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ABSTRACT 

Worldwide medical residency markets commonly employ variants of the two-

sided central clearinghouse designed by Roth and Peranson in 1999. In the NSW 

physiotherapy residency matching market, a one-sided and computationally efficient 

matching mechanism is used – the Kuhn-Munkres algorithm. The mechanism is new 

for medical matching markets, with no publicly known application and no existing 

literature. A crucial contribution of the thesis is presenting the algorithm and starting 

a discussion around the Kuhn-Munkres algorithm in matching. The thesis models the 

iterative working of the Kuhn-Munkres algorithm. I show that the Kuhn-Munkres 

algorithm is rank-efficient, outcome unfair, procedurally fair and not strategy-proof. 

Comparing the Roth-Peranson and Kuhn-Munkres algorithms on efficiency, fairness 

and incentive properties, the thesis concludes that there is no settled winner 

between the two algorithms. The competition eventually comes down to the trade-

off between cost reductions and market complexities. 
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1 Introduction 

Medical graduates take entry-level positions in the residency as their first step to 

becoming a doctor. Residency programs are designed to offer a diverse experience, 

facilitating graduates to apply, consolidate and expand their knowledge within a 

supportive framework (NSW Physiotherapy Allocation, 2022). In physiotherapy, 

residency programs are outstandingly important. Physiotherapy is a growing 

profession with sustained pressure on workforce supply. Australian Physiotherapy 

Association (2021, general demographics and characteristics section, para.4) 

reported that “the ratio is 145 physiotherapists per 100 000 people in major cities, 

this drops to 89 per 100 000 in regional areas and 46 per 100 000 in remote and very 

remote areas”. Besides the labour supply shortage, an aging population continuously 

raises the demand for physiotherapy (IBISWorld, 2022). This labour market pressure 

calls for a well-designed matching process, positioning each graduate to their most 

suitable program. 

NSW uses a central clearinghouse to implement the matching process – from 

medical graduates to hospital positions (NSW Physiotherapy Allocation, 2022). 

Centralized implementation alone doesn’t guarantee a well-designed matching 

process. Only an organized central clearinghouse can promote the proper 

functioning of the matching. First, an organized central clearinghouse can prevent 

much chaos in decentralized markets. In the 1920s, hospitals expected US medical 

students to sign residency contracts in their sophomore year, even before finalising 

their majors (Roth, 1984). Moreover, an offer was only active for a day or even an 

hour (Roth, 1984). The centralized clearinghouse adopted in the 1950s resolved both 

issues (Roth, 1984). Second, a central clearinghouse can accommodate changing 

market trends and needs. In 1999, Roth and Peranson (1999) modified the US 

medical residency matching for couples’ wishes to work in the same vicinity. 

Scotland also admitted couples’ preferences over pairs of hospitals since 2009 

(Irving, 2011). In 2008, Japan introduced regional quotas to promote geographical 

equality for the distribution of new residents (Kamada & Kojima, 2015). Finally, 

unorganized central clearinghouses will not survive. When US and UK first 
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implemented centralized mechanisms, both were abandoned quickly due to 

incentive problems and prearranged agreements outside the centralized process 

(Roth, 1984; Roth, 1991). Voluntary participation in the US dropped significantly in 

the 1970s due to the mechanism’s incompetence in accommodating couples’ 

preferences. The US gastrointestinal centralized market crashed wholly and suddenly 

due to a lack of confidence from students (McKinney, Niederle & Roth, 2005). 

Therefore, researchers should constantly scrutinise a central clearinghouse’s 

functioning and properties.  

NSW established the physiotherapy residency matching mechanism 40 years ago 

(NSW Physiotherapy Allocation, 2022). Unfortunately, there is neither public 

information nor economic literature about the NSW physiotherapy matching market. 

By interviewing many current Allocation Committee members1, I gathered that the 

market had undergone significant transformations. Initially, the mechanism used 

pure GPA-based priority matching. A higher GPA meant a more elevated chance of 

getting into top preferences. Later, universities decided not to disclose graduates’ 

GPAs, so the mechanism switched to random allocation. Several unlucky university 

medal winners ended up unmatched, urging a mechanism change. This luck-based 

mechanism was replaced by a 2-stage matching process – allocation and 

recruitment. First, the Allocation Committee assessed all applicants and allocated 

desirable applicants to hospitals for interviews. Participating hospitals admitted 

applicants who successfully passed the recruitment stage.  

The current mechanism was enacted two years ago, which overall inherited the 2-

stage process. Every applicant submits a rank-order list strictly preferring all 

hospitals (NSW Physiotherapy Allocation, 2022). Then the allocation process begins. 

In the new mechanism, the Allocation Committee only allocates, not assesses, 

applicants. The process assigns all applicants to hospitals for interviews without 

rejecting anyone in this process. The allocation quota for each hospital is determined 

by the rule below:  

 
1 Susan Sellars, David Cross, David Roberts, David Schmidt, Gretchen Buck, Julia Blackford, Noah 

Mitchell and Josephus Paya 
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The number of candidates allocated to each hospital is determined by how 

many First Year Graduate positions are taken by that hospital relative to the 

overall number of FYG positions and the total number of candidates. For 

example, if a hospital takes 12 FYG positions and there are 120 total FYG 

positions they represent 10% of the program and will take 10% of the 

applicants. If there are 250 applicants, this hospital will have 25 7 candidates 

allocated. (NSW Physiotherapy Allocation, 2022, the allocation process 

section, para.2)  

Therefore, the number of interview positions equals the number of applicants, 

guaranteeing each applicant one place. After receiving assigned applicants, each 

hospital manages the recruitment process individually. The recruitment process 

incorporates selection criteria, interviews, reference and employment requirements 

checks (NSW Physiotherapy Allocation, 2022). In December, hospitals inform their 

final decisions to the Allocation Committee (NSW Physiotherapy Allocation, 2022). 

The thesis will solely focus on the allocation process since the recruitment process 

is just a merit-based selection. However, no published sources inform applicants 

what mechanism is in use. The only description of the allocation mechanism is  

The candidates within the pool are submitted to the OPPM computer 

program, which allocates all applicants to a hospital, based on giving the 

highest number of applicants as close as possible to their highest preference 

(NSW Physiotherapy Allocation, 2022, the allocation process section, para.1)  

In an interview with the NSW Allocation Committee website admin2, he told me that 

the allocation process utilizes the Kuhn-Munkres algorithm (Paya, private 

conversation). Interestingly, to the best of my knowledge, no publicly known medical 

matching markets harness the Kuhn-Munkres algorithm (abbreviated as KM 

 
2 Much thanks to our NSW Allocation Committee website admin, Josephus Paya 
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hereafter). Moreover, failing to find any matching literature about the algorithm, KM 

seems to be a black box to economists. The thesis correspondingly aims to unravel 

the mysterious KM from an economics perspective for the first time. There are three 

puzzles this thesis seeks to resolve: How does KM work; What are KM’s properties; Is 

KM working well compared to the existing algorithms? 

KM is an iterative way to assign as many applicants as possible to their top 

preferences. I propose that KM is rank efficient, outcome unfair, procedurally fair 

and not strategy-proof. One of the most prevalent mechanisms used in the 

worldwide medical matching market is the algorithm designed by Roth and Peranson 

(1999) (abbreviated as RP hereafter). Regarding efficiency, KM consistently achieves 

a stronger efficiency than RP both theoretically and practically. KM is always 

outcome unfair, while RP is outcome fair in simple markets. KM and RP are both 

always procedurally fair, theoretically and practically. Theoretically, KM and RP are 

not strategy-proof but with some protection against strategy behaviours. In practice, 

KM and RP are both unavoidably subject to applicants’ gaming.  

At the first glance, it may seem that KM fares better than RP on efficiency, worse 

than RP on fairness and that equally as RP on incentive properties. However, one 

should not take the results at face value. KM is a matching mechanism in one-sided 

simple matching markets, and RP is for two-sided complex matching markets. To 

address the differences, I restrict theoretical discussions to simple markets, while 

RP’s complications in complex markets are referred to as practical comparisons. It is 

therefore concluded that there is no easy win or lose between RP and KM, propelling 

future exploration of KM. 

The rest of the paper is structured as follows. Section 2 introduces the 

background on KM, other mechanisms and algorithms in medical matching markets. 

Section 3 sets up the model and explains how KM functions. Section 4 investigates 

KM’s efficiency, fairness and incentive properties. Section 5 discusses the theoretical 

and practical comparisons between KM and RP. Section 6 concludes and discusses 

further research directions. 
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2 Background 

2.1 KM Evolvement and Application 

KM is a combinatorial optimization algorithm initially designed to solve the 

personnel-assignment problem. The personnel-assignment problem tries to find an 

optimal way to assign 𝑁 personnel to 𝑁 jobs (Kuhn, 1955). Each personnel has a 

numerical rating on each job (Kuhn, 1955). Kuhn (1955) described the aim of KM as 

maximizing the sum of personnel’s ratings for their assigned jobs. While Flood (1956) 

argued that the optimal assignment by KM should minimize the sum of the ratings if 

the ratings are costs incurred for jobs. Munkres (1957) proved the equivalence of 

KM’s two functions. KM can be used to reach a maximum or a minimum of the sum 

of ratings assigned (Munkres, 1957).  

Kuhn designed the algorithm in 1955. Flood (1956) simplified Kuhn’s method, 

producing a set of possible solutions. To produce a unique deterministic algorithm 

outcome, Munkres (1957) manufactured a process based on the transfer series in 

Kuhn’s original approach. All these attempts make KM a polynomial-time algorithm, 

dramatically reducing the maximum number of operations required for a solution 

from 𝑁! to 
11𝑁3+12𝑁2+31𝑁

6
 (Munkres, 1957). KM’s computational efficiency is 

remarkable compared to the time complexity required for locating a similar solution 

in two-sided markets. Gusfield and Irving (1989) proposed an optimal stable solution 

that minimizes the sum of agents' ratings on the other side of the market. They 

found that at most (𝑁4𝑙𝑜𝑔𝑁) operations are needed for a solution, which is almost 

computationally impossible for a large market (Gusfield and Irving, 1989). 

The computational efficiency of KM predicts its wide application. “Munkres 

assignment can be applied to TSP (travelling-salesman problem), pattern matching, 

track initiation, data correlation, and (of course) any pairwise assignment 

application” (Bevilacqua Research Corporation, 2022, para. 5, point 14). KM’s 

implementation is especially prevalent in energy management (Mirzaeinia & 

Hassanalian, 2019; Sanseverino et al., 2015). The University of Texas Southwestern 

students proposed to optimize medical rotation schedules using KM (MacLean et al., 
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2020). The existing research scrutinizes how KM is applied. This paper bridges the 

gap by asking – how and how well does KM function? 

