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Abstract

The current study aims to investigate and develop numerical tools for the simulation of
interfacial flows, including those with turbulence and primary spray atomization. In the
past, many approaches were developed to track the interface of a multi-phase/immiscible
flow system. Two of them, the volume of fluid (VoF) and the level set (LS), have shown
promising findings and have been considered a benchmark for further research. VoF methods
have proved good mass conservation behaviour during the advection of solution. However,
LS methods have shown better interface representation when used for the calculations of
interfacial flows. Most of the recent development in this context either originated from VoF,
LS or a combination of both.

In the first part of this thesis importance of the current study is highlighted in detail, and
an overview of the recent developments for the numerical solutions of immiscible flows
is presented. A detailed description of interface-capturing methods and their development
over time is presented in a systematic way, leading to the issues addressed in this study. A
stochastic field PDF-LES solution of the VoF approach is analyzed against the Sydney needle
spray measurements. Solution behaviour for different combinations of stochastic fields and
LES grid cells are examined in detail.

In the second part of this work, three different LES treatment for unresolved sub-grid
fluctuations, TFVoF, TF-AC and newly developed EVD, has been presented. The performance
analysis of two already existing solutions, TFVoF and TF-AC, is compared with the EVD
approach. Sydney needle spray measurements are used as a benchmark for this comparison.
The suitability of the EVD approach is also tested for different flow conditions. Simulation
results confirm that sub-grid surface tension plays an important role in the realistic prediction
of the jet decay rate, and proper closure models to account for sub-grid surface tension are
very necessary. An already existing sub-grid surface tension closure model is incorporated
into OpenFOAM and tested for all three LES filtered solutions.

The findings of this work suggest that the newly developed EVD approach has shown
promising improvements to produce more reliable and realistic solutions for multi-phase flow
applications. Sub-volume surface tension closure model, following the EVD formulation, is
helpful for more accurate jet decay rate predictions.
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Chapter 1

Introduction

Interfacial flows with moving free surfaces can be divided into different sub-categories like
atomizing spray jets, bubbly flows, waves and liquid films. Each class has several physical
real-life applications, e.g., liquid sprays play an essential role in automobile, power and
manufacturing sectors; characteristics of liquid bubbles are important in various chemical ap-
plications; ocean waves are important in the design of maritime vessels and coastal structures;
liquid films are significant in printing and coating industries. All these applications involve
the interaction of the liquid with gas or air. Usually, experimental findings are considered the
leading source of the necessary information regarding these two-fluid interactions. However,
experimental investigations become challenging or sometimes impossible when the time and
length scales are microscopic, or the conditions are too dangerous or expensive to replicate in
a laboratory. Under these conditions, numerical modelling is the only option for the desired
qualitative or quantitative physical analysis.

Spray jets can be nominally divided into three main regions [87, 91, 286, 259]:
(i) the dense, near-field, primary atomization region that can be treated as an interfacial
flow with continuous liquid and gas streams that are unambiguously separated by an
interface
(ii) the intermediate region where the liquid jet continues to break-up along with
secondary atomization of discrete fragments
(iii) the far-field region where the spray becomes dilute.

The current study focuses on the dense and intermediate regions and therefore addresses
two-phase flow conditions in which both interfacial and discrete flow conditions co-exist.
Different approaches are available to have the solution of moving interfaces such as volume
of fluid (VoF) [107], level set (LS) [251] and diffuse-interface (DI) [11]. The VoF based
solutions have performed well in terms of mass conservation but remain sensitive to mesh
resolution, which is a key challenge with these methods. Although fully resolved solutions
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with VoF are helpful in getting the fundamental insight [59, 102] the high computational
requirement does not allow them for full-scale practical flows. Under resolved solutions
such as large eddy simulations (LES) in combination with VoF have been applied in various
studies [144, 46, 12]. In the present work, the performance analysis of two already existing
approaches including the turbulent filtered VoF model (TFVoF) [144, 46] and a hybrid
turbulence filtering and artificial compression model (TF-AC) [12] is conducted against a
new explicit volume diffusion model (EVD) [270]. The three approaches are distinguished
by different modelling strategies of unresolved fluctuations at the liquid-air interface of a two-
phase flow. In general, these fluctuations can be due to interface dynamics and turbulence.
All these treatments properly considered the large jumps of liquid density and viscosity
across the interface to have the correct momentum balance in the interface region. As the
surface tension force is significant and plays a crucial role in interface dynamics, its sub-grid
effects are evaluated in detail. A new sub-grid surface tension model is also incorporated with
OpenFOAM, and its results are analyzed and compared. Stochastic field solution coupled
with turbulent filtered combined VoF and surface density model [184] is also evaluated for
different numbers of stochastic fields.

1.1 Motivation

Atomization processes are widely used in various applications and play a vital role in
driving the current modern society. They are very valuable and extensively used in the
power, transportation and industrial sectors, i.e., engines and gas turbines, agriculture, nano-
materials [157] and medical [182] industries. According to the World Energy Outlook of
2017 [2], the central part of energy consumption is based on fossil fuels with a contribution
of over 74%. Moreover, energy requirements continue to increase with an annual increment
of around 2%. The principal constituent of this primary energy source is oil, along with
coal and gas [1, 3]. Increasing focus on environmental sustainability encourages devices
with a better design that have progressively higher efficiency and clean emissions. The
increased utilization of renewable sources for energy requirements put extra pressure on
these devices to be more environmentally friendly and energy-efficient [2]. In addition to
theoretical interests in the physics involved behind the generation of these instabilities when
the liquid-gas interaction comes into place, knowledge of primary atomization is fundamental
in analyzing the spray phenomenon, droplet sizes and their distribution involved in various
applications like propulsion devices, power generations, liquid metals, agricultural sprays,
printing and food industry. This is a key element for the researchers to focus further both on
the experimental and theoretical aspects of the atomization phenomenon.
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The central focus of current research is to understand better the atomization phenomenon
that can lead to better atomization devices. For example, in the field of combustion, better
injection of liquid fuel can help reduce its impacts on the environment with the increased
efficiency of fuel used. Concerning the contribution of combustions devices to the atmosphere
and energy resources, a lot of focus is on redefining the design of devices to achieve
fewer pollutant emissions and reduce fuel consumption by increasing their efficiency. In
many combustion devices, fuel is directly injected into the combustion chamber. This
could be done by forcing fuel into stagnant high-pressure air or injecting the liquid fuel
comparatively flowing at a lower speed into high-speed co-flowing air. In both cases, the fluid
injection process is of prime importance in the combustion sequence to have better control
and clean combustion products. Liquid sprays are also helpful for the scalable synthesis
of nanomaterials under the flame spray pyrolysis (FSP) [157] approach, which has been
considered a preferred manufacturing route for the production of a wide range of products
such as metal oxides, salts and metals [247] using metal-nitrates. These nanoparticles are
of much importance to the industry because of having exceptionally promising potential
for manufacturing catalysts, smart sensors, biomaterials and biomedical devices. Liquid
evaporation and the rate of air mixing highly depend on the injection phenomenon. By a well-
defined injection system, we can control the droplet sizes of liquid fuel and their distribution
in the combustion chamber, which will help to investigate their effect on the combustion
process. To optimize a complex turbulent injection system, reliable lower-order models are
necessary. So far, these models are not capable enough because of the unavailability of
comprehensive theoretical background related to primary atomization. Recent developments
[271] in the X-ray techniques are helpful in capturing the near-field data but still struggling
to overcome the complexity of mounting the high-pressure chamber inside the X-ray unit.
Also, this technology is still costly and not within reach of most of the combustion research
community. Considering all these limitations, numerical simulations can play a better role in
investigating the near-field region of primary atomization. These are helpful in providing
information related to the dense part of the fuel jet, for which limited experimental data is
available so far.

The development of accurate and affordable spray atomization models is essential given
the ubiquitous use of sprays in applications ranging from direct injection engines and gas
turbines to agriculture, food drying, flame spray synthesis of nanostructured materials [157]
and pharmaceutical sprays [182]. In all these reacting and non-reacting applications of
sprays, one of the critical outstanding challenges lies in the ability to control the rate of fluid
fragmentation and the resulting droplet distribution at the end of the secondary atomization
zone. Existing capabilities to model and control sprays in practical devices rely on extensive
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experience and somewhat empirical correlations of key controlling dimensionless parameters
such as the Weber and Ohnesorge numbers [168]. Reliable predictive tools for atomizing
sprays will facilitate the optimization of injector designs, enabling a larger degree of control
over the atomization process and the resulting droplets. However, achieving such objectives
requires extensive development of physical modelling and numerical solution methods for
atomization, which depends on extensive validation using reliable data.

1.2 Immiscible flows and atomization phenomenon

The immiscible condition happens when two or more fluids interact with each other but do
not get mixed to have a homogeneous mixture. The atomization process is a perfect example
of such flows where air, depending upon the flow conditions, helps to disintegrate the liquid
jet first into ligaments and then droplets, but the liquid does not evaporate and mix with the
air at the molecular level. The atomization phenomenon is a combination of several complex
liquid-gas interactions. Near a liquid jet nozzle, the liquid is initially a continuous stream
that experiences fundamental instabilities at the interface with the surrounding gas leading
to breakages and the formation of discrete ligaments. These ligaments continue to break
further, and the drops reduce in size and become increasingly spherical. The shape and size
distributions of these drops are heavily related to the initial instabilities that have taken place
in the primary atomization region [139, 153, 235, 236].

Several dimensionless parameters are involved in the primary atomization process that
plays a key role in controlling the phenomenon [87]. Atomization strongly depends on the
injector type and momentum difference between the liquid and air. When the liquid jet
is injected into co-flowing air at a high relative velocity, the jet breaks up because of the
kinetic energy transfer from the air/gas to the liquid. This type of break-up is known as
air-blast or air-assisted atomization [48, 71, 142, 143]. There are several applications that
are based on this co-axial atomization process; many of them are combustion devices. For
example,liquid-propellant rocket systems [33] are composed of many co-axial atomizers,
each of which carries a central jet of liquid oxygen surrounded by high-velocity hydrogen
gas. The experimental studies [207, 208, 206, 162, 111, 70] are very helpful to understand
the physical aspects behind this type of atomization process. These studies explain that in
air-blast atomization, the liquid jet breaks up because of the instabilities occurring at the
liquid-gas interface. The physical phenomenon, which is closely related to experimental
findings, consists of a two-stage instability mechanism [80, 278]. Once liquid and gas streams
leave the jet, the liquid jet undergoes Kelvin-Helmholtz instability. This instability grows and
the most unstable wavelength λKH is determined by the vorticity layer thickness δg formed in
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the incoming gas flow inside the nozzle [206, 266] and density ratio of corresponding liquid
and gas streams defined [266] as λKH ∝ δg

È
ρl
ρg

. The work of Varga et al. [266] confirms that
Kelvin-Helmholtz instability is independent of the liquid jet diameter. These primary waves
then interact with a high-velocity gas stream, resulting in secondary interfacial instabilities.
This gives rise to Rayleigh-Taylor instability with wavelength λRT depending on the in-flow
conditions [111, 110, 265, 266, 10, 26]. This Rayleigh-Taylor instability undergoes a quick
transverse modulation and causes the stripping of ligaments.

Comparatively, less consensus has been developed so far to identify the basic mechanism
of primary break-up for a liquid injected into stagnant high-pressure air. The experimental
observation of the liquid-gas interface characteristics is very challenging, and the dense spray,
which surrounds the liquid jet, prevents detailed optical access [139, 153]. Moreover, length
and time scales linked with the primary atomization are very small compared to the integral
length and time scales [87]. Many inter-linked physical processes lead to velocity fluctuations
of the flow inside the nozzle. These fluctuations lead to a nonlinear instability of the liquid jet
exiting the nozzle. Experimental studies confirm that a list of relevant parameters contributes
to this type of atomization process. These include the level of turbulence generated within
the nozzle [73, 244], nozzle geometry, cavitation [43, 243] and unsteady injection velocity
[63].

There are several dimensionless parameters that are very helpful in analyzing the charac-
teristics of primary atomization [87]. In the case of air-blast atomization, these are Weber
number (We = ρg(ug−ul)

2Dl
σ

); non-dimensional thickness of incoming boundary layer within

the nozzle (
δg

(Dg−Dl)
); ratio of Rayleigh-Taylor and Kelvin-Helmholtz unstable wavelengths

( λRT
λKH

); gas to liquid density ratio (
ρg
ρl
) ; gas to liquid mass ratio (

ρgug(D2
g−D2

l )

ρlulD2
l

); gas to liquid

dynamic pressure ratio (
ρgu2

g

ρlu2
l
) and Ohnesorge number (Oh = µl√

ρlσDl
). Ohnesorge number

indicates relative interfacial viscous stress in relation to the surface tension force. The Weber
number is a relative measurement of dynamic pressure value with reference to the surface
tension force and is the most valuable dimensionless number in characterizing atomization.

For the liquid injection in high-pressure quiescent air, the relevant non-dimensional
parameters includes level of turbulence (lt/Dl,

√
kt/ul) and cavitation number ( ρlu2

l
2(pg−pvap)

).
Here lt and kt represent the turbulent length scale and turbulent kinetic energy respectively,
pg and pvap are pressure values for quiescent air and saturated vapours respectively. Experi-
mentally analyzing the effects of all these parameters in different atomization regimes under
realistic operating conditions (like high velocity and pressure, inhomogeneous and dense
three dimension liquid gas regions) is very challenging [74]. To overcome these difficulties,
numerical solutions may be able to provide a better alternative.
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1.3 Turbulence and its role in the atomization processes

In addition to the factors discussed in Section 1.2, the turbulence behaviour of a liquid jet
also contributes to the break-up processes. The break-up length of the liquid jet can be
significantly shortened [45, 190, 166] by changing the flow environment from laminar to
turbulent. The turbulence level developed at the jet exit, initially started inside the nozzle,
more dominantly controls the liquid jet atomization phenomenon and regimes, velocity
fluctuations, droplet sizes and their distribution [274, 13, 220, 221]. Turbulent behaviour is
considered the main driving force for the liquid stripping near the nozzle exit. Experimental
findings helped develop the general correlation between the level of turbulence, jet break-up
length and drop sizes. As experimental findings become more and more helpful in getting
the desired details, numerical simulations are also considered a valuable investigation tool
for studying the complexities involved in the atomization process.

Bianchi et al. [24, 23] performed the numerical simulations for the atomization of diesel
jet. They found that the turbulence level generated within the injector strongly impacts jet
penetration and break-up behaviour but weakly affects the drop sizes and their distribution.
However, they did not report the grid independence of their solution, which questions the
applicability and reliability of their approach.

Numerical solutions [24, 23, 134, 147] in combination with experimental findings are
very helpful to analyse the turbulence effects on atomization behaviour. Various mechanisms
involved in the disintegration of turbulent jets have been discussed in detail by Lefebvre and
McDonell [147]. However, the physics involved in the break-up processes is still not very
well understood. For example, it is still unclear whether atomization is primarily driven by
aerodynamic interaction between the liquid and the gas or the break-up processes within
the injector nozzle. However, experiments confirm that it is strongly affected by turbulence
intensity at the jet exit. Inflow boundary conditions and level of turbulence generated inside
the nozzle are strongly linked [245, 132, 133] to the primary break-up behaviour in the
atomization process, whose complete understanding is still a challenge for researchers.
Generating realistic boundary conditions similar to those of practical injectors is necessary
for a more physical understanding of the atomization processes.

Over time many numerical modelling efforts [145, 154, 65, 131] have been made for the
generation of inlet boundary data. The simplest way is to take a mean velocity profile with
superimposed random fluctuations, and the resulting data is equally distributed over the whole
wave-number range. This approach leads to excessive energy in the high wave-number zone
resulting in the immediately damping of small-scale turbulence. Lee et al. [145] suggested
an improvement by following an inverse Fourier Transform in the wave-number space. The
programming required for implementing this method is rather complex, and using the Fourier
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Transform needs specific grid requirements [134] that limit its applications. Lund et al. [154]
approach is based on the cross-correlations of velocity components. The critical correlation
factor is extracted from the experimental data.

The work of Klein et al.[134], usually termed Klein’s digital filter, is based on digital
filtering of random data and can reproduce the desired statistics with second-order accuracy
along with auto-correlation functions. Its implementation is very convenient and can be
easily linked with experimental data. It also helps to overcome the limitations of the classical
approach using the inverse Fourier Transform concept. The length scale can be defined
locally for each coordinate direction, and the output signal can be either periodic or non-
periodic without any restrictions. Using the in-flow generating procedure helps achieve a
better agreement with relevant experimental data. This approach is capable of producing
consistent results [134] for various flow conditions, such as round jets and liquid sheets.

1.4 Overview of recent developments in numerical solu-
tions

Massive improvements in high-performance computing are helping to advance the ability
to resolve liquid-gas interfaces near the exit plane of injectors. Several approaches exist to
simulate interfaces, including volume of fluid (VoF) [107], level set (LS) [251] and diffuse-
interface (DI) [11] methods. The VoF approach conserves mass and can be applied with
or without interface capturing or reconstructions methods [170, 272, 202, 109, 151] but
remains sensitive to mesh resolution. LS and DI methods require additional corrections
to satisfy mass conservation [60, 282, 171]. VoF based methods are the focus here. A
continuity equation is solved for the liquid volume fraction, α , which has values of unity
in the pure liquid stream and zero in the pure gas stream. Interface sharpening, e.g., by
artificial compression [272], is commonly used in an attempt to reduce the inherent numerical
diffusion, which is a dominant term in the absence of volume fraction molecular diffusion.
Note that in standard VoF computational models, α values other than zero or one are only
produced due to numerical diffusion and represent a kind of grid average. A beneficial
consequence is that the computational volume fraction is a continuous field; however, unlike
actual flows, the interface is not perfectly sharp. Highly resolved grids are generally required
to minimize numerical diffusion and to resolve the vital topological features of the interface
which determine the atomization modes.

Direct numerical simulation (DNS) with VoF is useful for fundamental studies [59,
102, 57], but application to practical flows is generally not possible due to the very large
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computational expense. Only two dimensional DNS under conditions similar to those of
practical injectors was reported in [26, 81], while three dimensional DNS studies remain
limited in scope [60, 144, 101, 21]. Large-eddy simulations (LES) have the potential to
fill this gap with much lower resolution requirements while resolving many of the large
scale physical phenomena that affect primary atomization. The key challenge with LES
is to accurately model the liquid-gas interface, which has a characteristic scale far smaller
than the filter width or grid size. Most of the existing LES for turbulent interfacial flows
have simply applied a conventional turbulence filter to the VoF transport equations, and
the sub-grid near-interface processes have been modelled using the well-known sub-grid
models that were developed for the turbulent characteristics prevalent in single-phase flows
[34, 54, 47, 184, 130]. Some significant physics is neglected with this conventional turbulence
filtering approach because: (i) inertial range turbulent eddies and the energy cascade are
not statistically universal across an interface with a large density ratio; (ii) the one-fluid
assumption, which is the basis of VoF methods, is compromised when the cell or filter size is
large; and (iii) for turbulent but low Reynolds number interfacial flows the sub-grid turbulent
diffusivity is too small and takes no account of the significant inhomogeneities induced by
the dynamics of the interface [275]. Additionally, numerical diffusion is significant, and
grid sensitivity has rarely been tested. Hecht [98] and Anez et al. [12] proposed adding
an artificial compression term to minimize numerical diffusion in flow regions adjacent to
a continuous interface. In contrast, in regions of the flow with discontinuous interfaces,
turbulent diffusion is used to model the dispersion of unresolved ligaments and droplets at the
sub-grid scale. A criterion based on the grid resolved curvature is generally used to identify
where the interface is continuous, but this itself can be grid sensitive.

Recently Wang et al. [270] developed a new VoF based approach called explicit volume
diffusion (EVD), which is applicable to laminar and turbulent flows and compatible with
LES. The EVD governing equations are formulated by averaging the VoF transport equations
over an explicitly defined physical volume. Values of α between zero and one in this model
have physical meaning and are not just numerical artefacts. Upon volume averaging, new
sub-volume flux and sub-volume stress terms appear in the transport equations due to the
inhomogeneity of the volume fraction and velocity fields at the sub-volume scales. These
terms are closed by introducing sub-volume diffusive and viscous models, which were shown
to be reasonably general over a wide range of laminar and turbulent Reynolds numbers and
liquid/gas density ratios. A closure for the volume averaged surface tension force is also
provided, which includes the effect of the sub-volume interface dynamics. The physical
volume averaged equations are discretized on the LES grid. By refining the LES grid while
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keeping the volume scale constant, the explicit volume diffusion overwhelms the numerical
diffusion, and thus, numerical convergence can be achieved.

1.5 Research aims and outline of the thesis

The purpose of this study is to investigate the existing numerical solutions used for the
interfacial flows and to have a solution that is more reliable and can lead to better predictions.
This study also focuses on the detailed analysis of sub-grid surface tension effects and
how they control the atomization processes and subsequent liquid jet decay rate. In this
Chapter, a brief description of immiscible flows is presented. The requirement for a better
understanding of the atomization phenomenon is also discussed. The effects of turbulence
and relevant non-dimensional parameters on the atomization behaviour are explained in
detail. Chapter 2 includes a brief description of interface-capturing methods for interfacial
flows with different numerical approaches developed over time. Key features and the relevant
limitations are explained systematically, leading to the issues addressed in this study. The
necessity of having a reliable, effective and economical under resolved solution to the
problem is discussed comprehensively. Stochastic formulation of the Eulerian-Lagrangian
spray atomization (ELSA) model for the combined VoF and surface density is described
in the first half of Chapter 3. However, the second half mainly includes the behaviour of
numerical convergence, jet penetration and jet decay rate to the number of stochastic fields
for three different mesh sizes. Moreover, an analysis of probability density function (PDF)
distribution for both liquid volume fraction and surface density is also conducted in the later
part of Chapter 3. It is revealed that numerical convergence in the stochastic fields approach
is illusive and that motivates a systematic study of other LES-based approaches in Chapter 4.
The detailed mathematical formulation of models TFVoF, TF-AC and EVD is explained in
Chapter 4 in the context of LES methodology. A comparison of two already existing models,
the turbulent filtered volume of fluid (TFVoF) and hybrid turbulence filtering with artificial
compression (TF-AC), with the newly developed solution termed as explicit volume diffusion
(EVD), is discussed thoroughly. Special care is taken for the sub-grid fluctuations of surface
tension force, and an improved sub-model is suggested based on the physical volume length
scale. Additionally, a sub-grid surface tension model based on the pressure jump across the
interface is also presented, which then is incorporated with all three TFVoF, TF-AC and
EVD formulations in order to study the sub-grid surface tension force behaviour. Detailed
numerical analysis of the three different turbulent modelling approaches, TFVoF, TF-AC
and EVD, is presented in Chapter 5. Firstly, grid convergence behaviour and the effect of
grid size on the jet penetration and decay rate are examined for each formulation using three
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different grid resolutions. Their numerical performance is evaluated following the Zalasek
disk test case and the Richardson Extrapolation calculations. Secondly, the applicability of
the EVD approach is evaluated against different physical length scales, and sub-grid surface
tension effects are analyzed using the physical volume length scale concept. Lastly, the
effects of pressure jump based solution for sub-grid surface tension are studied for all TFVoF,
TF-AC and EVD turbulent solutions. A complete summary of current numerical findings,
existing limitations and future possibilities are discussed at the end of this report in Chapter
6.
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Theoretical Background

Over time, many approaches developed for the numerical studies of immiscible flows and
the desired solution is obtained by following either tracking or capturing of the interface.
The interface-tracking method’s drawback is not providing an exact solution for topolog-
ical changes. Alternatively, detailed numerical solutions based on the interface-capturing
technique got significant attention as it avoids the complexities [223] involved in interface-
tracking solutions. Interface-capturing methods have been widely used and investigated
for interfacial flows. With time, continuous improvements have been made to overcome
the limitations [87] associated with them, but inherent shortcomings remain, especially
concerning their strong grid dependence. Experimental findings and their limitations are
briefly reviewed first, and then an overview of different numerical treatments for interfacial
flows is presented in detail. The second half of this chapter presents a complete description
of VoF and LS based interface-capturing approaches and their developments over time.

2.1 Experimental findings and limitations

Developments in diagnostics methods are helpful for the spray measurements to have detailed
spray characterization, which is very useful in various applications. For better understanding,
these measurements [17] can be categorized into three key sub-divisions: research, develop-
ment/testing, and quality assurance. For research purposes, there is a need for much detailed
information regarding the flow behaviour within the injector, initial instabilities taking place
in the near field region leading to the jet break-up, breaking of the jet into ligaments, and
finally, the drop sizes and their distribution.

For industrial purposes, the development and testing of atomizers are generally based on
a comparatively simple approach where the effect of a change in design is analyzed based on
the final spray measurements without getting insight into physical processes occurring in the
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near-field region of the atomization process. In the area of quality assurance, the consistency
of processes involved in atomizer manufacturing needs to be measured and monitored. Most
of the measurement needs for the last two applications are satisfactorily met with the currently
available diagnostic resources. Lorenz-Mie light scattering and fluorescence are capable
of having a rapid analysis of spray quality and pattern. Available shadowgraph imaging
techniques are capable of providing critical information like spray cone angle, break-up
length, and qualitative behaviour of spray [238]. Quantitative information on spray vapour
can be gathered by laser-induced exciplex fluorescence imaging [169, 108].

However, the current availability of diagnostics is still incapable of a complete analysis
of spray processes required to get the critical information needed to evolve vital physical
concepts, strengthen the theoretical background, and numerical developments. For a thor-
ough understanding of the physics involved in an atomization process, much more detailed
information is necessary, which should be collected for the same injector under similar
environments and conditions. This information loses authenticity, especially for theoretical
and numerical needs, when some measurements are made with one injector and rest with
another injector under different conditions. More details of internal flow fields within the
atomizers would be beneficial in understanding the spray formation processes and providing
accurate vital data to modellers. Electronic sensor-based techniques are helpful in measuring
the internal flow details. For example, high-frequency pressure fluctuations can be measured
with the help of miniature pressure transducers either within the injector or near the jet exit
zone. Microsensors manufactured using MEMS technology [283, 187] can be made small
enough to measure the mean and turbulent velocity fluctuations inside the atomizer. However,
the key challenges are i) development cost is still very high that makes them out of reach
for most of the research applications ii) occurrence of cavitation phenomenon makes the
measurements unreliable.

Liquid velocity data can be successfully obtained using laser Doppler velocimetry (LDV)
[159]. Double-pulsed holographic imaging and gaseous image velocimetry (GIV) are also
helpful in studying the liquid sheets from the velocity data of ligaments and the corresponding
flow field. Useful information like jet instabilities, waves spatial and temporal frequency,
and liquid flow velocity can be obtained with imaging approaches such as high-speed
shadow imaging [140] and ballistic imaging [68] when coupled with multiple exposures
[38]. Jet break-up length [150] can be measured with the help of pulsed-laser imaging and
tomographic analysis [92, 146]. Further downstream, accurate drop size measurement, their
velocity and number density, and volume flux become important [18]. Local drop velocity
for all size classes and gas phase can be measured in a polydisperse two-phase flow using
planar laser-induced fluorescence and phase Doppler techniques [76]. The local slip velocity
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is approximated from the values of drop and gas velocities [142] but cannot be measured
at a point simultaneously with the currently available resources. Change in diameter due
to evaporation can be measured for a single stream of droplets following Smith et al. [239]
but still not possible in the case of polydisperse evaporating spray field. Significant effort
is required to improve these diagnostics to have a reliable data set, especially for turbulent
two-phase flows with polydisperse drop size distribution.

Two air-blast acetone spray cases (designated N-AS2 and N-AS8) from the Sydney
needle spray burner measurements [153] have been used to validate numerical solutions.
The two-angle backlit imaging method [236] helps to have the mean volume fraction mea-
surements along the flow axis. The improved postprocessing approach for analyzing the
simultaneous images taken by two cameras at the same axial location helps have volume
fraction measurements. Though there are still challenges having the experimental measure-
ments in the radial direction of jet and limitation of the optical access in the dense region,
numerical findings are helpful in analyzing the atomization phenomenon in more detail, such
as volume fraction measurements in the radial direction, better representation of interfacial
instabilities at the liquid gas interface especially in the near-field region, jet penetration and
decay rate. Furthermore, experimentally validated numerical solutions have the potential
to have solutions for those interfacial flows whose experimental measurements are more
challenging or not possible with the available resources.

