railway accident investigation bodies do not investigate all hazards or risks, resulting 

in a lack of analysable data. This circumstance might occur while processing data sources 

with a high level of heterogeneity. In this case, HazardMap and RecoMap might not be 

applicable. In addition to traditional qualitative analysis, the BERTopic analysis can be further 

extended to thoroughly understand how each identified aspect influences the railway system. 

A case study of the platform–train interface (PTI) risk is provided to demonstrate the details 

of such an extension. Note that additional functions are also applicable to the HazardMap 

depending on the research objective. 

The PTI is a common hazard in the railway system. Although the consequences of such 

accidents might not be catastrophic or result in major disruptions, the PTI still causes a 

considerable number of casualties and injuries (Dai & Wang, 2010; Poirier et al., 2020). 

However, only a limited number of PTI accidents are investigated by the four countries at the 

national level. Both the ATSB and NTSB only published one PTI accident and the TSB has 

never published a report related to PTI. However, there is an individual program for 

addressing PTI risk funded by Australia and the US at the national level. An Australian 

government initiative published the report “Platform–train interface for rail passengers – a 

technology review” in 2012 (Devadoss et al., 2012), revealing potential hazards about PTI 

and proposing several solutions. On the other hand, another review was also conducted in 

2015 by the Transit Cooperative Research Program (TCRP) Project A-40 to mitigate the PTI 

risks in the US. Despite the thorough review, both countries fail to continuously manage the 

PTI risk at the national level and monitor the implementation.  

Conversely, the RAIB monitors PTI risks continuously as PTI-related accidents are still 

investigated. Despite a small number of reports, it is still worth examining them in a systematic 

way. Therefore, this section applies a modified analysis process to the RAIB dataset only.  
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Figure 6-11 shows the distribution of topics and their relationship relevant to PTI hazards in 

the RAIB dataset. First, the initial network for the PTI-related topics is extracted and reviewed 

by starting with topic 132: Platform edge gap. After reviewing reports on the edge a threshold 

of mentioning rate is set to 10%. Three irrelevant topics are removed from the initial network 

after investigating keywords of these topics (illustrated as the red line in Figure 6-11). Finally, 

a network consisting of 11 topics and 18 PTI-related reports is constructed. Additional 

relevant hazards are identified from reviewing PTI-related reports and shown in Figure 6-11. 

For the convenience of the following analysis, the topics in the network are referred to as the 

core PTI hazards, whereas additional relevant hazards are labelled as the supplementary 

PTI hazards. 

Next, the measurement for understanding the extent to which each hazard influences the 

specific system should be designed. Discriminating the impact brought by aspects of the 

hazard on different railway systems helps decision makers to manage risks based on the 

characteristics of each system and mechanisms of historical accidents. Therefore, the 

covariate analysis elaborated in Chapter 4 is used to estimate the effect of each hazard on 

the selected variables as the proxy of the measurement.  
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Figure 6-11: Distribution of topics and their relationship relevant to PTI hazards in the RAIB dataset 
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There is a significant number of topics connected to trams in the distribution of relationship 

between hazards identified in the RAIB dataset (Figure 6-3), implying that the tram is another 

mode of railway transportation that RAIB concentrates on. Thus, the covariate analysis is 

conducted by setting other modes of railway transportation as the fixed effect to measure 

how aspects of the PTI hazard cause tram accidents. Figure 6-12 shows the estimated effect7 

of core PTI hazards on trams against other modes from the RAIB dataset. Generally, the tram 

is more prone to all core PTI hazards. Scarf and coat fabric trapped dominate the causes of 

PTI accidents. Furthermore, the positive effect of the CCTV monitoring system and unstaffed 

platforms might reveal that a lack of platform security reduces the possibility of noticing 

trapped passengers and reflects the natural vulnerability of trams to PTI hazards. The 

(defective) door interlock light also indicates the potential combination of risks with human 

factors (not observing trapped passengers) to cause a PTI accident. 

 
7 The estimated effect refers to the proportion of each datapoint about a topic in an STM model estimated by 
a regression. This procedure involves measurement uncertainty from the STM model using the method of 
composition (Kwayu et al., 2021; Li et al., 2011; Roberts et al., 2019). 
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Figure 6-12: The estimate effect of core PTI hazards on trams against other modes from 

the RAIB dataset 

On the other hand, another two positive effects on the tram relevant to the door interlock 

system are observed as well in the estimate effect of supplementary PTI hazards on trams 

against other modes from the RAIB dataset (Figure 6-13), namely “checking doors closed” 

and “door interlock system”. The topic “communication” has a slight negative effect on the 

tram compared with other modes of rail transport, implying that the operation of trams in the 

UK may heavily rely on the driver without other staff. Although there is no evidence that robust 

communication during operating the tram system can reduce the PTI-related hazard, the 

outcome still indicates that communication plays a vital role in such hazard regardless of the 

mode of the railway system. By adopting the estimate effect analysis and synthesising 

findings, decision-makers are able to address the hazard of interest on the basis of the 
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characteristic of each railway transportation system and customise corresponding 

recommendations. 

 

Figure 6-13: The estimate effect of supplementary PTI hazards on trams against other 

modes from the RAIB dataset 

Last, the PTI-related incidents over time and the frequency of recommendations are shown 

in Figure 6-14. Overall, the number of accidents related to the PTI-related hazard has been 

increasing since 2011. The time for an investigation is 1 to 2 years. Most recommendations 

are made to improve the physical equipment or infrastructure. In addition, a growing trend of 

reviewing training processes can be observed from 2016. This might indicate that the RAIB 

first suggests the improvement of the infrastructure and equipment once the hazard is 

identified, followed by organising a thorough training system and procedures to mitigate the 

hazard of the interface between employees and introduced infrastructure. Such mixed 

approaches benefit the system by addressing different aspects of the PTI hazard from a 

variety of perspectives.
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Figure 6-14: PTI-related incidents over time and frequency of recommendations (RAIB) 
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6.7 Synthesis of findings 

The development of HazardMap and RecoMap introduced in this chapter has potentially 

provided solutions by further extending the raw outcome and incorporating it with theoretical 

frameworks in the literature. Practitioners were able to have a comprehensive view of how 

railway accidents are triggered in other jurisdictions and how hazards identified are 

addressed with recommendations proposed in different countries. Further connection 

between existing railway hazard taxonomy frameworks developed by each jurisdiction and 

HazardMap can be built to discover hazards potentially overlooked. Additionally, several 

learning behaviours in the railway industry were observed in the workshop sessions and 

survey, which are further discussed in the next chapter. 

Cross-sectional analysis was conducted on railway accidents and investigators. It indicated 

that ignoring topics with a lower probability of occurrences from the topic model might result 

in missing critical mechanisms in railway accidents. Therefore, a systematic view of hazards 

is required to comprehensively understand how hazards trigger an accident. On the other 

hand, the cross-sectional analysis of investigators suggested that each body has various 

styles of making recommendations during different periods. However, a comprehensive 

overview of recommendations made in the past cannot be illustrated for comparison between 

countries by only analysing the outcome retrieved from the STM. 

To overcome such limitations, RecoMap is proposed based on the outcome of the STM to 

understand the perspective by which each recommendation addresses the hazard. The trend 

of recommendation styles that each investigator makes can be revealed from the view of the 

socio-technical system. Several types of recommendations are introduced as well to 

discriminate the role each recommendation plays from the perspective of the railway industry. 

The result suggests that authorities at different levels should concentrate on solutions based 

on the jurisdiction. Recommendations with interfering instructions might only be appropriate 
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for local authorities given that the cooperation with the local railway industry might be tighter 

than other organisations at the national level. On the other hand, individual railway accident 

investigators should emphasise advancing a railway safety culture by promoting engagement 

between organisations in the railway industry from different areas. Specifically, learning and 

sharing knowledge should be led by the national railway authority to ensure that hazards can 

be mitigated in advance by learning across jurisdictions and across time. Additionally, 

supportive recommendations should be made by the national railway authority given that 

each railway industry might have inherent characteristics of the operating system and require 

more flexibility to adopt general recommendations. 

