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Abstract 

Real-time target position verification during pancreas stereotactic body radiation therapy (SBRT) is 

important for the detection of unplanned tumour motions. Fast and accurate fiducial marker 

segmentation is a requirement of real-time marker-based verification. Deep learning (DL) segmentation 

techniques are ideal because they don’t require additional learning imaging or prior marker information 

(e.g., shape, orientation). In this study, we evaluated three DL frameworks for marker tracking applied 

to pancreatic cancer patient data. 

The DL frameworks evaluated were 1) a convolutional neural network (CNN) classifier with sliding 

window, 2) a pretrained you-only-look-once (YOLO) version-4 architecture, and 3) a hybrid CNN-

YOLO. Intrafraction kV images collected during pancreas SBRT treatments were used as training data 

(44 fractions, 2017 frames). All patients had 1-4 implanted fiducial markers. Each model was evaluated 

on unseen kV images (42 fractions, 2517 frames). The ground truth was calculated from manual 

segmentation and triangulation of markers in orthogonal paired kV/MV images. The sensitivity, 

specificity, and area under the precision-recall curve (AUC) were calculated. In addition, the mean-

absolute-error (MAE), root-mean-square-error (RMSE) and standard-error-of-mean (SEM) were 

calculated for the centroid of the markers predicted by the models, relative to the ground truth. 

The sensitivity and specificity of the CNN model were 99.41% and 99.69%, respectively. The AUC 

was 0.9998. The average precision of the YOLO model for different values of recall was 96.49%. The 

MAE of the three models in the left-right, superior-inferior, and anterior-posterior directions were under 

0.88±0.11 mm, and the RMSE were under 1.09±0.12 mm. The detection times per frame on a GPU 

were 48.3, 22.9, and 17.1 milliseconds for the CNN, YOLO, and CNN-YOLO, respectively. 

The results demonstrate submillimeter accuracy of marker position predicted by DL models compared 

to the ground truth. The marker detection time was fast enough to meet the requirements for real-time 

application. 

SPAN-C trial ID: NCT03505229 
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1. Introduction  

Pancreatic cancer patients typically have poor prognosis, with a 5% 5-year survival rate (Ilic and 

Ilic 2016). Neoadjuvant stereotactic body radiation therapy (SBRT) is playing an increasing role in 

the management of patients with inoperable disease, to promising effect (Petrelli et al 2017). SBRT 

characteristically involves the delivery of large doses in few fractions, placing paramount 

importance on target localisation accuracy in order to achieve tumour control and avoid toxicity to 

nearby radiosensitive organs (bowel, stomach). Accurate targeting of the tumour volume during 

treatment is complicated by the presence of intrafraction motion due to respiration and digestive 

processes, both of which can cause variation in target position and organ deformation. Monitoring 

the target position in real time is therefore desirable for intrafraction motion management purposes. 

This has been most accurately and practicably achieved by employing image guidance to monitor 

the position of implanted fiducial markers, as a surrogate for the tumour (Imura et al 2005, Balter et 

al 1995). Fast and accurate segmentation of these markers in online imaging is of paramount 

importance for such applications. 

Several methods have been developed and implemented for real-time marker segmentation in kV 

planar imaging based on template matching algorithms (Regmi et al 2014, Fledelius et al 2011, 2014). 

Wan et al (2014) developed a combination of dynamic programming and template matching for 

improved marker localisation. Campbell et al (2017) developed a method to automatically generate 

marker templates from cone beam computed tomography (CBCT) imaging that enabled tracking 

of a cluster of markers in kV images. Kilovoltage intrafraction monitoring (KIM) employs a 

template matching method in conjunction with a 3D probability density function to report 3D 

marker positions from 2D imaging (Nguyen et al 2017, Hewson et al 2019, Kim et al 2018). These 

template matching techniques by nature require prior knowledge of marker properties. To 

determine the properties of the marker, an additional learning period is needed, exposing the patient 

to additional radiation dose and increasing time on the treatment couch (Bertholet et al 2017). 

