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1. INTRODUCTION 
 

The threat of global warming on human health has led international and national governments to implement 
a series of environmental intervention strategies in the attempt to effectively combat the climate change crisis. 
Given that the transportation sector continues to be the third world’s largest polluter of carbon emissions, 
many of these strategies focus on speeding up the transition to electromobility (Avci et al., 2015; Zhang et 
al., 2013; IEA, 2015). In 2019, the International Energy Agency (IEA) quantified that worldwide, 
transportation related emissions made up 27 percent of total CO2 produced, 75 percent of which were 
generated from road travel trips whilst the remaining 25 percent were released by shipping and aviation 
sources (IEA, 2019). Given the level of emissions derived from road transport and the heavy reliance of the 
sector on fossil fuels, the mass adoption of electric vehicles (EVs) represents one of the quickest and most 
viable options to achieve net-zero targets (Jang and Choi, 2021; Nanaki and Koroneos, 2016; Yu and Stuart, 
2017).  

Currently, there exist multiple types of EVs on the market, from plug-in hybrid electric vehicles 
(PHEVs) to battery electric vehicles (BEVs). PHEVs pair a traditional internal-combustion engine (ICE) with 
a battery-powered electric motor, with the former typically being engaged when the battery is nearly depleted 
or during high-speed manoeuvring. The redundant nature of the operating system that the ICE offers makes 
PHEVs particularly attractive amongst consumers who hold concerns with respect to the limited driving 
range capacity of BEVs (Mulholland et al., 2018). Although PHEVs emit tailpipe pollution whilst using the 
ICE, the presence of an electric motor allows for travelling moderate distances using only clean energy (i.e., 
electricity), resulting in lower emissions relative to vehicles powered solely by petrol or diesel engines 
(Darabi and Ferdowsi, 2012). BEVs in contrast, depend fully on rechargeable battery packs which are 
charged either at private or public charging stations, as well as from the installation of solar panels on the 
vehicles themselves (Araújo et al., 2019; Ghasri et al., 2021; Girard et al., 2019; Masuda et al., 2017). Further, 
the absence of a piston engine makes driving BEVs smoother and tends to generate less noise compared to 
conventional fuelled vehicles (Sheng et al., 2022).  

Over the past decade, the size of the global EV market has rapidly expanded with the total EV sales 
growing from 120,000 to 6.6 million units in 2021, almost doubling between 2020 and 2021 (IEA, 2021). 
Despite the negative effects of the Covid-19 pandemic and microchip shortages, China continues to be by far 
the market leader with more than 3.5 million electric cars sold in 2021 (around 53 percent of global EV sales). 
Of these newly registered EVs, 82 percent were classified as BEVs with the remaining 18 percent reported 
to be PHEVs. China’s electric vehicle fleet currently amounts to over 7.8 million cars which is more than 
twice that of 2019 prior to the Covid-19 outbreak (IEA, 2020). The impressive development of the Chinese 
EV market is largely attributable to the great variety of economic policies set out by the General Office of 
the State Council (GOSC). In 2021, for example, the GOSC announced the 14th Five-Year Plan (FYP) 2021-
2025 which comprises a wide range of initiatives specifically design to consolidate the penetration of the 
EVs into the Chinese market. Such initiatives include, but not limited to, subsidies to reduce electric car up-
front costs, investments to strengthen the public charging network, the issuance of tax breaks and travel 
restrictions placed on the sale and use of ICE vehicles (IEA, 2022). 

A large body of the transportation literature has examined the impact of various government 
intervention policies on the demand for EVs, with studies tending to be classified into two broad groups 
depending on the source of data used to carry out the empirical analysis (Kong and Hardman, 2019; Liao et 
al., 2017; Pellegrini and Rose, 2023). The first group of studies assesses disaggregate data on consumers’ 
preference behaviour towards EVs usually extracted from discrete choice experiments (DCEs) embedded 
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with web-based questionnaires (Cherchi, 2017; Chorus et al., 2013; Hackbarth and Madlener, 2013; Hess et 
al., 2012; Hidrue et al., 2011; Hoen and Koetse, 2014). For example, Horne et al. (2005) analysed data 
obtained from a DCE completed by 1,150 Canadian residences and concluded that respondents would be 
inclined to move away from ICE cars if the national government allowed fuel-efficient vehicles to access 
express lanes. This finding is in contrast with the results obtained by Qian and Soopramanien (2011), who 
found that neither dedicated lane access nor free parking spots for five years would influence respondents’ 
preferences towards the acquisition of an EV. Potuglou and Kanaroglou (2007) found that the sales of either 
hybrid or alternative fuelled vehicles would be increased by lowering sales tax (see, also, Adler et al., 2003). 
Mau et al. (2008) (2008) report that government subsidies for new technology vehicle purchases would be 
the most effective solution to stimulate EV roll out, followed by extended warranties (see, also, Glerum et 
al., 2014). Caufield et al. (2010) point out that high vehicle registration taxes would have the least negative 
effect on those respondents who expressed the intention to buy a new hybrid electric vehicle, whilst Gong et 
al. (2020) suggest that government rebates on energy bills and parking costs would strengthen the EV 
diffusion in Australia. Recently, Pellegrini and Rose (2023) predicted that the potential deployment of 
massive subsidies by the Australian government to reduce purchase prices of BEVs and PHEVs will result 
in more electric cars on roads in the future vis-à-vis faster home charging infrastructure. 

The second group of studies, on the other hand, apply aggregate level analysis to historical vehicle 
sales data collected either at the international or national level. For example, Sierzchula et al. (2014) 
examined the automobile markets from across 30 different countries and computed an increase of the EV 
market share (calculated as a percentage of annual car sales) of 0.06 percent for every additional $1,000USD 
in financial support. Sheldon and Dua (2020) investigated the relationship between EV sales and high-
occupancy vehicle (HOV) lanes and found that granting electric cars access to HOV increased the EV sales 
in California by up to 25 percent (see, also, Jenn et al. 2018). Wang et al. (2017) fitted multiple linear 
regression models on EV sales data collected between 2013 and 2014 from 41 Chinese cities, which were 
selected to be part of a demonstration project (i.e., pilot cities). The authors identified the number of chargers 
per million square kilometres as the most important predictor for the sales of EVs. Ma et al. (2017) made use 
of a multivariate cointegration model to examine the effectiveness of different policies put into action by the 
Chinese government, suggesting that the introduction of restrictions on conventional vehicle purchases 
positively influenced the promotion of EVs (see, for similar findings, Chi et al., 2021; Liu et al., 2021; Ma 
and Fan, 2020; Yao et al., 2022; Zheng et al., 2022). Qiu et al. (2019) conducted a panel data analysis by 
using monthly data on EV sales from 88 Chinese pilot cities for the years 2014 and 2015, finding that both 
charging discount and infrastructure construction subsidy were found to be pivotal for the market 
breakthrough of EVs (Ou et al., 2020), whereas the provision of purchase incentives had no effect on EV 
sales. Finally, He et al. (2022) implemented a spatial economic model to explore potential neighbourhood 
effects on EV uptake and established that the increasing adoption of EV was in part due to the number of 
charging stations available in the neighbouring cities. 