On the other hand, HazardMap was also proposed to depict the nature of hazards in the 

railway system and their mechanisms on different countries. HazardMap is developed based 

on the output of BERTopic, enabling the consideration of topics with a low probability of 

occurrences and the visualisation of the relations between hazards, accidents and 

recommendations across countries. HazardMap can also describe how each hazard triggers 

a railway accident by revealing the unaddressed aspects. Therefore, railway accident 

investigators in different countries can understand the potential pattern of how one hazard 

impacts the railway system by reviewing the mechanism found in other countries and 

developing corresponding solutions before it triggers another railway accident. 

Last, two case studies were delivered to show how the proposed model can be applied under 

different circumstances. The temporal analysis and sensitivity analysis were demonstrated 

with actual cases. However, several limitations were identified while collecting the data in the 

case studies. For example, the TSB in Canada only proposes recommendations when the 

severity or the consequences of the railway accident significantly impact society, making the 

recommendations dataset relatively small. Another example is that the recommendation 

dataset the NTSB provides does not fully match the original railway accident reports, resulting 



292 
 

in poor connections between the two data resources. These limitations might result in 

challenges in applying the proposed model comprehensively across different jurisdictions as 

the selective nature of railway accidents investigated by each country could cause 

imbalanced and potentially biased representations of railway safety issues. Such an 

inconsistency might hinder models from providing a universally applicable analysis. 

Fortunately, these limitations only influence the analysis of specific hazards given that the 

individual recommendation dataset of each country is comprehensive. But the issue of 

generalising and standardising the analysis across countries still needs to be addressed in 

future work. 

Figure 6-15 shows the overview of the data flow and analysis procedures for developing 

HazardMap and RecoMap. The main content of railway accident reports was used to extract 

potential hazards for constructing the HazardMap. The ontology and knowledge graphs were 

applied to standardise the terminology used in different countries. The developed HazardMap 

is capable of offering an overview of the distribution of hazards identified from historical 

railway accidents in each country. Furthermore, the advanced application of the HazardMap 

can help users to understand the relationship between hazards and the extent to which each 

hazard impacts the specific railway system via the correlation network and estimate effect 

analysis respectively. On the other hand, recommendations made in railway accident reports 

are extracted and analysed separately to understand how each investigation body addresses 

risks identified. RecoMap was developed based on the results of the STM and systems theory, 

enabling users to understand the distribution of recommendations made on the socio-

technical hierarchy. RecoMap was further extended for temporal analysis, providing 

additional insights of solutions during different periods of time. To sum up, this work 

contributes to the railway safety context by offering the opportunity to examine a large volume 

of railway accidents from multiple perspectives and allowing end users to have a 
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comprehensive view of hazards across countries and across time. 

Although a railway safety culture has been promoted for several years and there has been a 

significant reduction in fatalities and injuries of recent railway accidents in many countries, 

keeping improving and maintaining the objective of safety in a dynamic environment is still a 

significant challenge for the railway industry around the world. Learning across jurisdictions 

and across time is likely to continue to be essential given that due to changing environments 

such as severe climate change a railway system is likely to encounter hazards unknown to it 

but that have been fully addressed in other countries. The model and case studies proposed 

in this study can help the railway industry overcome the difficulties of learning across 

jurisdictions and across time and help enhance the understanding of railway safety. High 

similarities of hazards identified in the case studies (Section 6.5 and 6.6) and limited learning 

behaviours across jurisdictions (Section 5.5.2 and 5.6.2) suggested that railway accidents 

are likely to repeat themselves across jurisdictions unless the lesson learned behaviour is 

enabled. Several barriers to learning across jurisdictions were also identified (Section 5.6.2), 

implying that the poor motivation of learning behaviours at the organisational level. Such 

systematic issues might cause a potentially emerging hazard deteriorating railway safety 

culture. Therefore, the next chapter elaborates on the railway safety deterioration as another 

critical hazard among railway industries across the world. 
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* Railway accident reports are divided into main content (including all descriptions such as summary, investigation process and conclusion) and recommendations for different 

purposes of analysis. More details can be found in Chapter 3. 

Figure 6-15: Overview of the data flow and analysis procedures for developing HazardMap and RecoMap
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7. Deterioration in railway safety: a potentially emerging hazard 

This chapter illustrates the potentially emerging hazard of deterioration in railway safety from 

current stable railway systems worldwide and the possible pattern of how systems become 

hazardous. Potential solutions for overcoming the barriers with proposed models and further 

work suggested are discussed in detail. The structure of the chapter is as follows: first, the 

learning behaviours in the railway industry are discussed (Section 7.1), followed by the 

analysis of railway safety knowledge retrieving, processing and disseminating (Section 7.2). 

Another underlying hazard, the potential deterioration of railway safety culture, is revealed 

and discussed (Section 7.3) along with the opportunity to overcome barriers (Section 7.4). 

Finally, the synthesis of findings is presented (Section 7.5). 

7.1 Learning behaviours in the railway industry  

Observing the learning behaviours in the railway industry ensures that lessons can be 

thoroughly learned, and hazards can be identified, prevented and managed before they 

trigger similar accidents. Although the result of the case studies (Sections 6.5 and 6.6) 

suggests that similar accidents might still occur over time, the HazardMap discussed in 

Section 6.3 has shown that such circumstances happen because different aspects of the 

hazard trigger the accident in combination with other hazards and cause similar patterns and 

consequences. Additionally, several hazard aspects appear to have triggered an accident 

and have been discussed in various jurisdictions. For example, audibility has been found to 

play a critical role in the level crossing hazard by the RAIB, ATSB and TSB (Figure 6-7 to 

Figure 6-9), implying homogenous aspects of a hazard can be found in one type of accident 

regardless of the investigated locations. On the other hand, some aspects of a hazard have 

only triggered a limited number of accidents indicating that such seen aspects might still be 

underlying unseen factors in other jurisdictions and might trigger another railway accident. 
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Therefore, the priority strategy for mitigating hazards is to learn from other jurisdictions and 

reveal these underlying unseen factors that have been reviewed and discussed in other 

locations. 

According to the results of Chapter 5, several observations potentially indicate the learning 

behaviours in the railway industry. First, the frequency of co-reference between RAIB, NTSB, 

TSB and ATSB (Figure 5-30) shows a high level of self-reference, implying learning behaviour 

across time given that reviewing similar railway accidents is a component during the 

investigation. However, the reference to other external sources by an individual jurisdiction is 

relatively lower, which might indicate the restricted learning behaviour across jurisdictions. 

Second, the RecoMap has revealed a small number of recommendations supporting learning 

behaviours across organisations such as learning from other sources and sharing and 

disseminating knowledge. This implies the potential motivation of railway accident 

investigators to promote learning behaviours at the organisational level to mitigate systemic 

railway accidents. However, such promotion seems to be mostly restricted to local 

jurisdictions, indicating less consideration of learning from external resources from other 

countries. 

Figure 7-1 shows the information flow between stakeholders in the railway industry. Note that 

this illustration assumes that the information related to railway safety primarily comes from 

railway accidents and that railway accident investigation bodies play the major role in 

promoting railway safety and learning behaviours in one jurisdiction. According to Figure 7-1, 

a strong learning behaviour across organisations within one country can be found, which has 

also been supported by the literature (Akel et al., 2022; Paul et al., 2018). Both railway 

accident investigation bodies and organisations in one jurisdiction proactively learn from 

(previous) railway accidents by conducting investigations and analysis to mitigate hazards 

identified and enhance railway safety.  
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Meanwhile, previous railway accidents are retrieved to support the analysis of the current 

railway accident and understand what implementation should have been in place to mitigate 

hazards revealed. This information flow shows the action of learning across time and 

organisational learning (more details are given in the following sections). However, the 

information exchange across jurisdictions in the railway industry, which has been observed 

from the frequency of co-reference between RAIB, NTSB, TSB and ATSB (Figure 5-30) and 

the analysis of the scoping workshops and survey, is limited. Such a gap might implicitly result 

in another underlying risk of failing to manage aspects of hazards identified in other areas 

before they trigger an accident. To discover the potential barriers and incentives to learning 

across jurisdictions in the railway industry, we first investigate how railway safety knowledge 

is retrieved, processed and disseminated in complex adaptative systems. 

