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ABSTRACT

Copulas are receiving increasing attention due to their flexibility in modelling de-

pendence between variables. Parametric copula models assume a specific form for

the copula function, such as the Gaussian copula, and estimate the parameters

from data. However, in many cases, the true underlying copula function may not

be well-represented by the chosen parametric form, leading to inaccurate results.

The data-driven nonparametric framework helps.

In this thesis, we propose a nonparametric Bernstein copula model to address

this issue, which is flexible and capable of approximating any copulas arbitrarily

well. Our proposed model is penalized with the reciprocal of the empirical Bern-

stein copula as the weight of adaptive LASSO. To overcome the ill-posed problem

for nonparametric copula estimation, we utilize the Bernstein polynomial sieves

as the sieve space and estimate it through the sieve maximum likelihood(SML).

Extensive Monte Carlo simulations are carried out to evaluate the performance of

the proposed model under different scenarios. We also perform an empirical anal-

ysis and successfully capture the financial contagion between four major markets.

Nonparametric density estimation provides a lot of flexibility in modelling com-

plex data patterns and is particularly useful when the true distribution is unknown

or difficult to model parametrically. However, in some cases, the data may fol-

low a specific parametric distribution. For example, in non-life insurance, claim

frequency and claim severity data are often modelled using specific parametric

distributions such as the Poisson distribution and the Gamma distribution, re-

spectively. Estimating their density based on their own parametric function is
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accurate and efficient. Based on our nonparametric Bernstein copula model, we

construct a semiparametric approach to improve the univariate density estima-

tion. The copula model is employed to measure the joint density between the

target variables and related ones to provide information in individual estimation.

A three-step double selection method is developed to study the performance of the

individual density estimation. We compare the univariate estimation method and

copula-based methods using both cross-sectional data and time series one. The

results show that the copula-based model can truly provide accuracy in estimating

margins, but it is irrelevant to the linear dependency between margins.

According to the complexity of financial products significantly increasing, the

copula is becoming a popular tool to study the interdependence in asset pricing.

In the context of option pricing, it is often assumed that the copula function

under the risk-neutral measure is from the same family as that under the phys-

ical measure. Sometimes, it can misspecify the true dependence structures. We

conduct a nonparametric copula-based GJR-GARCH approach with GED inno-

vation to evaluate the European bivariate rainbow options. Since the traditional

local risk-neutral valuation relationship which connects the physical asset with the

risk-neutral one is under the conditional normality, we modify it to accommodate

the skewness and fat-tail properties of financial data with explicit transforma-

tion formula. Since the bivariate rainbow options are typically traded over the

counter, price data is not available. Six pairs of price indices from both developed

and emerging markets with different dependence structures are designed as the

underlying assets to observe the copula’s effect on option pricing.
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CHAPTER 1

Introduction

Dependence structures, describing the interdependence between random variables,

are fundamental features of risk management. The recent global financial crisis of

2008, from the housing collapse to the downfall of a large scale of institutions, has

had a ripple effect around the globe. The misspecification of the dependence struc-

tures between financial time series(Scheffer and Weiß, 2017) is the main reason for

the unexpected contagion. The application of probability theory and statistical

tools which capture the dependence structure have flourished in the financial and

economic field(Torri et al., 2018). One of the most popular methods to capture

a dependence structure is by using a correlation-based model. It is the canonical

measure in the world of spherical and elliptical distributions. However, the empir-

ical study in the finance field shows that the distributions of the real world seldom

belong to this class (Embrechts et al., 2002).

To capture the dependence structure of the real world, an alternative method

based on copulas garners particular attention in research. According to the litera-

ture, copula is well recognized as a flexible approach to modeling the joint behavior

between random variables. It allows us to separately model the dependence struc-

ture and marginal behaviors by Sklar’s theory (Sklar, 1959). Besides, the copula

1



function contains the information of both the degree and the structure of the de-

pendence (Naifar, 2011). It has the ability to precisely capture the asymmetric

and nonlinear dependence in financial data (Poon et al., 2004). The flexibility

of copula estimation and the accuracy of its performance make it an attractive

statistical tool in estimating dependency.

Estimation of copula function has been studied in several ways, including paramet-

ric (Malevergne and Sornette, 2003; Naifar, 2011; Genest et al., 1995; Chen et al.,

2006) and nonparametric approaches (Deheuvels, 1979; Sancetta and Satchell,

2004). The parametric approach of estimating a copula model employs a para-

metric copula function, such as elliptical and Archimedean copula. It can be

simply estimated through measuring a few key parameters of the specific mod-

els. The parametric method shows high efficiency and accuracy when the copula

function is correctly specified. However, selecting a proper model for real data is

nontrivial. And most of the parametric copula formulas exhibit a certain degree

of symmetry or constraint by a fixed correlation structure, which is not always

proper in modeling the dependence in the finance market. Nonparametric estima-

tion of copulas and their densities does not assume a specific parametric form for

the copula and the marginals, so it provides great flexibility and generality. This

thesis relaxes all the restrictions on copula and margins and proposes a purely

nonparametric model.

Nonparametric copula has been studied in several ways, such as kernel-based

(Härdle, 1990), B-spline based(Shen et al., 2008; Eddie et al., 2018), infinite mix-

ture model (Burda and Prokhorov, 2014). Noteworthily, the Bernstein copula is

distinguishable among all the other nonparametric models. It has the property

to represent any copula under regularity conditions (Sancetta and Satchell, 2004),

which implies any continuous density function can be approximated by the density
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coming from the Bernstein copula. Besides, during the process of converging to a

specific dependence structure, the Bernstein copula shows a higher rate of consis-

tency compared with other nonparametric models (Diers et al., 2012). Moreover,

the Bernstein copula has an explicit formula that facilitates the data generation

process in the Monte Carlo simulation study.

Nevertheless, the nonparametric multivariate model’s estimation naturally leads

to some major challenges: increasing computation burden, the risk of overfitting,

and the curse of dimensionality. Regularization is a process of adding informa-

tion to evade overfitting and reduce the number of parameters to be estimated

(Bühlmann and Van De Geer, 2011). For example, Wahba (1990) and Ruppert

et al. (2003) showed that a linear combination of basis functions in regression with

coefficients that are regularized is an effective way to estimate a smooth unknown

function. To tackle the problem of overfitting and computationally infeasibility,

we propose the penalized Bernstein copula via the adaptive lasso penalty term.

The adaptive LASSO inherits the excellent properties of LASSO and also reduces

the bias of LASSO by using the weighted penalty approach (Zou, 2006). Besides,

the weights of the adaptive lasso are set as reciprocals of the empirical copula so

that the coefficient of the Bernstein copula can be shrunk to zeros if the corre-

sponding grid cell contains few data points. In other words, during this process,

a sparse model can be imposed. Sparsity enables faster and simpler processing of

the data of interest since few coefficients reveal all the meaningful information.

The accurate estimation of copula function can provide more precision in the

marginal distribution estimation. For the whole copula function estimation, semi-

parametric which set marginal distribution as nonparametric mode and copula as

parametric is one of the most popular ones (Chen et al., 2006; Chen and Fan,

2006). Their research focuses on the dependence aspect. However, the individual
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density measurement is still valuable in the application of microeconomics and

actuarial studies. Thus, an inverse semiparametric model is studied.

Copula applications are presented in the concept of derivative pricing (Van den

Goorbergh et al., 2005; Hull and White, 2006; Zhang and Guegan, 2008; Choe

and Jang, 2011; Wang et al., 2015). Most of them are based on a parametric ap-

proach. The parametric copula model can be easily estimated and it can capture

the dynamic information in time series data. But for the risk-neutral related asset

pricing, the assumption: ’the copula model under physical and risk-neutral should

belong to the same family’ can be relaxed if a nonparametric approach is involved.

Our nonparametric approach is studied in a bivariate option pricing context.

1.1 Thesis contribution

In this thesis, three significant contributions are stated:

1. Due to the complexity of financial data, the existing methods grounded on

the parametric copula model are not competent for all possible cases. We

address this problem by proposing a nonparametric Bernstein copula model,

which is flexible and capable of approximating any copulas arbitrarily well.

Our proposed model is penalized with the reciprocal of empirical Bernstein

copula as the weight of adaptive LASSO. As the nonparametric model in-

volves unknown parameters in infinite space, it can be computationally dif-

ficult to estimate based on a finite sample set. To overcome the ill-posed

problem for nonparametric copula estimation, we utilize the Bernstein poly-

nomial sieves as the sieve space and estimate it through sieve maximum

likelihood. The estimation process reduces the nonparametric problem into

a ’parametric’ one. Besides, as the sample size increases, the optimal order of

the empirical Bernstein copula also rises. It is prone to suffering from over-
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fitting. When the Bernstein copula applies to a relatively higher dimension,

the sample data tend to be much sparser. To improve prediction accuracy

and efficiency, the adapted lasso regularization method is employed in our

estimation. Extensive Monte Carlo simulations are carried out to assess the

performance of the proposed model under different situations (the underly-

ing data is Sparse/Less Sparse). As comparisons, our model outperforms

the empirical Bernstein copula model(Sancetta and Satchell, 2004), penal-

ized Bernstein copula model with LASSO, and penalized Bernstein copula

with different weights of adaptive LASSO. We also perform an empirical

analysis and successfully capture the financial contagion between four major

markets.

2. Although the nonparametric estimation provides a lot of flexibility in density

estimation, there are some kinds of data following specific parametric distri-

bution, such as the claim frequency and claim severity of non-life insurance.

Estimating their density based on their own parametric function is accurate

and efficient when it is correctly specified. We construct a semiparamet-

ric approach of copula model to improve the univariate density estimation.

The copula model is employed to measure the joint density between the tar-

get variables and related ones to provide information in individual estima-

tion. It implies that if the unknown dependence structure between variables

can be captured precisely, more information can be provided to margins.

We develop a three-step double selection method and utilize the model we

construct in the first contribution as the copula function to study the per-

formance of the individual density estimation. We compare three kinds of

methods, including ’Univariate’ that estimates the individual density inde-

pendently, ’Copula-based Empirical’ method that estimates the univariate

density with nonparametric Bernstein copula simultaneously through sieve

5



maximum likelihood estimation(Ivan et al., 2021), and ’Copula-based Pe-

nalized’ method which estimates the univariate density after the selection of

copula. Extensive simulation studies of the comparisons are provided based

on settings of the different univariate density functions and various copula

families, using cross-sectional data and time series data. In addition, the

comparison in the context of Value at Risk for individual log return has

been studied based on the data simulating from multivariate GARCH mod-

els. The forecast evaluation test of Value at Risk is applied to measure their

performance.

3. According to the complexity of financial products significantly increasing,

the copula is becoming a popular tool in asset pricing. We conduct a non-

parametric copula-based GJR-GARCH approach with GED innovation to

evaluate the European bivariate rainbow options. The GJR-GARCH model

is utilized to capture the asymmetry and conditional volatility. The co-

movement of residuals in the GARCH model is captured by the nonpara-

metric model. Since the traditional local risk-neutral valuation relationship

which connects the physical asset with the risk-neutral one is under the con-

ditional normality, we relax it to accommodate the skewness and fat-tail

properties of financial data. The generalized risk-neutral valuation relation-

ship with explicit formula has been derived. The existing parametric copula

models have been selected to compare under both static and dynamic sce-

narios for option pricing.

1.2 Thesis organization

The rest of the thesis is organized as followed. Chapter 6 reviews the literature

about previous research on methods of nonparametric copula estimations and their

application in financial markets. Section Chapter 3 summarizes some fundamental
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theories about copula model and introduces the Bernstein copula with its defini-

tion, large sample properties, and the estimation method related to it. Chapter

4 explains the three steps of the double selection method and conducts various

simulations to study its performance. Moreover, in Chapter 5, we apply the non-

parametric Bernstein copula model in the real world and show its merits in options

pricing.
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CHAPTER 2

Literature Review of Nonparametric Copula

Estimation

Copula represents a multivariate distribution as a function of univariate marginals.

It measures the dependence structure separately from the marginal behaviors. The

central Sklar theorem states that if H is the multivariate distribution of a vector

random variable X = [X1, ..., Xd]
′ with marginal distributions F1, ...Fd, there exist

a n-dimensional copula: C : [0, 1]d → [0, 1] such that

H(x) = C(F1(x1), ..., Fn(xd)), ∀x ∈ Rd (2.0.1)

and whenH is a continuous d-variate distribution function with univariate marginal

distribution F1, ..., Fd and quantile functions F−1
1 , ..., F−1

d , the copula function C

is unique (Sklar, 1959):

C(u) = H(F−1
1 (u1), ..., F−1

d (ud)), u ∈ [0, 1]d (2.0.2)

A very powerful property of copula is its invariance concerning rank-preserving

transformations of the random variables (Embrechts et al., 2002). The invariance

theorem indicates that the full dependence between random variables can be cap-

tured by the copula with any shape of the marginal distributions.
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Since the copula is introduced to develop the theory of probabilistic metric spaces,

it stays in a purely mathematical structure for a long period. After Embrechts

et al. (1999) was among the first to introduce it to finance literature, the copula

model has become a widely used tool for modeling dependence for a large spec-

trum of financial problems: multi-asset pricing (Van den Goorbergh et al., 2005;

Cherubini and Luciano, 2002), credit portfolio modeling (Glasserman et al., 2002),

risk management (Kole et al., 2007), etc.

2.1 Estimation of copula functions

For any multivariate distribution H, the marginal distribution Fi and the copula

function C can be extracted. Assume that the joint distribution H is n-times

differentiable, then taking the dth cross-partial derivative of equation 2.0.1:

h(x) =
∂d

∂x1...∂xd
H(x)

= c(F1(x1), F2(x2), ..., Fd(xd))
d∏
i=1

fi(xi) (2.1.1)

where fi’s are the marginal densities and c is the copula density function.Then, the

following decomposition for the log-likelihood function L = ln[h(x)] of a random

sample of matrix x = {x1n, ..., xdn}Nn=1 applies:

L =
N∑
n=1

d∑
i=1

ln fi(xin) +
N∑
n=1

ln(c(F1(x1n), F2(x2n), ..., Fd(xdn))) (2.1.2)

According to the function 2.1.2, the estimation of the joint density function in-

volves several underlying parts: marginal cumulative distribution functions and a

copula function. Considering the different settings on marginal distribution f and

copula function c, recent studies on copula estimations can be divided into three

types: parametric, semi-parametric, and nonparametric estimation.
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The parametric approach has been mostly studied, which assumes the copula

function c and marginal distribution f belonging to a specific model. In this

situation, the copula function can be simply estimated by measuring a few key

parameters of the specific models by holding their assumptions. Because of its

simplicity, this approach is widely applied in practice. Malevergne and Sornette

(2003) indicates that some pairs of currencies and pairs of major stocks are com-

patible with the Gaussian copula. Naifar (2011) applies the Archimedean copula

functions in exploring the dependence structure between stock market conditions

and the default risk premium and successfully capture the asymmetric property.

Once the parametric model is specified correctly, it shows high efficiency in esti-

mation (Genest et al., 1995; Chen et al., 2006; Ibragimov and Prokhorov, 2017).

One step of modeling parametric copulas is estimating the parameter vector. Most

studies concentrate on the fully parametric standard maximum likelihood estima-

tor (MLE) by maximizing the log-likelihood function (Weiß, 2011; Kim et al.,

2007):

(β̂1

MLE
, ..., β̂d

MLE
, θ̂MLE) = arg max

θ,β1,...,βd
L(β1, ..., βd,θ)

= arg max
θ,β1,...,βd

(
N∑
n=1

d∑
i=1

ln fi(xin; βi) +
N∑
n=1

ln(c(F1(x1n; β1), F2(x2n; β2), ..., Fd(xdn; βd);θ)))

(2.1.3)

over the unknown parameters (β1, β2, ..., βd, θ) simultaneously. The ML-estimator

performs relatively stable over the parameter interval of the respective paramet-

ric copula(Weiß, 2011). However, a multi-parameter numerical optimization in

the multivariate model for MLE sometimes is infeasible or time-consuming (Joe,

2005), especially in the high-dimensional case.

10



Inference functions for margins (IFM) method is a method used for estimating

the parameters of a statistical model based on the marginal distributions of the

variables involved. As discussed by Joe and Xu (1996), it offers a straightforward

approach at the expense of efficiency. It separates the whole estimation procedure

into two steps: firstly the marginal density parameters (β1, ..., βd) are estimated

by performing univariate marginal distribution estimation

(
β̂1

IFM
, β̂2

IFM
, ..., β̂d

IFM
)

= arg max
β1,...,βd

N∑
n=1

d∑
i=1

ln(fi(xin; βi)) (2.1.4)

2.1.4 is the quasi-MLE (QMLE) estimator assuming independence between the

marginals (independence over i and n). The QMLE remains consistent if there is

dependence over i, but it is not efficient. Prokhorov and Schmidt (2009b) develop

the improved QMLE (IQMLE) with stacked moment conditions. The optimal

weights for individual moment functions are determined by the GMM. They show

the efficiency gain is positive in comparison with the QMLE estimator if there is

dependence over i and the marginal scores are not ”equicorrelated”.

Then, given (β̂1, β̂2, ..., β̂d) the parameter of copula θ will be evaluated.

θ̂ = arg max
θ

N∑
n=1

ln c(F1(x1n; β̂1), F2(x2n; β̂2), ..., Fd(xdn; β̂d);θ) (2.1.5)

Under standard regularity conditions, the IFM estimator is consistent and asymp-

totically normally distributed, let θ̂IFM = (β̂1

IFM
, β̂2

IFM
, ..., β̂d

IFM
, θ̂), θ0 as the

true parameters and G(θ) as the Godambe information matrix

√
N(θ̂ − θ0)→ N(0, G−1(θ0)) (2.1.6)
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Joe (2005) studies the IFM estimator in the case of extreme dependence, inde-

pendence, and Fréchet bound with continuous margins. The results show that

IFM has good efficiency (nearly as efficient as MLE) only when the margins are

normally distributed and the copula function is also Gaussian. This equivalence

does not hold in general. Prokhorov and Schmidt (2009a) indicate that the one-

step method is equally or more efficient than the two-step method. However, both

the full MLE and IFM are inconsistent and biased if the marginals or the copula

function are misspecified. Besides, for a lot of dynamic models(e.g. stochastic

volatility models), the corresponding margins cannot be written explicitly.

Considering the difficulty in precisely selecting margins, some researchers focus on

the semi-parametric approach, which employs a parametric copula while leaving

the marginals nonparametric. Similar to IFM procedures, the univariate margins

Fi are estimated non-parametrically in the first stage and then the parameters

from copula are measured by using maximization of the contribution to the log-

likelihood function (Genest et al., 1995):

θ̂ = arg max
θ

n∑
i=1

ln c(F̂1(x1i), F̂2(x2i), ..., F̂d(xdi);θ) (2.1.7)

Genest et al. (1995) also shows that the resulting semi-parametric estimator θ̂ is

consistent and asymptotically normally distributed under proper regularity con-

ditions and θ̂ is fully efficient at independence under additional copula regularity

assumptions which are satisfied by a large number of copula families (e.g. bivari-

ate Gaussian, Eyraud-Farlie-Gumbel-Morgenstern(EFGM), Clayton, Frank). The

main aim of semi-parametric estimation is to avoid possible misspecification of

margins, but there still exists the risk of copula misspecification. The limitation

of the parametric copula function mainly comes from its few types of distributional

shapes (Kim et al., 2007). The robust copula is the incorrectly specified copula

12



with the expected value of copula scores zero. Prokhorov and Schmidt (2009b)

states that robust parametric copulas exist, which means that the pseudo-MLE

(PMLE) can provide consistent estimation under misspecification of parametric

copula function. However, they also state that the robustness of an incorrect cop-

ula is determined by the nature of the model. A more flexible model is needed

to study. A nonparametric copula estimation approach treats both the copula

function and margins parameter-free, which provides the greatest flexibility and

generality. In this thesis, a purely nonparametric framework for the copula model

is proposed.

2.2 Nonparametric approaches for copula esti-

mations

Nonparametric estimations of copula functions offer great generality. Different

from estimating marginal distributions which are observable, the copula function

is a hidden dependence structure. Proposing a suitable model for the copula func-

tion is nontrivial. The nonparametric estimator offers a sophisticated alternative

in constructing initial information for revealing an underlying parametric model.

The estimation of nonparametric copula can be dated back to Deheuvels (1979)

proposes the copula estimator based on empirical distribution and constructs var-

ious nonparametric tests of independence. Let (X1, X2) be the bivariate random

vector with joint cumulative density function H(x1, x2) and continuous marginal

distribution F1(x1) and F2(x2) respectively. Based on the bivariate data series

(X11, X21), ..., (X1n, X2n), the empirical distribution function

HN(x1, x2) =
1

N

N∑
n=1

I{X1n≤x1,X2n≤x2}, −∞ < x1, x2 < +∞
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where I{A} denotes the indicator of a set A and the marginal distributions of X1

and X2 are

F1N(x1) = HN(x1,+∞) =
1

N

N∑
n=1

I{X1n≤x1}

, and

F2N(x2) = HN(x2,+∞) =
1

N

N∑
n=1

I{X2n≤x2}

Since the corresponding copula is defined as CN(u1, u2) = HN(F−1
1N(u1)),F−1

2N(u2)),

the empirical copula function CN can be

CN(u1, u2) =
1

N

N∑
n=1

I{U1n≤u1,U2n≤u2}. (2.2.1)

where (U1n,U2n) = (F1N(X1n),F2N(X2n)). The empirical estimator 2.2.1 is asymp-

totically equivalent to the estimator directly based on Sklar’s theorem with a

term O(n−1). Deheuvels (1980) studies the weak convergence of the empirical

copula process in the case of independent marginal distributions for i.i.d ran-

dom variables. Gaenssler and Stute (1987) considers the weak convergence of

the empirical copula process in Skorokhod space D([0, 1]2) using ordinary empir-

ical process techniques. Vaart and Wellner (1996) employ the functional delta

method to show the weak convergence of the ordinary empirical copula process

Zn (Zn(u1, u2) =
√
n(Cn − C)(u1, u2)) in l∞((0, 1)2), for some 0 < u1 < u2 < 1.

Fermanian et al. (2004) conclude the empirical copula process Zn converges weakly

to the Gaussian process {GC(u1, u2), 0 ≤ u1, u2 ≤ 1} in `∞([0, 1]2) when its copula

function has continuous partial derivatives. Nevertheless, the empirical copula

model shows high discontinuity.

Some smoothed estimators are studied in a nonparametric framework. It has

been extensively discussed in the kernel, spline, and mixture models.
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2.2.1 Kernel-based estimator

In the world of statistics, many nonparametric estimation approaches are based

on a kernel structure (Härdle, 1990). Several studies are proposed for the kernel-

based copula function and its density(Omelka et al., 2009; Chen and Huang, 2007;

Geenens et al., 2017). We will review different approaches to estimate the cop-

ula density function based on the kernel estimator. Assume (U1n, U2n) are i.i.d

observations from a bivariate copula C and its corresponding density function is

c(u1, u2). The standard kernel-based estimator of the copula density using diago-

nal bandwidth can be expressed as (Wand and Jones, 1994)

ĉN(u1, u2) =
1

Nb2
N

N∑
n=1

K(
u1 − U1n

bN
)K(

u2 − U2n

bN
), (u, v) ∈ [0, 1]2, (2.2.2)

where K : R2 → R is a kernel function which is symmetric and
∫
K = 1. bN > 0

is the smoothing parameter. This estimator is not consistent on the boundaries of

[0, 1]2 in which ĉN(u1, u2) has a jump. Such bias is significant near the boundaries,

depending on the size of the bandwidth.

To cope with this boundary bias, several improved kernel-based copula models are

constructed e.g. the method using mirror reflection, transformation, or boundary

kernels. The mirror-reflection method in the bivariate case consists in reflecting

each data point with respect to all edges and corners of the unit square. The

kernel-based copula estimator is then built on the augmented data set(Gijbels

and Mielniczuk, 1990).

ĉMR
N (u1, u2) =

1

Nb2
N

N∑
n=1

9∑
k=1

K(
u1 − Ũ1nk

bN
)K(

u2 − Ũ2nk

bN
), (u1, u2) ∈ [0, 1]2,
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where {(Ũ1nk, Ũ2nk) n = 1, ..., N ; k = 1, ..., 9} = {(±U1n,±U2n), (±U1n, 2 −

U2n), (2 − U1n,±U2n), (2 − U1n, 2 − U2n) n = 1, ..., N}. Gijbels and Mielniczuk

(1990) show strong consistency and asymptotic normality of this estimator. Na-

gler (2014) show that the asymptotic bias of ĉMR
N is determined by the second

order partial derivatives of the true copula density c(u1, u2) after selecting proper

kernel K and it corresponding bandwidth bN . However, the second-order partial

derivatives are not bounded near the corners of the unit square for many popular

parametric copula families, which results in unbounded bias if the mirror-reflect

estimator is applied (Omelka et al., 2009).

The transformation approach is first proposed by Marron and Ruppert (1994)

to tackle the boundary bias of kernel density estimation. Charpentier et al. (2007)

applied it in the estimation of copula density. The data is transformed first so that

it has full support on R2 rather on the unit square, which is X̃1 = G−1(U1) and

X̃2 = G−1(U2). G is a continuous distribution function on R with differentiable

strictly positive density g. Next, applying the standard kernel estimator to the

transformed data can be described as

ĥN(x1, x2) =
1

Nb2
N

N∑
n=1

K

(
x1 − X̃1n

bN
,
x2 − X̃2n

bN

)
.

Finally, based on the back transformation, the estimated copula density can be

obtained from 2.1.1,

ĉTN(u1, u2) =
1

Nb2
Ng(G−1(u1))g(G−1(u2))

×
N∑
n=1

K

(
G−1(u1)−G−1(U1n)

bN
,
G−1(u2)−G−1(U2n)

bN

)
, (u1, u2) ∈ [0, 1]2.

Charpentier et al. (2007) also mention that this approach can be extended by

considering different cumulative density function GX1 and GX2 , different kernels
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or different bandwidth for the marginals. In particular, Geenens et al. (2017)

define the probit transformation of the marginals (Φ−1(U1),Φ−1(U2)) and show

that combining with the local likelihood method, this kernel-type copula density

estimator is easy to implement without boundary issues and able to manage the

unbounded copula densities. They also show this estimator of copula density is

uniformly consistent on any compact proper subset of [0, 1]2.

The boundary kernels approach is to use the matched kernels for the support

of the target density. It includes a smoothing distortion near the boundary such

that the kernels’ shape and corresponding bandwidth can be adjusted. Beta ker-

nels are one example of boundary kernels. Chen (1999) first introduces the beta

kernel as a density estimator.

fb(x) =
1

N

N∑
n=1

K(Xn,
x

b
+ 1,

1− x
b

+ 1),

where K(·, x
b

+ 1, 1−x
b

+ 1) stands for the density of the beta distribution with

parameter x
b

+ 1 and 1−x
b

+ 1,

K(x,
x

b
+ 1,

1− x
b

+ 1) =
x
x
b

+1(1− x)
1−x
b

+1

B(x
b

+ 1, 1−x
b

+ 1)
.

