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1 Introduction 

The nature of railway accidents has drawn a considerable amount of attention in recent years. A variety of 
theories and frameworks are proposed in the literature to understand the mechanism of railway accidents from 
epidemiological (Peters et al., 2018), systemic (Read et al., 2021; Santos-Reyes &Beard, 2009), causation and 
sequencing (Wullems et al., 2013; Xia et al., 2012), and barrier of energy (Huang et al., 2020) perspectives. 
Many of them have been widely used in the railway industry and by railway accident investigation bodies. 
For instance, the Root Cause Analysis (RCA), the Accident Causation Model, and the Systems Theory are 
commonly used during the railway accident investigation to identify the causal relations between (underlying) 
factors during a railway accident (ATSB, 2009; Dai &Wang, 2010; Kinnersley &Roelen, 2007; RAIB, 2008). 

In recent years, a growing focus has been on mitigating the limitation of the number of cases of railway 
accidents analysed before establishing a theory or framework. Whilst it is commonly agreed that a railway 
accident involves many perspectives given that the railway system is characterised by high interactive 
complexity (Li et al., 2019; Read et al., 2021), extending the number of cases analysed can be difficult due to 
the complicated nature of factors in each railway system and the limited capacity of analysis conducted by 
humans. Previous research has enabled an increase in the number of railway accidents analysed for the purpose 
of comparing the causal relations between accidents analysed by predefining a series of labels and manually 
reviewing railway accident reports (Kim &Yoon, 2013; Zhou &Lei, 2018). However, the findings cannot be 
further extended to railway accidents in other jurisdictions or be updated after new railway accident reports 
are published.  

To overcome such obstacles, some prior works have explored leveraging the benefits of Natural Language 
Processing (NLP) and machine learning to consistently analyse a large body of textual data. NLP addresses 
the interface between human languages and computers by enabling the computer program to process a large 
amount of textual data through machine learning approaches. Several attempts to incorporate NLP into 
accident data analysis can be found in the context of maritime, aviation and road safety for the analysis of 
crowdsourced textual data (Kinra et al., 2020; Nelson et al., 2020; Syeda et al., 2019). Despite the extensive 
discussion of (semi-)automated textual data analysis in the literature, the focus is mainly on building the NLP 
model rather than interpreting the result. Additionally, most studies in this context utilise the supervised 
learning approach, requiring a significant amount of manual effort for training the model (Sizov &Öztürk, 
2013; Wang et al., 2017). These limitations hinder researchers and practitioners from advancing the existing 
railway safety knowledge with the help of novel technologies. 

The research objective of this study is to provide a holistic view of the nature of hazards in railway accidents 
across jurisdictions and across time by leveraging the power of NLP with little manual effort. Instead of 
establishing a customised model, this study only utilises open-sourced and off-the-shelf toolkits for building 
the NLP model so that the result and contribution of this study can be duplicated and reused. Therefore, the 
data-driven framework HazardMap is proposed to offer another view on railway accidents from the hazard-
centred perspective. The result is considered beneficial for researchers and practitioners in advancing railway 
safety knowledge by enabling learning across jurisdictions and across time. 
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This paper is organised as follows. Firstly, a brief review of literature on existing frameworks and theories on 
railway accident analysis is conducted (Section 2). Subsequently, the NLP model design for semi-automated 
hazards analysis on railway accidents and Python API-based toolkits and models are introduced (Section 3). 
Next, the HazardMap is proposed based on the findings of the outcome (Section 4) and a case study of the 
analysis across jurisdictions and across time is offered (Section 5). Lastly, conclusions, suggestions for further 
works and limitations are elaborated (Section 6). 

2 Literature context 

Railway safety research can be divided into several categories based on the purpose of the analysis. For 
example, railway safety can be treated as a risk issue and addressed from the perspective of risk sources, 
likelihood and consequences (Liang et al., 2020; Parkinson et al., 2016; Yang &Li, 2020). On the other hand, 
the classical energy-barrier model argues that introducing barriers in practical safety management can prevent 
energies from impacting vulnerable targets (Braut et al., 2014; Syeda et al., 2019; Zhou &Ding, 2017). 
Regardless of various research purposes, identifying hazards that might potentially cause negative 
consequences is one of the most critical tasks prior to any other risk-relevant analysis (Rausand, 2013). 
Hazards in the railway system can be classified on the basis of the application of interests. For instance, 
classifying based on the main contributor such as technological hazards and natural hazards is popularly used 
in the literature (Ouyang et al., 2010; Rydstedt Nyman &Johansson, 2015; Whittingham, 2012). Some studies 
also define a set of hazards as endogenous hazards and exclude others as exogenous hazards for the research 
object of interest (Hulin et al., 2016; Li et al., 2021). 

There has been a considerable number of methods for identifying hazards applied in the railway context, which 
can broadly be categorised in accordance with data-driven approaches, conceptual frameworks and systemic 
analysis. The data-driven approach concentrates on extracting hazards in the accident causation network (Bíl 
et al., 2017; Li et al., 2021; Zhang et al., 2021) or manually identifying hazards with proposed methods, such 
as the preliminary hazard analysis (PHA) (Guenab et al., 2008; Yan &Xu, 2019) and the failure modes, effects, 
and criticality analysis (FMECA) (Catelani et al., 2021; Ciani et al., 2019). On the other hand, conceptual 
frameworks attempt to capture critical insights from in-depth analysis of case studies (Bang et al., 2020; Li et 
al., 2021) or brainstorming (Berrado et al., 2010; Runyan &Yonas, 2008) to develop general methods and 
frameworks for further application. For instance, the Hazard and Operability (HAZOP) analysis has been 
adopted to identify potential deviations and undesired situations in railway operations (Bian &Wang, 2015; Li 
et al., 2015; Papen et al., 2011). Lastly, the systematic analysis considers the railway industry as a complex 
system and treats hazards as constructed issues that need to be addressed from the hierarchical control 
perspective (Ouyang et al., 2010; Zhang et al., 2021). The occurrence of railway accidents is the consequence 
of inadequate control which might be effected by individuals, organisations or systems (Rausand, 2013). 
Therefore, the emphasis of the systematic analysis is on inadequate controls resulting in hazards. Some 
methods such as the systems-theoretic accident model (STPA) (Gong &Li, 2018; Ouyang et al., 2010; Song 
et al., 2012) and the hierarchical socio-technical framework (Accou &Carpinelli, 2022; Akel et al., 2022; Ryan 
et al., 2021) are popularly used in the analysis of railway hazards.  