2.2 Numerical treatments for interfacial flows

Extensive literature is available to understand and investigate the numerical methods for
interfacial flows. To achieve the comprehensive understanding of these approaches, the
reader can benefit from the work of McHyman [114], Anderson et al. [11], Scardovelli and
Zaleski [223], Floryan and Rasmussen [77], Shyy et al. [234], Sethian [227], Unverdi and
Tryggvason [261], Sethian and Smereka [229], Smolianski [240] and Sussman et al. [249].
For a systematic understanding of all these available methods, computational modelling is
usually categorized into five main sub-parts

i) treatment of flow fluid
ii) interface modelling
iii) interface and fluid flow coupling
iv) discretization schemes
v) flow equations solution

Fluid motion treatment can be further distinguished [240, 158] based on the numerical
algorithm used in the specific two-phase problem. This can be either Eulerian [41, 240, 158]
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or Lagrangian [269]. In some cases, a combination of both Eulerian and Lagrangian [40,
69, 106] is also used. We have a stationary frame of reference in Eulerian methods, and
in numerical solutions, the fluid moves from one computational cell to the next. However,
in Lagrangian methods, the frame of reference moves with the fluid and the numerical
methods involve tracking specific fluid elements along their pathlines. Motion of free surface
between two fluids can be captured by either interface-tracking [167, 258] or interface-
capturing [172]. Coupling of fluid flow and interface can be made by either solving the flow
fields and interface simultaneously [50, 215, 218] or only the flow fields are solved while
considering the interface as fixed [204, 253, 254, 277]. Numerical solutions are very sensitive
to discretization schemes, and most commonly used for two-phase flows are finite difference
[127], finite element [97, 186, 233] and finite volume [105, 107] methods. Solution of flow
field variables can be obtained either following integrated [233] or segregated [105] approach.

2.2.1 Eulerian methods

In a fully Eulerian treatment of the two-phase problem, fluid flow calculations are performed
with reference to a fixed coordinate system. Solution for the interface can be obtained by
either capturing or tracking methodology.

Inetrface-tracking

The pioneering work of Harlow and Welch [93] explaining the marker and cell (MAC)
method is considered as a benchmark for having the free surface flows solution. Marker
particles were used to identify the spatial boundary of the fluid and adjacent free surface. The
specific cell contains liquid if there are one or more marker particles; otherwise, the cell only
has gas if it has no marker particles. The interface is obtained from cells with marker particles
but adjacent to the empty cells. This approach was a major breakthrough in dealing with
multi-fluid flows, especially for those having interfaces with large distortions. But there were
some challenges, like, not having proper interface orientation, high computational cost, and
difficulty in applying proper boundary conditions at the interface. These limitations became
the motivation for later researchers [104, 185, 86, 167, 185, 205, 261], whose contribution
helped to improve and extend this approach. The main contributors are: Hirt and Cook
[104] who proposed an algorithm for the correct pressure predictions; Noh and Woodward
[185] who helped in improving the interface reconstruction; Ramshaw and Trapp [205] who
improved the algorithm for fluid convection; Glowinski et al. [86] who used the segregated
fractional-step approach to solve the flow field and finite element method for the spatial



2.2 Numerical treatments for interfacial flows 15

discretization. The coupling of flow fields and the interface is made in a segregated way
when interface-tracking solutions are followed.

Inetrface-capturing

In all interface-capturing methods, the interface modelling solution is based on some specific
fluid properties; for example, the liquid volume fraction is used in the volume of fluid (VoF)
methods, and a specific value of an implicit function is used in level set (LS) methods.
Transport of that function or field variable is treated similarly to other flow field parameters.
Interface, either based on discontinuous field variable or continuous implicit function, is
advected with the fluid movement. Interface calculation is coupled to the momentum equation
linked with local density, viscosity and surface tension forces. In sharp-interface mechanism
[252, 84, 155], density and viscosity values have followed a big difference across the interface,
while in diffuse-interface methods [61], these field variables are linearly linked to indicator
function, which is liquid volume fraction in most of the cases. However, opposite to the
interface-tracking approach, where interface calculation depends on the Lagrangian motion of
particles, the interface-capturing approach is based on the Eulerian advection of the interface.

VoF method was first developed by Hirt and Nichols [107] and is based on the liquid
volume fraction concept in a multi-fluid environment. Usually, the liquid phase is assigned the
value of 1, and for the gas phase, its value is 0. The interface is present in those regions where
this value is neither 1 nor 0. This type of interface representation behaves in a discontinuous
manner which needs reconstruction at each time step. Initially, these reconstruction methods
were first-order accurate,i.e., simple line interface calculation (SLIC) [185]; then improved
with time to have higher-order solution accuracy and interface representation,i.e., piecewise
linear interface construction approach [14, 201, 214, 193, 152].VoF behaves well in keeping
the mass conserved and can be easily extended to three-dimensional problems but has an
issue with interface diffusion. Different level of numerical diffusion associated with various
grid sizes leads to grid sensitivity issue. Numerical treatment is required to have a sharper
interface and to overcome grid sensitivity problems. Most of the VoF methods usually follow
simultaneous solutions of flow fields and interface with finite volume or finite difference
schemes for spatial discretization.

In LS methods, the interface is represented by a specific value of an implicit variable (the
level set function) that is treated as a continuous function. Major advantages of this approach
are a better representation of the free surface, interface normal and interface curvature.
However, lack of mass conservation and difficulty in having accurate interface location
are the main challenges associated with its implementation. The work of Sussman et al.
[251] and Sethian [227] for the development of this approach applicable to incompressible
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flows is considered a major contribution to these methods. A detailed explanation of these
methods and their applications to physical systems can be found in the book of Sethian [228].
Other useful contributions in the further development of these methods are by Sussman and
Smereka [250], Sussman et al. [249], Sethian and Smereka cite [229],Sussman et al. [252]
and Herrmann [102]. The implementation of this approach is similar to VoF methods like
simultaneous calculations for flow field and interface, finite difference or finite volume based
spatial discretization algorithms, but mass conservation is worse than VoF solutions.

2.2.2 Lagrangian methods

These methods are used in combination with interface-tracking algorithms, and the computa-
tional grid moves with the fluid flow. The flow field and interface solutions are computed
separately. These methods are capable of precisely tracking the material interfaces and
allow the application of interfacial boundary conditions in a more realistic way. Accurate
Lagrangian description of the flow field and the interface can be found in the work of
Okamoto and Kawahara [186] and Hayashi et al. [97]. Very few approaches are based on
the Lagrangian tracking of fluid flow elements. To overcome the mesh distortion problems
linked with these Lagrangian methods, a meshless approach based on the smoothed particle
hydrodynamics (SPH) was a significant success. This approach was initially developed
to deal with astro-dynamical issues [176] and later on successfully applied to fluid flow
problems [173–175, 52, 51]. Though this approach has a remarkable capability to deal with
complex flow fields, SPH based solutions are computationally more expensive than Eulerian
approaches. Moreover, SPH methods do not represent the interface accurately because of
insufficient resolution linked with improper clustering of particles.

2.2.3 Combined Eulerian-Lagrangian methods

Most of these methods solve the flow field with Eulerian grids, and the free surface solu-
tion is based on Lagrangian treatment. The arbitrary Lagrangian-Eulerian (ALE) method
developed by Hirt et al. [106] is considered a pioneer work within the Eulerian-Lagrangian
framework. Firstly, the solution is obtained with respect to an initial fluid domain which
is then recalculated at each time step on the deformed grid following the fluid motion
[64, 164, 75]. Significant challenges associated with this approach are the need to recalculate
an elementary matrix for spatial derivative computations, and time derivative solutions are
computationally more demanding. However, their flexibility to deal with the motion of
mesh vertices makes them suitable for free surface flow calculations [20, 64, 164, 277, 204].
All these solutions employed finite element discretization with the segregated treatment of
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interface coupling. The Eulerian-Lagrangian approach has been used successfully for many
fluid-structure interaction problems [89]in which fluid flow is treated as Eulerian and the
structures as Lagrangian with consideration of moving fluid domain. Either finite element or
finite difference approach is followed for discretization solutions with the modified meshes
at each time step, and special treatment is needed to solve the equations on moving grids.

Another category of these Eulerian-Lagrangian methods deals with the integrated cou-
pling of the flow equations and interface solution for both steady [215, 219] and unsteady
[50, 218, 19] free surface flows. The solution is advected as a combined discretization of flow
fields and interface solution. Either Newton or quasi-Newton iteration process is followed for
the solution of resulting nonlinear algebraic equations. Compared to a segregated solution,
this approach is capable of a fastly converged steady-state solution.

Eulerian-Lagrangian spray atomization (ELSA) model, initially developed by Vallet et
al. [263] and Lebas et al. [144] in Reynolds-averaged Navier-Stokes (RANS) formulation,
is widely used and investigated for spray atomization problems [46, 47, 69, 170, 184, 12].
ELSA solution is based on following an Eulerian description in the dense part of the spray,
and a standard Lagrangian approach is followed in dispersed/dilute regions of spray. This
approach utilizes the concept of interfacial surface density area calculated in each cell
without indicating the shape of the corresponding fluid structures [47]. Chesnel et al. [46, 47]
followed the ELSA approach to have a large-eddy simulation (LES) solution of liquid sprays
with useful statistical findings in the context of two-phase flows. DNS studies of Duret et al.
[69] based on ELSA formulation is very helpful for a better understanding of the atomization
process. Most recently, Anez et al. [12] used this ELSA approach in combination with the
interface-capturing mechanism (ICM) to have a more physical distinction between dense
and dilute regions. ICM is only effective in dense regions to have a realistic interface
representation of the corresponding two-phase problem.

2.3 Progress in interface-capturing approaches

Following the interface-capturing methodology explained in Section 2.2, the solution of the
phase interface is obtained from the calculation of an additional scalar. Two main methods
have been widely used in this category: volume of fluid (VoF) [107, 223] and level set (LS)
[226, 251, 227]. For incompressible flows, continuity and momentum equations for the
multi-phase environment in terms of single density component are written as

∂ρ

∂ t
+

∂ρui

∂xi
= 0, (2.1)
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The solution of these equations can be based on either VoF or LS. In some cases, both VoF
and LS are used in combination. Here ρ is the density of the mixture computed based on
corresponding liquid and gas phases densities, g is gravitational acceleration to account for
body force, Fs,i accounts for surface tension force, u denotes velocity, p is pressure, t is time
and xi represents the spatial coordinate in the ith direction. For Newtonian fluids, the viscous
stress is given by
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is the strain-rate tensor and δi j is a Dirac delta function. For immiscible fluids, the real
interface is sharp, and a continuum surface tension model can be used [30] to capture the
realistic surface tension effects, written as

Fs,i = σκniδs, (2.5)

where σ is the surface tension coefficient, κ =−∇ ·n is the interface curvature found through
the unit normal vector n, and δs is an interface detecting function. The values of n and δs

are calculated based on characteristic scalar function, which is liquid volume fraction when
following VoF method and level set function value when following LS method.

2.3.1 Level set (LS)

In level set method [251, 227, 229] level set function ϕ is used to represent the liquid-gas
interface. Generally, the interface is represented by the zero contours of a signed distance
function. This distance is positive in one fluid region (= +d) and negative in the other
fluid region (=−d) where d is the shortest distance of point (r,z) to the free surface. The
movement of the interface is controlled by the advection of the differential equation for the
level set function. Normally, positive value of level set function (ϕ > 0) represents the liquid
region and a negative value (ϕ< 0) represents the gas region. The free surface is represented
by having a level set function value equal to zero (ϕ= 0). The main advantage of the level set
(LS) method is its simplicity, especially in calculating the solutions for interface normals and
curvature. The unit normal vector n and curvature K are computed as follows
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n =
∇ϕ

|∇ϕ|
, (2.6)

K = ∇.
∇ϕ

|∇ϕ|
. (2.7)

The level set advection equation is written as

∂ϕ

∂ t
+ui

∂ϕ

∂xi
= 0. (2.8)

Level set scalar value remains constant along a particular path. If the free surface is initially
characterized by the zero value of the level set function, then this zero value will always
represent the free surface throughout the advection solution. Density and viscosity for the
flow fields are calculated from the level set function via the Heaviside function, written as

ρ(ϕ) = ρg(1−H(ϕ))+ρlH(ϕ), (2.9)

µ(ϕ) = µg(1−H(ϕ))+µlH(ϕ), (2.10)

where H is a Heaviside function that behaves as a step function, and its value is

H(ϕ) =

1 if ϕ > 0

0 if ϕ ≤ 0
. (2.11)

High-velocity gradients lead to the wide stretching of the interface, and the level set
will no longer be a distance function [170]. To keep the level set function a signed distance
function from the interface, level set methods also require re-initialization of the level set
function ϕ , and the conventional approaches used for this purpose are computationally
very challenging [172]. One major limitation of level set methods is that they are not
mass conservative. For incompressible two-phase flows, loss or gain of mass makes them
physically incorrect [188]. This loss or gain of mass is because of the numerical diffusion that
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occurs during the level set calculations, which is from the generation of artificial viscosity
[255] during the stabilization of the re-initialization process. This artificial diffusion behaves
inversely with the grid sizes. Sussman et al. [251, 248]) proposed a partial differential
equation (PDE) based re-initialization solution that can be solved either following fast
marching method (FMM) [49] or fast sweeping method (FSM) [284]. These methods help
reduce the computational load for re-initialization purposes. However, there is an inherent
difficulty in parallel implementation because of load balancing issues. It is found that this
PDE based re-initialization method [251, 248] changes the interface position significantly
[172], leading to a mass conservation problem. Russo and Smereka [216] used a sub-cell
approach to have desired interface location and computed the fluxes with second-order
accuracy for cells containing the interface. Chéné et al. [66] extended this method to have
fourth-order accurate solution. The hybrid particle level set method (HPLC) [72] has proven
very effective in reducing the mass loss during the advection process. However, the mass loss
quantity reduces with mesh refinement [100, 85], which makes their solution grid-dependent.

Conservative level set

Initially, Olsson and Kreiss [188] developed this approach for multi-phase application, which
holds the simplicity of the basic level set (LS) method and helps to reduce the mass loss
within the acceptable limit. Later this method was used by Desjardins et al. [60, 59] for
primary atomization studies. Their findings were promising in terms of interface curvature
capturing and mass conservation. Still, they did not present the grid independence behaviour
and drop size distribution for the liquid jet atomization. Olsson and Kreiss [188] used the
hyperbolic tangent function approach, which is defined as

ψ =
1
2
(tanh(

ϕ

2ε
)+1), (2.12)

where ε controls the interface’s thickness, its value is usually considered as half of the mesh
size [188]. Instead of representing the interface location by the iso-surface ϕ = 0, it is
described by ψ = 0.5 iso-surface . The value of ψ is less than 0.5 for ϕ < 0 and greater than
0.5 for ϕ > 0.

∂ψ

∂ t
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∂ψ

∂xi
= 0. (2.13)
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This method is successfully tested against a range of cases [60] and confirms its improved
behaviour. The work of Desjardins et al. [60, 59] shows that the conservative level set
approach helps to reduce the mass loss problem associated with conventional level set
methods. Their accurate version of the conservative level set method [60] is capable of
providing realistic interface transport alongside good mass conservation behaviour.

Refined level set grid

Another effort to overcome the limitation of the level set method in preserving the volume
of each fluid in a multi-fluid problem is presented here. The mass conservation is directly
linked with grid spacing and can be reduced by refining the grid resolution. Locally adaptive
mesh refinement methods (AMR) [246, 241] could be an option. However, they introduce
additional complexities in cases where a fine grid resolution is required over the entire
interfacial region of a complex atomization problem.

Herrmann [99, 100] developed this approach and study the grid independence for primary
atomization of fuels [101, 102, 181]. In an attempt to simulate the primary atomization
of fuel, Herrmann was the first to do the grid independence check by using the fine grid
resolution. He used the course grid for Navier-Strokes two-phase equations and a separated
fine cartesian grid scheme called G-grid for the transport of all level set equations. As
both flow solver grid and G-grid are treated separately, G-grid can be independently refined.
This ensures the representation of a grid converged interface. The use of this equidistant
G-grid mesh also allows the direct application of higher-order schemes such as the 5th-order
WENO while maintaining their accuracy. The major limitation to this approach is the high
computation requirement, as it requires the solution of both grids in parallel. Particularly the
G-grid refinement makes it computationally challenging both in time and memory.

The refined level set grid method (RLSG) has been applied to a range of test cases [99].
Numerical findings confirm that RLSG is capable of providing better mass conservation
solutions even for coarser resolutions. Furthermore, the use of this method has successfully
extended [100–102, 181] to study the primary atomization of liquid jets in co-axial and
cross-flow conditions. Gorokhovski and Herrmann [88] have presented an LES model for
capturing the sub-grid phase interface dynamics of interfacial flows following the standard
RLSG methodology.

Robust conservative level set

This approach [199] originally based on the work of Olsson et al. [188] and Desjardins et
al. [60] is specifically tailored for industrial applications by using the three-dimensional
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unstructured meshes that make calculations possible for complex geometries. Pringuey and
Cant [199] employed the OpenFOAM platform (an open-source CFD tool kit) and termed it
as RCLSFoam. Special care needs to be taken in getting a reasonable compromise between
accuracy of results, computational cost and robustness of the method.

Even the use of high order numerical schemes such as WENO [197, 198] will also diffuse
the interface, and there is the requirement of re-initialization of the level set function to keep
the thickness of the interface constant. This is achieved by applying a compressive flux in
the normal direction to the interface in the interfacial regions. The compressive flux causes
the reduction of interface thickness and makes it less robust. To avoid this, a diffusion term
is added to the governing equation. Considering the interface normal "n" and artificial time
"t" the original conservative level set equation Eq. (2.13) will take the form of

∂ψ

∂ t
+

∂

∂xi
(ψ(1−ψ)n) =

∂

∂xi
(ε(

∂ψ
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.n)n), (2.14)

where the second term on the left hand side ensures the sharpness of the interface. The
term on the right hand side is responsible for the phase indicator’s diffusion and ensures the
desired characteristic thickness ε to be resolved on the given mesh. The above equation can
be re-written as
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∂xi
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∂
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ψn))n) = 0. (2.15)

The performance of the robust conservative level set (RCLS) method is tested against
the VoF method of OpenFOAM termed as interFoam and the accurate conservative level
set (ACLS) method of Desjardins et al.[60]. Canonical test cases have been used for this
comparative analysis. Numerical findings confirm the better performance of the RCLS
transport algorithm against the interFoam and ACLS calculations. Furthermore, RCLS also
performs better on unstructured grids when compared with interFoam, and results are more
stable and accurate [199].

One-layer particle level set

Most recently, a one-layer particle level set (OPLS) [285] method has been developed in
which Lagrangian particles are employed to correct both advection and re-initialization.
OPLS behaves better in terms of interface capturing and mass conservation. Compared with
the particle level set (PLS) method [72], the number of particles is reduced comprehensively
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in the OPLS as the Lagrangian particles describe an accurate interface through only one
layer of particles that helps to reduce the computational cost. In OPLS, particles are initially
scattered on both sides of the interface and then attracted to the interface. Particle speed is
interpolated linearly from the surrounding velocity field of the grid nodes. The third-order
TVD-Runge-Kutta scheme [128] is used to evolve the particle positions forward in time as
follows,

ϕ
(1) = ϕ

(0)+∆tL(ϕ(0)), (2.16)

where L stands for the differential operator, t for time and ϕ represents the level set function.
Particles are used to modify the interface, and at each time step, both advection and re-
initialization are modified as

ϕ
(2) =

3
4

ϕ
(0)+

3
4
(ϕ(1)+∆tL(ϕ(1))), (2.17)

ϕ
(3) =

1
3

ϕ
(0)+

2
3
(ϕ(2)+∆tL(ϕ(2))). (2.18)

This approach can handle complex topological changes more accurately, even during the
interface merging or stretching. The OPLS method is tested against several benchmark cases,
and the results show better mass conservation behaviour when compared with the standard
LS method. Furthermore, OPLS has an accurate and sharp interface representation when
tested against Zalesak’s slotted disc problem.

Upon testing against different grid resolutions, the OPLS approach can produce acceptable
solutions, even when the grid resolution is coarse. The performance of OPLS is also very
satisfactory when tested against the merging and break-up of surfaces. During the canonical
test of vortex in a box, the use of particles for interface calculations shows considerable
improvement in curvature estimation compared to standard LS methods. Though OPLS can
successfully capture the bubbles or droplets with better mass conservation and less shape
distortion, its performance against the practical multi-phase problem still needs to be tested.

2.3.2 Volume of fluid (VoF)

The basic idea for the VoF method can be described by considering two fluids, say liquid
and gas, in a given three-dimensional domain, and we want to capture the interface between
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those fluids. Suppose α represents the volume fraction of liquid in a given cell. Its value will
be in the range of

0 ≤ α ≤ 1. (2.19)

The value of α is 0 in regions of pure gas and 1 in the pure liquid zone. In the absence
of phase change, the volume fraction α is passively advected and satisfies the following
advection equation.

∂ρα

∂ t
+

∂ρuiα

∂xi
= 0. (2.20)

Equation (2.20) has no molecular diffusion term but numerical diffusion produces locations
where 0 < α < 1 such that the interface is artificially smeared.

The VoF approach [107, 249] is based on volume fraction α of one fluid in multi-phase
domain. The value of α represents the amount of the specific fluid present in the considered
cell. Its value ranges from 0 to 1. If its value is 0 or 1 in a particular cell, then there is no
interface present in that cell. Phase interface presents only in those cells where its value is
between 0 and 1.

Fig. 2.1 Interface representation based on VoF approach

In VoF methods, two immiscible fluids can be modelled as a single fluid having singular
values of density and dynamic viscosity at each point in space and time that are linear
functions of the liquid volume fraction, α , written as

ρ = ρg(1−α)+ρlα, (2.21)
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µ = µg(1−α)+µlα, (2.22)

where µg and µl are the viscosities for gas and liquid phases, respectively.
Unlike LS based approaches, VoF methods do not require re-initialization solutions

to keep the interface at the exact position that makes them able to have improved mass
conservation solutions. Better representation of mass conservation is a major advantage of
the VoF methods, making them a popular choice in interface-capturing methods. However,
the interface represents a discontinuity with a change in density occurring over molecular
scales that requires special geometric algorithms to avoid the unacceptable diffusion of α

[210, 90]. Another critical issue with the VoF method is the discretization of advection
term in Eq. 2.20. Lower-order schemes result in smearing of the interface due to numerical
diffusion. However, higher-order schemes are computationally expensive and mostly unstable
leading to numerical oscillations. Therefore, it is mandatory to have the advection solutions
for the interfacial flows, which are reliable and can deal with sharp topological changes.
Numerical limitations related to the interface calculation for the VoF approach are discussed
in detail by Tryggvason et al. [259]. The position of the interface is highly affected by the
numerical diffusion, which is directly dependent on mesh size [260]. Over time, several
volume advection techniques have been proposed by many researchers. Some of these
are, simple line interface calculation (SLIC) by [185], flux-corrected transport by [28],
Lagrangian-PLIC by van Wachem and Schouten [264], CICSAM by Ubbink [260] and
inter-gamma compressive scheme by Jasak and Weller [120].

Another way to reduce the numerical diffusion is by coupling the geometrical recon-
struction with a geometrical approximation [213] of VoF advection. The interface position
is determined from interface normal and points of intersection of interface with cell faces.
Geometric VoF methods usually consist of two parts. Firstly, we get the reconstructed
interface based on the volume fraction field within a computational cell. Secondly, the recon-
structed interface is advected using the amount of volume flux crossing the cell boundaries.
The most widely used method for interface reconstruction is the piece-wise linear interface
calculation (PLIC) [56]. Other notable efforts in this category are based on least-square
method [224, 16, 193]. Algorithms for interface advection can be based on split or un-split
schemes. The split approach is relatively straightforward in implementation because it allows
having a separate solution for each spatial direction. On the other hand, unsplit schemes are
computationally expensive [123] as they involve the computation of complex flux polyhedra
in interface containing cells. However, un-split methods require one-step advection and
reconstruction, which makes them more suitable for three-dimensional (3D) unstructured
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meshes. The work of Pilliod and Puckett [193] confirms that the interfaces having sharp
topological changes are better resolved following an un-split algorithm. However, all these
solutions are sensitive to the grid resolution, and mesh size dependency is still a big challenge.

Volume of fluid and simple line interface calculation

The simple line interface calculation (SLIC) algorithm [185] is based on the alternating-
direction approach for the geometric solutions of fluid interfaces in one, two and three-
dimensional problems. Fluid surfaces are calculated locally based on the volume fraction
of a specific fluid in multi-fluid regions, which are simply composed of straight lines,
either parallel or perpendicular to a reference coordinate. Because of the locally one-
dimensional description, it is easy to advance the interface solution in time. SLIC solution
can accommodate the merging and break-up of the surfaces and re-evaluate the free surface
solution accordingly.

Initially, this SLIC approach [185] was only able to resolve the fluid motion on the
structured grid, and the applications were limited to simple geometries. Huang et al. [112]
proposed a SLIC based solution for unstructured grids and successfully tested it against the
original SLIC method. Huang et al. [112] solution is based on the unstructured triangular
grids, and the line segment is set parallel with one edge of the interface containing cell
based on the volume fraction values in the three neighbouring cells. After finalizing this
initial direction and location of the interface, the volume fraction in the next time step is
calculated via the geometrical calculation of volume flux. Similarly, the time-dependent
reconstruction of the interface is carried out for every time step. The algorithm is examined
under four different canonical test cases [112]. To make comparison with the original
structured VoF–SLIC method [185], three different grid geometries [112] are used. The
numerical solution confirms that this new approach can deal with all kinds of simple flows
with comparable accuracy as of VoF–SLIC method on a structured grid.

Volume of fluid and piece-wise linear interface calculation

Piece-wise linear interface calculation (PLIC) algorithm was initially proposed by Youngs
for orthogonal meshes in two dimensions (2D) [279] and three dimensions (3D) [280], which
calculate the interface normal from the volume fraction gradient within a computational cell.
The interface normal computed in Youngs’ 2D algorithm will reproduce a line regardless of
cell orientation, and is second-order accurate [192]. However, a 3D algorithm reproduces
a plane and is not considered second-order accurate [192, 211]. Over time, considerable
developments and improvements have been made since Youngs’ initial contribution [279,
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280]. Addessio et al. [8] helped to extend Youngs’ 2D approach for non-orthogonal grids
and complex geometries. Puckett and Saltzman [200] coupled an adaptive mesh refinement
(AMR) algorithm with the original Youngs’ 3D method. Kothe et al. [138] work extend
Youngs’ 3D method to unstructured grids. They used the second-order Runge-Kutta method
for time integration. Pilliod and Pucket’s work [193] is considered a major contribution to
having an accurate second-order solution through an unsplit time integration scheme and
improved interface normal calculation.

Initially, PLIC algorithms were effectively tested against high-speed hydrodynamic cal-
culations. Later, they are successfully extended [138, 211, 201] for the incompressible
multi-phase flow applications. Despite all these improvements, these methods were chal-
lenged when the fluid structures got smaller than the mesh size. However, the improvements
made by Lopez et al.[152] to the already existing PLIC formulation helped to track the fluid
elements thinner than the grid size.

[211]

Volume of fluid and interface compression

This version of the VoF methodology is based on interface compression through controlling
the flux across the grids rather than geometric reconstruction of the interface. The solver
is part of the open-source computational toolkit OpenFOAM [119, 118] under the name of
interFoam [58]. Complete details of the algorithm, transport of the indicator scalar in terms
of volume fraction and solution of Navier-Strokes equations in the context of two-phase
flows can be found in the work of Deshpande et al. [58]. The indicator function (volume
fraction) is advected by the following equation as

∂α

∂ t
+ui

∂α

∂xi
− ∂

∂xi
{urα(1−α)}= 0, (2.23)

where ur is the relative velocity at the face of each mesh cell and is dependent on the
maximum velocity at the interface and its direction, written as

ur = min(Ccomp
|Φ f |
|S f |

,max
|Φ f |
|S f |

)(n.S f ), (2.24)

where Φ f is volumetric flux, S f is outward-pointing cell face area vector, n is the outer
normal and Ccomp is the scalar compression factor for limiting the artificial compression
velocity. The third term on the right hand side of Eq. (2.23) is responsible for the interface
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sharpening only in the regions of interfacial boundaries, and its effects are reduced to zero in
pure liquid or gas zones.

The performance of this solver is tested against the PLIC method of Rider and Kothe
[211], a hybrid approach of Aulisa et al. [15] and algebraic THINC-SW algorithm of Xiao
et al. [276] using three different grid sizes, namely 322, 642 and 1282. The errors with
interFoam are higher and the convergence rate is lower compared to the relatively more
complex geometric and hybrid schemes. Its performance is very encouraging in the case
of inertia-dominated flows (We >> 1). Reasonable physics can be captured, even with the
lower grid resolutions. Additionally, interFoam is also evaluated for the flows having higher
surface tension effects, and the resulting predictions of this solver are comparable with the
balanced force method of Francois et al. [79].

Modified volume of fluid and interface compression

This method [25] is an improved version of interFoam, a sub-solver of open-source Open-
FOAM library [6, 58] and termed as interPore. This is based on the compressive treatment
for the interface region to have a sharp interface. The interface compression as given by Eq.
(2.23) results in the abrupt change of α , which can lead to a non-physical representation of
interface normal and curvature. This situation can be avoided [83] by using the smooth value
of α , which is calculated as

αsmooth =
∑

y
f=1(αi+1) f S f

∑
y
f=1 S f

, (2.25)

where y indicates the number of smoothing loops and (αi+1) f is obtained from the linear
interpolation of face-centred values. This smoothing process results in the thickness of the
interface, so extra care is required to avoid non-desired effects. In some cases, additional
sharpening of the interface is required [203] to have the true representation of the interface,
expressed as

αsharp =
1

1−Csharp
[min(max(α,1−

Csharp

2
),1−

Csharp

2
)−

Csharp

2
], (2.26)

where Csharp is the interface sharpening coefficient and controls the unphysical behaviour of
the interface by controlling the α value. The condition, Csharp = 0, reverts the criteria to the
original VoF formulation and Csharp = 1 results in the maximum sharpening of the interface.
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In a static droplet test case [25], this approach can reduce the spurious currents generation
and shows less dependency on the operating parameters. In a Rayleigh–Taylor test case, this
method captures the formation of instabilities and their development with success. Aboukhedr
et al. [7] proposed an adaptive algorithm for the interface compression to avoid the tuning
required of the relevant parameters used in the smoothing and sharpening operations. They
tested this approach against a wide range of cases, starting from static interfaces to moving
interfaces and the bubble generation phenomenon. The combined effects of the adaptive
compression and smoothing of the surface tension [7] lead to more accurate solutions and
better grid convergence behaviour.