This study seeks to contribute to the stream of the transportation literature that utilizes aggregate 
level econometric methods to measure the influence of government policies on the decision of buying an EV. 
To do so, we fit monthly sales data collected from January 2016 to December 2021 in 88 demonstration cities 
in China (see, for further details, Yao et al., 2022) with an autoregressive spatial stochastic frontier (SF) 
model (Aigner et al., 1977; Battese and Coelli, 1995). In 2009, the Chinese government announced the Ten 
Cities and Thousand Vehicles project which aimed at reaching the sale of at least 1,000 EVs in each targeted 
city via the provision of a one-off purchase subsidy (OECD, 2009). After three years, the Chinese Central 
Government (CCG) launched the second demonstration project bringing the overall number of pilot cities to 
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88, with the ultimate goal to further strengthen the promotion of electromobility in China. Unlike previous 
research studies such as Chi et al. (2021) and Yao et al. (2022) who looked at data from the same 88 cities, 
the proposed spatial-temporal SF approach applied here allows for quantifying the maximum level of sales 
(i.e., frontier) that each pilot city could have possibly achieved in the timeframe under evaluation given a set 
of inputs such as number of public chargers, conventional vehicle purchase restrictions, national and local 
subsidies, and average petrol prices, among others. The underlying assumption is that whilst the sales of EVs 
are observed at the city level, so is the list of inputs, the possible achievable frontier of EV sales is latent. As 
such, by computing the difference between the latent frontier and the observed EV sales, we are able to 
determine as to whether the EV market in each pilot city is efficient. Further, the use of a spatial structure is 
essential within this context of application insofar as it accommodates the potential impact of spill-over 
effects on the unobserved frontier of EV sales arising from similar policy reforms introduced in neighbouring 
areas (see, for example, Sheng et al., 2022). 

The reminder of the paper is structured as follows. The next section illustrates the dependent and 
input variables used in this study, whereas Section 3 presents the features of the employed SF approach. 
Section 4 describes the empirical findings, followed by the penultimate section wherein the results of a 
simulation exercise are outlined. Section 6 provide concluding remarks. 
 

2. DATA 
 
This section provides a detailed description of the variables that we adopt for the estimation of the stochastic 
frontier model. The core variable of this study refers to the monthly sales of BEVs and PHEVs (Salev) 
collected at the city level between January 2016 and December 2021. In order to better understand the 
evolution of the EV market, Table 1 displays the aggregate annual sales of EVs and conventional vehicles 
(Salcv) for the timeframe under scrutiny, respectively. From the table, it emerges that the sales volume of 
EVs rapidly increased from 2016 to 2021 reaching the milestone of 1,936,097 units sold in 2021, albeit after 
exhibiting a significant drop between the years 2018 and 2019 (-6.9 percent year on year). Since the 
beginning of the timeseries, the vast majority of newly registered EVs are battery electric cars with the highest 
number of sales being registered in 2021 with more than 1,500,000 automobiles sold (+ 60.1 percent 
compared to the year before). On the other hand, the growth of PHEV market has been notably unstable 
between 2016 and 2021, with only 953 automobiles sold in 2019, down from 12,052 the previous year. In 
the period 2020-2021, however, the sales of PHEVs reached 480,330 units, approximately three-quarters of 
which were sold in 2021 alone. Overall, EVs made up 15 percent of all automobiles sold across the 88 pilot 
cities, with an annual average market share of 5.46 percent. 
 

Table 1: Vehicle Sales in 88 prefecture-level cities from 2016 to 2021 

Fuel type 
Timeframe of the current study 

2016 2017 2018 2019 2020 2021 
BEVs 169,995 378,961 576,032 538,655 636,526 1,593,799 
PHEVs 2,194 2098 12,052 953 138,032 342,298 
ICE Vehicles 14,759,789 14,855,033 13,994,350 13,355,349 12,461,062 13,303,363 

 
The input variables used in the empirical analysis can be broadly grouped into four categories. The first 
category comprises three variables representing the financial policies that the Chinese Central Government 
(CGC) has implemented in order to stimulate EV purchase and usage. These include central (government) 
financial purchase subsidies (Cenfs), local (government) financial purchase subsidies (Locfs), and local 
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(government) financial charger subsidies (Chas). The Cenfs were designed by the CCG so that the 
government monetary contribution gradually diminished over time, thereby accelerating the transition of the 
EV industry from one that is policy-driven to one that is market-driven. Table 2 outlines the scale-back 
purchase subsidy plan implemented under the Cenfs program in each of the 88 pilot cities under investigation 
between 2016 and 2021. As shown in the table, the amount of subsidy that consumers could access was 
primarily tied to the driving range capacity of the EV purchased. In 2016, for example, the purchase of a 
BEV with a driving range between 100 and 150 kilometres (km) benefited from a discount of 25,000 CHY 
($3,750 USD), whereas one with a driving range of more than 250 km was subject to a discount of 55,000 
CHY ($8,250 USD). However, the maximum purchase rebate available in 2021 amounted to only 18,000 
CHY ($2,750 USD) for an EV with a driving range of at least 400 km. Likewise, the financial support for 
the acquisition of PHEVs progressively reduced from 30,000 CHY ($4,500 USD) in 2016 to 6,800 CHY 
($ 1020 USD) in 2021.  
 

Table 2: Central government's financial subsidy in 2016-2021 
Time National subsidy for EV and PHEV 
2016 BEV: 100≤R<150:2.5;150≤R<250:4.5; R≥250:5.5. PHEV: R≥50:3. 
2017 BEV: 100≤R<150:2;150≤R<250:3.6; R≥250:4.4. PHEV: R≥50:2.4. 

2018 
BEV: 150≤R<200:1.5;200≤R<250:2.4;250≤R<300:3.4;300≤R<400:4.5; 
R≥400:5. PHEV: R≥50:2.2. 

2019 BEV: 250≤R＜400:1.8; R≥ 400:2.5. PHEV: R≥50:1. 
2020 BEV: 300≤R＜400:1.62; R≥ 400:2.25. PHEV: R≥50:0.85. 
2021 BEV: 300≤R＜400:1.3; R≥ 400:1.8. PHEV: R≥50:0.68. 

* R: Battery electric range (km); BEV: Battery electric vehicle; PHEV: plug-in hybrid electric vehicle. The unit of 
subsidies is CNY 10,000 (equal to about $1,500). 

 
In order to stimulate the mass diffusion of EVs, local political authorities made available additional subsidies 
for the purchase of EVs, Locfs, as well as funds for the installation of recharging stations for EVs, Chas. 
With respect to the Locfs, the CCG announced in 2017 that the financial stimuli provided by local authorities 
could not exceed 50 percent of the value of Cenfs. As shown in Figure 1, the number of pilot cities that 
provided incentives for the construction and operation of public charging stations grew from 49 to 75 in 2021, 
with the best year being 2020 with 80 out of 88 cities taking part in the demonstration project investing in 
the strengthen of the public charging network. 

The second category of inputs encompasses two variables describing the restrictions introduced to 
slow down the proliferation of conventional passenger vehicles, namely Purr and Drir. While Purr represents 
the restrictive measures imposed to limit the purchase of ICE vehicles, Drir relates to driving restrictions 
applied to ICE vehicles on some roads of the pilot cities.   

The third category comprises variables describing the socio-economic and environmental 
characteristics of each pilot city. Specifically, summer (Sumr) is a dummy variable that takes the value of 
one if months within the time series fall in June, July, and August, and zero otherwise. Similarly, temperature 
(Temp) takes the value of one if the average monthly temperature is reported to be below zero, and zero 
otherwise. A dummy variable representing the concentration of PM2 in the air, Airq, was also included in 
the modelling specification, with Airq taking the value of one if the average PM2 level recorded is less than 
35 µg/m3, and zero otherwise. Three continuous variables also belong to this category. These are average 
monthly petrol price (AvgPetrP), population density expressed as the number of people per square meter 
(Pop_Den), and average annual GDP per capita (CHY) reported at the city level.  
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Figure 1: Number of the city which provide subsidies for the construction/operation of public 
chargers 

The fourth and final group includes four variables that account for the impact of Covid-19 on the sales of 
EVS, with these variables being designated Movr, Pubec, Govsp and Covid-19. Movr takes the value of one 
if the city implemented movement restriction policies to contain the transmission of the Covid-19 virus, and 
zero otherwise. Pubec takes the value of one if public events and social gatherings were forbidden at the city 
level, and zero otherwise. The third variable, Govsp, denotes whether the CCG provided income support to 
households during the pandemic or not. The last variable, Covid-19, is a dummy variable representing the 
start of the Covid-19 pandemic (Covid-19 takes the values of one from January 2020 onwards, and zero 
otherwise).  