Despite a wide discussion of applied hazard identification approaches in the literature, most of them suffer 
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from the limited number of cases analysed given that most railway hazard-related documents are recorded in 
text form and manually reviewing textual data is extremely time-consuming (Rosadini et al., 2017). Therefore, 
growing attention has been drawn to the application of Natural Language Processing (NLP) to automating 
crowdsourced textual analysis. NLP is a technique for extracting knowledge of interest from unstructured text 
by enabling computers to process vast amounts of text (Ly et al., 2020; Marquez et al., 2000). The 
implementation of the NLP in the context of railway hazard analysis is limited. Most works focus on hazards 
classification (Dong et al., 2022; Hughes et al., 2018; Liu et al., 2022) and extracting hazards from textual 
data (An et al., 2013; Hadj-Mabrouk, 2019; Huang et al., 2022). The main contribution of these studies is 
offering an opportunity to enhance railway safety management by taking a holistic view of railway accidents 
across time (Hua et al., 2019; Syeda et al., 2019). However, several barriers to utilising the NLP hinder further 
application to the railway hazards analysis. For instance, most NLP models are customised for specific 
purposes and can only be used on certain datasets, making it extremely difficult to be extended in future works 
(Alawad et al., 2020; Dong et al., 2022; Lee et al., 2021). Additionally, the overreliance on the supervised 
learning approached is observed in the context of railway accident analysis which might restrict the insight 
into pre-determined dimensions and overlook other potential factors. Annotating data for the training process 
also requires intensive labour and human intervention, implying a potential obstacle to practical applications 
(Yang et al., 2022). Despite attempts to utilise unsupervised learning approaches, previous studies suffer from 
systematically interpretating the outcomes, resulting in a barrier for practitioners to implement to real-world 
operations (Bougacha et al., 2019; Lasisi &Attoh-Okine, 2020). This represents a gap in the literature which 
the present study seeks to address. 

To sum up, railway hazard identification has been discussed in the literature for a long time. A potential shift 
from manual approaches to NLP-based approaches is observed. Enlarging the amount of data analysed for a 
comprehensive perspective of hazards and incorporating it with existing frameworks and theories are 
prioritised in recent studies (Dong et al., 2022; Hua et al., 2019; Syeda et al., 2019). Additionally, a growing 
number of studies has examined the potential of textual big data analysis for public policy decision-making 
(Bai et al., 2021; Kinra et al., 2020). However, the major challenge of the current implementation is the absence 
of a general model allowing a wide range of data sources and the need to train the NLP model with limited 
human intervention. Such an obstacle hinders practitioners and researchers from reusing models and 
frameworks proposed in the literature for further implementation. Therefore, the need for a generalised and 
semi-automated analysis framework applicable to most textual data is required to overcome such a research 
gap. 

3 Semi-automated hazard analysis of railway accidents 

To overcome the limitations mentioned above, this study develops a framework for describing the nature of 
hazards in railway accidents by leveraging open-sourced and publicly available Python API-based toolkits to 
build the NLP model. The topic modelling is applied to explore potential hazards from the thematic structure 
of textual data (Hristova &Netov, 2022). The extracted topics are further processed to re-construct the relations 
between hazards via proposed post-processing procedures. 

3.1 Topic modelling 
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Topic modelling is a practical application in information retrieval and NLP to categorise text into domain 
topics and rank documents by topics (Bai et al., 2021; Dornick et al., 2021; Roque et al., 2019). A topic 
model reveals the relationship between topics and documents by exploring different features, such as the 
probability of occurrence of words and high dimensional word embeddings. The model assumes that a 
document contains a collection of underlying themes, and the distribution of words in the document over 
the whole corpus might derive topics representing these underlying themes. A set of keywords is identified 
to reflect underlying topics and their trend, which is useful for further methodological and practical 
applications (Blei and Mcauliffe, 2007). 

A topic model can be trained in several ways, including supervised learning, semi-supervised learning 
and unsupervised learning. To ensure highly automated analysis and avoid human intervention during 
data analysis, unsupervised learning approaches are selected for building the topic model in this study. A 
considerable number of off-the-shelf programming packages (Python API-based toolkits) for advanced 
NLP applications are developed and publicly available. These include Spacy for deep learning workflows 
and pre-trained language models (Choi et al., 2015; Jugran et al., 2021), Stanford NLP for toolkits used 
in developing extensible pipeline and pre-trained models (Manning et al., 2014), and NLTK for a wide 
range of libraries to implement NLP tasks (Bird and Loper, 2004). Several package-oriented programming 
models have been developed based on these packages and the state-of-the-art technologies result in 
significant improvements of performance in the topic modelling contexts. Among existing topic 
modelling approaches, the BERTopic has demonstrated a better performance in the human language 
understanding and offering robust and interpretable results (Grootendorst, 2022; Hristova &Netov, 2022). 
The following sections elaborate on the details and applications of the BERTopic models. 

3.2 BERTopic 

The BERTopic is a topic model adopting the state-of-the-art Bidirectional Encoder Representations from 
Transformers (BERT) pre-trained language model (Devlin et al., 2018) to retrieve high-dimension vectors 
of texts for clustering, which has been proven to provide better performance on several NLP tasks (Devlin 
et al., 2018; Dornick et al., 2021). For implementation topics are generated through three steps: text 
vectorisation with a pre-trained language model, dimension reduction for optimising the modelling 
process, and topic representations with custom class-based TF-IDF (c-TF-IDF). The c-TF-IDF is an 
advanced method for converting original text into a series of representative numbers (which is also known 
as word embedding). In contrast to traditional approaches, the c-TF-IDF takes the semantic relationships 
between words into account, increasing the interpretability and accuracy of the outcomes. 

For the text vectorisation with a pre-trained language model, documents in the corpus are embedded in 
vector space with high dimensions, allowing semantical comparisons. For instance, sentences such as 
“The train stops before the signal.” and “The train fails to stop before the signal.” will have a longer 
semantical distance in vector space than the representation created by the bag-of-words approach. The 
Sentence-BERT (SBERT) framework (Reimers and Gurevych, 2019) is used to convert texts into dense 
vector representations, which has been commonly applied to NLP tasks and high performance achieved 
(Ganesh et al., 2020; Labusch and Neudecker, 2020; Ly et al., 2020). The author of BERTopic also states 
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that the language model used in the BERTopic is exchangeable so that the performance can be 
continuously improved through the development of NLP techniques (Devlin et al., 2018). 