2.2 Worldwide Medical Residency Matching Mechanisms 

2.2.1 the United States (NRMP3; APPIC4) and Canada (CaRMS5) 

The US medical residency, US professional clinical psychology internship and 

Canada residency matching markets all use RP. Applicants register online and apply 

to hospitals for interviews, after which applicants and hospitals both submit strict 

preference lists (see the details in NRMP, APPIC and CaRMS). In addition to 

traditional one-by-one rankings, the markets allow couples’ preferences over pairs of 

hospitals and applicants’ preferences over pairs of complement positions (Roth & 

Peranson, 1999). RP inputs applicants’ and hospitals’ preferences and outputs a set 

of matched applicant-hospital pairs. RP is the applicant-proposing deferred 

acceptance mechanism without preferences with complementarities (i.e. the two 

cases mentioned) (Roth & Peranson, 1999). To address the complications in complex 

markets, RP identifies and eliminates blocking pairs6 caused by an applicant with 

complement preferences before processing the next applicant (Roth & Peranson, 

1999). This technique is based on the instability-chaining model – blocking pairs are 

tackled once at a time until there is none left (Roth & Vande Vate, 1990). If the 

blocking pairs start to cycle, RP proceeds with other applicants, forcing the 

termination of a cycle7 (Kojima, Pathak & Roth, 2013). RP (Roth & Peranson, 1999) 

works in the following way: 

(1) Match a single applicant to a hospital using the applicant-proposing deferred 

acceptance mechanism 

(2) When the applicant has complement preferences between positions and 

displaces more than one applicant or one position or both, solve blocking 

 
3 National Resident Matching Program 
4 Association of Psychology Postdoctoral and Internship Centers 
5 Canadian Resident Matching Service 
6 A blocking pair is an applicant-hospital pair, which both prefer each other than their current 
matching. 
7 Exactly how the force rumination of a cycle works is publicly unavailable (Kojima, Pathak & Roth, 
2013) 
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pairs created by the applicant one at a time until all bocking pairs created are 

eliminated 

(3) Repeat (1) and (2) until all singles are processed 

(4) Match a couple to a pair of hospitals using the applicant-proposing deferred 

acceptance mechanism 

(5) When the couple displace more than one applicant or one position or both, 

solve blocking pairs created by the couple one at a time until all bocking pairs 

created are eliminated 

(6) Repeat (4) and (5) until all couples are processed 

2.2.2 Japan (JRMP8) 

Japan’s residency matching mechanism operates identically as in the US after a 

central adjustment to all hospital’s quotas (see the details in JRMP). In 2008, the 

market introduced regional caps to curtail geographical inequality in the distribution 

of doctors, restricting the number of applicants assigned to a specific area (Kamada 

& Kojima, 2015). The hospitals’ quota within the same prefecture will be reduced 

proportionately to its original capacity if their sum exceeds the regional cap (Kamada 

& Kojima, 2015). 

2.2.3 the United Kingdom (UKFP9) 

Before introducing the matching mechanisms, there are a few notable differences 

in the UK matching market from the US. First and foremost, it doesn’t require 

hospitals to submit preferences (Biró, Irving & Schlotter, 2011). Hospitals’ 

preferences are derived from the master list, which is a strict ranking of students 

based on their scores (Biró, Irving & Schlotter, 2011). So no student is expected to 

apply individually for interviews. Second, participation in this residency program is 

compulsory (Roth, 1991). Third, couples are not allowed to submit preferences over 

pairs of foundation schools and individual programmes. Couples need to submit two 

identical preference lists, which will be linked in the matching (UK Foundation 

Programme, 2022). Finally, the matching is divided into two stages – national and 

local matching. The national matching process allocates a student to a foundation 

 
8 Japan Residency Matching Program 
9 The United Kingdom Foundation Programme  
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school10, while the local matching process allocates a student to a hospital within 

that foundation school (UK Foundation Programme, 2022). Therefore, once allocated 

to a particular foundation school, students need to submit another strict preference 

list of individual programmes in that foundation school (see the details in UK 

Foundation Programme, 2022). 

The national matching process uses serial dictatorship (Kamada & Kojima, 2015). 

Students' scores determine the priority order (UK Foundation Programme, 2022). 

When students' scores result in a tie, decile scores and then SJT test scores are 

utilized to break the tie (UK Foundation Programme, 2022). If both scores still result 

in a tie, the tie will be broken randomly (UK Foundation Programme, 2022). This 

priority order of students is the master list and will be carried into the local matching 

process (Biró, Irving & Schlotter, 2011). The local matching process is managed by 

each foundation school differently. This paper only introduces the matching 

mechanism in the largest regional market – Scotland. 

Students assigned to the Scotland foundation school submit a strict preference 

list of 10 programs (Irving, 2011). Hospitals’ preferences are derived from the master 

list, and couples’ preferences are constructed consistently11 from their individual 

preference lists (Biró, Irving & Schlotter, 2011). The matching mechanism is a variant 

of RP, using a different processing sequence of agents in the algorithm (Biró, Irving & 

Schlotter, 2011). The Scotland algorithm first processes singles and randomizes the 

order of couples and displaced students by complement preferences (Biró, Irving & 

Schlotter, 2011). When the blocking pairs cycle, this algorithm reverts tp another 

master list which may be different due to random tie-breaking (Biró, Irving & 

Schlotter, 2011). The algorithm is repetitively implemented to select the matching 

with the minimum number of blocking pairs (Biró, Irving & Schlotter, 2011).  

2.2.4 Israel  

 Unlike all mentioned markets, Israel's internship matching market is one-sided. 

Only students need to submit strict preference lists (Roth & Shorrer, 2015). Each 

hospital’s quota is centrally determined by the Ministry of Health (Bronfman et al., 

 
10 One region usually has one foundation school. In total, there are 19 foundation schools in the UK. 
11 See how couples’ preferences are constructed in (Biró, Irving & Schlotter, 2011) 
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2018). The mechanism unfolds in three stages. First, the mechanism runs random 

serial dictatorship repeatedly (Bronfman et al., 2015). Averaging over all 

assignments, an expected probability vector for all positions is computed for all 

interns (Bronfman et al., 2015). Second, the mechanism uses linear programming to 

maximize the sum of interns’ utilities for their assignments subject to several 

constraints12 (Bronfman et al., 2015). The mechanism assumed a common utility 

function for all interns, constructed from a survey (Bronfman et al., 2015). Finally, 

the probability matrix is decomposed into a convex combination of deterministic 

assignments (Bronfman et al., 2018). The final assignment is chosen randomly per 

the weights on those deterministic assignments (Bronfman et al., 2015). Israel's 

internship matching market is of the closest setting to NSW – both one-sided 

matching market and hospital quotas are determined centrally. But Israel's matching 

mechanism varies significantly from KM, stressing the novelty of KM in matching 

literature and the importance of an investigation in KM.  

2.3 Algorithms in Matching 

Although KM is a brand-new application, researchers have already attempted 

operational algorithms as answers to problems in medical matching markets. 

However, all proposed algorithms currently remain on the paper. KM, as an 

algorithm already in use, serves as a theoretical and empirical connection between 

operational research and matching literature. Section 2.3.1 outlines the upfront 

challenge of using an algorithm in a matching market. Section 2.3.2 describes the 

current algorithm's attempts to solve the problems.  

2.3.1 Hard to find an efficient algorithm 

An algorithm greatly automates the matching process if solvable in a reasonable 

amount of time. Unfortunately, finding an efficient algorithm has proved to be 

difficult, if not impossible, in two-sided complex matching markets. Ronn (1990) 

 
12 (1) hospital quota constraint (2) couples consistency constraint – a guarantee to match into the 
same hospital (3) do not harm: an agent cannot be worse off than the expected probability vector 
(Bronfman et al., 2015) 
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proved that the problem of if a stable matching13 exists is NP-complete14, even when 

all hospitals have one quota and only couples present in the market. Biro, Manlove 

and Mcbride (2014) proved NP-completeness under further stronger restrictions 

than Ronn’s assumptions, assuming couples' and hospitals’ preferences lists are at 

most of length 2. The problem remains NP-complete even if there is only one pair of 

hospitals on couples’ preference lists (Manlove, Mcbride & Trimble, 2017). When 

hospitals’ preferences are derived from strict master lists (like in the UK), and all 

hospitals only have one quota, finding a stable matching is still NP-complete (Biró, 

Irving & Schlotter, 2011). McDermid and Manlove (2010) shifted the attention to 

restricting the preference domain of couples. Under the restriction, assuming each 

applicant’s preference list has a length of at most 3 and hospitals have at most 2 

quotas, the existence of a stable matching is still NP-complete (McDermid & 

Manlove, 2010). The computational complexity of finding a desirable solution is still 

prominent in one-sided matching markets. It is proved that decomposing a 

stochastic assignment matrix is NP-hard15 with couples (Bronfman et al., 2018). That 

is, the problem takes, at best polynomial time operations. Although applied in a 

theoretically simple one-sided matching market, KM is an efficient algorithm for a 

desirable solution. 

2.3.2 Attempts to find an efficient algorithm for a desirable outcome 

The first method researchers try is to restrict the market complexities. Although 

an efficient algorithm is unlikely to exist, these NP-completeness results provide 

meaningful boundaries to search for a polynomial-time solvable algorithm in two-

sided matching markets (Manlove, Mcbride & Trimble, 2017). Manlove et al. (2007) 

assumed no complement preferences and applied the constraint programming 

algorithm, obtaining better time and space complexities than the deferred-

 
13 A stable matching is a desirable outcome where (1) no agent prefers unmatched to its current 

partner (2) no applicant-hospital pair such that both prefer each other than its current partner (Roth, 

1982).  

14 A class of computational problem in which no efficient algorithm is found now, that is, can be 

solved in polynomial time complexity; NP stands for nondeterministic polynomial – Wikipedia, 2022 

15 NP-hard is a class of problems that are at least as hard as NP-problems – Wikipedia, 2022. 
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acceptance mechanism. They pointed out that variants of the markets (including 

couples) can be readily tackled by adding side constraints (Manlove et al., 2007). 

McDermid and Manlove (2010) proposed a polynomial-time algorithm that always 

finds a stable matching after restricting couples’ preferences and hospital quotas 

(McDermid & Manlove, 2010).  

The second method researchers try is a solution that approximates the desired 

aim, albeit not reaching the goal exactly. In complex two-sided markets, researchers 

admit solutions minimizing the number of blocking pairs -- maximum cardinality 

stable matching (Biro, Manlove and Mcbride, 2014; Manlove, Mcbride & Trimble, 

2017). Biro, Manlove and Mcbride (2014) put forward the first integer programming 

algorithm, while Manlove, Mcbride and Trimble (2017) proposed a constraint 

programming algorithm. Constraint programming on average is faster than integer 

programming in finding this most stable solution, and they both admit a very low 

number of blocking pairs (Manlove, Mcbride & Trimble, 2017). In a one-sided ordinal 

market with couples, Bronfman et al. (2018) suggested a polynomial-time algorithm 

for approximately decomposing the target stochastic matrix. 

The third method researchers try is to apply efficient existing algorithms directly 

to matching markets. A stable matching can be found in complex two-sided markets 

using SAT and IP algorithms (Drummond, Perrault & Bacchus., 2015). SAT and IP 

solvers are efficient when the deferred-acceptance algorithm fails to find a stable 

matching (Drummond, Perrault & Bacchus., 2015). Answer set programming is 

another off-the-shelf algorithm (de Clercq et al., 2016). It is easily adaptable to 

matching markets with couples and preferences with ties, locating a fair and 

maximum cardinality stable matching (de Clercq et al., 2016). Boehmer, Heeger and 

Nirdermeier (2022) found XP algorithm can find a stable matching, considering 

preferences and with ties and applicants' preferences change over time. This list is 

by no means exhaustive but as strong evidence suggesting the close relation 

between operational research and matching markets. KM, another off-the-self 

solver, fills the gap as an efficient algorithm for one-sided matching markets with 

strict preferences and no couples.  
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3 Model 

3.1 Model Setup 

A one-sided assignment problem is a tuple 〈𝐴, 𝐻, 𝑃, 𝑋〉. KM is a mapping 𝜇: 𝑃 →

𝑋. 𝐴 = {𝑎1, 𝑎2, … 𝑎𝑖 , … , 𝑎𝑛} is a finite set of applicants. 𝐻 = {ℎ11, ℎ12, … , ℎ𝑗𝑘 … , ℎ𝑚𝑛}  

is a finite set of hospital positions. There are 𝑚 hospitals and 𝑛 positions. ℎ𝑗𝑘 is the 𝑘𝑡ℎ 

position among all positions belonging to hospital 𝑗. The Allocation Committee assigns 

each hospital a quota such that the number of positions equals the number of 

applicants (NSW Physiotherapy Allocation, 2022). So the set of 𝐻 is of the same size 

𝑛 as the set of 𝐴. 𝑃𝑛×𝑛 is the applicants’ preference matrix. Each cell 𝑝𝑎𝑖ℎ𝑗𝑘
 denotes 