Finally, two additional variables are embedded within the set of inputs, conventional vehicle sales 
(Salcv) and number of public chargers (Chan). Salcv is used to capture the effect of conventional vehicle 
purchases on the EV market, whereas Chan captures the growth of the public EV charging points available 
at the province level. Table 3 depicts the ten provinces belonging to the demonstration project with the largest 
number of public chargers. The provinces of Henan and Zhejiang, for example, increased the provision of 
public charger stations by 97.5 percent over six years, whereas Hebei and Hubei showed a growth of 95 
percent and 94.5 percent, respectively. Overall, the average increase in the public EV charger amount is 
approximately 93 percent across the ten Chinese provinces listed in Table 3. 

 
Table 3: Top 10 pilot cities with the largest number of public chargers 

Province 
# Public chargers in 

January 2016 
# Public chargers in 

December 2021 
% of growth 

Guangdong 11876 111226 89.3% 
Shanghai 5202 81382 93.6% 
Beijing 9027 78933 88.6% 
Jiangsu 7170 72165 90.1% 
Zhejiang 1505 60762 97.5% 
Shandong 3814 47012 91.9% 
Anhui 3915 39273 90.0% 
Hubei 2003 36194 94.5% 
Henan 728 29353 97.5% 
Hebei 1422 28177 95.0% 
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2.1  Data collection and descriptive statistics 
 
The dependent (Salev) and input variables are collected on a monthly basis for each pilot city between January 
2016 and December 2021. The corresponding descriptive statistics across the 88 cities over the six years for 
which data are captured are given in Table 4. Both sales of EVs (Salev) and conventional vehicles (Salcv) 
are obtained from the Traffic Management Bureau office of the pilot city under. From Table 4, there exists a 
divergence in the monthly sale volumes between electric and conventional vehicles, with the maximum 
number of fuel-efficient cars sold being 30,958 against 106,410 traditional automobiles in a given month. 
Information on central government financial purchase subsidies (Cenfs) was obtained from official policy 
documents available on websites of the central government, Ministry of Science and Technology, Ministry 
of Finance, and Ministry of Industry and Information Technology, respectively. To reflect the scale-back 
nature of Cenfs, we calculated the proportion of purchase incentives with respect to 2016, with the latter 
being the base year wherein the largest monetary contribution was deployed. The local government financial 
purchase subsidies (Locfs) and charger subsidies (Chas) were obtained from different sources such as the 
People’s Government of each pilot city, the Bureau of Finance, the local Bureau of Industry and Information 
Technology, and the Bureau of Development and Reform. Given the inconsistency in the data collection 
format across the 88 pilot cities, we created two dummy variables representing whether the city provided 
subsidies for the purchase of EVs (Locfs), and the second representing whether public charger 
construction/operation (Chas) subsidies were available. The mean values for Locfs and Chas are 0.39 and 
0.69, respectively, suggesting that subsidies for the installation of public chargers were on average available 
for a longer period of time relative to that for the acquisition of fuel-efficient automobiles.  

Documents from local transportation administrations were utilized for the construction of the dummy 
variables representing purchase (Purr) and driving (Drir) restrictions imposed on conventional vehicles. The 
corresponding means for these variables are found to be similar in magnitude and therefore we can conclude 
that such restrictions were on average in place for an equal amount of time. Data on temperature, air quality, 
monthly petrol price, annual GDP per capita at the city level, and all Covid-19 related variables were 
extracted from different sources. In the case of city temperatures, we resorted to the China Weather Network 
(www.weather.com.cn), whereas the China Air Quality Online Monitoring and Analysis Platform 
(www.aqistudy.cn) and the Oriental Fortune (www.eastmoney.com) were consulted for the concentration 
level of PM2 in the air and the monthly average petrol prices, respectively. Data on population density per 
meter square and average annual GDP per capita were, on the other hand, obtained from the 2016-2021 China 
Urban Statistical Yearbook. Table 4 depicts that the average population per meter square is approximately 
1,107.069 with a standard deviation of 842.381, whereas the maximum petrol price over the six-year period 
stands at CHY 9.053 per litre.  To control for the impact that the ongoing Covid-19 pandemic has on 
consumer purchase behaviour, Movr, Pubec, and Govsp were created based upon information available on 
the Oxford Covid-19 Government Response Tracker website (www.bsg.ox.ac.uk/research/covid-19-
government-response-tracker). As discussed previously, a further dummy variable, Covid-19, entered into 
the model as a proxy for the start of the Covid-19 pandemic. Finally, we assembled data on the number of 
public chargers (Chan) by examining the China Electric Vehicle Charging Infrastructure Promotion Alliance 
website (www.evcipa.org.cn). 

http://www.weather.com.cn/
http://www.aqistudy.cn/
http://www.eastmoney.com/
http://www.bsg.ox.ac.uk/research/covid-19-government-response-tracker
http://www.bsg.ox.ac.uk/research/covid-19-government-response-tracker
http://www.evcipa.org.cn/
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Table 4: Descriptive statistics 

Variables Variables Definition Mean S.D. Max. Min. 
Salev Sales of PHEVs and BEVs  693.118 1,924.576 30,958 0 
Salcv Sales of conventional vehicles 12,363.850 12,255.110 106,410 0 
Cenfs Central government financial purchase subsidies (2016 is base) 0.569 0.287 1 0.227 
Locfs 1 if local government provide financial purchase subsidies; 0 otherwise 0.390 0.488 1 0 
Chas 1 if local government provides subsidies for construction/operation of public chargers; 0 otherwise 0.691 0.462 1 0 
Sumr 1 if the season is summer (June, July and August); 0 otherwise 0.250 0.433 1 0 
Temp 1 if the temperature is below 0; 0 otherwise  0.090 0.286 1 0 
Airq 1 if the PM2 level is less than 35 µg/m3 0.159 0.366 1 0 
AvgPetrP Average petrol price 6.581 0.629 9.053 5.290 
Pop_Den Population density (people/km2) 1,107.069 842.381 6,814,815 115,610 
AvgGDP Average annual GDP per capita CHY 91,728.530 36,661.030 203,489 21,216 
Covid-19 1 from January 2020 onwards; 0 otherwise  0.333 0.471 1 0 
Movr 1 if restrictions on internal movements during Covid-19 are in place; 0 otherwise 0.252 0.434 1 0 
Pubec 1 if public events and gatherings are forbidden during Covid-19; 0 otherwise 0.247 0.431 1 0 
Govsp 1 if the national government provides financial support during Covid-19; 0 otherwise 0.151 0.363 1 0 
Purr 1 if purchase restrictions on conventional vehicles are in place; 0 otherwise 0.080 0.271 1 0 
Drir 1 if conventional vehicles are subject to drive restrictions; 0 otherwise 0.148 0.355 1 0 
Chan Number of public chargers 19,265.960 25,176.350 181,846 19 
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3. METHODOLOGY 
 
In this section, the autoregressive spatial stochastic frontier (henceforth, AS-SF) model (Aigner et al., 1977; 
Battese and Coelli, 1995), that represents the core of tool used for analysis within this paper. Several studies 
so far have employed SF methods to carry out efficiency analysis in transport (see, for example, Yan et al., 
2009; Sohn and Jung, 2009; Wanke et al., 2011; Sun et al., 2015; Filippini et al., 2015; Balliauw et al., 
2018; Yang et al., 2020; Ripoll-Zarraga and Huderek-Glapska, 2021). One of the early applications of SF 
techniques traced back to Cullinane et al. (2006), who measured the technical efficiency of the world’s 
largest container ports (see, also, Ha et al., 2013; Panayides et al., 2011; Scotti et al., 2012; Chang and 
Tovar, 2014; Coto-Millan et al., 2016). Hidalgo-Gallego and Mateo-Mantecon (2019) adopted a SF model 
for calculating the effect of airline market concentration on airport technical efficiency in Spain, whereas 
Pinjari et al. (2016) exploited the features of the SF to determine the unobserved time budget within a 
context of time-use allocation decisions (see, also, Pellegrini et al., 2021, for an application on expenditure 
behaviour). 