B(·, ·) denotes the beta function and b is the smoothing bandwidth. They also

show the bias is of O(b) throughout [0, 1], which means that fb(x) is free of bound-

ary bias. In addition, the asymptotic variances of the boundaries have comparably

larger order (N−1b−1) than those of the interior (N−1b−1/2), but it has little effect

on the mean integrated squared error(MISE) which is of order O(N−4/5). Bouez-

marni and Rolin (2003) examine the asymptotics of the mean integrated absolute

error (MIAE) for beta kernel estimator.Bouezmarni and Rolin (2003, 2007) prove

that the beta kernel density estimator is consistent even the true density is un-
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bounded on the boundaries. Bouezmarni and Rombouts (2010) extend the idea

to the multivariate case. The multivariate kernel estimator is the product of uni-

variate flexible and adapted kernels,

f̂(x1, .., xd) =
1

N

N∑
n=1

d∏
s=1

KB(bs, Xns)(xs),

where bs is the bandwidth parameter andKB is the beta kernel functionKB(b, t)(x) =

B(x
b

+ 1, 1−x
b

+ 1)(t) and B(α, β)(t) is the beta density function with parameters

α and β. When the multivariate density f is uniform on [0, 1]d, the nonparamet-

ric beta kernel estimator is unbiased for f (Bouezmarni and Rombouts, 2010).

Hirukawa et al. (2022) show the uniform consistency of the multivariate beta-

kernel-based sample average estimator under weaker regularity conditions. The

beta-kernel-based bivariate copula density function can be estimated by product

beta kernels,

ĉBN(u1, u2) =
1

Nb2
N

N∑
n=1

K(X1n,
u1

bN
+ 1,

1− u1

bN
+ 1)×K(X2n,

u2

bN
+ 1,

1− u2

bN
+ 1),

(u1, u2) ∈ [0, 1]2

The bias of ĉBN is of order O(bN) and the variance of the estimator depends on the

location, which is of order O(NbKN)−1, K = 1 in the interior of [0, 1]2 and K = 3/2

in borders (Charpentier et al., 2007; Nagler, 2014). Besides, ĉBN is asymptotically

normal distributed,

√
NbK

′
N

[
ĉBN(u1, u2)− c(u1, u2)

] L−→ N (0, σ(u1, u2)2)

where the value of K′ determined by the location and σ(u1, u2)2 is proportion to

c(u1, u2).
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2.2.2 Spline estimator

A B-spline of order(m) greater than two is a polynomial-based smooth function

on a given interval [a, b]. The places where the pieces overlap are knots. It is first

proposed by Curry and Schoenberg (1966) and formally defined by De Boor et al.

(1978). One property of B-splines is that any spline function on a given set of

knots can be written as a linear combination of B-spline basis functions. Each

basis function is a piecewise polynomial with degree m− 1 vanishing everywhere

except on a small subinterval of [a, b] and when the knots are distinct, the first

m− 2 derivatives are continuous among each knot.

The B-spline basis φ1,m, ..., φm+k,m of order m with knots a < τm+1 < ... < τm+k <

b is constructed through the Cox-de Boor recursion formula(De Boor et al., 1978).

Let τ1 = ... = τm = a and τm+k + 1 = ... = τ2m+k = b. Then, we have for all

i ∈ {1, ..., 2m+ k − 1}, j ∈ {2, ...,m}, if φi,1 is a indicator function of set [τi, τi+1)

and t ∈ [a, b],

φi,j(t) =
t− τi
τi+j−1

φi,j−1(t) +
τi+j − t
τi+j − τi+1

φi+i,j−1(t).

The first basis function φ1,m is equal to 1 at point a and decreases monotonically

to 0 as t goes from a to b. Homoplastically, the last basis function φm+k,m is equal

to 0 at point a and increases monotonically to 1 as t goes from a to b. All the

interior basis φ2,m, ..., φm+k−1,m is equal to 0 until it meets the knot after which, it

will increase monotonically to a peak and fall back to 0, and it will remain 0 for

the rest of interval.

Lambert (2007) applies the cubic B-spline to propose an estimator based on the

Archimedean copula family. It uses a penalized smoothing B-spline to represent
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the approximated ratio λ(·) = φ(·)
φ′ (·) and then estimates the parameters via Markov

chain Monte Carlo algorithm. Dimitrova et al. (2008) shows that although approx-

imating the ratio estimator λ(·) is more convenient than using the spline estimator

φ(·) directly, it is complicated in simulation and inefficient when the data sample

and parameter dimensions are large. Dimitrova et al. (2008) also states that if the

copula estimation uses the spline directly of a fixed degree and set the coefficients

and knots as unknown parameter θ, the task of estimating copula density is a

parametric approach with copula function:

Cθ(u1, u2) = φ−1
θ (φθ(u1) + φθ(u2)) (2.2.3)

and with copula density function:

cθ(u1, u2) =
∂2Cθ(u1, u2)

∂u1∂u2

= −φ
′′

θ (Cθ(u1, u2))φ
′

θ(u1)φ
′

θ(u2)

φ
′
θ(Cθ(u1, u2))3

(2.2.4)

Then a maximum likelihood approach could be applied to achieve asymptotic

efficiency. But if using the spline estimator with free knots, the approximation

approach is very difficult to implement numerically and is computationally infeasi-

ble since it leads to a multi-extrema-constrained non-linear optimization problem

with the inversion of the spline generator.

A nonparametric approach of copula estimation using splines is proposed by Shen

et al. (2008), which constructs a new class of copula model called linear B-spline

copula. The new copula model overcomes the discontinuity problem of empirical

copula and a comparably complicated copula can be uniformly approximated by

the linear B-spline without losing essential properties. Kauermann et al. (2013)

points out that considering the curse of dimensionality, this kind of nonparamet-

ric model is hardly feasible in high dimensions. Then, they use the B-splines to
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model the copula density itself and replace the density with a linear combination

of tensor products of univariate B-splines on [0,1]. To weaken the curse of dimen-

sionality, they proposed reduced tensor products based on sparse grids. Anderson

et al. (2020) illustrate that the uniformity condition of the marginal distribu-

tions is difficult to impose in nonparametric copula estimation. They construct a

spline-based copula model with a triangular basis function, which enables certain

constraints of conducting the uniformity to be imposed on the density surface.

2.2.3 Mixture model estimator

Considering the deficiency of representing true dependence using individual cop-

ula, the mixture copula model is introduced by Hu (2006) to take advantage of

different shapes of copulas. They constructed the mixture copula model using the

weighted average of several individual copulas and adjusting the weight to adapt

different dependence estimations in the financial market:

C(u1, u2) =
n∑
i=1

ωiCi(u1, u2), u2, u2 ∈ [0, 1] (2.2.5)

where 0 < ωi < 1 and
∑n

i=1 ωi = 1. When the number of copulas n goes to infinity,

the mixture model change to a nonparametric framework.

Although the theory of an infinite mixture model is introduced by Ferguson (1973)

and Antoniak (1974) in the 1970s, it becomes computationally feasible recently

due to the development of the Markov Chain Monte Carlo(MCMC) method. The

Bayesian infinite mixture model tends to be popular and increasing researchers

start to study its properties and applications. Burda and Prokhorov (2014) pro-

pose a nonparametric univariate Gaussian mixture with a Bernstein polynomial

copula as the link function under the Dirichlet process prior to constructing a

stable dependence structure. Wu et al. (2015) construct systematic Bayesian non-
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parametric procedures to measure any unconditional copula density function via

an infinite mixture of Gaussian copula. Dalla Valle et al. (2018) extend the work

of Wu et al. (2015) to estimate any conditional copula density under Dirichlet pro-

cess priors. The infinite mixture models select an infinite number of parametric

copulas as the mixture elements. However, the parametric copula is constrained by

a specific shape, which means not all kinds of distribution shapes can be captured

by even an infinite mixture model. Considering the computational feasibility, the

research on mixture copula models can only choose a small number of parametric

copulas as the base.

Bernstein copula can be considered a special case of the mixture estimator, which

is based on the Bernstein polynomials. Bernstein polynomials have been proved to

have the property of approximating any continuous function on the interval [0,1]

by Lorentz (2013). The density is estimated by Bernstein polynomials introduced

by Vitale (1975), and a modified version is applied by Gawronski and Stadtmüller

(1981). Then, Tenbusch (1994) develops the estimation in the two-dimensional

case and finds the mean squared error of the Bernstein polynomial is of the order

O(N−2/3). Latter, Bouezmarni and Rolin (2007) show the consistency of Bern-

stein polynomial estimator with unbounded probability density functions.

The copula estimation employing Bernstein polynomial has first been studied by

Li et al. (1997). They show that for any copula C:

Bn(C)(u, v) =
n∑
i=1

n∑
j=1

Bi,n(u)Bj,n(v)C(
i

n
,
j

n
) (2.2.6)

is also a copula and it converges to the copula C with a strong sense. Sancetta and

Satchell (2004) first define the Bernstein estimator for bounded copula densities

with independent and identified distributed (i.i.d) data and study its consistency
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in mean-square error. It defines the Bernstein copula function as:

C(u) =

J1∑
j1=0

...

Jd∑
jd=0

C(
j1

J1

, ...,
jd
Jd

)
d∏
i=1

Pji,Ji(ui) (2.2.7)

with u = (u1, ..., ud) ∈ [0, 1]d, Ji is a smoothing parameter and Pji,Ji(ui) is the

binomial distribution function. It has difficulty in applying the Bernstein copula

in practice since the copula function C is unknown. Sancetta and Satchell (2004)

also provides a solution. They proposed a nonparametric Bernstein copula esti-

mation using an empirical copula Cn to substitute the copula function C. Based

on the result of Sancetta and Satchell (2004), Janssen et al. (2012) investigate

some asymptotic properties of the Bernstein copula estimator. In this research,

they build the almost sure consistency and asymptotic normality of the Bernstein

copula estimator.

The Bernstein copula has been widely applied in practice. In finance, Hurd

et al. (2007) and Salmon et al. (2006) employ the Bernstein copula to capture

the asymmetric dependence of foreign exchange rates, and then more accurate

currency index options can be priced. Tavin (2015) applies the Bernstein copula

to describe the absence of arbitrage opportunities in a market with multi-asset

derivatives. Tavin (2018) constructs a set of dependence scenarios according to

Bernstein copula by simulating random doubly stochastic matrices to compute

hedging positions. In insurance, Diers et al. (2012) model the non-life insurance

using Bernstein copula. It compares the Bernstein copula with another popular

copula by fitting German flood, storm, and water claims data. It also shows the

particular advantages of the Bernstein copula when the dependence structure is

inhomogeneous, not highly correlated, and when the data used is sparse. Guo

et al. (2017) measure the default risk of collateralized debt obligations based on

the composite Bernstein copula(CBC), and it shows the merits of applying CBC
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over other models through this empirical study.

Therefore, this thesis will use the Bernstein copula as the main model for sev-

eral reasons. Firstly, according to the Weierstrass approximation theorem, the

Bernstein copula density has the property to estimate any two-dimensional cop-

ula uniformly on [0, 1]2. It implies that the density coming from the Bernstein

copula can approximate any continuous bivariate density function (Dou et al.,

2016). Secondly, the mathematical properties of the Bernstein copula are attrac-

tive, which will be detailed explained in the next section. Diers et al. (2012)

indicates that when the Bernstein copula converges to an underlying dependence,

it has a higher convergence rate than other nonparametric estimators. In addition,

the Bernstein copula has an explicit formula, which facilitates the data generation

process.

2.2.3.1 Bernstein polynomial density estimation

The Bernstein polynomial used as a density estimator can be traced back to Vi-

tale (1975) which introduces the estimation form as a linear combination of beta

density with random coefficients. This form easily satisfies the non-negative and

integrated-to-unity conditions required by a density function. Unlike the kernel

estimator, it’s also free from boundary bias. Tenbusch (1994) extended this idea to

multi-dimensional densities estimation. Based on the approximation property of

Bernstein polynomial, Petrone (1999) conduct a prior on the class of densities (0, 1]

with a full topology support. Ghosal et al. (2001) shows that the convergence rate

of posterior distribution is nearly equal to the parametric rate (log n)/
√
n if the

underlying distribution is the Bernstein density. Petrone and Wasserman (2002)

study the posterior from a Bernstein prior and under the mild assumption, the

posterior is weakly consistent for any distribution function P0 on [0, 1] with con-

tinuous and bounded Lebesgue density. They also show that under some stronger
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assumptions on the Bernstein prior, the posterior is also Hellinger consistent.

2.2.4 The method of sieve

Since the nonparametric models involve unknown parameters in infinite-dimensional

parameter spaces, it is computationally complicated to be estimated by finite sam-

ples. Moreover, optimizing a sample criterion over an infinite-dimensional space

may lead to undesirable large sample properties, like inconsistency and/or slow

rate of convergence (Chen, 2007). To remedy this issue, the method of sieves re-

ceives extensive attention.

The method of sieves was first introduced by Grenander (1981), which proves it

to be a powerful technique in nonparametric estimation. Grenander (1981) states

that the minimization problem can be a constraint in a subspace of the parameter

space and then let the subspace grow with the sample size. It defines that the

sequence of subspaces from which the estimator is obtained is called ”sieve” and

the resulting procedure is named as the method of sieves. An approximate sieve

estimate, denote by θ̂n, is defined as an approximate maximizer of Ln(θ) via Θn,

which is

Ln(θ̂n) ≥ sup
θ∈Θn

Ln(θ)−O(ε2n) (2.2.8)

where εn → 0 as n → ∞.The performance of the method of sieves relies on the

sequence of sieves parameters. The sieves parameter should decrease to zero at a

sufficiently slow rate, and this method shows consistency in the L1 sense (Grenan-

der, 1981).

The method of sieves was further developed by Geman and Hwang (1982) and

Walter et al. (1984), which combines the method of sieves with maximum likeli-

hood estimation. The maximum likelihood method has difficulty in applying to
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the completely nonparametric estimation of a density function from an iid sample.

Histogram is one famous example that uses the method of sieve to deal with non-

parametric density estimation. Let x1, ..., xn be an i.i.d sample from a continuous

distribution with some unknown density function α0(x). The maximum likelihood

estimator for α0 is to optimize the likelihood function

n∏
i=1

α(xi). (2.2.9)

But the maximum of 2.2.9 cannot be reached within any of the natural parameter

spaces for the nonparametric problem, which means that the traditional maximum

likelihood method cannot be consistent in the nonparametric density estimation.

A sieve which is a sequence of subsets of parameter space indexed by sample size

can be defined as

SKn =

{
α : α is a probability density function which

is constant on
[k − 1

K
,
k

K

)
, k = 0,±1,±2, ...

}

Let SKn associated with maximum likelihood function 2.2.9, then it becomes

max
n∏
i=1

α(xi) subject to α ∈ SKn

and the solution to this function is

α̂(x) =
Kn

n
#

{
xi :

k − 1

Kn

≤ xi <
k

Kn

}
for x ∈

[k − 1

Kn

,
k

Kn

)

which is the histogram with bin width 1/Kn. If the bin size Kn grows slowly

to infinity, the estimated α is consistent,
∫
|α̂(x) − α0(x)|dx → 0 almost surely.

Both Geman and Hwang (1982) and Walter et al. (1984) find that adding the

method of sieves in nonparametric density estimation provides the possibility to
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do nonparametric estimation using the maximum likelihood method. Wong and

Severini (1991) and Wong (1992) construct the asymptotic efficiency of plug-in

nonparametric maximum likelihood estimation of smooth functions. Shen et al.

(1997) extends this method to the sieve MLE. Ghosal et al. (2001) measures the

converge rate of sieve MLE for Bernstein polynomial densities’ estimation. How-

ever, the study of nonparametric density estimation using sieve MLE is confined

to the univariate case. Until Ivan et al. (2021), they apply the sieves method

in multivariate density estimation. They employ the Bernstein polynomial sieves

and show that the sieve MLE estimator improves over QMLE but does not suffer

the drawbacks of the full MLE, which is almost as efficient as FMLE.

2.2.5 Model selection in density estimation

Regularization was first introduced to deal with the ill-posed inverse problem by

Tikhonov (1943), from which an enormous amount of research in statistics studies

various regularization methods in a wide spectrum of problems. One common

situation that the regularization deal with is that the number of predictors exceeds

the number of observations in a regression model. Consider a linear regression

function

Y = Xβ + ε (2.2.10)

where Y is the response variable with n observations, X = (X1, ..., Xp) is an n× p

predictor data matrix, β = (β1, ..., βp)
T is unknown regression coefficient and ε

is an n-vector independent and identically distributed random error with mean 0

and variance σ2. If p > n, there are many solutions to the coefficients β and the

model is not uniquely predictable. One regularization strategy to deal with this

problem is to assume that the true number of the regression coefficients, which is

the nonzero βi, i = 1, ..., p, is small (Radchenko and James, 2010). Then, pushing

any parameter weights connected to the negligible features to exactly zero can im-
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prove estimation results. The sparse model, with many predictors set to zero, can

be more interpretable and computationally feasible. More generally if the target

function is sparse, enforcing the sparsity of the solution may be a way to avoid

overfitting. Thus, a large amount of research explores an efficient and appropriate

variable selection method through sparse-based regularization (Jenatton et al.,

2011; Zhang et al., 2008).

l0 regularization method comes up naturally in some classical model selections

because of its accurate interpretation of best subset selection and attractive sam-

pling properties (Barron et al., 1999). It is a measure to explain how complex

is the regression function and how many variables are important. However, the

best subset selection through l0 regularization is as difficult as trying all possible

subsets, especially when p is large. The most popular l1 regularization method

is LASSO (Tibshirani, 1996) since the regularization resulting from LASSO’s l1

penalty
∑p

i=1 |βi| leads to sparse solutions. The usual definition of sparseness for

variable selection, as explained in Zhao and Yu (2006), is that a small number of

regression coefficients βi are nonzero and all the nonzero coefficients are bounded

away from zero uniformly at a certain rate. Besides, compared with the classi-

cal variable selection method, like the best subset selection, the LASSO has two

advantages. Firstly, its selection process is based on continuous trajectories of

regression coefficients as a function of the penalty, which ensures a more stable

estimation. Besides, the LASSO is computationally feasible for high-dimension

data (Osborne et al., 2000; Efron et al., 2004).

The merits of the LASSO estimator attract several researchers to study its con-

sistency in the model selection process. For the low-dimensional case with a fixed

number of predictors, Knight et al. (2000) show that the LASSO estimator is

consistent when estimating the regression parameters βi and their limiting distri-
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butions can have positive probability mass at 0 when the true value of the predictor

is 0 under appropriate conditions. Then, Meinshausen et al. (2006) show that the

LASSO is consistent even p → ∞ at a rate faster than n, under a neighborhood

stability condition on the design matrix and certain additional regularity condi-

tions. Zhao and Yu (2006) organize the neighborhood stability condition as a

strong irrepresentable condition in terms of the linear regression model. They

prove that even when p > exp(na), ∃ a ∈ (0, 1), the LASSO is still consistent

under that irrepresentable condition.

Although the LASSO has many excellent properties, it is a biased estimator and

this bias does necessarily not go away as n → ∞. There are numerous alter-

natives studied by recent researchers. It includes Smoothly Clipped Absolute

Deviation(SCAD) (Fan and Li, 2001), the Elastic Net (Zou and Hastie, 2005), the

adapted LASSO (Zou, 2006), the Dantzig selector (Candes et al., 2007), Variable

inclusion and shrinkage algorithms(VISA) (Radchenko and James, 2008), DASSO

(James et al., 2009). Among these methods, the adaptive LASSO inherits the out-

standing properties and reduces the bias of LASSO by using a weighted penalty

approach.

Inspired by the success of regularization for regression models, researchers start

to study sparse regularization in nonparametric density estimation. It is known

that the estimation of a nonparametric function with high dimension is feasible

only if some regularity assumptions are satisfied (Devroye et al., 2013). Bunea

et al. (2010) studies sparse density estimation via l1 penalization (SPADES) using

mixture models. They assume that the densities of true mixture components be-

long to a large known candidate density pool. Then, they select the components

of mixture models by penalizing the mixing weights and show that SPADES can

be effective only if the local distances of true mixture components are quite large
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in comparison to their variances or covariance matrices.

In the multivariate case, the number of parameters in the nonparametric den-

sity model increases quadratically with the dimension, which poses challenges in

high-dimensional applications. However, there are only a few studies in estimating

the sparse density model. In the chapter 3, nonparametric density estimation is

estimated through a nonparametric Bernstein copula with adapted LASSO regu-

larization.

Both the sparse and less sparse scenarios will be investigated in the simulation

study. In the sparse scenario, the majority of the true parameters are assigned

a value of zero. In practice, this can be evaluated using a property testing algo-

rithm, which aims to design an algorithm that determines whether the input data

satisfies a predetermined property like sparsity(Barman et al., 2018). However,

it is important to note that conducting a pre-test for sparsity is not within the

scope of this thesis. Although our primary focus revolves around employing the

lasso-type regularization method to handle sparse data and studying their proper-

ties, it does not imply that the model can only be utilized in the sparse scenario.

The empirical Bernstein copula model has the capability to estimate any copula

models, but it does not enforce sparsity. To address this limitation, our proposed

model introduces a penalty term to encourage sparsity. In practice, if the under-

lying data is not sparse, the tuning parameter of our model will approach zero,

effectively making the model equivalent to the empirical Bernstein copula model.

As the level of sparsity increases, the tuning parameter also increases accordingly.

Then the degree of sparsity can be inferred by observing the estimated tuning pa-

rameter. In a less sparse scenario, there is a possibility of falsely excluding certain

parameters during the regularization process. Model selection mistakes made by

lasso cause the distribution of this naive estimator to be biased and nonnnormal.

30



To address this issue, Belloni et al. (2014) develop a novel estimation and uni-

formly valid inference method for the treatment effect in this setting, called the

”post-double-selection” method. Building on this, Belloni et al. (2016) present

a general methodology to estimate an effect of interest using an instrument that

guards against model selection errors, specifically applied to the case of a logistic

binary choice model. Additionally, Chernozhukov et al. (2018) propose the dou-

ble/debiased machine learning method to counteract the impact of regularization

bias and overfitting. In the context of the Heckman selection model, Hirukawa

et al. (2023) introduce the double lasso estimation method to correct errors arising

from lasso. Beyond lasso-based methods, recent literature Ahmed et al. (2023) in-

troduces the shrinkage method, which considers prior information about inactive

parameters during coefficient estimation for active parameters. Research indi-

cates that the shrinkage method outperforms penalized methods both analytically

and numerically, but only when the number of inactive parameters is accurately

specified.

2.3 Applications of the nonparametric copula in

financial time series

The original motivation to use copula in finance is due to the emerging empirical

evidence showing that the relationship between some crucial asset returns is non-

normal. The financial asset returns exhibit relatively high concentration in market

downturn compared with that in market upturn(Bae et al., 2003). This evidence

has been widely studied for financial decision-making in risk management(Eling

and Toplek, 2009; Ai et al., 2017), option pricing(Guegan and Zang, 2013; Van den

Goorbergh et al., 2005), portfolio optimization(Boubaker and Sghaier, 2013; Ai

et al., 2017) and the contagion between financial markets(Wen et al., 2012).
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The implementation of the copula in time series data can be clarified into two

distinct categories. One is the application to the multivariate time series and

the focus for this category is to model the joint distribution of a random vector

St = [S1,t, ..., Skt] conditioning on a given information set Ft−1. The information

set Ft−1 is the σ−field. The other one mainly focuses on considering the copula of

a sequence of observations which is a univariate time series. It utilizes copula to

study the joint behavior of [St, St+1, ..., St+n] in a specific time period. This appli-

cation connects with the Markov process and general nonlinear time series(Chen

and Fan, 2006; Chen et al., 2009; Ibragimov, 2009). In this thesis, we concentrate

on multivariate time series cases.

In multivariate time series applications, Rosenberg (2003) apply a fully nonpara-

metric framework on the bivariate option pricing using kernel-based nonparametric

copula. Patton (2006) extends the theory of copula for conditioning variables and

combines Sklar’s theorem to the time series case. For t ∈ {1, ..., T}, let

St|Ft−1 ∼ F (·|Ft−1), Si,t|Ft−1 ∼ Fi(·|Ft−1)

Then,

F (s|Ft−1) = C(F1(s1|Ft−1), ..., Fn(sn|Ft−1)|Ft−1) (2.3.1)

The attendant problem of applying Sklar’s theorem to the conditional distribution

is that the conditional set Ft−1 should be the same for both the margins and cop-

ula function. The F (s|Ft−1) cannot be a valid joint distribution function if it is

failed to use the same information set of each Fi(·|Ft−1)(Patton, 2009). However,

some information contained in the information set is not relevant to all variables,

say Fi,t−1 is the smallest subset of Ft−1 such that Si,t|Fi,t−1 =D Si,t|Ft−1. Each

marginal distribution is conditional on its own Fi,t−1 and it will be different across
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margins.

A preponderance of evidence from the econometrics literature indicates that the

conditional volatility of financial time series changes through time (Andersen et al.,

2006; Bauwens et al., 2006). Then, a natural question is whether the conditional

dependence structure also significantly changes through time. Patton (2002) and

Patton (2006) allow the time variation in the conditional copula by changing the

dependence parameter to evolve through time according to a particular equation.

They provide the evolution equation for both symmetrized Joe-Clayton copula and

Gaussian copula based on an ARMA-type process. Guegan and Zang (2013) fur-

ther studies this method and applies it to the generalized hyperbolic(GH)-GARCH

process. The copula’s parameters vary through the function

θl,t = θ0 +

g∑
i=1

ηi

2∏
j=1

εj,t−i +
s∑

k=1

γkθl,t−k (2.3.2)

with η and γ are scalar model parameters and (ε1,t, ε2,t) are standardized inno-

vations from GH-GARCH estimation. Van den Goorbergh et al. (2005) indicates

that there exist the one-to-one relationship between the Kendall’s nonparamet-

ric measure of association τ and the parameter θ of copula function. Then, the

relationship is

τ(θ) = 4E(Cθ(U1, U2))− 1 (2.3.3)

where (U1, U2) is distributed as Cθ and the expectation is taken with respect to

U1 and U2. Then, let the dynamic copula parameter be updated by the spe-

cific regression on Kendall’s tau. However, this one-to-one relationship between

Kendall’s tau and copula function is only efficient and accurate for one parameter-

based parametric copula.
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CHAPTER 3

Adaptive LASSO Regularization with

Nonparametric Bernstein Copula Estimation

3.1 Introduction

Copulas and copula densities have gained increasing attention for their flexibility

in modeling multivariate distributions. However, in many cases, the dependence

structure of the data cannot be fully captured by parametric copulas. The Bern-

stein copula, introduced by Sancetta and Satchell (2004), addresses this limitation

by providing a nonparametric copula that can approximate any copula arbitrarily

well. Its consistency and asymptotic properties have been systematically studied.

The Bernstein copula exhibits high accuracy, especially in scenarios involving mul-

tiple risk sectors with inhomogeneous dependency, as shown by Diers et al. (2012).

Nevertheless, nonparametric estimation of Bernstein copula models involves deal-

ing with unknown parameters in an infinite-dimensional parameter space, which

is computationally challenging with finite samples and poses a non-well-posed op-

timization problem (Chen, 2007). To address this, Geman and Hwang (1982)

introduced the method of sieves for nonparametric maximum likelihood estima-

tion. The method of sieves optimizes a criterion function over a sequence of
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parameter spaces with reduced complexity and finite dimensions. Building on this

framework, Chen et al. (2006) proposed the sieve maximum likelihood estima-

tion (SMLE) method for estimating copula parameters and unknown univariate

marginals. The SMLE efficiently handles the estimation of these components

within a unified framework. Furthermore, Ivan et al. (2021) extended the SMLE

method to the multivariate case, specifically addressing situations where the cop-

ula density function is unknown. Their approach improves upon the Quasi-MLE

method while avoiding the drawbacks associated with full maximum likelihood

estimation. The SMLE strikes a balance by delivering comparable efficiency to

full MLE while offering enhanced computational feasibility and robustness. In

our proposed nonparametric model, we construct the sieve parameter space us-

ing Bernstein polynomials, enabling the estimation of the model in a parametric

manner.

