
Deep Learning in Chest Radiography:
From Report Labeling to Image

Classification

MARAM MAHMOUD A. MONSHI

Doctor of Philosophy

Research Supervisor: Dr. Josiah Poon
Associate Supervisor: Dr. Vera Chung

A thesis submitted in fulfilment of
the requirements for the degree of

Doctor of Philosophy

School of Computer Science
Faculty of Engineering

The University of Sydney
Australia

November 2022

Abstract

Chest X-ray (CXR) is the most common examination performed by a radiologist. Through

CXR, radiologists must correctly and immediately diagnose a patient’s thorax to avoid the

progression of life-threatening diseases. Not only are certified radiologists hard to find but

also stress, fatigue, and lack of experience all contribute to the quality of an examination.

As a result, providing a technique to aid radiologists in reading CXRs and a tool to help

bridge the gap for communities without adequate access to radiological services would yield

a huge advantage for patients and patient care. This thesis considers one essential task, CXR

image classification, with Deep Learning (DL) technologies from the following three aspects:

understanding the intersection of CXR interpretation and DL; extracting multiple image

labels from radiology reports to facilitate the training of DL classifiers; and developing CXR

classifiers using DL.

First, we explain the core concepts and categorize the existing data and literature for

researchers entering this field for ease of reference. Using CXRs and DL for medical image

diagnosis is a relatively recent field of study because large, publicly available CXR datasets

have not been around for very long. The current understanding of radiology text and image

structures, application of DL algorithms, utilization of available datasets, labeling of reports,

classification of images, generation of reports, and evaluation of models are thoroughly

investigated to evaluate the strengths and limitations of what has been done in relation to this

thesis.

Second, we contribute to the understanding of one of the primary challenges in the

development of CXR classification models, which is labeling large datasets with multi-label

image annotations extracted from radiology reports. We describe the development of a DL-

based report labeler model named CXRlabeler, focusing on inductive sequential transfer

learning. To the best of our knowledge, CXRlabeler is the first proposed model that has

the benefits of both Language Model (LM) fine-tuning and classifier fine-tuning to achieve

ii

ABSTRACT iii

highly accurate automated CXR report labeling. It fine-tunes a pre-trained LM to the corpus

of radiology impressions and then uses the LM encoder with a new head to simultaneously

extract observations from free-text CXR reports.

Lastly, we explain the design of three novel Convolutional Neural Network (CNN) classi-

fiers, i.e., MultiViewModel, Xclassifier, and CovidXrayNet, for binary image classification,

multi-label image classification, and multi-class image classification, respectively. MultiView-

Model introduces a stage-wise training technique and combines frontal and lateral CXRs

to improve the performance of thoracic disease detection. Xclassifier is proposed based on

distributed DL methods and an anti-aliasing filter to reduce the computational complexity

while preserving the classifier accuracy. For the multi-class image classification problem,

we propose CovidXrayNet to classify a CXR into one of the following classes: coronavirus

disease 2019, normal, or pneumonia. It focuses on optimizing CNN hyperparameters and

data augmentations and achieves high accuracy on the benchmark dataset and our generated

balanced COVIDcxr dataset, with only a few epochs of training.

This dissertation showcases significant progress in the field of automated CXR interpreta-

tion using DL; all source code used is publicly available. It provides methods and insights

that can be applied to other medical image interpretation tasks.

Statement of Originality

This is to certify that to the best of my knowledge, the content of this thesis is my own work.

This thesis has not been submitted for any degree or other purpose.

I certify that the intellectual content of this thesis is the product of my own work and that

all the assistance received in preparing this thesis has been acknowledged.

Student: Maram Mahmoud A. Monshi

Signature: Date: November 9 , 2022

iv

Acknowledgements

This thesis is dedicated to my parents, the chemistry professor Mahmoud Monshi

(1949–2018) and the retired primary school teacher Samiera Sendy, who instilled a pas-

sion for learning in me at an early age. I want to thank my mother for all the love, care,

encouragement, and support she has given me over the years despite the geographical distance

between us and the loss of her husband. My father passed away in the fifth month of my PhD

journey; may Allah bless his soul and grant him paradise.

I would like to express my immense gratitude to my research supervisor, Dr. Josiah Poon,

for his supervision, encouragement, support, and constructive guidance throughout my PhD

research. His constant advice and feedback pushed me to sharpen my thinking and bring my

research to a higher level. I am incredibly grateful for our regular meetings and conversations,

which were vital in inspiring me to think outside the box, and from multiple perspectives to

conduct comprehensive and objective research.

My grateful thanks go to my auxiliary supervisor, Dr. Vera Chung, for her constructive

comments throughout each stage of the process, all of which contributed significantly to the

final product of this thesis.

I would like to acknowledge Taif University in Saudi Arabia for providing me with

scholarship funding and thank Saudi Arabian Culture Mission (SACM) in Australia for their

help and support throughout the years. I thank Google Cloud research credits program for

supporting me to advance my research by giving me access to the computing power that

made this thesis possible. I also thank the school of computer science at the University of

Sydney for providing me with ongoing study and research resources, access to advanced

facilities, and a great study space, where most of this thesis was written. I also want to thank

them for the yearly progress evaluation, which helped me get constructive feedback from my

supervisory team and review panel and finish my research on time. Thanks to Proofed Inc.

for proofreading this thesis.

v

vi ACKNOWLEDGEMENTS

From the bottom of my heart, sincere and special thanks go to my husband and best friend,

Ibraheem, for encouraging me daily to pursue all my dreams, including my bachelor’s degree

and master’s degree and this PhD dissertation.

A special thanks to my heart’s angels, Albaraa, AbdulRahman, Yousef, Byan, and Basma,

for all of their innocent love and support. I thank them for their creative letters, soft kisses, and

warm hugs, which made me happier, more determined, and stronger. I thank them for their

patience in waiting for quality time with their mother. I thank my two oldest boys, Albaraa

and AbdulRahman, for being responsible, understanding my preoccupation, and cooperating

by studying hard during their high school years. I especially thank Yousef and Byan for

providing happy distractions to rest my mind outside of my research. I thank Basma, a name

of Arabic origin that means "smile," for being the most beautiful part of my PhD degree, as

I welcomed her in the second month of my PhD journey. Her sweet smile helped ease my

stress over the years, and her ability to understand three languages by the age of three was a

great inspiration and offered good insight into how the human brain can learn and think.

My thanks go to my siblings, Adil, Emad, Manal, Manahil, and Fahad, who became

doctorate holders in their fields before me, for supporting me emotionally to overcome the

loss of our beloved dad and for being there every time I needed one of them throughout my

PhD journey. Special thanks to my youngest brother, the radiologist Fahad, for the many

inspiring Zoom calls in which he helped me bridge the gap between computer science and

radiology.