𝑎𝑖’s preference for position ℎ𝑗𝑘. The 𝑎𝑖𝑡ℎ row of 𝑃 is the applicant 𝑎𝑖’s preference 

for all hospital positions -- 𝑝𝑎𝑖
= ∪ℎ𝑗𝑘

𝑝𝑎𝑖ℎ𝑗𝑘
. The ℎ𝑗𝑘𝑡ℎ column of 𝑃 is all applicants’ 

preferences for the position ℎ𝑗𝑘  -- 𝑝ℎ𝑗𝑘
= ∪𝑎𝑖

𝑝𝑎𝑖ℎ𝑗𝑘
. All applicants’ preferences 

𝑝𝑎𝑖
 are restricted on the domain Θ that contains all possible strict rankings over 

hospitals. One thing to be careful, applicants’ preferences over hospitals are strict, 

not over positions. All positions belonging to the same hospital have the same 

preference number assigned, despite applicants submitting a strict ranking over 

hospitals. That is,  

(3.1.1) ∀𝑎𝑖 ∈ 𝐴, ∀ℎ𝑗𝑘 , ℎ𝑗′𝑘′ ∈ 𝐻, ∀𝑝𝑎𝑖
∈ Θ, (𝑝𝑎𝑖ℎ𝑗𝑘

= 𝑝𝑎𝑖ℎ𝑗′𝑘′
) ⟺ (𝑗 = 𝑗′) 

𝑋𝑛×𝑛 is the assignment matrix on the domain Ω satisfying 

(3.1.2) ∀𝑎𝑖 ∈ 𝐴, ∀ℎ𝑗𝑘 ∈ 𝐻, 𝑥𝑎𝑖ℎ𝑗𝑘
= {0,1} 

(3.1.3) ∀𝑎𝑖 ∈ 𝐴, ∀ℎ𝑗𝑘 ∈ 𝐻, ∑ 𝑥𝑎𝑖ℎ𝑗𝑘
=𝑎𝑖

 ∑ 𝑥𝑎𝑖ℎ𝑗𝑘
=  1ℎ𝑗𝑘

 

The KM assignment 𝑋 also satisfies  

(3.1.4) ∑ ∑ 𝑥𝑎𝑖ℎ𝑗𝑘
𝑝𝑎𝑖ℎ𝑗𝑘ℎ𝑗𝑘𝑎𝑖

 = minimum 

3.2 General Intuition 

In 𝑋, 𝑥𝑎𝑖ℎ𝑗𝑘
= 1 represents that 𝑎𝑖 is assigned to the position ℎ𝑗𝑘. To satisfy (3.1.3) 

in a deterministic assignment, only one applicant is assigned to one position, and 

one position only admits one applicant. Correspondingly, the set of final assignments 

is independent – no two of assignments lie in the same line of 𝑋 (Munkres, 1957). 
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Condition (3.1.4) means that KM minimises the sum of applicants’ preferences 

towards their assigned positions (Munkres, 1957). This goal is achieved by first 

assigning as many applicants as possible to their 1st positions. If all applicants consist 

of an independent set of assignments, then KM will terminate. If not, KM seeks to 

assign as many applicants as possible to their 1st and 2nd positions. KM continues in 

this manner until the set of final independent assignments includes all applicants. 

Therefore, KM assigns the maximum number of applicants to their first 𝑙 positions 

independently, which is how KM “give(s) the highest number of applicants as close 

as possible to their highest preference” (NSW Physiotherapy Allocation, 2022, the 

allocation process section, para.1).  

To be specific, KM iteratively assigns one more applicant to their first 𝑙 

preferences. If the number of applicants that can be assigned to their first 𝑙 positions 

is already maximal, then the algorithm relaxes the constraint by the smallest possible 

value 𝑞. KM then tries to assign more applicants to their first (𝑙 + 𝑞) positions. The 

number of assignments is bounded above 𝑛, and the constraints can be relaxed 

maximally to their first 𝑛 positions, so the algorithm must terminate after a finite 

number of steps ((Munkres, 1957). The process of increasing assignments is captured 

by the series of independently assigned agents 𝑍𝑘 of increasing size 𝑁𝑘. KM 

terminates when 𝑁𝑘  =  𝑁. The process of relaxing constraints is captured by the 

series of modified preference matrices 𝑃𝑘 of decreasing entries’ sum 𝑄𝑘.  

3.3 Step-by-Step Breakdown 

This section presents the working of the algorithm that the NSW residency 

matching market now employs, which is a variant of KM for rectangular matrices 

(Paya, private communication). The general working of KM is demonstrated by the 

flow chart below. Steps 1 and 2 are preliminary steps trying to assign every applicant 

to their first preferences. Step 3 checks how many applicants are assigned. Step 4 

decides if the set of independently assigned applicants is maximal given current 

constraints. If the set doesn’t reach the maximum, then step 5 will assign one more 

applicant. If the set already reaches the maximum, then step 6 will relax current 

constraints. KM inputs the preference matrix 𝑃 and outputs 𝑃𝑘. The starred zeros in 

𝑃𝑘 become 1 and all other entries become 0, producing the assignment matrix 𝑋.  
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Step 1 Subtract the row minima for each row from 𝑃. Go to Step 2 

(Bevilacqua Research Corporation, 2022)  

To minimise the sum of preferences, KM tries to assign every applicant to their 

first choice. 𝑃 becomes 𝑃1 such that  

(3.3.1) ∀𝑎𝑖 ∈ 𝐴, ∀ℎ𝑗𝑘 ∈ 𝐻, 𝑝𝑎𝑖ℎ𝑗𝑘
=  1 ⟺ 𝑝1

𝑎𝑖ℎ𝑗𝑘
 =  0 

Step 2 Find a zero in 𝑃1. If there is no starred zero in its row or column, 

star it. Repeat for all zeros in the matrix. Go to Step 3.  (Bevilacqua 

Research Corporation, 2022) 

An entry 𝑝1
𝑎𝑖ℎ𝑗𝑘

=  0 means assigning the applicant 𝑎𝑖 to position ℎ𝑗𝑘  is a 

candidate assignment. Not all candidacy is realized as final assignments because KM 

requires the set of assignments to be independent. So, we need final assignments 

denoted by a unique symbol with no two in the same row or column -- starred zeros. 

One crucial detail is that KM always locates a zero by searching the first-row first 

column, first-row second column…, and so on before going to the next row. This 

detail impacts the fairness property of KM. 

Step 1 

Step 2 

Step 4 

Step 3 

Step 5 Step 6 

Done 
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Step 3 Cover all columns containing a starred zero. If 𝑁 columns are 

covered, KM terminates. Otherwise, go to Step 4. (Bevilacqua Research 

Corporation, 2022)  

Covering a column is a way to keep track of the number of independent 

assignments. A column only has one starred zero. So, the number of columns 

covered equals the number of starred zeros, which is the number of assignments. 

When there are 𝑛 assignments, KM terminates. One desirable but improbable case is 

that KM terminates after steps 1-3, when every applicant can be assigned to their 

first preferences.  

Step 4 Find a noncovered zero and prime it. If there is no starred zero in 

its row, go to Step 5. Otherwise, cover the row and uncove r the column 

with the starred zero. Repeat until all zeros in the matrix are covered. Go 

to Step 616. (Bevilacqua Research Corporation, 2022)  

This step is judging if the number of applicants assigned to their first 𝑙 positions 

reaches the maximum. In the first case, when a row has a primed zero but no starred 

zero, it means that this applicant can be assigned but is now unassigned. So the 

series 𝑍𝑘 can continue to grow. In the second case, the maximal number of 

applicants are assigned to their first 𝑙 positions, so KM resorts to constraint 

relaxation. Munkres (1957) proved why in the second case, the set of starred zeros is 

maximal. By construction, a starred zero is covered by exactly one line. Thus, the 

number of independent starred zeros cannot be more than the number of covered 

lines containing all zeros (Munkres, 1957).  Following a mathematical theorem by 

König, the set of starred zeros describes the maximum number of independent 

assignments (Munkres, 1957). 

Step 5 Construct a sequence 𝑍. The first entry 𝑧1 is the primed zero in Step 

4. 𝑧2 is the starred zero in 𝑧1’s column, if there is any. 𝑧3 is the primed 

zero in 𝑧2’s row (there must be one). The series stops when 𝑧2𝑘−1 has no 

starred zero in its column. In 𝑍, star all primed zeros and unstar all 

 
16 As a special case, the matrix can have no uncovered zero. Then proceed to step 6.  
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starred zeros. Erase all primes and uncover all lines, go back to Step 3.  

(Bevilacqua Research Corporation, 2022)   

Each iteration of Step 5 increases the size of 𝑍𝑘 from 𝑛𝑘 to (𝑛𝑘 + 1). This step 

assigns exactly one additional applicant to their first 𝑙 preferences, without 

displacing any assigned applicants. 𝑍 starts by assigning an unassigned applicant, 

who may snatch an assigned applicant’s current position. The assigned applicant will 

be reallocated to another position within her 𝑙 rankings, which may again snatch 

another assigned applicant’s current position. When an applicant is assigned to a 

vacant position without displacing anyone, 𝑍 terminates. 𝑍 describes a unique 

sequence of transfers. Because at most one primed zero is in a row, and at most one 

starred zero is in a column (Munkres, 1957). A starred zero must have a primed zero 

in its row, but a primed zero may not have a starred zero in its column. Therefore, 𝑍 

must continue at a starred zero and stop at a primed zero. After increasing the 

assignment by one, KM goes back to step 3 to check how many applicants are 

assigned now.  

Step 6 Find the smallest uncovered value 𝑞. Subtract 𝑞 to every element in 

all uncovered columns. Add 𝑞 to every element in all covered rows 17. Go 

back to Step 4. 

This step relaxes the constraint by the smallest value possible, so no optimal 

assignments will be skipped (Flood, 1956). Since it is impossible to assign all 

applicants to their first 𝑙 preferences, KM tries to assign everyone to their first 

(𝑙 + 𝑞) preferences. All zeros in the matrix are once-covered, so they will not be 

altered by updating 𝑃𝑘 (Munkres, 1957) . Once a zero is created, it remains a zero. 

That’s why KM assigns applicants to their first (𝑙 + 𝑞) preferences, not just the 

(𝑙 + 𝑞)𝑡ℎ preference. After relaxing the constraint, KM goes back to step 4 to check 

if there is any room for additional assignments now.  

3.4 An Example 

Suppose the initial preference matrix 𝑃 is 

 
17 The operations in Step 6 are identical to subtracting 𝑞 from every uncovered element and adding 𝑞 
to every element covered by a column and a row. 



24 
 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 1 2 2 3
𝐴2 1 1 2 2 3
𝐴3 1 1 2 2 3
𝐴4 2 2 3 3 1
𝐴5 2 2 3 3 1

 

𝐻1 and 𝐻2 are two positions belonging to the same hospital. 𝐻3 and 𝐻4 belong to 

the same hospital. 𝐻5 is a hospital with only one quota. Yellow cells denote covered 

elements. 

Step 1 Prepare all applicants’ first preferences for assignments. 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 0 0 1 1 2
𝐴2 0 0 1 1 2
𝐴3 0 0 1 1 2
𝐴4 1 1 2 2 0
𝐴5 1 1 2 2 0

 

Step 2 Assign applicants independently to their first preferences. 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1  0∗ 0 1 1 2
𝐴2 0   0∗ 1 1 2
𝐴3 0 0 1 1 2
𝐴4 1 1 2 2   0∗

𝐴5 1 1 2 2 0

 

Step 3 Only three applicants are assigned, so KM continues. 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1   0∗ 0 1 1 2
𝐴2 0   0∗ 1 1 2
𝐴3 0 0 1 1 2
𝐴4 1 1 2 2  0∗

𝐴5 1 1 2 2 0

 

Step 4 There is no starred zero uncovered, so KM considers relaxing the goal of only 

assigning applicants to their first preferences.  