 

Figure 7-1: The information flow between stakeholders in the railway industry 
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7.2 Railway safety knowledge retrieving, processing and disseminating 

For the information exchange between organisations and learning behaviour, most studies in 

the literature focus on staff mentoring (Holmes & Robertson, 2021; McHugh & Klockner, 2020; 

Naweed & Ambrosetti, 2015) and the promotion of safety culture in an individual organisation 

(Placencia, 2016; Wilson & Norris, 2005). However, institutional interplay in organisational 

learning is rarely discussed in the railway context.  

From the perspective of knowledge flow, the resource-based view and inter-firm network 

theory suggest that firms need to build and manage networks to retrieve knowledge and 

produce information of value through using internal capabilities (Huggins & Johnston, 2010). 

Considering that railway safety is a product managed by organisations in the railway industry 

and the learning behaviour can be considered as the information and knowledge transmission 

at organisational level, then the amount of safety-related knowledge flow, including receiving, 

possessing and transmitting, would determine how the railway safety culture is formed 

(Huang et al., 2019; Johnsen et al., 2006). Therefore, this argument may have supported the 

relationship between information flow and the formation of the safety culture. More details 

are illustrated in Section 6.3. 

Several works in other contexts such as nuclear power and the healthcare industry show a 

strong interest in organisational interplay on learning behaviour. Duffield and Whitty (2015) 

proposed the “systemic lessons learned knowledge model” (Figure 7-2) and revealed the 

phenomenon that organisations seldom learn from prior experience while the models and 

guides of implementation are transparent and available. Several facilitators are proposed by 

Duffield and Whitty (2015) for practical implementation. For example, social facilitators can 

acknowledge individual, group and team activities and rewarding works. Cultural facilitators 

include valuing and encouraging people to contribute, providing support to those who want 

to increase their knowledge and regularly updating on the organisation focus. Other works 
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relevant to this context have been discussed and adapted to several practical application 

areas (Cedergren & Petersen, 2011; Filho et al., 2021; McHugh & Klockner, 2020). 

 

Figure 7-2: The systemic lessons learned knowledge model (Duffield & Whitty, 2015) 

In terms of potential barriers and incentives of organisational learning from the perspective 

of the industry, Størseth and Tinmannsvik (2012) found that organisations would be less 

willing to learn if 1) they are forced to do so, 2) the media influences the focus, 3) they are 

asked to provide instant responses by carrying out various hurried but unorganised actions, 

4) the trend of safety becomes void and irrelevant to operation, and 5) the absence of 

procedure has been proven, making that a way to improve. On the other hand, potential 

incentives to learn from peers are 1) there is no blame culture, 2) no urge for procedures to 

be released, and 3) there are well-organised documentation systems and adequate learning 

skills. In addition to the detailed barriers and incentives discussed by Duffield and Whitty 

(2015), prior works show that complex adaptative organisations fail to incorporate application 
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and dissemination (Duffield & Whitty, 2015). In other words, proactive dissemination and 

application of lessons learned are absent although lessons (accidents) are successfully 

identified, implying that the underlying motivation driving a complex adaptative system to 

learn might be more complicated at the systematic level. 

The term complex adaptative system describes a system that forms its behaviours based on 

prior experience and knowledge embedded in previous environments or conditions. Such a 

process enables this system to react to one incident under a particular environment based 

on previous cases with similar conditions (Duffield & Whitty, 2015). Several important 

industries adopt the complex adaptative system, including the nuclear power industry, 

healthcare organisations, medical systems and large-scale public transport systems such as 

aviation and railways. The learning process in the complex adaptative system might be driven 

by a variety of motivations and be based on the characteristic and purpose of the system. 

For instance, the lessons learned for practice in the nuclear power industry are maintained 

by the Institute of Nuclear Power Operations, aiming to standardise the procedure of 

precursors identification and knowledge dissemination. Aviation has a similar power-

centralised international regulation body.  

In addition to complex adaptative systems, the healthcare industry also adopts the high 

reliability organisation concept via thorough communication, peer review, peer coaching, 

team behaviour, reporting and systematic analysis. When an incident occurs, the hospital in 

charge works with academia and informs the World Health Organization once underlying 

factors discovered in the incident are found to potentially cause damage in other countries. 

These processes are implemented in the accident information collection, analysis and 

dissemination to ensure critical hazards can be identified, proactively mitigated, and 

disseminated. Such a peer-review-based process keeps the motivation of advancing safety 

culture through learning across jurisdictions.  
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Furthermore, broader cross-sector learning has been gradually proposed in the chemical 

industry since the occurrence of several catastrophic accidents. A review of 15 years of 

lessons learned reveals that ineffective information dissemination due to the lack of 

institutional support significantly reduces the reliability level (Hedlund et al., 2014). Therefore, 

learning plays a critical role in committing to a safe organisational environment in the railway 

industry (Jeffcott et al., 2006). 

In work on aviation safety, the first significant improvement was attributed to novel technology. 

Subsequently, human factors are frequently discussed, concentrating on the solution of the 

human–machine interface. In recent years, the focus has gradually shifted to the impact of 

organisational factors such as policies, norms and other latent factors that might influence 

safety performance (Patankar & Sabin, 2010). All knowledge abovementioned is integrated 

by the International Civil Aviation Organisation (ICAO) as the basis of international aviation 

operation regulation. Therefore, organisations cooperate and share information under the 

scheme to maintain the best aviation safety practice.  

According to materials retrieved from the roundtable discussion in the scoping workshops 

and survey conducted as part of this research (discussed in Section 5.6.3), standardised 

jurisdiction-based analysis dominates the process of advancing railway safety. Learnings 

from historical accidents have been converted into knowledge and experience now 

embedded in day-to-day operation. However, cross-jurisdiction-based analysis has not been 

fully incorporated into the process due to a series of barriers, such as technological limitations 

and the lack of motivation. Similar circumstances have been identified in the RecoMap given 

that the concept related to cross-jurisdiction-based analysis is absent. The potential weak 

indication has also been revealed because several workshop and survey respondents 

mentioned that learning across jurisdictions only happens in connection with specific hazards 

and specific investigators. Even though there is an existing local authority responsible for 
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railway safety in one jurisdiction, information and knowledge can barely flow between 

countries due to a lack of centralised authorities. This means that the proactive lesson learned 

process can only be found on a local rather than global scale. 

Figure 7-3 illustrates the information flow integrated with RecoMap, workshops and survey 

results. Apart from the use of theories and limited external sources mentioned above, 

additional observations indicate several practitioners’ concerns about behaviour. It should be 

noted that no participant in the workshops and survey represented railway accident 

investigators. Therefore, the proposed argument only concentrated on practitioners’ attitudes 

and the potential link to the formation of a railway safety culture. 

First, the concern about the legislative framework has been raised in many fields such as 

engagement with other organisations, supporting railway accident investigation bodies and 

disseminating data and knowledge. This phenomenon may be derived from the history of the 

railway industry. Several works have revealed that proper legislation can increase the quality 

of safety and address human factor issues (Burdzik et al., 2017; Priestley & Lee, 2008; 

Railtrack & House, 1997). Hence, this concept has become a paradigm followed by 

researchers and practitioners in the railway industry and has resulted in many management 

approaches, such as the “just” culture (Clarke & Clarke, 2000; Hutchings & Thatcher, 2019; 

Naweed et al., 2022). However, this may result in a conservative and centralised culture 

(Lingegård & Lindahl, 2015), which has been revealed in the scoping workshops and surveys. 

The railway industry also believes that such a legislative framework and rigorous 

standardisation can lead to a safe environment once the risk has been mitigated to “as low 

as reasonably possible” (ALARP) and might have overlooked the potential impact of dynamic 

external and internal factors on the complicated system.  