Finally, I would like to express my most profound appreciation to my second family

in Sydney: Sania Azhar’s family. This work could not have been completed without their

extraordinary support and love.

List of Publications

Journals

J1 Monshi, M., Poon, J., Chung, V. (2020). Deep learning in generating radiology

reports: A survey. Artificial Intelligence in Medicine, 106, 101878. (CORE: A,

Impact Factor: 4.383) [Paper] [Citation: 74]

J2 Monshi, M., Poon, J., Chung, V., Monshi, F. (2021). CovidXrayNet: Optimizing

data augmentation and CNN hyperparameters for improved COVID-19 detection

from CXR. Computers in Biology and Medicine, 133, 104375. (CORE B, Impact

Factor: 3.434). [Paper] [Code] [Citation: 43]

Conferences

C1 Monshi, M., Poon, J., Chung, V. (2019). Convolutional Neural Network to Detect

Thorax Diseases from Multi-view Chest X-Rays. 26th International Conference

on Neural Information Processing (ICONIP 2019), Cham: Springer International

Publishing. (CORE A). [Paper] [Code] [Citation: 8]

C2 Monshi, M., Poon, J., Chung, V., Monshi, F. (2021), “Labeling Chest X-Ray Reports

Using Deep Learning,” in International Conference on Artificial Neural Networks

(ICANN), 2021 (CORE C). [Paper] [Code] [Citation: 1]

C3 Monshi, M., Poon, J., Chung, V. (2022). Distributed Deep Learning for Multi-Label

Chest Radiography Classification, 17th International Joint Conference on Computer

Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP),

2022 (CORE B). Nominated for Best Poster Award. [Paper] [Code] [Citation: 1]

vii

https://www.sciencedirect.com/science/article/pii/S0933365719302635
https://scholar.google.com.au/scholar?oi=bibs&hl=en&cites=1540971809027758614&as_sdt=5
https://www.sciencedirect.com/science/article/pii/S0010482521001694
https://github.com/MaramMonshi/CovidXrayNet
https://scholar.google.com.au/scholar?oi=bibs&hl=en&cites=17945544379535649211
https://link.springer.com/chapter/10.1007/978-3-030-36808-1_17
https://github.com/MaramMonshi/MultiViewModel
https://scholar.google.com.au/scholar?oi=bibs&hl=en&cites=12438787860090124609&as_sdt=5
https://www.springerprofessional.de/en/labeling-chest-x-ray-reports-using-deep-learning/19652622
https://github.com/MaramMonshi/CXRlabeler
https://scholar.google.com.au/scholar?oi=bibs&hl=en&cites=13654095722968437255
https://www.scitepress.org/Link.aspx?doi=10.5220/0010849400003124
https://github.com/MaramMonshi/Xclassifier
https://scholar.google.com.au/scholar?oi=bibs&hl=en&cites=15732966028830677494

Authorship Attribution Statement

Chapter 2 of this thesis is published as J1.

I am the first and corresponding author. I conceived and designed the review, analyzed the

data, and wrote the entire manuscript, from the initial draft to the published version.

Chapter 3 of this thesis is published as C2.

I am the first and corresponding author. I conceived, designed, and performed the

experiments, analyzed the data, wrote the entire manuscript, from the initial draft to the

published version, and presented the paper at the conference.

Chapter 4 of this thesis is published as C1.

I am the first and corresponding author. I conceived, designed, and performed the

experiments, analyzed the data, wrote the entire manuscript, from the initial draft to the

published version, and presented the paper at the conference.

Chapter 5 of this thesis is published as C3.

I am the first and corresponding author. I conceived, designed, and performed the

experiments, analyzed the data, wrote the entire manuscript, from the initial draft to the

published version, and presented the paper at the conference.

viii

AUTHORSHIP ATTRIBUTION STATEMENT ix

Chapter 6 of this thesis is submitted as J2.

I am the first and corresponding author. I conceived, designed, and performed the

experiments, analyzed the data, and wrote the entire manuscript, from the initial draft to the

published version.

Student: Maram Mahmoud A. Monshi

Signature: Date: May 17, 2022

As the supervisor for the candidature upon which this thesis is based, I can confirm that

the authorship attribution statements above are correct.

Supervisor: Dr. Josiah Poon

Signature: Date: May 17, 2022

Acronyms

2D Two-Dimensional

3D Three-Dimensional

AG-CNN Attention-Guided Convolutional Neural Network

AI Artificial Intelligence

ANN Artificial Neural Network

AP Anteroposterior

AUC Area Under the Receiver Operating Characteristic Curve

AWD-LSTM Averaged Stochastic Gradient Descent Weight-Dropped Long Short-Term Memory

BERT Bidirectional Encoder Representations from Transformers

BLEU Bilingual Evaluation Understudy

CAD Computer-Aided Detection

CIDEr Consensus-Based Image Description Evaluation

CNN Convolutional Neural Network

COVID-19 Coronavirus Disease 2019

CPU Central Processing Unit

CT Computed Tomography

CXR Chest X-ray

Caffe Convolutional Architecture for Fast Feature Embedding

DDP Distributed Data Parallel

DDSM Digital Database for Screening Mammography

DICOM Digital Imaging and Communications in Medicine

DL Deep Learning

DP Data Parallel

DenseNet Densely Connected Convolutional Network

FLOPS Floating-Point Operations per Second

GEV Generalized Extreme Value

x

ACRONYMS xi

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

HRGR-Agent Hybrid Retrieval-Generation Reinforced Agent

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IU X-Ray Indiana University Chest X-Ray