Since the Bernstein copula can be viewed as a special case of the mixture model,

where the mixture components are beta densities. Determining the appropriate

number of mixture components is a topic of intense research. Traditional meth-

ods for selecting the number of components rely on the likelihood function and

information criteria. Leroux (1992) demonstrate the consistency of the maximum-

penalized-likelihood estimator for estimating the mixing distribution and show

that information criteria like AIC and BIC do not underestimate the true num-

ber of mixture components. Consistency of BIC in estimating the number of

components for mixtures of normals is also discussed by Roeder and Wasserman

(1997). Other approaches focus on measuring the discrepancy between the fitted

mixture model and the nonparametric estimation of the population distribution,

using methods such as the Kullback-Leibler distance (James et al., 2001; Lijoi

et al., 2005), penalized minimum-distance approach (Chen and Kalbfleisch, 1996;

Biau and Devroye, 2005), and minimum Hellinger distance method (Cutler and
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Cordero-Brana, 1996; Woo and Sriram, 2006). Ray and Lindsay (2008) investi-

gate model selection in multivariate mixture models through a global comparison

tool called quadratic risk. However, these methods often involve computationally

intensive model search algorithms, leading to high computational costs.

Another method is to use regularization strategies to improve the estimation re-

sults. Regularization, as a process of adding information to mitigate overfitting

and reduce the number of parameters, has been widely used in nonparametric

estimation (Bühlmann and Van De Geer, 2011). If the true underlying model

exhibits sparsity, the idea of variable selection, commonly applied in regression,

can enhance the performance of the fitted model. This approach also allows the

number of mixture components (M) to exceed the sample size (n). One popular

regularization technique is the LASSO (Least Absolute Shrinkage and Selection

Operator), proposed by Tibshirani (1996). Other variable selection methods in-

clude SCAD (Smoothly Clipped Absolute Deviation)(Fan and Li, 2001), adap-

tive LASSO(Zou, 2006), VISA (Variable Selection via the Independence Screen-

ing Algorithm)(Radchenko and James, 2008), the Double Dantzig(James et al.,

2009), and SPADE(Bunea et al., 2010). Some researchers have extended selection

methods to high-dimensional cases (Banerjee et al., 2008), but many of these ap-

proaches are based on regression functions. In the context of estimating density

functions, Bunea et al. (2010) introduced the possibility of estimating density func-

tions through l1 penalization (SPADES). They assume that the densities of true

mixture components belong to a large known candidate density pool. By penaliz-

ing the mixing weights, SPADES effectively selects the components of the mixture

models. They demonstrate that SPADES is effective when the local distances

between true mixture components are substantially larger than their variances or

covariance matrices. In this chapter, we demonstrate that the L1-regularization

technique, commonly used in linear regression models, can also be successfully
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applied to copula density estimation. L1-regularization introduces a penalty term

based on the L1 norm of the estimated parameters, promoting sparsity and re-

ducing the number of estimated parameters. By incorporating L1-regularization

into the estimation procedure of the nonparametric Bernstein copula, we aim to

improve the stability, robustness, and interpretability of the density estimates.

In this chapter, we present a nonparametric Bernstein copula approach for ac-

curately measuring the underlying dependence structures among data. We em-

ploy the sieve maximum likelihood estimation (SMLE) technique to estimate the

parameters within the sieve space. Additionally, we incorporate the adaptive

LASSO method to introduce sparsity and enhance the predictability of the esti-

mated model. The remainder of the chapter is structured as follows: Section 2

outlines the proposed model in a step-by-step manner. We describe the method-

ology and procedures involved in constructing the nonparametric Bernstein cop-

ula, estimating its parameters using SMLE, and incorporating adaptive LASSO

for variable selection. Section 3 presents a comprehensive simulation study that

demonstrates the properties of the Bernstein copula in approximating various

types of copulas. We conduct Monte Carlo simulations under both sparse and

less sparse scenarios to evaluate the performance of the proposed approach. In

section 4, we provide empirical evidence to capture financial contagion between

four markets. We apply the nonparametric Bernstein copula model to analyze

and interpret the dependence patterns among these markets, shedding light on

the presence and magnitude of contagion effects.

3.2 Problem formulation and methodology

One of the aims is to accurately estimate the target dependence structure. Com-

pared with estimating the multivariate density function directly, the copula model
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provides more flexibility which allows separately estimating the copula density

function and different marginal density functions. For simplicity, consider the bi-

variate case d = 2 and it’s not difficult to extend the following expression to the

multivariate situation.

According to Sklar’s theorem(Sklar, 1959), the bivariate density function h of 2-

dimension cumulative density function F with univariate margin u1 = F1(x1), u2 =

F2(x2) and corresponding univariate density f1, f2 can be expressed as

h(u1, u2; θ, γ) = c(u1, u2; θ, γ)
2∏
i=1

fi(xi; θi) (3.2.1)

c is the density function of the 2-dimensional copula. After taking the logarithm

of 3.2.1:

L(u1, u2; θ, γ) = Lc(θ, γ) + Lm(θ) (3.2.2)

where the Lc(θ, γ) =
∑N

i=1 log(c(u1i, u2i; θ, γ) is loglikelihood of the copula func-

tion and Lm(θ) =
∑N

i=1 log f1(x1; θ1) +
∑N

i=1 log f2(x2; θ2) is the loglikelihood of

marginal distribution functions. Assuming the marginal distributions are correctly

specified, our problem is to maximize the log-likelihood of Lc(γ, θ̂). Since the cop-

ula function in this paper is a nonparametric one with dim(γ) → ∞, we set an

infinite-dimensional sieve space and penalty for regularization. The method of

sieve solves the problem of estimating a nonparametric model over infinite dimen-

sional space in maximum likelihood estimation(MLE) optimization. It constructs

a subset of the parameter space to facilitate the estimation. The penalty part

pushes more negligible parameters to zeros. Combining these two, the infinite-

dimensional sieve space can be represented as followed

Γn = {γ ∈ Γ : γ(·) =
∞∑
k1=1

∞∑
k2=1

ak1,k2Bk1,k2(·), pen(γ) ≤ bn} with bn →∞ slowly

(3.2.3)
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where Bk(·) is employed as Bernstein polynomials and pen(γ) is the penalty part

which is a function of γ. Since the loglikelihood of copula function Lc(γ) is con-

cave and the adaptive lasso penalty is convex, the sieve MLE estimation of Lc(γ)

becomes equivalent to the penalized MLE (Grenander, 1981):

max
γ∈Γn

Lnc(γ) (3.2.4)

subject to pen(γ) ≤ bn (3.2.5)

Then, the problem changes to a convex optimization problem.

3.2.1 The copula function and its properties

As mentioned in the last section, the copula function can be considered as a d-

dimensional distribution with uniformly distributed marginals. C : [0, 1]d → [0, 1]

is a d-dimensional copula function if:

1. C(u1, u2, ..., um−1, 0, um+1, ..., ud) = 0

2. C(1, ..., 1, u, 1, ..., 1) = u

3. C(u1, ..., ud) is non-decreasing in each component, ui. For uj,1 ≤ uj,2, P (U1 ∈

[u1,1, u1,2], ..., Ud ∈ [ud,1, ud,2]) must be non-negative. This implies the rect-

angle inequality

2∑
i1=1

...
2∑

id=1

(−1)i1+...+idC(u1,i1 , ..., ud,id) ≥ 0

Also, the reverse is true that if C(u) is a copula function, it has the properties 1

to 3 immediately. From property 2, it is easy to confirm that C(1, u1, ..., ud−1) is

a (d − 1)-dimensional copula. Based on the idea of probability integral transfor-

mation(PIT), we have
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Proposition 3.2.1. let X be a random variable on the probability space (Ω,F ,P)

with distribution function F. If F is continuous, then F(X) is uniformly distributed

on [0,1]

McNeil et al. (2015) summarize the quantile transform method which provides

key concepts for further understanding of copulas based on PIT. Let F denote the

univariate distribution function and
←−
F represent the generalized inverse.

←−
F (x) := inf{v : F (v) ≥ x} (3.2.6)

Then, we have the following well-known result:

Proposition 3.2.2. If U ∼ U(0, 1) and FX is the CDF funtion of random variable

X, then

P (
←−
F (U) ≤ x) = FX(x) (3.2.7)

Considering the opposite direction, if FX is continuous, then

FX(X) ∼ U(0, 1) (3.2.8)

Let the random variables X1,..., Xd with continuous distribution function F1,..., Fd

correspondingly. Then, by proportion 3.2.2 we have U1 := F1(X1),..., Ud := Fd(Xd)

are uniformly distributed on [0,1]. Therefore,

F (x1, ..., xd) = P(X1 ≤ x1, ..., Xd ≤ xd)

= P(F1(X1) ≤ F1(x1), ..., Fd(Xd) ≤ Fd(xd))

= P(U1 ≤ F1(x1), ..., Ud ≤ Fd(xd))

= C(F1(x1), ..., Fd(xd)) (3.2.9)

Here, C is a copula function. This is one side of the famous Sklar’s theorem.
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Theorem 3.2.1 (Sklar (1959)). Let (X1, ..., Xd) be a multivariate random variable

with joint distribution function F and univariate marginal distributions F1, ..., Fd.

Then there exists a copula C, such that for all x ∈ Rd

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)) (3.2.10)

C is uniquely determined on Range(F1)× ...× Range(Fd) and hence it is unique

when F1, ..., Fd are continuous.

Sklar’s theorem provides the possibility that any copula can be combined with var-

ious univariate distribution functions to a d-dimensional multivariate distribution

function by using equation 3.2.10. Particularly, copulas can deal with the situation

where each margin is different and it provides a valid alternative way to estimate

the classic multivariate distribution function, such as Gaussian, Pareto and etc.

Another property of copula is its invariance under monotonic transformations.

Proposition 3.2.3. Suppose the random variables X1, ..., Xd have copula function

CX and their marginal distributions are continuous. Let Ti : R→ R represent the

strictly increasing function for i = 1, ..., d:

Y1 := T1(X1), ..., Yd := Td(Xd) (3.2.11)

then Y1, ..., Yd have the same copula function CX.

Another crucial feature is derived independently by Fréchet–Hoeffding:

Theorem 3.2.2 (The Fréchet–Hoeffding Bounds). Consider a copula function

C(u) = C(u1, ..., ud), then

max

{
1− d+

d∑
i=1

ui, 0

}
≤ C(u) ≤ min{u1, ..., ud} (3.2.12)

41



The upper bound of the Fréchet–Hoeffding theorem is tight for all d whereas the

lower bound is tight only when d = 2. These two bounds represent two cases

of extreme dependency: comonotonicity and countermonotonicity. The comono-

tonicity case constructs the upper Fréchet–Hoeffding bound and it stands for the

extreme positive dependence.

3.2.2 Bernstein copula and its large sample theory

Bernstein polynomials as a linear combination of beta density are admitted to

approximate any function f(x) arbitrarily well in approximation theory.

Definition 3.2.1. (Lorentz, 2013) Let B(k, j, x) =
(
k
j

)
xj(1− x)k−j, 0 ≤ x ≤ 1, j

= 1,...,k ∈ N. Then we have

∫ 1

0

kB(k − 1, j − 1, x)dx = 1

where B(k, j, x) is the Bernstein basis polynomial. The first-order derivative of

the basis Bernstein polynomial can be represented as the difference between the

adjacent terms,

d

dx
B(k, j, x) = k[B(k − 1, j − 1, x)−B(k − 1, j, x)] for j=0,...,k

A Bernstein polynomial approximation to density function f ∈ C[0,1]k is con-

structed through a linear operator Bk
J to f ∈ C[0,1]k , such that

(Bk
Jf)(x1, x2, ..., xk) =

J1∑
j1=0

...

Jk∑
jk

f

(
j1

J1

, ...,
jk
Jk

) k∏
s=1

Pjs,Js(xs) (3.2.13)
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and it can be written in the form of a Stieltjes integral in the variable t,

(Bk
Jf)(x1, x2, ..., xk) =

∫ 1

0

...

∫ 1

0

f(t1, ..., tk)dt1KJ1(x1, t1)...dtkKJk(xk, tk)

(3.2.14)

with the kernel

KJs(xs, ts) =
∑

js≤Jsts

(
Js
js

)
xjss (1− xs)Js−js , 0 < t ≤ 1 (3.2.15)

KJs(xs, 0) = 0 (3.2.16)

which is constant in any interval js
Js
≤ t ≤ js+1

Js
, js = 0, 1, ..., Js − 1, and has the

jump (
Js
js

)
xjss (1− xs)Js−js

at the basic point of interpolation ts = js/Js and s = 1, ..., k. Here, C[0,1]k is the

space of continuous bounded functions on [0, 1]k.

Theorem 3.2.3. (Uniform convergence) For a function f(x1, ..., xk) ∈ C[0,1]k ,

the relation

lim
J→∞

(Bk
Jf)(x1, x2, ..., xk) = f(x1, ..., xk) (3.2.17)

holds at each point of continuity x of f ; and it converges uniformly on [0, 1k] if

f(x1, ..., xk) is continuous on this interval.

Theorem 3.2.4. (Error Bound for Lipschitz Conditions) if f(x1, ..., xk) :

[0, 1]k → R is a continuous function satisfying Lipschitz condition

‖f(x)− f(y)‖ < L‖x− y‖
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then the inequality holds,

‖(Bk
Jf)(x1, x2, ..., xk)− f(x1, ..., xk)‖ <

L

2

(
k∑
s=1

1

Js

)1/2

. (3.2.18)

Based on theorem 3.2.3, Sancetta and Satchell (2004) employs the multivariate

Bernstein polynomial to construct the copula function. For simplicity, we state it

in the bivariate situation and set the number of grids in each dimension Js to be

the same number J . Let α( j1
J
, j2
J

) be a real-valued constant indexed by (j1, j2),

such that 0 ≤ js ≤ J ∈ N. The bivariate mapping CB : [0, 1]2 → [0, 1], where

CB(u) =
J∑

j1=0

J∑
j2=0

α

(
j1

J
,
j2

J

)
Pj1,J(u1)Pj2,J(u2). (3.2.19)

And,

Pjs,J(us) =

(
J

js

)
uJs (1− us)J−js , s = 1, 2. (3.2.20)

where u = (u1, u2) ∈ [0, 1]2.

Theorem 3.2.5. (Sancetta and Satchell, 2004) CB(u) is a bivariate Bernstein

copula function if

1∑
l1=0

1∑
l2=0

(−1)l1+l2α

(
j1 + l1
J

,
j2 + l2
J

)
≥ 0, (3.2.21)

min

(
0,
j1

J
+
j2

J
− 1

)
≤ α

(
j1

J
,
j2

J

)
≤ min

(
j1

J
,
j2

J

)
, 0 ≤ js ≤ J − 1, s = 1, 2.

(3.2.22)

in particular,

lim
js→0

α

(
j1

J
,
j2

J

)
= 0, and α

(
1,
js
J

)
=
js
J
,∀s = 1, 2. (3.2.23)

The Berstein copula is evaluated at each vertex of the grid using the α coeffi-
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cients, and the product of Bernstein polynomials is employed to smooth it. The

Bernstein polynomials here can be considered as the weight function that adjusts

the coefficient α through changing the corresponding J. Based on these properties

of the Bernstein polynomials, the Bernstein copula can accommodate any given

parametric copula function. Since the Bernstein copula is absolutely continuous,

it has a copula density. After taking the derivative of equation 3.2.19 with respect

to u1 and u2, the bivariate density function is as followed.

cB(u) =
∂2

∂u1∂u2

CB(u) = J2

J−1∑
j1=0

J−1∑
j2=0

γ

(
j1

J
,
j2

J

)
× Pj1,J−1(u1)× Pj2,J−1(u2)

(3.2.24)

Each marginal distribution us of the Bernstein copula is split into J sections,

which construct a grid-type structure in the two-dimensional hypercube. γ( j1
J
, j2
J

)

is defined accordingly, which is directly linked to the two-dimensional rectangular

inequality

γ

(
j1

J
,
j2

J

)
= ∆1,2α

(
j1

J
,
j2

J

)
=

1∑
l1=0

1∑
l2=0

(−1)l1+l2+2α

(
j1 + l1
J

,
j2 + l2
J

)
= α

(
j1

J
,
j2

J

)
− α

(
j1 + 1

J
,
j2

J

)
− α

(
j1

J
,
j2 + 1

J

)
+ α

(
j1 + 1

J
,
j2 + 1

J

)

Under the condition 3.2.21, 3.2.22 and 3.2.23,
∑J−1

j1=0 γ
(
j1
J
, j2
J

)
= α

(
0
J
, j2
J

)
−

α
(
J
J
, j2
J

)
−α
(

0
J
, j2+1

J

)
+α
(
J
J
, j2+1

J

)
= 0− j2

J
−0+ j2+1

J
= 1

J
and also

∑J−1
j2=0 γ

(
j1
J
, j2
J

)
=

1
J

.

Theorem 3.2.6. (Bernstein copula density function(Ivan et al., 2021))

cB(u) is a Bernstein copula density function if the coefficient term γ satisfies

1.
∑J−1

js=0 γ
(
j1
J
, j2
J

)
= 1

J
, s = 1, 2

2.
∑J−1

j1=0

∑J−1
j2=0 γ

(
j1
J
, j2
J

)
= 1

3. 0 ≤ γ
(
j1
J
, j2
J

)
< 1
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The error bound for the Bernstein polynomials can be easily applied to Bernstein

copula, if we consider the coefficients of the Bernstein copula γ have the Lipschitz

property, such that(in bivariate case)

‖cB(u1, u2)− c(u1, u2)‖ = sup
u1,u2∈[0,1]

∣∣∣∣∣
J∑

j1=0

J∑
j2=0

[
γ

(
j1

J
,
j2

J

)
− c(u1, u2)

]
Pj1,J−1(u1)Pj2,J−1(u2)

∣∣∣∣∣
≤ sup

u1,u2∈[0,1]

J∑
j1=0

J∑
j2=0

[∣∣∣∣j1

J
− u1

∣∣∣∣+

∣∣∣∣j2

J
− u2

∣∣∣∣]Pj1,J−1(u1)Pj2,J−1(u2)

≤ L1

2J1/2
+

L2

2J1/2
= LJ−1/2

Based on the Bernstein copula function, Sancetta and Satchell (2004) provide the

empirical estimation procedure to make the Bernstein copula operational. The

empirical Bernstein copula C̃B is considered that the copula coefficient α( j1
J
, j2
J

) =

Cn( j1
J
, j2
J

) and Cn is the empirical copula:

1

n

n∑
i=1

I{∩2s=1[us,i≤ jsJ ]} (3.2.25)

and the order of the corresponding polynomial would be related to the smooth-

ing capability of the estimator. After taking the first derivative of the empirical

Bernstein copula function, the coefficient of the density function c̃B is equal to a

bivariate histogram estimator. The coefficients are the fractions of data points in

their grids.

c̃B =
J−1∑
j1=0

J−1∑
j2=0

∆1,2

(
J2

n

n∑
i=1

I{∩2s=1[us,i≤ jsJ ]}

)
×

2∏
s=1

(
J1

js

)
ujss (1− us)J−js−1

where ∆1,2 is the 2-dimensional differentiating operator and it is:

∆1,2I{∩2s=1[us,i≤ jsJ ]} =
1∑

l1=0

1∑
l2=0

(−1)l1+l2I{∩2s=1[us,i≤ jsJ + ls
J

]} (3.2.26)
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The optimal empirical Bernstein copula is selected by maximizing the mean squared

error ||c̃B − c||22 where ||...||2 is the L-2 norm under the corresponding probability

measure and c represents the true copula density.

3.2.2.1 Large sample theories of Empirical Bernstein copula

The research on the asymptotic behavior of the Empirical Bernstein copula density

estimator is mainly discussed by Sancetta and Satchell (2004), Bouezmarni et al.

(2010), Janssen et al. (2012), Janssen et al. (2014) and Rose (2015). Sancetta and

Satchell (2004) prove the consistency in mean-squared error. They state that the

bias of the Bernstein copula estimator is O(J−1) which is of the same order as the

bias for the histogram estimator. Bouezmarni et al. (2010) studies the Bernstein

copula based on α−mixing data. Janssen et al. (2012) derive the almost sure

consistent rate and asymptotic normality properties of the empirical Bernstein

copula function and it indicates if the copula function C has the first order partial

derivatives Cu1 and Cu2 which are Lipschitz continuous of order α with 0 < α < 1

and n/(J1+α log log n)→ c ≥ 0, then the L∞ distance of C̃B and the true copula C

is in order of (n−1/2(log log n)1/2. Janssen et al. (2014) further studies the asymp-

totic distributional behavior of the Bernstein copula density estimator. They show

that the central limit theorem is valid for the empirical Bernstein copula density

estimator without assuming the marginals to be known.

From the previous section, the number of coefficients that need to be estimated of

the empirical Bernstein copula c̃B is determined by the order of J . The selection

of J relies on the sample size n, and we have J →∞ if n→∞. To stress that the

order J is based on n, we replace J with Jn. We first analyze the bias of the bivari-

ate empirical Bernstein copula density estimator based on the second-order Taylor

expansion(Bouezmarni et al., 2010). Assume that the copula density function c̃B
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has a continuous second-order derivative, then:

E(c̃B(u1, u2))− cB(u1, u2)

= J2
n

Jn−1∑
j1=0

Jn−1∑
j2=0

{∫ (j1+1)/Jn

j1/Jn

∫ (j2+1)/Jn

j2/Jn

(cB(x1, x2)− c(u1, u2))dx1dx2

}
2∏
s=1

pjs,Jn−1(us)

= J2
n

Jn−1∑
j1=0

Jn−1∑
j2=0

{
∂c(u1, u2)

∂x1

∫ (j1+1)/Jn

j1/Jn

∫ (j2+1)/Jn

j2/Jn

(x1 − u1)dx1

+
∂c(u1, u2)

∂x2

∫ (j1+1)/Jn

j1/Jn

∫ (j2+1)/Jn

j2/Jn

(x2 − u1)dx2

}
2∏
s=1

pjs,Jn−1(us)

+
J2
n

2

Jn−1∑
j1=0

Jn−1∑
j2=0

{
∂2c(u1, u2)

∂x1∂x2

∫ (j1+1)/Jn

j1/Jn

∫ (j2+1)/Jn

j2/Jn

(x1 − u1)(x2 − u2)dx1dx2

}
2∏
s=1

pjs,Jn−1(us)

+
J2
n

2

Jn−1∑
j1=0

Jn−1∑
j2=0

{
2∑
s=1

∂2c(u1, u2)

∂x2
s

∫ (j1+1)/Jn

j1/Jn

∫ (j2+1)/Jn

j2/Jn

(xs − us)2dx

}
2∏
s=1

pjs,Jn−1(us) + o

(
1

Jn

)

Based on

J2
n

2

Jn−1∑
j1=0

Jn−1∑
j2=0

{
∂2c(u1, u2)

∂x1∂x2

∫ (j1+1)/Jn

j1/Jn

∫ (j2+1)/Jn

j2/Jn

(x1 − u1)(x2 − u2)dx1dx2

}
2∏
s=1

pjs,Jn−1(us)

= o

(
1

J2
n

)

and the mean and variance of the Binomial distribution,

E(c̃B(u1, u2))− cB(u1, u2) =

1

2

2∑
s=1

{
∂c(u1, u2)

∂xs
(1− 2us) +

∂2c(u1, u2)

∂x2
s

us(1− us)
}
× 1

Jn
+ o

(
1

Jn

)

Bouezmarni et al. (2010) and Janssen et al. (2014) shows the variance of the

Bernstein copula density estimator is

V ar(c̃B(u1, u2)) =
Jn
n
× c(u1, u2)∏2

s=1(us(1− us))1/2
+ o

(
Jn
n

)
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Since the cB(u1, u2) is the deterministic bias term, based on the assumption that

c is continuous, we have

∫ (j1+1)/Jn

j1/Jn

∫ (j2+1)/Jn

j2/Jn

c(x1, x2)dx1dx2 =
1

J2
n

c(
j1

Jn − 1
,

j2

Jn − 1
) + o

(
1

J3
n

)

uniformly in j1, j2 ≤ Jn − 1. And

cB(u1, u2) = J2
n

Jn−1∑
j1=0

Jn−1∑
j2=0

{∫ (j1+1)/Jn

j1/Jn

∫ (j2+1)/Jn

j2/Jn

c(x1, x2)dx1dx2

}
2∏
s=1

pjs,Jn−1(us)

= c(u, v) + o

(
1

Jn

)

Theorem 3.2.7. (Asymptotic normality (Janssen et al., 2014))Suppose that the

copula density function c is twice differentiable and continuous on [0, 1]2, Jn de-

pends on n and has the relationship Jn = o
(

n1/2

(logn)(log logn)1/2

)
, then for u1, u2 ∈

(0, 1), as n→∞

(
n

Jn

)1/2

(c̃B − cB)
d−→ N

(
0,

c(u1, u2)∏2
s=1(us(1− us))1/2

)
(3.2.27)

Then the asymptotic mean squared error of c̃B is

MSE(c̃B) = Bias(c̃B)2 + V ar(c̃B)

≈ C1

J2
n

+
C2Jn
n

The optimal order Jn of the polynomials follows by minimizing the MSE(c̃B) with

respect to Jn and set
(

∂
∂Jn

)
MSE(c̃B) = 0. We have Jo = n1/3. Combine with

the assumption at the beginning, the optimal value of Jo is close to including nα

and 1/3 < α < 1/2.
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3.2.3 Sieve MLE

The infinite-dimensional unknown parameters in a nonparametric model are often

considered as one of some function space having certain regularity like bounded

second derivatives, monotone conditions, or concave requirements. Sieves provide

accurate and reckonable ways to approximate any unknown functions. It can be

conducted through linear spans of power series, Fourier series, splines, or many

other basic functions to provide a numerical method dealing with the problems

in economics and finance(Judd, 1998; Chen, 2007). The approximation space can

usually be captured by a series of ’parameters’, which means that a nonparamet-

ric estimation problem can be simplified to a parametric one when the method

of sieves is implemented. Nonetheless, to study the properties of the estimator

efficiently, as the sample size increases, it is necessary to require the number of

parameters to grow slowly.

Let co(u1, u2) be the true copula density and it belongs to B. A space Bn is

called a sieve space for B if for any copula density function c ∈ B, there exists an

element
∏

n c ∈ Bn such that d(c,
∏

n c) → 0 as n → ∞, where d is a metric on

Bn.

Bn =

{
cJn(u1, u2) = J2

n

Jn−1∑
j1=0

Jn−1∑
j2=0

γj1,j2pj1(u1)pj2(u2),

∫ 1

0

∫ 1

0

cJn(u1, u2)du1du2 = 1

}
,

Jn →∞,
Jn
n
→ 0.

where pjs(us) is the beta density function and {γj1,j2 : j1 ≥ 0, j2 ≥ 0} is the col-

lection of unknown sieve coefficients.