Moreover, in template matching, high-contrast objects in an image are used as landmarks. If 

fiducial markers are obscured by high-density material such as bony anatomy and other high-

density materials (such as surgical clips and stents), the template matching process becomes more 

uncertain. In addition, when using coil markers, the template matching process becomes more 

complicated due to their arbitrary shape and deformation during implantation and treatment (due 

to organ motion). Therefore, there is a growing interest to address the issue of target tracking with 

deep learning (DL) based methods. DL methods have been shown to provide fast and accurate 

marker tracking (Mylonas et al 2019) and do not require prior knowledge of marker properties, 

negating the need for a learning period to generate a template.  
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The success of DL models to learn from a training dataset by automatically extracting features has 

led researchers to apply it in the field of medical physics, with the goal to improve patient outcomes 

(Edmunds et al 2019, Cui et al 2020, Liang et al 2020, Mylonas et al 2021, Motley et al 2022). Amarsee 

et al (2021) reported automatic detection of markers using you-only-look-once (YOLO) version-2 

applied to three prostate cancer patients. The accuracy of the marker detection was within 1 mm in 

98% of the kV images. Previously, we developed a convolutional neural network (CNN) model 

with four building blocks for automatic detection of cylindrical and arbitrarily shaped fiducial 

markers in kV images for prostate cancer patients (Mylonas et al 2019). However, the above DL 

methods were trained and evaluated on a small cohort of prostate cancer patients. 

In this study, we developed and evaluated three DL frameworks applied to pancreatic cancer 

patients. The DL frameworks evaluated were 1) a CNN with sliding window classification, 2) a 

pretrained YOLO version-4 architecture, and 3) a hybrid CNN-YOLO method. We aim to achieve 

better marker detection results (in both accuracy and latency) by improving the methods involved 

in individual models and combining them into a hybrid detection system.   

2. Methods 

2.1 Patient Data Collection 

This study was conducted using 2D kV images acquired from an ethics approved clinical trial for 

pancreas SBRT (SPAN-C; ID: NCT03505229). All patients had 1-4 implanted fiducial markers 

(EchoTip® Ultra, Cook Medical) and were treated using a conventional linear accelerator 

(TrueBeam, Varian, Palo Alto CA, USA). The treatment protocol utilised respiratory gating for 

motion management with the treatment beam gated at the end-exhale phase, either during free-

breathing or breath hold. Intrafraction kV imaging was acquired within the gating window. The 

source-detector distance (SDD) and source-isocenter distance (SID) were 150 and 100 cm, 

respectively. The pixel sizes at the detector and isocentre were 0.388×0.388 mm and 0.258×0.258 

mm, respectively. The imaging parameters varied from 80 kV to120 kV, and from 100 mA to 300 mA. 

 

2.2 Deep Learning Methods 

The main steps involved in this study are illustrated in Figure 1. The collimated area of each kV 

image was removed and the area containing the markers and the surrounding region was used to 

generate the training dataset. The training dataset contained a total of 44 fractions from 13 patients 

(a total of 2017 frames). Annotated training (90%) and validation datasets (10%) were generated 

from these images. Rotation-based data augmentation was performed. All the software 

implementations and analysis were performed using MATLAB 2021b (The Mathworks Inc. 2021). 

The training was done on a GPU (NVIDIA GeForce RTX 3090).  
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Figure 1. Overview of data processing, training, and model implementation. 

2.2.1 CNN 

CNNs are a class of deep neural networks with a specific architecture that are very effective when 

dealing with image data. A CNN is composed of several building blocks with the convolutional 

layers being the core part of the architecture. In this study, the CNN was designed to classify 32×32 

pixel subimages either as marker or background (no marker present). Prior to training, each 

subimage was normalised so that the minimum and maximum pixel values were 0 and 1, 

respectively.  The architecture of the CNN is shown in Figure 2. The first and the third building 

blocks lack the batch-normalisation layer to minimize the computation time of the training. A 

stochastic gradient descent (SGD) with momentum was used for fast convergence. The size of the 

mini batch was 128. The learning rate and the momentum were set as 0.0001 and 0.9, respectively. 