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1  0∗ 0 1 1 2
𝐴2 0   0∗ 1 1 2
𝐴3 0 0 1 1 2
𝐴4 1 1 2 2  0∗

𝐴5 1 1 2 2 0
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Step 6 Now, applicants A1, A2 and A3 can be assigned to their first or second 

preferences.  

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1  0∗ 0 0 0 2
𝐴2 0   0∗ 0 0 2
𝐴3 0 0 0 0 2
𝐴4 1 1 1 1  0∗

𝐴5 1 1 1 1 0

 

Step 4 Identify a sequence where 𝐴3 could be assigned.  

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 0∗ 0 0′ 0 2
𝐴2 0 0∗ 0 0 2
𝐴3 0 0 0 0 2
𝐴4 1 1 1 1 0∗

𝐴5 1 1 1 1 0

 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 0∗ 0 0′ 0 2
𝐴2 0′ 0∗ 0 0 2
𝐴3 0 0 0 0 2
𝐴4 1 1 1 1 0∗

𝐴5 1 1 1 1 0

 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 0∗ 0 0′ 0 2
𝐴2 0′ 0∗ 0 0 2
𝐴3 0′ 0 0 0 2
𝐴4 1 1 1 1 0∗

𝐴5 1 1 1 1 0

 

Step 5 A3 becomes assigned. 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 0 0 0∗ 0 2
𝐴2 0 0∗ 0 0 2
𝐴3 0∗ 0 0 0 2
𝐴4 1 1 1 1 0∗

𝐴5 1 1 1 1 0

 

Step 3 Four applicants are assigned, so KM continues. 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 0 0 0∗ 0 2
𝐴2 0 0∗ 0 0 2
𝐴3 0∗ 0 0 0 2
𝐴4 1 1 1 1 0∗

𝐴5 1 1 1 1 0
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Step 4 Given the current preference matrix, KM already assigns the maximum 

number of applicants. So constraints need to be further relaxed. 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 0 0 0∗ 0′ 2
𝐴2 0 0∗ 0 0 2
𝐴3 0∗ 0 0 0 2
𝐴4 1 1 1 1 0∗

𝐴5 1 1 1 1 0

 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 0 0 0∗ 0′ 2
𝐴2 0 0∗ 0′ 0 2
𝐴3 0∗ 0 0 0 2
𝐴4 1 1 1 1 0∗

𝐴5 1 1 1 1 0

 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 0 0 0∗ 0′ 2
𝐴2 0 0∗ 0′ 0 2
𝐴3 0∗ 0′ 0 0 2
𝐴4 1 1 1 1 0∗

𝐴5 1 1 1 1 0

 

Step 6 A4 and A5 can be assigned to all their preferences. 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 0 0 0∗ 0′ 3
𝐴2 0 0∗ 0′ 0 3
𝐴3 0∗ 0′ 0 0 3
𝐴4 0 0 0 0 0∗

𝐴5 0 0 0 0 0

 

Step 4 Find that A5 can be assigned. 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 0 0 0∗ 0′ 3
𝐴2 0 0∗ 0′ 0 3
𝐴3 0∗ 0′ 0 0 3
𝐴4 0′ 0 0 0 0∗

𝐴5 0′ 0 0 0 0

 

Step 5 Execute the transfer and assign A5. 
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𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 0 0 0 0∗ 3
𝐴2 0 0 0∗ 0 3
𝐴3 0 0∗ 0 0 3
𝐴4 0 0 0 0 0∗

𝐴5 0∗ 0 0 0 0

 

For completeness, the final assignment matrix is 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 0 0 0 1 0
𝐴2 0 0 1 0 0
𝐴3 0 1 0 0 0
𝐴4 0 0 0 0 1
𝐴5 1 0 0 0 0

 

4 Properties 

Proposition 1 KM is rank efficient. 

4.1.1 Definition of Rank efficiency  

Featherstone (2020) defined a new concept rank efficiency in the probabilistic 

matching market. The thesis defines the concept in the deterministic assignment 

market. The rank distribution of an assignment 𝑋 is 

(4.1.1) ∀𝑎𝑖 ∈ 𝐴, ∀ℎ𝑗𝑘 ∈ 𝐻, ∀𝑙 ∈ {1,2, … , 𝑚},  𝑁𝑥(𝑙) = ∑ ∑ 𝑥𝑎𝑖ℎ𝑗𝑘
1{𝑝𝑎𝑖ℎ𝑗𝑘

≤ 𝑙}ℎ𝑗𝑘𝑎𝑖
 

The above equation characterises the number of applicants getting their 𝑙𝑡ℎ 

preference or better in 𝑋. Another assignment 𝑌 is said to rank-dominate 𝑋 if 

(4.1.2)∀𝑙 ∈ {1,2, … , 𝑚}, 𝑁𝑦(𝑙)  ≥  𝑁𝑥(𝑙)  

(4.1.3)∃𝑙′ ∈ {1,2, … , (𝑚 − 1)}, 𝑁𝑦(𝑙′) > 𝑁𝑥(𝑙′) 

In KM, every applicant is assigned, so everyone receives her 𝑚𝑡ℎ preference or 

better. That is, 

(4.1.4) 𝑁𝑦(𝑚) = 𝑁𝑥(𝑚) 

So 𝑙′ can only range from 1 to (𝑚 − 1). An assignment 𝑋 is rank efficient if it is not 

rank-dominated by any other assignment on the domain Ω (satisfying conditions 

3.1.2 and 3.1.3). We say a mechanism is rank efficient if and only if its outcome 𝑋 is 

rank efficient. 
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4.1.2 Proof of Rank efficiency  

Suppose 𝑋 is KM’s assignment. The sum of applicants’ preferences towards their 

assignments in 𝑋 is 

(4.1.5) 1 × 𝑁𝑥(1) + 2 × [𝑁𝑥(2) − 𝑁𝑥(1)] + ⋯ + 𝑚 × [𝑁𝑥(𝑚) − 𝑁𝑥(𝑚 − 1)] = 

(4.1.6) − ∑ 𝑁𝑥(𝑙) +
(𝑚−1)
𝑙=1  𝑚 ×  𝑁𝑥(𝑚) 

By the same logic, the sum of preferences assigned for another assignment 𝑌 ∈ Ω is 

(4.1.7) − ∑ 𝑁𝑦(𝑙) +
(𝑚−1)
𝑙=1  𝑚 × 𝑁𝑦(𝑚) 

From equation (4.1.4), we know that equation (4.1.7) can be replaced by  

(4.1.8) − ∑ 𝑁𝑦(𝑙) +
(𝑚−1)
𝑙=1  𝑚 × 𝑁𝑥(𝑚) 

Suppose 𝑌 rank-dominates 𝑋, then  

(4.1.9) − ∑ 𝑁𝑦(𝑙) < − ∑ 𝑁𝑥(𝑙)(𝑚−1)
𝑙=1

(𝑚−1)
𝑙=1   

So, KM’s assignment 𝑋 achieves a larger sum of preferences assigned than the 

assignment 𝑌, contradicting that KM always minimises the sum of preferences 

assigned. KM’s rank efficiency is also evident from the transfer processes. The 

algorithm iteratively assigns the maximum number of applicants to their first 𝑙 

preferences, leaving no room for rank dominance.   

4.1.3 Rank efficiency and Pareto efficiency 

Featherstone (2020) argued that in deterministic matching markets, rank 

efficiency implies Pareto efficiency but not vice versa. The intuition is that “Pareto 

concepts never insist on hurting one participant to help many, while rank efficiency 

often does so” (Featherstone, 2020, p. 2). This thesis presents proof of the efficiency 

concepts’ comparison in deterministic markets18.  

Lemma 1 An assignment 𝑌 ∈ Ω that Pareto-dominates 𝑋 ∈ Ω must rank-

dominate 𝑋.  

 
18 See the proof for ordinal markets in Featherstone (2020)  
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Denote 𝑝𝑎′𝜇𝑥(𝑎′) = 𝑙𝑎′
𝑥and 𝑝𝑎′𝜇𝑦(𝑎′) = 𝑙𝑎′

𝑦.  Suppose 𝑙𝑎′
𝑥 > 𝑙𝑎′

𝑦.  No applicant 

is worse off in 𝑌 than 𝑋 and 𝑎′ is better-off in 𝑌 than 𝑋, so 

(4.1.10) ∀𝑙 ∈ {1,2, … , 𝑚}, 𝑁𝑦(𝑙)  ≥  𝑁𝑥(𝑙) 

(4.1.11) ∃𝑙𝑎′
𝑦 ∈ {1,2, … , 𝑚}, 𝑁𝑦(𝑙𝑎′

𝑦) > 𝑁𝑥(𝑙𝑎′
𝑦) 

Lemma 2 An assignment 𝑌 ∈ Ω that rank-dominates 𝑋 ∈ Ω may not Pareto-

dominate 𝑋.  

Suppose applicants 𝑎′ and 𝑎′′ are assigned to different preferences, while all 

other applicants are as well off in 𝑌 and 𝑋. Since  𝑌 rank-dominates 𝑋, we must have 

(4.1.12)  (𝑙𝑎′
𝑥 + 𝑙𝑎′′

𝑥) − (𝑙𝑎′
𝑦 + 𝑙𝑎′′

𝑦) >  0 

Rearranging the above equation, 

(4.1.13) (𝑙𝑎′
𝑥 − 𝑙𝑎′

𝑦) − (𝑙𝑎′′
𝑦 − 𝑙𝑎′′

𝑥) >  0 

This inequality is satisfied when  (𝑙𝑎′
𝑥 − 𝑙𝑎′

𝑦) > 0 and (𝑙𝑎′′
𝑦 − 𝑙𝑎′′

𝑥) < 0. In this 

case, 𝑎′ is better-off and 𝑎′′ is worse-off in 𝑌 than 𝑋. The presence of a worse-off 

applicant negates any possibility that 𝑌 Pareto-dominates 𝑋. 

Therefore, an assignment is more easily rank-dominated than Pareto-dominated. 

Rank efficiency is stronger than Pareto efficiency, even in deterministic matching 

markets. 

Proposition 2 KM is outcome unfair. 

4.2.1 Definition of outcome fairness 

In two-sided matching markets, fairness is defined as no justified envy -- if an 

applicant prefers a position to her current assignment, then that position must not 

prefer her to one of its current assignments. There is no direct parallel of such a 

fairness definition in one-sided markets. It is unreasonable to declare the unfairness 

of a mechanism because some applicants get better assignments than others, so 

criteria are required to order applicants. In the NSW residency matching mechanism, 

the rows of the preference matrix are ordered by their application time (Paya, 

private communication). The earlier an applicant submits her application, the lower 

row she is in. The row position will affect the final assignment. So, I define outcome 
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fairness of an assignment as -- an early applicant never receiving a worse assignment 

than a late applicant with identical preferences. A mechanism is outcome-fair if and 

only if its assignment is outcome-fair for all applicants with identical preferences. 

Stated formally, if                        

(4.2.1) ∀ℎ𝑗𝑘 ∈ 𝐻, 𝑝𝑎′ℎ𝑗𝑘
= 𝑝𝑎′′ℎ𝑗𝑘

= 𝑝ℎ𝑗𝑘
 

(4.2.2) 𝑎′ is in a lower row than 𝑎′′ 

then, 

(4.2.3) ∑ 𝑥𝑎′ℎ𝑗𝑘
𝑝ℎ𝑗𝑘

≤  ∑ 𝑥𝑎′′ℎ𝑗𝑘
𝑝ℎ𝑗𝑘

 ℎ𝑗𝑘ℎ𝑗𝑘
 

This definition dictates that handing in the application early is never a disadvantage. 

If applicants with identical preferences cannot all get into the same hospital, the 

assignment that a late applicant wins the competition should not be warranted.  