JPEG Joint Photographic Experts Group

KNN K-Nearest Neighbor

LDA Latent Dirichlet Allocation

LDPO Looped Deep Pseudo-Task Optimization

LM Language Model

LR Learning Rate

LSTM Long Short-Term Memory

MCC Matthews Correlation Coefficient

MIMIC-CXR Medical Information Mart for Intensive Care Chest X-ray

ML Machine Learning

MRI Magnetic Resonance Imaging

MeSH Medical Subject Headings

NIH National Institute of Health

NIN Network in Network

NLM National Library of Medicine

NLP Natural Language Processing

PACS Picture Archiving and Communication System

PA Posteroanterior

PEIR Pathology Education Informational Resource

PET Positron Emission Tomography

PPV Positive Predictive Value

PadChest PAthology Detection in Chest radiographs

RL Reinforcement Learning

RNN Recurrent Neural Network

RNN-ATT Recurrent Neural Network with Attention

ROIs Rectangular Regions of Interest

ROUGE Recall-Oriented Understudy for Gisting Evaluation

xii ACRONYMS

RSNA Radiological Society of North America

RT-PCR Reverse Transcription Polymerase Chain Reaction

ReLU Rectified Linear Unit

ResNet Residual Network

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2

SENet Squeeze and Excitation Network

SGD Stochastic Gradient Descent

SIRM Italian Society of Medical, Interventional Radiology

SPICE Semantic Propositional Image Caption Evaluation

SVM Support Vector Machine

TanH Hyperbolic Tangent

TieNet Text–Image Embedding Network

US Ultrasound

VGG Visual Geometry Group

Contents

Abstract ii

Statement of Originality iv

Acknowledgements v

List of Publications vii

Authorship Attribution Statement viii

Acronyms x

Contents xiii

List of Figures xviii

List of Tables xx

Chapter 1 Introduction 1

1.1 Background . 1

1.2 Motivation . 3

1.3 Contributions. 4

1.4 Outline . 6

Chapter 2 Literature Review 7

2.1 Introduction . 7

2.1.1 Contributions . 8

2.2 Radiology. 8

2.2.1 Understanding radiology text . 10

2.2.2 Understanding radiology images . 11

2.2.3 Understanding CXR findings . 13
xiii

xiv CONTENTS

2.3 Deep learning . 16

2.3.1 Activation function . 18

2.3.2 Convolutional neural network . 18

2.3.2.1 Architecture . 20

2.3.3 Recurrent neural networks . 22

2.3.4 Data augmentation . 23

2.3.5 Hyperparameters . 23

2.3.6 Software . 24

2.4 CXR datasets . 25

2.4.1 IU X-Ray . 25

2.4.2 ChestX-ray14 . 27

2.4.3 CheXpert . 27

2.4.4 MIMIC-CXR . 28

2.4.5 PadChest . 30

2.4.6 COVID-19 datasets . 30

2.4.7 Private datasets . 32

2.4.8 Beyond CXR. 32

2.5 CXR report labeling . 32

2.5.1 Feature engineering approaches . 33

2.5.2 Deep learning approaches . 34

2.5.3 Beyond report labeling . 35

2.6 CXR image classification . 36

2.6.1 Binary . 36

2.6.2 Multi-label . 38

2.6.3 Multi-class . 38

2.6.4 Beyond CXR classification . 39

2.7 CXR computer-aided applications . 44

2.8 Evaluation . 45

2.8.1 Quantitative classification metrics . 46

2.8.2 Quantitative captioning metrics . 48

CONTENTS xv

2.8.3 Qualitative measures . 51

2.9 Discussion and future directions . 51

2.10 Conclusion . 53

Chapter 3 Report Labeling 54

3.1 Introduction . 54

3.1.1 Contributions . 56

3.2 Proposed CXRlabeler model . 56

3.2.1 Data preparation . 58

3.2.2 Language model . 59

3.2.3 Multi-label classifier . 60

3.3 Experiment . 60

3.4 Results and discussion . 61

3.5 Summary and conclusion . 64

Chapter 4 Binary Image Classification 65

4.1 Introduction . 65

4.1.1 Contributions . 66

4.2 Proposed MultiViewModel . 67

4.2.1 Data preparation . 67

4.2.2 Structure overview . 68

4.2.3 Training stages . 70

4.3 Experiment . 73

4.4 Results and discussion . 73

4.5 Summary and conclusion . 76

Chapter 5 Multi-Label Image Classification 78

5.1 Introduction . 78

5.1.1 Contributions . 80

5.2 Proposed Xclassifier model . 81

5.2.1 Data preparation . 81

5.2.2 Multi-label classifier . 81

xvi CONTENTS

5.3 Experiment . 85

5.4 Results and discussion . 86

5.5 Summary and conclusion . 89

Chapter 6 Multi-Class Image Classification: COVID-19 Detection 90

6.1 Introduction . 90

6.1.1 Contributions . 95

6.2 Proposed CovidXrayNet model . 95

6.2.1 Proposed COVIDcxr dataset . 95

6.2.2 Data preparation . 96

6.2.3 Architecture . 96

6.2.3.1 Data augmentation . 97

6.2.3.2 CNN architectures and hyperparameters . 102

6.3 Experiment . 105

6.4 Results and discussion . 108

6.4.1 Quantitative evaluation . 108

6.4.2 Qualitative evaluation . 109

6.4.3 Optimization in deep learning . 109

6.4.4 Limitation and future direction . 111

6.5 Summary and conclusion . 113

Chapter 7 Conclusion 115

7.1 Summary of the proposed methods . 115

7.2 Summary of findings . 116

7.3 Future work . 117

Bibliography 120

Appendix A Poster 145

MultiViewModel . 145

Xclassifier . 147

Appendix B Jupyter Notebook 149

CONTENTS xvii

CXRlabeler . 149

MultiViewModel . 167

Xclassifier . 193

COVIDcxr . 197

CovidXrayNet . 209

List of Figures

1.1 A Radiologist Examines a CXR Image for Thorax and Lung Diseases. 2

1.2 Graphic Outline of Thesis. 6

2.1 Deep Learning Applications in Chest Radiography, as Discussed in this Literature

Review. 9

2.2 Example of a Radiology Report and Associated Images (Obtained from the Indiana

University X-ray dataset) [28]. 10

2.3 Radiology Imaging Modalities and Characteristics. Note: X-ray (a), CT (b), MRI

(c), US (d), and image characteristics (e) [28]. 12

2.4 Deep Learning [28]. 17

2.5 The CheXpert Labels Heatmap. 28

2.6 The MIMIC-CXR Labels Heatmap. 29

3.1 Example of a Labeled Report from the MIMIC-CXR Dataset. Each label contains

one of four values, 1.0, −1.0, 0.0, or NaN , which indicate positive, negative,

uncertain, or missing observations, respectively [132]. 55

3.2 The CXRlabeler Structure [132]. 57

4.1 A Basic Residual Block [146]. 66

4.2 Examples of 12 Thoracic Diseases from MIMIC-CXR Dataset. Each disease is

associated with frontal and lateral views of CXRs [146]. 68

4.3 Overall Illustration of MultiViewModel [146]. 71

4.4 Fluctuated LR. Per pathology, the plot on the right represents the LR after the stage

1 training, and the plot on the left shows the LR after the stage 2 training. Note that

the x-axis represents what happened as the LR increased, and the y-axis indicates

what the loss was (color figure online) [146]. 72

xviii

LIST OF FIGURES xix

4.5 Examples of the Most Confused CXRs with Heatmaps. Each image was associated

with the prediction, actual, loss and probability values after the stage 1 training,

where 0 and 1 represent negative and positive pathology respectively [146]. 77

5.1 The CXR Image Formats [152]. 80

5.2 The Xclassifier Structure [152]. 83

5.3 Visualizing Parallel Training Approaches. We used four Tesla V100 GPUs and

trained DenseNetblur-121d for multi-label classification tasks [152]. 85

5.4 Correct Output Sample by Xclassifier [152]. 88

6.1 Dataset Distribution [119]. 97

6.2 The CovidXrayNet Structure [119]. 98

6.3 Visualizing Data Augmentation Effects on a CXR. The CXR is for a 25-year-old

COVID-19-positive female taken from the COVID-19 Image Data Collection

[119]. 101

6.4 Resizing Method. We propose squishing a 480 × 480 pixel CXR rather than

cropping it to preserve important CXR details at the edges of the image [119]. 102