Data shuffling was performed prior to each epoch. Early stopping regularization was used to avoid 

overfitting. The trained CNN model was then incorporated into an automatic tracking system which 

is uses a sliding window technique to determine 2D marker position (Mylonas et al 2019) (Figure 

3). The size of the search area was large enough to include intrafraction motion. The search area of 

each marker for the first frame is estimated using the information from planning CT (by projecting 

the planning positions of the markers into the kV image) (Poulsen et al 2008). The position of the 

markers from patient coordinates (from planning CT) 𝑟𝑝 = (𝑥𝑝;  𝑦𝑝; 𝑧𝑝) were transformed into the 
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kV imager coordinates 𝑟 = (𝑥; 𝑦; 𝑧). The transformation consists of a rotation followed by a 

projection as given in eq. 1.  

 

Figure 2. Schematic illustration of the CNN architecture. The input image is a normalised 32 x 32 image 

and passed to the first building blocks. 

𝑟 = (
𝑥
𝑦
𝑧
) =

(

 
 

𝑆𝐷𝐷

𝑆𝐼𝐷 − 𝑧
0 0

0
𝑆𝐷𝐷

𝑆𝐼𝐷 − 𝑧
0

0 0 1)

 
 
(
𝑐𝑜𝑠 𝛼 0 − 𝑠𝑖𝑛 𝛼
0 1 0

𝑠𝑖𝑛 𝛼 0 𝑐𝑜𝑠 𝛼
) 𝑟𝑝 1 

Finally, the projected position on the kV imager is given by eq. 2.  

 

 

(
𝑥
𝑦) =

𝑆𝐷𝐷

𝑆𝐼𝐷 − 𝑧
(
𝑥𝑝 𝑐𝑜𝑠 𝛼 − 𝑧 𝑠𝑖𝑛 𝛼

𝑦𝑝
) 2 

where α is the gantry angle. However, the projected marker positions are not always accurate due 

to uncertainties which arise from patient positioning, organ motion (Wysocka et al 2010)and/or 

marker migration (Motley et al 2022). In instances where the marker is not present within the CNN's 

initial search window, the search area was progressively expanded until all markers were found. 

The search area for consecutive frames depended on the location of the markers on the previous 

frame. If the markers could not be found within the specified search area (such as when large 

projection angle change (> 10o) between consecutive frames occurred), the information from the 

planning CT was used for that specific frame at the given projection angle. The number of planning 

CT position usages during tracking was calculated. 
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Figure 3. Tracking window technique for improved efficiency of the CNN marker classification. The centre 

of the search area is estimated based on the projected position of each marker from the planning CT (yellow 

crosses). Once the search area is initialised (red boxes), the centre of the search area for consecutive frames 

is calculated from the location of the markers on the previous frame. The white crosses are the predicted 

marker positions by the CNN.  

2.2.2 YOLO 

YOLO object detection consists of two steps: locating and classifying the object in an image. First 

invented by Redmon et al (2016), it has gone through several improvements especially for its 

stability and computation time to be able to detect multiple objects at once (Redmon and Farhadi 

2017, 2018, Bochkovskiy et al 2020). YOLO uses a series of CNN and regression methods to classify 

and locate objects in an image. The input image is divided into 𝑆 × 𝑆 grid cells (Figure 4). Each 

cell predicts B bounding boxes and a class probability. The box with the highest probability will be 

chosen as having the object (in our case the marker). The bounding box coordinate is defined as (x, 

y, w, h), where (x, y) are the top-left coordinates of the box, and w and h are its width and height, 

respectively. During data preparation, the ground truth is labelled manually (a bounding box that 

contains the marker) and provided to YOLO. This ground truth is used to optimise the weights and the 

biases during training. For each bounding box, intersection-over-union (IoU) is calculated. The IoU 

gives the confidence score by measuring the overlap between a predicted bounding box and the 

ground truth. When predicting more than two boxes (i.e., detecting one marker multiple times), 

Non-Max Suppression (NMS) technique is used to remove boxes with lower confidence score. 
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Figure 4. Example of YOLO technique, with a single kV input image to the prediction of the marker with a 

confidence score for each bounding box (in this study, a threshold of 0.85 was used). 