2.3.3 Coupled level set volume of fluid (CLSVOF)

This approach was first developed by Bourlioux [29] and later modified by Sussman and
Puckett [249] by combining the level set and volume of fluid methods. However, Sussman
and Puckett [249] approach for coupling the LS method with the VoF is different from
Bourlioux [29]. Sussman and Puckett [249] also combined the CLSVOF solution with the
incompressible two-phase flow equations. Here, the continuity and momentum equations
Eqs. 2.1 and 2.2 are solved following the level set approach. The unit normal vector n and
curvature K are computed following Eqs. 2.6 and 2.7. Mixture density and viscosity are also
calculated using the level set scalar following Eqs. 2.9 and 2.10, and the surface tension force
is conditioned with a level set value via the Heaviside function as

Fs,i = σκ
∂H
∂xi

, (2.27)

where H is a Heaviside function that behaves as a unit step function, and is defined by
Eq. (2.11). Here, the solution of ∂H

∂xi
is similar to that of Dirac delta function δ [179], and

the expectations are that they both can be used interchangeably. However, numerical tests
performed by Herrmann [100] show that they are not equivalent. In the continuum surface
force (CSF) model of Brackbill et al.[30], surface forces are smeared over a few cells in the
interfacial regions, and therefore a smeared version of the Dirac delta or Heaviside function is
preferred. Herrmann [100], Montazeri et al. [177] and Montazeri and Ward [178] suggested
that instead of using a delta function for interfacial flow solutions, the use of the gradient of
the Heaviside step function is helpful to avoid the generation of spurious velocities near the
interfacial boundary.

To combine the effects of both VoF and LS approaches, the volume fraction is linked
with the level set function via the Heaviside step function as
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α =
1

∆r∆z

∫
H(ϕ)rdrdz. (2.28)

The transport equations for LS and VoF functions can be written as

∂ϕ

∂ t
+ui

∂ϕ

∂xi
= 0, (2.29)

∂α

∂ t
+ui

∂α

∂xi
= 0, (2.30)

where the liquid volume fraction α is used to represent the free surface, same as in VoF
methods. At t = 0, liquid volume fraction value is initiated in each computational cell, and
then the governing equations for both the level set Eq. 2.29 and volume of fluid Eq. 2.30 are
solved simultaneously. The advantage of representing the free surface in terms of volume
fraction has accurate algorithms for advecting the volume fraction function while keeping the
mass conserved and having the sharp representation of the interface. For example, Pilliod and
Puckett [193] developed a second-order advection solution for VoF methods that accurately
compute the rotation of a slotted disk while maintaining mass conservation. However, it is
difficult to have accurate local curvature computations from volume fractions, as the volume
fraction value changes rapidly in the regions of the free surface. However, LS methods can
better represent local curvatures as they are simply the Laplacian of the level set function.

The main aim behind this development was to produce a more accurate and reliable
solution than the LS or VoF methods. CLSVOF approach is capable of better predictions
for the flows where the surface tension and rapid changes in the topology of the free surface
are prominent features. Furthermore, for problems with surface tension, the CLSVOF
method behaves superior to the VOF methods [27], as level set function based interface
calculations are more straightforward and accurate. This method overcomes the deficiency
of the volume of fluid (VoF) method in having better interface representation and holds the
better mass conservation property [27], which is a matter of concern with the standard level
set (LS) method. The problem with the CLSVOF approach is that it requires the parallel
implementation of model transport equations comprising Navier-Stokes, level set and volume
of fluid, making it computationally very expensive in cost and time. The comparative study
conducted by Boniou et al. [27] confirms that computational requirements for CLSVOF
and accurate conservative level set method (ACLS) [60] is quite similar but more than two
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times when compared with standard VoF method. However, the numerical performance of
CLSVOF is much better than both ACLS and VoF.

2.4 Summary

In the past, many approaches were developed to track or capture the interface of a multi-
phase/immiscible flow system. Two of them, the volume of fluid (VoF) and the level set (LS),
have shown promising findings and have been considered a benchmark for further research.
VoF behaves well in keeping the mass conservation but has an issue with interface diffusion
and requires reconstruction of the interface. Different level of numerical diffusion associated
with various grid sizes leads to grid sensitivity issue. Numerical treatment is needed to have
a sharper interface and to overcome grid sensitivity problems. LS method has the capability
of better interface representation, but it involves interface re-initialization, which makes it
computationally very expensive. It does not hold the mass conservation property, especially
at the interface. The conservative level set method behaves well compared to the level set
(LS) but still has a mass loss/gain issue. To overcome these deficiencies, hybrid approaches
such as coupled level set volume of fluid (CLSVOF), particle level set (PLS), and refined
level set grid (RLSG) were introduced. However, these hybrid methods add computational
time and cost, making them unfeasible for full practical scale injectors. Performance of the
robust conservative level set (RCLS) method has shown considerable attraction, especially
when having unstructured grids.

A combination of geometric interface reconstruction algorithms, either SLIC or PLIC,
with the VoF approach helps to have realistic interface representation and advection. The
improved PLIC method of Rider and Kothe [211], a hybrid approach of Aulisa et al. [15]
and algebraic THINC-SW algorithm of Xiao et al. [276] is capable of providing an accu-
rate second-order solution for interface calculations. The modified volume of fluid (VoF)
combined with the interface capturing mechanism has shown promising improvements to
overcome the shortcomings of the interFoam method. However, a fully resolved solution
based on VoF or LS approach for practical applications is still out of reach considering the
currently available computational resources, making the need for under resolved options
more important.

Over time, considerable development has been made for the numerical solutions of
interfacial flows. A recent comparative study by Boniou et al. [27] confirms that the
performance of CLSVOF is better than all other available interface-capturing solutions.
However, no conclusive findings have been reported regarding grid independence, which
is still a big challenge. In this study, an effort has been made to have a more physical



32 Theoretical Background

representation of the liquid/gas interface, realistic solutions for the liquid jet penetration and
decay rate when compared with experimental measurements, and a numerically converged
solution.



Chapter 3

Volume of Fluid with Stochastic Fields
Formulation

Numerical solutions for the spray atomization phenomenon usually depend on the spray
region. In the near-field region, relatively few droplets are observed, and an Eulerian–Eulerian
formulation is more feasible to represent the interface dynamics accurately. Most of the
work regarding the LES of primary atomization [55, 24, 23, 242] do not include the sub-grid
interface dynamics, and their solution behaves as under resolved DNS as they resolve the
interface at LES grid level. Findings of Chesnel et al. [46, 47], Abbas et al. [5] and Chapter
5 confirm that this sub-grid contribution is essential to capture the primary atomization
accurately. Inclusion of surface density [46, 47, 184] helps in having a more physical
representation of the primary break-up region. The highest value of the surface density
indicates the liquid jet break-up location. Volume fraction and surface density are random
variables in turbulent flows, and the Eulerian stochastic fields method provides a viable
means of solving the joint probability density function (PDF) of these random variables.
This Chapter presents the VoF method in combination stochastic fields transported-PDF
approach, initially developed by Navarro-Martinez [184] that accounts for the sub-grid
fluctuations of the surface density and liquid volume fraction. The first half includes a
detailed mathematical formulation of stochastic fields representation of the VoF method. In
the second half, comprehensive stochastic fields and grid sensitivity analysis is conducted for
three grid resolutions combined with a different number of stochastic fields. Here the work of
Navarro-Martinez [184] is extended for Sydney needle spray burner [153] measurements. The
convergence behaviour of stochastic fields is observed by gradually increasing the number of
stochastic fields while keeping the grid resolution constant. The solution comparison of three
different grid resolutions for the same number of stochastic fields is also presented. Some
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equations regarding the VoF method and turbulent filtered solution which were presented
previously in Chapter 2 are repeated here for completeness.

3.1 Volume fraction

The VoF method is based on the idea that two immiscible fluids can be modelled as a single
fluid having a single value density and dynamic viscosity at each point in space and time that
are linear functions of the liquid volume fraction value, α , given as

ρ = ρlα +ρg(1−α), (3.1)

µ = µlα +µg(1−α), (3.2)

where the subscripts l and g indicate properties in the liquid and gas phases, respectively.
In general form, the single fluid transport equations for continuity, momentum and volume
fraction are

∂ρ

∂ t
+

∂ρui

∂xi
= 0, (3.3)

∂ρui

∂ t
+

∂ρuiu j

∂xi
=− ∂ p

∂xi
+

∂τi j

∂xi
+Fs,i +ρgi, (3.4)

∂ρα

∂ t
+

∂ρuiα

∂xi
= 0. (3.5)

Here, u, p and g denote velocity, pressure and gravitational acceleration, respectively. t is
time and xi is the spatial coordinate in the ith direction. For Newtonian fluids, the viscous
stress is given by

τi j = µ

�
2Si j −

2
3

∂uk

∂xk
δi j

�
, (3.6)

where

Si j =
1
2

�
∂ui

∂x j
+

∂u j

∂xi

�
, (3.7)

is the strain-rate tensor and δi j is a Dirac delta. The volume fraction takes the value of
α = 1 and α = 0 in the liquid and gas phases, respectively, and for immiscible fluids the
real interface is sharp. Eq. (3.5) has no molecular diffusion term but numerical diffusion
produces locations where 0 < α < 1 such that the interface is artificially smeared. Then a
continuum surface tension model can be used [30],

Fs,i = σκniδs, (3.8)
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where σ is the surface tension coefficient, κ =−∇ ·n is the interface curvature found through
the unit normal vector n = ∇α

|∇α| , and δs = |∇α| is an interface detecting function.

3.2 Surface density

During the last three decades, various solutions have been proposed to describe the spray
regions uniformly. The Eulerian-Lagrangian spray atomization (ELSA) model developed
initially by [263] is an important contribution to modelling the atomization phenomenon. It is
beneficial in predicting the velocities and sizes of liquid droplets. However, the DNS findings
of Lebas et al. [144] confirm that it is impossible to represent the liquid phase as a set of
droplets in the primary break-up regions, and there is a need for relevant physical variables
which can be used to characterize this near-field zone. Surface density, which is a direct
measure of the local interfacial area, is an important physical parameter that can be applied for
primary atomization characterization. Morel [180] defined the local surface density in terms
of a generalized function which helps have a solution for the problem. Despite this theoretical
progress, the general form of the surface density equation, in either filtered or averaged form,
contains unclosed terms that require modelling. Initially, Vallet and Borghi [263] proposed
an equation for the mean liquid surface density following the similar analogy proposed by
Marble and Broadwell [160] for the flame surface density. Lebas et al. [144] suggested that
the benefit of this surface density equation is to avoid any assumption concerning the shape
of the liquid surface. So far, we do not have the proper closure models which are able to offer
reasonable surface density solutions for all spray atomization regimes. The available solution
to close the surface density equation considered that the spray drops are spherical in shape,
and the corresponding diameter distribution is obtained via the classical models for break-up,
collision and coalescence. The required surface density equation is obtained by integrating
the second moment of this distribution [137]. Furthermore, these solutions also assume that
all droplets are of identical shape, and their diameter distribution is obtained from the liquid
volume fraction and the surface density values.

The ELSA solution is based on the surface density variable instead of droplet sizes. The
model solves the two Eulerian equations: one for the liquid volume fraction and the second
for the surface density. The ELSA formulation can provide the more relevant quantities for
spray phenomena such as Sauter Mean Diameter (SMD) from the simple relations between
surface density and liquid volume fraction. Chesnel et al. [47] presented an LES based
variant of the ELSA approach that needs closure for the production and destruction of the
filtered surface density. Turbulence behaviour, jet break-up and droplet collision can generate
and destroy surfaces.
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In three-dimensional immiscible flows, the liquid-gas interface can be represented by
the root of a smooth function Ψ(x, t). The interface normal based on this smoothed function
can be calculated by n = − ∇Ψ

|∇Ψ| , with the convention that the direction of the interface is
considered towards the gas phase. The smoothed function Ψ follows a convective equation
dependent on the interface velocity and is expressed as

∂Ψ

∂ t
+u′i

∂Ψ

∂xi
= 0, (3.9)

where the interface velocity, u′i, is defined as

u′i.n =
∂Ψ/∂ t
|∇Ψ|

. (3.10)

A phase indicator function Γ(x, t) in the form of Heaviside function, defined as

Γ = H(x− x′), (3.11)

where x′ indicates the interface location, H is a Heaviside function that behaves as a step
function, and its value is

H(x− x′) =

1 if (x− x′)> 0

0 if (x− x′)≤ 0
. (3.12)

The gradient of the indicator function defined above leads to

∇Γ = ∇H(x− x′) =−δ (Ψ)∇Ψ, (3.13)

where δ is the characteristic function. Considering the definition of n, Eq. (3.13) can be
re-written as

∇Γ =−δ (Ψ)n|∇Ψ| → n.∇Γ =−δ (Ψ)|∇Ψ|. (3.14)

The fine-grained surface density termed as interface Dirac delta function is defined by
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δ
l ≡−δ∇Γ, (3.15)

having units of m−1. The governing equation for δ l based on the flow field [161, 148] is
written as

∂δ l

∂ t
+u j

∂δ l

∂x j
=−δ

lnin j
∂ui

∂x j
. (3.16)

The surface density Σ can be obtained by integrating δ l over the infinitesimal value of δV as

Σ(x, t) =
1

δV

∫
V

δ
ldV =

1
δV

∫
I
dS =

δSI

δV
. (3.17)

Eq. (3.17) explains that surface density is the amount of spatial surface per unit volume at a
given time and spatial position. This is based on the concept of Candel and Poinsot [36] used
in the context of premixed combustion to define the volumetric flame surface density. The
convolution of δ 1 with any smooth function f leads to

1
δV

∫
V

δ
l f (x, t)dV =

1
δV

f (xI, t)δSI ≡ f I
Σ, (3.18)

where the superscript I represents its evaluation at the liquid-gas interface. The interfacial
surface density equation is obtained by integrating the Eq. (3.16) over a small volume and
using Eq. (3.18) as

∂Σ

∂ t
+

∂uI
jΣ

∂x j
=− 1

δV

∫
V

δ
lnin j

∂ui

∂x j
dV. (3.19)

The integral part on the right hand side of Eq. (3.19) represents the stretching of the surface
because of velocity gradients and interface curvature. As the interface normal is not a contin-
uous function, its erratic behaviour would be visible in the liquid break-up, fragmentation
and coalescence. It is recommended here [184] that the integral should be calculated over a
very small volume which leads to no sub-volume velocity scales. Considering that no mass
transfer across the interface will lead to u = uI . Following [195, 268], the final equation for
the surface density will take the form of
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∂Σ

∂ t
+

∂u jΣ

∂x j
=−Σnin j

∂ui

∂x j
. (3.20)

Eq. (3.20) along with Eq. (3.5) are the main governing equations solved here in this Chapter.
A simple solution can be made for very dilute flow applications where droplet sizes are
smaller than cell sizes. There are several formulations available in the literature provided by
[137, 180, 129] for the solution of the Eq. (3.20), but those are limited to high Weber number
flows. Using the spatial averaging operator .̂ in the averaged surface density solution leads
to the necessity of new models to account for droplet break-up and coalescence. Nearly all
the models available so far follow the similar closure, initially proposed by [115] and then
tailored explicitly for the atomization phenomenon by [263], written as

∂ Σ̂

∂ t
+ ū j

∂ Σ̂

∂x j
= Sg −Sd ≡ S, (3.21)

here Sg represents the generation of surfaces as a result of the break-up process and Sd denotes
the destruction of surfaces because of droplet collision, coalescence and amalgamation. The
modelling of source term S is based on the correlation of turbulence phenomenon and related
time scales. Jay et al.[122] presented a quadratic solution for this source term which is
written as

S = aΣ̂−bΣ̂
2, (3.22)

where coefficient a is the inverse of turbulent time scales, and coefficient b depends on the
flow field, droplet volume and their orientations. The first term on the right side of the above
equation corresponds to the generation of surfaces in near-field regions where the growth
of instabilities takes place and is followed by non-linear processes as explained by Jay et al.
[121, 122]. The second term accounts for the reduction of surface area in far-field regions
because of droplet coalescence, collisions and amalgamation [144]. In context of equilibrium
restoration [263, 144, 22], the source term expressed in Eq. (3.22) can be written as

S =
Σ̂

τ

�
1− Σ̂

Σ̂eq

�
, (3.23)



3.2 Surface density 39

where Σ̂eq represents the equilibrium surface density and τ is the corresponding turbulent
time scale. Estimation of Σ̂eq is based on the assumption of equilibrium of surface energy
with the local kinetic energy. Considering the flows are isothermal and viscous stresses are
negligible, locally equilibrium surface density can be written as

Σ̂eq =
ρkα

σ
, (3.24)

where k represents the kinetic energy. The value of critical Weber number We∗ = ρkα

σ Σ̂eq
for

dense regions is considered as We∗den ≈ 1 as suggested by [263, 144]. However, some studies
[156, 69] suggested that this value could be in the range of 1-3. In far-field (dilute) regions,
where surface generation by the droplet break-up and destruction by coalescence take place, a
relevant We∗bkp is needed. Study performed by [209] confirms that its value is nearly constant,
We∗bkp ≈ 12, for the low value of liquid Ohnersorge numbers, Oh < 1,. Similarly, we need
the critical Weber number value Wecol to account for droplet collisions and can be calculated
from the Sauter mean diameter d32 [144]. From the analysis of various collision models
[156], it is found in the range of We∗col ≈ 12−15 for spherical droplets and We∗col ≈ 3.5 for
the case of non-spherical droplet collisions. It is found [47] that surface density depends on
the critical value of Weber number We∗, and there is a need to have a single definite value.

Each phenomenon corresponding to the relevant surface generation during the break-up
processes (Sbkp) or surface destruction because of collision of droplets (Scol) is dependent on
the associated time scale. Turbulent break-up time scales are calculated as

�
kτ

ε

�
in RANS

context and as ||Si j||−1 in LES calculations. Particle collision theory [263] is helpful to
calculate the τcol , whereas τbkp is calculated from Pilch and Erdman work [191]. In general
ELSA-RANS spray formulation [22, 144] surface density is calculated based on dense region
(Sden), collision (Scol) and beak-up (Sbkp) values. To combine all three into a single value,
each phenomenon is related to an indicator function in order to distinguish dilute/dense
regions. This indicator function is based on the local volume fraction value α .

The model explained in Eq. (3.23) does not behave well when the surface is at rest,
which leads to zero value of equilibrium surface density Eq. (3.24) and the surface will be
destroyed in no time. The presence of interface in an interfacial flow indicates that there
should be a minimum surface present even at rest. Eq. (3.17) indicates that the minimum
surface density is inversely proportional to the size of the integration kernel h. In their RANS
simulations [263, 22], surface boundary condition were based on the condition of having
the minimum surface density as Σmin ≈ 1. Lebas et al. [144] used the expression dependent
on liquid volume fraction α and turbulent length scale lτ , written as Σmin ≈ α(1−α)

lτ
with
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having an additional source term Sint in order to generate the surface at the boundaries.

Later on Chesnel at el. [47] suggested that Σmin ∝

√
α(1−α)

h and use of Sint can be avoided
by considering Σ = Σ′+Σmin leading to an improved equilibrium surface density relation,
written as Σ∗

eq = Σeq +Σmin. For near-field regions, the modified expression for equilibrium
surface density is

Σ
∗
eq =

ρkα

σ
+CΣ

√
α(1−α)

h
. (3.25)

Based on his DNS findings, Chesnel [46] finds that the optimal value of constant CΣ is
2.4. Eq. (3.25) indicates that Σmin > Σeq when the local Weber number, Weh = ρkh

σ
is

smaller than the critical mesh Weber number, Weh,crt =CΣ

√
(1−α)
α

. For near-field regions
having value of liquid volume fraction α > 0.1, the value for Weh,crt ≈ 7 . Both for RANS
and LES atomization studies, Weh >>Weh,crt and then Σmin value becomes less important.
However, in far-field regions having very dilute flow at a lower Weber number, Σmin can not
be neglected.

3.3 Joint probability density function approach for α and
Σ

Following the transported PDF concepts reviewed in depth by Pope [194] and Haworth [96],
Navarro-Martinez [184] extended this method for the solution of liquid volume fraction
and surface density. Specifically, Navarro-Martinez [184] developed equations for the joint
sub-grid PDF (sometimes called filtered density function, FDF) of these quantities. The
starting point for the derivation is the concept of turbulence filtering and fine grained PDFs.
To have the spatial filtering for a function y = y(x, t) in terms of its convolution with a filter
function,G, we can write

ȳ =
∫

V
y(x′, t)G(x− x′, t;∆)dV ′, (3.26)

here ∆ denotes the filter width corresponding to the filter function, which is considered
positive to have positive filtered values of positive definite functions y. A fine-grained
characteristic function following Klimenko and Bilger [135] can be defined as
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Ψ(x, t; θ̄) = δ [θ1 −α(x, t)]δ [θ2 −Σ(x, t)], (3.27)

where θ̄ = (θ1,θ2) represents the sample space vector for both α and Σ respectively. Fol-
lowing the filtering operation expressed in Eq. (3.26), a sub-grid joint probability density
function, Psgs, of volume fraction α and surface density Σ is written as

Psgs(x, t; θ̄) =
∫

V
Ψ(x′, t)J(x− x′, t;∆)dV ′, (3.28)

where the term Psgs(θ1,θ2)dθ1dθ2 gives the probability of θ1 < α < θ1 +dθ1 and θ2 < Σ <

θ2 +dθ2 within the filter width at a given point in relavant space and time. Following the
rule of differentiation for generalised functions [82, 268], a PDF equation can be derived
from Eqs. (3.5) and (3.20), expressed as

∂Psgs

∂ t
+

∂ ⟨u j|θ̄⟩Psgs

∂x j
+

Sk(θ̄)Psgs

∂θk
= 0, (3.29)

and the corresponding source terms are calculated from Eq. (3.20). A closure model is
needed for the conditionally filtered velocity ⟨u|θ̄⟩. This is achieved from the resultant of
three contributions (filtered, turbulent diffusion and surface density), written as

⟨u j|θ̄⟩Psgs = ū jPsgs −Dsgs
Psgs

∂x j
−us

j(θ2)Psgs. (3.30)

The above equation is based on the Herrman and Gorokhovski work [103] for the sub-grid
velocity decomposition in LES modelling of multiphase flows. The first term on the right
hand side of Eq. (3.30) represents PDF transport by the filtered velocity, and the second is
the PDF transport by sub-grid turbulent diffusion based on the gradient model of Schmidt
and Schumann [225]. This is considered a standard procedure in LES-PDF for combustion
processes [126]. There are chances that this gradient model could not be perfect because of
the sub-grid counter gradient transport, but currently, there are no alternatives available for the
PDF solutions. Closures based on the Smagorinsky model could be inadequate [141] near the
interface, and a scale similarity model [47] seems a good option. However, implementation
of the similarity model along with PDF formulation is complex, and Smagorinsky model
based closures are used here. It is also noted that the new EVD model presented in Chapter 5
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provides a novel sub-grid closure that may be used within the context of PDF methods, but
this is out of scope for the current project. Sub-grid diffusivity, Dsgs, is proportional to the
sub-grid turbulent viscosity , νsgs, written as

Dsgs =
νsgs

Scsgs
. (3.31)

The last term on the right side of Eq. (3.30) accounts for restorative velocity, which is
considered dependent on the surface density. Assuming that us ≈ B

−→
∇ Σ, where B = σ

T σV J
with σ is surface tension force, T is temperature, V is volume, and J is Onsanger kinetic
coefficient between thermodynamic forces and fluxes [35], we can write

∂us
jPsgs

∂x j
≈

∂SdPsgs

∂θ2
. (3.32)

Here Sd = B(∇Σ)2 is an unclosed term which represents the destruction of surface density.
This term behaves similar to micromixing or scalar dissipation which is based on the molecu-
lar diffusion [194] and becomes negligible when the surfaces are at equilibrium. In current
studies, the same model is assumed for Sd as used for conventional ELSA formulations,
written as

Sd(θ2) =
1
τ

�
θ2

Σ∗
eq

�
θ2, (3.33)

where this model is directly linked with sample space θ2 without considering the physical
scales. It is assumed that the phase space is always in dense condition and the corresponding
value of the critical Weber number is We∗ ≈ 1. Σ∗

eq is calculated using Eq. (3.25). The
equilibrium time-scale τ is taken as the same as for Sg, written as

1
τ
=

|Sg|
θ2

. (3.34)

We can only have considerable values for Sg and Sd if there is certainity of liquid volume
θ1 > 0 and surface density θ2 > 0.The final transport equation for the sub-grid joint PDF,
including both surface generations and surface destructions, is written as
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∂Psgs

∂ t
+

∂ ū jPsgs

∂x j
=

∂

∂x j

�
Dsgs

∂Psgs

∂x j

�
−

Sg(θ̄)Psgs

∂θ2
+

Sd(θ̄)Psgs

∂θ2
. (3.35)

The current study is based on a joint-scalar PDF approach and the formulation can be
extended for evaporative flows by adding new terms, including the loss of liquid fraction and
surface destruction because of the evaporation process.

3.4 Stochastic solution for joint PDF of α and Σ

Various solutions are possible for the joint sub-grid PDF given in Eq. (3.35), which can be
treated similar to the Fokker-Planck equation. This equation can be solved directly following
the Eulerian approach [78] by solving a small set of moments. Stochastic methods have
been proved [67, 184, 44] as a better alternative as they are computationally less expensive.
These stochastic solutions could be of Lagrangian nature, when the stochastic particles are
tracked within the whole domain [196], or Eulerian, when the stochastic fields are solved on
a finite difference / finite volume grid producing a differentiable solution in space, although
not differentiable in time [262]. For the solution of multiphase flows, the stochastic field
methods have been successfully applied to cavitating flows [67, 44] and atomization [184].

In the Lagrangian particle approach, we solve an equivalent set of Stochastic Differential
Equations (SDE) for the Lagrangian particles, which have the same number of moments
as of basic PDF system Eq. (3.35). However, in the Eulerian Stochastic Fields method, an
equivalent set of Stochastic Partial Differential Equations (SPDE) is solved. The resultant
moments are the same order as Eq. (3.35). Mustata et al. [183] developed this approach in
LES context, and since then has been successfully used for a number of problems [125, 124,
32, 62, 67]. The computational cost for both stochastic fields and stochastic particles vary
linearly and are cheaper than finite difference methods but about the same cost as each other.
In the context of the Eulerian stochastic fields or Lagrangian stochastic particles approach,
an equivalent PDF for the N fields can be written as

Psgs =
1
N

N

∑
a=1

δ [θ1 −α
a(x, t)]δ [θ2 −Σ

a(x, t)] , (3.36)

where αa and Σa represent liquid volume fraction and surface density for each stochastic field.
Two solutions are possible for the equivalent SPDE representation based on the interpretation
of the stochastic integral. The first solution is obtained using the Ito approach as implemented
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by Valino [262], and the second possible solution can be made using the Stratonovich method
as implemented by Sabel’nikov and Soulard [217]. The Ito formulation is adopted here,
and the comparison of Ito-Stratonovich stochastic field implementation is beyond the scope
of this study. The work of Jones and Navarro-Martinez [126] has shown little difference
when applied in the context of turbulent combustion. Following the Ito based solution,
corresponding stochastic fields transport equations are

dαa

dt
+ ū j

∂αa

∂x j
=

∂

∂x j

�
Dsgs

∂αa

∂x j

�
+
√

2Dsgs
∂αa

∂x j
dW a

j , (3.37)

dΣa

dt
+ ū j

∂Σa

∂x j
=

∂

∂x j

�
Dsgs

∂Σa

∂x j

�
+
√

2Dsgs
∂Σa

∂x j
dW a

j +Sa
g −Sa

d, (3.38)

where dW a represents the Wiener processes having mean value of 0 and variance of
√

dt.
The notation dαa indicates that the stochastic fields are differentiable in space but are not
continuous in time. Filtered values are obtained from the averaged stochastic fields solution,
written as

ᾱ =
1
N

N

∑
a=1

α
a. (3.39)

Following a similar procedure, we can have higher moments of α and Σ. Stochastic fields
solution given by Eqs. (3.37) and (3.38) can be transformed into Chesnel et al. [47] filtered
transport equations by averaging over a large number of stochastic fields, written as

∂ ᾱ

∂ t
+ ū j

∂ ᾱ

∂x j
=

∂

∂x j

�
Dsgs

∂ ᾱ

∂x j

�
, (3.40)

∂ Σ̄

∂ t
+ ū j

∂ Σ̄

∂x j
=

∂

∂x j

�
Dsgs

∂ Σ̄

∂x j

�
+Sg −Sd. (3.41)

Calculating filtered moments from a stochastic solution incorporates an error that increases
with the increase in sub-grid variance and decreases with the increase in the number of
stochastic fields. Increasing the number of stochastic fields leads to the higher computational
time required for the numerical solution [257, 256]. Computational cost limits the maximum
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number of stochastic fields used within each LES cell, increasing exponentially with the
number of LES cells and linearly with the stochastic fields used. Using more stochastic fields
permits a better statistical description of the sub-grid structures at a lower computational cost
when compared with the grid refinement [257].