4.2.2 Proof of outcome fairness 

It is easy to verify that KM is outcome unfair. In the example given in 3.4 (green 

cells denote final assignments), 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 1 2 2 3
𝐴2 1 1 2 2 3
𝐴3 1 1 2 2 3
𝐴4 2 2 3 3 1
𝐴5 2 2 3 3 1

 

 𝐴1, 𝐴2 and 𝐴3 have identical preferences. 𝐴3, who hands in her application last 

among the three, receives a better allocation than 𝐴1 and 𝐴2. 𝐴4 and 𝐴5 also have 

identical preferences. However, the early applicant 𝐴4 gets a better allocation than 

𝐴5. How does this occur? Why applying early is sometimes disadvantageous and 

sometimes not? 

Proposition 3 KM is procedurally fair. 

4.3.1 Definition of procedural fairness 

This irregular occurrence of disadvantages towards early applicants needs to be 

formalised by another fairness concept. Then we need to answer the question – why 

are the disadvantages not permanent?  
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KM’s step 2 tries to assign all applicants to their first preferences, starting with 

early applicants. So late applicants remain unassigned if there is not enough quota 

for all applicants with identical preferences. To assign these applicants, early 

applicants are involved in transfers in step 5. They will be relocated to other zeros in 

their own rows, possibly newly created zeros from relaxing the constraint (strictly 

worse positions). 𝐴1 and 𝐴2 are displaced from their first preference for 𝐴3 to be 

assigned, while 𝐴3 snatches their freed-up position. This is why early applicants are 

disadvantaged.  

However, transfers in KM are constructed based on the column order of the 

preference matrix, not based on applicants’ rankings. This is the result of a crucial 

detail -- KM always locates a zero by searching the first-row first column, first-row 

second column…, and so on before going to the next row. Accordingly, an early 

applicant is relocated to the zero in her lowest uncovered column (the lowest 

uncovered column just before covering the row, not the first column), which need 

not be a worse position than the current assignment. Early applicants tend to involve 

in transfers, but involving in a transfer is not equivalent to a worse assignment (see 

appendix 8.1 for an example of where an applicant is better off in a transfer). 𝐴5’s 

lowest uncovered zero is in column 1, so she is assigned to her second preference, 

while 𝐴4’s assignment is untouched. That’s why an early applicant may not be 

disadvantaged19.  

Whether an early applicant is disadvantaged depends on which positions have 

zeros and where those zeros are. Different preferences contribute to the irregular 

occurrence of an early application’s disadvantage. Hence, the new fairness definition 

should consider fairness before any preference is realized.  

The paper proposes a procedural fairness concept of an assignment – an early 

applicant never receives a worse assignment than a late applicant with identical 

preferences on average, given all possible preferences. Bolton, Brandts & Ockenfels 

(2005) argued that allocation fairness and procedural fairness are distinctly different. 

 
19 One can get a better allocation than her current assignment in a transfer (see the Appendix for an 
example) 



32 
 

Procedural fairness is crucial in that it levels the playing field, is ex-ante acceptable 

and also how modern societies deem fairness (Bolton, Brandts & Ockenfels, 2005). 

We say a mechanism is procedurally fair if and only if its assignment is procedurally 

fair for all applicants with identical preferences. As stated formally, if (4.2.1) and 

(4.2.2) are satisfied, then  

(4.3.1) ∀𝑝ℎ𝑗𝑘
∈ Θ, E (∑ 𝑥𝑎′ℎ𝑗𝑘

𝑝ℎ𝑗𝑘ℎ𝑗𝑘
) ≤ E (∑ 𝑥𝑎′′ℎ𝑗𝑘

𝑝ℎ𝑗𝑘ℎ𝑗𝑘
) 

4.3.2 Proof of procedural fairness 

To get the expected value of an applicant’s preference towards her assignments, 

we need to randomly draw preferences from Θ and apply the law of large numbers 

for the sample average to approximate the expected value. The thesis, therefore, 

resorts to computer simulations. Suppose all applicants have identical 

preferences 𝑝ℎ𝑗𝑘
. For different realizations of 𝑝ℎ𝑗𝑘

, the averages of each row’s 

rankings for their assignments asymptotically constitute the expected rank 

distribution of 𝑋. If the expected rank distribution is lower in the right tail than in the 

left tail, meaning late applicants indeed get better assignments than early applicants 

on average. That’s when KM is procedurally unfair.  

Applicants’ preferences are randomly drawn from Θ, a space containing all 

random permutations over [1,23]. 23 is chosen because there are 23 hospitals in the 

NSW matching market (Paya, private communication). 𝑝ℎ𝑗𝑘
 is one random realization 

of Θ in each simulation. For simplicity, one hospital only has one quota, so there are 

23 applicants. The expected rank distribution is the average of 500 simulations. 

Figure 1 illustrates the resulting expected rank distributions. In graph (a), the 

expected rank distribution is lower in the left tail (lower rows) than in the right tail 

(higher rows). One may be tempted to conclude that early applicants get an 

advantage on average. However, the exact opposite conclusion will be inferred by 

investigating graph (b). This is because different random number generators are 

used in plotting the two rank distributions. Given the random number generator 

zero (graph (c)), there is no systematic difference between early and late applicants 

on average. These results corroborate our theoretical prediction – assignments are 

unfair to early applicants in some 𝑝ℎ𝑗𝑘
 and not unfair in other 𝑝ℎ𝑗𝑘

. Thus, in the 
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graph (d), I shuffle the random number generators with each simulation20. The 

expected rank distribution exhibits no systematic favour towards late applicants. 

Therefore, KM is procedurally fair.  

(a) Lower rows get better preference

 

(b) Higher rows get better preference 

(c) No systematic differences for a random number generator 

 
20 Much thanks for Josephus Paya for suggesting me this idea of shuffling random number generators 
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(d) No systematic differences for shuffling random number generators 

 

Figure 1 expected rank distributions with all identical preferences 

The paper conducts two robustness checks for the result. First, the above 

simulations pertain to a very limited case where all applicants have the same 

preference. Figure 2 relaxes this assumption, in which applicants’ preferences are 

completely random. There may or may not be any identical preferences among 

applicants. When the random number generator varies with each simulation, the 

expected ranks assigned for early and late applicants are not systematically different. 

KM remains procedurally fair.  

Second, I relax the assumption that all hospitals have one quota. In the 2021 

residency matching market, there were 23 hospitals and 233 applicants. Assuming 
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all 233 applicants have identical preferences, figure 3 shows the resulting expected 

rank distribution in a large market. Each hospital’s quota matches the 2021 data and 

is ordered identically as in the NSW residency matching system (Paya, private 

communication). Figure 3 illustrates very few variations in the ranks assigned for 

lower and higher rows on average. The result that KM is procedurally fair remains 

valid in a large market.  

 

Figure 2 The expected rank distribution with random preferences 

 

Figure 3 The expected rank distribution in a large market 
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Proposition 4 KM is not strategy-proof. 

4.4.1 Definition of strategy-proofness 

We say an assignment is strategy-proof if it is a dominant strategy for all 

applicants to report their true preferences 𝑝𝑎𝑖ℎ𝑗𝑘
. That is, an assignment is strategy-

proof if 

(4.4.1) ∀𝑎𝑖 ∈ 𝐴, ∀ℎ𝑗𝑘 ∈ 𝐻, ∀𝑝𝑎𝑖ℎ𝑗𝑘
, 𝑝′

𝑎𝑖ℎ𝑗𝑘
∈ Θ, ∀𝑥, 𝑥′ ∈ Ω, 

∑ 𝑥𝑎𝑖ℎ𝑗𝑘
𝑝𝑎𝑖ℎ𝑗𝑘

≤  ∑ 𝑥′𝑎𝑖ℎ𝑗𝑘
𝑝𝑎𝑖ℎ𝑗𝑘

′

ℎ𝑗𝑘ℎ𝑗𝑘

 

We say a mechanism is strategy-proof if and only if its assignment is strategy-proof. 

Roth (2008) stressed that strategy-proofness eradicates the costs of gathering 

information on others’ preferences. Insurance for truth-telling levels the playing field 

by eliminating any advantages towards sophisticated agents (Basteck & Mantovani, 

2018). Applicants’ strategizing behaviours could incur great efficiency loss, which is 

especially important for KM (Rosenfeld & Hassidim, 2020).  KM’s strength of being 

rank efficient will be undermined without insurance against applicants’ gaming 

behaviours.  

4.4.2 Proof of strategy-proofness 

KM is not strategy-proof. Featherstone (2020) proved that “no ordinal assignment 

is both rank efficient and strategy-proof” (proposition 10, p. 28). In our example 3.4, 

if 𝐴1 reports her preferences as {1; 1; 3; 3; 2} (her true preferences are 

{1; 1; 2; 2; 3}), then the assignment becomes (the new assignment covered in green; 

assignment under truthful reporting in squares) 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 1 2 2 3
𝐴2 1 1 2 2 3
𝐴3 1 1 2 2 3
𝐴4 2 2 3 3 1
𝐴5 2 2 3 3 1

 

𝐴1 improves from her second preference to her first preference after gaming.  
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4.4.3 A gaming strategy – change cut-offs 

4.4.3.1 Formulating the gaming strategy 

In the example above, 𝐻4 𝑖𝑠 𝐴1, 𝐴2 and 𝐴3’s true second preference. KM incurs 

the same cost by assigning any of the three to 𝐻4. 𝐴1 games by listing 𝐻4 as her last 

preference, so 𝐴1 becomes costlier for 𝐻4 than 𝐴2 and 𝐴3. To minimise the sum of 

preferences assigned, KM would not consider assigning 𝐴1 in 𝐻4. The example hints 

that a strategizing applicant needs to be a cheap enough applicant for the one 

position she desires while a costly enough applicant for all other positions.  

Based on the example’s intuition, the thesis proposes a profitable gaming strategy 

– change cut-offs. The gaming applicant lists her desirable position as the first 

preference, making sure she is considered for that position. Then she states her 

preferences by just falling out of all other positions’ cut-offs for cheap enough 

assignments. To formalise the gaming strategy, how to find the cut-offs for the 

remaining positions? And how to define just falling out of the cut-offs? 

To find the cut-offs, the strategy uses Flood (1956)’s method. Suppose the gaming 

applicant 𝑎𝑔’s desirable position is ℎ𝑔. Now remove 𝑎𝑔 and ℎ𝑔 out of the market, 

remaining (𝑁 − 1) applicants and positions. Flood (1956) constructed three steps21 

that locate all the possible assignments achieving the minimised preferences’ sum in 

the remaining market. A position’s cut-off is the largest preference number among 

all zeros in its column. By way of illustration, suppose the true preference matrix is 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 2 3 4 5
𝐴2 1 2 3 4 5
𝐴3 4 5 2 3 1
𝐴4 1 2 4 5 3
𝐴5 2 3 4 5 1

 

If 𝐴1 is the gaming applicant, then the remaining market will be 

𝐻2 𝐻3 𝐻4 𝐻5
𝐴2 2 3 4 5
𝐴3 5 2 3 1
𝐴4 2 4 5 3
𝐴5 3 4 5 1

 

 
21 See the detailed steps in the appendix 
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The reduced market’s preference matrix22 for possible assignments is 

𝐻2 𝐻3 𝐻4 𝐻5
𝐴2 0 0 0 4
𝐴3 4 0 0 1
𝐴4 0 1 1 2
𝐴5 1 1 1 0

 

The cut-offs for positions 𝐻2 to 𝐻5 are {2; 3; 4; 1}. Any applicant who lists 𝐻2 as 

their second preference or better is considered for 𝐻2. Any applicant who lists 𝐻3 as 

their third preference or better is considered for 𝐻3.   

To guarantee falling out of the cut-offs, the gaming applicant states all other 

positions as her 𝑘𝑡ℎ preference where 𝑘 is larger than the cut-offs by at least 1. In 

this example, 𝐴1 would report her preference as {1; 3; 4; 5; 2}. Readers can check 

that 𝐴1 ends up assigned to her first preference, which is better than her third 

preference under truth-telling. I call this gaming strategy changing cut-offs – list the 

desirable position as the first preference; list remaining positions behind the cut-offs 

by at least one.  