6.5 Top Prediction Errors Generated by CovidXrayNet on COVIDx Test Dataset [119].110

6.6 Randomly Generated Results for CovidXrayNet on COVIDx Test Dataset [119]. 112

6.7 Confusion Matrix for CovidXrayNet on COVIDx Test Dataset [119]. 112

6.8 Data Loader from COVIDcxr that Combines both Tabular Data and CXRs [119]. 113

List of Tables

2.1 Activation Function for DL. 19

2.2 The CNN Architectures (ILSVRC Winners). 20

2.3 The CXR Datasets Employed in this Thesis. Our dataset is bolded. 26

2.4 The COVID-19 CXR Datasets. 31

2.5 The CXR Report Labelers. Our contribution in this thesis is bolded. 33

2.6 The DL Models for Classifying CXR Images. Our contributions in this thesis are

bolded. 36

2.7 The DL Models for Classifying Multiple Image Modalities. 41

2.8 The DL Models for Generating Sentence-Level Radiology Reports. 41

2.9 The DL Models for Generating Paragraph-Level Radiology Reports. 43

2.10Evaluation Metrics (Binary Classification Measures). 46

2.11Evaluation Metrics (Image Caption Measures). 50

2.12Quantitative Evaluation of Generated Radiology Reports based on DL Models. 50

3.1 Frequency of the 14 Labels in the Preprocessed MIMIC-CXR Dataset. The study

extracted 156,790 unique impressions, of which 152,855 were used for training and

3,935 for testing. It reported the number of positive and negative cases for each label,

with missing and uncertain labels considered negative labels. 58

3.2 The Frequency of Nine English Labels in the Preprocessed PadChest Dataset. The

study extracted 29,365 unique Spanish reports, of which 22,275 were for training and

7,090 for testing. The testing split was manually labeled [115]. 59

3.3 Comparing CXRlabeler with the Benchmarks in Labeling CXR Reports. CXRlabeler

classifies each label as positive or negative. 62
xx

LIST OF TABLES xxi

3.4 Examples of the Labels Predicted by CXRlabeler and the Target Labels. 63

4.1 The MIMIC-CXR Dataset with 12 Labeled Pathologies. We counted the numbers of

positive and negative observations in 10% of the dataset. 69

4.2 Data Augmentation for the CXRs. We applied a list of transforms parameters to the

trained images. 69

4.3 The AUC per Epoch for Training the ResNet-50 CNN. This model detects

cardiomegaly using CXRs of 299× 299 or 224× 224 pixels of chest X-rays. 69

4.4 Time per Epoch for Training the ResNet-50 CNN. This model detects cardiomegaly

using a single NVIDIA Tesla P4 GPU or four NVIDIA Tesla P4 Graphics Processing

Units (GPUs) in a parallel training. Note that the batch size was set to 64 images, and

the image size was set to 224 pixels. 74

4.5 The Compression of the AUC Scores in each Epoch. We trained each pathology for

eight epochs. 74

4.6 The Compression of AUC Scores. The DualNet model used an older limited released

version of the MIMIC-CXR dataset. Our model used 10% of the publicly released

version of the dataset. Note that we ignored uncertain and unknown labels. 76

5.1 Positive Label Co-occurrence of MIMIC-CXR. 82

5.2 Positive Label Co-occurrence of CheXpert. 82

5.3 The DenseNet-121 Variations Models and Training Performances. We used the full

MIMIC-CXR dataset and trained for 10 epochs. 84

5.4 Image Formats for the CXRs and Training Performance. We used 10% of the

MIMIC-CXR and trained ResNet-18 for 10 epochs. 86

5.5 Training Approaches and Training Performance. We used the NVIDIA V100 GPU. 87

5.6 Comparing Xclassifier with the Benchmark. 88

6.1 Models for Detecting COVID-19 from CXRs. 93

6.2 Data Augmentation for Detecting COVID-19 from CXRs. 94

6.3 The CNN Hyperparameters for Detecting COVID-19 from CXRs. 94

xxii LIST OF TABLES

6.4 Pipeline for Data Augmentation on CXRs. For each independent parameter, we

trained ResNet-18 on COVIDcxr for 30 epochs to examine the effects of various

transformers on COVID-19 CXR classification. 100

6.5 The CNN Architectures on COVIDx and COVIDcxr. We trained the popular CNN

architectures on both datasets for 30 epochs using the optimized data augmentation

pipeline. 103

6.6 Optimizing CNN Hyperparameters using COVIDcxr. For each independent

parameter, we trained several architectures on COVIDcxr to examine the effects of

various hyperparameters on the accuracy of COVID-19 CXR classification. 106

6.7 Optimizing CNN Hyperparameters using COVIDx. For each independent parameter,

we trained several architectures on COVIDx to examine the effects of various

hyperparameters on the accuracy of COVID-19 CXR classification. 107

6.8 Comparing our Optimized Data Augmentation Pipeline and CNN Hyperparameters

with the Benchmark. Both papers used VGG-19 and ResNet-50 on the COVIDx

dataset but with different transformers and hyperparameters. 108

6.9 Comparing CovidXrayNet with the Benchmark. All models were based on a

three-class COVID-19 classification; COVID-Net and CovidXrayNet employed the

COVIDx dataset. 109

CHAPTER 1

Introduction

1.1 Background

Chest radiography has been a cornerstone of medical imaging for many decades and remains

the most common radiological exam in the world, as a radiologist may need to read and

report more than 100 Chest X-rays (CXRs) per day [1]. This demand for CXR images may

be attributed to their reasonable sensitivity to a range of pathologies, combined with their

low radiation dose and cost-effectiveness. Figure 1.1 shows a radiologist who is examining a

CXR for thorax and lung diseases.

However, CXR interpretation can be challenging in terms of detecting small or subtle patho-

logies, distinguishing between abnormality patterns, or detecting pathologies in specific

locations (such as detecting a nodule posterior to the heart in a frontal CXR, due to the

projection direction and the superimposition of anatomical structures. As a result, since

the 1960s, researchers have been interested in automated pathology detection systems for

CXR images [2][3][4]. Early systems had their limitations due to the complexity of CXR

interpretation.