3.5 Turbulent filtering of Navier–Stokes equations

A conceptually simple and commonly adopted for the turbulent treatment of continuity and
momentum equations [34, 54, 47, 184, 130] is to spatially filter Eqs. (3.3) and (3.4), and close
the combined interfacial and turbulent sub-grid fluctuations through conventional turbulent
viscosity models. Here, a basic top-hat filter [267] is used, and the filter size is set as the
cube root of the grid volume, written as

∆ = 3
√

∆x∆y∆z, (3.42)

where the subscripts x,y,z represent the length of the grid cell in each direction of Cartesian
space. Linking the LES filter to the grid introduces numerical dependence into the modelling,
but with a few exceptions [53, 222], this is common in LES due to its numerical practicality.

After simplifying Eqs. (3.3) and (3.4) for incompressible flows in which the single fluid
density is a linear combination of constant liquid and gas densities [107, 259], and then
spatially filtering them over ∆, the filtered transport equations become

∂ ūi

∂xi
= 0, (3.43)

∂ ρ̄ ūi

∂ t
+

∂ ρ̄ ūiū j

∂xi
=− ∂ p̄

∂xi
+

∂ τ̄i j

∂xi
+ F̄s,i + ρ̄gi −

∂τ
t f
i j

∂xi
+ f t f

ρ,i + f t f
µ,i.

(3.44)

Here, the overbar, ·̄, denotes conventional Reynolds filtering. The first, second and fourth
terms on the right hand side of Eq. (3.44) are in closed form with the resolved viscous stress
expressed as

τ i j = µ

�
2Si j −

2
3

∂uk

∂xk
δi j

�
. (3.45)

Closure models are required for the remaining terms in Eq. (4.6) along with the term on the
right hand side of Eq. (4.7). The filtered surface tension force is decomposed into resolved
and sub-grid parts as

F̄s,i = σκ̄ n̄i |∇ᾱ|+F t f
s,i , (3.46)
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where the superscript t f denotes the sub-grid component due to the filtering of turbulent
fluctuations. κ̄ and n̄i denote the curvature and the ith component of the unit vector indicating
the normal direction of the resolved interface with κ̄ =−∇ · n̄ and n̄=∇ᾱ/ |∇ᾱ|, respectively.
DNS data of spray atomization [46] has revealed that Ft f

s is generally small compared to the
other terms in the momentum equation, and therefore the sub-grid part of the filtered surface
tension force is usually neglected [47, 184, 12]. The sub-grid turbulent stress is closed with
the gradient of the viscous term, written as

τ
t f
i j = ρuiu j − ρ̄ ūiū j =−2ρ̄νt S̄i j. (3.47)

Various models are possible for νt . Here, the Smagorinsky model [237] has been usually
used,

νt =Cs∆
2
È

2S̄i jS̄i j, (3.48)

with the constant Cs = 0.0197 [225]. The final two terms in Eq. (3.44) are correlations
induced by sub-grid fluctuations of density and viscosity, written as

f t f
ρ,i =

(∂ ρ̄ ūi −ρui)

∂ t
, (3.49)

f t f
µ,i =

∂
(
2µSi j −2µ̄ S̄i j

)
∂xi

. (3.50)

Usually, [47, 184, 12] these are neglected or considered to be encompassed by the model for
sub-grid turbulent stress. To calculate the filtered values of density and viscosity and link
them with the PDF solution, we can write

ρ̄ = ρ̄lᾱ + ρ̄g(1− ᾱ), (3.51)

µ̄ = µ̄lᾱ + µ̄g(1− ᾱ), (3.52)

where the value of ᾱ is obtained from the stochastic field solutions using Eq. (3.39).

3.6 Numerical solution and implementation

The solution of the model equations is dependent on the discretization process which could
be based on finite difference [127], finite element [97, 186, 233] or finite volume [105, 107]
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methods. Considering each method’s specific advantages and disadvantages, mathematical
formulations for two-phase flows, possibilities for easy solver writing, transparent paralleliza-
tion and availability of free access to basic code requirements, the cell-centered finite volume
method is used [117]. The LES-PDF solution is implemented in OpenFOAM and Klein’s
digital filter [134] is used to generate realistic turbulent fields at the liquid and air injection
planes. Klein’s digital filter is based on the digital filtering of random data and can reproduce
the desired statistics with second-order accuracy along with auto-correlation functions. In the
test cases investigated here, the maximum interface Courant number is Coi = 0.25, but since
the numerical method integrates the volume fraction over four sub-steps, it is effectively
0.0625. At the same time the maximum flow Courant number is Co f = 0.75. In this study
PIMPLE algorithm is followed for pressure velocity coupling. The pressure equation is
solved twice during each momentum correction operation, and this momentum correction
takes place twice in each time step. Here, we have used a PCG solver pre-conditioned by DIC
for volume fraction, a GAMG solver with smoother GaussSeidel for pressure calculations,
and a PBiCGStab solver pre-conditioned by DILU for surface density, velocity, energy
dissipation and viscosity fields.

The computational domain is a three-dimensional cylinder of length Lx = 50 mm and
diameter Din = 5 mm. The mean flow boundary conditions are set according to Table 3.1.
The turbulence intensity of the air blast is 0.11Ug, which is the same as the experimentally
observed value. For the liquid jet, the turbulence intensity is 0.0525Ul , which is a character-
istic value for turbulent pipe flow. The integral length scales are prescribed as 0.125d j and
0.125D for the liquid and air-blast flows, respectively. Note that to reduce the computational
cost, the air-blast stream diameter in the computations is half the experimental diameter.
However, to ensure that the atomization modelling is not unduly affected, the integral length
scale in the simulations is based on the experimental air-blast diameter. Here, the LES grids
are suggested to resolve the integral length scales of the air and liquid fluids [184], which
is an equivalent standard for LES of single-phase flows [116]. Three LES meshes are used
for testing numerical convergence. The liquid jet diameter is resolved by 14, 18 and 24
cells, respectively. The annular gap is resolved by 40, 50 and 62 cells, respectively, and
the expansion ratio of the largest and smallest cell size is 1.5. This results in characteristic
cell widths near the most important interface region being 49 µm, 38 µm and 30 µm. The
domain length in the axial direction is discretized by 1000, 1250 and 1575 cells, respectively,
that satisfy the cell lengths in the axial direction, almost the same as the characteristic cell
widths near the interface region. This grid scheme leads to three LES meshes containing
1.1, 2.3 and 4.5 million cells, respectively. The schematic of the mesh with 2.3 million cells
depicting the mesh resolutions is shown in Fig. 3.1. Twelve simulations are performed in
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total as set out in Table 3.2. Four simulations are performed for each mesh resolution with a
combination of the different number of stochastic fields. They are named according to the
number of LES cells and the number of stochastic fields.

Table 3.1 Flow parameters for the N-AS2 spray case.

Case N-AS2

Ug [m/s] 36
Ul [m/s] 4.3
Reg 21398
Rel 7491
We 35

(a) Axial view (b) Side view

Fig. 3.1 Axial and side views of the mesh scheme at the corresponding cross areas of the
computational domain.

3.7 Experimental set-up and data selection for validation

The numerical computations are performed for air-blast acetone spray jets (designated N-
AS2) that have been investigated experimentally on the Sydney needle spray burner [153]
which is shown schematically in Fig. 3.2. High-quality experimental data is available for
axial profiles of the mean volume fraction, which is measured by the two-angle backlit
imaging method [236].

The burner has concentric liquid, air-blast and pilot streams. The pilot is not modelled in
the present study of non-reacting atomization. The acetone is injected from a needle with
a diameter of d j = 686µm and the air-blast tube has a diameter of D = 10mm. The needle
can be recessed below the exit plane of the air-blast tube, but for the N-AS2 and N-AS8
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Table 3.2 List of numerical simulations.

Number of cells in millions Number of stochastic fileds Case Name

1.1 4 1.1M,4SF
1.1 8 1.1M,8SF
1.1 16 1.1M,16SF
1.1 32 1.1M,32SF
2.3 4 2.3M,4SF
2.3 8 2.3M,8SF
2.3 16 2.3M,16SF
2.3 32 2.3M,32SF
4.5 4 4.5M,4SF
4.5 8 4.5M,8SF
4.5 16 4.5M,16SF
4.5 32 4.5M,32SF

Pilot

Airblast

Liquid

Fig. 3.2 Schematic drawing of the Sydney needle spray burner. Reprinted from Combustion
and Flame, Vol 176, A. Lowe, A. Kourmatzis, A.R. Masri, Turbulent spray flames of
intermediate density: Stability and near-field structure, Pages 511-520, Copyright (2017),
with permission from Elsevier.

cases, the needle and air-blast exit planes are flush. The densities of air and liquid acetone are
ρg = 1.178kg/m3 and ρl= 784.5kg/m3 and their kinematic viscosities are νg = 1.567e-5m2/s
and νl = 3.938e-7m2/s. The flow parameters for the spray are given in Table 3.1. The mean
burner exit plane velocities in the air-blast and acetone streams are Ug and Ul , respectively,
while Reg =Ug

(
D−d j

)
/νg and Rel =Uld j/νl are the corresponding Reynolds numbers,

and We = ρg (Ug −Ul)
2 d j/σ is the jet Weber number based on the interfacial drift velocity.

The surface tension coefficient of the acetone-air interface is specified as 0.023N/m.
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3.8 Results

A detailed investigation of the grid resolution and stochastic field sensitivity for the three
different resolutions is presented here in this Section. Comparisons are also made to the
limited amount of available experimental data. Results are first presented for instantaneous
volume fraction fields representing the jet penetration and decay rate, mean and rms values
of liquid volume fraction, followed by surface density and velocity profiles. Results are also
presented for the joint PDF volume fraction and surface density fields. For these calculations,
three-dimensional rectangular regions are selected at five different locations along the jet
having the width of two liquid jet diameters, 2d, and length of one air-blast diameter, 1D,
conditioned with liquid volume fraction value as 0.01 ≤ α ≤ 0.99. In the end, the grid
convergence behaviour for 1.1M, 2.3M and 4.5M LES cells resolution is presented using
four combinations of stochastic fields.

3.8.1 Stochastic field sensitivity

1.1M LES cells

Figure 3.3 shows instantaneous snapshots of the filtered volume fraction fields on 1.1M
LES grids for case N-AS2 with the 4,8,16 and 32 stochastic fields. The amplitude of the
wave instability gradually increases, followed by the break-up of the jet and the evolution of
discrete ligaments. With the increase in the number of stochastic fields, numerical diffusion
is reduced. The interface is more diffusive, especially around the break-up location. The
appearance of a discrete liquid structure arises a bit further upstream for a lesser number of
stochastic fields. Here, we can observe the continuous structures even in the downstream
regions for 32 stochastic fields. These instantaneous plots show that results are much more
sensitive to stochastic fields and do not produce the converged solution up to 32 stochastic
fields.

The mean and rms of volume fraction in the axial and radial directions for 1.1M cells
resolution are shown in Fig. 3.4. The jet breaks up at around x/D = 1 for the case of 4
stochastic fields, and the location of jet break-up moves further downstream as the number of
stochastic fields increases. For the case of 4 stochastic fields, the decay rate is faster in the
regions of (2 < x/D < 3.5) compared with other combinations of stochastic field numbers.
The numerical results do not converge, and we have different profiles for all stochastic fields.
This concludes that for the 1.1M cell case the number of stochastic fields is insufficient to
have the converged solution.
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Fig. 3.3 Instantaneous volume fraction fields at the central plane of N-AS2 using the
different number of stochastic fields. Top: 1.1M,4SF, Second: 1.1M,8SF, Third: 1.1M,16SF,
Bottom: 1.1M,32SF.
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Fig. 3.4 Axial and radial profiles of mean (1st row) and rms (2nd row) of volume fraction
for N-AS2 using different numbers of stochastic fields with 1.1 million LES cells. Radial
profiles are shown at two axial stations. Experimental data [236] includes error bars.
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Fig. 3.5 PDF calculations of volume fraction values for N-AS2 using the different number
of stochastic fields in combination with axial profiles for mean volume fraction.
Experimental data [236] includes error bars.

PDF of liquid volume fraction for 1.1M resolution case in combination with different
stochastic fields is represented in Fig. 3.5. The calculations are made along the jet with
imposing the condition on liquid volume fraction α as 0.01 ≤ α ≤ 1. In the near-field region
(x/D ≤ 2) probability of liquid volume fraction for all combinations of stochastic fields is
almost similar. Further downstream (x/D ≥ 2), these PDF measurements are sensitive to
stochastic field numbers. Overall, numerical convergence observed here is consistent with
the mean liquid volume fraction as shown in Fig. 3.4, and converged solution is not achieved
for 1.1M LES cells in combination with increased stochastic fields up to 32 stochastic field
numbers.

The axial and radial profiles for the mean and rms values of normalized surface density,
Σ̄/Σ̄min, are presented in Fig. 3.6. The results are consistent with the mean and rms values of
volume fraction, and no evident convergence is found when the stochastic field numbers are
increased gradually up to 32. In Fig. 3.6a, surface density increases very slowly from the
nozzle exit as the surface wave evolves. From the jet break-up point, as determined in Fig. ??,
the surface density dramatically increases, and the peak value is located at the position
where we have the highest rms value of volume fraction. Intermittency of the ligaments can
be visualized in Fig. 3.3, which gradually grows downstream, leading to a smooth surface
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density reduction. In radial directions (see Figs. 3.6b and 3.6c), a peak value is observed that
is supposed to be at the radius of the liquid jet. It decreases to the periphery with the same
trend as the volume fraction profiles.
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Fig. 3.6 Axial and radial profiles of mean (1st row) and rms (2nd row) of surface density for
N-AS2 using different numbers of stochastic fields with 1.1 million LES cells. Radial
profiles are shown at two axial stations.

PDF of liquid surface density for 1.1M resolution case in combination with different
stochastic fields is represented in Fig. 3.7. The calculations are made along the jet with
imposing the condition on liquid volume fraction α as 0.01 ≤ α ≤ 1. In the near-field
region (x/D ≤ 3) probability of surface density has shown less sensitivity to the increase in
stochastic fields. Further downstream (x/D ≥ 3), the PDF are more sensitive to stochastic
field numbers. The numerical convergence observed here is consistent with the mean liquid
volume fraction and mean liquid surface density as shown in Figs. 3.4 and 3.6.

The axial and radial profiles of mean and rms of the axial component of velocity, Ux, for
1.1M grid cells are presented in Fig. 3.8. In contradiction to the volume fraction and surface
density results, the mean profiles of Ux present a mostly similar trend with the increase in the
number of stochastic fields, and the results for the axial mean and rms of velocity profiles
are pretty close to each other (see Figs. 3.8a and 3.8d). However, some visible divergence is
evident in the radial profiles for both mean and rms values at x/D = 2.
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Fig. 3.7 PDF calculations of surface density values for N-AS2 using the different number of
stochastic fields in combination with axial profiles for mean volume fraction. Experimental
data [236] includes error bars.

Overall, rigorous numerical convergence for 1.1M LES cells in the combination of
increased stochastic fields is not achieved up to 32 stochastic field numbers. As the number
of stochastic fields increases, the jet break-up location moves further downstream in the flow
direction. The maximum value of normalized surface density for the case of 4 stochastic
fields confirms the rapid jet break-up for less number of stochastic fields.

2.3M LES cells

Figure 3.9 shows instantaneous snapshots of the filtered volume fraction fields on 2.3M LES
grids for case N-AS2 with the combination of 4,8,16 and 32 stochastic fields. Similar to
1.1M resolution cases (see Fig. 3.3), we can see the delay in jet break-up with the increase in
the number of stochastic fields. However, the difference is comparatively small as we move
from lesser to the higher value of stochastic field numbers and instantaneous liquid volume
fractions fields for both 16 and 32 stochastic fields are quite similar. These instantaneous
plots show that results are less sensitive to stochastic fields when compared with 1.1M LES
grid cells. The mean and rms of volume fraction in the axial and radial directions for 2.3M
cells resolution are shown in Fig. 3.10. The jet breaks up at around x/D = 1 for the case of 4
stochastic fields, and the location of jet break-up moves further downstream as the number of
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Fig. 3.8 Axial and radial profiles of mean (1st row) and rms (2nd row) of the axial
component of velocity for N-AS2 using different number of stochastic fields with 1.1 million
LES cells. Radial profiles are shown at two axial stations.

stochastic fields increases and the decay rate is faster for the case of 4 and 8 stochastic fields
in the regions of (2 < x/D < 3.5) when compared with other combinations of stochastic field
numbers. The numerical results seem to be converged as the mean liquid volume fraction
values (see Fig. 3.10a) for both 16 and 32 stochastic fields are similar calculated along the jet
centreline. This concludes that 16 stochastic fields are enough to have the converged solution
for 2.3M cells resolution.

PDF of liquid volume fraction for 2.3M resolution case in combination with different
stochastic fields is represented in Fig. 3.11. In the near-field region (x/D ≤ 2) probability
of liquid volume fraction for all combinations of stochastic fields is almost similar and
does not show much difference when compared with 1.1M resolution. Further downstream
(x/D ≥ 2), the PDF measurement is sensitive to stochastic field numbers, but numbers for 16
and 32 stochastic fields are very similar, confirming the reach of stochastic field convergence.
Overall, the numerical convergence observed here is consistent with the mean liquid volume
fraction as shown in Fig. 3.10.

The axial and radial profiles for the mean and rms values of normalized surface density,
Σ̄/Σ̄min, for 2.3M resolution are presented in Fig. 3.12. The results are consistent with
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Fig. 3.9 Instantaneous volume fraction fields at the central plane of N-AS2 using the
different number of stochastic fields. Top: 2.3M,4SF, Second: 2.3M,8SF, Third: 2.3M,16SF,
Bottom: 2.3M,32SF.

the mean and rms values of volume fraction, and reasonable convergence is found when
the stochastic field numbers are increased from 16 to 32. Consistent with the 1.1M LES
cells, in Fig. 3.12a, surface density increases very slowly from the nozzle exit as the surface
wave evolves. From the jet break-up point, as determined in Fig. 3.10a, the surface density
dramatically increases, and the peak value is located at the position where we have the highest
rms value of volume fraction. Intermittency of the ligaments can be visualized in Fig. 3.9,
which gradually grows downstream, leading to a smooth reduction of surface density. In
radial directions (see Figs. 3.12b and 3.12c), a peak value is observed that is supposed to be
at the radius of the liquid jet. It decreases to the periphery with the same trend as the volume
fraction profiles.

PDF of liquid surface density for 2.3M resolution case in combination with different
stochastic fields is represented in Fig. 3.13. In the near-field region (x/D ≤ 3) probability
of liquid surface density for combinations of 16 and 32 stochastic fields is almost similar,
but further downstream (x/D ≥ 3), the PDF numbers are still sensitive to stochastic field
numbers. However, the overall convergence behaviour of PDF for surface density is similar
to what we have observed for the mean liquid surface density as shown in Fig. 3.12. The
axial and radial profiles of mean and rms of the axial component of velocity, Ux, for 2.3M
grid cells are presented in Fig. 3.14. Upon comparison with 1.1M resolution, we have found
a different behaviour in the volume fraction and surface density results. However, the mean
profiles of Ux present a mostly similar trend with the different number of stochastic fields,
and the results for the axial mean and rms of velocity profiles are quite close to each other
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Fig. 3.10 Axial and radial profiles of mean (1st row) and rms (2nd row) of volume fraction
for N-AS2 using different numbers of stochastic fields with 2.3 million LES cells. Radial
profiles are shown at two axial stations. Experimental data [236] includes error bars.
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Fig. 3.11 PDF calculations of volume fraction values for N-AS2 using the different number
of stochastic fields in combination with axial profiles for mean volume fraction.
Experimental data [236] includes error bars.
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Fig. 3.12 Axial and radial profiles of mean (1st row) and rms (2nd row) of surface density
for N-AS2 using different numbers of stochastic fields with 2.3 million LES cells. Radial
profiles are shown at two axial stations.
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Fig. 3.13 PDF calculations of surface density values for N-AS2 using the different number
of stochastic fields in combination with axial profiles for mean volume fraction.
Experimental data [236] includes error bars.
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Fig. 3.14 Axial and radial profiles of mean (1st row) and rms (2nd row) of the axial
component of the velocity for N-AS2 using different number of stochastic fields with 2.3
million LES cells. Radial profiles are shown at two axial stations.

(see Figs. 3.14a and 3.14d). A similar divergence is observed in the radial profiles for both
mean and rms values at x/D = 2 as noticed for 1.1M LES grid numbers.

Overall, in the combination of increased stochastic fields, reasonable numerical conver-
gence for 2.3M LES cells is achieved up to 32 stochastic field numbers. As the number of
stochastic fields increases, the jet break-up location moves further downstream in the flow
direction. The maximum value of normalized surface density for the case of 4 stochastic
fields confirms the rapid jet break-up for less number of stochastic fields.

4.5M LES cells

Figure 3.15 shows instantaneous snapshots of the filtered volume fraction fields on 4.5M
LES grids for case N-AS2 with the combination of 4,8,16 and 32 stochastic fields. Opposite
to 1.1M and 2.3M resolution cases (see Figs. 3.3 and 3.9), we can see a similar jet penetration
for all the stochastic field combinations. However, we have found a similar trend in the decay
rate on increasing the number of stochastic fields, and a rapid decay rate is observed when
four stochastic fields are used. The difference is minimal as we move from lesser to a higher
value of stochastic field numbers, and instantaneous liquid volume fractions fields for 8, 16
and 32 stochastic field numbers are quite similar. These instantaneous plots show that results
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Fig. 3.15 Instantaneous volume fraction fields at the central plane of N-AS2 using the
different number of stochastic fields. Top: 4.5M,4SF, Second: 4.5M,8SF, Third: 4.5M,16SF,
Bottom: 4.5M,32SF.
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Fig. 3.16 Axial and radial profiles of mean (1st row) and rms (2nd row) of volume fraction
for N-AS2 using different numbers of stochastic fields with 4.5 million LES cells. Radial
profiles are shown at two axial stations. Experimental data [236] includes error bars.
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Fig. 3.17 PDF calculations of volume fraction values for N-AS2 using the different number
of stochastic fields in combination with axial profiles for mean volume fraction.
Experimental data [236] includes error bars.
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Fig. 3.18 Axial and radial profiles of mean (1st row) and rms (2nd row) of surface density
for N-AS2 using different numbers of stochastic fields with 4.5 million LES cells. Radial
profiles are shown at two axial stations.
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Fig. 3.19 PDF calculations of surface density values for N-AS2 using the different number
of stochastic fields in combination with axial profiles for mean volume fraction.
Experimental data [236] includes error bars.
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Fig. 3.20 Axial and radial profiles of mean (1st row) and rms (2nd row) of the axial
component of velocity for N-AS2 using different number of stochastic fields with 4.5 million
LES cells. Radial profiles are shown at two axial stations.
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are much less sensitive to stochastic fields when compared with 1.1M and 2.3M LES grid
cells.

The mean and rms of volume fraction in the axial and radial directions for 4.5M cells
resolution are shown in Fig. 3.16. The jet breaks up at around x/D = 1 for all the stochastic
field combinations, and the decay rate is faster for the case of 4 stochastic fields in the regions
of (2 < x/D < 3.5) when compared with other combinations of stochastic field numbers. The
numerical results have shown an excellent converged behaviour as the mean liquid volume
fraction values (see Fig. 3.16a for 8, 16 and 32 stochastic fields are almost overlapping each
other. This concludes that eight stochastic fields are enough to have the converged solution
for 4.5M cells resolution.

PDF of liquid volume fraction for 4.5M resolution case in combination with different
stochastic fields is represented in Fig. 3.17. In the near-field region (x/D ≤ 2) probability
of liquid volume fraction for all combinations of stochastic fields is very similar and does
represent closer values when compared with 1.1M and 2.3M resolutions. Further downstream
(x/D ≥ 2), the PDF numbers are sensitive to stochastic field numbers, and PDF values of
liquid volume fraction and surface density for 8, 16 and 32 stochastic fields are very similar,
confirming the reach of stochastic field convergence. Overall, the numerical convergence
observed here is consistent with the mean liquid volume fraction as shown in Fig. 3.16.

The axial and radial profiles for the mean and rms values of normalized surface density,
Σ̄/Σ̄min, for 4.5M resolution are presented in Fig. 3.18. The results are consistent with the
mean and rms values of volume fraction, and the same convergence behaviour is found when
the stochastic field numbers are increased from 8 to 32. Consistent with the 1.1M and 2.3M
LES cells, in Fig. 3.20a, surface density increases very slowly from the nozzle exit as the
surface wave evolves. From the jet break-up point, as determined in Fig. 3.16a, the surface
density dramatically increases, and the peak value is located at the position where we have
the highest rms value of volume fraction. Intermittency of the ligaments can be visualized
in Fig. 3.15, which gradually grows downstream, leading to a smooth reduction of surface
density. In radial directions (see Figs. 3.18b and 3.18c), a peak value is observed that is
supposed to be at the radius of the liquid jet which is similar as we have found for 1.1M and
2.3M LES cells (see Figs. 3.6b , 3.6c,3.12b and 3.12c). It decreases to the periphery with the
same trend as the volume fraction profiles.

PDF of surface density for 4.5M resolution case in combination with different stochastic
fields is represented in Fig. 3.19. Here, PDF values of surface density for all combinations of
stochastic fields except for the case of 4 stochastic fields are very similar and represent closer
values compared with 1.1M and 2.3M resolutions. However, this convergence behaviour is
more evident for the liquid fraction PDF values when compared with surface density PDF
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data. Overall, the numerical convergence observed here is consistent with the mean liquid
surface density as shown in Fig. 3.18.

The axial and radial profiles of mean and rms of the axial component of velocity, Ux, for
4.5M grid cells are presented in Fig. 3.20. As presented for 1.1M and 2.3M resolutions, we
found a contradiction in the volume fraction and surface density results. The mean profiles
of Ux present a similar trend with the different number of stochastic fields, and the results for
the axial mean and axial rms of velocity profiles are quite close to each other (see Figs. 3.20a
and 3.20d). A similar divergence is also observed in the radial profiles for both mean and
rms values at x/D = 2 as found for 1.1M and 2.3M grid numbers.

Overall, excellent convergence behaviour can be observed for 4.5M LES cells when tested
against a different number of stochastic fields. Opposite to 1.1M and 2.3M resolution cases,
the jet break-up location seems less affected by the increase in stochastic field numbers.

3.8.2 Grid sensitity

The mean volume fraction in the axial and radial directions for 1.1M, 2.3M and 4.5M LES
cells resolution of four combinations of stochastic fields is shown in Fig. 3.21. The jet breaks
up at around x/D = 1 for the case of 4 stochastic fields, and the location of jet break-up
moves further downstream as the number of stochastic fields increases. For the case of 4 and
8 stochastic fields, the decay rate is faster in the regions of (2 < x/D < 3.5) for 1.1M and
2.3M cells when compared with 4.5M cells. However, a similar jet decay rate is observed
for 2.3M and 4.5M cells when 16 or 32 stochastic fields are used. This is also evident in
Fig. 3.21 that in LES-PDF simulation solution is dependent on the combination of LES grid
size and the number of stochastic fields within each cell. For the case of 4 or 8 stochastic
fields in each cell, the solution is more sensitive to the mesh resolution compared with 16
or 32 stochastic fields. The measurements in the radial directions confirm that LES-PDF is
more sensitive to grid resolution in the far-field region, where the sub-grid scale effects are
more dominant.

3.9 Summary

Convergence behaviour of the stochastic field numbers is analyzed for three different mesh
sizes 1.1M, 2.3M and 4.5M. This has been measured in terms of different parameters like
liquid jet penetration and decay rate, mean and rms of liquid volume fraction, mean and rms
of surface density, mean and rm of liquid velocity, PDF calculations of volume fractions and
surface density. Rigorous numerical convergence for 1.1M LES cells in the combination
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Fig. 3.21 Axial and radial profiles of mean volume fraction for N-AS2 using different
numbers of stochastic fields and LES cells. Radial profiles are shown at two axial stations.
Experimental data [236] includes error bars.
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of increased stochastic fields is not achieved up to 32 stochastic field numbers. As the
number of stochastic fields increases, the jet break-up location shifts further downstream.
The maximum value of normalized surface density for the case of 4 stochastic fields confirms
the rapid jet break-up for less number of stochastic fields. In the near-field region probability
of liquid volume fraction for all stochastic fields is similar, but in downstream locations, the
PDF values are sensitive to stochastic field numbers. Similar behaviour is observed in the
surface density PDF data, where sensitivity to stochastic field numbers is more evident in the
downstream regions. Overall, the numerical convergence observed for the PDF measurements
is consistent with the mean liquid volume fraction and mean liquid surface density, and no
obvious converged solution is obtained for 1.1M LES cells up to 32 stochastic field numbers.