The sieved MLE is obtained by maximizing the likelihood function on a proper

subset of the parameter space. Suppose Jn is an increasing sequence and let
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ĉJn(u1, u2) = J2
n

∑Jn−1
j1=0

∑Jn−1
j2=0 γ̂j1,j2pj1(u1)pj2(u2) = B(:, Jn, γ̂Jn) where γ̂Jn is the

maximum likelihood estimator for γJn . Then, ĉJn(u1, u2) is called a sieve maxi-

mum likelihood estimator. Let l(c, Ui) denote the contribution of i-th observation

to the log-likelihood function.

l(c, Ui) = log {c(U1i, U2i)}

and,

ĉJn(u1, u2) = arg max
c∈Bn

n∑
i=1

l(c, Ui) (3.2.28)

Fn = ∪Jnr=1Br be a sieve, which consists of the space of all Bernstein densities of

the order Jn or less, where Jn is a sequence of integers tending to infinity. If the

true copula density c0 = B(:, J0, γ0) for some J0 and γ0 ∈ ∆J , where

∆J =

{
(x1,1, x1,2, ..., xJ,J) : 0 ≤ xj1,j2 ≤ 1,

J−1∑
j1=0

J−1∑
j2=0

xj1,j2 = 1,
J−1∑
js=0

xjs =
1

J

js = 0, 1, ..., J − 1, s = 1, 2

}

where c0(u1, u2) itself is a Bernstein copula density, then

d(ĉ(u1, u2), c0(u1, u2)) = OP (J1/2
n n−1/2(log n)1/2). (3.2.29)

In particular, when we set the Jn to grow arbitrarily slowly, the convergence rate

can be close to n−1/2(log n)1/2. If the true copula density f0 is not of the Bernstein

type, but it is bounded away from 0 and has a bounded second derivative, then

for the choice

c1n
1/3(log n)−1/3 ≤ Jn ≤ c2n

1/3(log n)1/3,

where c1 and c2 are constants, we have d(ĉ(u1, u2), c0(u1, u2)) = OP (n−1/3(log n)1/3)(see

Ghosal et al. (2001); Wong and Shen (1995)).
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3.2.4 Penalized maximum likelihood with adapted LASSO

The construction of the penalty term aims to enhance the prediction accuracy and

interpretability of the model. In conjunction with the sieve method discussed in

the previous section, the estimates of the nonparametric Bernstein copula density

coefficients, denoted as γ̂, are obtained by maximizing the penalized log-likelihood

function:

γ̂ = arg max
γ∈∆J

lλ(γ).

Here, lλ represents the penalized log-likelihood function defined as:

lλ(γ) = l(γ)−NλP (γ).

In this equation, l(γ) corresponds to the log-likelihood function, P (·) is a penalty

function, N represents the sample size, and λ is a nonnegative regularization pa-

rameter. The LASSO (Least Absolute Shrinkage and Selection Operator) regular-

ization technique is a suitable approach for simultaneous estimation and variable

selection(Tibshirani, 1996) and it produce sparse solutions for some λ, i.e., some

of the coefficients of the nonparametric Bernstein copula density estimator γj1j2

can be estimated as exactly zero. The LASSO penalty is set as

P (γ) = ‖γ‖1 =
∑
j

|γj|

The continuous shrinkage reduces the estimation variance and improves the predic-

tion accuracy of the statistical model due to the bias-variance trade-off. However,

the traditional lasso, which penalizes the coefficients equally is not always con-

sistent in variable selection (Zou, 2006; Zhao and Yu, 2006; Zhang, 2010). To

address this limitation, the adaptive Lasso was proposed by Zou (2006) and its
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the penalty term is expressed as:

P (γ) =
∑
j

wj |γj|, (3.2.30)

where the w is a known weights vector. In the regression model, Fan and Li (2001)

introduced the concept of oracle procedures to describe coefficient estimators γ̂(δ)

obtained from fitting procedures δ, such as maximum likelihood estimation (MLE),

ordinary least squares (OLS). If the following conditions can be satisfied, the

procedure δ is considered an oracle procedure:

1. Identifies the right subset model, {j : γ̂j 6= 0} = A

2. Has the optimal estimation rate,
√
n(γ̂(δ)A − γ∗A)

d−→ N(0,Σ∗), where Σ∗ is

the covariance matrix knowing the true subset model.

Here, A = {j : γ∗j 6= 0} and also assume that |A| = p0 < p. p is the number of in-

dependent variables in the regression model. There is a consensus in the literature

(Fan and Li, 2001; Fan and Peng, 2004) that a good fitting procedure should pos-

sess oracle properties, indicating its desirable performance in statistical estimation.

These oracle properties ensure that the procedure achieves asymptotic consistency,

correct variable selection, and efficient estimation. Additionally, it has been rec-

ognized that an optimal procedure should exhibit continuous shrinkage, allowing

for effective regularization and improved estimation accuracy. When the weights

are data-dependent and appropriately selected, the adaptive lasso 3.2.30 has the

oracle property and the continuous shrinkage property for our proposed estimator

is shown in the simulation study. Suppose that γ̂e(SMLE) is the sieve maximum

likelihood estimates in empirical nonparametric Bernstein copula model. It is

obtained by maximizing 1
N

∑N
n=1 log

∑J−1
j1=0

∑J−1
j2=0 γj

∏2
s=1 β(us; js, J − js). When

there is a small number of data points concentrating in a specific square
[
j1
J
, j1+1

J

]
×[

j2
J
, j2+1

J

]
, the corresponding coefficient of the empirical Bernstein copula model,
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denoted as γ̂e j1j2 , tends to be relatively small. We construct the weight sector as

ŵj1j2 =
1

|γ̂e j1j2(SMLE)|
js = 0, ..., J − 1,∀s = 1, 2. (3.2.31)

As a result, the weight vector w tends to be large, indicating a stronger penalty on

the coefficient. This choice of the weights vector implies that coefficients associated

with predictors with fewer data points will experience greater shrinkage. In other

words, the weights vector assigns higher importance to squares that have a smaller

number of data points, leading to increased regularization for those coefficients.

Then, the adapted LASSO estimates in the nonparametric Bernstein copula model

are given by

γ̂(SMLE) = arg max
γ

{
1

N

N∑
n=1

log
J−1∑
j1=0

J−1∑
j2=0

γj1j2β(u1; j1, J − j1)β(u2; j2, J − j1)

−λ
J−1∑
j1=0

J−1∑
j2=0

γj1,j2
ŵj1j2

}
(3.2.32)

3.2.4.1 Other model to compare

We also compare our adaptive LASSO estimator with a different weight vector

setting. Inspired by the empirical Bernstein copula model introduced by Sancetta

and Satchell (2004), we adopt a weight setting based on the empirical copula. In

the empirical Bernstein copula framework, the coefficients of the estimator are

set to the empirical copula values. The empirical copula function is constructed

by ranking the observations within each variable and calculating the joint prob-

ability based on the ranks. It is represented by the formula 3.2.25. Additionally,

the density of the empirical copula can be obtained by counting the number of
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observations in each grid. It can be expressed as follows:

1

N

N∑
i=1

Iui∈Hs , (3.2.33)

Here, ui = (u1i, u2i), Hs = [ j1
J
, j1+1

J
] × [ j2

J
, j2+1

J
], I··· is the indicator function, and

N represents the number of observations for each variable. The empirical copula,

denoted as cB(u), can be viewed as a smooth copula histogram utilizing the beta

density as the smoothing function.

Given a set of observations (u1i, u2i) for i = 1, ..., N , the estimates for the em-

pirical copula coefficients are calculated as follows:

α̂j1j2 =
1

N

N∑
i=1

I{ j1
J
≤u1i≤

j1+1
J

,
j2
J
≤u2i≤

j2+1
J
} js = 0, ..., J − 1,∀s = 1, 2 (3.2.34)

To construct the weight vector, we use the reciprocal of the empirical copula

coefficients:

wj1,j2 =
1

α̂j1,j2
. (3.2.35)

Then, we obtain another nonparametric Bernstein copula estimator by incorpo-

rating the reciprocal of the empirical copula as a penalty term.

3.2.5 Goodness-of-fit test

In this chapter, our primary focus is on studying the estimation and properties of

copula functions. While assuming the marginal distributions as known, it is crucial

to ensure the correct specification of the marginal distributions in the empirical

study(Tsukahara, 2005). To achieve this, we employ three statistical tests to assess

the goodness-of-fit of the marginal distributions: the Kolmogorov-Smirnov (KS)

test, Cramer-von Mises (CvM) test, and Anderson-Darling (AD) test, which are

the common approach to comparing an empirical distribution with a theoretical
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distribution is to measure the distance between these two distributions. All three

tests are non-parametric, meaning they do not require any assumptions about the

specific form of the underlying distribution. They can be applied to a wide range

of distributions without relying on distributional assumptions.

The KS statistic, denoted as TKS, measures the maximum difference between the

empirical cumulative distribution function (ECDF) Fn(x) and the hypothesized

cumulative distribution function F (x).

TKS = sup
S

[|Fn(x)− F (x)|] (3.2.36)

where Fn(x) = n−1#{1 ≤ k ≤ n : Xk ≤ x} x ∈ R. It is particularly sensitive

to deviations in the bulk of the distribution and less sensitive to tail deviations

due to the lower variance of the ECDF (Malevergne and Sornette, 2003). Besides,

the KS test treats all differences between ECDF and the hypothetical distribution

equally, without any weighting. The CvM statistic, denoted as TCvM , is obtained

by integrating the squared differences between Fn(x) and F (x), with a greater

emphasis on highly concentrated areas.

TCvM = n

∫ +∞

−∞
(Fn(x)− F (x))2 dF (x) (3.2.37)

However, similar to the KS test, it is also less sensitive to tail deviations. The AD

statistic, denoted as TAD, belongs to the Cramer-von Mises family and exhibits

unbiasedness both at the center and tails of the distribution. It incorporates the

ratio of the squared differences between Fn(x) and F (x) to the product of F (x)

and 1− F (x)(Anderson and Darling, 1952).

TAD = n

∫ +∞

−∞

(Fn(x)− F (x))2

F (x)(1− F (x))
dF (x) (3.2.38)
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Each of these statistics possesses its own strengths and limitations. By employing

all three tests, we aim to ensure the correct specification of the marginal distri-

butions. The empirical evidence section will present the results of these tests,

providing a comprehensive evaluation of the goodness-of-fit of the marginal dis-

tributions.

3.3 Monte Carlo simulation

In this section, the finite sample behaviors of the proposed model are investigated.

It is known that the Bernstein copula has the property to represent all kinds of

copulas. The first part shows the comparison between the empirical Bernstein

copula, the proposed model (penalized Bernstein copula with empirical Bernstein

copula penalty), and some popular parametric models. Here, we select four types

of copula: Gaussian, Frank, Gumbel, and Clayton copula as the target copula.

They are four different kinds of parametric copulas.

Then, we consider two cases for the dependence parameters to study whether

the penalty term can accurately impose sparsity. First, we construct a sparse

scenario in which most values parameters are set to exactly zero. For comparison,

we set the second case as a less sparse scenario with more nonzero values. Four

relative models are compared: empirical Bernstein copula, penalized Bernstein

copula with LASSO penalty, penalized Bernstein copula with empirical copula

penalty and penalized Bernstein copula with empirical Bernstein copula penalty

(our proposed model). The performance is measured in terms of the Integrated

Mean Square Error(IMSE) which is often used for capturing the closeness between

the estimated and actual pdf in nonparametric estimation applications. The IMSE
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has the format as 3.3.2 :

IMSE(ĉ) =

∫
Eĉ[ĉγ(u)− c(u)]2du (3.3.1)

=

∫
[[bias(ĉγ(u))]2 + var(ĉγ(u))]du (3.3.2)

The above formula shows that IMSE can be decomposed into the bias and variance

terms, which means that both the bias and variance affect the quantity of IMSE.

The IMSE can be approximated using the following equation:

IMSE(ĉ) ≈ 1

I

1

N

I∑
i=1

N∑
j=1

(ĉ(uj;γi)− c(uj))2 (3.3.3)

where u = (u1, u2) ∈ {(0.01, 0.01), (0.01, 0.02), ..., (0.99, 0.99)}. ĉγ(u) is the es-

timated copula density, N is the number of grid knots which is 9801(99 × 99),

and c(u) is the target density. Similar to previous studies such as the bivariate

copula density estimation with total variation penalized method (Qu and Yin,

2012) and flexible copula density estimation with penalized Hierarchical B-splines

(Kauermann et al., 2013), we have chosen to use 100 iterations in our research.

This number of iterations has been found to be sufficient for obtaining meaning-

ful results and drawing reliable conclusions for penalized bivariate copula density

estimation. In sections 3.3.3 and 3.3.4, we present the results that demonstrate

the desirable properties of the nonparametric Bernstein copula model with adap-

tive LASSO penalty. Specifically, we show that the model exhibits continuous

shrinkage, effectively enforces sparsity as the regularization parameter increases,

and outperforms the empirical Bernstein copula.

3.3.1 Random number generating from Bernstein copula

To explore the estimation quality of the proposed model, generating random num-

bers from the Bernstein copula is an important step. The most straightforward
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method is to do an inversion. Denote the inverse function of C is by C−1, which

can be defined even if the copula function C is not invertible.

C−1(u) = inf{x ∈ R : C(x) ≥ u}. (3.3.4)

However, the method of inversion in simulating a random variable with arbitrary

cdf is not available in closed form for many cumulative distribution functions.

An alternative method is the acceptance/rejection algorithm. Suppose we aim

to simulate a pair of random variables (X1, X2) with copula density function f .

f is a complicated function, which is difficult to sample. It can apply the ac-

ceptance/rejection method if we are able to simulate the other pair of random

variables (Y1, Y2) whose probability density function g satisfies f(x) ≤ Mg(x)

(Casella et al., 2004)):

M = sup
x∈χf

f(x)

g(x)
<∞. (3.3.5)

Here, χf is the support of f . Combining the reject sampling method with the

characteristics of the Bernstein copula, the multivariate uniform distribution can

be selected as the candidate density function g. In bivariate case, g(x, y) =

1
area of S

, (x, y) ∈ S, for u ∈ [0, 1]2, g(u) = 1. Then, the boundary constant

M∗ = sup
u∈[0,1]2

cB(u)

g(u)
= sup

u∈[0,1]2
cB(u). (3.3.6)

The probability of acceptance in each attempt is

P (U ≤ f(Y1, Y2)/Cg(Y1, Y2)) =

∫ 1

0

∫ 1

0

f(y1, y2)

C
dy1dy2 =

1

C
. (3.3.7)

Since the attempts are mutually independent, it follows the number of candidates

generated until one is accepted. If the candidate multivariate distribution is close

enough to the target one, the constant C will be close to 1. In extremely high-
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dimension cases, the rejections will increase due to the curse of dimensionality.

In other words, the ratio C will tend towards zero, then the method is infeasible

in that situation. However, it is efficient enough to generate random numbers

for a comparably lower dimensional case which is what we studied. The explicit

simulation algorithm is as follows(Pfeifer et al., 2020; Liu and Prokhorov, 2016):

1. Generate (u1, u2) from multivariate uniform distribution

2. Independently simulate u3 from uniform distribution, u3 ∼ Unif(0, 1)

3. If u3 <
cB(u1,u2;γ)

M∗
, u1 and u2 are the pairs of random numbers from Bernstein

copula. If not, turn to step 1 until the conditions are satisfied.

3.3.2 Property of representing parametric copulas

For the empirical Bernstein copula, dimension J is the parameter that controls

the smoothness. As J → ∞, the empirical Bernstein copula interpolates all the

points and tends to be an empirical copula. In this section, we need to select

the tuning parameter λ for the optimal penalized Bernstein copula model and J

for the empirical Bernstein copula model. Here, we set J ∈ [2, 15], for each J ,

and repeat the procedure stated in section 3.3.1 to select the optimal tuning pa-

rameter for each J. Then, choose the dimension of coefficients J with lowest IMSE.

The sample size for each simulation is set as n =1000. Generating random num-

bers from the elliptical copulas utilizes the inversion method. Figure 3.3.1 shows

that even the IMSEs of estimating these three copulae are different, the trends are

almost the same. As J goes up, the IMSEs are decreasing first and then increase.

The line of penalized Bernstein copula(with empirical Bernstein copula penalty)’s

IMSE is always under the line of empirical Bernstein copula’s IMSE. Also, as the

dimension of coefficients increases, the difference becomes larger. In other words,
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the penalized model provides more accuracy compared with the empirical one for a

higher dimension of coefficients. Besides, plot (a) in Figure 3.3.1 shows the IMSE

for EBC with dimension J =10 is similar to the IMSE for PBC with dimension

J=8. It means that for the same level of accuracy, our penalized model requires

a comparably lower dimension of coefficients since the optimal order of Jn is in a

range.

(a) Gaussian (b) Student’s t (c) Clayton

Figure 3.3.1: The relationship between IMSE and dimension of coefficients J. The
red line shows the IMSE for penalized Bernstein copula model (with empirical
Bernstein copula penalty) and the blue line represents the IMSE for the empirical
Bernstein copula model. The true models are set as Gaussian copula(ρ = 0.5),
student’s t copula (ρ = 0.5, ν = 10) and Clayton copula(θ = 0.25) respectively.
The optimal dimension of coefficients for Gaussian copula is 10, for student’s t is
15, and for Clayton copula is 3.

The following table shows the simulation results for the optimal empirical Bern-

stein copula model (EBC), the optimal penalized Bernstein copula model with

empirical Bernstein copula (PBC) as the penalty, Gaussian, student t and three

copulas from Archimedean family. The IMSE and loglikelihood in the table are

the means of all the iterations and the number of iteration is I = 10,000. The

parameters of empirical Bernstein copula and penalized model are determined by

the cross-validation method. All the parameters of the copula models are ob-

tained from the training sample. The out-of-sample measurements are calculated

using the testing sample. The training and testing samples have the size N = 100

individually.
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True copula model

Copula Gaussian copula Frank copula Clayton copula Gumbel copula

Model (ρ = 0.3) (α = 5) (θ = 2) (ρ = 3)

IMSE Log-likelihood IMSE Log-likelihood IMSE Log-likelihood IMSE Log-likelihood

Gaussian 0.0533 5.1433 0.1491 23.7488 0.2789 32.136 0.2083 66.8479

student t 0.1096 5.3923 0.1423 24.3554 0.2696 32.3104 0.294 69.2569

Frank 0.0761 4.7669 0.0977 27.0693 0.2775 31.6095 0.2343 63.1465

Gumbel 0.0856 4.2855 0.1925 5.6371 0.3848 23.2794 0.0599 72.8933

Clayton 0.1022 3.8988 0.2869 17.558 0.0562 43.7078 0.5006 42.7886

EBC 0.0679 5.0217 0.1230 24.1757 0.2682 32.5504 0.2039 68.2561

PBC 0.0632 5.1330 0.1008 25.3069 0.2636 32.6677 0.2030 68.2673

Table 3.3.1: The table shows the IMSE and out-of-sample average loglikelihood
of the estimated models.

The Gaussian and Frank copulas are symmetric, except themselves, penalized

Bernstein copula has the lowest IMSE. The shapes of Gumbel copula and Clayton

are totally different from all the others. They are capturing the lower tail and up-

per tail dependency, so they have relatively worse statistics for estimating others.

The simulation results verify that if the parametric model is correctly specified,

it can work accurately and efficiently, otherwise, it might just provide the wrong

estimation.

3.3.3 Sparse scenario

As discussed in section 3.3, the coefficient matrix of the Bernstein copula can be

interpreted as the empirical copula. It represents the proportion of data points

in each grid. The γj1,j2 in the following table stands for the probability of data

points falling in the grid [ j1−1
J
, j1
J

]× [ j2−1
J
, j2
J

] and j1, j2 = 1, ..., J .
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γ11 γ12 ... γ1J

γ21 γ22 ... γ2J

... ... ... ...

γJ1 γJ2 ... γJJ

Table 3.3.2: The coefficient matrix of the Bernstein copula model in the bi-variate
case with the number of grids J in each dimension.

In the sparse scenario, we set the majority parameters(J−1
J

) to be zero as the

true model. The data series from the true copula model is generated through the

method discussed in section 3.3.1. Here, the coefficient matrix γ is fixed to be an

8×8 matrix. In other words, the number of grids J in each dimension is equal to 8.

In the bivariate case, J2(= 64) parameters are needed to be estimated. Based on

the algorithm, two groups of samples are generated. One is for the sparse scenario.

It sets the majority of the true coefficients is zero as followed, the ratio of zero

components is 56/64=0.8750.



0 0 0 0 0 0 0 0.125

0 0 0 0 0 0 0.125 0

0 0 0 0 0 0.125 0 0

0 0 0 0 0.125 0 0 0

0 0 0 0.125 0 0 0 0

0 0 0.125 0 0 0 0 0

0 0.125 0 0 0 0 0 0

0.125 0 0 0 0 0 0 0


The above matrix indicates that it is a copula with high negative dependence.

After generating the random number from this specific Bernstein copula, figure

3.3.2 shows the empirical copula scatter plot.
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Figure 3.3.2: u1 and u2 are generated from the bi-variate Bernstein copula with
the matrix above as the coefficients. The histograms show that both u1 and u2

have uniform marginal distributions. And the scatter plot exhibits a negative
correlation between u1 and u2.

To select the optimal tuning parameter properly, the k-fold cross-validation method

for penalized Bernstein copula density estimation is applied as follows:

1. Randomly partitions the original data sample into k sub-samples with roughly

equal size. Of the k sub-samples, a single sub-sample is retained as the val-

idation data for testing the model, and the remaining (k-1) sub-samples are

used as training data.

2. Set λ ∈ [λ0, λ1]. Then, estimate γ̂λ0 and γ̂λ1using the training data with λ0

and λ1 respectively.

3. Calculate the log-likelihood based on the following function:

L̂λm =
k

N

N/k∑
n=1

log
J∑
j

γ̂jλmβ(u1n, u2n, j) form = 0, 1.andj = [j1, j2] (3.3.8)

using the validation data.

64



4. Repeat the step 2 and 3 for K × I times and get the average log-likelihood

for the λm:

Lλm =
1

I ×K

I∑
i=1

K∑
k=1

L̂λm for m = 0, 1. (3.3.9)

The cross-validation log-likelihood is the average log-likelihood across all the

observations in the testing sample.

5. If Lλ0 > Lλ1 ,update the λ1 = λ1 − δ.Otherwise, update the λ0 = λ0 + δ.

δ = (λ1 − λ0)/10 is the increment.

6. Repeat step 2-5 until the accuracy reaches the setting.

7. The optimal tuning parameter λ is chosen when the average log-likelihood

becomes smallest.

The following plot shows that as the λ increases, the log-likelihood increases first,

and after reaching the largest value, it keeps as a constant. The trend of this curve

is due to both the conditions on the Bernstein copula function, indicated in section

3.3.2, and the adapted lasso penalty. To keep the marginals uniform in the copula

function, it requires that the sum of each row and each column in the coefficient

matrix are the same. When the tuning parameter λ is larger than some value, the

penalty on the coefficient matrix pushes (J × (J − 1)) parameters to zero. Only

J parameters are nonzero with the same value 1/J . Here, it is a sparse scenario

setting, and only J parameters are nonzero in the true model. Thus, the penalized

Bernstein copula model is optimal when all the coefficients are penalized to the

utmost.
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(a) The figures show the trend of average
loglikelihood as the tuning parameter λ
increases. The results are based on the
random sample with a sample size n =
5000. The Avg. loglikelihood is the av-
erage loglikelihood of the test sample in
5-fold cross-validation with iterations I =
100.

(b) The figures show the path of coefficient
γj1,j2 as the tuning parameter λ increases.
The results are based on a random sample
with sample size n = 5000, the number of
coefficients in each dimension J = 8.

Figure 3.3.3: The loglikelihood curve and coefficient path for the sparse scenario.

The contour plots 3.3.4 and surface plots 3.3.5 are the best estimate for each

model. Compared with the truth, the penalized Bernstein copula with empirical

copula penalty(PBCEC) and the penalized Bernstein copula with LASSO penalty

models are far more similar to the truth.

(a) True Copula (b) EBC (c) PBC LASSO (d) PBC EC (e) PBC EBC

Figure 3.3.4: The Contour plots for sparse scenario

(a) True Copula (b) EBC (c) PBC LASSO (d) PBC EC (e) PBC EBC

Figure 3.3.5: The Surface plots for sparse scenario
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3.3.4 Less sparse scenario

The other design is for the less sparse scenario. More non-zero elements are set

in the coefficient matrix. It contains only 24 zero components and they are all in

the corner. The ratio of zero components is 24/64 = 0.3750. It still represents a

negative dependence.



0 0 0 0 0.011 0.001 0.02 0.093

0 0 0 0 0.001 0.015 0.088 0.021

0 0 0.001 0.001 0.01 0.09 0.015 0.008

0 0 0.001 0.024 0.08 0.015 0.002 0.003

0.015 0.002 0.008 0.08 0.017 0.003 0 0

0.028 0.005 0.07 0.015 0.006 0.001 0 0

0.006 0.105 0.01 0.004 0 0 0 0

0.076 0.013 0.035 0.001 0 0 0 0



Figure 3.3.6: Scatter plot for random number generated by the given less sparse
parameters of Bernstein copula
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The estimated result of the empirical Bernstein copula shows that none of the

coefficients is exactly zero, even though there are some not trivial values in the

corner. After applying the cross-validation method to select the tuning parameter,

the log-likelihood curve is shown in figure 3.3.7a. In the less sparse situation, the

log-likelihood increases first, then decreases and finally stays constant. Comparing

with the sparse scenario, the log-likelihood experiences a decreasing part, which is

different from the previous curve. It is because the optimal model is not extremely

sparse this time. When the tuning parameter is quite large, the proposed model

will suffer from over-regularized and lose some important information from the

trend.

(a) The figures show the trend of av-
erage loglikelihood as the tuning pa-
rameter λ increases. The results are
based on the random sample with a
sample size n = 5000. The Avg. log-
likelihood is the average loglikelihood
of the test sample in 5-fold cross-
validation with iterations I = 100.

(b) The figures show the path of coef-
ficient γj1,j2 as the tuning parameter
λ increases. The results are based on
a random sample with sample size n
= 5000, the number of coefficients in
each dimension J = 8.

Figure 3.3.7: The loglikelihood curve and coefficient path for the less sparse sce-
nario.

The table 3.3.3, 3.3.4, 3.3.5 and 3.3.6 show the model comparison between the

Bernstein copula, penalized Bernstein copula with LASSO penalty, penalized

Bernstein copula with empirical copula penalty and penalized Bernstein copula

with empirical Bernstein copula penalty. The number of iterations is 100 with

the 5-fold cross-validation method. As the sample size increases, the empirical
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Bernstein copula’s sparsity ratio reaches 0 first no matter in which scenario. In a

small sample with a small order of polynomials, the IMSE and log likelihood of

these four models are almost the same. As the order of polynomials increases, the

LASSO penalized estimator fails to impose sparsity in the sparse scenario. All the

results in the table are the average over iterations.

(a) True Copula (b) EBC (c) PBC LASSO (d) PBC EC (e) PBC EBC

Figure 3.3.8: The Contour plots for less sparse scenario

(a) True Copula (b) EBC (c) PBC LASSO (d) PBC EC (e) PBC EBC

Figure 3.3.9: The Surface plots for less sparse scenario

69



J
=

4,
n

=
50

,
k

=
5,

I
=

10
0

M
o
d

el
T

y
p

e
S

p
ar

se
S

ce
n

ar
io

L
es

s
S

p
ar

se
S

ce
n
ar

io

T
u

n
in

g
p

ar
am

et
er

A
v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)
T

u
n

in
g

p
ar

am
et

er
A

v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)

E
m

p
ir

ic
al

B
er

n
st

ei
n

co
p

u
la

0
0.

28
10

0.
28

89
0.