Recently, Deep Learning (DL) has had a tremendous impact on CXR interpretation. This

is a relatively recent field of study because publicly available CXR datasets have not been

around for very long. The earliest available dataset has only been available since 2015, and

it contains less than 10,000 CXRs. By DL standards, this is a very small dataset. A very

commonly used dataset in DL is ImageNet, which was introduced in 2009 and contains 3.2

million images [5]. Between 2017 and 2022, nearly one million labeled CXRs were released

to empower DL researchers.
1

2 1 INTRODUCTION

Enlarged cardio. Lung opacityLung lesion

Pneumonia PneumothoraxPleural effusion Pleural other

Fracture Normal

Cardiomegaly EdemaConsolidationAtelectasis COVID-19

Radiologist

Support devices

FIGURE 1.1. A Radiologist Examines a CXR Image for Thorax and Lung
Diseases.

Deep learning is a promising subfield of machine learning, which in turn is a subfield of

Artificial Intelligence (AI). DL algorithms seek to exploit the unknown structure in the input

distribution in order to discover good representations. This usually happens at multiple

levels, with higher-level features being defined by lower-level features [6]. Basically, a linear

combination of input signals, x1, x2, x3, ..., xm, adds bias bk to apply an affine transformation

to generate the output, yk (refer to Eq. (1.1)), where Wk1,Wk2,Wk3, ...,Wkm are the weights

and φ(.) is the activation function (e.g., rectified linear unit, ReLU [7]) [8]. The main

computational element, named the "neuron" or "perceptron" enables DL machines to learn

from experience without the need for expertise to specify the desired knowledge. Deep

learning has already succeeded in many computerized applications including, but not limited

to, computer vision, Natural Language Processing (NLP), speech processing, gaming, and

cross-media retrieval [9].

yk = φ (
m∑
j=1

WkjXj + bk) (1.1)

1.2 MOTIVATION 3

The most common approach to CXR interpretation is to use publicly available datasets to train

DL models, with researchers using Convolutional Neural Network (CNN) for image analysis

and developing Recurrent Neural Network (RNN) for NLP. While CNNs are a preferable

networks that include the pixels in an image and other clear, spatially structured data, RNNs

are good with natural language and similar, sequentially ordered data [10].

1.2 Motivation

Thorax diseases pose a serious risk to public health. Pneumonia, for example, affects about

450 million people (about 7% of the world’s population) and causes nearly four million

fatalities per year [11]. Additionally, the lung disease Coronavirus Disease 2019 (COVID-19)

became a global pandemic in less than four months after first appearing in December 2019

in Wuhan, China [12]. A CXR may be examined by a radiologist to inspect any visual

indicators linked to pneumonia, COVID-19, and several other diseases. Chest X-ray is the

most common imaging examination performed worldwide, and it is essential for the screening,

diagnosis, and treatment of many life-threatening diseases [13]. Currently, radiology images

are interpreted by radiologists, who are limited by speed, fatigue, and experience. Certified

radiologists are rare due to training costs. As a result, many healthcare systems outsource the

task of medical image analysis. For example, there are teleradiology companies in India [14].

Additionally, a delay or errors in diagnosis can cause harm to a patient. Therefore, it is very

important to develop CXR image classification methods to support radiologists.

Overall, the ultimate goal of this dissertation is to classify CXR images using DL due to the

recent availability of large labeled CXR datasets, the complexity of their interpretation, and

their value in clinical practice. We will investigate the current literature, extract labels from

CXR reports, and classify CXRs based on binary, multi-label, and multi-class classification

approaches. In brief, in the binary classification task, we classify each CXR into only one

label out of two classes (i.e., positive or negative). In the multi-class classification, we classify

each CXR into only one output class (e.g., COVID-19 vs. pneumonia vs. normal). However,

4 1 INTRODUCTION

in the multi-label classification, each CXR can have multiple output classes (i.e., multiple

pathologies).

This thesis will strive to address the following critical research questions:

RQ 1. How can we contribute to the automatic interpretation of CXR research? What are

the strengths and limitations of current DL-based models in this field? What studies

are essential to fill the gaps?

RQ 2. How can large CXR datasets be labeled automatically and accurately using radiology

reports to aid in the training of deep neural networks?

RQ 3. How can we classify the large volume of CXRs by integrating DL techniques?

RQ 4. How can we make DL models more efficient in terms of computing resources and

accuracy in detecting multiple diseases from CXRs?

RQ 5. Which CNN optimization techniques can improve the accuracy of detecting critical

diseases from CXRs?

1.3 Contributions

We investigate the DL path employed in radiology, from report labeling to image classification

and image captioning. Our investigation includes more than 100 papers related to DL

techniques and tailored to the radiology domain. This is an area of research that we anticipate

will grow in the near future. As a result, our survey will be useful to researchers who want

to apply DL to the radiology field. It will help them understand radiology text and image

structures, apply DL algorithms, use available datasets, label reports, classify images, generate

reports, and evaluate models. This comprehensive survey addresses RQ 1. and is presented

in Chapter 2 of this thesis and published as J1.

One of the primary challenges in the development of CXR classification models is labeling

large datasets with multi-label image annotations extracted from radiology reports. Differing

from rule-based methods, which cannot handle the extensive linguistic ambiguity in radiology

reports, including misspellings and broken grammar, we propose a novel DL model named

1.3 CONTRIBUTIONS 5

CXRlabeler. It takes raw radiology text as the input and extracts multiple positive and negative

CXR observations as the output. It utilizes the encoder learned from fine-tuning a Language

Model (LM) on radiology reports to label these reports. To the best of our knowledge,

CXRlabeler is the first proposed model that has the benefits of both LM fine-tuning and

classifier fine-tuning to achieve highly accurate automated CXR report labeling. CXRlabeler

addresses RQ 2. and is described in Chapter 3 of this thesis and published as C2.

Consistent with recently proposed CNN models on automated CXR binary classification,

we focus on training CNN models to detect common thoracic diseases. We propose a novel

stage-wise training approach, named MultiViewModel, and observe the model’s performance

to reduce the training time and increase the accuracy. It is founded on a Residual Network

(ResNet) architecture and a combination of recent techniques, including transfer learning,

fine-tuning, fit-one-cycle functions, and discriminative learning rates. MultiViewModel

addresses RQ 3. and is explained in Chapter 4 of this thesis and published as C1.