For YOLO training, the size of the input image was 416×416 pixels to ensure all markers implanted 

near the pancreas gross tumour volume (GTV) were included. SGD with momentum was chosen 

as an optimiser.  The learning rate and the L2 regularisation factor were set to 0.0001 and 0.0005, 

respectively. The number of epochs was 100. The trained model was then implemented to track 

fiducial markers. The centre of the bounding box was considered as the position of the marker. A 

common challenge with marker detection in radiotherapy is overlapping markers (or markers 

placed near to each other) being detected as one marker. A bi-detection technique was employed 

(Figure 5), whereby the image is cropped near to the centroid of the detected markers and passed to the 

YOLO detector again when fewer than the expected markers are detected. This improves the detection 

of individual markers by preventing two or more closely spaced markers being detected as one.  

 

Figure 5. YOLO bi-detection technique. First, the entire image is passed as an input. The model returns 

bounding boxes that contain the markers with the highest probability. If fewer markers are detected than the 

expected number of markers, then the YOLO bi-detection is applied. 

2.2.3 CNN-YOLO 

The CNN-based marker tracking requires the information from the planning CT to initialise the 

search area. In instances where the intrafraction marker position varies from the planned position, 

the CNN’s search area will expand until all the markers are found. This increases the computation 

time for marker detection. To address this problem, we designed a hybrid DL model from 

individual CNN and YOLO models previously trained (the model is named as CNN-YOLO). In 

this method, a larger cropped area will be passed to the YOLO to initialise the position of the 

markers.  The location of the markers (predicted with the highest confidence) will be passed to the 
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CNN and the CNN will track the marker for consecutive frames. If the marker is not found by the 

CNN, the YOLO will take over. Subsequently, the positions of the markers from YOLO will be 

passed to CNN again. This process continues until all the kV images are processed. In doing so, 

the number of YOLO overtakes was calculated. The hybrid CNN-YOLO process is illustrated in 

Figure 6.  

 

Figure 6. Illustration of the hybrid CNN-YOLO. The location of the marker is first initialised by the YOLO 

and the locations are passed to the CNN to calculate the location of the marker position for the consecutive 

frames. If the CNN fails to detect the markers, then the YOLO will take over. 

 **The YOLO bi-detection is also applied if the number of predicted markers are less than that of the actual 

(as in Figure 5). 

2.2.4 DL Model evaluation 

For the CNN, the sensitivity (the ability of the model to correctly predict subimages with markers), 

specificity (the ability of the model to correctly classify background subimages), the precision-

recall curve (PRC) and the Area Under PRC (AUC) plot were evaluated. For YOLO, the evaluation 

of precision (accurate classification of the markers by the model) and recall (the ability to find all 

markers in kV images) are slightly different from the evaluation of these metrics in CNN since we 

have only one class (which is marker). Thus, average precision for different values of recall was 

evaluated. 

The tracking accuracy of the models was evaluated against a ground truth derived from manual 

segmentation of the markers in the planar images (acquired from 15 patients (42 fractions, 2517 

frames)). The 3D ground truth marker position was calculated from triangulation of marker 

positions in orthogonally paired kV/MV images (Hewson et al 2019). Due to low visibility of the 

markers in the MV field of view, calculation of triangulated positions was not possible for all kV 

images. In addition, the MV and kV images should be in synchronisation within 0.5 seconds. In 

the absence of triangulated marker positions, 3D positions were reconstructed from manually 

segmented 2D positions using 3D probability density function (3D-PDF) (Poulsen et al 2008). The 
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2D marker positions predicted by the models were also converted into 3D positions using 3D-PDF. 

For each fraction, the mean absolute error (MAE), root-mean-square-error (RMSE) and standard-

error-of-mean (SEM) of the DL models were calculated. In addition, the 5th and 95th percentiles of 

the errors were also evaluated. The mean Euclidian distance, d, between the centroid of the marker 

positions of the ground truth and that of the predictions was also calculated. 