Once the dense vectors are generated, the spatial distance between data becomes less meaningful due to 
the multidimensions of local and global features. Therefore, the Uniform Manifold Approximation and 
Projection (UMAP) technique is introduced to reduce the dimensionality by projecting vectors to lower 
dimensional space (McInnes et al., 2018). Subsequently, the Hierarchical Density-Based Spatial 
Clustering of Applications with Noise (HDBSCAN) is used to cluster vectors in lower dimensional space 
(McInnes et al., 2017). The advantage of HDBSCAN is allowing noise to be modelled as outliers, 
avoiding unrelated documents being sorted to topics and influencing the representations of topics. The 
clustering approach can be replaced by other algorithms in the interest of accuracy and computational 
time. 

Lastly, each identified cluster is assigned to one topic with a distribution of keywords. To highlight the 
difference between clusters, the custom class-based TF-IDF (c-TF-IDF) is used to rank keywords by the 
combination of Term Frequency (TF), and Inverse Document Frequency (IDF) (Devlin et al., 2018; 
Hakim et al., 2014). The weight of a term (t) over documents sorted to a topic (c) can be expressed as  

𝑊𝑊𝑡𝑡,𝑐𝑐 = 𝑡𝑡𝑓𝑓𝑡𝑡,𝑐𝑐 × log (1 + 𝐴𝐴
𝑡𝑡𝑓𝑓𝑡𝑡

)                        Equation 1, 

where tf is the term frequency and A is the average number of keywords per topic. The output reflects the 
importance of a term in one topic rather than in one document, allowing us to understand the distributions 
of keywords on each topic. Furthermore, Equation 1 can be extended for dynamic topic modelling to 
reflect the evolution of topics over time. For instance, a topic relating to “over speeding” and “SPAD” 
can be found across the corpus, but the term “Eurotunnel” might not be found in documents before 1994. 
Such variance has been mixed, hindering researchers from understanding the temporal effect of “over 
speeding” and “SPAD” on the term “Eurotunnel”. To overcome such difficulties, Devlin et al. (2018) 
modifies the calculation of the weight 𝑊𝑊𝑡𝑡,𝑐𝑐 by creating a local temporal representation at time i with the 
original equation. 

𝑊𝑊𝑡𝑡,𝑐𝑐,𝑖𝑖 = 𝑡𝑡𝑓𝑓𝑡𝑡,𝑐𝑐,𝑖𝑖 × log (1 + 𝐴𝐴
𝑡𝑡𝑓𝑓𝑡𝑡

)                      Equation 2, 

Equation 2 adds an additional dimension to the weight and enables the representation of local variables 
without modifying the parameters of the trained BERTopic model and clustered documents. An overview 
of processes for establishing a BERTopic model is illustrated in Figure 1. Additional mathematical 
descriptions and details of Python API interfaces are given in Devlin et al. (2018). 

 



6 
 

 

Figure 1, the overview of workflows for developing a BERTopic model 

3.3 Dataset 

Multiple data resources are applied in this study. However, the difference in language used in railway 
systems in recording accidents, culture, and regulations can make the analysis inconsistent and create 
significant bias. Hence, in this study only countries where the investigation bodies exhibit the following 
features are considered: 

1) The investigator must have access to a comprehensive documentation system to reduce the 
complexity of processing. In other words, the framework of the accident report must be clear and 
consistent in the temporal aspect (for instance, the jurisdiction has a law or regulation on the 
format of generating accident reports). 

2) The investigator must have been granted the independent authority to conduct the investigation. 
Furthermore, the investigation objective should aim to increase railway safety regardless of blame 
or liability. 

3) The reports conducted by the investigator must contain recommendations which focus on issues 
relating to railway safety, such as the implementation of specific training or policy, introducing 
new technology, or revising existing standard operating procedures. Note that the 
recommendations must not contain inference or conclusion of apportioning liability. 

4) This study only considers data from native English-speaking countries to secure the performance 
of the model, which implies that reports must be written in English. Additionally, the English 
language used in reports should be consistent regardless of time, the types of accident, or 
investigation engagement (for instance, the definition of derailment in each jurisdiction would not 
vary over time). 

5) This study only considers investigating bodies which have published over 100 reports to ensure 
the performance of the model. 

Based on these requirements, railway accident reports published by independent railway accident 
investigation bodies from the UK, the USA, Canada and Australia are used. Railway accident reports 
compiled by independent railway accident investigation organisations are regulated by a national 
framework and provide unbiased and blame-free details for promoting a railway safety culture. Despite 
the differences in writing styles and terminology used, all reports consist of the summary of the accident, 
the analysis, the investigation, key findings, conclusions and recommendations (if applicable). The 
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database provided by investigators covers various periods of time. For the best understanding of railway 
accident knowledge, all retrievable railway accident reports in PDF format from the official websites of 
countries included are retrieved. Data from the ATSB and TSB is retrieved from websites directly because 
the full text is provided and crawlable via HTML. Scanned files are removed due to the technical 
difficulties of recognising the text converting it into an editable form. 

Table 1 shows the overview of the processed railway accident dataset. The RAIB has published a series 
of review reports, such as the “Investigation into the safety of automatic open level crossings on Network 
Rail’s managed infrastructure” (RAIB, 2011). These reviews are overlapped with published reports and 
are excluded from the dataset. The ATSB and TSB provide the full text of railway accident reports on the 
website which are retrieved directly. Despite the availability of early reports (pre-1996) published by the 
NTSB, only scanned files are retrievable and these are excluded from the dataset. 

Table 1, the overview of the processed railway accident dataset 

  No. of reports No. of sentences Period Note 
RAIB 339 124,990 2005-2019 Review reports are removed. 

ATSB 250 84,679 1999-2021 
Reports are retrieved from websites 
directly. 

NTSB 274 92,406 1996-2021 Reports earlier than 1996 are scanned files. 

TSB 415 104,720 1993-2021 
Reports are retrieved from websites 
directly. 