11
89

0.
12

90
0

0.
30

27
0.

19
01

0.
04

8
0.

15
15

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
L

A
S

S
O

p
en

al
ty

0.
14

0.
28

10
0.

28
89

0.
11

89
0.

14
06

0.
02

0.
30

27
0.

19
01

0.
04

79
0.

14
43

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
co

p
u

la
p

en
al

ty
1e

-1
8

0.
28

10
0.

28
89

0.
11

89
0.

29
26

2e
-1

8
0.

30
27

0.
19

01
0.

04
79

0.
15

2

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
B

er
n

st
ei

n

co
p

u
la

p
en

al
ty

0.
00

8
0.

28
34

0.
28

44
0.

11
30

0.
61

84
0.

03
21

0.
31

37
0.

17
38

0.
03

83
0.

63
46

J
=

8,
n

=
50

,
k

=
5,

I
=

10
0

M
o
d

el
T

y
p

e
S

p
ar

se
S

ce
n

ar
io

L
es

s
S

p
ar

se
S

ce
n
ar

io

T
u

n
in

g
p

ar
am

et
er

A
v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)
T

u
n

in
g

p
ar

am
et

er
A

v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)

E
m

p
ir

ic
al

B
er

n
st

ei
n

co
p

u
la

0
0.

30
04

0.
16

63
0.

07
66

0.
00

98
0

0.
29

95
0.

16
52

0.
04

79
0.

01
09

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
L

A
S

S
O

p
en

al
ty

0.
01

0.
30

04
0.

16
63

0.
07

66
0.

45
19

1e
-4

0.
29

95
0.

15
79

0.
04

71
0.

01
11

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
co

p
u

la
p

en
al

ty
5e

-1
8

0.
30

04
0.

16
63

0.
07

66
0.

00
72

5e
-1

8
0.

29
96

0.
16

28
0.

04
79

0.
61

79

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
B

er
n

st
ei

n

co
p

u
la

p
en

al
ty

0.
00

9
0.

35
86

0.
14

02
0.

05
53

0.
85

02
0.

02
0.

37
27

0.
16

04
0.

04
28

0.
68

97

J
=

16
,

n
=

50
,

k
=

5,
I

=
10

0

M
o
d

el
T

y
p

e
S

p
ar

se
S

ce
n

ar
io

L
es

s
S

p
ar

se
S

ce
n
ar

io

T
u

n
in

g
p

ar
am

et
er

A
v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)
T

u
n

in
g

p
ar

am
et

er
A

v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)

E
m

p
ir

ic
al

B
er

n
st

ei
n

co
p

u
la

0
0.

24
16

0.
28

74
0.

18
29

0.
01

23
0

0.
23

39
0.

29
18

0.
11

35
0.

01
97

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
L

A
S

S
O

p
en

al
ty

0.
03

0.
24

36
0.

28
63

0.
18

26
0.

25
36

7e
-5

0.
23

42
0.

29
16

0.
11

32
0.

01
97

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
co

p
u

la
p

en
al

ty
3e

-5
0.

24
72

0.
28

35
0.

18
16

0.
64

47
6.

00
E

-1
8

0.
23

39
0.

29
18

0.
11

35
0.

02
87

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
B

er
n

st
ei

n

co
p

u
la

p
en

al
ty

0.
02

0.
43

07
0.

28
24

0.
15

06
0.

81
63

9.
6e

-3
0.

43
69

0.
27

93
0.

10
03

0.
85

02

T
ab

le
3.

3.
3:

T
h
e

ta
b
le

sh
ow

s
th

e
es

ti
m

at
io

n
re

su
lt

s
fo

r
fo

u
r

co
m

p
ar

is
on

m
o
d
el

s.
T

h
e

E
st

im
at

io
n

re
su

lt
is

th
ro

u
gh

a
5-

fo
ld

cr
os

s-
va

li
d
at

io
n

m
et

h
o
d

w
it

h
10

0
it

er
at

io
n
s.

T
h
e

or
d
er

of
p

ol
y
n
om

ia
ls

is
se

t
as

4,
8

an
d

16
,

sa
m

p
le

si
ze

n
is

50
.

70



J
=

4,
n

=
10

0,
k

=
5,

I
=

10
0

M
o
d

el
T

y
p

e
S

p
ar

se
S

ce
n

ar
io

L
es

s
S

p
ar

se
S

ce
n
ar

io

T
u

n
in

g
p

ar
am

et
er

A
v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)
T

u
n

in
g

p
ar

am
et

er
A

v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)

E
m

p
ir

ic
al

B
er

n
st

ei
n

co
p

u
la

0
0.

28
05

0.
28

31
0.

11
15

0.
13

75
0

0.
30

73
0.

17
65

0.
03

91
0.

17
65

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
L

A
S

S
O

p
en

al
ty

1e
-7

0.
28

05
0.

28
31

0.
11

15
0.

13
67

0.
00

2
0.

30
73

0.
17

65
0.

03
91

0.
19

55

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
co

p
u

la
p

en
al

ty
2e

-1
1

0.
28

05
0.

28
31

0.
11

15
0.

14
03

9e
-1

1
0.

30
73

0.
17

64
0.

03
91

0.
22

19

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
B

er
n

st
ei

n

co
p

u
la

p
en

al
ty

0.
00

5
0.

28
11

0.
28

21
0.

11
02

0.
62

04
0.

05
43

0.
31

02
0.

17
03

0.
03

59
0.

66
60

J
=

8,
n

=
10

0,
k

=
5,

I
=

10
0

M
o
d

el
T

y
p

e
S

p
ar

se
S

ce
n

ar
io

L
es

s
S

p
ar

se
S

ce
n
ar

io

T
u

n
in

g
p

ar
am

et
er

A
v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)
T

u
n

in
g

p
ar

am
et

er
A

v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)

E
m

p
ir

ic
al

B
er

n
st

ei
n

co
p

u
la

0
0.

30
68

0.
13

78
0.

04
53

0.
00

10
0

0.
31

24
0.

12
37

0.
02

59
0.

00
46

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
L

A
S

S
O

p
en

al
ty

0.
1

0.
30

68
0.

13
78

0.
04

53
0.

00
11

1.
00

E
-0

7
0.

31
24

0.
12

37
0.

02
59

0.
00

46

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
co

p
u

la
p

en
al

ty
7e

-7
0.

30
86

0.
13

97
0.

04
15

0.
42

79
9e

-7
0.

31
43

0.
11

99
0.

02
31

0.
42

48

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
B

er
n

st
ei

n

co
p

u
la

p
en

al
ty

0.
05

09
0.

34
00

0.
13

03
0.

03
54

0.
64

21
0.

01
11

0.
33

3
0.

12
21

0.
02

45
0.

72
29

J
=

16
,

n
=

10
0,

k
=

5,
I

=
10

0

M
o
d

el
T

y
p

e
S

p
ar

se
S

ce
n

ar
io

L
es

s
S

p
ar

se
S

ce
n
ar

io

T
u

n
in

g
p

ar
am

et
er

A
v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)
T

u
n

in
g

p
ar

am
et

er
A

v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)

E
m

p
ir

ic
al

B
er

n
st

ei
n

co
p

u
la

0
0.

26
7

0.
23

58
0.

09
93

0.
00

6
0

0.
27

21
0.

23
41

0.
06

79
0.

01
42

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
L

A
S

S
O

p
en

al
ty

0.
32

0.
26

7
0.

23
58

0.
09

93
0.

00
61

2.
00

E
-0

6
0.

27
21

0.
23

41
0.

06
79

0.
01

42

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
co

p
u

la
p

en
al

ty
6.

00
E

-0
6

0.
27

64
0.

22
17

0.
09

87
0.

54
36

5.
00

E
-0

5
0.

27
23

0.
23

4
0.

06
76

0.
38

79

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
B

er
n

st
ei

n

co
p

u
la

p
en

al
ty

0.
06

31
0.

29
81

0.
21

03
0.

08
36

0.
73

87
0.

04
23

0.
29

35
0.

22
36

0.
06

28
0.

86
33

T
ab

le
3.

3.
4:

T
h
e

ta
b
le

sh
ow

s
th

e
es

ti
m

at
io

n
re

su
lt

s
fo

r
fo

u
r

co
m

p
ar

is
on

m
o
d
el

s.
T

h
e

E
st

im
at

io
n

re
su

lt
is

th
ro

u
gh

th
e

5-
fo

ld
cr

os
s-

va
li
d
at

io
n

m
et

h
o
d

w
it

h
10

0
it

er
at

io
n
s.

T
h
e

or
d
er

of
p

ol
y
n
om

ia
ls

is
se

t
as

4,
8

an
d

16
,

sa
m

p
le

si
ze

n
is

10
0.

71



J
=

4,
n

=
51

2,
k

=
5,

I
=

10
0

M
o
d

el
T

y
p

e
S

p
ar

se
S

ce
n

ar
io

L
es

s
S

p
ar

se
S

ce
n
ar

io

T
u

n
in

g
p

ar
am

et
er

A
v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)
T

u
n

in
g

p
ar

am
et

er
A

v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)

E
m

p
ir

ic
al

B
er

n
st

ei
n

co
p

u
la

0
0.

28
52

0.
28

22
0.

11
02

0.
11

01
0

0.
31

01
0.

17
06

0.
03

60
0.

20
76

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
L

A
S

S
O

p
en

al
ty

1e
-4

0.
28

52
0.

28
22

0.
11

02
0.

10
98

1.
3e

-4
0.

31
01

0.
17

06
0.

03
60

0.
19

89

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
co

p
u

la
p

en
al

ty
1e

-1
2

0.
28

52
0.

28
22

0.
11

02
0.

19
04

1e
-1

1
0.

31
01

0.
17

06
0.

36
0

0.
20

54

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
B

er
n

st
ei

n

co
p

u
la

p
en

al
ty

2.
1e

-4
0.

28
52

0.
28

21
0.

11
01

0.
61

46
1.

5e
-3

0.
31

02
0.

17
02

0.
03

59
0.

68
98

J
=

8,
n

=
51

2,
k

=
5,

I
=

10
0

M
o
d

el
T

y
p

e
S

p
ar

se
S

ce
n

ar
io

L
es

s
S

p
ar

se
S

ce
n
ar

io

T
u

n
in

g
p

ar
am

et
er

A
v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)
T

u
n

in
g

p
ar

am
et

er
A

v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)

E
m

p
ir

ic
al

B
er

n
st

ei
n

co
p

u
la

0
0.

32
65

0.
09

68
0

0
0.

33
09

0.
06

67
0.

00
74

0

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
L

A
S

S
O

p
en

al
ty

1.
00

E
-0

4
0.

32
65

0.
09

68
0.

01
88

0
2e

-6
0.

33
09

0.
06

67
0.

00
74

3.
13

e-
5

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
co

p
u

la
p

en
al

ty
9.

00
E

-1
0

0.
32

65
0.

09
68

0.
01

87
0.

19
83

1.
00

E
-0

9
0.

33
1

0.
06

62
0.

00
71

0.
15

70

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
B

er
n

st
ei

n

co
p

u
la

p
en

al
ty

1.
1e

-6
0.

32
67

0.
09

54
0.

01
67

0.
19

31
3e

-6
0.

33
13

0.
06

47
0.

00
70

0.
15

54

J
=

16
,

n
=

51
2,

k
=

5,
I

=
10

0

M
o
d

el
T

y
p

e
S

p
ar

se
S

ce
n

ar
io

L
es

s
S

p
ar

se
S

ce
n
ar

io

T
u

n
in

g
p

ar
am

et
er

A
v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)
T

u
n

in
g

p
ar

am
et

er
A

v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)

E
m

p
ir

ic
al

B
er

n
st

ei
n

co
p

u
la

0
0.

31
67

0.
15

76
0.

03
32

0
0

0.
31

67
0.

13
52

0.
01

39
0

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
L

A
S

S
O

p
en

al
ty

1.
00

E
-0

3
0.

31
67

0.
15

76
0.

03
32

0
5.

00
E

-0
5

0.
31

67
0.

13
52

0.
01

39
0

0.
01

42

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
co

p
u

la
p

en
al

ty
7.

00
E

-1
0

0.
31

67
0.

15
76

0.
03

31
0.

20
35

1.
00

E
-0

8
0.

31
68

0.
13

46
0.

01
38

0.
19

86

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
B

er
n

st
ei

n

co
p

u
la

p
en

al
ty

0.
01

0.
32

94
0.

13
29

0.
03

06
0.

78
33

8.
00

E
-0

5
0.

31
85

0.
13

29
0.

01
3

0.
20

31

T
ab

le
3.

3.
5:

T
h
e

ta
b
le

sh
ow

s
th

e
es

ti
m

at
io

n
re

su
lt

s
fo

r
fo

u
r

co
m

p
ar

is
on

m
o
d
el

s.
T

h
e

E
st

im
at

io
n

re
su

lt
is

th
ro

u
gh

th
e

5-
fo

ld
cr

os
s-

va
li
d
at

io
n

m
et

h
o
d

w
it

h
10

0
it

er
at

io
n
s.

T
h
e

or
d
er

of
p

ol
y
n
om

ia
ls

is
se

t
as

4,
8

an
d

16
,

sa
m

p
le

si
ze

n
is

51
2.

72



J
=

4,
n

=
10

00
,

k
=

5,
I

=
10

0

M
o
d

el
T

y
p

e
S

p
ar

se
S

ce
n

ar
io

L
es

s
S

p
ar

se
S

ce
n
ar

io

T
u

n
in

g
p

ar
am

et
er

A
v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)
T

u
n

in
g

p
ar

am
et

er
A

v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)

E
m

p
ir

ic
al

B
er

n
st

ei
n

co
p

u
la

0
0.

28
73

0.
28

22
0.

11
02

18
14

7
0.

02
42

0
0.

31
03

0.
17

03
0.

03
58

90
1

0.
23

5

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
L

A
S

S
O

p
en

al
ty

2E
-0

4
0.

28
73

0.
28

22
0.

11
02

08
52

1
0.

09
83

1.
00

E
-0

3
0.

31
03

0.
17

03
0.

03
58

87
0.

23
74

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
co

p
u

la
p

en
al

ty
9E

-1
3

0.
28

73
0.

28
22

0.
11

02
10

99
6

0.
09

65
2E

-1
2

0.
31

03
0.

17
03

0.
03

58
85

64
8

0.
22

55

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
B

er
n

st
ei

n

co
p

u
la

p
en

al
ty

1E
-1

2
0.

28
73

0.
28

22
0.

11
02

09
86

0.
02

42
1.

30
E

-0
3

0.
31

04
0.

17
02

0.
03

58
57

70
9

0.
71

65

J
=

8,
n

=
10

00
,

k
=

5,
I

=
10

0

M
o
d

el
T

y
p

e
S

p
ar

se
S

ce
n

ar
io

L
es

s
S

p
ar

se
S

ce
n
ar

io

T
u

n
in

g
p

ar
am

et
er

A
v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)
T

u
n

in
g

p
ar

am
et

er
A

v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)

E
m

p
ir

ic
al

B
er

n
st

ei
n

co
p

u
la

0
0.

33
17

0.
08

21
0.

01
31

0
0

0.
33

6
0.

05
34

0.
00

47
0

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
L

A
S

S
O

p
en

al
ty

0.
00

3
0.

33
17

0.
08

21
0.

01
31

0.
09

74
1.

00
E

-0
4

0.
33

6
0.

05
33

0.
00

47
0.

07
01

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
co

p
u

la
p

en
al

ty
1.

00
E

-1
0

0.
33

18
0.

08
21

0.
01

3
0.

10
92

1.
00

E
-0

9
0.

33
6

0.
05

31
0.

00
47

0.
11

11

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
B

er
n

st
ei

n

co
p

u
la

p
en

al
ty

1.
00

E
-0

3
0.

33
45

0.
06

67
0.

01
05

0.
67

68
3.

00
E

-0
6

0.
33

62
0.

05
21

0.
00

46
0.

10
96

J
=

16
,

n
=

10
00

,
k

=
5,

I
=

10
0

M
o
d

el
T

y
p

e
S

p
ar

se
S

ce
n

ar
io

L
es

s
S

p
ar

se
S

ce
n
ar

io

T
u

n
in

g
p

ar
am

et
er

A
v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)
T

u
n

in
g

p
ar

am
et

er
A

v
g.

L
og

-l
ik

el
ih

o
o
d

IM
S

E
K

u
ll

b
ac

k
-L

ei
lu

r
D

is
ta

n
ce

S
p

ar
si

ty
(R

at
io

of
Z

er
os

)

E
m

p
ir

ic
al

B
er

n
st

ei
n

co
p

u
la

0
0.

32
58

0.
13

11
0.

02
17

0
0

0.
32

71
0.

10
83

0.
00

76
0

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
L

A
S

S
O

p
en

al
ty

0.
00

24
0.

32
58

0.
13

11
0.

02
17

0.
00

83
1.

00
E

-0
4

0.
32

71
0.

10
83

0.
00

76
0

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
co

p
u

la
p

en
al

ty
1.

00
E

-0
9

0.
32

6
0.

13
11

0.
02

16
0.

17
64

2.
00

E
-0

8
0.

32
71

0.
10

82
0.

00
76

0.
10

89

P
en

al
iz

ed
B

er
n

st
ei

n
co

p
u

la

w
it

h
E

m
p

ir
ic

al
B

er
n

st
ei

n

co
p

u
la

p
en

al
ty

0.
02

5
0.

34
70

0.
12

06
0.

01
86

0.
72

3
5.

00
E

-0
5

0.
32

73
0.

10
79

0.
00

71
0.

12
32

T
ab

le
3.

3.
6:

T
h
e

ta
b
le

sh
ow

s
th

e
es

ti
m

at
io

n
re

su
lt

s
fo

r
fo

u
r

co
m

p
ar

is
on

m
o
d
el

s.
T

h
e

E
st

im
at

io
n

re
su

lt
is

th
ro

u
gh

th
e

5-
fo

ld
cr

os
s-

va
li
d
at

io
n

m
et

h
o
d

w
it

h
10

0
it

er
at

io
n
s.

T
h
e

or
d
er

of
p

ol
y
n
om

ia
ls

is
se

t
as

4,
8

an
d

16
,

sa
m

p
le

si
ze

n
is

10
00

.

73



3.4 Empirical evidence

In this section, we apply the proposed model in measuring the dependence struc-

ture of financial markets. From previous research on the financial crisis, the tur-

moil often occurred in one region and then quickly extended to a wide range of

economics. Forbes and Rigobon (2002) defines this phenomenon as the financial

contagion, which shows a significant increase in cross-market linkages after a shock

to one country. Thus, precisely measuring the dependence between the interna-

tional markets is a crucial task in risk management. We choose four representative

markets: the United States, Europe, Hong Kong, and Japan which play important

roles in the financial crisis after the 1980s.

Abbara and Zevallos (2014) indicates that the linkage between different economics

is a sophisticated nonlinear dependency, so many researchers employ the copula-

based model to measure the co-movements.

3.4.1 Data description

The data used to represent the four major markets is the monthly index returns

of Morgan Stanley Capital International (MSCI). The index returns span 39 years

from January 1980 to February 2019 for a total of 470 observations expressed in

US dollars.

Descriptive Statistics for the United States(US), Europe(EU), Hong Kong(HK),

and Singapore(SG) returns are presented in Table 3.4.1. The market of the United

States shows the highest mean and median in index returns and the market of

Hong Kong has the highest volatility. The unconditional distributions of Europe,

Hong Kong, and the United States monthly returns show negative skewness and
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expected express kurtosis. Besides, the results of the Jarque-Bera test indicate

that neither of these equity returns is normally distributed under 1% significance

level. In addition, the pair EU-US has the highest linear correlation which reaches

0.744. The EU-HK, EU-SG, and HK-US pairs show a similar moderate correla-

tion of coefficients and Kendall’s tau. The familiar volatility clustering effect with

some extraordinarily large absolute value can be observed from the time series

plots 5.4.2 of index returns for all these four markets.

EU HK SG US

Summary Statistics

Mean(%) 0.511 0.628 0.415 0.679

Median(%) 0.913 0.758 0.812 1.073

Min(%) -23.976 -57.337 -53.497 -24.158

Max(%) 12.362 28.374 22.846 12.203

Std. Dev. 0.051 0.083 0.074 0.043

Skewness -0.790 -1.088 -1.238 -0.893

Kurtosis 5.064 9.355 10.434 6.128

Jarque-Bera statistic 132.041 881.755 1199.700 253.639

Jarque-Bera p-value 0.000 0.000 0.000 0.000

Correlation matrix

HK SG US

EU 0.559 (0.376) 0.575 (0.353) 0.744 (0.500)

HK 0.662 (0.431) 0.498 (0.334)

SG 0.601 (0.367)

Table 3.4.1: The table shows the summary statistics of monthly index returns of
Europe(EU), Hong Kong(HK), Singapore(SG), and the United States(US). Re-
turns are defined as rt = lnPt/Pt−1 and Pt is the index of time t.

75



Figure 3.4.1: The time series plots for the log return of Europe(EU), Hong
Kong(HK), Singapore(SG) and the United States(US) from Jan. 1980 to Feb.
2019.

3.4.2 The models of marginal distributions

An important step in accurately estimating the copula model is to set the margins

properly. Considering the financial data presenting usually clustering volatility

and conditional heteroscedasticity, we apply a GARCH(1,1) model for uncondi-

tional marginal distributions for index returns. Although various specifications

of the GARCH model are implementable, Hansen and Lunde (2005) shows that

selecting different orders of a GARCH model has trivial importance in improv-

ing forecasting accuracy. Also, another feature of the financial time series data

is the leverage effect, which shows an asymmetric effect on the volatility changes

in response to positive and negative shocks to the same extent. To capture this

effect, the GJR-GARCH model proposed by Glosten et al. (1993) is taken into
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consideration:

Xit = µi + εit (3.4.1)

εit = σitηit (3.4.2)

σ2
it = αi + ψiε

2
i,t−1 + δiσ

2
i,t−1 + φiε

2
i,t−1Ii,t−1 (3.4.3)

where the Xit stands for the return of the i-th market at time t and Ii,t−1 =

0 if εi,t−1 ≥ 0, Ii,t−1 = 1 if εi,t−1 < 0. The term multiplying φ captures the

asymmetry. Since the data series show conditional leptokurtic properties, the

white noise process εit is assumed to follow the standardized t distribution. Let

Ωit denote {Xit, Xi,t−1, ...}:

ηit|Ωit ∼ tνi(0, 1) i.i.d (3.4.4)

The estimation results of selected models are shown in Table 3.4.2. The equity

index of the United States(US) and Europe(EU) shows a significant asymmetry

effect, so the GJR-based GARCH(1,1) models are selected for these two. The

coefficients φ for both US and EU are positive, which indicates that the negative

shocks provide more volatility than positive shocks with the same size in the sub-

sequent period.

Correct specification of the marginal models determines the performance of the

copula function. As the joint copula model is a function of marginal distributions,

the misspecification of margins easily leads to the inaccurate result of copulas.

Under this consideration, we provide several misspecification tests to confirm the

empirical adequacy of the marginal models: the Kolmogorov–Smirnov test, the

Cramer–von Mises test, and the Anderson–Darling tests.

77



GJR-GARCH(1,1) d.o.f AIC BIC

α ψ δ φ ν

(s.e.) (s.e.) (s.e.) (s.e.) (s.e.)

US 0.310E-3** 0.710*** 0.313** 8.295*** -1661.7 -1645.1

(0.000) (0.102) (0.125) (1.954)

EU 0.472E-3** 0.685*** 0.058 0.151* 7.681*** -1506.1 -1485.3

(0.000) (0.122) (0.063) (0.089) (2.515)

HK 0.158E-3 0.892*** 0.086*** 5.098*** -1101.2 -1084.6

(0.000) (0.037) (0.031) (0.980)

SG 0.349E-3** 0.762*** 0.187*** 4.983*** -1230.9 -1214.3

(0.000) (0.060) (0.058) (0.993)

Table 3.4.2: The table shows the ML estimates for the parameters of the marginal
distribution model. The models are selected according to Akaike Information Cri-
terion(AIC), Bayesian Information Criterion(BIC), and their statistical features.

The KS test is most sensitive when the estimated distributions differ in a global

fashion near the center of the distribution. But if there are repeated deviations

between the estimated distributions or the estimated distributions have the same

mean values, then they cross each other multiple times and the maximum devi-

ation between the distributions is reduced. The Cramer-von Mises (CvM) test

measures the sum of squared deviations between the estimated distribution and

target distribution and it treats this case well. But both the KS and CvM statis-

tics are insensitive when the differences between the curves are most prominent

near the beginning or end of the distributions. The Anderson-Darling (AD) test

was developed in the 1950s as a weighted CvM test to overcome both of these

problems. From the results shown in 3.4.3, all the marginal distribution models

pass the KS test, CvM test, and AD test at 5% significance level, which means

that the marginal models are well-specified.
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KS CvM AD

Margins KS statistics p-value CM statistics p-value AD statistics p-value

US 0.037 0.533 0.160 0.365 1.246 0.251

EU 0.027 0.866 0.068 0.766 0.921 0.401

HK 0.024 0.937 0.053 0.860 0.534 0.713

SG 0.036 0.551 0.109 0.544 1.319 0.226

Table 3.4.3: The statistical results from Kolmogorov–Smirnov test, the
Cramer–von Mises test, and the Anderson–Darling tests for the marginal distribu-
tions of the four markets: the United States(US), European(EU), Hong Kong(HK)
and Singapore(SG).

3.4.3 The models for Copula function

Based on the previous analysis, our primary focus is to study the relationship

between four pairs of markets: SG-HK, SG-US, US-EU, and EU-HK. These pairs

exhibit high and similar correlation coefficients, as discussed in section 3.4.1. The

scatter plots illustrating the relationships of these four pairs are presented in Figure

3.4.2, revealing distinct patterns among them. All four pairs exhibit asymmetry

and a large number of outliers, which indicate violations of the assumption of an

elliptical distribution. Our nonparametric copula approach provides a flexible way

to capture this complex dependence structure. To assess the performance of our

model, we divide the data into two samples: one for training and the other for

testing purposes.
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(a) SG-HK (b) SG-US

(c) EU-US (d) EU-HK

Figure 3.4.2: The scatter plot for these four pairs of markets.

The data points of most pairs are more concentrated in the left corner, which is

similar to other financial time series data. It means that these four market equity

indexes have the aggregation effect when the market is down-turn. Then we fit

the data into the proposed model and do the selection of dimension of coefficients

and the tuning parameter. The following figure shows that as the dimension of

coefficients increases, the log-likelihood increases first and then decreases. For the

pairs of SG-HK and EU-HK, the penalized Bernstein copula model with empirical

Bernstein copula penalty(PBC) chooses a relatively smaller dimension of coeffi-

cients J as the optimum and also has a higher log-likelihood compared with the

empirical Bernstein copula model(EBC).
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(a) SG-HK (b) SG-US

(c) EU-US (d) EU-HK

Figure 3.4.3: The process of selecting the optimal dimension of coefficient γ and
tuning parameter λ. The red line represents the loglikelihood of the empirical
Bernstein copula(EBC) and the blue line stands for the loglikelihood of the pe-
nalized Bernstein copula with empirical Bernstein copula penalty(PBC). The log-
likelihood of PBC is always larger than that of EBC.

From section 3.4.1, the pairs of SG-HK, SG-EU, and EU-HK have similar corre-

lation coefficients and Kendall’s tau. But they have totally different dependence

structures which are shown in figure 3.4.4. The contour plots show that these four

pairs of markets show various levels of asymmetry for the two tails.