However, reasonable numerical convergence is observed for 2.3M LES cells, and mea-
sured values of mean liquid volume fraction and normalized mean surface density for the 16
and 32 stochastic fields are very similar. Jet break-up location is also sensitive to the number
of stochastic fields and moves in the downstream direction with the increased stochastic field
numbers. PDF of liquid volume fraction shows a similar convergence trend as observed
for mean liquid volume fraction. However, the PDF of surface density for 2.3M LES cells
does not give a reasonable indication of stochastic field convergence. This might be be-
cause instantaneous values of surface density change rapidly along the flow direction, and
convergence is not as evident as shown for the mean liquid volume fraction values.

Overall, very good convergence behaviour can be observed for 4.5M LES cells when
measured for the different number of stochastic fields. Here, unlike 1.1M and 2.3M resolution
cases, the jet break-up location is less sensitive to the increase in stochastic field numbers.
Here, the maximum normalized surface density value is also measured for the least number
of stochastic fields. That also confirms the rapid jet break-up behaviour for this case, as
observed in the instantaneous liquid volume fraction fields. PDF of liquid volume fraction
and surface density for 4.5M resolution case gives a similar convergence representation
upon comparison with mean liquid volume fraction and mean surface density. However, this
convergence behaviour is more evident for the liquid fraction PDF values when compared
with surface density PDF data. Furthermore, this stochastic field convergence study combined
with different mesh resolutions confirms that more stochastic fields are required to achieve a
converged solution when a coarser resolution is used. However, convergence can be achieved
with fewer stochastic fields for finer mesh resolution. This leads to the conclusion that the
stochastic fields convergence behaviour depends on the mesh size.

Grid sensitivity is still an issue with the VoF based LES approaches, and the solution is
dependent on the LES filter size. The numerical findings of the stochastic fields LES-PDF
solution also confirm its grid-dependent behaviour. Using a higher number of stochastic
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fields in each LES cell has shown some improvements, but the simulation results are still
sensitive to LES cell sizes.





Chapter 4

Large Eddy Simulation Solutions for
Volume of Fluid

The first half of this Chapter describes the numerical implementation in OpenFOAM along
with the discretization schemes and relevant solution solvers. The general VoF formulation
is presented in Section 2.3. Here, three different LES solutions for the VoF method are
presented, which differ in the treatment of unresolved liquid-air interface. Filtering produces
sub-filter fluctuations, which must be modelled. If the filter is equal to the grid size, they
are usually referred to as sub-grid fluctuations. In general numerical solutions of the filtered
VoF equations, filter width is equal to the mesh size and the interface sharpens as the grid
is refined, leading to variations in interface topology and flow dynamics. For practically
affordable computations, the grid resolved interfacial properties represent a numerically
dependent average of the sub-grid fields. When the flow is turbulent, there are additional
unresolved fluctuations due to the random turbulent motions which exist within the interior
of each fluid and at the interface. To be practically useful, VoF based LES should numerically
converge as the grid is refined. In the previous Chapter numerical convergence of the
stochastic fields implementation of the VoF/LES model was examined and it was found
that numerical convergence with the refinement of the grid remained elusive, although
convergence with the number of stochastic fields was achieved. In the present Chapter, the
performance and numerical convergence of three alternative VoF/LES models are examined.
Two are conventional models [34, 54, 47, 184, 130, 12] and the third, called Explicit Volume
Diffusion (EVD), was recently presented by Wang et al. [270] and was specifically designed
to overcome the shortcomings of other LES based methods. As this EVD approach is new,
and for better understanding, a complete description of its formulation is presented here in
this Chapter following the original work of Wang, Cleary and Masri [270].
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4.1 Discretization schemes and system solutions

The solution of the model partial differential equations depends on the discretization process
to have the maximum use of the available computational resources. There are many methods
available for this purpose, but most popular choices for two-phase flows are finite difference
[127], finite element [97, 186, 233] and finite volume [105, 107] methods. Considering each
method’s specific advantages and disadvantages, mathematical formulations for two-phase
flows, possibilities for easy solver writing, transparent parallelization and availability of free
access to basic code requirements, the cell-centered finite volume method is used [117]. The
same numerical schemes are used for all solvers, and these have been previously validated
for the interFoam solver [58]. The unsteady time derivative term is discretized using the
forward Euler scheme. Second-order central difference schemes are used for the discretized
convection and diffusion terms. The convection of volume fraction is an exception as it is
solved using a multidimensional universal limiter for explicit solution (MULES) algorithm
[163] which guarantees boundedness of volume fraction fields and numerical stability for
immiscible interfaces with large liquid/gas density ratios. The computational time step for
integration is determined following the Courant-Friedrich-Levy (CFL) condition, written as

CFL =
k1/2∆t

∆x
< 1, (4.1)

where ∆t is computational time step, ∆x is grid size and k is turbulent kinetic energy.

4.1.1 Multidimensional universal limiter for explicit solution (MULES)

Implementation of flux-corrected transport (FCT) theory of [28] in OpenFOAM is termed as
MULES, which is based on Zalesak’s limiter concept [281] but the determination process
is rather iterative. The improvements made by Zalesak [281] to the original work of Boris
and Book [28] ensure the solution boundedness of a hyperbolic problem and are considered
the most trusted multidimensional high-resolution scheme. The Courant number Co needs
to have a limitation depending on the choice of algorithm. For explicit MULES algorithm,
an upper limit of Co ≈ 0.25 is suitable in the region of the interfacial boundaries, and
for semi-implicit MULES algorithm, it is specified by the MULESCorr keyword in the
fvSolution file. The algorithm works in a way that each cell has a net flux, and maxima and
minima calculations depend on the in-flow and the out-flow values. For the satisfaction of
the boundedness requirement, MULES calculates the limited flux face by face via calculation
of the weighted average of two fluxes for α [199]:



4.1 Discretization schemes and system solutions 71

i) The flux computed with a first-order upwind scheme for the advection equation only,
which has bounded values but is diffusive.
ii) The sum of the fluxes computed with the high-order scheme for both advection
equation and the re-initialization requirements, and the net flux solution is higher-order
accurate but not systematically bounded.

However, this weighted value differs for each face, which leads to the non-linear calculations
of the FCT of limited flux. Use of the limiter factor concept and corrected flux approach
[163, 199] is helpful to overcome this non-linearity problem. The calculation of the limiter
factor is carried out iteratively to satisfy the boundedness of the solution, and the starting
value is calculated based on Weller’s algorithm [272].

Firstly, the calculation of correction fluxes for a particular cell is split into the sum of
all out-flow and the sum of all in-flow corrected fluxes. Then, an average limiter factor is
defined individually for all faces with in-flow and out-flow correction fluxes. The algorithm is
designed in a way that the limiter factor for a particular face is selected based on a minimum
of three values [199]:

a) The relevant average limiter factor in one of the adjacent cells for the out-flow correc-
tion flux if exiting.
b) The relevant average limiter factor in one of the adjacent cells for the in-flow correction
flux if entering.
c) The limiter factor at the previous iteration.

The total number of iterations for the final limiter factor corresponding to each face of the
mesh is defined by the user.

4.1.2 Pressure-velocity coupling

The discretization of the Navier-Stokes transport equations is based on the cell-centered finite
volume approach. Pressure velocity coupling solution is obtained by either the pressure-
implicit split operator (PISO), the semi-implicit method for pressure-linked equations (SIM-
PLE), or a combination of both, termed as PIMPLE algorithm. Most multi-phase applications
use the PIMPLE solution for this purpose. The PIMPLE algorithm consists of the following
steps:

i) Generation of a momentum matrix from the existing velocity fields.
ii) Developing a pressure matrix using the momentum matrix.
iii) Pressure calculation.
iv) Correction of the velocity fields with the new pressure values.

The transport equations are solved individually to have the converged solutions for pressure
and velocity in a loop. The pressure is discretized at cell centres, and the velocities are
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calculated at cell faces. Initially, for the first time step, the flux is calculated from the velocity
fields and then all the rest of the calculations are based on pressure-velocity loop calculations
in the previous time step, which confirms the conservation of flux in the form of the continuity
equation. The number of times the algorithm solves the pressure equation and the momentum
corrector in each time step is adjusted externally in the fvSolution dictionary file depending
upon the solution requirements. In this study PIMPLE algorithm is followed, the pressure
equation is solved twice during each momentum correction operation, and this momentum
correction takes place twice in each time step.

4.1.3 Solution solvers and tolerances

The discretization of the general advection and diffusion equations usually results in non-
symmetric linear systems. However, in the case of the pressure equation, the discretization
process results in symmetric systems. The symmetry of the matrix depends on the terms
of the equation being solved. Time derivatives and Laplacian terms form coefficients
of a symmetric matrix, whereas an advective derivative results in the asymmetry of the
solution matrix. The solution of these systems is achieved by the use of iterative linear
equation solvers for both symmetric and non-symmetric matrices [4], which include the
pre-conditioned conjugate gradient (PCG), the diagonal incomplete-Cholesky (DIC) and
diagonal incomplete-Cholesky with Gauss-Seidel (DICGaussSeidel) for the symmetric cases
and the pre-conditioned bi-conjugate gradient (PBiCG), the Gauss-Seidel and the geometric-
algebraic multi-grid (GAMG) for non-symmetric problems. Here, we have used a PCG solver
pre-conditioned by DIC for volume fraction, a GAMG solver with smoother GaussSeidel for
pressure calculations, and a PBiCGStab solver pre-conditioned by DILU for surface density
and velocity fields.

Furthermore, these solution matrices are sparse, mostly including coefficients of 0 and
have segregated, decoupled, finite volume numerics. As a result, the behaviour of these
solvers is rather iterative, and the equation residuals are purposely reduced over the successive
solutions. These residuals directly measure the solution accuracy, and the smaller values
lead to a more accurate solution. These residuals are evaluated by substituting the existing
solution into the relevant equation and calculating the difference in magnitudes between both
sides of the equation. Normalized values are used to ensure that the answers are independent
of the scale of the problem under consideration. The initial calculation of these residuals is
made from the existing field values and then re-evaluated after each iteration. The solution
stops if any of the following conditions happen:

a) The residual falls below the assigned tolerance value.
b) The ratio of current to initial residuals falls below the specified relative tolerance value.
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c) The number of iterations exceeds the assigned maximum number.
To minimize the numerical diffusion, especially in the interfacial regions, we have selected
a low value of tolerance, 10−9, and zero relative tolerance for all field variables. The
number of iterations is assigned sufficiently large to avoid the solution termination before the
convergence is reached.

4.2 Conventional solutions for VoF approach

A conceptually simple and commonly adopted treatment for turbulent VoF simulations
[34, 54, 47, 184, 130] is to spatially filter Eqs. (2.1), (2.2) and (2.20) and close the combined
interfacial and turbulent sub-grid fluctuations through conventional turbulent viscosity models
developed originally for turbulent single-phase flows. However, there is a fundamental
difference between single-phase and two-phase turbulent flows, with the latter having sharp
interfaces with a length scale much smaller than the well-known turbulent length scales in
single-phase flows. Due to the immiscibility between the two phases, the Schmidt number for
the liquid volume fraction is effectively infinity, and the Batchelor length scale approaches
zero [37]. The conventional filtered VoF solution smooths the interface over grid cells
through numerical diffusion and this diffusion is amplified for larger grid scales to create
continuous fields [141] on which turbulence filtering is applied. Filtering is usually defined
as the convolution of an arbitrary function Θ(x, t) in combination with a spatial filter function
G(x−x′;∆(x)). In LES, a spatial filtering operation with a width of ∆ is applied to governing
equations, separating into two groups based on scales larger than the filter size and smaller
than the filter size. This results in the removal of all finer fluctuations in such a way that the
resulting governing equations only describe the space-averaged fields. The filtering operation
over a domain Ω is defined as

Θ̄(x) =
∫

Ω

G(x− x′;∆(x))Θ(x′, t)dx′. (4.2)

Here, a basic top-hat filter [267] is used and the filter size is set as the cube root of the grid
volume,

∆ = 3
√

∆x∆y∆z, (4.3)

where the subscripts x,y,z represent the length of the grid cell in each direction of Cartesian
space. Linking the filter to the grid introduces numerical dependence into the modelling but,
with a few exceptions [53, 222], this is common in LES due to its numerical practicality. The
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top-hat filter is the same as the grid filter, but the filter cuts off the values of the function
larger than half of the filter width, defined as

G(x− x′;∆) =

∆1/3 if |x− x′|< ∆

2

0 otherwise.
(4.4)

4.2.1 Turbulent filtered VoF model (TFVoF)

After simplifying Eqs. (2.1), (2.2) and (2.20) for incompressible flows in which the single
fluid density is a linear combination of constant liquid and gas densities [107, 259], and then
spatially filtering them over ∆, the TFVoF transport equations become

∂ ūi

∂xi
= 0, (4.5)

∂ ρ̄ ūi

∂ t
+

∂ ρ̄ ūiū j

∂xi
=− ∂ p̄

∂xi
+

∂ τ̄i j

∂xi
+ F̄s,i + ρ̄gi −

∂τ
t f
i j

∂xi
+ f t f

ρ,i + f t f
µ,i,

(4.6)

∂ ᾱ

∂ t
+

∂ ūiᾱ

∂xi
=−

∂Jt f
α,i

∂xi
. (4.7)

Here, the overbar, ·̄, denotes conventional Reynolds filtering (i.e. not mass weighted). The
first, second and fourth terms on the right side of Eq. (4.6) are in closed form with the
resolved viscous stress expressed as

τ i j = µ

�
2Si j −

2
3

∂uk

∂xk
δi j

�
. (4.8)

Closure models are required for the remaining terms in Eq. (4.6) along with the term on the
right hand side of Eq. (4.7). The filtered surface tension force is decomposed into resolved
and sub-grid parts as

F̄s,i = σκ̄ n̄i |∇ᾱ|+F t f
s,i , (4.9)

where the superscript t f denotes the sub-grid component due to the filtering of turbulent
fluctuations. κ̄ and n̄i denote the curvature and the ith component of the unit vector indicating
the normal direction of the resolved interface with κ̄ =−∇ · n̄ and n̄=∇ᾱ/ |∇ᾱ|, respectively.
DNS data of spray atomization [46] has revealed that F t f

s is generally small compared to the
other terms in the momentum equation, and therefore the sub-grid part of the filtered surface
tension force is usually neglected [47, 184, 12]. The sub-grid turbulent stress and sub-grid
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turbulent flux are closed with gradient viscous and diffusion terms,

τ
t f
i j = ρuiu j − ρ̄ ūiū j =−2ρ̄νt S̄i j, (4.10)

Jt f
α,i = uiα − ūiᾱ =−Dt

∂ ᾱ

∂xi
. (4.11)

Various models are possible for νt and Dt . Here, the Smagorinsky model [237] has been
usually used,

νt =Cs∆
2
È

2S̄i jS̄i j, (4.12)

with the constant Cs = 0.0197 and Dt = νtSct with Sct = 1.43 [225]. The final two terms in
Eq. (4.6) are correlations induced by sub-grid fluctuations of density,

f t f
ρ,i =

(∂ ρ̄ ūi −ρui)

∂ t
, (4.13)

f t f
µ,i =

∂
(
2µSi j −2µ̄ S̄i j

)
∂xi

. (4.14)

Usually, [47, 184, 12] these are neglected or considered to be encompassed by the model for
sub-grid turbulent stress. Two significant conceptual shortcomings in the TFVoF model are
presented in this Section. Firstly, the assumption that inertial range turbulent eddies and the
energy cascade cross the interface with universal statistical behaviour is not credible. This
is particularly relevant in the vicinity of continuous interfaces. Secondly, in regions of low
turbulence where Dt is small, the numerical solutions for α and hence all other properties
are subject to uncontrolled artificial diffusion due to the grid.

4.2.2 Hybrid turbulence filtering and artificial compression model (TF-
AC)

Hecht [98] and subsequently Anez et al. [12] attempted to address the shortcomings in
the TFVoF model by augmenting the filtered volume fraction equation with an additional
artificial compression term to counteract numerical diffusion and sharpen the interface,

∂ ᾱ

∂ t
+

∂ ūiᾱ

∂xi
+

∂

∂xi
Cαurᾱ(1− ᾱ) =−

∂Jt f
α,i

∂xi
(1−Cα). (4.15)
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The relative velocity,

ur =Cr|ūi|
∇ᾱ

|∇ᾱ|
, (4.16)

is non-zero only at the interface where ∇ᾱ is finite. Weller [272] suggests that the model
parameter Cr ranges from 1 to 4 dependent on the grid resolution. Here we use the standard
value of Cr = 1. The original formulation was developed for application to laminar or
fully resolved simulations [120, 272] and, therefore, sub-grid fluctuations of the artificial
compression term have been neglected in Eq. (4.15). This is justified by the fact that the
compression term is artificial, but a likely consequence of this simplification is that the impact
of the term will be grid dependent. The other parameter Cα is used as a switch. Where the
interface is continuous, it is sharpened by setting Cα = 1 so that the artificial compression
term is activated and turbulent diffusion is de-activated. Where the interface is discontinuous
(i.e. where discrete liquid ligaments and droplets exist), Cα = 0 and turbulent dispersion
becomes dominant. Switching between Cα = 1 and Cα = 0 is based on a locally evaluated
continuous interface indicator,

IRQκ = |κ|∆ =

∣∣∣∣∇ · ∇ᾱ

|∇ᾱ|

∣∣∣∣∆. (4.17)

In the continuous interface region, the magnitude of interface curvature, κ , tends to have
smaller values. A threshold value of IRQκ is chosen as the point where switching of Cα

takes place. In the present study, the threshold is set so that

Cα =

¨
1; for IRQκ <= 0.15
0; for IRQκ > 0.15

,

which is similar to the suggestion by Hecht [98].

4.3 Explicit volume diffusion (EVD)

The purpose of developing explicit volume diffusion (EVD) formulation [270] is to have a
VoF-type model that presents the interfacial dynamics in a physical manner, is numerically
grid independent, and is not unnecessarily affected by numerical diffusion. The explicit
volume diffusion model is based on the concept of averaging the VoF equations over explicitly
defined physical volumes, which have length scale lV ∼V 1/3. This length scale is independent
of the grid-scale, ∆, with ∆ ≤ lV . The unresolved sub-grid scale interface dynamics are
modelled through closures for the sub-volume flux and sub-volume stress. These closures are
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based on the diffusion coefficient linked with an explicit length scale, and thus this approach
is termed as explicit volume diffusion (EVD). A closure for the volume averaged surface
tension force is also developed to account for the sub-grid surface tension effects linked
with the physically defined explicit length scale. In contrast to the other existing approaches,
these closures are independent of the numerical grid scale. This EVD model is applicable
to both laminar and turbulent flows. Variations in the fields at the sub-volume scale are
filtered out by a physically derived explicit volume diffusion. Unlike turbulence filtering in
the TFVoF and TF-AC models presented earlier, the volume averaging attenuates fluctuations
due to both the dynamics of the phase interface and turbulent fluctuations (if they exist).
Numerical convergence can be demonstrated by reducing ∆ while keeping lV constant so that
the explicit volume diffusion remains essentially constant and overwhelms the numerical
diffusion, which reduces with ∆.

Within a fixed volume centred at point xxx000, the volume averaged value is obtained by the
spatial averaging of a field φ over a physical volume V , written as

φ̂ =×�φ(xxx000, t) =
1
V

∫
V

φ(xxx′′′, t)dxxx′, (4.18)

where xxx′′′ is a local coordinate centred at xxx000 and the integral is performed over all coordinate
directions. ·̂ is a conventional (or Reynolds) volume average. As the volumes can encompass
both fluids with vastly different densities, it is convenient for the derivation of subsequent
sub-volume closures to introduce density weighted (Favre) volume averaging.

φ̃ =
1

ρV

∫
V

ρφdV =
Óρφ

ρ̂
. (4.19)

At the sub-volume scale, the fluctuations relative to the Reynolds and Favre volume averaged
quantities are

φ = φ̂ +φ
′ (4.20)

and

φ = φ̃ +φ
′′, (4.21)
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respectively. Here φ ′ and φ ′′ represent the deviations from mean spatially and density
weighted averaged quantities, respectively. Upon having the averaging volume large enough
and use of fixed volumes centered at xxx000, deviations from the mean value are written as

ÒÒφ = φ̂ , φ̂ ′ = o, (4.22)

ÜÜφ = φ̃ , φ̃ ′′ = o, (4.23)

which leads to convenience in the subsequent manipulations as they avoid unclosed cross
interactions between volume averaged fields and sub-volume fluctuations. The definition
given by Eq. (4.18) is mathematically similar to a top-hat spatial filtering operation that is
commonly used in LES of turbulent flows. The conceptual difference is that the volume
averaging is not specifically linked to the filtering of turbulent frequencies above a certain
cut-off value. Rather the volume averaging attenuates fluctuations that result from interfacial
dynamics that can occur in both laminar and turbulent flows. The use of Favre averaging has
the advantage of eliminating the problem associated with simple Reynolds volume averaged
momentum transport equations in which additional unclosed terms involving sub-volume
variations of density and dynamic viscosity appear. These were simply neglected in the
previous work of Chesnel et al. [47], Navarro-Martinez [184] and Ketterl et al. [130], however
a priori study by Chesnel [46] reveals that these contributions can in fact be significant. Favre
averaging benefits because the governing equations do not contain correlations induced by
density fluctuations at the sub-volume scale.

Applying the density weighted or Favre volume averaging operator to Eqs. (2.1), (2.2)
and (2.20), finite volume based continuity, momentum and liquid volume fraction equations
will take the form of [270]

∂ ρ̂

∂ t
+

∂ ρ̂ ũi

∂xi
= 0, (4.24)

∂ ρ̂ ũi

∂ t
+

∂ ρ̂ ũiũ j

∂xi
=− ∂ p̂

∂xi
+

∂ τ̂i j

∂xi
−

∂τva
i j

∂xi
+ F̂s,i + ρ̂gi, (4.25)
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∂ ρ̂α̃

∂ t
+

∂ ρ̂α̃ ũi

∂xi
=−

∂Jva
α,i

∂xi
. (4.26)

Density filtered volume averaged viscous stress is written as

τ̂i j = µ̂

�
2S̃i j −

2
3

∂Üuk

∂xk
δi j

�
, (4.27)

here S̃i j is the filtered strain rate tensor, defined as

S̃i j =
1
2

�
∂ ũi

∂x j
+

∂Üu j

∂xi

�
, (4.28)

and δi j is the Kronecker delta function. Volume averaged single fluid density and dynamic
viscosity are calculated by

ρ̂ = ρg(1− α̂)+ρlα̂ (4.29)

and

µ̂ = ρgνg(1− α̂)+ρlνlα̂. (4.30)

All the terms having Reynolds volume averages of density in Eqs. (4.24)-(4.26) are replaced
with Favre volume averages through the use of Eqs. (4.18) and (4.19). Using the Favre
averaged quantities helps eliminate the problems associated with Reynolds volume averaged
momentum transport equations. Using the relations for mass conservation of the heavy
fluid, the Favre volume averaged solutions to the above equations are easily converted to the
physically meaningful Reynolds averaged forms that are of physical interest as

α̂ =
ρ̂α̃

ρl
. (4.31)

Volume averaging of the transport equations introduced new terms such as sub-volume flux
(Jva

α,i), sub-volume stress (τva
i, j) and volume averaged surface tension force (ÒFs), which are

given by
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Jva
α,i = ρ̂ßα ′′u′′i , (4.32)

τ
va
i j = ρ̂Þu′′i u′′j (4.33)

and

ÒFs = σÔκδn, (4.34)

respectively. The formulations for their closures are presented in the following sections.

4.3.1 Sub-volume fluctuating flux

As the real interface between the two phases is infinitely thin, a bimodal probability density
function (PDF) concept is applied here for the volume fraction field at the sub-volume scale
to have a closure for the sub-volume flux. A similar approach has been used for modelling
the unclosed sub-filter flux and stress for turbulent premixed flames based on a thin flame
assumption [31]. The PDF of volume fraction is denoted by Pα(B) where B represents the
sample space for the random variable α . The behaviour of Pα(B) is bimodal and its domain
is bounded between zero and one. Applying the normalization constraint over the whole
range of values, we get

∫
∞

−∞

Pα(B)dB = Pα(B = 1)+Pα(B = 0) = 1. (4.35)

Similarly, following the same approach, a joint PDF of velocity and volume fraction can be
written as

∫
∞

−∞

∫
∞

−∞

Pα,u(V,B)dBdV =
∫

∞

−∞

Pα,u(V,B = 1)dV +
∫

∞

−∞

Pα,u(V,B = 0)dV = 1, (4.36)

here V represents the sample space for the velocity variable u. Conditional PDF of u subjected
to α = B, can be written as
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Pu|α(V |B) =
Pα,u(V,B)

Pα(B)
. (4.37)

Based on the bimodel nature of Pα(B), we can have finite values of Pu|α(U |B) only when
B = 1 or B = 0, which leads to the sloution as

∫
∞

−∞

Pu|α(V |B = 1)dV =
∫

∞

−∞

Pu|α(V |B = 0)dV = 1. (4.38)

Using the properties of conditional PDF, the volume averaged velocity can be written as

ũ = ũg(1− α̃)+ ũlα̃. (4.39)

Within the same fluid, the density is constant and the Favre volume averages are equivalent
to the Reynolds values, such that ũl = ûl and ũg = ûg. The conditional values for velocity in
the liquid and gas regions are calculated as

ũl =
∫

∞

−∞

Pu|α(V |B = 1)dV (4.40)

and

ũg =
∫

∞

−∞

Pu|α(V |B = 0)dV. (4.41)

Following Eq. 4.39, the sub-volume correlation of the fluctuations of volume fraction and
velocity can be written as

ßα ′′u′′i = α̃ßα ′′u′′i l +(1− α̃)ßα ′′u′′i g. (4.42)

The termsßα ′′u′′i l andßα ′′u′′i g can be closed following Eqs. 4.40 and 4.41, written as
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ßα ′′u′′i = α̃

∫
∞

−∞

(1− α̃)(ui − ũi)Pui|α(Vi|B = 1)dVi +(1− α̃)
∫

∞

−∞

(0− α̃)(ui − ũi)Pui|α(Vi|B = 0)dVi.

(4.43)

Multiplying Eq. 4.43 by density leads to a solution for sub-volume flux, written as

Jva
α,i = ρ̂ßα ′′u′′i = ρ̂α̃(1− α̃)(ũil − ũig), (4.44)

where (ũil − ũig) represents the mean drift velocity and needs to be closed. Equation 4.44
confirms that sub-volume fluctuations of both the volume fraction and the drift velocity lead
to sub-volume flux. These fluctuations are caused by interface dynamics which are present in
both laminar and turbulent flows.

For the closure of Eq. 4.44, a gradient diffusion model is proposed, written as

Jva
α,i =−ρ̂Dv

∂ α̃

∂xi
, (4.45)

where Dv represents the explicit volume diffusion coefficient and considering the coherent
structure of the interface, Dv scales as

DV ≈
∣∣∣∣QE

∣∣∣∣3/2
α̃(1− α̃)

∣∣ũil − ũig
∣∣ 1
|∇α̃| , (4.46)

which implies that the mean drift velocity is modelled using the magnitude of the mean drift
velocity vector and the normalized volume fraction gradient

ũil − ũig =−
∣∣∣∣QE

∣∣∣∣3/2 ∣∣ũil − ũig
∣∣ 1
|∇α̃|

∂ α̃

∂xi
, (4.47)

where
∣∣∣Q

E

∣∣∣ represents the coherent structure function [113, 136] with Q indicates as second
invariant of the velocity gradient tensor and E as the magnitude of a velocity gradient tensor,
written as



4.3 Explicit volume diffusion (EVD) 83

Q =
1
2

�ÝWi jÝWi j − S̃i jS̃i j

�
, (4.48)

E =
1
2

�ÝWi jÝWi j + S̃i jS̃i j

�
. (4.49)

HereÝWi j is the vorticity tensor, defined as

ÝWi j =
1
2

�
∂ ũi

∂x j
−

∂Üu j

∂xi

�
, (4.50)

and describes the rate of rotation. A coherent structure function defined as the normalized
second invariant

∣∣∣Q
E

∣∣∣ characterizes the relative intensity of homogeneous vorticity to inhomo-
geneous strain rate in local flows and can be used to identify laminar flows and anisotropic
interface flows [136]. High values of

∣∣∣Q
E

∣∣∣ indicate regions of high vorticity such as inhomoge-
neous or strong shear turbulence, and low values confirm the regions of low vorticity, which
are typical in laminar or mildly turbulent flows.