Consider the stochastic production frontier function for panel data on EV sales collected at the city 
level: 

 

𝑌𝑌𝑖𝑖𝑖𝑖 = exp (𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽 + 𝑉𝑉𝑖𝑖𝑖𝑖 − 𝑈𝑈𝑖𝑖𝑖𝑖),  (1) 

 

where 𝑌𝑌𝑖𝑖𝑖𝑖 corresponds to the number of electric cars sold by the pilot city 𝑖𝑖 (𝑖𝑖 = 1, … , 𝐼𝐼) in the tth month 
(𝑡𝑡 = 1, … ,𝑇𝑇,), 𝑥𝑥𝑖𝑖𝑖𝑖 is a (1 ×  𝑙𝑙) vector of values of input variables describing the pilot city 𝑖𝑖 in the tth  month, 
𝛽𝛽 is a (𝑙𝑙 ×  1 ) vector of unknown parameters to be estimated, 𝑉𝑉𝑖𝑖𝑖𝑖  are independently and identically 
normally distributed (IID) error terms,𝑁𝑁(0,𝜎𝜎𝑉𝑉2), and 𝑈𝑈𝑖𝑖𝑖𝑖 are non-negative random variables related to the 
technical inefficiency of production, which are assumed to be independently distributed of the 𝑉𝑉𝑖𝑖𝑖𝑖 for all 
𝑡𝑡 = 1, … ,𝑇𝑇 and 𝑖𝑖 = 1, … , 𝐼𝐼.  𝑈𝑈𝑖𝑖𝑖𝑖 can be further parametrized as 𝑈𝑈𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑖𝑖𝑖𝑖𝛼𝛼 + Λ𝑖𝑖𝑖𝑖 such that 𝑈𝑈𝑖𝑖𝑖𝑖 results from 
the truncation (at zero) of the normal independent distribution with mean, 𝑓𝑓𝑖𝑖𝑖𝑖𝛼𝛼 and variance, 𝜎𝜎2. 𝑓𝑓𝑖𝑖𝑖𝑖 is a 
(1 ×  𝑞𝑞) vector of explanatory variables associated with the technical inefficiency of production over time 
whilst 𝛼𝛼 is a (𝑞𝑞 ×  1) vector of unknown parameters to be estimated. The underlying assumption here is 
that the random variable Λ𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎2), is specified such that the point of truncation is defined as Λ𝑖𝑖𝑖𝑖 ≥
 −𝑓𝑓𝑖𝑖𝑖𝑖𝛼𝛼. It should be noted that the SF formulated in Equation (1) collapses to that developed in Aigner et 
al. (1977) if the explanatory variables embed within the technical inefficiency component of the model, 𝑓𝑓𝑖𝑖𝑖𝑖, 
are normalized to zero. Next, the density function for the 𝑌𝑌𝑖𝑖𝑖𝑖 as expressed in Equation (1) is given by 
 

𝑓𝑓𝑌𝑌𝑖𝑖𝑖𝑖(𝑦𝑦𝑖𝑖𝑖𝑖) =
exp �−1

2
(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽 + 𝑓𝑓𝑖𝑖𝑖𝑖𝛼𝛼)2

𝜎𝜎𝑉𝑉2 + 𝜎𝜎2 �

�2𝜋𝜋( 𝜎𝜎𝑣𝑣2 + 𝜎𝜎2)1/2 �Φ(𝑑𝑑𝑖𝑖𝑖𝑖)
Φ(𝑑𝑑𝑖𝑖𝑖𝑖∗ )� �

,                      (2) 

 

where 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑖𝑖𝑖𝑖𝛼𝛼
𝜎𝜎

, 𝑑𝑑𝑖𝑖𝑖𝑖∗ = 𝜇𝜇𝑖𝑖𝑖𝑖
𝜎𝜎

, 𝜇𝜇𝑖𝑖𝑖𝑖 = �𝜎𝜎𝑉𝑉
2𝑓𝑓𝑖𝑖𝑖𝑖𝛼𝛼−𝜎𝜎2(𝑦𝑦𝑖𝑖𝑖𝑖−𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽)�

𝜎𝜎𝑉𝑉
2+𝜎𝜎2

 and Φ(∙) refers to the distribution function for the 
standard normal random variable. 

Then, the logarithm of the likelihood function for the sample observations 𝑦𝑦 = (𝑦𝑦′1,𝑦𝑦′2, … . ,𝑦𝑦′𝑇𝑇)′ 
can be written as 

𝐿𝐿 = (𝛿𝛿;𝑦𝑦) = −
1
2
�𝑡𝑡𝑖𝑖

𝐼𝐼

𝑖𝑖=1

[ln(2𝜋𝜋) + ln(𝜎𝜎𝑉𝑉2 + 𝜎𝜎2)] 

                         −
1
2
���

(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽 + 𝑓𝑓𝑖𝑖𝑖𝑖𝛼𝛼)2

𝜎𝜎𝑉𝑉2 + 𝜎𝜎2
�

𝑇𝑇𝑖𝑖

𝑡𝑡=1

𝐼𝐼

𝑖𝑖=1

    

(3) 
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                         −
1
2
��[ln (Φ(𝑑𝑑𝑖𝑖𝑖𝑖) −Φ(𝑑𝑑𝑖𝑖𝑖𝑖∗ ))]

𝑇𝑇𝑖𝑖

𝑡𝑡=1

𝐼𝐼

𝑖𝑖=1

,       

where 𝛿𝛿 = (𝛽𝛽,𝛼𝛼,𝜎𝜎𝑉𝑉2,𝜎𝜎2). 
The log-likelihood function in Equation (3) can be re-specified in terms of the variance parameters 

𝜎𝜎𝑆𝑆2 = 𝜎𝜎𝑉𝑉2 + 𝜎𝜎2 and 𝛾𝛾 =  𝜎𝜎
2

𝜎𝜎𝑠𝑠2
 as follows: 

𝐿𝐿 = (𝛿𝛿;𝑦𝑦) = −
1
2
�𝑡𝑡𝑖𝑖

𝐼𝐼

𝑖𝑖=1

[ln 2𝜋𝜋 + ln(𝜎𝜎𝑆𝑆2)] 

                         −
1
2
���

(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽 + 𝑓𝑓𝑖𝑖𝑖𝑖𝛼𝛼)2

𝜎𝜎𝑆𝑆2
�

𝑇𝑇𝑖𝑖

𝑡𝑡=1

𝐼𝐼

𝑖𝑖=1

    

                         −
1
2
��[ln (Φ(𝑑𝑑𝑖𝑖𝑖𝑖) −Φ(𝑑𝑑𝑖𝑖𝑖𝑖∗ )]

𝑇𝑇𝑖𝑖

𝑡𝑡=1

𝐼𝐼

𝑖𝑖=1

,       

(4) 

where 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑖𝑖𝑖𝑖𝛼𝛼

�𝛾𝛾𝜎𝜎𝑆𝑆
2
, 𝑑𝑑𝑖𝑖𝑖𝑖∗ = 𝜇𝜇𝑖𝑖𝑖𝑖

�𝛾𝛾(1−𝛾𝛾)𝜎𝜎𝑆𝑆
2
, 𝜇𝜇𝑖𝑖𝑖𝑖 = (1 − 𝛾𝛾)𝑓𝑓𝑖𝑖𝑖𝑖𝛼𝛼 − 𝛾𝛾(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽), 𝜎𝜎 = �𝛾𝛾(1 − 𝛾𝛾)𝜎𝜎𝑆𝑆2. 