3.4 Descriptive results from applying the topic model 

Table 2 presents the description of the top 5 topics with the highest occurrences in each dataset. An 
exhaustive description of the top 50 topics of each dataset is shown in Appendix A. The name of each 
topic is assigned in accordance with the representative terms identified. The result indicates potential 
similarities and differences between railway accidents analysed in each jurisdiction. It can be seen that 
the risk factor “fatigue” has been widely discussed and examined in the countries investigated. In contrast, 
the emphasis of each investigator in their reporting is slightly different. For instance, the NTSB 
concentrates on the statistical evidence collected from physical devices, such as the event recorder and 
toxicology test. On the other hand, the RAIB seems to devote much effort to discovering potential 
underlying factors, such as driver knowledge and communication. However, the interpretation would be 
extremely limited by only analysing topics with the highest occurrences. Without further analysis the 
relationship between each topic cannot be revealed, hindering users from understanding the mechanisms 
of railway accidents. Therefore, additional modifications are required to extend the result for a holistic 
view of the nature of railway accidents across countries. 
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Table 2, the description of the top 5 topics with the highest occurrences of the possibility of each dataset 

 RAIB ATSB NTSB TSB 
Topic 0* Trams Fatigue Emergency response Fatigue 
Topic 1 Fatigue Sounded horn/ 

audibility 
Drug, alcohol, and 
toxicology test 

Emergency brake 

Topic 2 Communication Train speed Event, audio and 
image recorder 

Warning devices at 
grade crossings 

Topic 3 RRV (Road Rail 
Vehicles) 

Queensland Rail Positive Train 
Control 

Derailment of freight 
cars 

Topic 4 Driver knowledge, 
training, instruction 

Network Control 
Office (NCO) 

Conditions of 
switches 

The interface 
between controllers 
and crew  

*The Python indexing system starts with 0. 

4 The development of the general framework 

In traditional hazard identification approaches, manual review and analysis are the main methods to propose 
the framework depicting the nature of hazards identified in a particular case. However, there is no general 
model allowing a wide range of data sources which significantly limits the capability for reusing models and 
frameworks proposed in the literature for further implementation (Section 2). As demonstrated above (Section 
3), the result retrieved from the NLP model is difficult to be interpreted individually without understanding 
the relationship between each topic. To address these issues, the HazardMap framework is proposed to extend 
the result of the topic model and existing theories in the literature. This section describes the development of 
the framework and a case study application is given in Section 5.  

4.1 The topic model results 

Firstly, the distribution of the number of sentences over each topic on documents is extracted and 
condensed to a topic-document matrix. Secondly, we assume that the distribution of each topic over 
documents is the projection of the extent to which this topic influences each railway accident. Multiple 
similar distributions indicate that these topics constitute a specific group of railway accidents with similar 
features. Therefore, the cosine similarity approach is applied to identify the similarity of distributions 
(Cheng et al., 2009; Qurashi et al., 2020). A topic-topic similarity matrix can be generated with each 
element between 0 and 1. The larger similarity score indicates that sentences under both topics are 
commonly used in the same group of documents.  

Next, a distribution of topics including the relationship can be mapped by setting a threshold for the 
similarity score, linking each topic and forming a series of clusters representing various hazards. The 
threshold is determined by the researcher based on the nature of input data and analysis purposes. A higher 
threshold leads to scarce links between topics and forms a limited number of small clusters, whereas a 
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lower threshold results in dense connections between topics and several large clusters containing almost 
all topics. Therefore, the threshold needs to be carefully determined by reviewing each outcome with a 
different similarity score.  

This study uses the RAIB dataset as an example for demonstrating the application. The threshold for the 
RAIB dataset is set as 0.5 due to the appropriate balance between the number of clustered groups and the 
well-distributed hazards. Figure 2 shows the distribution of the relationship between hazards identified in 
the RAIB dataset. Each orange dot represents a topic identified by the BERTopic and the link refers to the 
similarity score of two topics that is larger than the threshold. The name assigned to each cluster is based 
on the inference of keywords of linked topics. According to this result, more potential hazards are 
identified compared with the interpretation of topics having high possibilities of occurrences. The 
connection between topics is also revealed to illustrate the underlying causal relations in the hazard group. 
In addition, the cross-country analysis becomes applicable by extracting the hazard of interests from 
different countries and comparing the mechanisms and causal relations. 
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Note: Each orange dot represents a topic identified by the BERTopic and the link refers to the similarity score of two topics that is larger than 

the threshold of 0.5 for the similarity score. The distance between dots is arbitrary. 

Figure 2, the distribution of the relationship between hazards identified in the RAIB dataset 

It is recognised that a similar accident may still occur even though recommendations made are adopted 
by the railway industry. Such a situation might not be directly related to the issue of how hazards are 
addressed but rather the way hazards are interpreted, indicating the need for a re-interpretation of hazards 
in the railway safety context. Additionally, the distribution of the relationship between hazards constitutes 
each cluster by aggregating connected hazards, indicating the nature of the complexity of a hazard. 
Therefore, the hazard should be interpreted by elements involved rather than the hazard itself given that 
it would trigger another accident in combination with other hazards or in other dimensions. 

It is assumed that each hazard in the railway system is revealed in the form of accidents. From the analysis, 
it seems that a hazard has multiple aspects that result in different types of accidents. Therefore, a 
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previously addressed hazard might appear again after combination with others, implying one hazard will 
never be fully addressed. However, reducing the impact caused by proposing appropriate 
recommendations toward accidents by revealing aspects of one hazard is still beneficial for improving 
railway safety. 

Based on this description, we can conclude that each hazard has almost infinite aspects. For example, one 
aspect might result in an accident with the combination of other hazards and under specific conditions. 
Once the accident occurred, the impact would disrupt the railway system and recommendations are 
proposed to address the triggered aspect of this hazard by the investigator. After several occurrences of 
accidents and all controllable aspects have been addressed, this hazard is considered to be mitigated to 
the lowest possible level.  

4.2 Theoretical basis 

The concept of hazard is derived from the risk theory depicting potential threats that might cause harm. 
A hazard would not cause harm until it is out of control or triggered by other hazards or external factors 
(Rausand, 2013). The theory of hazards has been extended with other theories; for example, the domino 
effect uses the concept of hazards to illustrate accident scenarios and escalating situations (Gonzva et al., 
2017). The modern analysis of hazards in the railway context focuses on understanding the mechanisms 
of hazards in the socio-technical system (Akel et al., 2022; Gong &Li, 2018; Ouyang et al., 2010). For 
the hazard identification processes, the sources can be classified as brainstorming, functional approaches 
and empirical analysis.  