3. Results 

The sensitivity and specificity of the CNN model was 99.41% and 99.69%, respectively. The AUC 

of the CNN was 0.9998. The average precision of the YOLO was 96.49 %. These results indicate 

the ability of the models to detect the markers with high accuracy. The MAE and the RMSE of 

marker tracking for all the fraction is shown in Figure 7. The overall MAE and RMSE with SEM 

is given in Table 1. In the case of stand-alone CNN classification, the planning CT positions were 

used 36.20% of the time, and for the hybrid CNN-YOLO, YOLO took over 32.20% of the time. 

The statistical significance (p-value estimated from correlation coefficient) of each model in the 

LR, SI, and AP directions was 0.017, 0.001, and 0.011, respectively. 

 

Figure 7. Marker tracking error with respect to the ground truth in LR, SI, and AP direction of the MAE and 

RMSE. The error was averaged for each fraction. 
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Table 1. Mean absolute errors and RMSE averaged for all the fractions 

 
Mean error (mm)  Mean RMSE (mm) 

LR SI AP  LR SI AP 

CNN 0.88 ± 0.11 0.65 ± 0.07 0.84 ± 0.11  1.09 ± 0.12 1.04 ± 0.11 1.07 ± 0.13 

YOLO 0.74 ± 0.11 0.65 ± 0.07 0.77 ± 0.08  0.95 ± 0.15 0.91 ± 0.09 0.95 ± 0.09 

CNN-YOLO 0.81 ± 0.14 0.47 ± 0.06 0.75 ± 0.10  1.01 ± 0.17 0.73 ± 0.08 0.95 ± 0.12 

The 5th and the 95th percentiles of the errors are given in Table 2. Although all the DL models have 

similar performances, the CNN has the lowest error in the SI direction, and YOLO has the lowest 

error in the AP direction for the 5th percentile. For the 95th percentile, CNN-YOLO has the lowest 

error in the SI direction. 

Table 2. The 5th and 95th percentiles of the errors calculated with respect to the ground truth and average 

Euclidian distance measured between the centroid of the predicted and ground truth marker location. 

 
5th percentile of the errors (mm)  95th percentile of the errors (mm) Ave. 

Euclidian LR SI AP  LR SI AP 

CNN -1.34  -0. 79 -0.90  1.05 1.62 1.45 1.58 

YOLO -1.30 -1.09 -0.87 1.17 1.00 1.33 1.48 

CNN-YOLO -1.30 -1.00 -1.19 1.14 0.96 1.13 1.39 

An example of tracking with two implanted fiducial markers in the pancreas GTV is shown in 

Figure 8.  All the models have tracked the markers successfully and the median of the error is 

close to zero as shown in the boxplot given in Figure 9.  

 

 

Figure 8. Marker tracking using the three DL methods in 3D in comparison to the ground truth in the (a) LR, 

(b) SI and (c) AP directions.  
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Figure 9. Error of marker tracking for the three models with respect to the ground truth in the (a) LR, (b) SI 

and (c) AP directions. 

The computation time of the models to detect the markers on a single frame was computed on CPU 

(AMD Ryzen 9 5950X 16-core processor) and GPU (NVIDIA GeForce RTX 3090) hardware. 

Detection time of the marker was calculated from the ratio of the total time of the computation to 

the number of frames processed. A patient with four markers (with 140 kV image frames) 

implanted in the pancreas GTV was chosen. Time measurement was evaluated 6 times and the 

average result was reported. The CNN with sliding window has 54.2 and 48.3 milliseconds on CPU 

and GPU, respectively, while the detection time for YOLO was 35.9 and 22.9 milliseconds. The 

CNN-YOLO has shown the best performance when the CNN-part is run on a CPU and the YOLO-

part run on GPU, and the computation time was 17.1 milliseconds.  

4. Discussion 

In this study, we investigated three types of DL frameworks for marker classification and detection 

for real-time radiotherapy treatment of the pancreas. The performance of a CNN with a sliding 

window, a pretrained standalone YOLO and a hybrid CNN-YOLO have demonstrated excellent 

results in both geometric accuracy and computation time.  The geometric accuracy of marker 

tracking for the three models was sub-millimetre as quantified by the MAE and RMSE. This 

indicates that clinical implementation of this marker localisation method will enable patient setup 

within the recommended accuracy requirement of 1 mm (Klein et al 2009, Willoughby et al 2012).  