 

The method of maximum likelihood is used to simultaneously estimate the vector of unknown parameter 
𝛿𝛿 = (𝛽𝛽,𝛼𝛼,𝜎𝜎𝑆𝑆2,𝛾𝛾), wherein 𝛾𝛾 represents the variance of the inefficiency effects. The technical inefficiency 
of production for the ith pilot city at the tth month is therefore computed as  
 
𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 = exp(−𝑈𝑈𝑖𝑖𝑖𝑖) = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑓𝑓𝑖𝑖𝑖𝑖𝛼𝛼 − Λ𝑖𝑖𝑖𝑖).  (5) 

 
The reader will note that the prediction of the technical efficiencies of the EV market at the city level is 
obtained from its conditional expectations conditioned on the model assumptions. 
 

3.1 Model specification 
 
Numerous model structures were explored with the AS-SF formalised in Equations (6-7) representing the 
final model specification. 
 

ln (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖) = 𝛽𝛽0 

                         +(𝜌𝜌 + 𝜆𝜆𝜆𝜆) ln(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑣𝑣𝑖𝑖𝑖𝑖−1) + (𝛽𝛽1 + 𝛽𝛽1𝑊𝑊𝑊𝑊) ln(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑣𝑣𝑖𝑖𝑖𝑖−1)

+ (𝛽𝛽2 + 𝛽𝛽2𝑊𝑊𝑊𝑊) ln(𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖) 

                         + 𝛽𝛽3 ln(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖) + 𝛽𝛽4 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖) 

 + 𝛽𝛽5 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖) + 𝛽𝛽6 (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖) + 𝛽𝛽7 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖) +

 𝛽𝛽8 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖)  +  𝛽𝛽9�𝑃𝑃𝑃𝑃𝑝𝑝𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖�+ 𝛽𝛽10(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖) 

                        + 𝛽𝛽11(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 19𝑖𝑖𝑖𝑖) + 𝛽𝛽12(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖) + 𝛽𝛽13(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖)  

                         + 𝑉𝑉𝑖𝑖𝑖𝑖 + U𝑖𝑖𝑖𝑖, 

(6) 

and 
  

U𝑖𝑖𝑖𝑖 = α1 (𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖) + α2 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖) + α3(𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑖𝑖𝑖𝑖) + α4 (𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖), (7) 
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where ln represents the natural logarithm, and −1 ≤ 𝜌𝜌 ≤ 1, 0 ≤  𝜆𝜆 ≤  1. 
In the above equations, 𝑖𝑖 denotes the index related to the ith pilot city with 𝑖𝑖 = 1, … ,88 whilst t 

refers to the tth month with 𝑡𝑡 = 2, … ,72. The timeframe for analysis spans 71 months beginning from 
February 2016 (t=2) to December 2021 (t=72) due to the autoregressive nature of the model. Rather than 
imputing a value of zero for the sales of electric and conventional automobiles registered in t-1 for each 
pilot city, we resorted to the first data point available in the time series, namely January 2016. In doing so, 
we assure that the underlying ergodicity property of the timeseries is retained throughout the entire 
estimation of the log-likelihood function. A further aspect that we explore in this study relates to potential 
spill-over effects that may originate from similar political initiatives adopted in neighbouring cities to 
promote the diffusion of EVs. To this end, three spatial variables were incorporated into Equation (6). These 
are  

 

𝑊𝑊 ln(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑣𝑣𝑖𝑖𝑖𝑖−1), 

𝑊𝑊 ln(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑣𝑣𝑖𝑖𝑖𝑖−1), 

𝑊𝑊 ln(𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖), 

(8) 

where 𝑊𝑊 consists of a (88 ×  88) weighted adjacency matrix which can be written as below, 
 

  𝑊𝑊 =

⎣
⎢
⎢
⎢
⎢
⎡

0 𝑤𝑤12 𝑤𝑤13 𝑤𝑤14 … 𝑤𝑤1𝐼𝐼
𝑤𝑤21 0 𝑤𝑤23 𝑤𝑤24 … 𝑤𝑤2𝐼𝐼
𝑤𝑤31 𝑤𝑤32 0 𝑤𝑤34 … 𝑤𝑤3𝐼𝐼
𝑤𝑤41 𝑤𝑤42 𝑤𝑤43 0 … 𝑤𝑤4𝐼𝐼
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑤𝑤𝐼𝐼1 𝑤𝑤𝐼𝐼2 𝑤𝑤𝐼𝐼3 𝑤𝑤𝐼𝐼4 … 0 ⎦

⎥
⎥
⎥
⎥
⎤

 (9) 

A rock contiguity algorithm was employed to compute the weights (𝑤𝑤𝑖𝑖𝑖𝑖 with 𝑖𝑖 = 1, … ,88) of the distance 
matrix W (Equation (9)), in which its diagonal elements are equal to zero whilst its off-diagonal elements 
are assumed to take the value of one if two geographic objects (i.e., pilot cities) are near each other, or 0 
otherwise.  
 

4. RESULTS 
 

In addition to the methodological approach outlined in the previous section (i.e., AS-SF), we also estimate 
an autoregressive stochastic production function (A-SF) in which the presence of neighbourhood patterns 
is not accounted for. The model parameter estimates of both models are reported in Table 6. The log-
likelihood function at converge of the A-SF model is -9518.166 with 21 coefficients whilst that of the AS-
SF is -9501.647 with three additional parameters representing the spatial dependence across the pilot cities. 
Given that the the A-SF model is nested within the AS-SF model (in the former model, the spatial 
parameters are set to zero), we can compare the two by means of the log-likelihood ratio test (LL-R). The 
LL-R value between the AS-SF and A-SF models is computed as 33.038 which is greater than the critical 
Chi-square value for three degrees at the 0.005 percent level. Based upon the statistical evidence, we can 
reject the null hypothesis and conclude that the proposed AS-SF is the preferred model. As such, in what 
follows, attention is placed on describing the empirical findings of the AS-SF model outputs. Given that 
the continuous variables are expressed in logarithmic form, the corresponding estimated parameters can be 
directly interpreted as elasticity measures. Further, it is worth noting that the signs of coefficients obtained 
from SF models should be interpreted in an opposite manner to most other econometric models. That is, a 
negative signed coefficient does not imply less EV sales, rather it suggests that the maximum possible EV 
sales are lower as the magnitude of the coefficient increases. As such, larger negative coefficients indicate 
the frontier reduces and becomes closer to the actual observed number of sales. 
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Table 6: Model results 

 A-SF AS-SF 
 Estimates (z-value) Estimates (z-value) 

Constant ( 𝛽𝛽0) -3.803 (-7.30) -3.555 (-6.75) 
Lagged log(direct EV sales) (𝜌𝜌) 0.934 (69.95) 0.939 (67.81) 
Lagged log(spatial EV sales) (𝜆𝜆) - - 0.731 (2.25) 
Lagged log(ICE vehicle direct effect) (𝛽𝛽1) 0.150 (10.43) 0.173 (11.56) 
Lagged log(ICE vehicle spatial effect) (𝛽𝛽1𝑊𝑊) - - -0.019 (-5.05) 
Log(EV charging stations direct effect) (𝛽𝛽2) 0.123 (8.05) 0.120 (7.81) 
Log(EV charging stations spatial effect) (𝛽𝛽2𝑊𝑊) - - 0.018 (5.29) 
Central purchase subsidies (𝛽𝛽3) -0.280 (-4.63) -0.228 (-3.70) 
Local government contributions (𝛽𝛽4) 0.278 (6.76) 0.289 (7.04) 
Summer (𝛽𝛽5) -0.132 (-4.14) -0.131 (-4.11) 
Low temperature dummy (𝛽𝛽6) -0.243 (-4.82) -0.238 (-4.67) 
Air quality (PM2) (𝛽𝛽7) -0.142 (-3.93) -0.150 (-4.08) 
Average petrol price (𝛽𝛽8) 1.077 (6.46) 1.012 (6.01) 
Population density (𝛽𝛽9) 0.169 (7.52) 0.197 (8.53) 
Average annual GDP per capita (𝛽𝛽10) 0.042 (1.11) 0.003 (0.07) 
Covid dummy (𝛽𝛽11) 0.057 (0.75) 0.052 (0.68) 
Covid movement restrictions (𝛽𝛽12) 0.275 (4.62) 0.277 (4.64) 
Covid public gathering restrictions (𝛽𝛽13) -0.085 (-1.44) -0.081 (-1.38) 
Covid financial government support provided (α1) -1.058 (-3.25) -1.101 (-3.39) 
ICE purchase restrictions imposed (α2) -2.652 (-6.43) -2.708 (-6.50) 
ICE driving restrictions imposed (α3) -0.369 (-2.10) -0.316 (-1.83) 
EV charger subsidy (α4) -0.475 (-4.28) -0.445 (-3.88) 
Variance (𝜎𝜎𝑆𝑆2) 2.874 (28.15) 2.841 (27.15) 
Inefficiency effect (𝛾𝛾) 0.787 (61.58) 0.786 (55.79) 
Number of Cities 88 88 
Timeframe 71 71 
Number of observations 6248 6248 
Number of parameters 21 24 
Initial LL -10218.490 -10218.490 
LL at convergence -9518.166 -9501.647 
Bayesian Information Criterion (BIC) 19219.872 19213.054 
Akaike’s Information Criterion (AIC) 19078.332 19051.294 
 