The brainstorming method aims to identify hazards in a system by retrieving knowledge or experience 
from experts via interviews, workshop or discussion (Berrado et al., 2010).The functional approach 
emphasises the structure of systems and understands the system as a hierarchy control system (Li &Liu, 
2021; Li et al., 2015). The sources of hazards identified by functional approaches come from recognising 
unsafe interactions between factors even though the harm is not triggered. Similar to the brainstorming 
method, the process involves the engagement of experts in addition to the inferring process to identify 
underlying hazards at the organisational level (Li et al., 2019; Madigan et al., 2016). Lastly, the empirical 
analysis identifies hazards through in-depth case studies with existing frameworks or theories. A holistic 
view of hazards can be extracted by collecting the data relating to an investigation, evidence and analysis 
and the knowledge and experience by discussing with experts (Holmgren, 2006; Li et al., 2019; Zhan et 
al., 2017).  

Therefore, the sources for identifying hazards are mainly professional knowledge, practice experience, 
analysis, and real-world recorded data, primarily in textual and statistical forms. By understanding the 
potential path and learning from accidents, the hazard can be managed to prevent similar accidents from 
occurring again. On the other hand, a hazard can derive a higher possibility of causing harm over time 
through the development of technology, the introduction of a new system or the change of legislation, all 
of which are difficult to be foreseen. Therefore, each hazard can trigger an accident in combination with 
other factors by different aspects. For example, the human factor “fatigue” might cause a railway accident 
due to transient, cumulative, and circadian sleep disorders (Fan &Smith, 2019). Each type can be 
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considered as an aspect of the “fatigue” hazard and is discovered and managed in different ways. There 
might be another aspect belonging to the “fatigue” hazard existing in the railway system but not yet 
recognised. Despite the difficulty of observing unforeseen aspects of a hazard, recording and updating 
aspects found in historical railway accidents are critical to ensure known hazards are well managed and 
support decision-making when designing a new railway infrastructure project. 

4.3 HazardMap 

Figure 3 illustrates the conceptual framework HazardMap, inspired by the result of topic modelling 
(Figure 2). The HazardMap is a data-driven and epidemiological factor-based framework, looking at 
railway accidents from a hazard-centred perspective. Hazards illustrated in the HazardMap are derived 
from clusters of hazards, for example, the level crossing in Figure 2.  

In Figure 3 each hazard has a series of aspects illustrated as the outline of the oval consisting of continuous 
dots. Two types of dots surround the hazard: the unprotected aspect (coloured in red) and the protected 
aspect (coloured in black). The unprotected aspect refers to the potential possibility that this hazard 
triggers a railway accident under specific conditions or in combination with other hazards. The 
unprotected aspect might not be identified until it triggers an accident or preventative implementation is 
placed in advance. The protected aspect represents the hazard that would no longer trigger an accident 
from this dimension because it has been identified and fully addressed by introducing permanent solutions, 
such as applying state-of-the-art technology or improving relevant processes. Note that any 
implementation of new policies or strategies might result in another hazard whilst fully addressing an 
aspect of a hazard. 

Once a hazard triggers a railway accident (with the combination of other hazards or factors), the aspect 
would be highlighted in the HazardMap and connected to the triggered railway accident. Multiple aspects 
of hazards might trigger some railway accidents; for instance, accident 11 is triggered by aspects of hazard 
1 and hazard 2. Subsequently, railway accident investigators would investigate and propose 
recommendations to address identified aspects of the specific hazard, aiming to prevent similar railway 
accidents from occurring again (converting red aspects into black). Some recommendations might also 
address hazards identified by previous railway accidents and reinforce the prevention of hazards, which 
is illustrated as multiple arrows toward different accidents in the HazardMap.  
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Note: taking Accident_11, Hazard 1 and Hazard 2 as an example. Accident 11 is triggered by aspects (red dots) of Hazard 1 and Hazard 2 and recommendations are subsequently made to 

address aspects of Hazard 1 and Hazard 2 identified in Accident 11. The similar recommendation made after Accident 12 to address another aspect of Hazard 1. 

Figure 3, the relations between hazards, accidents, and recommendations across countries (HazardMap) 
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Hazards are further categorised based on countries. Some hazards can only be found in specific areas, 
such as the fall of autumn leaves in the UK and the high temperatures hazards in Australia. Additionally, 
hazards that can be classified into more than one country are considered common hazards. Different 
aspects of these common hazards might reach the country-specific area and trigger a railway accident. 
Note that the locations of hazards on the HazardMap might move from one area to another to reflect the 
change in environment. For example, the high-temperature hazard might impact the UK railway system 
due to severe climate change. In this case, the high-temperature hazard might move from Australia to the 
common hazard area. 

5 Policy implementation - a case study of the risk at level crossings  

Level crossing accidents have been widely discussed in the literature and have influenced railway safety 
significantly for a long time (Adeolu et al., 2016; Blaho et al., 2020; Jonsson et al., 2019; Liang et al., 2018; 
Salmon et al., 2013). However, cross-country analysis based on policy implementation is seldom found in the 
literature. This case study provides an example of how the analysis process can be semi-automated and how 
the HazardMap is generated for a comprehensive view of the way that hazards relevant to level crossing 
accidents impact the railway system across the countries investigated. 

Firstly, the HazardMap of each country for level crossing accidents is identified by developing the distribution 
of the relationship between hazards derived from the BERTopic model. Next, the threshold of covariance is 
determined based on manual review of each distribution with different thresholds of covariance, which is set 
to 0.5 for the RAIB, NTSB and TSB datasets and 0.7 for the ATSB dataset. Once the distribution is generated, 
clusters relevant to the level-crossing hazards are extracted manually. It is suggested that relevant topics are 
searched to identify the initial network by starting with the top-50 topics. The network is further extended by 
looking at each document's topic distribution in the initial network. Note that the network of interest might be 
connected to other clusters. Therefore, the boundary is required to be manually identified in case of including 
irrelevant topics. 