In conventional marker tracking methods such as template matching, the presence of high-density 

materials near the treatment volume can make the template matching approach difficult. Tang et al 

(2007) developed a system that integrates the template matching approach with a multiple object 

tracking process to avoid marker confusion with non-marker materials. The system had excellent 

marker detection ability when breathing pattern information (BPI) was incorporated, whereby the 

breathing pattern is correlated with abdominal organ motion (pancreas, lung, etc) to provide predicted 

tumor trajectory information. In the absence of BPI, the failure of marker detection reached up to 

12%.  In our case, the DL models successfully detected the markers in the presence of high-density 
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materials without provision of BPI. This shows the generalisability of the DL method compared to 

template matching methods, where prior information such as marker characteristics and patient 

specific information such as BPI are not required.  

The presented work has shown that DL methods produce localisation accuracy appropriate for 

stereotactic applications. However, the markers are used as a surrogate for tumour localisation; if there 

is a related surrogacy error, for example due to marker migration, the tumour localisation accuracy will 

be reduced even if the marker localisation accuracy is high. DL methods may be able to be employed 

to track the tumour volume directly, however this presents challenges in relation to tumour visibility in 

intrafraction imaging.  

In our previous work, we reported a CNN with a compact design (4 building blocks) for marker 

segmentation in the prostate (Mylonas et al 2019). The same compact CNN architecture was trained 

and evaluated on the SPAN-C data, resulting in the sensitivity and specificity of 95.60% and 

99.90%, respectively. In order to improve the sensitivity, we designed the CNN with a deeper 

architecture having six building blocks without increasing the number of trainable parameters 

(hence, similar computation time) by reducing the batch-normalisation layer in the first and third 

building blocks (Figure 2). The model achieved high sensitivity and high specificity of 99.41% and 

99.69%, respectively. These results imply the ability of the model to classify the positive and the 

negative images with high accuracy even with images that contain high-density non-marker 

materials. The CNN showed slightly higher specificity compared to its sensitivity. For real-time 

monitoring, high specificity is desirable because the system should not identify the background as 

a marker and send an incorrect message to the system monitoring which instructs interventions in 

the treatment delivery.  

For real-time IGRT, both accuracy and detection time is important. The detection time (per frame 

with four markers) by the three models favourably compares with the detection time reported in 

previous results (Mylonas et al 2019). For a real-time tracking in clinical use, the latency should be 

kept below 500 milliseconds (Keall et al 2006). Given the computation time of all the three models 

in 2D, the models have the potential to be as short as 100 milliseconds including the conversion 

from 2D to 3D positions with 3D-PDF. Of all the three models, the CNN-YOLO has the best 

temporal performance (17.1 milliseconds per frame per four markers).  This is because, in the case 

of CNN, the search area automatically changes until the marker is found and this relatively 

increased the computation time. In the case of YOLO, we pass the entire cropped image as an input 

(dimension of 416×416 pixels) for each frame and the marker is searched for the entire input image. 

However, in the case of CNN-YOLO, the YOLO-part is used instead of planning CT information 

and the markers were usually found with the first step. Then the CNN continues the detection for 
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consecutive frames and the search area is usually small. However, if the CNN could not find the 

marker and YOLO fails to recover it, then this would be one limitation. In this case, marker position 

from previous frame or from planning CT could be used. 

5. Conclusion 

Three DL approaches were implemented to classify and track implanted fiducial markers in 

pancreatic cancer patient data. The performance of the models was evaluated on unseen data. The 

accuracy of marker position prediction by the DL models from the ground truth was sub-millimetre, 

and detection time was fast enough to meet the requirements for online application. Specifically, 

the hybrid model from the CNN and YOLO (CNN-YOLO) has achieved faster detection of fiducial 

markers (17.1 milliseconds). Therefore, the models could be deployed as part of a real-time 

intrafraction motion monitoring software. 
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