The autoregressive parameter, 𝜌𝜌, is estimated to be statistically significant and close to one, suggesting that 
the sales of electric cars reported in the tth month are highly influenced by the sales in period t-1, all else 
being equal. 𝜆𝜆 is statistically significant and equal to 0.70 indicating that the sales volume of EVs within 
the same city is positively affected by that reported in the neighbouring cities in the previous month, all 
else being equal. The latter finding confirms the existence of a strong spatial dependence across the 
demonstration cities that would be otherwise ignored by the A-SF model. Next, the direct effect (𝛽𝛽1) and 
the spatial effect (𝛽𝛽1𝑊𝑊) estimates pertaining to ICE vehicle sales observed in t-1 are both statistically 
significant. The overall effect, calculated as 0.173 (𝛽𝛽1) − 0.019 �𝛽𝛽1𝑊𝑊� = 0.154, is positive and hence we 
conclude that as the number of traditional vehicles on roads increases, so too the maximum level of potential 
EVs sellable in the next period 𝑡𝑡, all else being equal. The fact that the spatial effect is found to be 
statistically significant but negative indicates that local policy interventions should be undertaken in such a 
way as to account for the negative spill-over patterns that arise from the sales of conventional vehicles in 
the neighbouring cities. This is consistent with a study undertaken by Iogansen et al. (2023) who found that 
consumers are more likely to purchase EVs when they are exposed to a greater number of electric cars and 
related EV infrastructure The coefficients 𝛽𝛽2 and 𝛽𝛽2𝑊𝑊 are statistically significant and positive, suggesting 
that the increase provision of public charging stations for EVs within and near the city results in an overall 
increment of the EV sales frontier of approximately 0.138 percent, all else being equal. As for central 
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purchase subsidies, the corresponding parameter 𝛽𝛽3 is statistically significant and negative, suggesting that 
the scale-back plan implemented by the CCG negatively impacts the maximum achievable sales frontier 
for fuel-efficient cars. On the other hand, financial contributions offered by local governments, 𝛽𝛽4, 
generates an increment of the frontier of about 0.289 percent, all else being equal. 𝛽𝛽5 and 𝛽𝛽6 are both 
statistically significant and negative, indicating that both summer and low temperatures negatively impact 
the EV sales frontier. Another interesting finding relates to the fact the demand for EVs appears to be 
negatively influenced by the low concentration of PM2 in the air (𝛽𝛽7). This perhaps reflects the fact that 
consumers appear to be less motivated to purchase fuel efficient cars if the air quality of the city they live 
in is perceived to be satisfactory. The parameter associated with the average monthly petrol price, 𝛽𝛽8, is 
statistically significant and positive, suggesting that the increase of petrol price as a form of fuel tax would 
yield a growth of the EV sales frontier by around 1.012 percent. Similarly, we find that densely populated 
cities tend to positively impact the EV market penetration as shown by the positive and statistically 
significant 𝛽𝛽9 coefficient. Also included in the model is a parameter associated with the average GDP per 
capita. The parameter for this variable is not statistically significant suggesting that the overall level of 
economic growth for the country does not impact on EV sales. Among the Covid-19 control variables, we 
found that cities that imposed restrictions on personal movements witnessed an increase in EV sales, whilst 
both the imposition of restrictions on public gatherings and the advent of the Covid-19 did not show a direct 
impact on the EV sales. 

The estimated model parameters embedded within the technical inefficient component of the A-SF 
are of particular interest for this study. As seen from the table, the introduction of driving and purchase 
restrictions on conventional vehicles contributes to diminish the inefficiency of the EV market in the 88 
demonstration cities. In a similar vein, the economic stimuli that local governments have introduced to 
sustain the construction and operation of public EV chargers decreases the inefficiency of the emerging EV 
market. Further, financial support for households during the pandemic is also found to render the EV 
penetration more pervasive. Finally, 𝜎𝜎𝑆𝑆2 is found to be statistically significant suggesting that there exists 
heterogeneity in the EV sales registered across the 88 Chinese cities involved in the pilot project. Likewise, 
γ parameter is statistically significant and equal to 0.786 (close to one) and thus we can assert that the 
inefficiency effects are likely to have a strong impact on the analysis of the value of the inputs. 
 

5. MODEL APPLICATION 
 

Figure 2 plots the efficiency outputs for each of the 88 pilot cities based on the AS-SF model for the years 
2016 (Figure 2a) and 2021 (Figure 2b). Similar plots for the years 2017 to 2020 are available from the 
authors upon request. Of the 88 cities analysed as part of this study, for the year 2021, Shenzhen (0.7071) 
and Hangzhou (0.6991) are the two most efficient cities with respect to EV sales, with Tianjin (0.6946), 
Guangzhou (0.6938) and Beijing (0.6882) being placed third, fourth and fifth. The least efficient city in 
terms of EV sales is Pingtan (0.3011) followed by Zingtai (0.3917) and Chengde (0.3942). Between 2016 
and 2021, the efficiency of EV sales as measured by the AS-SF model improved for 64 of the 88 cities and 
declined for 24. Seven of 10 most efficient cities in 2016 remain within the top 10 most efficient cities in 
2021. Of those that left the top 10 ranking, Tianjin (0.5917 in 2016 and 0.5169 in 2021) dropped from 
seventh to 37th rank, whilst Weifang (0.5749 in 2016 and 0.5214 in 2021) went from eighth to 34th position 
and Jinhua (0.5691 in 2016 and 0.5253 in 2021) dropped from ninth to 30th most efficient city. The most 
dramatic change in efficiency experienced between 2016 and 2012 however was for the city of Pigntan 
whose EV sales efficiency decreased from 0.5617 (11th ranked city) to 0.3011 (88th or last ranked city), 
whilst Changchun improved in terms of EV sales, with estimated efficiency rising from 0.3088 (ranked 85) 
in 2016 to 0.5665 in 2021 (ranked 12).  
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(a) Efficiency measures for 2016 

 
(b) Efficiency measures for 2021 

Figure 2: Efficiency outputs by region for 2016-2021 
 



 
 

16 

Figure 3 plots the efficiency measures for each of the 88 cities for the years 2016 to 2021. Also displayed 
is a line of best fit (R2 = 0.8253) showing a downward trend in the efficiency of EV sales between 2016 
and 2018, after which the efficiency of the 88 cities EV sales increases to a level above that observed in 
2016. Further the spread of efficiency measures decreases year on year with the standard deviation of 
measures decreasing from 0.0889 in 2016 to 0.0699 in 2021. As displayed in the plot however, the decrease 
in spread arises from a decrease in overall EV sales efficiency occurring mostly amongst the top performing 
cities, suggesting that whilst on average, the 88 cities are becoming more efficient with respect to EV sales, 
that overall efficiency is converging to the mean, particularly for the better performing cities. 