Pairs of markets J λ Log-likelihood

SG-HK 6 0.9560 0.4064

SG-US 12 0.8220 0.2653

EU-US 14 0.7720 0.5081

EU-HK 12 0.2050 0.3072

Table 3.4.4: This table represents the results of model selection, the J represents
the dimension of coefficients, and λ stands for the tuning parameter
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(a) SG-HK (b) SG-US

(c) EU-US (d) EU-HK

Figure 3.4.4: The contour plots of the estimated penalized Bernstein copula den-
sity function.

For the pair of SG-HK, the contour plot exhibits slightly greater dependence in

the positive tail than in the negative one. In other words, the Singapore market

and Hong Kong market are closely linked when there are some positive effects on

the whole financial market. Turning to the SG-US and EU-HK pairs, they have

similar asymmetric properties in tails. The contour plots (b) and (d) show greater

dependence on the negative tail than on the positive one. And the EU-US pair

has relatively symmetric tails.

3.5 Conclusion

In this chapter, we study a new approach in multivariate analysis based on the

Bernstein copula estimation. We show that under some regularity, any copula

can be approximated by the Bernstein copula both theoretically and practically.

It allows us to take the advantage of the copula property when the multivariate
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normality assumption is violated.

Considering the nonparametric approach has infinite-dimensional parameter space,

we utilize the method of sieve to optimize the loglikelihood function over the Bern-

stein polynomial sieve. Since the approximating spaces can be characterized by a

finite number of parameters, which is J2
n in our case, the nonparametric problem

reduces to a parametric one. As the sample size increase, the order of polynomials

Jn grow slowly. To improve the prediction performance of the fitted model, we

use the adapted LASSO to select the model. Inspired by the empirical Bernstein

copula, the penalty function is set as the reciprocal of the empirical copula and

empirical Bernstein copula respectively.

In the simulation study, we generate the random number of four different types

of parametric copula and show that if the parametric model cannot be correctly

selected, using the nonparametric Bernstein copula is the best choice. Also, we

conduct two scenarios to study the capability of the model selection. Based on the

simulation results, the proposed model can impose sparsity precisely and has the

best out-of-sample log-likelihood in all the iterations compared to the empirical

Bernstein copula and LASSO penalized model.

The empirical evidence verifies that the financial market equity indexes have the

aggregation effect when the market is down-turned(Forbes and Rigobon, 2002).

Besides, within the range of the optimal order of polynomials and under the same

accuracy requirement, the penalized model can always have smaller Jn compared

with the empirical Bernstein.
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CHAPTER 4

Double Selection of Marginal Parameters in

Semiparametric Copula Models

4.1 Introduction

The semiparametric and nonparametric modeling approaches have gained increas-

ing attention in both theoretical and applied econometrics. The parametric model

is restrictive and sensitive to deviations from the parametric specification, whereas

the semiparametric or nonparametric models are more flexible and robust. In

the copula framework, many studies focus on the semiparametric setting with

nonparametric marginal distribution and parametric copula function to avoid po-

tential misspecification in margins (Chen and Fan, 2006; Tsukahara, 2005; Chen

et al., 2006). Kim et al. (2007) shows that when the marginal distributions are

misspecified, the behavior of the IFM (inference functions for margins) is unpre-

dictable and likely to be inconsistent, resulting in large mean squared errors.

However, there is another line of research where the marginal distribution is known

to follow a specific distribution (Ivan et al., 2021). In such cases, the copula func-

tion can be set to be nonparametric. The use of copulas to estimate marginal

distributions offers several advantages. Firstly, copulas enable separate model-
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ing of the marginal distributions and the dependence structure between variables.

This flexibility proves particularly valuable when the marginal distributions are

known or can be reasonably assumed to follow specific distributions. By esti-

mating the copula function, we can accurately capture the dependence structure

while preserving the characteristics of the marginal distributions. This approach

provides more precise estimation compared to methods relying solely on empirical

distributions.

Additionally, when the marginal distribution is known to have a parametric den-

sity function, estimating its density based on the correct parametric specification

can be accurate and efficient. For example, in the case of non-life insurance claims,

the claim frequency is often modeled using a Poisson distribution, and the claim

severity follows a gamma distribution (Czado et al., 2012). Using a nonparametric

copula model aims to provide more precise estimation in such scenarios. Similar

settings can often be found in actuarial and microeconomic applications as well

(Winkelmann, 2012; Amsler et al., 2014).

In this chapter, we present a three-step double selection method and utilize the

model we constructed in Chapter 3 as the copula function to examine the perfor-

mance of individual density estimation. The double selection procedure is intro-

duced in section 4.2. To comprehensively evaluate the methods, extensive simu-

lation studies are conducted. We compare three types of methods: ’Univariate’

which independently estimates the individual density, ’Copula-based Empirical’

method that simultaneously estimates the univariate density with a nonparamet-

ric Bernstein copula through sieve maximum likelihood estimation, and ’Copula-

based Penalized’ method which estimates the univariate density after the copula

selection. We consider different univariate density functions and various copula

families, using both cross-sectional data in section 4.3 and time series data in
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section 4.4. Furthermore, we examine the comparison in the context of Value at

Risk for individual log return, utilizing data simulated from multivariate GARCH

models. To assess the performance, we employ a forecast evaluation test for Value

at Risk.

4.2 Double selection methodology

In Chapter 3, we utilize the sieve MLE to estimate the coefficient of the non-

parametric Bernstein copula density function and indicate that with correctly

specifying the order of polynomial Jn, the metric between the sieve MLE estima-

tor and the true estimator will reach zero as the sample size goes to infinity. In

this chapter, a parametric marginal distribution will be taken into consideration.

Without loss of generality, we focus on the bivariate case.

Let (X1, X2) ∼ H(x1, x2) , where H is a cumulative function and F1, F2 is the

absolutely continuous marginal CDF. By Sklar’s theorem, there exists a unique

copula C(·) such that

H(x1, x2) = C(F1(x1), F2(x2)) ∀(x1, x2) ∈ R2 (4.2.1)

Assume the marginal distribution belongs to a specific parametric family and each

margin has β to be estimated. The double selection method is through the fol-

lowing procedure:

Step 1: Obtain the coefficients γ̂e of empirical Bernstein copula and

the parameters β̂1,e, β̂2,e from the marginals simultaneously.

In the nonparametric empirical Bernstein copula framework, consider the estima-
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tion of unknown parameters θ, for this, let

Θ = {θ = (β1, β2,Λ)} ∈ B ⊗M

denote the parameter space of θ. Here, B = {(β1, β2) ∈ Rdβ}. M is the collec-

tion of all bounded and continuous nondecreasing, nonnegative Bernstein copula

functions. To estimate θ, a natural approach is to maximize the log-likelihood

function ln(θ) = log{Ln(θ)}. But, it’s obvious to find that this is not an easy

task since ln(θ) involves both finite-dimensional and infinite-dimensional parame-

ters. Followed by Chen et al. (2006), the sieve maximum likelihood estimation is

employed. The sieve space can be defined as

Θn = {θn = (β1, β2,Λn) ∈ B ⊗Mn} (4.2.2)

In the above,

Mn =

{
Λn(u1, u2) =

Jn−1∑
j1=0

Jn−1∑
j2=0

γj1,j2pj1(u1)pj2(u2) :
Jn−1∑
j1=0

Jn−1∑
j2=0

γj1,j2 = 1,

Jn−1∑
js=0

γj1,j2 = 1/Jn, s = 1, 2, 0 < γj1,j2 < 1

}

with pjs(us) is a beta density defined in chapter 3.

l(θ, Zi) = log

{
c(F1(x1i), F2(x2i); θ)

2∏
j=1

fj(xji

}
) (4.2.3)

Then, it is natural to define the sieve maximum likelihood estimator θ̂n = (β̂1n, β̂2n, Λ̂n)

of θ that maximizes the log-likelihood function ln(θ) over Θn.

θ̂n = arg max
θ∈Θn

n∑
i=1

l(θ, Zi)

87



According to Ivan et al. (2021), under the non-singular and some convergence

assumptions, the marginal coefficient β based on sieve MLE is consistent and

asymptotic efficient.

Step 2: Estimate the γ̂p based on the marginal coefficients β̂1e, β̂1e from

step 1.

In this step, we use the same model as explained in chapter 3. Considering the

marginal parameters and shapes as known value, u1 = F̂1(x1) and u2 = F̂2(x2).

Still under the sieve space:

M′
n =

{
Λn(u1, u2) =

Jn−1∑
j1=0

Jn−1∑
j2=0

γj1,j2pj1(u1)pj2(u2) :
Jn−1∑
j1=0

Jn−1∑
j2=0

γj1,j2 = 1,

Jn−1∑
js=0

γj1,j2 = 1/Jn, s = 1, 2, 0 < γj1,j2 < 1, pen(Λ) ≤ bn

}

with bn →∞ slowly.

The penalty here is the adapted LASSO using the reciprocal of empirical Bern-

stein copula as the weight to penalize values with a small number of data points

on its grids to zero. In other words, it selects the significant features that capture

the dependence structure.

Step 3: Remove the zeros of the coefficient matrix from step 2 γ̂ outside

the matrix, re-estimate the parameters of marginals.

Based on step 2, using the penalization method, we select the optimal nonparamet-

ric copula model and remove the unrelated γj1,j2 . Then, we revisit the nonpenalized

Bernstein copula model, estimate γ without zero elements and β simultaneously

through maximizing the loglikelihood of the copula function.
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4.3 Simulation study

In this section, we perform the Monte Carlo simulations to compare the estimation

accuracy of parametric marginal distribution between the univariate method and

copula-based methods. We first generate the random number from the univariate

density function to get independent and identically distributed(i.i.d) data, then fit

the data using three different methods. Since the true parameters are given, the

integrated mean squared error(IMSE) and Kullback Leibler distance are employed

to measure the preciseness. Besides, correlated pairs are also generated based on

Cholesky decomposition, which can secure the marginal distributions of the gen-

erated multivariate normal distribution are still normally distributed with known

mean and variance. In addition, we simulate from multivariate GARCH models

with Gaussian innovations to investigate the performances under the time series

framework. In this section, the different dependencies between the two margins

are specified.

4.3.1 Cross-sectional data

In this scenario, we generate random numbers from selected parametric models

of marginal distribution including normal, gamma, and inverse Gaussian distribu-

tion. They are the most commonly applied distribution in finance and economet-

ric world(Barndorff-Nielsen, 1997; Xie and Wu, 2017). The gamma distribution

is a family of right-skewed continuous distributions which can accurately measure

the asymmetry in asset pricing, such as options(Heston, 1993), non-life insur-

ances(Gschlößl and Czado, 2007). The inversed Gaussian distribution is utilized

to model the nonnegative skewed data and it has many similarities with stan-

dard normal distribution in estimation. The detailed setting for the parameters

of margins can be found as follows.
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1. Gaussian 1: µ1 = 0.5, σ1 = 3;µ2 = 3, σ2 = 0, 5.

2. Gaussian 2: µ1 = 0.5, σ1 = 10;µ2 = 5, σ2 = 2.

3. Gaussian 3: µ1 = 1, σ1 = 8;µ2 = 5, σ2 = 2.

4. Gamma 1: a1 = b1 = a2 = b2 = 2.

5. Gamma 2:a1 = b1 = a2 = b2 = 5.

6. Gamma 3:a1 = 0.5, a2 = 1, a3 = 0.5, a4 = 1

7. Inverse Gaussian 1: a1 = 1, b1 = 10; a2 = 1, b2 = 10.

8. Inverse Gaussian 1: a1 = 1, b1 = 1; a2 = 1, b2 = 1.

9. Inverse Gaussian 1: a1 = 2, b1 = 4; a2 = 2, b2 = 4.

Three models we aim to compare include the ’Univariate’, ’Copula-based empiri-

cal’, and ’Copula-based penalized’. The ’univariate’ means the marginal distribu-

tion is obtained from IFM method and it is the optimal estimation based on an

individual information, which is β̂ju = arg maxβj
∑n

i=1 log fj(xji). The ’Copula-

based empirical’ is the β̂e that is estimated simultaneously with the nonparametric

Bernstein copula model through sieve MLE in step 1. The ’Copula-based penal-

ized’ is the β̂p estimated after model selection. Based on the information of selec-

tion results, we simulate it with a sparse copula model through step 3.

The measure that we used for comparison includes the KL-distance, which is

Kullback Leibler divergence. It is a kind of statistical distance to measure how

one probability distribution is different from the other. For the distribution P and

Q of a continuous random variable, the relative entropy from Q to P is

DKL(P‖Q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx (4.3.1)
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where P represents the true distribution of data and Q is an approximation of P.

The KL-distance and integrated mean squared error (IMSE) are calculated based

on the average of each iteration.

The simulation results can be found in table 4.3.1. Compare the univariate model

with the copula-based model, the univariate one has a relatively larger distance

from the true model. It means that using copula can truly impose preciseness in

univariate density estimation for i.i.d data. The double selection method outper-

forms the other two. The ’copula based empirical’ and the ’copula-based penalized’

are all using the same order of polynomials here.

For the dependent scenario, we generated pairs of correlated random numbers

based on the Cholesky decomposition. The data series that we simulated are bi-

variate normal distributed. The marginal distributions have mean 0 and standard

deviation 1. Also, we employ different types of copula to study whether the im-

provement in evaluation correlates with the copula function. In other words, if the

copula can capture the dependency more accurately, we are interested in whether

it will affect the margins.

Here, we choose three different shapes of copulas. They are Gaussian copula,

student t copula and Clayton copula. The Gaussian and t copulas are selected
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due to their widespread application in finance(Cherubini et al., 2004; Demarta and

McNeil, 2005). Choosing Clayton copula is because it works well if the correlation

between the two random variables is strongest in the left tail of the joint distribu-

tion. For gaussian and Clayton ρ is the only parameter to control the dependence.

Since these three copula models are parametric, full MLE is applied to find the

optimal parameters for both margins and copula simultaneously. We simulate

n = 100 for 1,000 times for each dependence level ρ = 0.1, 0.15, ..., 0.85, 0.9. The

following figure shows the correlated data that we generated with different ρ.

(a) Independent (b) Correlation ρ = 0.3

(c) Correlation ρ = 0.6 (d) Correlation ρ = 0.9

Figure 4.3.1: Pairs of correlated simulated from the bivariate normal distribution.
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The results in table 4.3.2 show the distance between the estimated marginal den-

sity function and the true density. Here, the true density is the standard normal

distribution. KL and IMSE are the averages of 1000 times iteration. From the

perspective of copula modeling, we can find that all these six models have similar

fitness to the bivariate normal distribution. Only the penalized Bernstein copula

model has a little bit of improvement in accuracy. Besides, there is no significant

trend can be observed as the correlation coefficient ρ increases. In order words,

copula cannot provide more information due to their linear dependency. Even

though the marginal distributions are highly correlated, the copula-based method

provides similar estimation as the low dependency pairs.

4.4 Simulation study in the context of value-at-

risk estimation

Investigating and understanding the time series dependency in the second-order

moments of property returns is a crucial concept in financial econometrics. Lots

of empirical evidence show the co-movement of financial volatilities over time be-

tween markets and assets(Calvet et al., 2006; Evans and McMillan, 2009; Hemche

et al., 2016). Capturing this phenomenon using a multivariate way leads to more

empirical models than working with separate univariate models. We aim to find

if the dependency can be correctly specified, more information for the univariate

models in estimation and prediction can be investigated.

The performance of the estimator can be compared through the valuation of the

Value-at-Risk measure. Value at Risk (VaR) is defined as the maximum loss due

to the market risk over a certain period under general conditions. In this chapter,

we focus on the two-asset case. Let the log return series at a moment in time t,
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be marked as rt. The random variable of loss over the period [t, t + 1] is marked

as Li+1 = −(ri+1 − ri) = ∆r. The FL is the cdf function of loss distribution

and it holds that FL(x) = P (L ≤ x). VaR at significance level α is actually the

α−quantile of the cdf function, i.e.

V aRα = inf(x|FL(x) ≥ α) (4.4.1)

In this chapter, we study the VaR with α = 1% and 5%. 1% is the level that

financial institutions must report which is required by Basel Accords and 5% is the

most popular used in financial industries. There are three fundamental methods to

evaluate the VaR: (1)use a parametric probability distribution function; (2) apply

the Monte Carlo simulation to estimate the quantile of the unknown distribution

numerically; (3) obtain the quantile directly from historical observations. To study

how the innovation term performs in the process of VaR estimation. We assumed

that the financial return can be specified on the conditional variance, and the

Value at Risk can be evaluated as follows(Santos et al., 2013):

V aRα
t = µt + σtqα (4.4.2)

where µt is the conditional mean and σt is the standardized deviation at time t. qα

is the α−quantile of the standardized innovation zt = (rt− µt)/σt. Since the con-

ditional distribution is often assumed to be normal or student’s t distribution with

degree of freedom ν. After estimating the density of the standardized innovation

zt, the quantile can be obtained immediately. For the student t distribution, the

quantile needs an adjustment due to the degree of freedom. If the standardized

innovation is under t, qα =
√

ν−2
ν
q̃α, where q̃α is the α quantile of the estimated

student t distribution.
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For the estimation of conditional mean µt , we assume it to be a constant over

time. Since the conditional mean shows the weak dynamic dependency of an asset

return(Santos et al., 2013), this setting will not affect the results of Value at Risk

estimation.

The comparison between univariate and copula-based methods is investigated

through the accuracy of the estimation of the standardized innovation, then re-

flected in the Value at Risk formula 4.4.2.

4.4.1 Simulating from multivariate GARCH models

In this section, the Monte Carlo simulation is provided to simulate multivariate

time series data from some famous models. Consider the log return as a vector

stochastic process {rt} which is of dimension 2×1 for a bivariate case. It has been

conditioned on the sigma field by It−1 which includes all the past information until

time t-1. The conditional mean is assumed to be a constant in this chapter, and

it usually specifies as a function of past through a vectorial autoregressive moving

average (VARMA) representation for the process rt(Spliid, 1983; Kascha, 2012).

Then rt can be written as

rt = µ+ εt

and,

εt = H
1/2
t zt

where H
1/2
t is a 2 by 2 positive definite matrix. The 2 by 1 random vector zt has

the following two moments:

E(zt) = 0, V ar(zt) = I2
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where I2 is the identity matrix of order 2. Ht is the conditional variance matrix of

rt, since V ar(rt|It−1) = V art−1(rt) = V art−1(εt) = H
1/2
t V art−1(zy)(H

1/2
t )′ = Ht,

and H
1/2
t may obtain from the Cholesky decomposition. We simulate the multi-

variate GARCH model mainly relying on different specifications of the conditional

covariance matrix Ht.

We employ two multivariate GARCH models to simulate log returns and gen-

erate 100 systems of N = 2 asset returns, each with a sample size of T = 1000

observations. Then, the first 500 observations are used to estimate the parameter

of both underlying conditional variance models, copula models, and margins. The

rest of them were used to assess the out-of-sample performance.

4.4.1.1 Baba-Engle-Kraft-Kroner (BEKK) model

The Bekk model is a simple extension to the popular GARCH model and it is

a special case of the vector error correction model. The BEKK(1,1,K) model is

defined as:

Ht = C∗′C∗ +
K∑
k=1

Ak
∗′εt−1ε

′
t−1Ak

∗ +
K∑
k=1

Gk
∗′Ht−1Gk

∗ (4.4.3)

where C∗, Ak
∗ and Gk

∗ are N × N matrices and C∗ is an upper triangular. The

summation limit K controls the generality of the process. Let K =1, N=2, the

model above contains 11 parameters and implies the following dynamics:

h11,t h12,t

h21,t h22,t

 =

c11 c1,2

0 c22


′ c11 c1,2

0 c22

+

a11 a1,2

a21 a22


′ ε1,t−1

ε2,t−1


ε1,t−1

ε2,t−1


′ a11 a1,2

a21 a22


+

g11 g1,2

g21 g22


′ h11,t h12,t

h21,t h22,t


g11 g1,2

g21 g22


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The drawback of the BeKK model is that it includes a large number of parame-

ters to be estimated, even for moderate dimensions(Pedersen and Rahbek, 2014).

From the perspective of simulation, the more parameters to set, the more diffi-

cult to generate hypothetical data series. The parameters we used are given by

Franke et al. (2004), which provides the pattern of the exchange rate between two

European currencies.

C∗ =

1.15 0.31

0 0.76

 , A∗ =

0.2820 −0.05

−0.057 0.2930

 , G∗ =

0.939 0.025

0.028 0.939.



4.4.1.2 Conditional Correlation Model

The CCC model is introduced by Bollerslev (1990). Compared with Bekk model,

smaller number of parameters are needed to be provided in simulation. It is only

N(N − 1)/2. The CCC model is defined as:

Ht = DtRDt = (ρi,j
√
hii,thjj,t) (4.4.4)

where

Dt = diag(h
1/2
11,t, ..., h

1/2
NN,t) (4.4.5)

The hii,t can be defined as any univariate GARCH model, and

R = (ρij) (4.4.6)

is a symmetric positive definite matrix with ρi,i = 1,∀i.R is the matrix contain-

ing the constant conditional correlation. The original CCC has a GARCH (1,1)

specification for each conditional variance in Dt:

hii,t = ωi + αiε
2
i,t−1 + βihii,t−1, i = 1, ..., N (4.4.7)
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Besides, Ht is positive definite if and only if all the N conditional variances are

positive and R is positive definite. It’s not difficult to find unconditional variances

in univariate cases. However, it’s quite complicated to calculate the unconditional

covariance, since the relationship states in equation 4.4.4 are nonlinear.

(a) The simulated data from BEKK GARCH model (T=1000).

(b) The simulated data from CCC GARCH model (T=1000).

Figure 4.4.1: Simulated data from Bekk and CCC model. The figure shows one
path out of 100, the conditional distribution for both these models is assumed to
be normal.

4.4.2 Forcast evaluation of VaR models

Backtesting is the major technique to test the performance of Value at Risk.

It includes the unconditional and conditional coverage and independence tests

proposed by Kupiec et al. (1995) and Murphy (2012). In the content of log return,
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the loss function-based backtests can be defined as

It+1(α) =


1 if rt,t+1 ≤ −V aRt(α)

0 if rt,t+1 > −V aRt(α)

where rt,t+1 stands for the return or loss between the end of day t and t+1.

Although the hit function above plays a crucial role in a variety of backtesting

procedures, the hit function itself contains far less information. Based on the hit

function. Christoffersen (1998) construct the independence test which is known

as a Markov test and it tests the independent property. In other words, this test

tries to find whether the probability of VaR violation is related to the result of

the previous day. If we define Ni,j, with i = 0, 1, j = 0, 1, as the number of days

it takes that state j violates on one date while state i violate on the previous date

and the following 2× 2 contingency table including all the possible outcome:

Tn−1 = 0 Tn−1 = 1

Tn = 0 N0,0 N1,0 N0,0 +N1,0

Tn = 1 N0,1 N1,1 N0,1 +N1,1

N0,0 +N0,1 N1,0 +N1,1 N

Table 4.4.1: The transition matrix of the independence test.

Let p01 = N0,1

N0,0+N0,1
denote the conditional probability of transition from state 0

to 1. Given the condition that there was no failure on period t − 1, p01 is the

probability of having a failure at time t. Let p11 = N1,1

N1,0+N1,1
be the conditional

probability of transition from state 1 to 1. Given the condition that there was

a failure at time t − 1, p11 is the probability of having a failure at time t. The

unconditional probability of having a failure at time t is p = N0,1+N1,1

N
. Then the

likelihood ratio of this independence test is as followed and it is asymptotically
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distributed as a chi-square distribution with the degree of freedom equal to 1.

LRind = −2 ln
[
(1− p)N0,0+N0,1 × pN0,1+N1,1

]
+2 ln

[
(1− p0)N0,0p

N0,1

0 (1− p1)N1,0p
N1,1

1

]
(4.4.8)

The Kupiec’s proportion of failures (PoF) test is utilized here to check whether

the proportion of violation is consistent with the α × 100% of the whole sample.

It is an extension of the standard /unconditional coverage test. The statistic

POF = 2 ln

[(
1− α̂
1− α

n−I(α)
)(

α̂

α

)I(α)
]

(4.4.9)

where α̂ is the average of hit function on I(α) (α̂ = 1
n
I(α))and I((α) =

∑n
t=1 It(α).

We also use the Conditional coverage mix test which we also call joint test. It is

a combination of the independent statistics with Kupiec’s PoF-test. It measures

the correct failure rate but also the independence of violation. The test statistic

is

LR = LRind + POF (4.4.10)

The simulation results can be found in Tables 4.4.2 and 4.4.3. The VaR we tested

in the table is calculated based on equation 4.4.2, which is dynamic but with

same GARCH coefficients for each iteration. Parameters of the GARCH model

and innovation density functions for the univariate model are calculated using the

first 500 data points(training set). For the copula-based model, the first 500 data

points in each iteration is divided into training set and validation set. The optimal

copula-based empirical Bernstein model is selected when the number of grids in

each dimension maximize the loglikelihood of the validation set. The optimal

copula-based penalized Bernstein model is selected when the penalization part

maximize the loglikelihood in validation set. The average coverage is the mean

through 100 iterations and all the results of hypothesis testing in the table are the

count of rejections in these 100 simulations. The out-of-sample test is based on
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Average Std.Dev. of Independence test CC PoF

Coverage(%) coverage(%) (No. of Rejection)

In sample

Univariate

M1 5.0 0.37 1 1 0

M2 4.8 0.48 3 0 1

Copula-Based Empirical

M1 5.2 0.43 2 1 0

M2 5.1 0.36 2 0 1

Copula-Based Penalized

M1 4.9 0.52 2 1 0

M2 4.9 0.38 2 0 1

Average Std.Dev. of Independence test CC PoF

Coverage(%) coverage(%) (No. of Rejection)

Out of sample

Univariate

M1 5.4 3.14 6 21 21

M2 5.2 3.05 5 22 24

Copula-Based Empirical

M1 5.5 2.80 6 20 17

M2 5.6 2.68 4 20 21

Copula-Based Penalized

M1 5.3 1.65 6 11 11

M2 5.2 1.65 4 15 16

Table 4.4.2: Monte Carlo results of the backtesting analysis when the DGP from
Bekk.
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Average Std.Dev. of Independence test CC PoF

Coverage(%) coverage(%) (No. of Rejection)

In sample

Univariate

M1 5.0 0.45 2 0 1

M2 5.0 0.48 2 0 1

Copula-Based Empirical

M1 5.0 0.37 2 0 1

M2 5.0 0.41 2 0 0

Copula-Based Penalized

M1 5.0 0.33 2 0 1

M2 5.0 0.41 2 0 0

Average Std.Dev. of Independence test CC PoF

Coverage(%) coverage(%) (No. of Rejection)

Out of sample

Univariate

M1 5.2 1.82 4 11 17

M2 5.0 1.43 5 7 10

Copula-Based Empirical

M1 5.2 1.64 5 7 13

M2 5.1 1.29 5 7 7

Copula-Based Penalized

M1 5.0 1.32 4 5 9

M2 5.1 0.92 4 5 6

Table 4.4.3: Monte Carlo results of the backtesting analysis when the DGP from
CCC.

the prediction value using estimated information from the training set. The α in
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both DGP is set to be 5%.

The simulation results show that the estimation of innovation directly determines

the level of Value-at-Risk. For each simulation, the estimated parameters of the

standardized innovation are quite similar to each other. But the final Value at

Risk has a comparably large discrepancy. For the in-sample estimation, these three

methods have the similar average coverage and pass almost the same number of

tests in backtesting. However, for the out-of-sample estimation, the copula-based

methods provide more precise prediction, especially the penalized model. The

penalized copula-based model has smaller standard deviation of coverage for both

margin 1 and margin 2 and shows a significant decrease in the number of violations

in the hypothesis testing.