Second, a robust knowledge extraction process can be observed in Figure 7-3. The railway 

industry in each jurisdiction puts much emphasis on the systematic analysis of each railway 
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accident such as applying theoretical frameworks, discovering underlying factors, and 

collecting internal and external evidence. However, several considerations might have 

hindered the railway industry from advancing learning behaviours through accident analysis. 

For instance, the cost and expected performance on improving railway safety increase 

uncertainty during decision-making. Nevertheless, practitioners also suffer from the lack of 

adequate technology to assist the analysis process, limiting the effectiveness of the learning 

process. The legislation also plays a critical role in accident analysis given that materials 

related to railway accidents might be sensitive to society. Thus, processing and disseminating 

information has been primarily restricted to legislative frameworks. 

However, the European Union Agency for Railways (ERA)8 does play a role as a centralised 

authority responsible for setting mandatory requirements and standards for European 

railways and manufacturers, concentrating on the technical interoperability between systems. 

The major responsibility of ERA is to offer technical support to increase the efficiency in 

manufacturing vehicles and monitor national safety rules, safety performance, and the 

progress towards interoperability within the EU. Despite the critical role that ERA plays across 

countries in the EU, the regulation authority is still restricted to the national level by individual 

members. Thus, ERA is unable to determine the mandatory operational standards and only 

partly influences the development of national regulations while providing guidelines and 

recommendations to improve safety. Given that ERA has sufficient knowledge and 

coordination expertise in railway safety across countries in the EU, it could potentially become 

the ideal body in promoting cross-jurisdiction learning through novel technologies. 

Last, it is worth noting that the railway industry in the UK has established an individual 

organisation called the Rail Safety and Standards Board (RSSB), representing the 

aggregation of members of the railway industry in the UK. It is responsible for improving 

 
8 https://www.era.europa.eu 
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railway safety and leading research and projects to address recommendations made by RAIB. 

In other words, the Rail Safety and Standards Board is the proxy of practitioners in the railway 

industry such as Network Rail (the infrastructure operator), rolling stock companies and train 

operating companies. The Rail Safety and Standards Board is also responsible for 

information retrieving, processing and sharing to ensure members can implement safety-

related actions consistently without devoting additional effort to conducting analysis. Thus, a 

representative entity such as the Rail Safety and Standards Board can be considered as 

another type of local centralised authority representing the railway industry and providing a 

strong incentive to share information. 
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Figure 7-3: Existing information flow integrated with the results of RecoMap, workshops and survey 
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7.3 Another underlying hazard: the potential deterioration of railway safety culture 

Previous sections of this chapter indicate the potential barriers. Incentives to learning across 

jurisdictions and across time are also discussed. Safety culture is the underlying motivation 

driving an industry to commit to a safe environment or not. The theoretical definition of the 

safety culture is “a pattern of shared basic assumptions that the group learned as it solved 

its problems of external adaptation and internal integration, that has worked well enough to 

be considered valid and, therefore, to be taught to new members as the correct way to 

perceive, think and feel in relation to those problems” (Schein, 1992, p. 12). According to the 

definition, three core concepts can be identified: basis assumptions, espoused values and 

artefacts. The basic assumptions are the implicit assumptions guiding the behaviour of group 

members and mitigating the variation in a cultural unit in terms of how to observe, think and 

feel about things. The basic assumptions are conceptual ideas and can only be observed 

through artefacts and espoused values. On the other hand, the espoused values are explicit 

attitudes that manifest the organisational climate regarding hardware, software, people and 

risks. Most espoused values can be observed directly from policies, training, manuals or 

procedures. Last, the artefacts are visible objects or activities subject to espoused values, 

such as statements, meetings, inspection reports and equipment. Despite the visibility, the 

artefacts cannot reveal the underlying culture of an organisation. Safety culture development 

has been found to rely on employee learning from reviewing outcomes, incentive-enabling 

factors and consistency over time (Bisbey et al., 2021). It is also suggested to maintain 

conducive conditions for safe behaviour norms, values and core beliefs to develop collective 

safety culture (Nordin et al., 2020). Maintaining the culture of safety is the task necessary to 

avoid the potential decline in awareness over time while achieving a safe work environment 

and has been integrated with process standardisation, protocol development and team 

training. 
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Most studies in the literature concentrate on transforming safety culture at the organisational 

level toward a safer working environment; for example, changing from a blame culture to a 

just culture (Whittingham, 2012; Wittmer & Mark, 2021). The focus is primarily on proactively 

developing a better safety culture and what factors influence the practice of safety culture 

transformation. However, another critical topic that might have been overlooked in the 

literature is the potential deterioration of the safety culture. In the medical context the safety 

culture has been found to potentially decline over time from the healthcare workers’ 

perception (Nordin et al., 2020). A similar deterioration of safety culture is also identified in 

the healthcare workers due to systemic factors (Ling et al., 2016). Nevertheless, several 

external factors have been revealed to potentially influence an organisation’s safety culture 

at the operational and organisational levels. For instance, introducing new technical systems 

to air traffic control weakened the perception of workers about safety values (Patankar, 2012). 

Most deterioration is observed at the operational level (i.e., workers’ perceptions) and the 

primary suggestions provided in the literature are to build a monitoring system and regular 

assessment (Khan et al., 2010; Kojima et al., 2009; Sanusi et al., 2015), which has been 

adopted in the nuclear power industry. 

On the other hand, another argument is proposed that the improvement process of the safety 

culture might reach an irreversible and unpredictable condition in the long term. Once 

significant internal or external changes occur, such as increasing pressure on productivity or 

introducing new technologies, the stability of the safety culture might relatively deteriorate 

until another new accident occurs (Berglund, 2020; Younes, 2005). A similar circumstance is 

also identified in the railway industry and the need to manage the mindset of human factors 

is also proposed (Tang et al., 2022; Teperi et al., 2023). In addition, an extensive body of 

literature in railway management focuses on assessing safety culture performance, and 
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human factors dominate the result and discussion (Kalem et al., 2021; Srathongkhruen & 

Fraszczyk, 2021; Wang & Liu, 2012). 

Additionally, the organisational social capital has been proven to weaken safety culture and 

contribute to accidents (Rao, 2007). Organisational social capital is a collective value of social 

networks, including characteristics of social organisation such as trust, norms and networks 

for facilitating cooperation to obtain mutual benefit (Putnam, 2000). Despite the benefit 

brought by the social capital, excluding external information and overemphasising a strong 

safety culture without translating into any use of novel technology might result in a 

conservative and standstill culture (Rao, 2007). Such enforceable trust and faulty value 

systems have been found to be the primary motivations leading to the deterioration of the 

safety culture. 

In practice, safety is usually managed and controlled by the safety management system 

(SMS). The aim of a SMS is to create a risk-free environment for workers and the public and 

represent the arrangement and preparation of safety control for a better safety culture (Kalem 

et al., 2021). SMS covers a wide range of operational practices and systems depending on 

the context. For example, an SMS can be an integrated approach for the management of 

safety across various sectors (ICAO, 2007). SMS can also be any arrangement for actions 

taken by stakeholders to ensure safety during operations (ERA, 2007). It contains several 

key aspects directing operators across industries to manage risk systematically and derive 

many risk management models, such as safety risk management, safety assurance, safety 

policy and safety promotion (Li & Guldenmund, 2018). Despite a wide discussion of SMS 

across industries in the literature, most approaches apply accident case-based analysis as 

the input to produce management insights and prevent historical incidents from occurring 

(Dai & Wang, 2010; Lin et al., 2020; Rausand, 2013). Cross-jurisdiction learning is notably 
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absent in the SMS framework and might hinder operators from learning safety knowledge 

from external sources or contexts. 

Although the discussion about potential railway safety deterioration is limited in the literature, 

a number of trends have been observed from the survey of the scoping workshop. For 

instance, the legislative framework mentioned in Section 5.6.2 has been a significant 

restriction for practitioners to be conservative in the safety-related decision-making process. 