4.4.3.2 Relations between change cut-offs and profitable deviations 

Lemma 1 Changing cut-offs is a sufficient condition for profitable deviation. 

Proof Define the minimum sum of preferences in the remaining market as 𝑅, 

given all others are truthful. The gaming applicant is 𝑎𝑔 and her desirable position is 

ℎ𝑔. If 𝜇𝑥(𝑎𝑔) = ℎ𝑔, the preference sum for the market will be 

(4.4.2) 𝑅 + 𝑝𝑎𝑔ℎ𝑔
 

Careful readers may question would 𝑅 change after introducing 𝑎𝑔 back in the 

market. Applicant 𝑎𝑔 is more costly than any applicant within the cut-offs for the 

remaining positions, so 𝑅 cannot decrease. Applicant 𝑎𝑔 is not assigned to any of the 

remaining positions. So if 𝑅 increases, then KM’s sum of assigned preferences will 

not be minimised. Therefore, 𝑅 must remain unmoved.  

 
22 See the intermediate steps in the appendix 
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If 𝑎𝑔 doesn’t get her desirable position ℎ𝑔, it may generate a series of assignment 

changes. Our focuses are only on who is assigned ℎ𝑔 and where is 𝑎𝑔 assigned. 

Suppose𝜇𝑦(𝑎𝑠) = ℎ𝑔 and 𝜇𝑦(𝑎𝑔) = ℎ𝑓 . Suppose 𝜇𝑥(𝑎𝑓) = ℎ𝑓. 𝑎𝑓 and 𝑎𝑠 could be 

the same applicant, when 𝑎𝑔 and 𝑎𝑓 swap their assignments. When 𝑎𝑔 causes a 

chain of assignment changes for remaining positions, 𝑎𝑓 and 𝑎𝑠 are different 

applicants. The preference sum for the market is  

(4.4.3) 𝑅′ − 𝑝𝑎𝑓ℎ𝑓
+ 𝑝𝑎𝑔ℎ𝑓

+ 𝑝𝑎𝑠ℎ𝑔
 

Since 𝑝𝑎𝑓ℎ𝑓
 is within the cut-off for position ℎ𝑓 , 𝑝𝑎𝑔ℎ𝑓

− 𝑝𝑎𝑓ℎ𝑓
≥ 1. 𝑝𝑎𝑔ℎ𝑔

=

1, 𝑠𝑜 (𝑝𝑎𝑠ℎ𝑔
− 𝑝𝑎𝑔ℎ𝑔

) ≥ 0. When 𝑎𝑔 is introduced back into the market, all 

remaining positions’ cut-offs cannot be lower since the new applicant is more costly 

than all applicants within the current cut-offs. So (𝑅′ −  𝑅) ≥ 0. 

Therefore,  

(4.4.4) 𝑅′ − 𝑝𝑎𝑓ℎ𝑓
+ 𝑝𝑎𝑔ℎ𝑓

+ 𝑝𝑎𝑠ℎ𝑔
− (𝑅 + 𝑝𝑎𝑔ℎ𝑔

) = 

(4.4.5) (𝑅′ −  𝑅)  + (𝑝𝑎𝑔ℎ𝑓
− 𝑝𝑎𝑓ℎ𝑓

)  +  (𝑝𝑎𝑠ℎ𝑔
− 𝑝𝑎𝑔ℎ𝑔

)  ≥ 1 

Assigning 𝑎𝑔 to ℎ𝑔 achieves a smaller sum of preferences assigned than any other 

assignments, so 𝑎𝑔’s deviation must be profitable. 

Lemma 2 Changing cut-offs is not a necessary condition for profitable deviation. 

Proof Even when an applicant can profitably deviate from truth-telling, changing 

cut-offs may not be feasible. We showed that in example 3.4, 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 1 2 2 3
𝐴2 1 1 2 2 3
𝐴3 1 1 2 2 3
𝐴4 2 2 3 3 1
𝐴5 2 2 3 3 1

 

 𝐴1 gets a better assignment after misrepresenting her preference (move from the 

red to the green cell). One can check that the cut-offs for 𝐻2 to 𝐻5 are {2; 3; 3; 1}.  

However, 𝐴1 cannot list 𝐻3 and 𝐻4 as her fourth choice because there are only 



40 
 

three hospitals in the market. The gaming strategy is impossible to implement for 

such cut-offs.  

Then how does 𝐴1 get a better assignment by misstating her preference? The 

trick is that a zero is a possible candidate for an assignment, while a starred zero is 

an assignment. To avoid an unwanted assignment, one doesn’t have to eliminate 

zeros in the remaining positions. Preventing a zero from becoming a starred zero in 

all remaining positions is enough. Changing cut-offs is a radical method of destroying 

zeros (candidacy) for all positions other than the desirable one. In example 3.4, 𝐴1 is 

already a candidate for 𝐻3 before 𝐴3 is assigned. To assign 𝐴3, 𝐴1’s candidacy is 

realized and thus ends up in her second preference. When 𝐴1 lies that 𝐻3 is her 

third choice, 𝐴1 falls in the cut-off for 𝐻3 only after 𝐴3 is assigned. Although 𝐴1 falls 

in the cut-off for position 𝐻3, the candidacy is never realized due to the timing of the 

transfer.  

4.4.3.3 Implication of the changing cut-offs on asymptotic incentive properties 

The existence of such a gaming strategy suggests that KM is asymptotically not 

strategy-proof. The feasibility of changing cut-offs grows as the market size grows, so 

applicants face larger room for profitable deviation in larger markets. The 

overarching assumption is that preferences are more heterogeneous when the 

market size increments. For heterogeneous preferences, different positions will be 

prioritized by different applicants and thus have low cut-offs. Accordingly, it is more 

likely that every position’s cut-off can be added by at least one, compared to a high 

cut-off.  

4.4.4 Nash Equilibrium of KM 

Since KM is proven not strategy-proof, the thesis investigates the Nash 

equilibrium of KM. Changing cut-offs is a best response when it is feasible. A natural 

question to ask is – if every applicant adopts the strategy of changing cut-offs, is it a 

Nash equilibrium? Unfortunately, no. Even if this gaming strategy always exists when 

all other applicants are truthful, changing cut-offs converge to be infeasible. When 

an applicant changes her preference, she necessarily lists some unwanted positions 

more behind than her true preferences to fall out of the cut-offs. By doing that, 

those positions’ cut-offs are pushed higher than before. For another applicant 
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disliking the same positions, this applicant must list the positions further behind to 

fall out of the cut-offs. The process continues until there is no more room for listing a 

position as less preferred to fall out of the cut-offs.  

Regarding finding the Nash equilibrium, an upfront challenge is that there is an 

exploding number of strategies available for applicants. Even restricted to a 3 ∗ 3 

market (three hospitals and three applicants), there are 63 possible combinations of 

reported preferences. The paper outlines two preliminary results and discusses 

further research directions in the conclusion.  

Lemma 1 There are multiple Nash equilibria for KM. 

Suppose the preference matrix is 

𝐻1 𝐻2 𝐻3
𝐴1 1 2 3
𝐴2 1 3 2
𝐴3 1 3 2

 

In such a simple market, there are nine Nash equilibria (see the appendix for details). 

The non-uniqueness of Nash equilibrium is because a class of reported preferences 

are trivially the same in terms of getting one’s best possible position. The relevant 

positions for one’s final assignment are the columns containing zeros. If preferences 

are different in a way that none of the zeros is impacted, then the best available 

position achieved is identical. For example, if one is considered for assignments to 

her first three preferences, then she is free to swap her preferences after her third 

position.  

Different types of applicants have different relevant positions for their final 

assignments. There are two types of applicants – one never involved in a transfer 

and the other at least involved in one. For the first type, an applicant is assigned to 

her lowest uncovered column, which is her unique, relevant position. For the second 

type, an applicant is kicked out of a starred zero column to a primed zero column, 

which are her relevant positions. However, the relevant positions are jointly 

determined by one’s own preference and all others’ preferences for those positions. 

The best response could switch from one type of applicant to another, confusing the 
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applicant’s best response by type. The Nash equilibrium of KM is still an open 

question. 

Lemma 2 In a Nash equilibrium, there could be efficiency loss compared to 

truthful reporting. 

For example, the truthful assignment (the green-covered cell denotes assignment) 

is  

𝐻1 𝐻2 𝐻3 𝐻4
𝐴1 1 2 3 4
𝐴2 1 3 2 4
𝐴3 1 3 2 4
𝐴4 1 2 3 4

 

One of its Nash equilibria is  

𝐻1 𝐻2 𝐻3 𝐻4
𝐴1 1 2 3 4
𝐴2 2 1 3 4
𝐴3 1 3 2 4
𝐴4 1 2 3 4

 

The sum of preferences in terms of true preferences moves from 9 to 10. In this 

Nash equilibrium, some applicants (in this example, 𝐴1) are worse off than under 

truth-telling, whose efficiency loss outweighs the efficiency gain from better-off 

applicants (in this example,  𝐴2).  

5 Discussion of RP and KM 

This section compares RP, the most used medical residency matching mechanism 

worldwide, with KM on their efficiency, fairness, and incentive properties. I make 

two choices to simplify the comparisons. First, all preferences are strict, avoiding the 

complications of preferences with ties (Irving, Manlove & Scott, 2008; Erdil & Ergin, 

2008). Second, the discussions divide theoretical and practical comparisons. This is 

because KM and RP are applied in theoretically different markets -- KM in simple 

one-sided markets and RP in complex two-sided markets. RP could be worse than 

KM on certain properties due to market complementarities instead of its inherent 

deficiency. Comparing both mechanisms in simple markets constitute theoretical 

discussions. Comparing both mechanisms in action, taking market 
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complementarities and participants’ behaviours into account, constitute practical 

discussions. 

KM is theoretically and practically more efficient than RP (section 5.1). Section 5.2 

KM is theoretically outcome unfair while RP is theoretically outcome fair, but both 

outcome-unfair in practice (section 5.2). KM and RP are both theoretically and 

practically procedurally fair (section 5.3). KM and RP shield against some degree of 

gaming theoretically, while both are subject to strategizing practically (section 5.4). 

These results should still be carefully treated. RP considers two-sided preferences 

while KM only applies to one-sided markets, so definitions for efficiency, fairness and 

strategy-proofness are not directly comparable. The answer to which is better boils 

down to the interactions among desirable properties, transaction costs and market 

complementarities.  

5.1 Which is more efficient 

5.1.1 Theoretical Comparison  

RP in simple markets is the applicant-proposing deferred-acceptance mechanism 

(Roth & Peranson, 1999). The deferred-acceptance mechanism is Pareto efficient 

(Roth, 2008). The thesis proved that KM is rank efficient, which is strong than Pareto 

efficient. Is the deferred-acceptance mechanism also rank efficient? That is, does the 

deferred-acceptance mechanism minimise the sum of applicants’ preferences for 

assigned hospitals? Featherstone (2020) proved that rank efficiency could only be 

achieved by a certain class of linear-programming mechanisms. Therefore, KM is 

better than RP in efficiency in simple many-to-one markets.  

5.1.2 Practical Comparison 

Roth (2008) stated that a matching is stable if and only if it is in the core. If a 

matching is in the core, then it is Pareto efficient (Roth, 2008). So the efficiency of RP 

in complex markets depends on its stability. In a market with complementarities 

between positions and couples, stable matching may not exist (Roth & Peranson, 

1999). Klaus and Klijn (2005) defined one genre of couples’ preferences as weakly 

responsive – an improvement for one is an improvement for the couple. They 

proved that if all positions are acceptable, stable matching must exist in a market 

containing only weakly responsive couples (Klaus & Klijn, 2005). However, Kojima, 
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Pathak and Roth (2013) argued that weakly responsive preferences are impractical, 

especially for couples seeking matchings in geographically close hospitals. Even if 

couples’ preferences are responsive, a stable matching may not exist if not all 

positions are acceptable and compatible (McDermid & Manlove, 2010). If a stable 

matching doesn’t exist, then RP will not be Pareto efficient in practice.  