 

 
Figure 3: Efficiency Plot 2016-2021 

 
To understand the policy implications arising from the modelling exercise undertaken, based on the AS-SF 
model, we compute the number of EV sales forgone for each year over the six-year time horizon, calculated 
as the difference between the predicted (representing total potential) and observed (actual) EV sales for 
each city. We further break down lost potential EV sales into lost sales of BEV and PHEVs. Assuming a 
perfect market substitution where a prospective buyer can purchase either ICE or electric cars, we postulate 
that the forecasted forgone BEV and PHEV sales represents the sale of ICE vehicles also. Under such an 
assumption and noting that EVs in China do not attract any government sales tax, whereas ICE vehicles 
attract an average sales tax of approximately five percent, it is possible to compute the gain in government 
revenue resulting from the sale of more petrol vehicles than otherwise should have been the case. To 
calculate the additional government revenue obtained from the purchase of ICE cars as opposed to EVs, we 
apply a five percent tax rate to the average ICE vehicle price for each city known by month and year, and 
multiple this by the forecasted number of EV sales forgone. In addition to computing tax revenue, we are 
able to determine the amount of additional emissions generated from the purchase of ICE vehicles that 
could have been EVs. Assuming vehicles travel on average 11,600 kms per year, and petrol vehicles 
produce 134 grams of CO2 per km travelled, PHEVs 68 grams per km and BEVs zero grams per km 
travelled, knowing how many ICE vehicles were purchased that could have been BEV and PHEVs, we can 
calculate the total emissions that could have been saved in each year of the timeseries. Table 7 presents the 
results using the above approach applying the observed data for each of the 88 cities.  
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As we can see from Table 7, 2017 represents the worse year in terms of lost potential EV sales (this 
is also shown in Figure 3), with 2021 being the best overall year. The poor performance of the EV market 
in 2017 and 2018 arose primarily due to potential BEV sales not occurring as opposed to PHEV, the market 
for which appears to operate closer to the efficient frontier. Perversely, assuming forgone EV sales were 
converted to ICE vehicles, the central government is estimated to have generated an additional 
¥590,864,816.99 (US$85,563,134.15) in tax revenue over the six-year period resulting from the fact that 
ICE vehicles attract a sales five percent tax that EVs do not. Nonetheless, the additional ICE vehicles sold 
generated 847,183.43 additional tones of CO2 gases that could have been avoided if the market was 
operating at the efficient frontier. 
 

Table 7: Base outputs 2016 to 2021* 

Year Lost potential  
EV sales (BEV) (PHEV) Tax revenue  

not forgone 
Tax revenue  

not forgone (US$)* 
Emissions  
(tonnes) 

2016 4,997.55 3,860.48 1,137.07 ¥41,627,380.24 $6,028,060.93 69,068.10 
2017 22,779.08 21,119.08 1,660.00 ¥235,018,774.79 $34,033,068.78 342,747.62 
2018 13,604.46 11,981.98 1,622.48 ¥150,149,964.83 $21,743,216.41 199,697.24 
2019 6,524.90 6,474.71 50.19 ¥66,286,028.18 $9,598,879.74 101,549.72 
2020 6,731.51 5,428.79 1,302.72 ¥69,494,239.38 $10,063,460.81 94,846.77 
2021 2,809.81 2,220.49 589.33 ¥28,288,429.57 $4,096,447.49 39,228.97 
Total 57,447.31 51,085.52 6,361.79 ¥590,864,816.99 $85,563,134.15 847,138.43 

* Yuan to US$ exchange rate of 0.14481 as of 7 March 2023 
 
To test the impact of different policies on the EV market potential, we apply the AS-SF model to simulate 
three scenarios representing 1) the introduction of a ten percent tax on petrol, 2) a ten percent increase in 
the number of public chargers available, and 3) the introduction of policies to improve the air quality below 
35 µg/m3for all 88 cities. The simulated scenarios are presented in Tables 8 to 10 respectively. Table 8 
presents the modelled outcome assuming petrol prices were increased by 10 percent via the introduction of 
an environmental tax on petrol. The introduction of a 10 percent tax is predicted to have resulted in a greater 
number of EVs being sold than actually occurred. Indeed, the loss in potential EV sales increases by an 
average of 1.23 for both BEV and PHEVs, with an additional 13,139.86 EV sales predicted to have occurred 
over the base model results. In addition to revenue raised from an increase of petrol costs by 10 percent 
resulting from the introduction of an environmental tax on petrol, the government benefited by 
¥726,340,003.73 (US$105,181,295.94) in sales tax revenue that they would have lost over the same period 
had the policy been introduced. At the same time, if the vehicle market were operating at the efficient 
frontier, the increase in petrol prices would have reduced transport C02 emissions by 1,041,039.16 tonnes 
over the six-year time frame examined, 193,900.73 over the base scenario. 
 

Table 8: Economic losses 2016 to 2021 assuming 10% tax on petrol* 

Year Lost potential  
EV sales (BEV) (PHEV) Tax revenue  

not forgone 
Tax revenue  

not forgone (US$)* 
Emissions  
(tonnes) 

2016 6,082.94 4,710.34 1,372.60 ¥50,696,317.79 $7,341,333.78 84,159.24 
2017 27,832.65 25,806.82 2,025.83 ¥287,161,710.92 $41,583,887.36 418,806.05 
2018 16,814.42 14,813.18 2,001.25 ¥185,561,164.89 $26,871,112.29 246,847.79 
2019 8,055.81 7,994.22 61.60 ¥82,082,590.20 $11,886,379.89 125,378.86 
2020 8,317.27 6,708.30 1,608.97 ¥85,916,791.58 $12,441,610.59 117,195.16 
2021 3,484.07 2,754.52 729.55 ¥34,921,428.36 $5,056,972.04 48,652.06 
Total 70,587.17 62,787.38 7,799.79 ¥726,340,003.73 $105,181,295.94 1,041,039.16 

* Yuan to US$ exchange rate of 0.14481 as of 7 March 2023 
 
Table 9 presents the estimated outcome assuming the number of public charging stations in each of the 88 
cities were increased by 10 percent over and above the number actually present. As with the petrol tax 
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scenario, increasing the number of public charging stations available is predicted to increase the number of 
EV sales that would have occurred, widening the gap between actual observed and predicted sales. With 
respect to the base scenario, the potential market for EVs over the six years would have been an additional 
64,038.27 EVs, 6,590.96 more than under the base scenario. This represents an average market growth of 
1.11 above the base scenario. The fact that the policy was not implemented therefore earnt the government 
¥68,236,466.37 (US$9,881,322.70) in tax receipts that they would have lost had the market for EVs been 
fully realised. Nevertheless, an additional 944,399.43 tonnes of CO2 entered the atmosphere than would 
have been the case had the market been operating at the efficient frontier and assuming the policy had been 
implemented.  
 

Table 9: Economic losses 2016 to 2021 assuming 10% increase in the number of public chargers* 

Year Lost potential  
EV sales (BEV) (PHEV) Tax revenue  

not forgone 
Tax revenue  

not forgone (US$)* 
Emissions  
(tonnes) 

2016 5,498.03 4,255.09 1,242.95 ¥45,846,879.45 $6,639,086.61 76,048.38 
2017 25,298.45 23,463.24 1,835.21 ¥261,111,391.41 $37,811,540.59 380,722.05 
2018 15,088.89 13,281.59 1,807.30 ¥166,597,020.69 $24,124,914.57 221,425.15 
2019 7,330.46 7,274.62 55.83 ¥74,600,984.62 $10,802,968.58 114,091.28 
2020 7,619.27 6,147.29 1,471.99 ¥78,597,576.90 $11,381,715.11 107,375.49 
2021 3,203.17 2,533.39 669.77 ¥32,347,430.30 $4,684,231.38 44,737.09 
Total 64,038.27 56,955.21 7,083.06 ¥659,101,283.37 $95,444,456.84 944,399.43 

* Yuan to US$ exchange rate of 0.14481 as of 7 March 2023 
 
Results from the third and final simulated scenario are given in Table 10. Under the third scenario, the air 
quality of all 88 cities is assumed to be improved to the highest quality level measured. Under this scenario, 
the potential number of EV sales falls below the base case over the six years, from 57,447.31 to 51,786.05 
EVs, a decrease of 5,661.26 vehicles. The fact that fewer cars are predicted to be sold than for the base 
scenario results in a decrement in government revenue raised via taxes on ICE vehicles of ¥58,664,006.12 
(US$8,495,134.73), dropping from ¥726,340,003.73 (US$105,181,295.94) for the base to ¥659,101,283.37 
(US$95,444,456.84) under the scenario being modelled. Finally, emissions are also predicted to be lower 
than predicted under the base scenario, decreasing from 847,138.43 tonnes of CO2 to 763,501.06 tonnes. 
 