This might be considered an organisational social capital because external information and 

resources have been included in the legislative frameworks, resulting in the declining 

willingness to introduce novel technologies and higher complexity in processing information 

proactively. Despite not being a direct indication of deterioration, the difficulties of aggregating 

historical data might restrict the scale of analysis and limit the perspective of findings. This 

might potentially lead to a decrease in the retention of prior knowledge and impact long-term 

railway safety given that knowledge needs to be manually processed while people are 

constantly changing. 

Figure 7-4 illustrates the integrated safety culture framework and the potential relationship 

between safety culture development and deterioration. Several works have discussed what 

factors would enable safety behaviours driven by enabling factors. Bisbey et al. (2021) 

summarised seven critical enabling factors and four enacting behaviours to develop a safety 

culture and ensure safety outcomes for general industries. Patankar and Sabin (2010) 

provided approaches for assessing the performance and attitude of the safety culture from 

the systemic perspective to maintain and monitor an organisation’s safety culture. These 

findings have systematically developed a robust safety culture structure and offer a variety of 

strategies to the industry for practical implementations. However, several internal and 

external factors influence the functionality of the industry and might cause unseen hazards. 

For instance, severe climate change might expose the system to extreme weather conditions 
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that have never occurred. The safety culture perception of frontline workers might also decline 

over time due to the dynamic social capital mentioned. Therefore, the safety culture might 

gradually deteriorate until another accident occurs. 

On the other hand, there might be several barriers to advancing safety culture while avoiding 

the deterioration of the safety culture, depending on the nature of the context. For the railway 

industry, the legislative framework, regulations and accessible supporting technologies for 

analysing a large amount of data are observed as potential barriers and were discussed in 

the analysis of scoping workshops and surveys (Section 7.2). Note that these factors cannot 

represent the comprehensive coverage of barriers but were observed during the analysis in 

this study. 
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Figure 7-4: Integrated safety culture framework and the potential relationship between 

safety culture development and deterioration, based on Bisbey et al. (2021) and Patankar 

and Sabin (2010) 
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7.4 The opportunity to overcome barriers 

The railway industry has devoted much effort to learning over time by accumulating 

experience and knowledge from previous accidents and constructing a comprehensive 

knowledge base. However, several barriers to advancing the safety culture discussed above 

that may potentially lead to the deterioration of the safety culture have been investigated. In 

addition, external and internal factors might become the catalyst for accelerating such 

deterioration. For instance, unexpected accidents may occur from a change in the 

environmental condition such as extreme weather or the implementation of new policies.  

Given that HazardMap has illustrated that hazards would not be revealed until an accident is 

triggered, learning from a wider range of resources can be beneficial because various 

dynamic conditions and hazards might have triggered an accident in other jurisdictions and 

can be investigated and mitigated in advance. Understanding diverse hazards and aspects 

can be considered as the “breadth” of understanding of hazards and their combinations 

assuming that a catalogue containing hazards and aspects is identified across jurisdictions 

and time. Therefore, applying HazardMap to external resources enables users to summarise 

knowledge of hazards with little human intervention and helps to advance learning behaviours. 

Addressing hazards would be the focus after the identification process. In most cases, issues 

raised by a hazard would cover from the operational to the organisational level and legislative 

context from the systematic perspective. Therefore, structured approaches for mitigating 

hazards need to involve a series of contexts, such as risk evaluation, measure development, 

monitoring and review processes, and dynamic modifications. Adopting multiple dimensions 

at one time would be extremely difficult without referencing other knowledge and resources. 

This can be thought of as the “depth” of understanding of a specific hazard. The depth is 

determined by the extent of the railway industry’s knowledge of how a hazard affects the 

railway at various organisational levels. To obtain the best of knowledge, RecoMap would be 
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a useful tool providing a comprehensive reference for how hazards are handled across 

jurisdictions and time, which can be considered a baseline for addressing known hazards. 

The concept of the “breadth” and “depth” of understanding of hazards can also be utilised to 

enhance the SMS by bridging the knowledge and experience gap between stakeholders 

across countries. The cross-jurisdiction learning has not been widely discussed in the SMS 

context, leaving the integration of organisational learning into operational decision-making 

remains unclear. The HazardMap and RecoMap frameworks proposed in this research serve 

to aggregate, standardise and disseminate incidents and safety knowledge learned. 

Practitioners in HROs such as the railway industry are enabled to efficiently identify hazards 

and access knowledge globally to augment the overall safety landscape. 

Extending the breadth and depth of understanding to eliminate the deterioration of railway 

safety culture is a dynamic process. Although the unknown combination of hazards cannot 

be anticipated, known combinations should have been proactively addressed by reviewing 

data from multiple sources and reinforcing the railway system. Except for the use of 

appropriate technologies, constant motivation would be the most critical factor in determining 

the quality of railway safety. Components related to motivation are complicated and involve 

multiple dimensions and organisational behaviours. The scoping workshops and surveys 

have revealed some of the considerations that practitioners are concerned about while 

handling railway accidents, which might be worth further investigation. 

7.5 Synthesis of findings 

This chapter further connects the findings of HazardMap and RecoMap to the learning 

behaviours in the railway industry. The result of applying HazardMap suggests homogenous 

aspects of a hazard regardless of the locations of investigating bodies and the existence of 

underlying unseen factors for one jurisdiction that can be addressed in advance by learning 
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from experience in other countries. On the other hand, the result of applying RecoMap 

indicates a growing trend of the safety culture supporting learning behaviours across 

organisations. However, such learning behaviour has been restricted to local jurisdictions 

instead of across countries. 

From the perspective of learning behaviours in other contexts, many industries have adopted 

different theories to manage risks and maintain the motivation of learning. For instance, peer 

review, peer coaching, team behaviour, reporting and systematic analysis have supported 

the knowledge retrieving, processing and disseminating process in the healthcare system. In 

contrast, the aviation industry mitigates risks by standardising policies, norms and other latent 

factors that might influence safety performance as the basis of international aviation operation 

regulation. For the railway industry, the scoping workshops and surveys have partly revealed 

concerns hindering practitioners from advancing learning behaviour such as the legislative 

framework, the lack of a robust knowledge extraction process, and the lack of an international 

centralised authority managing the knowledge retrieving, processing and disseminating. 

Furthermore, potential barriers to learning across jurisdictions and time discussed might 

deteriorate the organisational safety culture and endanger railway safety. Several internal 

and external factors that might influence the safety culture development have been discussed 

and literature relating to the transformation of safety culture at the organisational level has 

been reviewed. The result suggests that although no direct safety deterioration is found in 

the railway industry, many signs indicating the potential standstill of safety culture have been 

observed from HazardMap and RecoMap and from the scoping workshops and surveys such 

as organisational social capital and obstacles to introducing new technologies. Nevertheless, 

being unable to analyse the enormous amount of historical data restricts the scale of 

knowledge and results in a decline in the retention of prior knowledge. These limitations 

mentioned above might not cover comprehensive factors causing the deterioration of safety 
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culture but existing evidence and barriers identified support the conclusion that the railway 

industry may be exposed to the risk of safety deterioration unless further strategies are put 

in place to stimulate a learning culture.  

This chapter summarised the learning behaviours of the railway industry across four 

jurisdictions by connecting the findings of HazardMap and RecoMap to existing theories in 

the literature and comparing them with other industries. Several barriers to learning across 

jurisdictions and time have been identified to potentially lead to the deterioration of safety 

culture. External and internal factors influencing the railway safety culture have been 

discussed as well. Extending the breadth and depth of understanding to eliminate the 

deterioration of railway safety culture is proposed. The use of HazardMap and RecoMap is 

suggested to overcome the difficulties of reviewing data from multiple sources to enhance 

the railway safety culture and mitigate the risk of safety culture deterioration. 

 

  



316 
 

8. Conclusions 

This chapter summarises findings, highlights the contributions and limitations of this thesis 

and makes suggestions for future work. The structure of the chapter is as follows: the key 

findings of this thesis are presented (Section 8.1), followed by highlighted contributions 

(Section 8.2), limitations (Section 8.3), and future work and challenges (Section 8.4). 

8.1 Key findings 

This section discusses and highlights key findings from the literature review (Chapter 2), 

methodological literature review (Chapter 3), methods for developing the models HazardMap 

(Section 6.3) and RecoMap (Section 6.2), and results of analysis supplemented with 

evidence in the literature. 