At this step, the threshold of the mentioning rate of topics needs to be set to determine whether one document 
belongs to this network. A higher threshold results in a smaller number of selected documents with higher 
confidence of relativity and vice versa. To determine the best threshold of topic mentioning rate for each 
dataset, an initial rate can be set and documents with a mentioning rate close to the threshold should be 
manually reviewed. The threshold can be enlarged once most reviewed documents are irrelevant to the topic 
of interest and vice versa. Once relevant documents are retrieved, additional topics of interest can be further 
extracted for extending the network by reviewing dominant topics in documents. 

An example of the extracted network for level-crossing hazards in the NTSB dataset is demonstrated (Figure 
4). The topic selected for identifying the initial network is topic 10: private crossings (refer to Table A- 3 in 
the Appendix). Subsequently, the boundary is set after reviewing the relevance of topics on the edge as the 
initial network is connected to other clusters. Next, an initial threshold of the topic mentioning rate is set to 
20%, and documents on the edge are reviewed. A final threshold is set to 10% and 36 documents are identified 
and labelled as level crossing (LC)-related incidents. Additionally, another relevant cluster containing two 
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topics (topics 85 and 225) is recognised as well after reviewing dominant topics in documents retrieved from 
the initial network. 

 

Figure 4, the distribution of topics and their relationship relevant to level crossing accidents in accident 
reports published by the NTSB (1996-2021) 

After establishing the distribution of topics and their relationship relevant to level crossing accidents for each 
country, heterogenous terminology used in each country is identified and standardised by manual review. For 
instance, terms “level crossing” and “grade crossing” are linked to and presented as the same concept of “level 
crossing”. Topics with names standardised from the countries investigated are clustered again based on the 
characteristics of hazards. Lastly, the HazardMap can be created by plotting hazards from each country with 
different colours for representations.  

There are ten main hazards identified in HazardMap relevant to level crossing accidents investigated by 
national railway accident investigators, namely level crossings design (Figure 5), human factor, types of users, 
types of level crossings, external hazards, maintenance, and others (Figure 6), policy/ management, employee 
training, and level crossing (LC) users education (Figure 7). Aspects of each hazard are coloured in accordance 
with identified countries. Overall, a significant number of aspects are observed in several hazards, including 
road signs, road users and policy/ management. The RAIB and ATSB cover almost all aspects of hazards, and 
much emphasis is placed on human factors by the NTSB. On the other hand, the TSB concentrates on types 
of users but overlooks the design of signs on the road and rail. Additionally, the NTSB has also investigated 
several potential behaviours of road users, such as stopping within the boundary and the regulation of users, 
whereas the ATSB focuses on the potential impact brought by the design of road signs and the condition of 
sighting distance. Thus, the difference in the approach that each country addresses level crossing hazards 
between countries can be explored. 
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Figure 5, the applied HazardMap on level crossing accidents from all investigators – level crossing design 

 

Figure 6, the applied HazardMap on level crossing accidents from all investigators – human factor, types of 
level crossings, external hazards, maintenance, types of users and others 
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Figure 7, the applied HazardMap on level crossing accidents from all investigators – policy/ management, 
employee training, and LC users education 

From the perspective of policy implementation, the conceptual framework based on HazardMap could be 
transformed to a policy plan map outlining strategic directions for managing risks at level crossings. Critical 
aspects of level crossing hazards extracted from lessons learnt across jurisdictions and time can efficiently 
mitigate the risk which has not (yet) triggered an accident. HazardMap also allows the framework for adding 
knowledge to be updated with very limited human intervention. The accumulated knowledge can also be 
disseminated to jurisdictions developing a new railway project but without sufficient experience and help them 
to build the policy framework for mitigating specific risks.  

Finally, a cross-validation of the level crossing case study is conducted by using the Australian Level Crossing 
Assessment Model (ALCAM) (Lees, 2006; SPICER, 2007). The ALCAM is an assessment system for 
identifying potential risks related to level crossing systems in Australia and prioritising the upgrade of 
dangerous level crossings by evaluating each level crossing with risky factors. Factors used in the ALCAM 
are extracted to conduct the comparison with aspects and hazards in the HazardMap.  

Overall, the ALCAM elaborates on distractions of road users, road and signs designs, types of road users and 
types of level crossing in detail. Results from our model cover almost all topics in the ALCAM except for the 
following: proximity to sites or public facilities, the likelihood of vandalism to controls, seasonal/infrequent 
train patterns, train speed, train schedule and possible sun glare sighting. On the other hand, less emphasis is 
placed by the ALCAM on the conditions of road users’ vehicles, such as regulation on road users, improper 
vehicle brake maintenance and the absence of the usage of winter tires. Also, suicide/ trespass prevention and 
communication with emergency services are not included in the ALCAM. It should be noted that the lack of 
a characteristic in our model means the relation between this characteristic and level crossing is not significant 
from the analysis but may be substantial with other accidents. For instance, the connection between fatigue 
(road users and train drivers) and level-crossing accidents is not found but the link with speeding is found. 

6 Conclusions and recommendations 

This study proposes the HazardMap framework to depict the nature of hazards in the railway system and their 
mechanisms illustrated by a case study comparing four different countries. Over 1,200 railway accident reports, 
containing 400,000 sentences, published by national railway accident investigation bodies of four countries 
are analysed. The HazardMap is developed based on the output of the BERTopic, enabling the consideration 
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of topics with a low probability of occurrences and the visualisation of the relations between hazards and 
accidents across countries. The HazardMap can also describe how each hazard triggers a railway accident by 
revealing the unaddressed aspects. Therefore, railway accident investigators in different countries can 
understand the potential path that one hazard impacts the railway system by reviewing the mechanism found 
in other countries to come up with corresponding solutions before it triggers another railway accident.  

Additionally, the gap between policy implementation and real-world data is filled through the semi-automated 
process development described in this paper. Policymakers are able to draft the policy plan map covering a 
wide range of cases around the world without the need to manually review a large number of railway accident 
reports. HazardMap can also assist in revealing critical aspects of the hazard of interest and directing 
investigators to factors required to be considered. A case study of the level crossing risk is provided, and the 
result complement an existing risk assessment framework used in practice (ALCAM). The railway hazard 
knowledge can be updated automatically by inputting the new data and extending the HazardMap. The value 
of the conceptual model proposed is to summarise a huge amount of knowledge accumulated and make it easy 
to be applied to practical policymaking processes. Nevertheless, it also significantly supports the knowledge 
dissemination and allows inexperienced jurisdictions or railway industries to leverage lessons learnt across 
jurisdictions and time with limited human intervention to mitigate risks and enhance railway safety. All 
toolkits used are open-sourced and off-the-shelf, offering high flexibility to further improve the analysis 
process and enabling railway industry practitioners to apply HazardMap to existing data without the need for 
fine-tuning procedures. 