Figure 4.4.2: The estimated Value-at-Risks of marginal distribution 1 in an out-
of-sample set.

4.5 Conclusion

In this chapter, we developed a three-step estimation method to improve the

performance of the univariate density function. Compared with the univariate

model, the copula-based model significantly provides more accuracy both in cross-
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sectional data and time series data. The improvements are irrelevant to the linear

dependency between random variables. Compared with the copula-based em-

pirical model, the three-step method shows better prediction properties. In the

context of VaR evaluation, some small changes in innovation estimation using pe-

nalized copula method can also lower the level of Value at Risk. Although the

innovation distribution is pre-assumed, it is still valuable to study its properties

and estimations.
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CHAPTER 5

Pricing Rainbow Options Based on Dependence

Structure Modeled by Penalized Bernstein

Copula

5.1 Introduction

Rainbow (or multivariate) options are contracts linked to the performance of two

or more underlying assets. They are usually calls (or puts) on the best (or worst)

of several assets. One dominant aspect of evaluating rainbow options is the depen-

dency between the underlying assets. Consider a bivariate call on min European

option, it provides the holder with the right to purchase the minimum asset of the

two for a pre-specified strike price. As the dispersion goes up(the two assets move

in the opposite direction), the value of such an option decreases unequivocally.

In general, the relationship between the underlying changes over time. The time-

varying dependency involved methods can provide a more realistic and accurate

valuation of rainbow options.

Option pricing has been studied extensively following the seminal work of Sc-

holes and Black (1973) and Merton (1973). They provide the fundamental pro-
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cedures for analyzing the value of contingent claim assets. Due to the increasing

complexity of the options’ structure, various research was conducted on modeling

the multivariate option prices through traditional Black-Scholes model(Margrabe,

1978; Stulz, 1982). They estimate the inner dependency between assets by Pear-

son’s correlation. However, unless the relationship between financial assets follows

multivariate Gaussian distribution, the correlation coefficient is not a satisfactory

choice for dependence modeling. Besides, the financial time series often exhibits

stochastic volatility and jumps(Scaillet and Fermanian, 2002). Both features re-

sult in skewed and heavy-tailed distribution, which can be poorly captured by a

lognormal density.

In this chapter, the relation between two assets in the bivariate option will be

estimated through the nonparametric copula function. Using copula to price mul-

tivariate options is not a new topic. Rosenberg (1999) and Cherubini and Luciano

(2002) firstly introduce copula in bivariate option pricing. Rosenberg (1999) use

a Plackett copula to link the risk-neutral marginal distribution to obtain the bi-

variate risk-neutral density function. Rosenberg (2003) derive and implement a

nonparametric, arbitrage-free estimator for marginal distribution and a kernel-

based nonparametric copula to glue them together. The copula is applied stati-

cally. It works well in a relatively short period. While financial data often cover

a reasonably long period, the economic environment may induce some changes in

dependence structure. Zhang and Guegan (2008) indicates that the static Gaus-

sian copula model gives higher option prices than the dynamic Gaussian copula

model. So time-varying method is also considered in this chapter.

For pricing the contingent claims based on time series, Duan (1995) introduced the

locally risk-neutral relationship(LRNVR) in the context that the asset return is

assumed to follow the GARCH dynamic. It formulates that the one-period ahead
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conditional variance is invariant with respect to the change to the risk-neutralized

pricing measure. However, the LRNVR is based on conditional normality. Duan

(1999) extend the LRNVR to generalized form which allows all kinds of innova-

tions except student t. But it doesn’t have an explicit formula for both log return

and conditional volatility function, which increase the computational burden.

In our study, we adopt a nonparametric copula-based GJR-GARCH approach

with generalized error distribution (GED) innovation to evaluate European bi-

variate rainbow options. The nonparametric model employed in our study cap-

tures the co-movement of residuals within the GARCH model. We recognize that

the traditional local risk-neutral valuation relationship, which assumes conditional

normality and connects the physical asset with the risk-neutral one, may not ade-

quately account for the skewness and fat-tail properties observed in financial data.

To address this limitation, we relax the assumption of conditional normality and

derive a generalized risk-neutral valuation relationship with an explicit formula.

To evaluate the performance of our approach, we compare it with existing para-

metric copula models in both static and dynamic scenarios for option pricing. The

empirical results highlight the significance of selecting an appropriate copula for

accurate option pricing across different scenarios, since the dependence structure

changes under different measures(i.e. physical and risk-neutral measure). The

remainder of this chapter is organized as follows: Section 5.2 provides background

information on option valuation and explains the risk-neutral method based on the

GJR-GARCH-GED model. In Section 5.3, we present the procedure for estimat-

ing the conditional copula. Section 5.4 presents the empirical study on bivariate

option pricing, where we evaluate the performance of our nonparametric copula-

based approach.
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5.2 Preliminaries and related literature

5.2.1 Option valuation

The rainbow options include all the options whose payoff depends on more than

one underlying risky asset. This chapter concentrates on European-type options

with the bivariate call-on-max payoff. The technique can be sufficiently extended

to other kinds of rainbow options as well. The payoff of a call-on-max option can

be written as

max(max(S1,T , S2,T )−K, 0) (5.2.1)

where K is the strike price, T is the maturity, and Si,t is the value of the i-th asset

(i=1,2) at time t. In the Black-Scholes model, it assumes that percentage changes

in the asset price in a very short period are normally distributed. Assume that

the expected return in a very short period is µ and the volatility of the underlying

asset is σ. Then, the change of underlying asset ∆S in the asset S in time ∆t

follows:

∆S

S
∼ N (µ∆t, σ2∆t)

Suppose G = lnS, according to Ito’s lemma

dG =

(
µ− σ2

2

)
dt+ σdz

In the simplest case, µ and σ are constant, then this equation shows that lnS

follows a generalized Wiener process. The log return of the underlying asset is

therefore normally distributed between time 0 and some future time t.

ln
St
S0

∼ N
[(
µ− σ2

2

)
t, σ2t

]
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Then, the individual asset price process in discrete time can be expressed as

St = S0 exp

[(
µ− σ2

2

)
t+ σWt

]

where Wt stands for the Wiener process. Since observations are assumed to be

equally spaced,

St−1 = S0 exp

[(
µ− σ2

2

)
(t− 1) + σWt−1

]

which gives,

St = St−1 exp

[(
µ− σ2

2

)
+ σ(Wt −Wt−1)

]
(5.2.2)

For Wiener process, Wt+u −Wt ∼ N (0, u). Let (Ω,F ,P) be a probability space,

Ω is a non-empty set, F is a σ−algebra of subsets of Ω and P : F → [0, 1] is a

probability measure on F . Let

εt|Ft−1
P∼ N (0, 1)

which means εt is Ft−1 measurable. Ft is the information set of all information

through time t. 5.2.2 can be written as

St = St−1 exp

(
µ− σ2

2
+ σεt

)
(5.2.3)

Considering the financial data presenting usually clustering volatility and condi-

tional heteroscedasticity, we apply a GARCH framework of Bollerslev (1986) to

capture the dynamics of the volatility term of the underlying asset. Although var-

ious specifications of the GARCH model are implementable, Hansen and Lunde

(2005) shows that selecting different orders of a GARCH model has trivial im-

portance in improving forecasting accuracy. Also, another feature of the financial

time series data is the leverage effect, which shows an asymmetric effect on the
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volatility changes in response to positive and negative shocks to the same extent.

To capture this effect, the GJR-GARCH model proposed by Glosten et al. (1993)

is taken into consideration.

ri,t = µi + ei,t (5.2.4)

ei,t = σi,tεi,t

σ2
i,t = αi,0 + αi,1e

2
i,t−1 + βiσ

2
i,t−1 + ηie

2
i,t−1Ii,t−1 (5.2.5)

where the ri,t stands for the return of the i-th market at time t and I is the

indicator function with:

Ii,t−1 =


1 if εi,t−1 < 0

0 if εi,t−1 ≥ 0

(5.2.6)

where the indicator term multiplying φ captures the asymmetry, αi,0 > 0, αi,1 ≥ 0,

βi ≥ 0 ηi ≥ 0 secure that the conditional variance term is always positive and

αi,1 +βi +
1
2
ηi < 1 is required for the convergence of the conditional variance. One

common assumption of GARCH based option pricing model is that the return se-

ries of financial data is followed the conditional normality. However, the assump-

tion is controversial. Bollerslev (1987) indicates that monthly S&P 500 Com-

posite Index returns show conditional leptokurtosis and introduce the GARCH

model with standardized student t innovation. Christoffersen et al. (2006) cap-

tures this conditional skewness through an inverse Gaussian distribution. Since

the moment-generating function of a student t-distribution doesn’t exist for all

degrees of freedom, implementing t-distribution as the innovation of the GARCH

model may lead to assuming ab unbounded expected asset return. To study the

conditional fat-tail property, we employ the generalized error distribution (GED)

as innovation Nelson (1991). Let Fi,t denote the σ−filed generated by all available

information up to and including time t of i-th market and fν(εi,t|Fi,t−1) be the
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conditional density function for εi,t.

εi,t|Fi,t−1 ∼ Gν(εi,t) under measure P

fν(εi,t|Fi,t−1) =
ν exp

(
−1

2

∣∣∣ εi,tθ(ν)

∣∣∣ν)
21+1/νθ(ν)Γ (1/ν)

for 0 < ν ≤ ∞ (5.2.7)

where θ(ν) =

(
2−

2
ν

Γ(1/ν)

Γ(3/ν)

)1/2

Γ is the gamma function, the shape parameter ν determines the tail-fatness of

the density function. 5.2.7 is a standard normal density function when ν = 2

and it is the Laplace distribution when ν = 1. As ν → ∞, the density converges

pointwise to a uniform density. When ν > 2, the density function has a thinner

tail compared with the normal distribution. When ν < 2, the fat-tail situation

occurs. Duan (1999) indicates that even with ν = 1, the expected asset return is

still finite for σi,t < 2, and the utilization of GED innovation can analyze the fat-

tail effect through the tradition of modeling the compound return continuously.

Then, the conditional marginal distribution of ri,t can be defined as following:

P (ri,t ≤ r|Fi,t−1) = P (εi,t ≤
r − µi√

αi,0 + αi,1ei,t−1 + βiσ2
i,t−1 + ηie2

i,t−1Ii,t−1

|Fi,t−1)

5.2.2 Risk-neutralization with GJR-GARCH process

The risk-neutral valuation arises from one pivotal property of the Black-Scholes-

Merton differential equation. It is that the equation does not include any vari-

ables affected by the risk preference of investors. In the risk-neutral world, the

present value of any cash flow can be calculated by discounting its expected value

at the risk-free rate. Camara (2003) derives a risk-neutral valuation(risk-neutral

relationship, RNVR) equation to conduct a closed-form solution for European

option pricing when the underlying asset has a transformed normal distribution
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under a certain combination of preference and wealth distribution assumptions.

Duan (1995) develops the locally risk-neutral valuation relationship(LRNVR) in

the context that the asset return is assumed to follow the GARCH dynamic.

The LRNVR formulates that the one-period ahead conditional variance is invari-

ant concerning the change to the risk-neutralized pricing measure. However, the

LRNVR is based on the conditional normality condition. To further relax the

assumption, Duan (1999) conduct the generalized local risk-neutral valuation re-

lationship (GLRNVR) to analyze the effect of conditional leptokurtosis and it

shows that the LRNVR is still valid when conditional normality is restored by

transformation.

We aim to find the bivariate risk-neutral return process from the objective marginals.

Each marginal distribution can be transformed to risk neutralized one based on the

risk-neutral valuation relationship. The previous section shows that the marginal

process of individual asset return is assumed to be conditionally distributed under

the physical measure P and the volatility term is a GARCH process with non-

normal innovation. The conventional risk-neutral valuation relationship should be

adjusted to take the heteroskedasticity of the return process into consideration. A

risk-neutral probability measure Q is defined as follows:

Definition 5.2.1. (Locally risk-neutralized pricing measure) Let Yt = ln U ′(Ct)
U ′(Ct−1)

be a process such that Yt|Ft−1 is normally distributed with constant mean and

variance under the physical measure P. Define the risk-neutralized measure Q as

dQ = exp

(
(r − ρ)T +

T∑
s=1

Ys

)
dP (5.2.8)

then Q is a measure and equivalent to P. Here, Ct represents the aggregate con-

sumption at time t, U(Ct) is the strictly increasing utility function of the economic

agent in the time separable and finitely additive exchange economy and ρ is the
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impatience factor.

Duan (1999) indicates that the generalized risk neutralization has the invariance

property which means that the underlying distribution for the transformed inno-

vations keeps unchanged and the risk-neutral process only shifts the mean of the

transformed innovation. Let zi,t be independent and identically distributed normal

under the physical measure P and z∗i,t be independent and identically distributed

normal under the risk-neutral measure Q. Define the mean shift between the two

measures by:

λi,t = z∗i,t − zi,t (5.2.9)

For a GED-distributed innovation εi,t, the mapping can be written as

λi,t = z∗i,t − Φ−1(Gν(εi,t)),

where Φ−1 is the inverse cumulative distribution function (cdf) of the standard

normal distribution function with respect to measuring P. Then, Φ−1(Gν(εi,t)) is

normally distributed with respect to measure P. Combined with the generalized

local risk-neutral valuation relationship(GLRNVR) theory by Duan (1999), the

following

Theorem 5.2.1. Duan (1999) A pricing measure Q is said to satisfy the gen-

eralized local risk-neutral valuation relationship (GLRNVR) if,

1. measure Q is mutually absolutely continuous with respect to the objective

measure P

2. EQ
[

Si,t
Si,t−1

|Fi,t−1

]
= exp(rf )

3. there exists a predictable process λi,t such that

z∗i,t = λi,t + Φ−1(Gν(εi,t))|Fi,t−1 ∼ N (0, 1) with respect to measure Q
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The linear normal mapping in 5.2.9 as a nonlinear GED mapping given by

εi,t = G−1
ν (Φ(z∗i,t − λi,t)).

It is necessary to solve for λi,t to implement the risk-neutral model. The magnitude

of mean shift λi,t is determined by the second condition in theorem 5.2.1, which

let the conditionally expected risk-neutral asset return in each period equal to the

risk-free rate.

EQ
[
Si,t
Si,t−1

|Fi,t−1

]
= EQ [exp{µi,t + σi,tεi,t}|Fi,t−1]

= EQ [exp{µi,t + σi,tG
−1
ν (Φ(z∗i,t − λi,t))}|Fi,t−1

]
= exp(rf )

When ν = 2, G−1
ν (Φ(z∗i,t−λi,t)) = z∗i,t−λi,t. It is not difficult to obtain an explicit

solution in this case. When ν 6= 2, the solution for λi,t involves prohibitively

cumbersome numerical calculations on each t. Here, we utilize the approximation

method mentioned in Christoffersen et al. (2010). Since the normal and GED

functions are both symmetric, and G−1
ν (Φ(0)) = 0 for all the ν. We use the linear

approximation for

G−1
ν (Φ(z)) ≈ bνz

here, bν can be found given the value of ν by fitting the linear model with a wide

grid of z value.
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Figure 5.2.1: The scatter plot between z and G−1
ν (Φ(z))

With this approximation, and set µi = rf + θσi,t, here θ is the unit risk premium.

θ =
µ−rf
σ

, the σ here is the long term standard deviation.

exp(rf ) = EQ [exp{rf + θσi,t + σi,tG
−1
ν (Φ(z∗i,t − λi,t))}|Fi,t−1

]
1 = exp{θσi,t}EQ [exp{σi,tG−1

ν (Φ(z∗i,t − λi,t))}|Fi,t−1

]
≈ exp{θσi,t}EQ [exp{σi,tbν(z∗i,t − λi,t)}|Fi,t−1

]
then by the moment generating function for a normally distributed random vari-

able we have,

1 = exp{θσi,t} exp{−λi,tσi,t} exp

{
1

2
b2
νσ

2
i,t

}

Taking logarithm on both side and solving for λi,t yields

λi,t =

(
θ

bν
+
bν
2

)
σi,t

The mapping between the physical GED and the risk-neutral normal shocks is

εi,t = G−1
ν

(
Φ

(
z∗i,t −

(
θ

bν
+
bν
2

)
σi,t

))
(5.2.10)
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Under some conditions, the generalized locally risk-neutral valuation relationship

holds and the log-return process in 5.2.4 can be transformed to the one under the

risk-neutral measure Q:

Theorem 5.2.2 (GJR-GARCH with conditional leptokurtosis). Under the risk-

neutral probability measure Q, the model for one-period log return ri,t is

ri,t = rf + θσ2
i,t + σi,tG

−1
ν

(
Φ
(
z∗i,t − λi,t

))
σ2
i,t = αi,0+αi,1(G−1

ν (Φ(z∗i,t−1−λi,t−1))σi,t−1)2+βiσ
2
i,t−1+ηi(G

−1
ν (Φ(z∗i,t−1−λi,t−1))σi,t−1)2Ii,t−1

λi,t =

(
θ

bν
+
bν
2

)
σi,t

where z∗i,t conditional on Fi,t−1 is a Q−standard normal random variable, and

G−1
ν [·] represents the inverse GED cumulative density function with parameter ν

and θ is the price of risk.

It’s obvious to find that when the underlying innovation is normally distributed

ν = 2, bν = 1, the formula for the one-period log-return becomes ri,t = rf −
1
2
σi,t + σi,tz

∗
i,t. Theorem 5.2.2 provides a relatively approximate efficient way from

the physical model to the risk-neutral one. Based on this theorem, the following

corollary can be defined for the terminal asset price.

Corollary 5.2.1. When the generalized local risk-neutral valuation relationship

(GLRNVR) holds, the i-th asset price for time T can be expressed as

Si,T = Si,t exp

{
(T − t)rf +

T∑
s=t+1

θσ2
i,t +

T∑
s=t+1

σi,tG
−1
ν (Φ(z∗i,t−1 − λi,t−1))

}
(5.2.11)

Proof. From the theorem 5.2.2, we have

ln
St
St−1

= rf + θσ2
i,t + σi,tG

−1
ν

(
Φ
(
z∗i,t − λi,t

))
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for every t ∈ R under Q. Thus,

ln
ST
St

=
s=t+1∑
T

ln
Ss
Ss−1

=
T∑

s=t+1

rf + θσ2
i,s + σi,sG

−1
ν

(
Φ
(
z∗i,s − λi,s

))
= rf (T − t) + θ

T∑
s=t+1

σ2
i,s +

T∑
s=t+1

σi,sG
−1
ν

(
Φ
(
z∗i,s − λi,s

))
which means that

ST = St exp

(
rf (T − t) + θ

T∑
s=t+1

σ2
i,s +

T∑
s=t+1

σi,sG
−1
ν

(
Φ
(
z∗i,s − λi,s

)))

by taking exponents on both sides of the equation.

The asset price which is discounted at the risk-free rate has the martingale prop-

erty. The theory of contingent claim pricing’ martingale properties has been intro-

duced by Harrison and Kreps (1979) and further extend by Harrison and Pliska

(1981). Since σi,tzi,t∗ is conditionally normal with mean zero and variance σ2
i,t

under the probability measure Q, the discount asset price process e−rf tSi,t is a

Q-martingale.

Under the locally risk-neutral probability measure Q, the rainbow (call-on-max)

option with strike price K maturing at time T has the value at time t:

ROt = e−(T−t)rfEQ[max(max(S1,T , S2,T )−K, 0)|Ft]. (5.2.12)

Under the GJR-GARCH(1,1) specification, Ft = {F1,t,F2,t}. It is the σ-field

generated by {Si,t, G−1
ν

(
Φ
(
z∗i,t − λi,t

))
, σ2

i,t}.
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5.3 Option pricing under GJR-GARCH process

with penalized copula

To price the rainbow options dynamically, a time-varying copula approach is ap-

plied. The bivariate distribution of the log returns (r1,t, r2,t) is stated conditionally

on the information set of all the information till time t-1, Ft−1 = σ(r1,m, r2,m) and

m ≤ t − 1. All conditional margins only depend on their own past. Based on

Sklar’s theorem of copula estimation, we estimated the marginal distributions of

each log return and the copula function separately. The marginal distribution is

modeled by the GJR-GARCH process with GED innovation to capture the asym-

metry and potential heavy tails.

Considering the complex relationship between the assets during some special fi-

nancial periods (like COVID-19), we use the penalized Bernstein copula to capture

the inner dependence. The merit and main properties of this nonparametric cop-

ula have been thoroughly explained in Chapter 3. Since most of the data sets

contain relatively long time periods, the difference in the macroeconomic environ-

ment may induce changes in the dependence structure. Consequently, we conduct

a time-varying approach in moving windows based on the penalized Bernstein

copula.

According to the formula 5.2.12, the value of the rainbow option price relies on the

expectation of the payoff under risk-neutral measure Q. Instead of converting the

joint distribution into its risk-neutral counterpart as a whole, the physical mar-

gins explained in equation 5.2.5 are transformed into functions in theorem 5.2.2

respectively. Then, the joint distribution of assets should be under measure Q,

and the copula function is under Q. Also, we assume that the optimal parametric
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copula in the physical world and the risk-neutral world belong to the same family.

To estimate the rainbow option(call-on max), the dependency between r1,t and

r2,t needs to be estimated. As the standardized innovation in the GJR-GARCH

model is assumed to follow the generalized error distribution, the bivariate condi-

tional distribution function is

H((r1,t, r2,t)) = H((ε1,t, ε2,t)) = C(Gν1(ε1,t), Gν2(ε2,t))

where C is the copula function and Gν is the cumulative density function of

generalized error distribution with shape parameter ν. Then, the corresponding

conditional density function is

h((ε1,t, ε2,t)) = c(Gν1(ε1,t), Gν2(ε2,t))
2∏
i=1

gνi(εi,t) (5.3.1)

where the copula c is given by

c(u1, u2) =
∂2C(u1, u2)

∂u1∂u2

with (u1, u2) ∈ [0, 1]2. Based on the IFM method, we estimate the marginal

distribution parameter first,

ν̂i = arg max
νi

n∑
t=1

log gνi(εi,t)

and

γ̂t = arg max
γt

n∑
i=1

log c(Gν1(ε1,t), Gν2(ε2,t); γt)− λpen(γ)

From this estimation, the coefficients of dependence structure have been fitted for

each window.
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5.4 Empirical evidence

5.4.1 Analysis of data set

The analysis approach for rainbow(bivariate) option price using dynamic copula

function with GJR-GARCH process to monitor the individual marginal distribu-

tion outlined in the previous section. This section shows the detailed analyzing

procedure with the call-on-max option on the index from both developed markets

and emerging markets. The sample includes 4 country indexes (United States,

United Kingdom, Singapore, Germany ) from developed markets and 4 country

indexes (Greece, China, India, Korea) from emerging markets. The data used

to represent the eight representative markets is the daily index price of Morgan

Stanley Capital International (MSCI). The country index from MSCI is designed

to represent the performance of securities exhibiting the value/growth character-

istics. The index returns span 2 years from January 2020 to December 2021 for a

total of 522 observations expressed in US dollars. Figure5.4.1 shows how the mar-

ket index prices change over this period. The market index prices of the United

States, Singapore, the United Kingdom, and Germany experienced an enormous

decrease in March 2020, when COVID-19 started to spread over the world. And

they also show a similar downturn in November 2020. On the contrary, emerging

markets do not display significant synchrony over the period.
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Figure 5.4.1: The market index price plot for all the markets and the index price
span 2 years from January 2020 to December 2021.

Descriptive Statistics for the United States(US), United Kingdom(UK), Germany(DE),

Singapore(SG), Greece(GR), China(CN), India(IN), and Korea(KR) returns are

presented in Table 5.4.1. The market of the United States shows the highest mean

and Indian shows the highest median in index returns. The market in Greece has

the highest volatility. The unconditional distributions of all the markets’ returns

show negative skewness and expected express kurtosis.

The results of the Jarque-Bera test indicate that neither of these equity returns

is normally distributed under 1% significance level. In addition, the pair DE-UK

has the highest linear correlation based on both the correlation coefficient (0.8835)

and Kendall’s tau(0.6074). Four pairs ( US-SG, US-IN, US-KR, and GR-CN )

show very low correlation, while all the others have a similar moderate correla-

tion(around 0.5 for Pearson correlation coefficients and around 0.3 for Kendall’s

tau). The least dependent pair is US-KR (0.2377 for correlation coefficients and

0.1102 for Kendall’s tau). The familiar volatility clustering effect with some ex-

traordinarily large absolute value can be observed from the time series plots 5.4.2

of index returns for all these four markets.
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Developed Markets Emerging Markets Scenario

United States United Kingdoms Germany Singapore Greece China India Korea

Summary Statistics

Mean(%) 0.0768 -0.0026 0.0232 -0.0186 -0.0611 -0.0033 0.0680 0.0478

Median(%) 0.1100 0.1006 0.1048 0.0000 0.0354 0.0401 0.1204 0.0413

Min(%) -12.9221 -14.2054 -15.0943 -7.9324 -14.3226 -6.0908 -15.6226 -10.9966

Max(%) 8.9831 10.9954 10.2431 7.3187 8.5469 4.9430 9.1706 10.1407

Std. Dev. 0.0163 0.0163 0.0163 0.0133 0.0216 0.0154 0.0166 0.0184

Skewness -1.1193 -1.1600 -1.5325 -0.3721 -1.1993 -0.4018 -2.1016 -0.0248

Kurtosis 18.3438 19.0081 21.3669 10.2816 10.5341 4.4767 23.2309 9.3420

Jarque-Bera statistic 5229.6693 5690.7004 7541.5232 1165.2721 2486.8599 61.4752 9286.2788 874.8456

Jarque-Bera p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000

Correlation matrix

United States United Kingdom Germany Singapore Greece China India Korea

United States 1.0000 0.6301 0.6220 0.3727 0.5447 0.4074 0.3769 0.2377

(0.3070) (0.3473) (0.1598) (0.2322) (0.2238) (0.1614) (0.1102)

United Kingdom 1.0000 0.8835 0.6189 0.6560 0.4480 0.5747 0.4651

(0.6074) (0.3574) (0.3474) (0.2732) (0.3004) (0.2449)

Germany 1.0000 0.5948 0.6653 0.4544 0.5415 0.4474

(0.3574) (0.3769) (0.2768) (0.3160) (0.2527)

Singapore 1.0000 0.4938 0.5066 0.6496 0.6947

(0.2613) (0.3426) (0.3442) (0.4180)

Greece 1.0000 0.3260 0.5087 0.3806

(0.1643) (0.2475) (0.2090)

China 1.0000 0.4566 0.5253

(0.2662) (0.3504)

India 1.0000 0.5633

(0.3342)

Korea 1.0000

Table 5.4.1: The table shows the summary statistics of the daily index return
of four developed markets and four emerging markets. Returns are defined as
rt = lnSt/St−1 and St is the index of time t. The correlation matrix shows the
correlation coefficients and Kendall’s taus in bracket
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Figure 5.4.2: The time series plots for the log return of the United States, United
Kingdom, Germany, Singapore, Greece, China, India, and Korea from Jan. 2020
to Dec. 2021.