8.1.1 Key findings from the literature review 

First, conflicts in the literature in defining vulnerability assessment due to divergent points of 

view were revealed, and definitions of vulnerability and vulnerability assessment in the 

context of the transport system were reviewed. Most studies on vulnerability assessment in 

the transport system are based on reliability theory, probability theory, and statistical and 

optimisation approaches.  

Second, the review also revealed that the complexity of socio-technical systems has led to 

the development of frameworks like software–hardware–environment–liveware (SHELL) and 

human factors analysis and classification system (HFACS), but data collection and analysis 

remain challenging. Interface weakness is also identified as a factor in railway accidents, but 

its importance is not fully understood in literature due to a lack of understanding of the causes 

and sequences of railway incidents and the application of historical accident textual data. 

Last, the review suggested that natural language processing techniques have strong potential 
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to mitigate the gaps identified in railway safety by extracting critical hazards from accident 

records although such technology is still partly reliant on human determination, making the 

process time-consuming. Some studies have proven such potential by building an ontology 

to represent domain knowledge and combining it with natural language processing 

techniques to improve hazard identification (Debbech et al., 2020; Hulin et al., 2016; Zhao et 

al., 2022). However, the implementation of natural language processing to real-world data for 

hazard mitigation strategies remains a significant challenge. 

8.1.2 Key findings from the methodological literature review 

The review of methodological literature provided an in-depth introduction to natural language 

processing models and training approaches, including word embedding and state-of-the-art 

language models. The benefits and drawbacks of different training approaches and the 

concept of ontology in the context of railway accidents were discussed. The limitations of 

existing railway-related ontologies and the challenges of reusability were highlighted. 

Knowledge graphs and the entity linking process, emphasising their application and 

evaluation, were introduced. Findings indicated that novel techniques using off-the-shelf tools 

have strong potential to overcome the limitations of overreliance on manual analysis in 

practice and theory, but the absence of shared railway safety-related benchmark corpora 

restricts implementation.  

8.1.3 Key findings from methods for developing models 

Several analysis approaches were reviewed to develop models to address the research 

questions (Section 8.3). First, several analysis functions required are illustrated, including 

topic modelling, entity linking strategy, covariate analysis, temporal analysis and model 

evaluation. Next, a comparison was made between potential candidates for topic modelling, 

considering data dimensionality, analysis toolkits, and outcomes. Due to their respective 
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strengths, BERTopic was selected to analyse accident reports at the sentence level, while 

STM was chosen to analyse accident recommendations. Subsequently, the entity linking 

strategy was illustrated, involving the establishment of an initial railway accident ontology and 

the use of knowledge graphs to identify and disambiguate entities. Wikidata was selected as 

the appropriate knowledge graph, and the Tagme API toolkit was used to supplement the 

ontology. Context-sensitive disambiguation based on graph theory was proposed to enhance 

the model’s effectiveness. The developed railway accident ontology was linked to real-world 

data, primarily for standardising terminology and bridging the gap between topic modelling 

keywords and original accident reports. Last, scoping workshops and a survey were 

conducted to evaluate the developed model, gathering feedback and observations from the 

railway industry to assess its consistency and potential application in practice. 

8.1.4 Key findings from HazardMap 

HazardMap proposed in this thesis was used to analyse over 1,200 railway accident reports 

from four countries (the UK, US, Australia, and Canada), with a total of 400,000 sentences, 

to identify specific hazards and understand the differences in accident mechanisms and 

approaches to addressing them. To evaluate the performance of models, the coefficient of 

variance (CV) indicator was designed to effectively discriminate distinguished topics from 

common ones, enabling the identification of specific hazards. HazardMap is also capable of 

visualising the nature of hazards, their mechanisms, and the relationships between hazards, 

accidents and recommendations across countries. On the other hand, HazardMap suggests 

that a hazard must have multiple aspects that result in different types of accidents. Therefore, 

an addressed hazard might appear again after combining with others, implying one hazard 

may never be fully addressed. However, reducing the caused impact by proposing 

appropriate recommendations for accidents revealing part of the aspects of one hazard is still 

beneficial for improving railway safety. Additionally, it also reveals that each country had 
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different dominant hazards, such as tram-related accidents being a major hazard in the RAIB 

dataset from the UK and freight train-related accidents being prevalent in the ATSB dataset 

from Australia. Last, HazardMap, with the support of the ontology developed, offers a 

practical approach to incorporate data retrieved from external sources, providing a consistent 

and standardised framework for practitioners to process and archive the railway accident 

knowledge acquired from the investigation with limited human intervention required. 

8.1.5 Key findings from RecoMap 

RecoMap developed by this thesis observed that different investigating bodies had varying 

styles of making recommendations, focusing on improving systems, taking action on safety 

issues, cooperating with other organisations, or ensuring effective procedures and designs. 

It also revealed some limitations in the recommendations provided. Recommendations often 

focused on introducing modifications or monitoring systems without discussing underlying 

motivations or conducting day-to-day analysis. Additionally, reviewing compliance with 

procedures or regulations implied a blame culture, contrary to the promises made by 

investigators. Finally, RecoMap was proposed as a solution to overcome limitations in 

understanding the perspective of each recommendation and the comprehensive overview of 

recommendations made by investigators. RecoMap helped reveal recommendation styles, 

distinguish the role each recommendation plays in the railway industry, and provided insights 

for authorities and investigators to concentrate on appropriate solutions based on the 

jurisdiction, promote engagement and knowledge sharing across jurisdictions and enable 

comprehensive views from the perspective of the socio-technical hierarchy in the railway 

industry. 

8.1.6 Key findings from the results of analysis supplemented with evidence in the literature 

Several key findings of the analysis were extracted and discussed. First, HazardMap 
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revealed homogenous aspects of hazards regardless of jurisdiction and the existence of 

unseen factors that can be addressed by learning from other countries. RecoMap showed a 

growing trend of safety culture supporting learning behaviours within organisations but limited 

to local jurisdictions. On the other hand, the scoping workshops and survey highlighted 

concerns like the legislative framework, lack of robust knowledge extraction, and absence of 

a globally centralised authority for knowledge management. Therefore, the analysis indicated 

potential barriers to learning across jurisdictions and time may weaken safety culture. Factors 

like organisational social capital and obstacles to adopting new technologies indicate a 

potential standstill in safety culture. To overcome the limitations identified, analysing historical 

data and implementing HazardMap and RecoMap may enhance railway safety culture and 

mitigate the risk of deterioration in the safety culture. 

8.2 Highlighted contributions 

This thesis presents several insights and advancements in the context of railway safety 

across countries, railway vulnerability analysis, implementation of natural language 

processing, ontology and knowledge graphs, learning behaviours in the railway industry and 

railway safety culture. The following key contributions have been achieved through rigorous 

research, analysis and discussion: 

(1.) Contributions to reviews of the literature body of railway systems vulnerability analysis 

and methodology of implementation: This thesis provided a comprehensive review of 

the literature body in the field of vulnerability analysis and methodology used in risk 

assessment. The review summarised past progress, current trends and future 

directions and discussed possibilities, challenges and limitations. 

(2.) Development of a generalised and data-driven framework for understanding hazards: 

This thesis proposed the HazardMap framework to depict the nature of hazards in the 

railway system and their mechanisms illustrated by a case study comparing four 
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different countries. Over 1,200 railway accident reports, containing 400,000 sentences, 

published by national railway accident investigation bodies of four countries were 

analysed. This enabled a huge amount of knowledge accumulated for an intuitive 

policymaking process to be summarised and allows other railway investigators to 

leverage lessons learned across jurisdictions and time with limited human intervention. 