Regarding the multi-label CXR classification task, we quantify the value of the optimal

image format, demonstrate how distributed parallels DL accelerates neural network training,

and compare the performances of variations of Densely Connected Convolutional Network

(DenseNet). Xclassifier is an efficient multi-label classifier that trains an enhanced DenseNet-

121 framework with blur pooling to detect multiple observations from a CXR. It uses the

right amount of memory, runs on multiple graphics processing units, and has a high Area

Under the Receiver Operating Characteristic Curve (AUC) on two large chest radiography

datasets. Xclassifier addresses RQ 4. and is demonstrated in Chapter 5 of this thesis and

published as C3.

Our main contribution to the multi-class classification task is implementing CovidXrayNet,

which classifies a CXR into either "COVID-19," "normal," or "pneumonia." It improves

the detection rate of COVID-19 from CXRs by optimizing the data augmentation pipeline

and CNN hyperparameters. To the best of our knowledge, CovidXrayNet is one of the first

models to demonstrate the effects of data augmentation pipelines on CXR quality while also

investigating several CNN hyperparameters. This, in turn, may significantly enhance the

accuracy of CNN in diagnosing critical diseases. In addition, we introduce COVIDcxr, a

6 1 INTRODUCTION

Deep Learning in Chest Radiography

Chapter 1

Chapter 2

Image Classification
Chapter 3

Chapter 5Chapter 4 Chapter 6

Chapter 7

Introduction

Literature Review

Report Labeling

Binary Multi-Label Multi-Class

Conclusion

FIGURE 1.2. Graphic Outline of Thesis.

balanced and complete dataset that consists of 960 CXRs and the associated tabular data.

CovidXrayNet addresses RQ 5. and is expounded in Chapter 6 of this thesis and published

as J2.

1.4 Outline

Figure 1.2 shows a graphic representation of this thesis’s outline. The remainder of this thesis

is structured as follows: Chapter 2 provides a comprehensive review of DL in the radiology

domain to describe trends and gaps in the field. In Chapter 3, our CXR report labeling tool

is described in detail. The proposed model for binary classification in chest radiography is

provided in Chapter 4 . The multi-label CXR classification model is provided in Chapter 5.

The multi-class classifier of COVID-19 is explained in Chapter 6. The thesis concludes in

Chapter 7, with a brief summary of our contributions as well as an extensive discussion of

our future research directions.

CHAPTER 2

Literature Review1

Substantial progress has been made toward implementing automated Chest X-ray (CXR)

interpretation models based on Deep Learning (DL). This is due to the introduction of large

labeled image datasets. In this chapter, we will investigate the following critical challenges:

understanding radiology text and image structures, applying DL algorithms, utilizing available

datasets, labeling reports, classifying images, generating reports, and evaluating models.

We conclude the chapter with a critical discussion of these challenges and future research

recommendations. This comprehensive survey will be useful for researchers interested in DL,

particularly those interested in applying DL to the radiology domain.

2.1 Introduction

The combination of radiology images and text reports has led to research in the automatic

interpretation of images, inspired by recent work in classifying and detecting objects and

scenes for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [5]. Tradition-

ally, Computer-Aided Detection (CAD) systems interpret medical images automatically to

offer an objective diagnosis and assist radiologists [15]. Unlike CAD, DL is able to learn

useful features that move beyond the limitations of radiology detection [16]. Researchers

[17][18] have noted a significant performance increase in DL models over conventional CAD

systems. For example, DL has been applied to mammography to discriminate between breast

cancer and microcalcification [17], to ultrasounds to differentiate breast lesions (malignant

and benign), and to Computed Tomography (CT) lung scans to classify pulmonary nodules

1The content in this chapter has been published in Artificial Intelligence in Medicine, "Deep learning in
generating radiology reports: A survey", Monshi, M., Poon, J., Chung, V. (2020).

7

8 2 LITERATURE REVIEW

[18]. Deep learning may help to improve patient safety by assisting radiologists in accurately

interpreting CXRs, obtaining additional diagnostic criteria by generating unobservable data

from imaging features, and increasing efficiency by performing various tasks automatically

[19].

2.1.1 Contributions

In this chapter, we examine the DL path employed in radiology, from labeling reports to

classifying images and generating reports. Unlike other recent surveys that have investigated

DL in broad health informatics practices, our survey focuses exclusively on DL techniques

tailored to the radiology domain, as shown in Fig. 2.1. Several recent surveys on DL

applications [9][8] have been published in the literature on healthcare [20], electronic health

records [10], health informatics [21], medical image analysis [14][22], and medicine [23][24].

However, no existing reviews specifically address image and text analysis, let alone that in

radiology, at the time of writing this chapter. As such, this is the investigative scope of this

literature review. Papers that cover a wide range of radiology applications and tasks based on

DL have been analyzed. This is an area of research that we anticipate will grow in the near

future.

2.2 Radiology

Radiology is a branch of medicine that can be divided into the following two subcategories:

diagnostic and interventional [25]. Diagnostic radiologists examine medical images to

diagnose the cause of a patient’s symptoms, monitor treatment effects, screen for various

illnesses, and then write radiology reports. However, interventional radiologists utilize

radiology images to guide procedures. Currently, radiologists evaluate radiological images

constrained by their speed, fatigue, and experience. Due to the high expense of training,

certified radiologists are in short supply. As a result, many healthcare organizations delegate

the work of medical image analysis to third parties. Teleradiology companies, for example,

exist in India [14]. Furthermore, a patient may suffer pain due to a diagnosis delay or

2.2 RADIOLOGY 9

Report

Binary

Label 1 Positive

Multi-Label

Label 1

Multi-Class

Label 1 Positive

Label 2 Positive

Label N Positive

Sentence Paragraph

Sentence Paragraph

Models [88, 106, 108, 144,

Models

Models [118, 149, 151,Models

Models Models

Negative

Negative

Negative

[115, 130, 131]
& our CXRlabeler [132]

Negative

145, 147, 148, 149, 150, 151,
& our MultiViewModel [146]

Image Classification

Labeling Generation

Describing a Label

[26, 32, 107]

Image Classification

Label 1 Positive

Label 2 Positive

Label N Positive

Negative

Negative

Negative

[13, 111, 112, 114]
& our Xclassifier [152]

153, 154, 155]
& our CovidXrayNet [119]

Label 2
Label N

Describing Labels

[27, 32, 33, 34]

Generation

Image Classification

Images

Input

Datasets

CXR Datasets

[13, 31,110,113,115,117,118
& our COVIDcxr [119]

Reports

(sec. 2.4)

(sec. 2.5)

(sec. 2.6.1) (sec. 2.6.2) (sec. 2.6.3)

(sec. 2.6.4) (sec. 2.6.4)

FIGURE 2.1. Deep Learning Applications in Chest Radiography, as Discussed
in this Literature Review.

inaccuracy. Therefore, one solution is for radiology image interpretation to be performed by

an automated, accurate, and efficient DL algorithm.