5.4.2 The copula estimation method

We model the marginal distribution of returns in each individual market, which

are assumed to be GED distributed. The estimation results of selected models

are shown in Table 5.4.2. The GJR-GARCH(1,1) is employed to capture the

conditional heteroscedasticity in returns. Since SG, CN and KR do not show

significant asymmetry effects, so the GARCH(1,1) model is utilized for these three

markets’ returns. The asymmetry detected coefficient η for US, UK, DE, GR, and
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IN are all significant under 5% significance level and they are all positive. It

indicates that the negative shocks provide more volatility than positive shocks of

the same size in the subsequent period.

GARCH models Shape Parameter Log-Likelihood AIC BIC

αi,0 αi,1 βi ηi ν

(s.e.) (s.e.) (s.e.) (s.e.) (s.e.)

United 9.6359E-06*** 0.0945** 0.6614*** 0.4861*** 1.2697*** 1649.937 -6.3024 -6.2617

States (0.0000) (0.0296) (0.0423) (0.1420) (0.0954)

United 3.0661E-06 0.01661 0.925***6 0.0775* 1.1008*** 1554.13 -5.9354 -5.8946

Kingdom (0.0000) (0.0698) (0.0994) (0.0361) (0.0882)

Singapore 7.6492E-06*** 0.1635*** 0.7853*** 1.3118*** 1639.762 -6.2673 -6.2347

(0.0000) (0.0300) (0.0340) (0.1067)

Germany 2.2623E-06** 1.6833E-07 0.9269*** 0.1142** 1.0619*** 1563.23 -5.9702 -5.9294

(0.0000) (0.0048) (0.0202) (0.0354) (0.0864)

China 3.6210E-05* 0.1430** 0.6987*** 1.5488** 1467.784 -5.6139 -5.5731

(0.0000) (0.0520) (0.1050) (0.1055)

Greece 1.0180E-06*** 0.0384* 0.8652*** 0.1201* 1.1447*** 1438.382 -5.4919 -5.4511

(0.0000) (0.0197) (0.0253) (0.0490) (0.0896)

Korea 1.6055E-05 0.15440** 0.7878*** 1.6068*** 1439.93 -5.5012 -5.4604

(0.0000) (0.0501) (0.0602) (0.2031)

India 6.6459E-06*** 2.2120E-08 0.8829*** 0.1464*** 1.1896*** 1576.977 -6.0205 -6.0045

(0.0000) (0.0076) (0.0174) (0.0506) (0.1195)

Table 5.4.2: The table shows the Quasi-Maximum likelihood estimates for the
parameters of the marginal distribution model. The models are selected according
to Akaike Information Criterion(AIC), Bayesian Information Criterion(BIC), and
their statistical features.

In addition, the shape parameter ν for all the markets is significant and the values

are between 1 and 2, which means the density function for these markets shows

a fatter tail compared with the normal distribution. The shape parameter is far

lower for Germany than for the other economies, implying the DE returns have

the fattest tails during this time period.

Based on previous analysis, we mainly focus on studying the bivariate rainbow op-

tion constructed by the six pairs of the market: US-UK, UK-DE, DE-GC, SG-KR,
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CN-KR, and IN-GC, which are representative: two pairs are within the developed

markets, two pairs are across the developed and emerging market and two are

within the emerging markets. And they all show the highest linear dependency in

each category. We separate the data into two samples: one for training and the

other for testing. Figure 5.4.3 draws the scatter plot of observed pairs of ranks for

the estimated GJR-GARCH(some are GARCH). The data points of most pairs

are more concentrated in the left corner, which is similar to other financial time

series data. It means that these eight market equity indexes have the aggregation

effect when the market is down-turn. The standard innovations(εi,t = ei,t/σi,t) of

the six pairs of markets.

The Ljung-Box test for autocorrelation and the Kolmogorov-Smirrnov tests for

density specification are also employed to secure the correct specification of mar-

gins. The test statistics and p values are displayed in table 5.4.3. All models pass

the Ljung-Box test at 10% significance level and all the models pass the KS test

at 1% significance level. It shows that the marginal models are well-specified.

Ljung box KS

Margins LB statistics p-value KS statistics p-value

US 7.4459 0.9949 0.0826 0.0565

UK 21.4173 0.3729 0.0488 0.5628

DE 24.6287 0.2160 0.0638 0.2380

SG 21.2947 0.3800 0.0312 0.9614

GC 7.7688 0.9933 0.0349 0.9071

CN 12.7357 0.8884 0.0414 0.7630

IN 17.2703 0.6354 0.0897 0.0298

KR 15.8054 0.7286 0.0559 0.3877

Table 5.4.3: The statistical results from the Ljung-Box test and Kol-
mogorov–Smirnov test for the marginal distributions of the eight markets.
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(a) US-UK (b) UK-DE

(c) DE-GC (d) SG-KR

(e) CN-KR (f) GC-IN

Figure 5.4.3: Support set of the empirical copula of the standardized GJR-GARCH
innovations(GED)
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For the copula estimation, we select Gaussian, student t, and three Archimedean

copulas: Frank, Gumbel, and Clayton as the parametric copula function to do the

comparison. Table 5.4.4 shows the estimation result for the dependence structure

of these assets on the whole period. All the copulas are fitted to the support

set of the standardized innovations from the GJR-GARCH(1,1) and GARCH(1,1)

models respectively. Among all the parametric families, student t copula shows

the highest log-likelihood for all six pairs and it also has the smallest AIC.

Copula Type US-UK UK-DE DE-GC SG-KR CN-KR GC-IN

Gaussian

Parameters 0.4562 0.8057 0.5500 0.5871 0.4882 0.3712

log-likelihood 60.7028 273.3716 93.6497 109.9528 70.9808 37.8580

AIC -119.4056 -544.7432 -185.2993 -217.9056 -139.9615 -73.7160

Student t

Parameters 0.4509 0.8059 0.5503 0.5883 0.4913 0.3683

d.o.f. 7.5108 4.3702 7.8994 18.0453 18.8353 9.7282

log-likelihood 63.9732 282.4488 97.0611 111.1571 71.7572 41.2764

AIC -123.9463 -560.8976 -190.1223 -218.3143 -139.5143 -78.5528

Frank

Parameters 2.8520 7.5922 3.7109 4.1337 3.3580 2.2406

log-likelihood 50.6505 236.1553 81.5889 100.0812 68.7534 33.2354

AIC -99.3010 -470.3106 -161.1777 -198.1624 -135.5067 -64.4708

Gumbel

Parameters 1.4469 2.4307 1.5664 1.6019 1.4632 1.3017

log-likelihood 60.0655 264.3358 82.4954 97.9269 66.5909 30.9851

AIC -118.1309 -526.6716 -162.9908 -193.8538 -131.1818 -59.9703

Clayton

Parameters 0.5092 1.9658 0.8180 0.8677 0.5890 0.4351

log-likelihood 49.5923 233.1102 89.3525 91.5353 52.9370 37.7950

AIC -97.1846 -464.2205 -176.7050 -181.0707 -103.8739 -73.5899

Table 5.4.4: Parametric copula fitting results. For the student t copula, the first
parameter is correlation and the second is the degree of freedom.

Then, to observe whether the dependence structure has changed during this pe-

riod, we utilize the moving window to show the variation of dependency. The

whole sample is divided into 21 windows, and each window consists of 207 ob-

servations. The window is moved per 15 observations. Along with the window
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movement, the best fitting copula on the corresponding sub-sample is selected

through the log-likelihood based on the cross-validation method.

Windows US-UK UK-DE DE-GC

i-th Copula Parameter Copula Parameter Copula Parameter

1 Gumbel 1.7191 t 0.8943 1.7907 Clayton 1.2108

2 Gumbel 1.7264 Gumbel 3.3881 Clayton 1.0311

3 Clayton 0.8062 t 0.8893 2.2588 Clayton 0.9009

4 Frank 3.9029 Gaussian 0.8812 t 0.6047 12.5968

5 Frank 3.0690 Gaussian 0.8487 Gaussian 0.5498

6 Frank 2.8306 Gaussian 0.8366 t 0.5214 26.9187

7 Frank 2.3906 Clayton 2.0175 Gaussian 0.5123

8 Frank 2.1870 Frank 7.5906 t 0.4471 10.6564

9 Frank 2.2302 t 0.8144 9.4870 Clayton 0.5686

10 Frank 2.0673 t 0.7885 20.7487 Clayton 0.7189

11 Clayton 0.3007 Frank 7.5104 Clayton 0.8124

12 Frank 2.0866 Gumbel 2.1646 Clayton 0.9550

13 Gumbel 1.2828 t 0.7851 16.3412 Clayton 0.7764

14 Gumbel 1.2372 Gaussian 0.7463 Gaussian 0.5476

15 Frank 1.8268 Gaussian 0.7408 Clayton 0.6454

16 Frank 1.5573 t 0.7459 67.4079 Gaussian 0.4755

17 Frank 1.4206 t 0.7263 16.9855 t 0.4777 6.0106

18 Frank 1.3300 t 0.7105 34.0511 Clayton 0.6694

19 Gumbel 1.2569 t 0.7173 3.18E+06 Clayton 0.5226

20 Gumbel 1.2755 Gumbel 1.9825 Clayton 0.5316

21 t 0.3851 5.90361971 Gumbel 2.3130 Clayton 0.5582

Table 5.4.5: Dynamic copula analysis using a moving window for US-UK, UK-DE,
DE-GC. For student t copula, the first parameter is correlation and the second is
the degree of freedom.
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Windows SG-KR CN-KR GC-IN

i-th Copula Parameter Copula Parameter Copula Parameter

1 t 0.7275 1.30E+07 Frank 6.4550 Gumbel 1.4547

2 Clayton 0.8255 Clayton 0.8458 Frank 2.9074

3 Clayton 0.8472 Clayton 0.9059 t 0.4132 11.6743

4 t 0.6845 1.19E+07 Clayton 0.8185 Gaussian 0.3594

5 t 0.6535 1.31E+07 Clayton 0.5715 t 0.2498 9.5732

6 t 0.6190 1.29E+07 t 0.4742 1.30E+07 t 0.2757 8.8084

7 t 0.6194 1.13E+07 Gaussian 0.4634 t 0.2431 15.9787

8 Gaussian 0.5866 Gaussian 0.4347 t 0.3029 24.0655

9 Gumbel 1.5323 Frank 2.4871 Frank 2.3331

10 Gumbel 1.4579 Frank 2.5566 Gumbel 1.3004

11 Gumbel 1.4842 t 0.3249 7.4457 Frank 3.0358

12 Clayton 0.8104 t 0.3896 8.7325 Clayton 0.4018

13 Clayton 0.9857 Gaussian 0.4182 Clayton 0.4559

14 Clayton 0.8530 Gaussian 0.4403 Clayton 0.3278

15 Clayton 0.8591 Gumbel 1.3277 Clayton 0.3308

16 Clayton 1.1275 Gumbel 1.3931 Clayton 0.3301

17 t 0.5324 3.1339 Gumbel 1.4047 Clayton 0.2765

18 Clayton 0.8898 Clayton 0.5505 Clayton 0.2123

19 Clayton 0.8453 Gumbel 1.4673 Clayton 0.2131

20 Clayton 0.8265 Gumbel 1.4049 t 0.1845 19.5530

21 Clayton 0.9500 Gaussian 0.3780 t 0.1714 11.3939

Table 5.4.6: Dynamic copula analysis using a moving window for SG-KR, CN-KR,
GC-IN. For student t copula, the first parameter is correlation and the second is
the degree of freedom,

The penalized Bernstein copula model is estimated through these 21 windows and

the comparison of the optimal estimated parametric model and the optimal pe-

nalized Bernstein copula model is displayed in table 5.4.7. Except for some values

for the pair of UK-DE, the penalized model has a comparably higher loglikeli-

hood than the optimal parametric copula. From the moving windows table for
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the parametric copula, all six pairs show significant variation in dependence struc-

ture. Most of the US-UK pair select Frank copula and its parameter show notable

changes over time.

Windows US-UK UK-DE DE-GC SG-KR CN-KR GC-IN

i-th Optimal PBC Optimal PBC Optimal PBC Optimal PBC Optimal PBC Optimal PBC

1 32.5478 36.5067 145.3476 127.8643 46.5033 42.1183 65.0055 62.20497927 44.3011 47.0583 16.4850 18.8291

2 35.7763 31.7301 147.6449 137.1256 41.3045 45.5013 42.9145 62.41770662 29.2580 44.8289 20.2155 22.4971

3 22.7418 29.7407 140.7814 128.3576 44.1350 46.5874 39.7258 58.33639014 27.0530 39.7376 23.2204 20.3431

4 25.9186 30.2971 125.7944 120.2853 44.6124 43.9356 56.2336 53.83839606 24.3992 34.1077 17.5725 11.9638

5 19.9636 22.6009 112.5944 109.4592 41.4143 39.4719 53.0214 49.30022042 18.9793 24.7103 13.4711 12.9844

6 18.8607 21.7372 111.8627 106.0765 39.4766 36.0276 51.6784 50.49322435 25.0712 25.5660 14.6564 15.4080

7 17.4364 20.0092 92.4307 101.9811 35.7151 42.1977 47.5108 51.42030112 23.3899 24.9883 12.5053 5.4970

8 13.8959 18.7645 88.4141 93.7755 30.1222 29.8549 41.4261 46.85127183 23.0015 24.0016 13.7376 12.8771

9 10.3441 17.8685 95.3231 87.9422 28.9459 38.1063 34.5597 36.99375302 21.2671 23.8471 13.7627 13.6315

10 8.3379 15.3141 89.1990 88.5704 31.0995 29.7431 32.1944 37.69008142 20.6133 24.8047 10.8243 11.3219

11 6.0078 15.9365 78.9725 81.3566 30.7172 32.1682 31.5105 33.72839263 17.3458 8.8731 14.9684 13.6227

12 10.9589 18.6314 77.0903 85.8963 28.6952 28.0154 28.1419 28.62487736 20.7127 25.3920 9.2026 8.3994

13 10.5132 19.6849 83.3633 83.5208 25.0835 23.5345 29.1997 29.32851357 19.3283 22.5462 9.2317 8.3320

14 11.2076 19.7248 86.2056 90.8473 22.3477 24.0221 25.8333 27.96557729 19.0241 21.5661 6.3845 7.6903

15 14.5426 21.6547 87.7718 92.2559 23.1805 27.1944 28.9648 30.53811013 17.7349 22.0549 6.7164 6.7602

16 11.6888 18.3250 83.6694 87.3478 23.4836 23.7506 31.9091 33.97936778 20.9046 22.9522 6.7662 10.1535

17 11.1356 17.0815 85.8010 91.4531 21.0377 20.6103 34.2462 27.53926506 22.3009 23.6730 6.6877 6.9340

18 11.0619 13.2579 84.8946 92.8686 23.3346 31.3235 28.2141 34.85636454 12.3194 19.5005 5.5444 8.7512

19 16.8519 16.8924 89.2023 94.6650 21.4499 25.0740 26.7344 27.43113769 23.2994 22.1408 5.0177 1.8664

20 15.4588 4.0366 81.4125 90.9421 20.7344 27.5979 26.0545 25.03409741 17.1899 17.1293 3.6991 2.9613

21 21.4077 28.2510 97.7245 95.0101 24.0061 23.5580 29.4505 32.08551197 15.6752 15.3363 6.2752 8.0974

Table 5.4.7: The loglikelihood of the optimal parametric copula and the optimal
penalized Bernstein copula in the subsample.

5.4.3 Bivariate option pricing

In this section, the bivariate option will be evaluated by Monte Carlo simulation.

The risk-free rate is set as the average of the 10-year treasure rate of the United

States between the years 2020 and 2021, which is 2%. The unit risk premium is

set as 5%. As the initial asset prices need to be close to let the option make sense,

we assumed Si,0 is normalized to unity(Zhang and Guegan, 2008). The maturity
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is assumed to be 1 month (20 trading days) T = 20 and the strike price is set at

a level between 0.9 to 1.1. The Monte Carlo simulation is based on the following

procedures, the number of iterations N = 10, 000:

1. Generate the uniform distributed random number u1,t, u2,t from the chosen

copula. If the chosen copula is from the parametric copula family, we use the

inverse method. For the Bernstein copula estimator, we use the procedure

states in section 3.3.1. In the static scenario, the random numbers generation

process is utilizing the parameters estimated in Table 5.4.4. In the dynamic

scenario, the random number is generated from the parameters estimated in

each rolling window.

2. Set the initial conditional volatility is σ̂2
i,0 = α̂i,0/(1−α̂i,1− β̂i−0.5η̂i). Based

on the estimated parameter of the GJR-GARCH model and the function in

theorem 5.2.2, using the generated G−1
ν̂i

(ui,t) to replace εi,t in the formula

and then each σ̂2
i,t and r̂i,t can be obtained through

σ̂2
i,t = α̂i,0 + α̂i,1(G−1

ν̂ (ui,t)σ̂i,t−1)2 + β̂iσ̂
2
i,t−1 + η̂i(G

−1
ν̂ (ui,t))σ̂i,t−1)2Ii,t−1

and,

r̂i,t = rf + θσ̂2
i,t + σ̂i,tG

−1
ν̂ (ui,t)

3. Get Ŝji,T for each iteration j, j=1,....,N and i=1,2 by take the exponential of

the sum of ri,t through t, which is

Ŝji,T = Si,0 exp

(
T∑
t=1

r̂i,t

)

4. The call on max option price can be found by the discounted average of the
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max.

ROi,0 ≈ e−T×rf × 1

N

N∑
j=1

[
max(max(Ŝj1,T , Ŝ

j
2,T )−K, 0)

]
The subscript j refers to the j-th out of a total of the Monte Carlo simulated

path.

(a) US-UK (b) UK-DE (c) DE-GC

(d) SG-KR (e) CN-KR (f) GC-IN

Figure 5.4.4: 1-month call-on-max European option prices in basis points as a
function of the strike under static dependence.

The results for option pricing are illustrated here for comparison. The first pairs of

figures show the call-on-max option prices as a function of the strike in the static
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scenario. For high correlated pairs (UK-DE, DE-GC, SG-KR), the discrepancy

between different models is not significant. For the pairs with smaller Kendall’s

tau, the nonparametric copula model has different option prices from the other

parametric models. The Clayton copula with lowest loglikelihood and highest

AIC value in the estimations of pair SG-KR and CN-KR provides higher option

prices than the others. The Frank copula with lowest loglikelihood and highest

AIC value in the estimations of pair DE-GC provides higher option prices than

the others.

(a) US-UK (b) UK-DE

Figure 5.4.5: 1-month call-on-max European option prices in basis points as a
function of the strike under dynamic dependence.

Figure 5.4.5 shows the option prices in a dynamic scenario. We select one with the

most concentrated (UK-DE )and one with the most discrepant (US-UK) option

price lines in the static case. It shows consistent results with Zhang and Guegan

(2008) that the dynamic student t copula model gives lower option prices than the
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static one. For the nonparametric penalized Bernstein copula model, the dynamic

one provides similar results to the static one.

5.5 Conclusion

In this chapter, a new approach for option price based on GJR-GARCH combined

with penalized copula model has been introduced. The risk neutral process with

non-normal innovation based on Duan (1999) has been derived with explicit for-

mula which facilitate the Monte Carlo simulation. The introduce of GJR-GARCH-

GED model on each asset allows most of the features from financial datasets to be

captured, including conditional leptokurtosis, asymmetry and heavy tails. From

the empirical results, the importance of selecting a proper copula is verified in both

static and dynamic estimation, especially when the corresponding assets show low

dependency.
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CHAPTER 6

Limitation and Future Extensions

In this thesis, we propose a nonparametric Bernstein copula approach to accurately

model the dependence structures among data. The sieve maximum likelihood es-

timation (SMLE) technique is employed to estimate the parameters within the

Bernstein polynomial sieve space. To enhance prediction accuracy and introduce

sparsity, we incorporate the adaptive LASSO method. Through extensive simu-

lation studies, we demonstrate the superior performance of our model compared

to parametric copula models, across both sparse and less sparse scenarios. As a

future extension, we suggest exploring the application of penalized nonparametric

Bernstein copula in higher dimensions, such as five dimensions. However, it should

be noted that Diers et al. (2012) has shown that grid-type copula approaches out-

perform the Bernstein copula estimator in six-dimensional datasets. To address

higher dimensions, additional techniques such as pair copula estimation can be em-

ployed. Moreover, studying the asymptotic behavior of the penalized maximum

likelihood estimator with adapted LASSO can be a valuable direction, guided by

the work of Zou and Hastie (2005).

While nonparametric estimation provides flexibility in density estimation, certain

data types, like claim frequency and claim severity in non-life insurance, often

adhere to specific parametric distributions. When accurately specified, estimat-

ing density based on the corresponding parametric model can yield accurate and
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efficient results. In this study, we propose a three-step double selection procedure

to enhance univariate density estimation. By conducting extensive simulations

using both cross-sectional and time series data, we provide compelling evidence

of the significant improvement achieved through our methodology. However, the

theoretical foundations of the double selection procedure have not been explored

in this research, presenting an opportunity for future investigation. Additionally,

an interesting extension of our proposed methods is their application in higher

dimensions, which warrants further exploration.

With the increasing complexity of financial products, the copula has emerged

as a popular tool in asset pricing. We propose a nonparametric copula-based

GJR-GARCH model with GED innovation for pricing European bivariate rain-

bow options. Our model captures residual co-movement and addresses limitations

of the normality assumption. Empirical comparison with parametric copula mod-

els demonstrates the importance of selecting suitable copulas for accurate option

pricing across static and dynamic scenarios under different measures. An exten-

sion to this work is to study the time variation in conditional correlation. Previous

research has demonstrated that certain parametric copula models have a one-to-

one relationship between their dependence parameters and Kendall’s tau. Van den

Goorbergh et al. (2005) specifically reveals that Kendall’s tau can be expressed

as a function of conditional variances over time. By estimating this function, the

dependence parameter can be adjusted based on changes in Kendall’s tau, offering

a means to incorporate time-varying dependence in the model. Zhang and Guegan

(2008) extend this relationship to t copula which has two dependence parameters.

The relationship between Kendall’s tau and Bernstein copula has been discussed

by Sancetta and Satchell (2004), so the dynamic option pricing model based on

nonparametric Bernstein copula can be further developed.
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APPENDIX A

Some proofs of Bernstein polynomials

Proof of theorem 3.2.3

Proof.

∣∣(Bk
Jf)(x1, x2, ..., xk)− f(x1, ..., xk)

∣∣
=

∣∣∣∣∣
J1∑
j1=0

...
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[
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, ...,
jk
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]
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≤

∑
| jJ−−x|<δ
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, ...,
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Jk
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∑
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J1

, ...,
jk
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)− f(x1, ..., xk)

∣∣∣∣ pj1 ...pjk
Assume

Ts =
Js∑
js=0

(js − Jsxs)2pjs =
Js∑
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{js(js − 1)− (2Jsxs − 1)js + J2
sx

2
s}pjs

Clearly,
∑Js

js=0 pjs = 1, and we have
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Thus,

Ts =
(
J2
sx

2
s − (2Jsxs − 1)Jsxs + Js(Js − 1)x2

s

)
= Jsxs(1− xs) (A.0.1)

Since xs(1− xs) ≤ 1
4

on [0, 1], we can obtain the inequality

∑
| jJ−x|≥δ

pj1 ...pjk ≤
k

δ2

∑
| jsJs−xs|≥δ

(
js
Js
− xs

)2

pjs

≤ 1

J2
s δ

2
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xs(1− xs)
Jsδ2

≤ k

4Jsδ2

Based on our assumptions, that f(x1, ..., xk) ∈ C[0,1]k , if f is bounded, say M :=

maxu∈[0,1]k| f(u1, ..., uk), for a given ε > 0, we can find a δ > 0 such that |xs−x∗s| <

δ implies |f(x1, ..., xk)− f(x∗1, ..., x
∗
k)| < ε/2. Then, we have

∣∣(Bk
Jf)(x1, x2, ..., xk)− f(x1, ..., xk)

∣∣ (A.0.2)

≤ ε

2

∑
| jJ−x|<δ

pj1 ...pjk +

∣∣∣∣f(
j1
J1

, ...,
jk
Jk

)− f(x1, ..., xk)

∣∣∣∣ ∑
| jJ−x|≥δ

pj1 ...pjk (A.0.3)

≤ ε+ 2M × k

4Jsδ2
(A.0.4)

and if J is sufficient large, we have Mk
4Jsδ2

< ε
2

and
∣∣(Bk

Jf)(x1, x2, ..., xk)− f(x1, ..., xk)
∣∣ <

ε. If f(x1, ..., xk is continuous in the whole interval [0, 1]k then A.0.4 holds with a

δ independent of all xs, so that (Bk
Jf)(x1, x2, ..., xk)→ f(x1, ..., xk) uniformly.

Proof of theorem 3.2.4
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Proof.

(‖(Bk
Jf)(x1, x2, ..., xk)− f(x1, ..., xk)‖)2

≤

(
J1∑
j1=0

...

Jk∑
jk=0

∥∥∥∥f(
j1

J1

, ...,
jk
Jk

)− f(x1, ..., xk)

∥∥∥∥ pj1 ...pjk
)2

≤

(
L

J1∑
j1=0

...

Jk∑
jk=0

∥∥∥∥ j

J
− x

∥∥∥∥ pj1 ...pjk
)2

≤ L2

(
J1∑
j1=0

...

Jk∑
jk=0

∥∥∥∥ j

J
− x

∥∥∥∥ pj1 ...pjk
)(

J1∑
j1=0

...

Jk∑
jk=0

pj1 ...pjk

)

= L2

J1∑
j1=0

...

Jk∑
jk=0

(
s=1∑
k

(
js
Js
− xs

)2
)
pj1 ...pjk

= L2

s=1∑
k

xs(1− xs)
Js

≤ L2

s=1∑
k

1

4Js
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APPENDIX B

Parametric copula family

Gaussian copula

C(u1, u2; θ) = ΦR(Φ−1(u1),Φ−1(u2); θ)

where Φ is the cumulative distribution function(cdf) of the standard normal dis-

tribution and ΦR(u1, u2) is the standard bivariate normal distribution with the

parameter of correlation θ ∈ (−1, 1).

Student’s t copula

C(u1, u2; θ1, θ2) =

∫ t−1
θ1

−∞

∫ t−1
θ2

−∞

1

2π(1− θ2
2)1/2

× {1 +
s2 − 2θ2st+ t2

ν(1− θ2
2)

}−(θ1+2)/2dsdt

where t−θ11(u1) is the inverse cdf of the standard univariate t-distribution with θ1

degree of freedom. So, the parameter θ1 controls the tails’ heaviness. As θ1 →∞,

the student’s t copula behaves like Gaussian copula.

Clayton copula

C(u1, u2; θ) = (u−θ1 + u−θ2 − 1)−1/θ, θ ∈ (0,∞)

when θ → 0, the margins tend to be independent. As θ → ∞, the copula attain

Frechet upper bound. For Clayton copula, the lower bound cannot be attained.
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It works well if the correlation between the two random variables is strongest in

the left tail of joint distribution.

Gumbel copula

The Gumbel copula is characterized by the upper tail dependence

C(u1, u2) = exp
(
− [(− ln(u1))ρ + (− ln(u2))ρ]1/ρ

)
where ρ ∈ [1,+∞]. When ρ → ∞, the dependence structure between the two

random variable is perfectly positive and when ρ = 1, the two random variable is

independent as C(u1, u2) = u1u2.

Frank copula The Frank copula is a symmetric Archimedean copula given by:

C(u1, u2) = − 1

α
ln

(
1 +

(exp(−αu1)− 1)(exp(−αu2)− 1)

exp(−α)− 1

)

where α ∈ R {0}.
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