(3.) Providing a systematic view of recommendations made by investigators: This thesis 

analysed over 9,000 sentences in the recommendation section of railway accident 

reports published by RAIB, ATSB, NTSB and TSB. The structural topic model has been 

applied to explore latent topics within each dataset, enabling us to understand the 

emphasis investigators put on mitigating hazards identified. The developed model 

RecoMap is proposed to describe the distribution of recommendations made from the 

organisational perspective across different countries, providing an alternative 

approach for interpreting the outcomes of topic modelling, which prior works have 

struggled with. It also allows the railway industry to learn across jurisdictions and time 

by offering a systematic view of recommendations made in different jurisdictions. 

Several limitations remain and are worth investigating (Section 8.4). 

(4.) Development of a novel framework for interpreting outcomes of an unsupervised 

learning-based natural language processing model: This thesis created a novel 

framework for the systematic interpretation of outcomes of an unsupervised learning-

based natural language processing model by leveraging the application of ontology 

and knowledge graphs for standardising terminology used by different regions, 

revealing the relationship between topics extracted and designing advanced analysis 

applications. Additionally, all tools used in the framework are off-the-shelf and open-

access online. This availability is a valuable asset for researchers and practitioners, 

enabling them to conduct further studies, develop novel algorithms, and evaluate 

existing approaches in a standardised manner. 
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(5.) Revealing potential trends in the way that railway accident investigations make 

recommendations: This thesis identified a transition from making interfering 

recommendations addressing operational issues to making supportive 

recommendations addressing organisational issues in the railway industry across 

countries. A growing trend of promoting learning across jurisdictions and knowledge 

sharing was also found across the investigating bodies. These findings provide 

valuable insights for managers and practitioners on how to systematically react to 

railway accidents through effective decision-making practices tailored to specific 

cultural environments. 

(6.) Understandings of learning behaviours in the railway industry and railway safety 

knowledge retrieving, processing and disseminating: This thesis integrated theoretical 

perspectives such as the resource-based view and inter-firm network theory to analyse 

knowledge flow and its impact on the formation of safety culture in the railway industry 

and discussed the importance of information flow and knowledge extraction processes 

in the railway industry, highlighting concerns about legislative frameworks, the cost 

and expected performance of safety improvements, and the lack of adequate 

technology for analysis. A collection of insights into the gaps, challenges and potential 

strategies for promoting organisational learning and safety culture in the railway 

industry were provided, enabling researchers and practitioners to understand the 

barriers and incentives that influence behaviour of learning across jurisdictions and 

time. 

(7.) Revealing the potential deterioration in safety in the railway industry due to the 

limitation of learning behaviours: This thesis highlighted the overlooked topic of the 

potential deterioration of safety culture over time and provided examples from the 

healthcare and aviation industries, emphasising the need for monitoring systems and 

regular assessments to prevent decline. The analysis also suggested that the 
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improvement process of safety culture may reach an irreversible and unpredictable 

condition in the long term. Internal and external changes, such as increased pressure 

on productivity or the introduction of new technologies, can lead to a deterioration of 

the safety culture until another accident occurs. These findings provide a unique 

insight for policymakers and practitioners to recognise an emerging hazard that has 

not been fully identified. 

8.3 Outcome of Research Questions 

This section discusses the response to each research question with findings and evidence. 

Table 8-1 summarises the results for the research questions and corresponding propositions. 
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Table 8-1: The result for research questions and corresponding propositions 

Research questions Proposition Result 

RQ1-1: What is the difference 

in roles each hazard plays in 

various jurisdictions during 

railway accidents? 

Regardless of hazard taxonomy, certain 

hazards have similar attributes and have 

resulted in comparable railway accidents 

across different jurisdictions. 

⚫ Difficulty in efficiently identifying hazards is due to the 

analysis of large amounts of safety-related textual data 

⚫ HazardMap demonstrates comparable hazards across 

jurisdictions, triggering similar accidents 

⚫ Hazards have been identified to have impacts in 

multiple countries and can trigger comparable railway 

accidents 

RQ1-2: Do the same hazards 

occur in different jurisdictions 

and across time? 

There are some hazards sharing similar 

characteristics and occurring in different 

jurisdictions and across time. 

RQ1-3: Do those hazards 

result in similar vulnerabilities 

in different jurisdictions and 

times? 

Those hazards sharing similar 

characteristics and occurring in different 

jurisdictions and across time may result in 

similar vulnerabilities and railway accidents. 

⚫ Similar hazards may trigger comparable accidents 

across jurisdictions with similar mechanisms 

⚫ Hazards have resulted in similar vulnerabilities 

regardless of accident severity 

RQ2-1: How do 

recommendations made by 

railway accident investigators 

address hazards identified 

from the socio-technical 

perspective? 

Recommendations made by railway accident 

investigators might primarily focus on 

addressing operational issues and 

concentrate less on risks at the 

management level. 

⚫ The purpose of recommendations in the railway 

industry is to improve safety, not assign blame 

⚫ It is difficult for the railway industry to determine the 

scope of and understand previous recommendations 

⚫ The majority of recommendations address operational 

issues, but a growing trend focuses on addressing 

organisational issues 

⚫ There is a transition from interfering recommendations 

to supportive recommendations in the railway industry 

RQ2-2: Is there a transition in 

the style of making railway 

accident recommendations in 

each jurisdiction over time? 

The style of making railway accident 

recommendations might change over time, 

resulting in a potential change in the way 

that recommendations are proposed. 
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Table 8-1: The result for research questions and corresponding propositions (continued) 

Research questions Proposition Result 

RQ3-1: Do railway accident 

report recommendations 

support the railway industry to 

learn across jurisdictions and 

time? 

Recommendations made in railway accident 

reports often overlook the importance of 

learning across jurisdictions and time. 

⚫ Limited information exchange and co-reference 

between railway jurisdictions is observed 

⚫ Limited recommendations published for promoting 

learning behaviours are found 

⚫ Insufficient implementation of learning across time in 

the railway industry is recognised 

RQ3-2: What are potential 

barriers to the railway industry 

learning across jurisdictions 

and time? 

The railway industry has multiple barriers to 

learning across jurisdictions and time in the 

socio-technical hierarchy. 

⚫ Issues such as language barriers and legal obligations 

hinder the efficiency of learning 

⚫ Restrictions of regulations and policies, authority-

centralised information sharing culture, and 

organisational social capital act as barriers 

RQ3-3: What hazard(s) might 

emerge if barriers to learning 

across jurisdictions and time 

remained unsolved? 

The absence of learning across jurisdictions 

and time might significantly impact safety 

culture and lead to a deterioration. 

⚫ Decreased retention of prior knowledge and impact on 

long-term railway safety are identified 

⚫ Risk of safety culture deterioration at organisational and 

operational levels due to the absence of learning across 

jurisdictions and time is observed. 
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For RQ1-1 and RQ1-2, the results of the literature review reveal that several theories are 

used as the foundational basis to build a model for railway hazard analysis and accident 

prevention strategies to comprehensively interpret the epidemiology of accidents in modern 

society (Section 2.2.1), indicating the attempts of the literature to generalise the nature of 

hazards regardless of investigated locations. However, hazards cannot be identified 

efficiently due to the inability to analyse a large amount of safety-related textual data (Section 

2.4 and Hong et al., 2023). On the other hand, the HazardMap developed (Section 6.3) has 

shown that hazards are potentially comparable across jurisdictions and aspects of these 

hazard did trigger similar accidents. For instance, factors such as sighting distance and 

audibility have shown impacts in more than one country and these factors are capable of 

triggering comparable railway accidents at level crossings (see Section 5.8). Therefore, it is 

argued that similar hazards may occur in different jurisdictions and across time with similar 

roles during railway accidents. 

For RQ1-3, the discussion of how hazards in the railway system result in vulnerabilities was 

limited (Section 2.2 and Hong et al., 2022). However, the case study of level crossing 

accidents (Section 6.5) and the platform–train interface risk (Section 6.6) and the cross-

sectional analysis (Section 5.5.2) demonstrated that similar hazards triggered railway 

accidents across jurisdictions through a variety of aspects and their interactions (Section 6.3), 

although the extent to which these hazards make the railway system unsafe is not analysed. 

Therefore, these hazards have led to similar vulnerabilities regardless of the severity of 

accidents.  