∣∣∣Q
E

∣∣∣ also ensures the volume diffusion is
zero for two parallel immiscible fluids corresponding to no divergence of sub-volume flux,
and

∂Jva
α,i

∂xi
= 0 under this condition. This is especially important for a jet spray atomization

case where no additional diffusion is induced for predictions of the spray break-up. The
magnitude of the mean drift velocity |uil −uig| is correlated with the sub-volume velocity
fluctuations. Applying the conditional PDF concept, the closure for u′′can be derived as

Ýu′′2i = α̃
Óu′′2i l +(1− α̃)Óu′′2i g

= α̃

∫
∞

−∞

(ui − ũi)
2 Pα|u(V |B = 1)dV +(1− α̃)

∫
∞

−∞

(ui − ũi)
2 Pα|u(V |B = 1)dV

= α̃ (1− α̃)
(
ũil − ũig

)2
+ α̃
Ýu′′i 2

l +(1− α̃)
Ýu′′i 2

g. (4.51)

Here, u′′l = ul − ũl and u′′g = ug − ũg are the velocity fluctuations of the corresponding fluids,

and Ýu′′i 2
l and Ýu′′i 2

g are the sub-volume variances. Following the Eq. 4.51, the magnitude of
drift velocity can be expressed as
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∣∣ũil − ũig
∣∣=
ÉÝu′′2i − α̃

Ýu′′i 2
l − (1− α̃)

Ýu′′i 2
g√

α̃ (1− α̃)
. (4.52)

The above equation can be re-arranged as

∣∣ũil − ũig
∣∣Èα̃ (1− α̃) =

ÉÝu′′2i − α̃
Ýu′′i 2

l − (1− α̃)
Ýu′′i 2

g. (4.53)

The term on the right side of Eq. 4.53 explicitly indicates that the sub-volume velocity
fluctuations conditional on being in the pure liquid and gas phases are subtracted from the
total sub-volume velocity fluctuations to obtain the sub-volume velocity fluctuations due to

interface dynamics alone.The fluctuating energy terms, Ýu′′2i , Ýu′′i 2
l and Ýu′′i 2

g are still unclosed.

Away from the interface within the pure liquid fluid stream, Ýu′′i 2
l =
Üu′′i 2

, and within the pure

gaseous fluid stream, Ýu′′i 2
g =
Üu′′i 2

. The fluctuating energy terms,Ýu′′2i , Ýu′′i 2
l and Ýu′′i 2

g are still
unclosed. By applying limits, we get

lim
α̃ → 0

ÉÝu′′2i − α̃
Ýu′′i 2

l − (1− α̃)
Ýu′′i 2

g = 0 (4.54)

and

lim
α̃ → 1

ÉÝu′′2i − α̃
Ýu′′i 2

l − (1− α̃)
Ýu′′i 2

g = 0, (4.55)

which leads to the condition that Dv is non zero only at the interface. From empirical
observation of interfacial regions of resolved flow simulations, Wang et al. [270] introduces
the functional approximation, written as

ÉÝu′′2i − α̃
Ýu′′i 2

l − (1− α̃)
Ýu′′i 2

g ≈
√

α̃ (1− α̃)
Ýu′′i 2 ≈

È
α̃ (1− α̃)

∣∣u′′V ∣∣ . (4.56)

The solution presented in Eq. 4.53 applies to both turbulent and laminar flows, and sub-
volume velocity fluctuations are non zero within the interfacial regions. The sub-volume
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velocity fluctuating, |u′′V |, is suggested by Wang et al. [270] to be modeled following
Smagorinsky-Lilly model [237, 149], written as

∣∣u′′V ∣∣=CSL
νV

lV
=CSLlV

È
2S̃i jS̃i j, (4.57)

where the value of constant CSL is taken as 0.33 for laminar and 0.66 for turbulent flows.
These values are determined based on a priori analysis conducted by Wang et al. [270]. This
model is inspired from sub-filter turbulence closures, but it covers fluctuations due to interface
dynamics and turbulence (for the case of turbulent flows). Most importantly, the model
for |u′′V | is linked to the explicit volume length scale, lV , and is strictly independent of the
numerical grid scale. In the vicinity of a sharp interface, the sub-volume velocity fluctuations
are highly anisotropic. This fact is not contradicted by Eq. 4.53, which implies only that the
magnitude of the sub-volume velocity fluctuations scale with the volume averaged strain
rate. This is physically plausible because both velocity fluctuations and strain rate positively
correlate with the drift velocity between the phases.

However, |∇α̃| which appears in the denominator in the solution of Dv, and can lead to
the destabilized solution as its value is zero away from the interface. Therefore, the following
approximation is employed to avoid this unnecessary destabilization, written as

|∇α̃| ≈

È
|α ′′|2

lV
=

√
α̃ (1− α̃)

lV
, (4.58)

here
È

|α ′′|2 =
√

α̃ (1− α̃) is calculated following the similar conditional averaging as
expressed in Eq. 4.43. Following the solutions provided n Eqs. 4.46, 4.52 and 4.56 - 4.58, we
can have the final solution for explicit volume diffusion coefficient, written as

Dv =Cαu

∣∣∣∣QE
∣∣∣∣3/2

l2
V

È
α̃ (1− α̃)

È
2S̃i jS̃i j, (4.59)

where the modelling constant Cαu incorporates the constant CSL and is calibrated using a
priori analysis performed by [270]. The value for Cαu used here is 0.25.
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4.3.2 Sub-volume stress

Following a similar derivation, as used for the sub-volume flux above, the closure for sub-
volume stress is modelled as,

τ
va
i j = ρ̂Þu′′i u′′j = ρ̂α̃(1− α̃)(ũil − ũig)(Üu jl −Üu jg)

+ρ̂

[
α̃ßu′ilu′jl +(1− α̃)ßu′igu′jg

]
. (4.60)

Eq. 4.60 for sub-volume stress has two parts where the first term on the right side is related
to the sub-volume flux in the interface region and using the Boussinesq viscosity assumption
described for free shear flows having turbulent and non-turbulent interfaces [273], the sub-
volume stress is assumed to be proportional to the strain rate, written as

ρ̂α̃(1− α̃)(ũil − ũig)(Üu jl −Üu jg) =−2ρ̂νV S̃i j, (4.61)

where νV is the explicit volume viscosity. In the regions where 0 < α̃ < 1, νV is calculated
from the explicit volume diffusion coefficient via a Schmidt number as

νV = ScV DV . (4.62)

Away from the interfacial regions, where α = 1 or α = o, sub-volume velocity fluctuations are
not zero, specifically in the case of turbulent flows. Hence, the explicit volume viscosity away
from the interface can be modelled by following the Smagorinsky model [237], expressed as

νt =Csl2
V

È
2S̃i jS̃i j, (4.63)

where the value for constant Cs is used as 0.15. The second term on the right hand side
of Eq. 4.60, α̃ßu′ilu′jl + (1 − α̃)ßu′igu′jg is characterized by the fluctuations respect to the
corresponding fluids. This term can be neglected in streams of laminar regimes. However, in
turbulent flows, it is considered to be correlated with the sub-filter turbulence stress where
the filter width is equivalent to the sub-volume length scale, written as
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[
α̃ßu′ilu′jl +(1− α̃)ßu′igu′jg

]
= ρ̃

[
α̃u′ilu

′
jl
+(1− α̃)u′igu′jg

]
∼= ρ̂ [1−4α̃(1− α̃)] ũ′iu

′
j

=−ρ̂νt [1−4α̃(1− α̃)]
�
2S̃i j

�
. (4.64)

Following the Eqs. 4.61, 4.62 and 4.64,sub-volume stress τva
i j is expressed as

τ
va
i j =−2ρ̂(ScV DV +νt [1−4α̃(1− α̃)])S̃i j (4.65)

Based on the a priori analysis conducted by Wang et al. [270], the value of the explicit
volume Schmidt number used in this study is ScV = 3.

4.3.3 Volume averaged surface tension force

The most common closure for surface tension force in VoF based formulations is based on
the continuous surface force (CSF) method of Brackbill et al. [30], written as

ÒFs = σÔκδn = σ(×�κn|∇α|), (4.66)

where σ is the surface tension coefficient, κ = ∇.n is the interface curvature calculated
through the unit normal vector n = ∇α

|∇α| and δ is the Dirac delta function used for interface
detection. Considering a volume, V, of fluid, the integral over the volume V of a function
f (x, t), weighted by the magnitude of the gradient of a scalar field, |∇φ(x, t)| ,can be shown
to be equal to the sum over all the iso-surfaces defined by Ψ = φ(x, t) of the surface integral
of the function f (x, t). Following the (n− 1) dimensional Hausdorff approach [165], the
volume integral can be transformed to the surface integral as

∫
V

f (x, t)|∇φ(x, t)|dV =
∫ 1

0
dΨ

∫
Aφ

f (x, t)dA(x). (4.67)

The continuum surface tension model has been widely used [230, 94, 47, 184] for LES and
DNS of spray atomization with and without considering the sub-grid surface tension effects,
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but having a suitable closure solution for the sub-grid fluctuations of surface tension is still
a challenge. Following Eq. (4.67) and integrating Eq. (4.66) over an explicit volume and
simplifying, we get

ÒFs = σ(×�κn|∇α|) = σ
1
V

∫
As

κndA(x)

= σ
1
V
⟨κn⟩sAs = σ⟨κn⟩sΣ ∼=Cs f σκ̂ n̂Σ, (4.68)

where κ̂ and n̂ indicate the curvature and normal vector of the volume averaged interface
curve, κ̂ = ∇.n̂ and n̂ = ∇α̂

|∇α̂| . As is the surface area of the interface and ⟨.⟩s indicates the
surface mean value. Σ represents the surface density and is defined as

Σ =
As

V
=

1
V

∫
V

δ (Ψ −α(x, t))|∇α(x, t)|dV = |Ó∇α|. (4.69)

The surface density is modelled by following the dynamic wrinkling concept used by Hawkes
and Cant [95] and Charlette et al. [42], written as

Σ = Ξ|∇α̂|. (4.70)

The dynamic wrinkling factor,Ξ, can be defined by the fractal dimension concept [95, 42]
by using the physical volume length scale, lV , and the interface cut-off length scale, lσ
,expressed as

Ξ =

�
1+

lV
lσ

�D f−2
, (4.71)

where D f is the fractal dimension of the interface and is estimated as 7/3 for mild wrinkling.
The interface cut-off length scale,lσ , where the surface tension on that scale balances inertia
when the Weber number We = ρh|u′′|2lσ

σ
∼= 1. Thus, the surface cut-off length scale is given

by

lσ =
σ

ρh|u′′|2
. (4.72)

Now, the volume averaged surface tension force will take the form of
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ÒFs =Cs f

�
1+

∆V ρh|u′′|2

σ

�1/3

σκ̂ n̂|∇α̂|. (4.73)

The modelling constant, Cs f , was calibrated by the resolved flow simulations conducted by
Wang et al. [270]. In the vicinity of a sharp interface, the sub-volume velocity fluctuations
are highly anisotropic. This fact is not contradicted by Eq. (4.57), which implies only that the
magnitude of the sub-volume velocity fluctuations scale with the volume averaged strain rate.
This is physically possible because both velocity fluctuations and strain rate are positively
correlated with the drift velocity between the phases. A priori analysis against resolved flow
simulations [270] suggests that CSL = 0.66 and Cs f = 1.8.

The explicit volume length scale lV is a physical scale that needs to be selected based
on the physical flow parameters. These characteristic physical parameters related to the
evolution of interfacial flows include wavelengths, wave amplitudes, interface boundary layer
thicknesses and turbulence (for the case of turbulent flows). When the level of interfacial
instabilities increases, explicit volume diffusion smears [270] the volume fraction in the
direction normal to the interface and the explicit volume length scale lV can be linked with
the wave amplitude. Both the wavelength and amplitude of the interfacial instabilities depend
on the interface boundary layer thickness that develops in both fluids normal to the interface.
Findings of Marmottant and Villermaux [162] confirm that these instabilities mainly depend
on the boundary layer thickness developed in the lighter fluid. For the laminar flow, it is
calculated as

ξ ∼= 5.6ZRe−0.5
g , (4.74)

and for turbulent flow, calculated as

ξ ∼= 74ZRe−0.75
g , (4.75)

where, Reg = ugZ/νg with Z being the outer scale of the shear layer. ug and νg are the
velocity and kinematic viscosity of the light fluid, respectively. Wang et al. [270] suggest
that lV should be no larger than the boundary layer thickness on the gas side of the interface,
for which some empirical approximations are available [162]. Additionally, numerical
convergence is achieved when lV is several times larger than the LES grid size, ∆. In
combination, these two requirements ensure that the smearing of the boundary layer due to
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volume averaging is not excessive and that the explicit volume diffusion remains sufficiently
large to overwhelm numerical diffusion. The details regarding the value of the explicit
volume length scale, the experimentally estimated boundary layer thickness on the gas side of
the interface and the LES grid size to explicit volume length scale ratios ∆/lV are presented
in Section 5.3.

4.4 Surface density

Another important parameter, surface density, is also solved for analysis to evaluate the
numerical convergence of the three models for sub-volume interface dynamics. The complete
details of surface density and physics involved in developing its governing equation are
presented in Section 3.2. Following the previous work [47, 184, 12], TFVoF and TF-AC
share the same approach to solve the surface density. The surface density, Σ̄, is decomposed
into an intrinsic minimum surface density referring to the static liquid-gas mixture and
a dynamic component induced by turbulent flows. The minimum surface density can be
approximated as [47, 184]

Σ̄min =CΣ

È
ᾱ (1− ᾱ), (4.76)

where Σ̄min represents the minimum surface density. Based on his DNS findings, Chesnel
[46] finds that the optimal value of constant CΣ is 2.4. The dynamic component, Σ̄t , is solved
by the transport equation

∂ Σ̄t

∂ t
+

∂ ūiΣ̄t

∂xi
=

∂

∂xi
Dt

∂ Σ̄t

∂xi
+SΣ. (4.77)

The modelling of source term SΣ is based on the correlation of turbulence phenomenon and
related time scales. In context of equilibrium restoration [263, 144, 22], the source term
expressed in Eq. (4.77) can be written as

SΣ =
Σ̄

τt

�
1− Σ̄

Σ̄eq

�
, (4.78)

where Σ̂eq represents the equilibrium surface density and τ is the corresponding turbulent
time scale. Estimation of Σ̂eq is based on the assumption of equilibrium of surface energy
with the local kinetic energy. The equilibrium surface density, Σ̄eq, can be decomposed into
an intrinsic minimum part and a dynamic contribution in order to maintain model coherence,
such that

Σ̄eq = Σ̄min + Σ̄t,eq. (4.79)
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Σ̄t,eq is determined by liquid volume fraction, ᾱ , and sub-filter turbulent energy, k, [184]
following Duret et al. [69], written as

Σ̄t,eq = ᾱ (1− ᾱ)
2(ρl +ρg)k

σWe∗
, (4.80)

where We∗ is a critical Weber number and can be approximated as 1. Using the volume
diffusion concept, the transport equation for the corresponding dynamic component, ÜΣt , is
given by

∂ ρ̂ÜΣt

∂ t
+

∂ ρ̂ ũiÜΣt

∂xi
=

∂

∂xi
ρ̂DV

∂ÜΣt

∂xi
+

1
ρ̂

SΣ. (4.81)

As the volumes can encompass both fluids with vastly different densities, it is convenient
for the derivation of subsequent sub-volume closures to introduce density weighted (Favre)
volume averaging following the Eq. (4.19), written as

ÜΣt = Σ̂tρ/ρ̂. (4.82)

4.5 Sub-grid surface tension

As discussed in preceding Sections 4.2 and 4.3, sub-grid surface tension effects are neglected
for both TFVoF and TF-AC formulations. However, the EVD approach is presented with
and without considering the sub-volume contribution of the surface tension force. Here, a
different approach, originally developed by Shirani et al. [232, 231], is followed to capture
the sub-grid effects of pressure jump across the interface. As the accurate capturing of
the sub-grid surface tension effects for the multi-phase flows is still in the early stages of
development, another way of calculating the sub-grid surface tension is presented here.
This formulation is used in combination with conventional solutions for the VoF approach
presented in Section 4.2 and the newly developed EVD approach presented in Section 4.3.
The comparison is made of the solutions with and without considering the sub-volume surface
tension effects as presented in Section 4.3.3.

Considering a 2-D cell containing an interface between two fluids, as shown in Fig. 4.1.
To derive the relation for the pressure jump across the interface, first, we will calculate the
pressure force on the left side of the cell shown in Fig. 4.1, written as

PFl = P1l
L1

∆Y
+P2l

�
∆Y −L1

∆Y

�
, (4.83)
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Fig. 4.1 Schematic diagram showing cell with interface

where PFl is the pressure force acting on the left side of the cell, P1l is pressure force on the
left wall because of fluid 1 and P2l is pressure force on the left wall because of fluid 2. ∆Y
is cell length in the y direction, L1 is the length of the left side of the cell in contact with
fluid 1, and ∆Y −L1 is the corresponding length of the cell in contact with fluid 2. Suppose
Zl =

L1
∆Y represents the ratio of the length filled with fluid 1, and indicates the location of the

instantaneous interface location on the left side of the cell. The Eq. (4.83) will take the form
of

Pl = ZlP1l +(1−Zl)P2l = P2l +Zl(P1l −P2l), (4.84)

where the second term on the right side of the above equation represents the pressure jump
across the interface because of the surface tension. Similarly, we can have the relations of
the pressure force for the right side, top and bottom of the cell. Generally, we can write

P = P2 +Z(P1 −P2). (4.85)
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On applying the Reynolds averaging to the Eq. (4.85), we can get

p̄ = p̄2 + Z̄(p̄1 − p̄2)+Z′(p′1 − p′2) (4.86)

As the surface tension forces at the interface cause this pressure jump across the interface, so
Eq. (4.86) in terms of surface tension can be written as

p̄ = p̄2 +σκ̄Z̄ +σκ ′Z′. (4.87)

This approach is based on modelling the instantaneous curvature of the fluctuating interface,
and the term including the correlation of fluctuations of curvature and interface location
κ ′Z′ needs to be modelled to include the sub-grid scale turbulent effects. Considering that
L is a length scale linked with the mesh size and l is the turbulent integral length scale
then the fluctuation of Z in a control volume is calculated as l′/L, where l′ represents the
instantaneous fluctuations of the interface thickness. Using the Taylor microscale Λ as the
characteristic length scale for the curvature, this can be modelled as

κ ′Z′ =C′(l/LΛ), (4.88)

where C′ is a positive correlation coefficient between Z′ and κ ′ and is assumed to be constant.
Considering the presence of homogeneous isotropic turbulence and the rate of decay for tur-
bulent kinetic energy equal to the rate of dissipation, the Taylor microscale can be expressed
as

Λ = (10νk/ε)1/2. (4.89)

Turbulent integral length scale, l, can be expressed in terms of k and ε

l =Cµ(k3/2/ε). (4.90)

From Eqs. (4.89) and (4.90), we have

Λ/l = (10/Reτ)
1/2, (4.91)
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where Reτ is the turbulent Reynolds number, expressed as

Reτ =
√

kl/ν =Cµ(k2/νε) = ντ/ν . (4.92)

Here ντ represents the kinematic eddy viscosity. Combining Eqs. (4.91) and (4.88), we can
get

κ ′Z′ =Cp(Re1/2
τ /L) =Cp/L(ντ/ν)1/2, (4.93)

where Cp is the model constant and can be replaced by correlation coefficient C′, and its
value needs to be determined. From the comparison of Eqs. (4.86), (4.87) and (4.93), we can
have

Z′(p′1 − p′2) = σκ ′Z′ =C′
σ/L(ντ/ν)1/2. (4.94)

As L is dependent on the mesh size x and the mean curvature has the maximum value of
2/x,and we can replace the 1/L by the mean curvature (1/L ≈ κ̄), written as

Z′(p′1 − p′2) = σκ ′Z′ =C′
σκ̄(ντ/ν)1/2. (4.95)

Alternatively, we can write

κ ′Z′ =C′
κ̄(ντ/ν)1/2. (4.96)

From above equation, we can conclude that sub-grid curvature fluctuations can be included
by increasing the mean curvature κ̄ by a factor (ντ/ν)1/2. This conclusion is consistent
with Alajbegovic’s findings [9] that the unresolved curvature should be proportional to the
resolved curvature with a coefficient of proportionality that is dependent on the sub-grid
stresses ντ . Similarly, considering the Eq. (4.95), we can say that the surface tension force in
turbulent flows is increased by a factor of (ντ/ν)1/2 when the sub-grid effects are accounted.
For both TFVoF and TF-AC, sub-grid surface tension can be expressed as

F t f
s,i = σκ̄ n̄i |∇ᾱ|(ντ/ν)1/2. (4.97)

Combining Eqs. (4.9) and (4.97), we get
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F̄s,i = σκ̄ n̄i |∇ᾱ|(1+(ντ/ν)1/2). (4.98)

Similarly, upon applying density weighted (Favre) volume averaging to the Eq. (4.85) and
comparing it with the EVD formulation Eq. (5.3), we can have

ÓFs,i = σκ̂ n̂i |∇α̂|(1+(ντ/ν)1/2). (4.99)

4.6 Summary

Three different LES treatment for unresolved sub-grid fluctuations TFVoF,TF-AC and EVD
has been discussed in Sections 4.2 - 4.3, and the relevant LES description of surface density is
explained in Section 4.4. These approaches are distinguished by different modelling strategies
of unresolved fluctuations at the liquid-air interface of a two-phase flow. In general, these
fluctuations can be due to interface dynamics and turbulence. TFVoF applies conventional
turbulence filtering with a sub-grid turbulent viscosity model to the VoF equations to account
for all sub-grid fluctuations. There are two significant conceptual shortcomings associated
with TFVoF: i) the assumption that inertial range turbulent eddies and the energy cascade
cross the interface with universal statistical behaviour is not valid for two-phase flows, ii)
in regions of low turbulence where turbulent diffusion is small the numerical solutions are
sensitive to artificial diffusion due to the grid. Moreover, linking the turbulence filter size
with LES cell size leads to a grid-dependent value of turbulent viscosity. TF-AC attempts to
account for more sub-grid interface dynamics by introducing additional artificial compression
in the continuous interface region to counteract the numerical diffusion and thus sharpen
the interface. However, a modelling constant Cr inherent in the artificial compression term
is likely to depend on grid resolution. The conventional turbulent viscosity model is only
activated in the discrete phase region. Additionally, the effects of sub-grid fluctuations of
surface tension forces are also neglected in both TFVoF and TF-AC. The newly developed
EVD [270] is based on averaging over explicitly defined physical volumes. The volume
length scale, lV , is independent of the grid scale and should not be larger than the boundary
layer thickness on the gas side of the liquid-air interface. Sub-volume fluctuations due to
inhomogeneous phase fields and mean drift velocity is modelled by a physically derived
explicit volume diffusion coefficient and related explicit volume viscosity. As will be shown
below in Section 5.4.3, the numerical convergence problem can be avoided by refining grids
while keeping the physical volumes constant so that the explicit volume diffusion overwhelms
the numerical diffusion, which reduces with the refinement of the grid. The EVD model also



96 Large Eddy Simulation Solutions for Volume of Fluid

includes an improved volume averaged surface tension model based on fractal properties of
wrinkled sub-volume interfaces.

Furthermore, a pressure difference based sub-grid surface tension solution is presented
in Section 4.5, and to test the sensitivity of the models to the surface tension treatment, it
will be incorporated in all three TFVoF, TF-AC and EVD modelling approach. The findings
and behaviour of these three different LES formulations with and without sub-grid surface
tension are presented in Chapter 5.



Chapter 5

Performance Analysis of Conventional
VoF Methods and new EVD Approach

This chapter aims to perform a detailed comparison of the numerical convergence and
accuracy of three VoF based methods for turbulent atomizing sprays; namely, the turbulent
filtered VoF model (TFVoF), the hybrid turbulence filtering and artificial compression model
(TF-AC), and the explicit volume diffusion model (EVD). Moreover, a detailed analysis of the
sub-grid surface tension effects is also presented here. The formulation of these models and
the relevant sub-grid surface tension sub-models is given in Chapter 4. The first half of this
chapter describes the numerical implementation in OpenFOAM along with the discretization
schemes and relevant solution solvers. The two experimental air-blast spray jet cases used for
model comparison and the computational setup are also discussed here. Initially, results for
all three LES approaches applied to the lower Weber number case (We = 35) are presented.
Numerical convergence with the grid refinement is evaluated through a detailed comparison of
axial and radial profiles of the mean and rms of volume fraction, velocity and surface density.
The accuracy of volume fraction is assessed by comparison to the available experimental data.
The numerical performance is also evaluated using the canonical Zalesak’s disc experiment
and Richardson Extrapolation analysis. Subsequently, an improved closure for the EVD
surface tension force is tested for the We= 35 case. Implementation of the pressure difference
based surface tension sub-model is tested for all three formulations. For the EVD approach,
the sensitivity of the numerical performance to the variations in the explicit length scale is
also conducted, which may be linked to the boundary layer thickness on the gaseous side of
the interface. Finally, the EVD model with the optimum numerical parameters and surface
tension model is further evaluated against experimental data for a higher Weber number test
case (We = 72).
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5.1 Numerical setup and implementation

The TFVoF, TF-AC and EVD models have been implemented in OpenFOAM and Klein’s
digital filter is used to generate realistic turbulent fields. The TFVoF and TF-AC schemes
are relatively simple modifications of the interFoam solver [272] originally written for the
unfiltered VoF equations with artificial compression. The modifications introduced here
involve adding the sub-grid turbulent flux term on the right hand side of Eq. (4.15). For
TFVoF simulations, Cα = 0 is applied globally throughout the domain such that Eq. (4.15)
reverts to Eq. (4.7). For TF-AC simulations, the switching criteria IRQκ given by Eq. (4.17)
is implemented, and Cα takes locally and temporally determined values of either zero or
one. The EVD model is implemented in a new solver called evdFoam. The volume averaged
transport equations are solved on the LES mesh giving grid values of the properties, e.g. ρ̂∆,óα∆ and óui

∆. A second mesh of length scale lV > ∆ is used for calculating the explicit volume
diffusion coefficient DV . This requires integrating each of the quantities in Eq. (4.59) over all
LES cells inside each explicit volume. For example, the integrated volume fraction is given
by

α̃
V =

∫
V ρ̂∆α̃∆dV

ρ̂
, (5.1)

and the integrated velocity is

ũi
V =

∫
V ρ̂∆ũi

∆dV
ρ̂

. (5.2)

Once DV
V is known, the values at the LES cells, D∆

V , that are needed to solve the transport
equations are obtained by linear interpolation.

Some additional explanation is needed about including the surface tension force in the
EVD simulations. To facilitate direct comparison to the TFVoF and TF-AC models, the
surface tension on the LES grid neglecting the sub-grid fluctuations is implemented as

ÓFs,i
∆

= σκ̂
∆n̂i

∆
∣∣∣∇α̂

∆

∣∣∣. (5.3)

In the simulations which use the improved volume averaged surface tension force given by
Eq. (4.73), the magnitude of the force at each LES cell, ÒFs

∆
, is obtained by linear interpolation

from the integrated values on the explicit volume mesh, ÒFs
V

. To better capture the interface
dynamics, the direction of the force is given directly from the grid resolved interface normal
direction. The turbulence filtering, artificial compression and volume averaging operations
for the three approaches do not violate the mass conservation which is inherent to the VoF
algorithm. In the test cases investigated here, the maximum interface Courant number is
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Coi = 0.25, but since the numerical method integrates the volume fraction over four sub-steps,
it is effectively 0.0625. At the same time the maximum flow Courant number is Co f = 0.75.

5.2 Zalesak’s Disc test case analysis

The three approaches introduced in Sections 4.2.1, 4.2.2 and 4.3 are evaluated for the
canonical two-phase flow called Zalesak’s Disc, in which a slotted circle of heavy fluid moves
in a pure rotating velocity field. Since no turbulence exists, sub-grid turbulence is eliminated,
and the TFVoF and TF-AC revert to the standard VoF and AC models, respectively. However,
sub-volume fluctuations in the EVD model due to laminar interface dynamics remain and
cannot be neglected. In this particular test, the 2D computational domain 2 m × 2 m and
centered at (0,0). The disc is initially positioned at (0,0.5) with a radius of 0.3 m. The
height and width of the slot are 0.5 m and 0.1 m, respectively. The rotating velocity is given
by u = (−2πy,2πx) where x and y denote the coordinates. The disc is filled with acetone
and is surrounded by air. The results in a zoomed window after one third of rotation are
presented in Fig. 5.1, two third of rotation are presented in Fig. 5.2 and one complete rotation
are presented in Fig. 5.3. The first three rows show the grid sensitivity for VoF, AC and
EVD, respectively, for three different mesh resolutions such as 400×400, 800×800 and
1600×1600. As expected, due to the dominance of numerical diffusion, the VoF results have
a visible variation of the interface topology with grid resolution, especially on the corners
of the slot. For AC, the numerical diffusion is (partially) counteracted by the numerical
compression velocity leading to a significantly sharper interface and less variation with grid
refinement, although differences remain near the corners. [281, 214].