However, RP always outputs a stable matching in 1987 and 1993-1996 NRMP 

matchings, indicating that stable matchings are likely to exist (Roth & Peranson, 

1999). Kojima, Pathak and Roth (2013) discovered that “a stable matching exists 

when there are relatively few couples and preference lists are sufficiently short to 

market size” (p. 1585). Does this asymptotic existence of a stable outcome mean 

RP’s outcome is stable? Sadly, RP may fail to find a stable matching even when one 

exists because of the limitations in computational complexity (Biro, Manlove & 

Mcbride, 2014). RP is an incomplete method, only attempting to find a stable 

matching without insurance to find one (Drummond, Perrault & Bacchus, 2015). 

Consequently, RP could be unstable and inefficient in practice. 

KM always minimises the sum of applicants’ preferences assigned, so it is rank 

efficient in practice. Practically, KM achieves better results than RP in efficiency.  

5.2 Which is more outcome fair 

5.2.1 Theoretical Comparison  

In two-sided matching markets, outcome fairness is referred to as no justified 

envy. Roth (1982) proved that the deferred-acceptance mechanism produces no 

blocking pairs. That is, all applicants only envy those who are more preferred by 

hospitals, resulting in all justifiable envies. Section 4.2 showed that KM is outcome 

unfair. Therefore, KM is worse than RP on outcome fairness theoretically.  

5.2.2 Practical Comparison  

Whether justified envy exists in RP’s outcome is equivalent to whether RP’s 

outcome is stable. As we discussed in 5.1.2, stable matchings asymptotically exist in 

complex markets, but RP doesn’t guarantee finding that stable matching 

(Drummond, Perrault & Bacchus, 2015). So RP is outcome unfair in practice.  



45 
 

The thesis proved that KM is outcome unfair, but not for all applicants with 

identical preferences. Like in example 3.4, the early applicant 𝐴4 gets a better 

assignment than 𝐴5. Could KM in NSW be outcome-fair for most applicants? In a KM 

transfer, early applicants are reallocated from lower columns to higher columns. 

Accordingly, KM is unfair to early applicants with a certain types of preferences – 

more-preferred positions in the lower columns and less-preferred positions in the 

higher columns. These applicants are worse-off in a transfer. Now the question 

becomes, are such applicants prevalent in NSW?  

Figure 4 shows all hospitals’ quotas according to the column order and the 

number of applicants listing them as their first choice in NSW (Paya, private 

conversation). The grey line depicts the differences between quotas and first 

preferences for all hospitals. The lower the grey line is, the more popular a hospital is 

relative to its capacity. As illustrated, more popular hospitals are in the higher 

columns of the preference matrix. Many early applicants’ more-preferred positions, 

which are the popular positions, reside in the higher columns of the preference 

matrix. For many applicants in NSW residency matching markets, their preference 

type is opposite to the type of disadvantaged preferences, so disadvantages for early 

applicants are seemingly small.  It is therefore concluded that albeit KM and RP are 

both outcome-unfair practically, KM’s room for unfairness is small in NSW. 

 

Figure 4 NSW participating hospitals’ popularity 
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5.3 Which is more procedurally fair 

5.3.1 Theoretical Comparison  

For RP, I define procedural fairness as – the order of admission into the algorithm 

is independent of final matchings. That is, an applicant only envies another because 

she is less preferred by a hospital, not because she is processed later in the 

algorithm. In the deferred-acceptance mechanism, a hospital accepts or rejects a 

proposal solely based on its preferences, regardless of the proposal’s order. So RP is 

theoretically procedurally fair, the same as KM (the proof in section 4.3).  

5.3.2 Practical Comparison  

Roth and Peranson (1999) simulated the effects of different admission orderings 

of applicants on the matching outcomes. Most of the matchings are identical, using 

different processing sequences (Roth and Peranson, 1999). In the most affected two 

out of eight cases, approximately 0.05% of applicants end up in different hospitals 

(Roth and Peranson, 1999). Therefore, RP is procedurally fair practically.  

Although KM is proven to be procedurally fair, applicants might think otherwise. 

Bolton, Brandts and Ockenfels (2005) stated that “only observable and verifiable 

unbiased procedures would seem credibly fair” (p. 1073-1074). In NSW, applicants 

are completely uninformed about the matching mechanism. Applicants may perceive 

the secrecy as a disguise for unfair procedures. Hence, even though RP and KM 

remain both procedurally fair practically, KM’s procedural fairness may be unreliable 

for NSW applicants. 

5.4 Which is more strategy-proof 

5.4.1 Theoretical Comparison  

Roth (1984) proved that no stable matching exists that is strategy-proof for all 

applicants. Luckily, the number of profitable gaming strategies is limited. Hospitals 

are enticed to truncate their quotas and pre-arrange matches with applicants 

(Sonmez, 1997; Sonmez, 1999). In a symmetric information environment, truncation 

stochastically dominates all other gaming strategies (Roth & Rothblum, 1999). Ehlers 

(2004) extended the assumption of symmetric information and concluded that all 

other gaming strategies are still stochastically dominated by a broadened truncation 

strategy. Ehlers (2008) further proved that truncation by the non-proposing side is 
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the best and only profitable gaming strategy in the deferred-acceptance mechanism. 

However, the limited type of profitable gaming strategy doesn’t shield against the 

large degree of gaming (Coles & Shorrer, 2014). As markets grow larger, the optimal 

degree of truncation approaches 100% if beliefs about others’ preferences are 

uniformly distributed (Coles & Shorrer, 2014). Section 4.4 argued that KM is not 

strategy-proof. Therefore, neither RP nor KM is strategy-proof. 

What if we take a step back and only require some protection against strategic 

behaviours, not devoid of all strategic behaviours? Roth and Rothblum (1999) found 

that truth-telling is an approximate Nash Bayesian equilibrium in one-to-one 

markets, assuming only the prior distribution of preferences is common knowledge. 

Kojima and Pathak (2009) extended the conclusion asymptotically to many-to-one 

markets under complete information – truth-telling is an approximate Nash 

equilibrium. When the market is large enough, the manipulated rejection chains by 

truncation will be absorbed somewhere by a vacant position (Kojima & Pathak, 

2009). Experimental evidence also suggested that most agents involved are truthful 

as the market size increases (Agarwal, 2015). Castillo and Dianat (2016) restricted 

their experiments to no unmatched agents and complete information. They found 

that most agents are truthful for fear of over-truncating and losing a potential match 

(Castillo & Dianat, 2016).  

As for KM, Featherstone (2020) proved that under a symmetric-belief 

environment and no outside options, truth-telling is a best response in rank-value 

mechanisms. Rank-value mechanisms are linear programming mechanisms with the 

same social value placed on all applicants’ 𝑘𝑡ℎ preference (Featherstone, 2020).  KM 

values all applicants’ 𝑘𝑡ℎ preference 𝑘, so KM is a rank-value mechanism. 

Correspondingly, applicants’ best responses are truth-telling under the above 

restrictions. Whether truth-telling can constitute a Nash equilibrium of KM remains 

an open question. But KM and RP both bear some protection against strategic 

manipulations. 

An additional strength of KM is its insulation from policymakers’ gaming. 

Researchers proposed the notion of policymakers’ strategy-proofness as no 

incentives to change the matching outcomes (Hakimov & Raghavan, 2022). To 
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achieve strategy-proofness for policymakers, they stressed the importance of 

transparency and verifiability of an algorithm (Hakimov & Raghavan, 2022). Although 

KM is not transparent, it successfully eliminates the incentive for policymakers to 

tinker (Featherstone, 2020). Featherstone (2020) observed that crucial criteria for 

policymakers to assess the matching outcome is the number of applicants assigned 

to their first or top three preferences. Policymakers tinker with the matching 

outcome to assign more applicants to their top preferences, sabotaging the 

properties of an algorithm (Featherstone, 2020). KM already assigns the maximum 

number of applicants as close to their top preferences as possible, so it is immune to 

any such gaming from policymakers.  

We conclude that although KM and RP are not strategy-proof in simple markets, 

they both have some protection against gaming under certain restrictive 

assumptions. Other than shielding participants’ strategic manipulations, KM 

preserves the integrity of the outcome from policymakers.  

5.4.2 Practical Comparison  

In complex two-sided markets, there is no stable mechanism that is strategy-

proof for every couple, even assuming all couples have responsive preferences 

(Klaus & Klijn, 2005). Couples can pretend to be singles as a way of profitable 

deviation from truth-telling (Klaus, Klijn & Masso, 2007). Therefore, an identical 

conclusion holds theoretically and practically – KM and RP are not strategy-proof.  

Then would both mechanisms shield against some gaming behaviours in practice, 

as in the theoretical discussion? Roth and Perason (1999) proposed that RP’s 

manipulation space is limited as the market size increases. Using computer 

simulations, they found that 0.01% of hospitals have a successful chance of 

manipulation. Immorlica and Mahdian (2005) also concluded that RP has a small 

gaming space asymptotically, generalizing preferences from uniform distributions to 

random preferences. Given the positive result in large markets, RP seems to have 

protections against strategic behaviours.  

However, whether an agent engages in strategic manipulations or not depends on 

her beliefs, not on definite profitability from strategizing (Featherstone, 2020). From 
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survey data in NRMP2015, 24% of senior and 47% of independent applicants 

admitted that they didn’t report their preferences truthfully (Castillo & Dianat, 

2016). Many applicants admitted that they modified their preferences based on the 

likelihood of successful matchings (Echenique, Wilson & Yariv, 2016). There is also 

experimental evidence suggesting that applicants skipped potential matchings 

because of a perceived low chance of getting into their top preferences, even after 

understanding how RP works (Echenique, Wilson & Yariv, 2016). Applicants’ gaming 

is also evident from NRMP matching outcomes. Agarwal (2015) argued that 

applicants used similar standards to judge hospitals, so applicants’ preferences 

should be fairly homogeneous. From NRMP2015, close to half of the applicants are 

matched to their highest preferences, and more than 85% are matched to their top 

four preferences (Agarwal, 2015; Echenique, Wilson & Yariv, 2016). These field data 

indicate that applicants’ reported preferences are diverse, contradicting the 

assumption of truthful homogeneous preferences. Castillo and Dianat (2016) argued 

that manipulation is not limited to preference reporting. Agents are already 

strategizing in applying for interviews, and they only apply for attainable hospitals 

based on the probability of successful matchings (Castillo & Dianat, 2016). 

As for KM, there is no behavioural research investigating applicants’ strategic 

behaviours. A natural thought is that applicants avoid any gaming because they don’t 

know what mechanism is in place in NSW, let alone how to game it. There is no 

overlapping generation of applicants23, so applicants cannot use past matching data 

to predict others’ preferences (Rosenfeld & Hassidim, 2020). However, empirical 

data from NSW2021 may suggest non-truthful reporting. In 2021 NSW residency 

matching, 69.1% are assigned their top preference, and 96.57% are assigned their 

top three preferences (Paya, private communication). Assuming applicants’ 

preferences are homogeneous due to similar criteria in assessing hospitals, the data 

serves as evidence for gaming behaviours. Rosenfeld and Hassidim (2020) pointed 

out that for an obscure and complicated mechanism, applicants tend to engage in 

conjecture gaming, which could describe applicants’ behaviours in NSW. Without 

any further examination, if applicants engage in gaming in NSW is uncertain. We 

 
23 An applicant can only apply to NSW Residency Allocation once. 
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conclude that applicants may be prone to strategic manipulations in practice both 

for KM and RP.  