Despite the advantages of using HazardMap, it is recognised that several limitations might influence the result. 
Firstly, the outcome heavily relies on the characteristics of the input data, implying that critical features 
missing in the original data would result in the absence of features in the constructed HazardMap. Nevertheless, 
human interpretation might still be required whilst processing systematic factors or underlying causes. The 
name of each extracted topic also needs to be determined manually by reviewing keywords of each topic. 
Future work might concentrate on potential solutions for reducing human intervention required while 
interpreting results from the topic model. A shared decision-making platform based on the HazardMap might 
also be worthwhile investigating. 
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Appendix A. the result of topics extracted and descriptions of each dataset 

Table A- 1, topic descriptions of the RAIB dataset 

Topic Topic - local Topic – interval Topic - global 

6 Speed Emergency brake at high 
speed 

Trains apply emergency 
brake at high speed due to 
1.) AWC isolation 2.) work 
site hazards 

42 Emergency Brake 
27 AWS isolation/ active AWS isolation due to error 

warning/ failure of signal 
system 

11-1 Sounded horn 

11-2 Train horn Work site safety and hazards – 
site workers 30 Site lookout 

12 CCTV, monitor/ recording Unawareness of Platform-
tram interface or pedestrians 
on track/ level crossing due 
to fatigue or incomplete 
monitoring system 

1 Fatigue 

0-1 
Trams / pedestrian Platform-tram interface/ 

striking pedestrian 

0-2 Trams/ Sandilands* Tram-specified accident (i.e., Overturning) 

2 
Communication – Signaller (radio, 
GMR-S, etc.…) 1. Signaller–driver interface 

2. Stuff training/ knowledge 
4 

Driver knowledge, training, 
instruction 

13 Time 
Background information 

25 Location 
17 Sanding/ adhesion Track-wheel interface Relation between set of units 

and track-wheel interface 20 Set/ type of train (single, multiple, diesel, electric unit) 

15 
Suspension system (Bogie, 
wheel…) Cause and result of flange climbing 

36 Contact between flange and gauge 
28 Deaths and injuries 

Consequence of accidents 
40 Property loss 
48 Grinding repairs 

Track inspection/ recording/ 
maintenance 

14 Track maintenance/ inspection 
Track defects inspection 

49 Track geometry faults 
39 Bolts failure 

Design failure of the switch 1. Failure of signalling 
system  

2. Failure of on-board 
equipment 

3. Failure of infrastructure 

47 (Nonadjustable) Stretcher bar 
32 Wire-pantograph interface Faults of wire-pantograph 

interface and inactive of 
power system protection 

37 
Power system protection (circuit 
breaker) 

29 Failure mode of the axle Axle 
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33 Holdfast panel-sleeper interface  Level-crossing infrastructure 
18 Switch interlocking system Signalling system 
46 Obstacle detection of doors Door system 
9 Weather conditions 

Natural disasters 
10 Natural hazards (landslip, flood…) 

22 
PICOP (Person in Charge of 
Possession) 

Work site safety and hazards 
– on-track possession 

Work site safety and hazards 
with engineering units 

43 SSOW (Safe System of Work) 

44 
Engineering units - RGU (Rail 
Grinding Unit) 

1. Conditions of engineering 
units 

2. Incidents and 
recommendations relating 
to engineering units 

3 
Engineering units – RRV (Road 
Rail Vehicles) 

21 Engineering units - track trolley 
45 Drugs and alcohol test** Drug and alcohol conditions of the staffs 
35 Shunters/ shunting activity Hazards and regulations relating to shunters 
16 Fire hazards 

Fire incidents and response 
31 Emergency service systems  

19 
COSS (Controller of Site Safety), 
driver 

COSS-driver interface 
Work site safety – COSS-
driver interface and 
planning 41 

COSS and site safety planning Work site safety and hazards 
– site workers 

7 Declarative – risk assessment 
Recommendations made by the RAIB on hazards 
identification and risk assessment 34 

Hazards identification and risk 
assessment 

38 Earthworks*** Infrastructure maintenance 
strategy and further 
improvement 

Incidents and 
recommendation relating to 
Network Rail 

5 
Recommendations for Network 
Rail  

24 Network Rail’s safety issues 
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Table A- 2, topic descriptions of the ATSB dataset 

topic Topic - local Topic – interval Topic - global 

33 
Description of gross mass and containers on 
wagons Background information of 

incidents 
Freight trains 
derailment 
incidents 

46 
Description of train information (length, number of 
crew…) 

14 Consequence of wagons after derailment 
Consequent of derailment 

48 Details of bogies’ condition during derailment 
45 Track infrastructure details 
17 Organisations receiving the draft of the accident report 
6 Conditions of ballast crib and shoulder  

Buckling hazards 
Derailment 
due to 
buckling 
hazards and 
flange 
climbing 

11 Conditions of sleeper 
8 Flange climb accident 

Flange climb hazards 
27 The gauge whilst accidents 

44 Infrastructure maintenance regime and inspection Monitoring asset condition via fault 
monitoring and maintenance regimes 47 Track patrols/ inspection 

23 Bearing failure 
Failures of axle 10 Conditions of axle bearing Ineffective axle inspection 

system 25 Defects inspection (continuous ultrasonic testing) 
40 Asset Standards Authority (ASA)/ buffer stop 

Asset owner- leaser interface 28 
Chicago Freight Car Leasing Australia (CFCLA)/ 
draft key 

36 Falling jumbo coils 
35 Rail creep/ monuments High temperature hazards 

to tracks 
Derailment 
due to rail 
creep 

43 Track temperature 
34 Determined environmental conditions 
18 Conditions of battery cells 

Wire-pantograph interface 
21 

Conditions of Overhead Line Equipment (OHLE)/ 
circuit breaker 

2 Speed of the train Conditions of the train 
Investigation 
into level-
crossing 
accidents 

5 Data logger/ Hasler data On-board recorders 
1 Sounded horn/ audibility Events during level 

crossing incidents 22 Driver behaviour during Level crossing 
24 Sighting distance/ viewing angle Design of level crossing 
13 Conditions of signal/ turnout indication/ colour light 