For RQ2-1 and RQ2-2, some evidence from practitioners has shown that the purpose of 

recommendations made in the railway industry is not for blame but to help railway operators 

or regulators improve safety (Section 2.3.1). However, discussion about the role of 

recommendations is rare in the literature. Preliminary findings of previous studies only 
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indicate that investigating bodies have difficulty in determining the scope of recommendations 

and systematically learning and understanding recommendations made in previous railway 

accidents (Section 2.3.3). On the other hand, RecoMap indicates, as discussed in Section 

6.2, that the majority of recommendations made by railway accident investigators aim to 

address issues at the operational level. However, a growing trend to mitigate risks from 

organisational levels is also identified in RecoMap. For example, recommendations made by 

RAIB and NTSB after 2010 focus more on addressing organisational issues, such as 

standardising processes and developing procedures systematically (see Figure 6-2 in 

Section 6.2). This might imply a transition from making interfering recommendations 

addressing operational issues to making supportive recommendations addressing 

organisational issues in the railway industry across countries. 

For RQ3-1, the importance of learning behaviours has been widely discussed in many 

contexts (Section 7.2). Current learning behaviours in the railway industry were also 

discussed (Section 7.1). Co-reference between RAIB, NTSB, TSB and ATSB as discussed 

in Section 5.5.2 showed that information exchange across jurisdictions in the railway industry 

is limited. On the other hand, the scoping workshops and survey showed that the railway 

industry has been divided into many organisations in various disciplines functioning 

individually and most legislative systems in jurisdictions assign the obligation of responding 

to recommendations made by investigators to railway organisations. In other words, 

investigating bodies play the major role in promoting learning behaviours. However, RecoMap 

suggests that recommendations supporting learning behaviours are limited (Section 6.2). The 

scoping workshops and survey also indicated that learning across time has been 

implemented in the railway industry, which has also been supported by the literature and this 

thesis (Sections 5.5.2 and 6.1). 
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For RQ3-2, several barriers have been identified by the scoping workshops and survey and 

the interpretation of findings from this research supplemented by additional evidence. For 

example, the scoping workshops and survey revealed that despite the increased awareness 

of the importance of how to efficiently implement recommendations, the industry might have 

ignored the issue of the efficiency of learning across jurisdictions due to several issues, such 

as language barriers and legal obligations (Section 7.2). On the other hand, the interpretation 

of findings shows that restrictions of regulations and policies, the culture of an authority-

centralised information sharing system and the inherent organisational social capital might 

result in potential barriers to the railway industry learning across jurisdictions and time 

(Sections 7.2 and 7.3).  

For RQ3-3, the interpretation of findings indicated that the difficulties of aggregating historical 

data might restrict the scale of analysis and limit the perspective of findings. This might 

potentially lead to a decrease in the retention of prior knowledge and have an impact on long-

term railway safety given that knowledge needs to be manually processed while people are 

constantly changing (Section 7.3). Additionally, several internal and external factors influence 

the functionality of the industry and might cause unseen hazards. For instance, severe 

climate change might expose the system to extreme weather conditions that have never 

occurred in that location. The safety culture perception of frontline workers might also decline 

over time due to the dynamic social capital. Therefore, the safety culture might gradually 

deteriorate until another accident occurs (Section 7.3), resulting in the risk of safety culture 

deterioration at organisational and operational levels as the result of the absence of learning 

across jurisdictions and time. 
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8.4 Limitations and further research 

Despite the contributions discussed, several primary limitations in this thesis are identified: 

(1.) For the performance of models, this thesis restricted the countries analysed based 

on several factors such as using English language, the level of development of 

railway safety systems and the number of accident reports published. This limitation 

might overlook non-English speaking countries with a fully developed railway safety 

industry such as Japan. Future research could overcome such a limitation by 

introducing more advanced NLP technology such as Large Language Models 

(LLMs). 

(2.) Only off-the-shelf programming packages were used in building models, which 

might lead to limited flexibility to customise the functions needed. The effect of each 

factor extracted on the consequences of railway accidents cannot be fully 

discovered by the models presented due to the absence of combining with 

numerical data analysis. This might make railway safety policymakers unable to 

prioritise strategies for addressing hazards. Future research could consider 

integrating NLP models with other statistical models to further investigate the 

importance of each hazard identified. 

(3.) The outcome of HazardMap relies heavily on the characteristics of the input data, 

meaning that critical features missing in the original data would result in the absence 

of features in the constructed HazardMap. Human interpretation might still be 

required while processing systematic factors or underlying causes. The name of 

each extracted topic also needs to be determined manually by reviewing keywords 

of each topic. 

(4.) RecoMap has not yet revealed the incentives and barriers making the railway 

industry follow safety-related instructions that are critical for decision-makers to 
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understand the behaviour of practitioners. Future works could consider using 

advanced qualitative approaches such as grounded theory or ethnographic studies 

to delve deeper into the professional experiences and cultural norms. 

(5.) The performance and effectiveness of recommendations made by different 

countries are difficult to evaluate and compare in RecoMap although they have 

played an important role in cost-benefit analysis. The interpretation of topics 

extracted from the topic model is time-consuming and still requires manual effort. 

Future research is suggested to leverage LLMs to support the topic interpretation to 

increase the efficiency, ensure consistency and reduce human error. 

(6.) A limited number of respondents participated in the scoping workshops and survey 

due to the voluntary nature of recruitment and a lack of external incentives. More 

experts from various jurisdictions, especially non-English speaking countries, 

should be included for a diverse perspective. Future work might expand the number 

of countries investigated for a more comprehensive analysis. 

Future work might consider addressing the limitations above and concentrate on potential 

solutions for reducing human intervention required while interpreting results from the topic 

model. A shared decision-making platform based on HazardMap might also be worth 

investigating. The connection between hazards and aspects in HazardMap and 

recommendations in RecoMap also requires more work to identify the relationship between 

them and evaluate the effectiveness of recommendations by introducing data on the 

consequences of accidents. On the other hand, more understanding of deterioration of safety 

culture in the railway industry needs to be investigated from the perspective of the railway 

industry across jurisdictions. More evidence is required to reveal the dynamics of safety 

culture deterioration in the railway industry. Last, further work is also encouraged to apply 
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HazardMap and RecoMap to incorporate data from other contexts, such as road, aviation or 

maritime accidents. 

9. Appendix 

 

9.1 Appendix A. the outlines of the participants’ survey 

The survey consists of the following topics:  

(1.) Background information: organisations, job title, experience, and main responsibilities, 

etc. 

(2.) Information receiving: open-ended questions primarily concentrating on the current 

approach for practitioners to collect data, including: what type of information / evidence 

do you think could help in decision-making in terms of promoting rail safety? Where does 

your organisation most frequently source the information or instructions relating to rail 

safety? Which type of information relating to rail safety draw your organisation's attention 

the most? and which are the most important sources? 

(3.) Information processing: open-ended questions discussing about how railway 

practitioners process and analyse data or information collected, including: how does your 

organisation retrieve and process the historical accident reports? Does your organisation 

also consider the reports from other countries or jurisdiction? What makes your 

organisation not willing to consider using historical accident reports? Please specify. Did 

you ever go through the partial or whole railway accident report before making any railway 

safety-related decision? how you used a railway accident report to help in your decision-

making, Which parts of that railway accident report do you think could support your 

decisions? Please briefly explain the reason. What method/ evidence/ knowledge you 

currently (or previously) use to support your decisions? What railway safety-related 

model(s) you are currently using in the decision-making? And what makes you select the 

model(s)? 

(4.) Information disseminating: open-ended questions reflecting the current approaches 

and obstacles and concerns for practitioners to sharing knowledge, including: when a 

major railway accident occurs and your organisation is involved, would your organisation 



332 
 

have any engagement relating to investigation or improvement with others? Please 

specify the organisation you engage with the most and briefly describe the process of 

engagement, please briefly describe the difficulties your organisation faces when 

engaging with others, would your organisation report / share any information or 

knowledge after major conclusions or learning points have been in place? 

 

9.2 Appendix B. the approval letter from Human Research Ethics Committee at the 

University of Sydney 
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