6 Concluding Remarks 

NSW physiotherapy residency matching uses the Kuhn-Munkres algorithm, a new 

mechanism for worldwide matching markets in practice and in literature. A major 

contribution of the thesis is finding the mechanism and investigating its properties, 

hopefully inspiring future discussions. Investigating the properties of KM is important 

due to its potentially wide application. KM is computationally efficient in a one-sided 

matching market, so policymakers can significantly reduce transaction costs for two-

sided markets after converting the market to one-sided and applying KM. The 

question is, does KM achieve satisfactory properties in a one-sided market?  KM’s 

assignment is rank efficient, which is even stronger than Pareto efficiency. However, 

KM is lacking in fairness and strategy-proofness. Applying early could become a 

disadvantage to applicants with a specific types of preferences. Applicants are not 

incentivized to tell their true preferences. A sufficient but not necessary gaming 

strategy for profitable deviation is found, and the feasibility of the strategy is 

increasing as the market size grows. KM doesn’t tick all the boxes for efficiency, 

fairness and truthful revelations, so is it not useful? 

The thesis then takes a step back. KM is worth considering if it can achieve better 

properties than existing mechanisms. Now the question is, is KM better than RP? 

Theoretically, KM is more efficient but less fair than RP, while both shield against 

participants’ gaming behaviours to a certain degree. Practically, KM is more efficient 

than RP, while both are likely to be fair but subject to applicants’ gaming. A bonus 

for using KM is KM’s insulation against policymakers’ attempts to modify the 

assignments. We still cannot conclude that KM should replace RP. RP is applicable to 

markets with complementarities between positions and preferences, while KM is 

not. Eventually, policymakers need to balance market complementarities and the 

need for cost reductions.  

The thesis serves as an opening for research around KM. One direction for future 

researchers could be to formalize fairness. Section 5.2.2 points out that early 
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applicants with preferences prioritizing the positions in the lower columns in the 

preference matrix could be disadvantaged. The precise cut-off between a low and 

high column and the cut-off between early and late applicants are both undecided. 

The transfers depend on the hospital quotas, the preference matrix’s row and 

column order and all applicants’ preferences. How the cut-offs are determined given 

interactions among all those factors is an open question. 

Another future research topic is the Nash equilibrium of KM. In the markets I 

tried, all Nash equilibria generate identical payoffs for each applicant. Although the 

payoffs could be different from truth-telling assignments, they are the same across 

all Nash equilibria. If this result is true, then applicants will coordinate on a 

deterministic set of welfare outcomes. I found no counter-examples, but if this 

conjecture is correct requires further research, especially when the number of 

strategies compounds in large markets.  

Lastly, the compatibility of KM with labour market trends should be examined. As 

stated in the introduction, physiotherapy is an occupation facing a severe labour 

market shortage. If all hospitals’ quotas grow sufficiently large for all applicants, then 

all applicants will be assigned to their top preferences. If all hospitals’ quotas remain 

relatively steady, but the number of applicants grows, then the unfairness and 

incentive issues are expected to exacerbate. KM will necessarily involve more 

applicants in transfers, and the feasibility of changing cut-offs will grow. Besides the 

market size changes, how KM accommodates couples’ preferences is an open 

question. Two adjacent rows are not guaranteed to be in the hospital. If couples’ 

preferences just collapse in one row and deduct two quotas from a hospital for 

identical assignments, it will create many problems. If the couples’ preferences are 

the type that will be worse off in transfers, then it is better to apply individually 

because one applicant could involve in one less transfer. If couples’ preferences are 

the type that will be better off in transfers, then it is unfair to other applicants 

because the separate application could leave one position for other applicants with 

identical preferences. KM is now applied in a one-sided market without any 

complementarities, so its adaptability in complex markets is worth further 

investigation.  
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8 Appendix 

8.1 An example where an applicant is better off in a transfer 

𝐴4 moves from her second preference to her first preference in the last transfer. 

The initial preference matrix is  

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 3 2 2 1 1
𝐴2 2 3 3 1 1
𝐴3 3 2 2 1 1
𝐴4 2 3 3 1 1
𝐴5 2 3 3 1 1

 

https://doi.org/10.1016/j.solener.2015.09.016
https://doi.org/10.1006/jeth.1997.2316
https://foundationprogramme.nhs.uk/


59 
 

Below presents the process of KM. 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 2 1 1 0 0
𝐴2 1 2 2 0 0
𝐴3 2 1 1 0 0
𝐴4 1 2 2 0 0
𝐴5 1 2 2 0 0

 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 2 1 1 0∗ 0
𝐴2 1 2 2 0 0∗

𝐴3 2 1 1 0 0
𝐴4 1 2 2 0 0
𝐴5 1 2 2 0 0

 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 0 0 0∗ 0
𝐴2 0 1 1 0 0∗

𝐴3 1 0 0 0 0
𝐴4 0 1 1 0 0
𝐴5 0 1 1 0 0

 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 0′ 0 0∗ 0
𝐴2 0 1 1 0 0∗

𝐴3 1 0 0 0 0
𝐴4 0 1 1 0 0
𝐴5 0 1 1 0 0

 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 0′ 0 0∗ 0
𝐴2 0′ 1 1 0 0∗

𝐴3 1 0′ 0 0 0
𝐴4 0 1 1 0 0
𝐴5 0 1 1 0 0

 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 0 0 0∗ 0
𝐴2 0 1 1 0 0∗

𝐴3 1 0∗ 0 0 0
𝐴4 0 1 1 0 0
𝐴5 0 1 1 0 0

 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 0 0′ 0∗ 0
𝐴2 0 1 1 0 0∗

𝐴3 1 0∗ 0 0 0
𝐴4 0 1 1 0 0
𝐴5 0 1 1 0 0

 



60 
 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 0 0′ 0∗ 0
𝐴2 0′ 1 1 0 0∗

𝐴3 1 0∗ 0 0 0
𝐴4 0 1 1 0 0
𝐴5 0 1 1 0 0

 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 0 0′ 0∗ 0
𝐴2 0′ 1 1 0 0∗

𝐴3 1 0∗ 0′ 0 0
𝐴4 0′ 1 1 0 0
𝐴5 0 1 1 0 0

 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 0 0 0∗ 0
𝐴2 0 1 1 0 0∗

𝐴3 1 0∗ 0 0 0
𝐴4 0∗ 1 1 0 0
𝐴5 0 1 1 0 0

 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 0 0′ 0∗ 0
𝐴2 0 1 1 0 0∗

𝐴3 1 0∗ 0 0 0
𝐴4 0∗ 1 1 0 0
𝐴5 0 1 1 0 0

 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 0 0′ 0∗ 0
𝐴2 0 1 1 0′ 0∗

𝐴3 1 0∗ 0 0 0
𝐴4 0∗ 1 1 0 0
𝐴5 0 1 1 0 0

 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 0 0′ 0∗ 0
𝐴2 0 1 1 0′ 0∗

𝐴3 1 0∗ 0′ 0 0
𝐴4 0∗ 1 1 0 0
𝐴5 0 1 1 0 0

 

In the transfer below, 𝐴4 is relocated from her current assignment (second 

preference) to her lowest uncovered zero (her first preference). 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 0 0′ 0∗ 0
𝐴2 0 1 1 0′ 0∗

𝐴3 1 0∗ 0′ 0 0
𝐴4 0∗ 1 1 0′ 0
𝐴5 0′ 1 1 0 0
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𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 1 0 0∗ 0 0
𝐴2 0 1 1 0 0 ∗
𝐴3 1 0∗ 0 0 0
𝐴4 0 1 1 0∗ 0
𝐴5 0∗ 1 1 0 0

 

The final assignment is 

𝐻1 𝐻2 𝐻3 𝐻4 𝐻5
𝐴1 0 0 1 0 0
𝐴2 0 0 0 0 1
𝐴3 0 1 0 0 0
𝐴4 0 0 0 1 0
𝐴5 1 0 0 0 0

 

8.2 Flood’ method  

Step 1 Subtract the smallest element from all elements 𝑃. 

Step 2 Find the smallest number of lines that covered all zeros from step 1. If there 

are 𝑁 lines, terminate the process and the zeros will constitute a set of independent 

assignments. If not, go to step 3. 

Step 3 Find the smallest uncovered element. Subtract that element from every 

uncovered column. Add that element from every covered row. Go back to step 2. 

8.3 Flood’ method for the example in section 4.3 

The reduced market’s preference matrix is  

𝐻2 𝐻3 𝐻4 𝐻5
𝐴2 2 3 4 5
𝐴3 5 2 3 1
𝐴4 2 4 5 3
𝐴5 3 4 5 1

 

Step 1 Subtract 1 from all elements. 

𝐻2 𝐻3 𝐻4 𝐻5
𝐴2 1 2 3 4
𝐴3 4 1 2 0
𝐴4 1 3 4 2
𝐴5 2 3 4 0

 

Step 2 Only one column is covered. Proceed to step 3. 

 

𝐻2 𝐻3 𝐻4 𝐻5
𝐴2 1 2 3 4
𝐴3 4 1 2 0
𝐴4 1 3 4 2
𝐴5 2 3 4 0
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Step 3 Subtract 1 from every uncovered column. Go back to step 2. 

𝐻2 𝐻3 𝐻4 𝐻5
𝐴2 0 1 2 4
𝐴3 3 0 1 0
𝐴4 0 2 3 2
𝐴5 1 2 3 0

 

Step 2 Three columns are covered. Proceed to step 3. 

𝐻2 𝐻3 𝐻4 𝐻5
𝐴2 0 1 2 4
𝐴3 3 0 1 0
𝐴4 0 2 3 2
𝐴5 1 2 3 0

 

Step 3 Subtract 1 from every uncovered column. Go back to step 2. 

𝐻2 𝐻3 𝐻4 𝐻5
𝐴2 0 1 1 4
𝐴3 3 0 0 0
𝐴4 0 2 2 2
𝐴5 1 2 2 0

 

Step 2 Two columns and one row are covered. Proceed to step 3. 

𝐻2 𝐻3 𝐻4 𝐻5
𝐴2 0 1 1 4
𝐴3 3 0 0 0
𝐴4 0 2 2 2
𝐴5 1 2 2 0

 

Step 3 Subtract 1 from every uncovered column. Add 1 from every covered row. Go 

back to step 2. 

𝐻2 𝐻3 𝐻4 𝐻5
𝐴2 0 0 0 4
𝐴3 4 0 0 1
𝐴4 0 1 1 2
𝐴5 1 1 1 0

 

Step 2 Four lines are covered. The process terminates. 

𝐻2 𝐻3 𝐻4 𝐻5
𝐴2 0 0 0 4
𝐴3 4 0 0 1
𝐴4 0 1 1 2
𝐴5 1 1 1 0

 

8.4 Nash Equilibria in section 4. 4 lemma 1 
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𝐻1 𝐻2 𝐻3
𝐴1 1 2 3
𝐴2 1 3 2
𝐴3 1 2 3

 

𝐻1 𝐻2 𝐻3
𝐴1 1 2 3
𝐴2 3 1 2
𝐴3 1 2 3

 

𝐻1 𝐻2 𝐻3
𝐴1 1 3 2
𝐴2 2 3 1
𝐴3 1 3 2

 

𝐻1 𝐻2 𝐻3
𝐴1 1 3 2
𝐴2 3 2 1
𝐴3 1 3 2

 

𝐻1 𝐻2 𝐻3
𝐴1 2 1 3
𝐴2 1 2 3
𝐴3 1 2 3

 

𝐻1 𝐻2 𝐻3
𝐴1 2 1 3
𝐴2 1 3 2
𝐴3 1 2 3

 

𝐻1 𝐻2 𝐻3
𝐴1 2 1 3
𝐴2 3 1 2
𝐴3 1 2 3

 

𝐻1 𝐻2 𝐻3
𝐴1 3 1 2
𝐴2 1 3 2
𝐴3 1 2 3

 

𝐻1 𝐻2 𝐻3
𝐴1 3 1 2
𝐴2 2 3 1
𝐴3 1 3 2

 

 

 