The third row shows the volume averaged results for EVD where the explicit volume
length scale is lV = 0.01, and the ratios of the numerical grid scale are ∆/lV = 1/4, 1/8 and
1/16, respectively. The explicit volume diffusivity thickens the interface, as can be seen
in comparison to the thickness of the VoF interface, which results only through numerical
diffusion. The explicit volume diffusion is clearly much more significant. For EVD, the
result appears to be numerically converged with only 800×800 cells. In the fourth row, lV is
increased by a factor of two relative to the third row. This increases explicit volume diffusion
even further relative to numerical diffusion, accelerating convergence such that it is achieved
with the mesh resolution of 400×400.
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Fig. 5.1 Volume fraction fields after one third rotation of the disc.

5.3 Experimental set-up and data selection for validation

The numerical computations are performed for two air-blast acetone spray jets (designated
N-AS2 and N-AS8) that have been investigated experimentally on the Sydney needle spray
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Fig. 5.2 Volume fraction fields after two third rotation of the disc.

burner [153] which is shown schematically in Fig. 5.4. High-quality experimental data is
available for axial profiles of the mean volume fraction, measured by the two-angle backlit
imaging method [236].
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Fig. 5.3 Volume fraction fields after one rotation of the disc.

The burner has concentric liquid, air-blast and pilot streams. The pilot is not modelled in
the present study of non-reacting atomization. The acetone is injected from a needle with a
diameter of d j = 686µm, and the air-blast tube has a diameter of D = 10mm. The needle can
be recessed below the exit plane of the air-blast tube, but for the N-AS2 and N-AS8 cases,
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Pilot

Airblast

Liquid

Fig. 5.4 Schematic drawing of the Sydney needle spray burner. Reprinted from Combustion
and Flame, Vol 176, A. Lowe, A. Kourmatzis, A.R. Masri, Turbulent spray flames of
intermediate density: Stability and near-field structure, Pages 511-520, Copyright (2017),
with permission from Elsevier.

the needle and air-blast exit planes are flush. The densities of air and liquid acetone are ρg =

1.178kg/m3 and ρl= 784.5kg/m3 and their kinematic viscosities are νg = 1.567e-5m2/s and
νl = 3.938e-7m2/s. The flow parameters for both sprays are given in Table 5.1. The mean
burner exit plane velocities in the air-blast and acetone streams are Ug and Ul , respectively,
while Reg =Ug

(
D−d j

)
/νg and Rel =Uld j/νl are the corresponding Reynolds numbers,

and We = ρg (Ug −Ul)
2 d j/σ is the jet Weber number based on the interfacial drift velocity.

The surface tension coefficient of the acetone-air interface is specified as 0.023N/m.

Table 5.1 Flow parameters for the N-AS2 and N-AS8 sprays.

Cases N-AS2 N-AS8

Ug [m/s] 36 48
Ul [m/s] 4.3 2.6
Reg 21398 28530
Rel 7491 4529
We 35 72

The computational domain is a three-dimensional cylinder of length Lx = 50 mm and
diameter Din = 5 mm. The mean flow boundary conditions are set according to Table 5.1.
A digital filter [134] is used to generate turbulent fluctuations at the liquid and air injection
planes. The turbulence intensities of the air-blast in N-AS2 and N-AS8 are 0.11Ug and
0.154Ug, respectively, which are the same as the experimentally observed values. The
turbulence intensity for the liquid jet is 0.0525Ul , which is a characteristic value for turbulent
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(a) Axial view (b) Side view

Fig. 5.5 Axial and side views of the mesh scheme at the corresponding cross areas of the
computational domain.

pipe flow (experimental data is unavailable). The integral length scales are prescribed
as 0.125d j and 0.125D for the liquid and air-blast flows, respectively. Note that the air-
blast stream diameter in the computations is half the experimental diameter to reduce cost.
However, to ensure that the atomization modelling is not unduly affected, the integral length
scale in the simulations is based on the experimental air-blast diameter. Three LES meshes
are used for testing numerical convergence while the explicit volume length scale, lv, is kept
constant. The liquid jet diameter is resolved by 14, 18 and 24 cells, respectively. The annular
gap is resolved by 40, 50 and 62 cells, respectively, and the expansion ratio of the largest
and smallest cell size is 1.5. This results in characteristic cell widths near the most important
interface region being 49 µm, 38 µm and 30 µm. The domain length in the axial direction is
discretized by 1000, 1250 and 1575 cells, respectively, that satisfy the cell lengths in the axial
direction almost the same as the characteristic cell widths near the interface region. This
grid scheme leads to three LES meshes containing 1.1, 2.3 and 4.5 million cells, respectively.
The schematic of the mesh with 2.3 million cells depicting the mesh resolutions is shown in
Fig. 5.5.

The explicit volume length scale for EVD cases used for the numerical convergence
studies is lV = 190 µm, which is commensurate with the experimentally estimated boundary
layer thickness on the gas side of the interface, which are 168 µm and 198 µm, respectively.
The empirical correlation for the boundary layer thickness is given by δ = 74hRe−3/4

g where
h is the annular gap thickness of the gas jet [162]. With these settings, the LES to explicit
volume size ratios are ∆/lV = 0.263, 0.206 and 0.164 for the 1.1, 2.3 and 4.5 million cell
LES grids, respectively. Based on the findings by Wang et al. [270], these values of ∆/lV
are expected to obtain sufficiently large explicit volume diffusion, which overwhelms the
numerical diffusion of VoF such that numerical convergence can be achieved. For sensitivity
analysis of variations in explicit length scale, two more values lV = 120 µm (with LES to



5.4 Results 105

explicit volume size ratios are 0.449, 0.352 and 0.281 for the 1.1, 2.3 and 4.5 million cell
LES grids, respectively) and lV = 320 µm (with LES to explicit volume size ratios are 0.154,
0.120 and 0.096 for the 1.1, 2.3 and 4.5 million cell LES grids, respectively) are used.

Twenty three simulations are performed in total, as set out in Table 5.2. They are named
according to the model, the number of LES cells and the spray case. For example, TFVoF1.1L
is for the turbulence filtered VoF model with 1.1 million cells applied to the low Weber
number spray (N-AS2 with We = 35). EVD2.3H is for the explicit volume diffusion model
with 2.3 million cells applied to the high Weber number spray (N-AS8 with We = 72). EVD
cases that are listed with an asterisk, e.g. ∗EVD1.1L, use the simple surface tension model
as implemented by Eq. (5.3) that neglects sub-grid fluctuations. The same simple surface
tension model is used in the TFVoF and TF-AC simulations, allowing for a direct comparison
of the numerical convergence of the three models. The additional EVD cases named without
an asterisk use the complete EVD model with the volume averaged surface tension closure
following Wang et al. [270] given by Eq. (4.73). Furthermore, EVD, TFVoF and TF-AC
cases listed with double asterisk, e.g. ∗∗EVD2.3L,∗∗TFVoF2.3L and ∗∗TF-AC2.3L, are
simulated by using the Shirani et al. [232] sub-grid surface tension closure as implemented
by Eqs. (4.99) and (4.98), respectively.

5.4 Results

A detailed investigation of the grid sensitivity for the three different LES models is presented
first in this section. Comparisons are also made to the limited amount of available experimen-
tal data. Results are first presented for the TFVoF, TF-AC and EVD models applied to the
lower Weber number cases. Then the analysis is made to study the effects of the sub-volume
surface tension model for the EVD model, and the findings are compared with the sub-grid
closure of Shirani et al. [232]. Moreover, Shirani’s closure performance behaviour is also
presented for TFVoF and TF-AC formulations. The sensitivity of the EVD solution is tested
against three different values of physical volume scales. In the end, performance evaluation
of the EVD solution is conducted against the higher Weber number case with and without
considering the sub-volume surface tension effects.

5.4.1 Turbulent filtering VoF model (TFVoF)

Figure 5.6 shows instantaneous snapshots of the filtered volume fraction fields on three LES
grids for case N-AS2 with the TFVoF model. The amplitude of the wave instability gradually
increases along the interface near the nozzle, followed by the break-up of the jet and the
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Table 5.2 List of numerical simulations.

TFVoF TF-AC EVD
without sub-grid surface tension without sub-grid surface tension without sub-grid surface tension

Eq. (4.9) Eq. (4.9) Eq. (5.3)

TFVoF1.1L TF-AC1.1L ∗EVD1.1L
TFVoF2.3L TF-AC2.3L ∗EVD2.3L

∗EVD2.3H
TFVoF4.5L TF-AC4.5L ∗EVD4.5L

(a) Numerical simulations for TFVoF, TF-AC
and EVD formulations neglecting sub-grid
surface tension effects

EVD
with sub-grid surface tension Eq. (4.73)

EVD1.1L
EVD2.3L
EVD2.3H
EVD4.5L

(b) Numerical simulations for EVD formula-
tion considering sub-grid surface tension ef-
fects following Wang et al. [270]

TFVoF TF-AC EVD
with sub-grid surface tension with sub-grid surface tension with sub-grid surface tension

Eq. (4.98) Eq. (4.98) Eq. (4.99)
∗∗TFVoF2.3L ∗∗TF-AC2.3L ∗∗EVD2.3L

(c) Numerical simulations for formulations
considering sub-grid surface tension effects
following Shirani et al. [232]

EVD using 1.1M LES cells EVD using 2.3M LES cells EVD using 4.5M LES cells

EVD1.1L,∆ = 0.154lv EVD2.3L,∆ = 0.120lv EVD4.5L,∆ = 0.096lv
EVD1.1L,∆ = 0.263lv EVD2.3L,∆ = 0.206lv EVD4.5L,∆ = 0.164lv
EVD1.1L,∆ = 0.449lv EVD2.3L,∆ = 0.352lv EVD4.5L,∆ = 0.281lv

(d) Numerical simulations for EVD formu-
lation with different physical volume length
scales
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Fig. 5.6 Instantaneous volume fraction fields at the central plane of N-AS2 using the TFVoF
model. Top: TFVoF1.1L, Centre: TFVoF2.3L, Bottom: TFVoF4.5L.

evolution of discrete ligaments. With enhanced grid resolution, both numerical diffusion and
turbulent diffusion due to filtering are reduced, and it can be seen that the interface is less
diffuse; this is especially apparent around the break-up location. It seems the appearance of a
discrete liquid structure arises further upstream for finer grids, which can be attributed to two
reasons. Firstly, a larger portion of the large eddies, which play a key role in the growth of
interface instabilities, is resolved. Secondly, sub-grid fluctuations are neglected in evaluating
the filtered surface tension force; that force increases with grid refinement and promotes
earlier jet break-up.

The mean and rms of volume fraction in the axial and radial directions are shown in
Fig. 5.7. The jet breaks up at around x/D = 1, and the volume fraction axial profile decays.
The decay rate is close to zero downstream of about x/D = 5, indicating the termination of
the primary break-up region. The numerical results do not converge monotonically with grid
refinement. The coarse and fine grids with 1.1M (million) and 4.5M cells, respectively, are
in good agreement with each other but underpredict the experimental data. The results for
the 2.3M cell case are noticeably better when compared to the experimental measurements.
The statistical similarity of the 1.1M and 4.5M results is interesting. As per the discussion of
Fig. 5.6, the increase in the resolved surface tension force with 4.5M cells leads to earlier
onset of volume fraction intermittency. At the same time, the volume fraction field is less
diffuse, especially near the jet break-up location. These two effects appear to counteract
each other leading to some agreement between the 1.1M and 4.5M cell cases along the jet
axis, and this is retained for the radial distribution at x/D = 2 near the break-up location (see
Fig. 5.7b) where a similar trend for the three resolutions is observed. Further downstream of
the break-up point (x/D = 4, Fig. 5.7c), this counter effect weakens, and the close agreement
between the radial profiles for the 1.1M and 4.5M cell simulations disappears. The rms
of volume fraction do not have a monotonic convergence with grid refinement either. In
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Fig. 5.7 Axial and radial profiles of the mean (1st row) and rms (2nd row) of volume
fraction for N-AS2 using the TFVoF model. Radial profiles are shown at two axial stations.
Experimental data [236] includes error bars.

Fig. 5.7d, the peak values of rms for the 1.1M and 4.5M cell cases are located at the same
axial position, but the peak for the intermediate 2.3M cell case is shifted downstream due to
the postponed point of jet break-up.

The axial and radial profiles of mean and rms of the axial component of velocity, Ux, for
TFVoF are presented in Fig. 5.8.In contradiction to the volume fraction results, the mean
profiles of Ux present a mostly monotonic trend with the refinement of the LES grid, and
the results for the intermediate 2.3M cell case and the fine 4.5M cell case are quite close to
each other (see Figs. 5.8a-5.8c). However, some visible divergence is evident in the axial
centreline profile for x/D > 3, where the spray is relatively dilute. The deviation of the mean
results in the break-up region (1 < x/D < 3) is relatively small. The radial profiles of the
mean velocity have somewhat better convergence, but slight differences persist between the
2.3M and 4.5M cell cases. The rms results have similar convergence trends to the mean
profiles.

The axial and radial profiles for the mean and rms values of normalized surface density,
Σ̄/Σ̄min, are presented in Fig. 5.9. In contradiction to the results of volume fraction mean,
Σ̄/Σ̄min presents a roughly monotonic trend of variation when grids are refined, especially
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Fig. 5.8 Axial and radial profiles of mean (1st row) and rms (2nd row) of the axial
component of velocity for N-AS2 using the TFVoF model. Radial profiles are shown at two
axial stations.

for 2.3M and 4.5M. The numerical convergence is highly doubted based on an overall
consideration of volume fraction and surface density profiles. In Fig. 5.9a, surface density
increases very slowly from the nozzle exit as the surface wave evolves. From the jet break-up
point, as determined in Fig. 5.7a, the surface density dramatically increases, and the peak
value is located at the position where the highest rms of volume fraction is. Intermittency of
the ligaments can be visualized in Fig. 5.6, which gradually grows downstream, leading to a
smooth reduction of surface density. In radial directions (see Figs. 5.9b and 5.9c), a peak
value is observed that is supposed to be at the radius of the liquid jet. It decreases to the
periphery with the same trend as the volume fraction profiles.

Overall, rigorous numerical convergence for TFVoF with the refinement of the LES grid
is not established because of the non-monotonic variation in the volume fraction solutions
and the inconsistency between the trends for volume fraction, velocity and surface density.
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Fig. 5.9 Axial and radial profiles of mean (1st row) and rms (2nd row) of Σ̄/Σ̄min for N-AS2
using the TFVoF model. Radial profiles are shown at two axial stations.
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Fig. 5.10 Instantaneous volume fraction fields at the central plane of N-AS2 using the
TF-AC model. Top: TF-AC1.1L, Centre: TF-AC2.3L, Bottom: TF-AC4.5L. The black
contours indicate the continuous interface region where artificial compression is applied.

5.4.2 Hybrid turbulence filtering and artificial compression model (TF-
AC)

Figure 5.10 shows images of the instantaneous volume fraction fields for the TF-AC approach
on three LES grids for the N-AS2 spray case. Turbulent diffusion and artificial compression
accounting for the sub-filter interface dynamics are switched based on the local value of
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Fig. 5.11 Axial and radial profiles of mean (1st row) and rms (2nd row) of volume fraction
for N-AS2 using the TF-AC model. Radial profiles are shown at two axial stations.
Experimental data [236] includes error bars.

IRQκ (Eq. (4.17)). The black contours represent the continuous interface region where
artificial compression is used to sharpen the interface. Elsewhere, turbulent diffusion holds.
Along the continuous interface downstream of the injection point, the amplitude of the waves
produced by instabilities rises, and a rather abrupt break-up occur for the coarse grid case
with 1.1M cells. The interfacial instabilities are restricted to locations further downstream
for the 2.3M and 4.5M cell cases which have later break-up points. The continuous interface
region is much longer in the 4.5M cell case and persists well downstream of the break-up
point on the long ligament structures with quite a sharp volume fraction field compared to
the coarse grid results.

Figure 5.11 presents the mean and rms of volume fraction in the axial and radial directions.
Figure 5.11a shows that the volume fraction profiles start to decay at the same position for
the 1.1M and 2.3M cell cases. Two stages of jet decay can be observed for the refined grid
with 4.5M cells. The first stage starts at about the same position that break-up occurs for
the other two grids. The similarity of the first break-up points for the three grid resolutions
suggests that this process is driven by the combination of inertial and surface tension forces.
The second break-up stage for the 4.5M cell grid begins at x/D = 2. The rate of volume
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Fig. 5.12 Axial and radial profiles of mean (1st row) and rms (2nd row) of the axial
component of velocity for N-AS2 using the TF-AC model. Radial profiles are shown at two
axial stations.

fraction decay downstream of the break-up point is very sensitive to the grid resolution, with
finer resolution leading to more extended regions of artificial compression along continuous
interfaces encompassing a dense jet with less turbulent dispersion (c.f. black contour lines
in Fig. 5.10). In combination, artificial compression and the absence of turbulent diffusion
along the upstream interface for finer grid TF-AC simulations result in a slower decay rate of
the volume fraction. Neither the axial or radial volume fraction profiles in Fig. 5.11 show
any sign of convergence with grid refinement.

The mean and rms profiles of Ux are given in Fig. 5.12. Consistent with the volume
fraction results, the 1.1M and 2.3M cell cases have a good agreement for x/D < 2, but
the solutions deviate downstream of that point. The results for the 4.5M cell case are
very different, and numerical convergence is not established. The mean and rms profiles
of the normalized surface density in axial and radial directions are given in Fig. 5.13.
Similar variations from the nozzle to the downstream region and from the jet center to the
outer region due to instability growth, jet break-up and intermittency of ligaments can be
observed as shown in Fig. 5.9. However, the monotonic shift of the profiles due to grid
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Fig. 5.13 Axial and radial profiles of mean (1st row) and rms (2nd row) of Σ̄/Σ̄min for
N-AS2 using the TF-AC model. Radial profiles are shown at two axial stations.

refinement vanishes. The present results help to explain model performance but the lack of
grid convergence for TFVoF and TF-AC lead to some uncertainty.

Although not attempted here, the convergence of the TF-AC model may be possible
through varying either Cr in Eq. (4.16) and/or the threshold value of IRQκ at which the
switch from artificial compression to turbulent diffusion occurs. These parameters are
grid-dependent, reducing their usefulness for predictive modelling. Another possibility is
to include sub-grid fluctuations in the artificial compression term, replacing the resolved
quantity in Eq. (4.15) with a more rigorous model for urα(1−α).

5.4.3 Explicit volume diffusion (EVD)

The instantaneous volume fraction fields obtained for the EVD model with different grid
resolutions are shown in Fig. 5.14 for the N-AS2 spray case. Note that these results are
obtained with the simple surface tension closure that neglects sub-volume fluctuations. The
fields appear rather diffuse relative to those shown for the TF-AC model, and this behaviour
is an expected outcome of volume averaging over an explicitly defined length scale, lV . The
jet break-up location is very similar for all three grids. Further downstream, the ligaments
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Fig. 5.14 Instantaneous volume fraction fields at the central plane of N-AS2 using the EVD
model with the simple surface tension closure that neglects sub-volume fluctuations. Top:
∗EVD1.1L, Centre: ∗EVD2.3L, Bottom: ∗EVD4.5L.
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Fig. 5.15 Axial and radial profiles of the mean (1st row) and rms (2nd row) of volume
fraction for N-AS2 using the EVD model with the simple surface tension closure that
neglects sub-volume fluctuations. Radial profiles are shown at two axial stations.
Experimental data [236] includes error bars.

for the 1.1M cell case are more connected than for the two finer grid cases, which appear to
be very similar to each other.

Quantitative comparisons are presented in Fig. 5.15, showing axial and radial profiles of
the mean and rms of volume fraction. These profiles vary monotonically with increasing grid



5.4 Results 115

0 1 2 3 4 5

x/D

0

2

4

6

8

10

U
x
 M

e
a
n

*EVD1.1L

*EVD2.3L

*EVD4.5L

(a) Axial

0 0.05 0.1 0.15 0.2

r/D

0

5

10

15

20

25

U
x
 M

e
a
n

(b) x/D = 2

0 0.05 0.1 0.15 0.2

r/D

0

2

4

6

8

10

12

U
x
 M

e
a
n

(c) x/D = 4

0 1 2 3 4 5

x/D

0

1

2

3

U
x
 R

M
S

(d) Axial

0 0.05 0.1 0.15 0.2

r/D

0

2

4

6

8

10

U
x
 R

M
S

(e) x/D = 2

0 0.05 0.1 0.15 0.2

r/D

0

1

2

3

4

U
x
 R

M
S

(f) x/D = 4

Fig. 5.16 Axial and radial profiles of mean (1st row) and rms (2nd row) of the axial
component of velocity for N-AS2 using the EVD model with the simple surface tension
closure that neglects sub-volume fluctuations. Radial profiles are shown at two axial stations.

resolution. The 1.1M cell case is not converged, but the mean results for the 2.3M and 4.5M
cell cases are in excellent agreement with each other except for some small differences for
r/D < 0.1 at x/D = 4. Similar convergence can be observed for the rms of volume fraction.
The grid with 4.5M cells produces slightly higher centreline rms values for 1 < x/D < 2.5,
for r/D < 0.025 at x/D = 2, and for r/D > 0.05 at x/D = 4. The numerically converged
mean volume fraction profiles along the centreline have a slightly delayed break-up point
compared to the data, albeit still within the experimental error margin. The decay rate of
the jet downstream of the break-up is well captured. The break-up point is affected by
the function |Q/E| in the model for the explicit volume diffusion coefficient in Eq. (4.59).
In the upstream region, the interface curvature is close to zero prior to the emergence of
interfacial instabilities, and therefore |Q/E| → 0 and DV → 0. Subsequently, the explicit
volume viscosity, νV , also approaches zero. This ensures there is no premature dispersion of
the interface. In the absence of explicit volume diffusive and viscous transport, the effective
turbulent viscosity, νt , plays a dominant role in the model sub-volume stress (see Eq. (4.65))
and the growth of initial interfacial instabilities.



116 Performance Analysis of Conventional VoF Methods and new EVD Approach

0 1 2 3 4 5

x/D

0

1

2

3

S
u

rf
a
c
e
 D

e
n

s
it

y
 M

e
a
n *EVD1.1L

*EVD2.3L

*EVD4.5L

(a) Axial

0 0.05 0.1 0.15 0.2

r/D

0

1

2

3

S
u

rf
a
c
e
 D

e
n

s
it

y
 M

e
a
n

(b) x/D = 2

0 0.05 0.1 0.15 0.2

r/D

0

1

2

3

S
u

rf
a
c
e
 D

e
n

s
it

y
 M

e
a
n

(c) x/D = 4

0 1 2 3 4 5

x/D

0

5

10

15

S
u

rf
a
c
e
 D

e
n

s
it

y
 R

M
S

(d) Axial

0 0.05 0.1 0.15 0.2

r/D

0

5

10

15

20

S
u

rf
a
c
e
 D

e
n

s
it

y
 R

M
S

(e) x/D = 2

0 0.05 0.1 0.15 0.2

r/D

0

5

10

15

20

S
u

rf
a
c
e
 D

e
n

s
it

y
 R

M
S

(f) x/D = 4

Fig. 5.17 Axial and radial profiles of the mean (1st row) and rms (2nd row) of Σ̂/ÔΣmin for
N-AS2 using the EVD model with the simple surface tension closure that neglects
sub-volume fluctuations. Radial profiles are shown at two axial stations.

The axial and radial profiles of Ux are shown in Fig. 5.16. Consistent with the volume
fraction fields, the velocity predictions vary monotonically with grid refinement. The con-
vergence that is evident between the 2.3M and 4.5M grid cell cases is noticeably stronger
than the velocity results for the TFVoF model shown in Fig. 5.8, and in contrast to those
earlier results, the numerical convergence of the EVD velocity fields is consistent with the
convergence of the volume fraction.The axial and radial mean of the normalized surface
density, Σ̂/ÔΣmin, is shown in Fig. 5.17. The same evolution as the other two approaches is
not repeated. The solutions shift in a monotonic direction by refining grids and are consistent
with the volume fraction profiles. The convergence between 2.3M and 4.5M is better than
the results for TFVoF, as shown in Fig. 5.9a.

Overall, the EVD model has superior numerical convergence compared to the TFVoF and
TF-AC models. The main reason is that explicit volume diffusion and viscosity coefficients
are defined relative to the physical length scale and independent of the LES cell size. The
2.3M cells case, which is numerically converged here, has ∆/lV = 0.2, which appears to be a
sufficient level of grid resolution such that explicit volume diffusion overwhelms both the
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numerical diffusion and the uncertainty induced by the simple surface tension model. The
2.3M LES grid cell resolution is used as a base case to analyze sub-grid surface tension force.

5.4.4 Richardson Extrapolation analysis

Richardson Extrapolation is a quantitative approach for judging grid convergence of numeri-
cal simulations [189, 212, 39]. For three grids with corresponding cell sizes at a local position
of ∆1 < ∆2 < ∆3, the grid refinement ratios are defined as r21 = ∆2/∆1 and r32 = ∆3/∆2. In
the present study, the grid refined ratios are r21 ∼= r32 = 1.32 and are approximately uniform
across the entire domain. The Richardson Extrapolation relations are presented here for a
general flow variable, φ , and in the results below, it is applied to the temporally averaged
mean of volume fraction and the axial component of velocity for which statistics have been
presented already in Sections 5.4.1-5.4.3). For r21 ∼= r32, the apparent local order of the
numerical method can be defined as [189, 212]

p = min
�
max
�

1
ln(r21)

ln
∣∣∣∣φ32

φ21

∣∣∣∣ ,0.5� ,O(n)
�
, (5.4)

where φ32 = φ3 − φ2 and φ21 = φ2 − φ1. In case of oscillatory variation of φ with ∆, the
term 1

ln(r21)
ln
∣∣∣φ32

φ21

∣∣∣ can diminish to a very low value and is suggested to be clipped at 0.5
[189]. Additionally p should be limited by the order of the numerical scheme [212] and here
O(n) = 2 . The extrapolated solution of φ is then defined as [212, 39]

φ
ext
21 =

rp
21φ1 −φ2

rp
21 −1

. (5.5)

For the volume fraction field, the extrapolated values αext
21 are bounded by 0 and 1. The grid

convergence index (GCI) is commonly used to quantify the uncertainty of grid convergence
and is given by [212, 39]

GCI21 =
1.25

∣∣∣φ1−φ2
φ1

∣∣∣
rp

21 −1
. (5.6)

The axial profiles of GCI21 for mean volume fraction and the axial component of mean
velocity for the three LES models are presented in Fig. 5.18. For the EVD model, the GCI
of the volume fraction (see Fig. 5.18a) is very low along the centreline, indicating little
expected sensitivity to further refinement of the grid beyond the most refined grid used here,
and is highest for TF-AC, with TFVoF having intermediate GCI. These quantitative measures
of convergence uncertainty are consistent with the apparent grid sensitivity of the profiles
shown in Figs. 5.11a and 5.15a. As seen earlier in Fig. 5.7a the volume fraction for the
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TF-VoF model converges non-monotonic with the refinement of the grid. The oscillations
of the relative magnitude among the solutions on the three grids vary at different locations
corresponding to the undulations of GCI along the flow axis that are evident in Fig. 5.18.
It is interesting to note that the axial velocity predicted by the EVD model has a relatively
high uncertainty of convergence, approaching 10%, just downstream of the location of jet
break-up at x/D ∼ 2. This small but notable uncertainty is not easily identified in the velocity
profiles shown earlier in Fig. 5.16a. Further downstream, the EVD model consistently gives
the lowest GCI of the velocity field amongst the three models. Although the GCI value is
low for TF-AC near x/D = 5, it cannot by itself support a conclusion that the model is well
converged because the GCI of volume fraction is very large there. It is apparent that this
GCI analysis further demonstrates the superior numerical convergence of the EVD model in
comparison to the TFVoF and TF-AC models.

0 1 2 3 4 5

x/D

0

2

4

6

8

10

V
o

lu
m

e
 F

r
a
c
ti

o
n

 G
C

I 2
1

EVD

TFVoF

TF-AC

(a)

0 1 2 3 4 5

x/D

0

0.5

1

1.5

2

U
x
 G

C
I 2

1

EVD

TFVoF

TF-AC

(b)

Fig. 5.18 Axial profiles of the GCI index (GCI21) of volume fraction and the axial
component of velocity for the three LES models.

5.4.5 Effects of the sub-grid surface tension

The continuum surface tension model, initially developed by Brackbill et al. [30] has been
widely used [230, 94, 47, 184] for LES and DNS of spray atomization with and without
considering the sub-grid surface tension effect, but having suitable closure solutions for
the sub-grid fluctuations of surface tension is still a challenge. A detailed analysis of the
sub-volume closure of Wang et al. [270], termed here as Wang model, and sub-grid closure
of Shirani et al. [232], termed here as Shirani model, for the surface tension force is presented
here in this Section. Shirani’s sub-grid surface tension closure is incorporated here into
OpenFOAM for the three differet LES solutions. EVD formulation is tested against both
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closure models, however, TFVoF and TF-AC solutions are only tested for the solution
provided by Shirani et al. [232]. The resulting solutions are compared with those not
considering the sub-grid surface tension effects.