10 2 LITERATURE REVIEW

COMPARISON: None
INDICATION: Fatigue, weakness, anterior
chest pain.
FINDINGS: Cardiomediastinal silhouette and
pulmonary vasculature are within normal
limits. Lungs are clear. No pneumothorax or
pleural effusion. No acute osseous findings.
IMPRESSION: No acute cardiopulmonary
findings.

FIGURE 2.2. Example of a Radiology Report and Associated Images (Ob-
tained from the Indiana University X-ray dataset) [28].

2.2.1 Understanding radiology text

A radiology report is a text-based document written by a certified radiologist. It contains

descriptive information about a patient’s history and symptoms and interpretations of relevant

radiology images [26]. Normally, these reports are written in a specific radiology reporting

format and divided into the following sections: comparison, indication, findings, and impres-

sions. The impression section is the most crucial part of the report, as it describes medical

observations of normal/abnormal features in order of perceived importance [27]. Figure 2.2

shows an example from the Indiana University Chest X-Ray (IU X-Ray) dataset [26]. Here,

each report is associated with two CXR images.

There are several lexicons utilized in writing radiology reports, including Metathesaurus2

[29], RadLex3 [30], and Medical Subject Headings (MeSH)4. Metathesaurus is a collection

of more than five million concept names and a million biomedical terms from over 100

controlled vocabulary systems. In contrast, RadLex contains more radiology-specific terms

than Metathesaurus, including those related to imaging methods and equipment. Furthermore,

MeSH offers comprehensive controlled vocabulary created by the United States National

Library of Medicine (NLM) to index scientific journal articles and books. Previously, Shin et.

2https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus.
3https://www.rsna.org/practice-tools/data-tools-and-standards/

radlex-radiology-lexicon.
4https://www.nlm.nih.gov/mesh/meshhome.html.

https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus
https://www.rsna.org/practice-tools/data-tools-and-standards/radlex-radiology-lexicon
https://www.rsna.org/practice-tools/data-tools-and-standards/radlex-radiology-lexicon
https://www.nlm.nih.gov/mesh/meshhome.html

2.2 RADIOLOGY 11

al. [26] utilized MeSH terms to mine reports in IU X-Ray [31]. However, brain tumors and

lung diseases do not have a fixed standardized lexicon. Instead, they have a semi-standardized

description system.

The use of DL has shown promising results in generating radiology reports from images

[27][32][33][34]. First, researchers generated short descriptive sentence of a radiology image

using only the image features. Then, they attempted to produce more informative reports with

multiple sentences. However, this introduced new challenges in content selection and ordering.

Using this method, radiology reports can include information that cannot be detected from

image features, such as the nationality of the patient [26]. Nevertheless, this text-based DL

algorithm is insufficient as it does not include specific image labels.

2.2.2 Understanding radiology images

There are different types of radiology images, including X-ray, CT, Magnetic Resonance

Imaging (MRI), Positron Emission Tomography (PET), and Ultrasound (US) images [35].

Figure 2.3 shows examples of various radiology imaging modalities and characteristics.

Chest radiography is the most common imaging examination that demands correct and

immediate interpretation to avoid life-threatening diseases [13]. A single radiologist may need

to read and report more than 100 CXRs per day [1]. This imaging technology is starting to be

employed as the first-line imaging modality by hospitals in Italy and the United Kingdom to

diagnose patients with the Coronavirus Disease 2019 (COVID-19) [36]. Although CXR is

less sensitive than chest CT, it is easy to document and may reduce the risk of cross-infection

by utilizing portable radiology units [37].

Recently, several large CXR datasets were released to enable researchers to advance the

state-of-the-art of the proposed DL models, as we will review in Section 2.4 (CXR Datasets).

Consequently, CXRs have gained significant attention from DL researchers.

Picture Archiving and Communication Systems (PACSs) have been used since the 1990s by

modern hospitals for radiology storage, management, transmission, and processing. They are

e-system mainly used for the acquisition of medical images.

12 2 LITERATURE REVIEW

Modaility

X-Ray

CT

MRI

PET

US

Oragn

Chest

Abdomen

Brain

Heart

Abdomen

Brain

Heart

Brain

Heart

Heart

Size

10 MB

250 MB

150 MB

1 GB

50 MB

100 MB

240 MB

6 MB

1 MB

38 MB/s

(a) (b)

(c) (d) (e)

FIGURE 2.3. Radiology Imaging Modalities and Characteristics. Note: X-ray
(a), CT (b), MRI (c), US (d), and image characteristics (e) [28].

Digital Imaging and Communications in Medicine (DICOM) was introduced in 1993 to

enhance standards and assist with many image processing procedures. It is the most common

file format used to store medical imaging data for patient medical scans such as CXRs, CT

scans, and MRI scans. It includes advanced report and result features [38].

The Joint Photographic Experts Group (JPEG) format, however, is utilized by most existing

DL models in medical image prediction due to the limitations of Compute Engine machines.

We will compare the DICOM and JPEG formats regarding the performance of multi-label

classifiers for chest radiographs using DL in Chapter 5 (Multi-Label Image Classification).

From a DL perspective, radiology images are preprocessed differently due to varied processor

and memory restrictions. Some images, such as X-rays, are Two-Dimensional (2D), while

others, such as CT and MRI scans, are Three-Dimensional (3D). Currently, DL models that

are trained on simple 2D images are more successful than those trained on 3D images, which

2.2 RADIOLOGY 13

adds an extra dimension to the problem [39]. However, experience needs to be gained in

applying DL to X-rays because they are 2D projections of a 3D human body [40]. In other

words, DL algorithms may need to be adjusted to handle the physiological structures that lie on

top of each other in X-rays. Significantly, DL algorithms, particularly Convolutional Neural

Networks (CNNs), can process an input of 2D and 3D images with only minor adjustments.

After all, DL in radiology images is still an area of active ongoing research.

So far, DL has been successfully applied to medical image analysis and acknowledged

as a powerful tool for image classification [41], lesion detection [42], segmentation [43],

content-based image retrieval [44], report generation from images, and image generation

and enhancement [45]. To allow practitioners to rapidly implement DL solutions for image

analysis tasks, NiftyNet5 [46] features an open source framework for many medical imaging

CNN algorithms under the Apache License. Several surveys have introduced the role of DL

algorithms in medical image analysis, focusing on CNNs [14][22]. Biswas et al. [47] classified

DL models based on application area, including cardiovascular, neurology, mammography,

microscopy, dermatology, gastroenterology, and pulmonary applications.