Table 10: Economic losses 2016 to 2021 assuming air quality improves to be below 35 µg/m3for all 

88 cities * 

Year Lost potential  
EV sales (BEV) (PHEV) Tax revenue  

not forgone 
Tax revenue  

not forgone (US$)* 
Emissions  
(tonnes) 

2016 4,436.46 3,427.18 1,009.27 ¥36,925,623.42 $5,347,199.53 61,314.65 
2017 20,539.32 18,998.31 1,541.01 ¥211,937,007.60 $30,690,598.07 308,696.16 
2018 12,388.09 10,918.58 1,469.51 ¥136,681,854.36 $19,792,899.33 181,905.04 
2019 5,870.64 5,823.32 47.32 ¥59,269,978.91 $8,582,885.65 91,350.04 
2020 6,035.45 4,874.20 1,161.25 ¥62,206,689.31 $9,008,150.68 85,092.93 
2021 2,516.10 1,990.13 525.97 ¥25,179,657.28 $3,646,266.17 35,142.23 
Total 51,786.05 46,031.73 5,754.32 ¥532,200,810.88 $77,067,999.42 763,501.06 

* Yuan to US$ exchange rate of 0.14481 as of 7 March 2023 
 

6. DISCUSSION AND CONCLUSIONS 
 
This paper utilises an autoregressive spatial stochastic frontier model to explore the technical efficiency of 
the EV car market operating across 88 Chinese cities between the years 2016 and 2021. Inputs into the 
stochastic frontier model include variables associated with whether or not local or central government 
subsidies were made available to residents of various cities for the purchase and operation of EVs, the 
number of public EV charging stations are present, the average temperature of each city, the occurrence of 
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the summer season, and the amount of pollution recorded at each location. Other inputs into the model 
comprise average petrol prices, population densities, GDP per capita, as well as various variables 
representing different restrictions and/or subsidies associated with Covid-19.  
 The empirical findings reveal a strong autoregressive nature in the EV market with sales registered 
in previous months being highly correlated with current sales. The significant presence of spill over effects 
whereby the sales volume of EVs from one city are positively correlated with the sales volumes of 
neighbouring cities in the previous month indicates a notable spatial dependence across the 88 
demonstration cities. Both direct and spatial effects associated with ICE vehicle sales in previous months 
are also detected, with a positive overall effect indicated that across the 88 cities examined, cities with 
greater numbers of traditional ICE vehicles have a greater potential to sell a larger number of EVs. Unlike 
the positive impact EV sales have on neighbouring cities however, we found that the spatial effect 
associated with conventional vehicles is negative, meaning that any policies implemented that are designed 
to promote EV sales in one city should also account for potential spill-over effects of policies that impact 
the sale of conventional vehicles in neighbourhood cities. Our empirical investigation also highlights that 
cities with a greater number of public charging stations available increase the frontier for EV sales, whilst 
the scale-back structure of purchase subsidies negatively impacts the maximum achievable sales frontier 
for EVs. On the other hand, local government financial contributions were found to increase the frontier 
for EV sales whilst summer and low temperatures negatively impact the EV sales frontier. Of some interest 
is the finding that demand for EVs appears to be negatively influenced by improved air quality. We propose 
that this outcome may be the result of residents in less polluted cities being less motivated to purchase an 
EV than residents living in more polluted locations. Petrol prices and population density also increase the 
EV sales frontier.  

Finally, controls imposed during Covid-19 were found to have mixed effects on EV sales across 
the 88 cities examined. In general, however, the models explored herein suggest that the market for EV 
sales was becoming less efficient prior to Covid-19. Nevertheless, since the advent of Covid in 2019, the 
efficiency of the Chinese EV market has, on average improved, at the cost however of the market regressing 
to the mean. In particular, our findings suggest that cities found to be less efficient appear to, in the main, 
have improved substantially, whereas more efficient cities are becoming less efficient over time with 
respect to converting potential EV sales into actual sales. The fact that the average efficiency level has 
increased points out that the improvement in less efficient cities over time has outweighed the loss of 
efficiency for the more efficient markets present within the data. 

As part of the paper, we also performed a simulation exercise to test the efficacy of three policies 
on the efficiency of the Chinese EV market. Of the three policies, implementing a 10 percent environmental 
tax on petrol was found to have a larger impact on improving the efficiency of the EV market across the 88 
cities, more so than increasing the number of public charging facilities available, or improving the overall 
air quality experienced within each city. Indeed, as noted earlier, the modelling undertaken suggest that 
improving air quality makes the EV market less efficient than otherwise has been the case. In testing each 
of the three scenarios, we further examined the impact on both government revenue derived from sales 
taxes on conventional fueled vehicles as well as the amount of CO2 released into the atmosphere. 
Perversely, given that no sales taxes are imposed on EVs, increasing the efficiency of EV sales negatively 
impacts on Government revenue streams, thus providing somewhat of a disincentive for government to 
persevere with policies designed to promote EV additional sales. Further, given the finding that improved 
air quality negatively impacts the efficiency of EV markets, any non-transport related policies introduced 
by government designed to improve air quality runs the risk of limiting EV sales, and hence increase 
transport related emissions. Further yet, if such a relationship between air quality and EV sales continues 
to exist into the future, it is possible that as transport related emissions decreases as a result of a greater 
number of EVs being sold relative to ICE powered vehicles, then the sale of Ice vehicles will increase, 
resulting in greater long-term pollution occurring. As such, more forceful interventions may need to be 
imposed such as restrictions on ICE vehicle sales or usage, if such a viscous cycle is to be avoided. 

This paper contributes to the current literature on the topic in two ways. First, this study utilizes for 
the first time a stochastic frontier model to detect the latent (unobserved) sales frontier of the EV market 
whilst also accounting for potential spatial patterns. The features of the spatial based stochastic frontier are 
herein exploited to uncover interesting insights that originate from the impact of government interventions 
on the Chinese car market of 88 pilot cities between the years 2016 and 2021. Second, unlike previous 
applications, the data on EV sales span a longer period of time up to 2021 alongside the fact that additional 
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variables have been addended, the most important of them is the electric vehicle charging availability (see, 
for example, Sheng et al., 2022). 
 Whilst this study investigates the evolution of the EV market from the novel prospective of the 
sales efficiency, there are some limitations that need to be acknowledged. The first limitation relates to the 
absence of some policy variables such as parking discounts or access to HOV lanes from the set of inputs 
employed for estimation. The inclusion of such variables could have assisted us in measuring the stochastic 
frontier for EV sales in a more accurate manner. This limitation can be primarily attributable to the 
challenges that the data collection process consisting of the consultation of a wide range of sources place 
upon the analyst. The second limitation refers to the fact that we are only able to account for spatial patterns 
that originate from policy interventions introduced in the 88 cities taking part in the demonstration project. 
This somewhat provides a partial accounting of the underlying spatial dependence as we fail to capture the 
potential impact that structural reforms deployed in neighboring cities not belonging to the demonstration 
project might have on the sales of EVs occurred in the demonstration ones.  
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