Explicit volume diffusion (EVD)
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Fig. 5.19 Instantaneous volume fraction fields at the central plane of N-AS2 using the EVD
model with the simple surface tension closure given by Eq. (5.3), Wang et al. [270]
sub-volume closure given by Eq. (4.73), and Shirani et al. [232] sub-grid closure given by
Eq. (4.99) denoted as ∗EVD2.3L, EVD2.3L and ∗∗EVD2.3L, respectively. Top: ∗EVD2.3L,
Middle: EVD2.3L, Bottom: ∗∗EVD2.3L.
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Fig. 5.20 Axial and radial profiles of mean volume fraction for N-AS2 using the EVD model
with the simple surface tension closure given by Eq. (5.3), Wang et al. [270] sub-volume
closure given by Eq. (4.73), and Shirani et al. [232] sub-grid closure given by Eq. (4.99)
denoted as ∗EVD2.3L, EVD2.3L and ∗∗EVD2.3L, respectively. Radial profiles are shown at
two axial stations. Experimental data [236] includes error bars.

Figure 5.19 shows instantaneous snapshots of the filtered volume fraction fields for case
N-AS2 following the EVD approach in combination with three solutions given by Eqs. (5.3),
(4.73) and (4.99) to account for surface tension force. The amplitude of the wave instability
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Fig. 5.21 Instantaneous volume fraction fields at the central plane of N-AS2 using the
TFVoF model with the simple surface tension closure given by Eq. (4.9) and Shirani et al.
[232] sub-grid closure given by Eq. (4.98), denoted as TFVoF2.3L and ∗∗TFVoF2.3L,
respectively. Top: TFVoF2.3L, Bottom: ∗∗TFVoF2.3L.

gradually increases along the interface near the nozzle, followed by the break-up of the jet
and the evolution of discrete ligaments. The jet penetration is almost the same for all three
solutions, however, the decay rate is faster when the sub-grid effects are considered.

Predictions of the mean volume fraction along the centreline and at two radial locations are
shown in Fig. 5.20. The model constant value of Cs f = 1.8 is used here for the calculations
following the Wang model, which was proposed based on a priori analysis of resolved
simulations [270]. This also confirms that break-up location is not much sensitive, however,
the differences between the models increase further downstream, with the Wang’s sub-volume
model showing excellent agreement with the data for x/D > 3. Shirani’s sub-grid solution
has shown excellent agreement with the data for x/D < 1.5. The prediction of jet break-up
and initial decay rate are well aligned with the experimental measurements, however, the
much rapid decay rate ,when following Shrani’s closure, results in an underprediction of
results for the locations x/D > 1.5. Overall, Wang’s sub-volume closure solution performs
better in predicting the realistic surface tension effects both in near-field and far-field regions.

Turbulent filtering VoF model (TFVoF)

Figure 5.21 shows instantaneous snapshots of the filtered volume fraction fields for case
N-AS2 following the TFVoF approach in combination with two solutions with and without
considering the sub-grid surface tension given by Eqs. (4.98) and (4.9). The amplitude of
the wave instability gradually increases along the interface near the nozzle, followed by the
break-up of the jet and the evolution of discrete ligaments. The jet penetration is almost
the same for both solutions, however, the decay rate is slower when the sub-grid effects are
considered. Predictions of the mean volume fraction along the centreline and at two radial
locations are shown in Fig. 5.22. These plots also confirm that the break-up location is not
sensitive, and the decay rate is significantly reduced when the TFVoF model is coupled with
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Fig. 5.22 Axial and radial profiles of mean of volume fraction for N-AS2 using the TFVoF
model with the simple surface tension closure given by Eq. (4.9) andShirani et al. [232]
sub-grid closure given by Eq. (4.98), denoted as TFVoF2.3L and ∗∗TFVoF2.3L, respectively.
Radial profiles are shown at two axial stations. Experimental data [236] includes error bars.
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Fig. 5.23 Instantaneous volume fraction fields at the central plane of N-AS2 using the
TF-AC model with the simple surface tension closure given by Eq. (4.9) and Shirani et al.
[232] sub-grid closure given by Eq. (4.98), denoted as TF-AC2.3L and ∗∗TF-AC2.3L,
respectively. Top: TF-AC2.3L, Bottom: ∗∗TF-AC2.3L.

Shirani’s sub-grid solution. This is because of the enhanced sub-grid turbulent diffusion
resulting from new surface tension closure coupled with TFVoF formulation.

Hybrid turbulence filtering and artificial compression model (TF-AC)

Figure 5.23 shows instantaneous snapshots of the filtered volume fraction fields for case
N-AS2 following the TFVoF approach in combination with two solutions with and without
considering the sub-grid surface tension given by Eqs. (4.98) and (4.9). The amplitude of
the wave instability gradually increases along the interface near the nozzle, followed by the
break-up of the jet and the evolution of discrete ligaments. The jet penetration is almost the
same for both solutions, however, the decay rate is much slower when the sub-grid effects are
considered. Predictions of the mean volume fraction along the centreline and at two radial
locations are shown in Fig. 5.24. These plots also confirm that the break-up location is not
much sensitive, and the decay rate is more significantly reduced when the TF-AC model is
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Fig. 5.24 Axial and radial profiles of mean of volume fraction for N-AS2 using the TF-AC
model with the simple surface tension closure given by Eq. (4.9) and Shirani et al. [232]
sub-grid closure given by Eq. (4.98), denoted as TF-AC2.3L and ∗∗TF-AC2.3L, respectively.
Radial profiles are shown at two axial stations. Experimental data [236] includes error bars.

coupled with Shirani’s sub-grid solution. This is because of the enhanced sub-grid turbulent
diffusion resulting from new surface tension closure coupled with TF-AC formulation.

With Shirani’s sub-grid closure, the decay rate for TF-AC is slower when compared
with TFVoF. However, the trend for both TFVoF and TF-AC is opposite to that of EVD
formulation, as in EVD formulation explicit volume diffusion overwhelms the turbulent
diffusion and controls the jet decay rate.

5.4.6 Effects of explicit volume length scale (lv) on EVD solution

To test the sensitivity of EVD to lv, three different values 112µm, 190µm and 320µm are
used. Note that this analysis is carried out with Wang’s surface tension closure that accounts
for the sub-volume fluctuations for the EVD model. Figs. 5.25 and 5.26 present results for
simulations with lv = 112µm which is smaller than the boundary layer thickness, 192µm.
The jet break-up location is very similar for all three grids, however, further downstream,
the ligaments for the 1.1M cell case are more connected than for the two finer grid cases,
which appear to be very similar for 2.3M and 4.5M LES cells. Fig. 5.26 shows axial and
radial profiles of the mean and rms of volume fraction predictions. Overall, an excellent
numerical convergence with grid refinement is observed, and the numerical measurements
for the 2.3M and 4.5M cell cases are very close to each other for both the mean and rms
fields. The converged axial results are compared with the available experimental data and
produce satisfactory predictions of the spray break-up point and the downstream decay of
the mean volume fraction. The decay rate predictions are more aligned with experimental
findings for the positions of x/D > 3.
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Fig. 5.25 Instantaneous volume fraction fields at the central plane of N-AS2 using the EVD
model following Wang et al. [270] sub-volume closure given by Eq. (4.73). The explicit
volume length scale is lV = 112µm. Top:EVD1.1L,∆ = 0.449lv, Centre:
EVD2.3L,∆ = 0.352lv, Bottom: EVD4.5L,∆ = 0.281lv.
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Fig. 5.26 Axial and radial profiles of mean (1st row) and rms (2nd row) of volume fraction
for N-AS2 using the EVD model following Wang et al. [270] sub-volume closure given by
Eq. (4.73). Radial profiles are shown at two axial stations. Experimental data [236] includes
error bars.The explicit volume length scale is lV = 112µm.

Figures 5.27 and 5.28 represent the instantaneous volume fraction fields, and mean liquid
volume fraction plots of both mean and rms values for the lv = 190µm. The decay rate of
the volume fraction fields and convergence behaviour for all three LES cells resolutions is



124 Performance Analysis of Conventional VoF Methods and new EVD Approach

0.25 0.5 0.75 0.0  1.0

alpha.fuel

0.25 0.5 0.75 0.0  1.0

alpha.fuel

0.25 0.5 0.75 0.0  1.0

alpha.fuel

Fig. 5.27 Instantaneous volume fraction fields at the central plane of N-AS2 using the EVD
model following Wang et al. [270] sub-volume closure given by Eq. (4.73). The explicit
volume length scale is lV = 190µm. Top:EVD1.1L,∆ = 0.263lv, Centre:
EVD2.3L,∆ = 0.206lv, Bottom: EVD4.5L,∆ = 0.164lv.
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Fig. 5.28 Axial and radial profiles of mean (1st row) and rms (2nd row) of volume fraction
for N-AS2 using the EVD model following Wang et al. [270] sub-volume closure given by
Eq. (4.73). Radial profiles are shown at two axial stations. Experimental data [236] includes
error bars.The explicit volume length scale is lV = 190µm.

quite similar to those of the lv = 112µm case, however, the difference between the 1.1M
cells and finer resolutions is smaller as the level of explicit volume diffusion is expected to
be higher with the increase in explicit volume length scale. Figures 5.29 and 5.30 represent
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Fig. 5.29 Instantaneous volume fraction fields at the central plane of N-AS2 using the EVD
model following Wang et al. [270] sub-volume closure given by Eq. (4.73). The explicit
volume length scale is lV = 320µm. Top:EVD1.1L,∆ = 0.154lv, Centre:
EVD2.3L,∆ = 0.120lv, Bottom: EVD4.5L,∆ = 0.096lv.
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Fig. 5.30 Axial and radial profiles of mean (1st row) and rms (2nd row) of volume fraction
for N-AS2 using the EVD model following Wang et al. [270] sub-volume closure given by
Eq. (4.73). Radial profiles are shown at two axial stations. Experimental data [236] includes
error bars.The explicit volume length scale is lV = 320µm.

the instantaneous volume fraction fields, and mean liquid volume fraction plots of both mean
and rms values for the lv = 320µm. Contrarily, we have observed a different convergence
behaviour when the value of lv is higher than the boundary layer thickness, and profiles for
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all three resolutions roughly overlap each other. This is because of a higher level of explicit
volume diffusion in comparison with the numerical diffusion value. The mean volume
fraction plots shown in Fig. 5.30 confirm that the volume fraction decay rate is too fast in the
regions of 1.5 < x = D < 2.5. It is likely that with this much larger value of lv, the smearing
of the interface and boundary layer is excessive, causing the liquid volume fraction to decay
too rapidly.

Overall, reasonable convergence is achieved with all three values of lv compared to
TFVoF and TF-AC. However, excellent convergence behaviour is observed for lv = 120µm.
The convergence for the lv = 190µm case is also reasonable but shows the dominance of
explicit volume diffusion over the numerical diffusion for all three resolutions. Upon having
a higher value of lv than the boundary layer thickness (as in the case of lv = 320µm), the
relative magnitude of numerical diffusion compared with explicit volume diffusion becomes
smaller and leads to poor numerical convergence behaviour.

5.4.7 Sensitivity analysis of the model constant, Cs f , and application of
EVD to the high Weber number case

The sensitivity of the model constant, Cs f , is evaluated for both lower Weber number case N-
AS2 and higher Weber number case N-AS8. The predictions of the mean volume fraction in
the axial direction based on three values of Cs f for N-AS2 are shown in Fig. 5.31. Increasing
Cs f from 1.8 to 3.0 leads to an earlier liquid core break-up and better agreement with the
data up to about x/D = 2. This is because the surface tension force is increased, leading to
an earlier pinch-off of the liquid core as the interfacial instabilities rise. The decay rate of
volume fraction downstream of the break-up is similar for all values of Cs f . For x/D > 2 and
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Fig. 5.31 Axial profiles of mean volume fraction for N-AS2 using the EVD model following
Wang et al. [270] sub-volume closure given by Eq. (4.73). denoted as EVD2.3L. The
EVD2.3L results are for three values of the model constant Cs f . Experimental data [236]
includes error bars.
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the predictions with Cs f = 1.8 are superior. As Cs f is further increased to 4.5, the simulation
results approach the lower error margin of experimental data.

The EVD model is now applied to the high Weber number spray case (N-AS8). The
predictions of the mean volume fraction in the axial direction based on three values of
Cs f are shown in Fig. 5.32. Predictions are presented for the EVD model with the simple
surface tension closure given by Eq. (5.3) and the EVD model following Wang et al. [270]
sub-volume closure given by Eq. (4.73). For the latter, results are provided for three values
of the constant, Cs f = 1.8, Cs f = 3.0 and Cs f = 4.5, which are the same as used for N-AS2.
When the simple surface tension closure given by Eq. (5.3) is used, the break-up point
is predicted very well, but the subsequent decay rate of the jet is overestimated, and the
downstream volume fraction is lower than the experimental data and outside the margin
of error. Following Wang et al. [270] sub-volume closure given by Eq. (4.73) and model
constant value of Cs f = 1.8, the prediction of the break-up point is much delayed, and
the upstream volume fraction values are larger than the data and well outside the margin
of error. The decay rate is very similar to the decay rate for the simple surface tension
model. Consistent with the findings in Fig. 5.31, further increasing Cs f to 3.0 and 4.5 leads
to a noticeably earlier break-up compared with Cs f = 1.8 but does not unduly affect the
subsequent decay rate. Overall, the Cs f = 4.5 result is good and inside the experimental
margin of error over most of the length of the atomizing spray.
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Fig. 5.32 Axial profiles of mean volume fraction for N-AS8 using the EVD model with the
simple surface tension closure given by Eq. (5.3) and the EVD model following Wang et al.
[270] sub-volume closure given by Eq. (4.73). denoted as ∗EVD2.3H and EVD2.3H,
respectively. The EVD2.3H results are for three values of the model constant Cs f .
Experimental data [236] includes error bars.
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5.5 Summary

A detailed comparison has been conducted of grid sensitivity and accuracy for three VoF-
based LES models, including the turbulent filtered VoF model (TFVoF), a hybrid turbulence
filtering and artificial compression model (TF-AC), and a new explicit volume diffusion
model (EVD). The three approaches are distinguished by different modelling strategies of
unresolved fluctuations at the liquid-air interface of a two-phase flow. In general, these
fluctuations can be due to interface dynamics and turbulence. TFVoF applies conventional
turbulence filtering with a sub-grid turbulent viscosity model to the VoF equations to account
for all sub-grid fluctuations. Two significant conceptual shortcomings have been observed.
Firstly, the assumption that inertial range turbulent eddies and the energy cascade cross the
interface with universal statistical behaviour is not credible. This is particularly relevant in
the vicinity of continuous interfaces. Secondly, in regions of low turbulence where turbulent
diffusion is small, the numerical solutions are sensitive to artificial diffusion due to the grid.
In addition, a couple of other secondary issues may also weaken the numerical convergence
of TFVoF. Setting the turbulence filter size to the LES cell size leads to grid dependent value
of turbulent viscosity. This is also common with many other LES implementations.

TF-AC attempts to account for more sub-grid interface dynamics by introducing addi-
tional artificial compression in the continuous interface region to counteract the numerical
diffusion and, thus, sharpen the interface. However, a modelling constant Cr inherent in the
artificial compression term is likely to depend on grid resolution. The conventional turbulent
viscosity model is only activated in the discrete phase region. A locally evaluated continuous
interface indicator, IRQκ , defined through the interface curvature, separates the two regions
and is likely to be grid dependent. The issues of grid dependent closure of turbulent viscosity
and approximated surface tension model mentioned above for the TFVoF model are also
inherited into the TF-AC model.

EVD was recently derived based on the concept of averaging the VoF equations over
explicitly defined physical volumes [270]. The volume length scale, lV , is independent of the
grid scale and is suggested to be no larger than the boundary layer thickness on the gas side
of the liquid-air interface. Sub-volume fluctuations due to inhomogeneous phase fields and
mean drift velocity is modelled by a physically derived explicit volume diffusion coefficient
and related explicit volume viscosity. The latter is specifically augmented by turbulent
viscosity away from the interface. Numerical convergence can be achieved by refining
grids while keeping the physical volumes constant so that the explicit volume diffusion
overwhelms the numerical diffusion, which reduces as the grid resolution increases. The
use of physical length scale based sub-volume closure of surface tension helps to have more



5.5 Summary 129

realistic predictions of jet decay rate. The analysis also confirms that proper closure for the
sub-grid surface tension effects is very important.

A detailed analysis of the sub-volume closure of Wang et al. [270] and sub-grid closure
of Shirani et al. [232] for the surface tension force confirms that break-up location is not
much sensitive. However, the differences between the models increase further downstream,
with the Wang’s sub-volume model showing excellent agreement with the data for x/D > 3.
Shirani’s sub-grid solution has shown excellent agreement with the data for x/D < 1.5.
The prediction of jet break-up and initial decay rate are well aligned with the experimental
measurements, however, the much rapid decay rate ,when following Shirani’s closure, results
in an underprediction of results for the locations x/D > 1.5. Overall, Wang’s sub-volume
closure solution performs better in predicting the realistic surface tension effects both in
near-field and far-field regions.

With Shirani’s sub-grid surface tension closure, the decay rate for TF-AC is slower
when compared with TFVoF. However, the trend for both TFVoF and TF-AC is opposite
to that of EVD formulation. The reason behind this is that EVD solution is dominantly
controlled by the explicit volume diffusion, which has a physical interpretation, not by the
numerical diffusion. However, both TFVoF and TF-AC solutions are dominantly controlled
by numerical diffusion. Artificial control of the turbulent diffusion in the case of TF-AC
further slow down the decay rate when sub-grid surface tension effects are considered.

Upon analysing the effects of explicit volume length scale (lv) on EVD solution, rea-
sonable convergence is achieved with all three values of lv compared to TFVoF and TF-AC.
However, excellent convergence behaviour is observed for lv = 120µm. The convergence
for the lv = 190µm case is also reasonable but shows the dominance of explicit volume
diffusion over the numerical diffusion for all three resolutions. Upon having a higher value
of lv than the boundary layer thickness (as in the case of lv = 320µm), the relative magnitude
of numerical diffusion compared with explicit volume diffusion becomes smaller and leads
to poor numerical convergence behaviour.

The performance of EVD model is also evaluated for high Weber number spray case
(N-AS8). Results are analysed for three values of the constant, Cs f = 1.8, Cs f = 3.0 and
Cs f = 4.5, which are the same as we used for low Weber number spray case (N-AS2).
When the simple surface tension closure given by Eq. (5.3) is used, the break-up point
is predicted very well, but the subsequent decay rate of the jet is overestimated, and the
downstream volume fraction is lower than the experimental data and outside the margin
of error. Following Wang et al. [270] sub-volume closure given by Eq. (4.73) and model
constant value of Cs f = 1.8, the prediction of the break-up point is much delayed, and the
upstream volume fraction values are larger than the data and well outside the margin of error.
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Consistent with the findings for the N-AS2 case, increasing the model constant ,Cs f , moves
the jet break-up in up stream direction for high Weber number spray case (N-AS8). Overall,
the Cs f = 4.5 result is good and inside the experimental margin of error over most of the
length of the atomizing spray. With Cs f = 1.8, which was proposed based on a priori analysis
[270], the data of the jet with We = 35 is captured well, but the prediction of the jet break-up
with We = 72 is much delayed. A higher scaling constant value is needed to achieve optimum
results in the high Weber number flow. Further investigation needed to establish suitable
mechanism for the selection of scaling constants linked with flow conditions instead of
having different values for different Weber number flow conditions. Future work may focus
on determining the range of flow conditions for which the surface tension model constants
produce good results.



Chapter 6

Conclusions

6.1 Conclusions from the current study

The research work presented in this thesis deals with the development and in-depth investiga-
tion of computational tools for modelling interfacial flows, especially in the near-field region.
In the past, many approaches were developed to track the interface of a multi-phase/interfacial
flow system. Two of them, the volume of fluid (VoF) and the level set (LS), have shown
promising findings and have been chosen as a benchmark for further research. VoF meth-
ods have been proven viable and flexible solutions that facilitate the tracking of interfacial
boundaries with good mass conservation behaviour. Different level of numerical diffusion
associated with various grid sizes leads to grid sensitivity issue. Explicit volume diffusion
(EVD) based LES modelling solution has shown promising improvements to overcome
the shortcomings of two already existing solutions, turbulent filtering VoF model (TFVoF)
and hybrid turbulence filtering and artificial compression model (TF-AC). Consideration
of sub-grid effects of surface tension force has shown a significant impact on the liquid jet
decay rate.

The performance analysis of sub-grid stochastic field PDF-LES solution of Navarro-
Martinez [184] against the Sydney needle spray measurements is conducted in Chapter 3.
Rigorous numerical convergence for 1.1M LES cells in the combination of increased stochas-
tic fields is not achieved up to 32 stochastic field numbers. As the number of stochastic
fields increases, the jet break-up location shifts further downstream. However, reasonable
numerical convergence is observed for 2.3M LES cells, and measured values of mean liquid
volume fraction and normalized mean surface density for the 16 and 32 stochastic fields
are very similar. Overall, very good convergence behaviour can be observed for 4.5M LES
cells when measured for the different number of stochastic fields. Here, unlike 1.1M and
2.3M resolution cases, the jet break-up location is less sensitive to the increase in stochastic
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field numbers. Furthermore, this stochastic field convergence study combined with different
mesh resolutions confirms that more stochastic fields are required to achieve a converged
solution when a coarser resolution is used. However, convergence can be achieved with fewer
stochastic fields for finer mesh resolution. This leads to the conclusion that the stochastic
field convergence behaviour depends on the mesh size.

Grid sensitivity is still an issue with the VoF based LES approaches, and the solution is
dependent on the LES filter size. The numerical findings of the stochastic fields LES-PDF
solution also confirm its grid-dependent behaviour. Using a higher number of stochastic
fields in each LES cell has shown some improvements, but the simulation results are still
sensitive to LES cell sizes. The main advantage of the sub-grid stochastic field PDF-LES
solution is its low computational cost. Calculating filtered moments from a stochastic solution
incorporates an error that increases with the increase in sub-grid variance and decreases with
the increase in the number of stochastic fields. Increasing the number of stochastic fields leads
to more computational time required for the numerical solution [257, 256]. Computational
cost limits the maximum number of stochastic fields and LES cell resolution, increasing
exponentially with the grid refinement and linearly with the stochastic fields used. Using
more stochastic fields permits a better statistical description of the sub-grid structures at a
lower computational cost when compared to the cost associated with grid refinement.

Three different LES treatment for unresolved sub-grid fluctuations, including the tur-
bulent filtered VoF model (TFVoF), a hybrid turbulence filtering and artificial compression
model (TF-AC), and a new explicit volume diffusion model (EVD), has been analyzed in
detail. These approaches are distinguished by different modelling strategies of unresolved
fluctuations at the liquid-air interface of a two-phase flow. TFVoF applies conventional turbu-
lence filtering with a sub-grid turbulent viscosity model to the VoF equations to account for all
sub-grid fluctuations. Two significant conceptual shortcomings have been observed. Firstly,
the assumption that inertial range turbulent eddies and the energy cascade cross the interface
with universal statistical behaviour is not credible. This is particularly relevant in the vicinity
of continuous interfaces. Secondly, in regions of low turbulence where turbulent diffusion is
small, the numerical solutions are sensitive to artificial diffusion due to the grid. Linking the
turbulence filter size with LES cell size leads to a grid-dependent value of turbulent viscosity.
TF-AC attempts to account for more sub-grid interface dynamics by introducing additional
artificial compression in the continuous interface region to counteract the numerical diffusion
and thus sharpen the interface. However, a modelling constant Cr inherent in the artificial
compression term is likely to depend on grid resolution. The conventional turbulent viscosity
model is only activated in the discrete phase region. A locally evaluated continuous interface
indicator, IRQκ , defined through the interface curvature, separates the two regions, and seems



6.1 Conclusions from the current study 133

to be grid dependent. The conventional turbulent viscosity model is only activated in the
discrete phase region. Additionally, the effects of sub-grid fluctuations of surface tension
forces are also neglected in both TFVoF and TF-AC.

The newly developed EVD [270] formulation is based on averaging over explicitly
defined physical volumes. The explicit volume length scale, lV , is independent of the grid
scale and should be smaller than the boundary layer thickness on the gas side of the liquid-
air interface. The numerical convergence problem can be avoided by refining grids while
keeping the physical volumes constant so that the explicit volume diffusion overwhelms the
numerical diffusion, which reduces with the refinement of the grid. The EVD model also
includes an improved volume averaged surface tension model based on fractal properties of
wrinkled sub-volume interfaces. The use of physical length scale based sub-volume closure
of surface tension helps to have more realistic predictions of the jet decay rate. The analysis
also confirms that proper closure for the sub-grid surface tension effects is very important.

A detailed analysis of the sub-volume closure of Wang et al. [270] and sub-grid closure of
Shirani et al. [232] for the surface tension force confirms that break-up location is not much
sensitive. However, the differences between the models increase further downstream, with
the Wang’s sub-volume model showing excellent agreement with the data in the downstream
regions. Shirani’s sub-grid solution has shown excellent agreement with the data in the
upstream region. The prediction of jet break-up and initial decay rate are well aligned
with the experimental measurements, however, the much rapid decay rate, when following
Shirani’s closure, results in an underprediction of results further downstream. Overall,
Wang’s sub-volume closure solution performs better in predicting the realistic surface tension
effects both in near-field and far-field regions. With Shirani’s sub-grid surface tension closure,
the decay rate for TF-AC is slower when compared with TFVoF. However, the trend for
both TFVoF and TF-AC is opposite to that of EVD formulation. The reason behind this is
that the EVD solution is dominantly controlled by the explicit volume diffusion, not by the
numerical diffusion. However, both TFVoF and TF-AC solutions are dominantly controlled
by numerical diffusion. Artificial control of the turbulent diffusion in the case of TF-AC
further slows down the decay rate when sub-grid surface tension effects are considered.

Upon analyzing the effects of explicit volume length scale (lv) on EVD solution, rea-
sonable convergence is achieved with all three values of lv compared to TFVoF and TF-AC.
However, excellent convergence behaviour is observed for lv = 120µm. The convergence
for the lv = 190µm case is also reasonable but shows the dominance of explicit volume
diffusion over the numerical diffusion for all three resolutions. Upon having a higher value
of lv than the boundary layer thickness (as in the case of lv = 320µm), the relative magnitude
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of numerical diffusion compared with explicit volume diffusion becomes smaller and leads
to poor numerical convergence behaviour.

The performance of the EVD model is also evaluated for a high Weber number spray
case (N-AS8). Results are analyzed for three values of the constant, Cs f = 1.8, Cs f = 3.0
and Cs f = 4.5, which are the same as we used for the low Weber number spray case (N-AS2).
When the simple surface tension closure given by Eq. (5.3) is used, the break-up point
is predicted very well, but the subsequent decay rate of the jet is overestimated, and the
downstream volume fraction is lower than the experimental data and outside the margin
of error. Following Wang et al. [270] sub-volume closure given by Eq. (4.73) and model
constant value of Cs f = 1.8, the prediction of the break-up point is much delayed, and the
upstream volume fraction values are larger than the experimental data and well outside the
margin of error. Consistent with the findings for the N-AS2 case, increasing the model
constant, Cs f , moves the jet break-up in the upstream direction for the high Weber number
spray case (N-AS8). Overall, the Cs f = 4.5 result is good and inside the experimental margin
of error over most of the length of the atomizing spray. With Cs f = 1.8, which was proposed
based on a priori analysis [270], the data of the jet with We = 35 is captured well, but the
prediction of the jet break-up with We = 72 is much delayed. A higher scaling constant value
is needed to achieve optimum results in the high Weber number flow.

6.2 Recommendation and future work

Explicit volume diffusion (EVD) solution based on the concept of averaging the VoF equa-
tions over explicitly defined physical volumes has shown promising improvements to have the
calculations which are grid independent and more reliable. In order to capture better sub-grid
interface dynamics, the combination of EVD with either stochastic particle or stochastic field
based PDF solution may be a better option. This study confirms that sub-grid/sub-volume
surface tension effects are important and reliable sub-models are necessary. EVD based
sub-volume surface tension closure helps to have a better prediction of the jet decay rate.
However, the solutions are sensitive to the scaling constant. Further investigation is needed
to establish a suitable mechanism for the selection of scaling constants linked with flow
conditions instead of having different values for different Weber number flows. Future work
may focus on determining the range of flow conditions for which the surface tension model
constants produce good results.

The recent analysis confirms that the performance of the coupled level set volume of fluid
(CLSVOF) method is better than all other available interface-capturing solutions. However,
no conclusive findings have been reported regarding grid independence, which is still a big
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challenge. Furthermore, the computational requirement for CLSVOF based solutions is high,
and still not possible to capture the desired statistics for a full scale practical injector. To make
these methods practically feasible, there is a need for explicit sub-grid modelling solutions
which are grid independent and computationally less expensive. Explicit volume diffusion
(EVD) based sub-volume solution for CLSVOF may lead to more realistic predictions
applicable to a broader range of flow conditions.

In this study, Shirani’s sub-grid/sub-volume closure is investigated for all three TFVoF,
TF-AC and EVD formulations. The performance of Shirani’s model is satisfactory when
the variables are explicitly defined and are not linked with grid resolution. When Shirani’s
sub-grid closure is coupled with the implicit LES filtered solutions, as in the case of TFVoF
and TF-AC, jet decay rate predictions are less realistic. Further improvements are needed
to capture more accurate sub-grid surface tension effects for both explicit and implicit
formulations.
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