Signal condition during accidents 
29 Signal displaying during accident 
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19 Train conditions 
31 Consequence of the accident Fatal/ severe/ mirror injuries 
26 Collision accidents Collision 

between trains 
on track 

41 Description of train’s movement Driver-train controller 
interface 42 Special Proceed Authority (SPA) 

9 Track Occupancy Authority (TOA) 
Worksite safety – worker-
train interface 

Worksite 
safety planning 
– stuffs, 
signalling 
systems, and 
trains 

16 Protection Officer (PO) arrangements 
Worksite safety – worksite 
safety planning 

4 Network Control Office (NCO) and crew 
NCO-crew/driver interface 

7 Shunt operations 
37 Australian Level Crossing Assessment Model 

Level crossing hazard mitigation strategy 
39 Level crossing safety 

12 Alcohol and drugs tests 
Conditions of stuffs during 
the rail safety work 

Human factors 
examination 

0 Fatigue investigation Distraction due to fatigue 

15 Medical examinations and fitness of standards 
Medical qualification 
reviewing 

30 
Maintenance of competency (MOS) assessment (training, knowledge gaining for 
stuffs) 

32 V/Line Pty Ltd Specific organisations mentioned in reports 
with high frequency 3 Queensland Rail (QR) 

20 SPAD events due to violation of rules or procedures 
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Table A- 3, topic descriptions of the NTSB dataset 

topic Topic – local Topic – interval Topic - global 
2 Event, audio and image recorder 
29 Occurrence of emergency brake Speed at the 

occurrence of 
emergency brake 

Grade 
crossings 
hazards 

37 Speed of the train recorded 

15 Condition of the signal aspect Issue of grade 
crossings design 49 Pre-emption/ “all-red-flash” design of grade crossings  

10 High-risk private highway–railroad grade crossings Hazard of private 
highway–railroad 
grade crossings 

36 
Bus driver training about grade crossing in school 
district 

22 Sounded horn/ audibility General grade 
crossings hazards 31 Hazard of stopping within the boundary of the crossing 

28 Consequence of derailment 
Condition of the train 

44 Components/ units of the train 
16 Conditions of the tunnel ventilation system 

Subway environment 
control system 

Subway 
environmental 
hazards 

47 Electrical arcing due to water intrusion 

24 Pressure of brake/ relief valve 
Failure of brake 
system 

On-board 
equipment 
hazards 

38 Air leakage from the brake pipe 

6 Conditions of staffs’ duty 
18 Weather conditions 
48 Unsafe offloading practices of solvent blend wastes  

Tank cars 
hazards 

14 Cracked or broken joint bars/ bolts Tank cars failure and 
certifications 40 Specifications for tank cars 

30 Damages to assets 
19 Bridges’ capacity to carry floods 

Hazards of bridges 
Infrastructure 
hazards 20 Escorting permit loads 

8 Parasitic oscillation of track circuit modules 
Failures of trains’ circuits 

25 Failures of emergency windows/ doors 
11 Organizational culture of safety oversight Rail safety oversight 

framework 
Worksites 
hazards 

42 Regulation of State oversight agency 
3 Installation of Positive Train Control 
17 Unsafe work practices culture of Amtrak’s management 

Safety culture 
33 Safety Management Manual and safety culture 
46 Operating rules for employees Requirements of 

employees’ conditions 
Hazards of 
employees’ 

1 Drug, alcohol, and toxicology test 
32 Efficiency of tests 
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23 Colour vision test 
Medical conditions 

medical 
conditions 39 Obstructive sleep apnea 

13 Conditions of track inspections 
Switches and 
tracks hazards 

4 Conditions of switches 
Failure of switches 

35 Subdivision of tracks 
12 Fatalities and injuries 
26 Interface between conductors and railroad cars 

Conductors’ failure 
41 Conditions of conductors 
0 Emergency response after accidents 

Emergency response of train operators 
21 Operation of CSX Transportation and MARC Train 

43 
Track warrant authority (interface between train crews 
and the dispatchers) 

Interface between train crews and the 
dispatchers 

9 Usage of cell phones and text messages 

27 
Radio communications between crew members and 
dispatchers 
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Table A- 4, topic descriptions of the TSB dataset 

topic Topic - local Topic – interval Topic - global 
46 Fracture surface due to fatigue Rail fracture 

surface hazards Rail fracture 
hazard 

48 Rail fracture 
9 Condition of tie plates and secured spikes Overview of track 

information 38 Track information 
1 Emergency brake application 

Occurrence of emergency brake 
11 Brake pipe pressure 
21 Conditions of air brake tests Brake tests before 

departing CROR on special 
instructions 

28 Certified car inspector 
10 Application of hand brakes CROR on brake 

and movement 26 Canadian Rail Operating Rules (CROR) 
37 Yard assignment description 

Interface between workers in the yard 
43 Failure of transfer between yardmasters  
3 Derailment of freight cars 

Derailment of freight trains 
42 Location where locomotive came rest 
6 Malfunction of switches 

Defects on rail tracks 
34 Damage on tracks 
14 L/V ratios of single-wheel 

Measurement on rail wheel 
36 Observation of wheel flange marks 
22 Wheel Impact Load Detector (WILD) Wheel 

overloading 
hazards 

Wheel- bearing 
system interface 

32 Risks associated with Transcona wheel shop loose wheels 
27 Excessive truck hunting/ Constant Contact Side Bearings 
35 Alert for roller bearing temperature 
8 Sounded horn/ audibility 

Grade crossings 
hazards 

2 Warning devices/ rules of grade crossing Drivers’ interface 
at grade crossings 13 Behaviour of grade crossing users (driver) 

4 
Interface between Rail Traffic Controllers and crew 
members 

Interface between 
RTC and others Communications 

hazards 
17 Interface between foreman and RTC 
19 Display of indication signals 
25 Radio communications 
40 Hazards related to train marshalling 
24 Absence of on-board voice recorders 
7 Emergency response Hazards of poor design of emergency 

exits and response 16 Failure of emergency exit (on board) 
5 Flood/ drainage system 
39 Failure of the thermite weld 
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0 Fatigue 
Hazards of fatigue 

31 Risk of memory lapse 
18 Risk of flammable materials 
20 Safety management system 
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