2.2.3 Understanding CXR findings

This section provides an overview of the classified findings in this thesis from CXR re-

ports and CXR images. These are linked to the heart, lungs, and bones and include the

following findings: atelectasis, cardiomegaly, consolidation, COVID-19, edema, enlarged

cardiomediastinum, fracture, lung lesion, lung opacity, no finding, pleural effusion, pleural

other, pneumonia, pneumothorax, and support device.

Atelectasis is a condition where a lung or part of a lung fails to expand completely [48].

It may be caused by pneumonia, pleural fluid, or lymph nodes compressing the bronchus,

resulting in the closure of the lung. In an intensive care unit setup, atelectasis is the main

cause of radio-opacity on a CXR image [49].

5https://niftynet.io.

https://niftynet.io

14 2 LITERATURE REVIEW

Cardiomegaly is defined as enlargement of the heart [49]. It may be caused by human

immunodeficiency virus, diabetes, pregnancy, kidney-related diseases, heart valve diseases,

or thyroid disorders. However, it is frequently congenital [50]. The cardiothoracic ratio can

be determined from a CXR to diagnose cardiomegaly wherein the heart is over 50% larger

than the rib cage.

Consolidation is a condition in which a region of the lung contains liquid instead of air

[51]. Swelling and hardening of a normal lung are often associated with consolidation [52].

Consolidation is an important CXR finding in several pathologies, especially pneumonia [53].

COVID-19 is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus

2 (SARS-CoV-2), which first appeared in Wuhan, China, in December 2019 [54]. Then, it

became a global pandemic on March 11, 2020. As of October 13, 2022, it has caused over

620.30 million cases and over 6.54 million fatalities globally [12]. Slowing the spread of this

pandemic could be achieved by the early detection of positive COVID-19 cases from CXR

images [55].

Edema occurs when excess fluids accumulate in a lung, resulting in breathing difficulties

[56]. It may be caused by an acute lung injury or congestive heart failure. It appears on CXRs

as opacities in the lungs, thickening of the bronchial walls, and hazy blood vessel contours.

Detecting edema on CXRs is critical for treating patients with congestive heart failure [57].

Enlarged cardiomediastinum is mostly caused by cardiomegaly and refers to an enlarged

heart [58]. Early detection of enlarged cardiomediastinum is advantageous for treatment,

which may involve medications, medical procedures, or surgery.

Fracture represents inconsistent abnormalities in a CXR image, such as gross rib fracture [59].

Rib fractures are a common consequence of other injuries and can result in life-threatening

complications [60]. Livingston [61] stated that nearly half of all rib fractures are missed in

CXRs. Patients with these fractures may have increased morbidity and mortality rates.

Lung lesions might be an indication of severe diseases, such as lung cancer, heart diseases

and respiratory diseases [62]. They are found on a spectrum ranging from focal to diffuse or

2.2 RADIOLOGY 15

multifocal [59]. As lung cancer is the leading cause of cancer-associated deaths among men,

it should be detected as early as possible to save patients’ lives.

Lung opacity is an infectious condition that results in pneumonia [63]. It spreads to the lung

region, causing suffocation, coughing, and fever. Pneumonia often presents in CXRs as a

region of increased blackness and opacity in the lungs.

No finding is an observation used to capture the absence of the following 13 findings

in a CXR image: atelectasis, cardiomegaly, consolidation, COVID-19, edema, enlarged

cardiomediastinum, fracture, lung lesion, lung opacity, no finding, pleural effusion, pleural

other, pneumonia, and pneumothorax [13]. However, it does not indicate that the CXR image

is normal, as other pathologies may be present.

Pleural effusion, or effusion, is a disorder in which excess fluid accumulates between the

chest wall and lungs. This extra fluid keeps the lungs from expanding, which can make it hard

to breathe [50]. In critically ill patients, severe pleural effusion may contribute to hypoxemia

during mechanical ventilation or cause tamponade physiology.

Pleural other is a label used to capture all abnormalities related to the pleural cavity [59].

When there are no sufficient samples of a pattern that involves the pleural cavity, "pleural

other" is used to label a CXR image.

Pneumonia is a diagnosis that affects the alveoli due to inflammation in the lungs. "Pneu-

monia" was included as a label to represent the CXRs that suggested primary infection as

the diagnosis, despite being a clinical diagnosis. [13]. Pneumonia affects nearly 7% of the

world’s population and causes about 4 million deaths annually, posing a severe risk to public

health [11].

Pneumothorax occurs when air leaks from the lungs into the chest wall [60]. Typically, it is

small and detected in the crowded lung apex area [59]. According to earlier research, 7.4-18

out of 100,000 males and 1.2-6 out of 100,000 women in America have pneumothorax each

year [64]. Timely and correct diagnosis based on CXR is the key to successful treatment;

otherwise, it can be fatal.

16 2 LITERATURE REVIEW

Support device is a label that indicates that a CXR image was taken using support devices

such as chest tubes, central lines, endotracheal tubes, or nasogastric tubes. It is important to

recognize the presence of a device in a CXR. A CXR image can be labeled as both "support

device" and "no finding" [59].

2.3 Deep learning

Deep learning is a promising sub-field of Machine Learning (ML) which, in turn, is a sub-

field of Artificial Intelligence (AI) (Fig. 2.4a). It occurs when a machine is composed of

multiple layers, uses raw data as input, and improves the representations required for pattern

recognition [6]. Essentially, a linear combination, Vk, of input signals, x1, x2, x3, ..., xm, adds

bias, bk, to apply an affine transformation and generate the output, yk (Fig. 2.4b), where,

wk1, wk2, wk3, ..., wkm are the weights, and φ(.) is the activation function (described in section

2.3.1). This main computational element, known as the "neuron" or "perceptron," enables the

DL machine to learn from experience without the need to specify the desired knowledge.

Currently, DL has already succeeded in many computerized applications including computer

vision, Natural Language Processing (NLP), speech processing, gaming, and cross-media

retrieval. Additionally, DL models can be fed with multiple datatypes and iteratively distort

them as they flow from layer to layer [20] (Fig. 2.4c). This is a particularly relevant function

for radiology data, which consists of reports and linked images.

Researchers have classified DL models into three categories: supervised, unsupervised, and

Reinforcement Learning (RL) [8][10]. Supervised learning, such as multilayer perceptron,

Recurrent Neural Network (RNN), or CNN, infers a mapping function f(x) = y from

input x to output y. Recurrent neural networks have become a popular choice for mining

radiology text to extract labels; CNNs, however, have gained popularity in radiology image

classification. Additionally, RNNs can be accompanied with CNNs to generate medical

image descriptions [26][34][65][66] (Fig. 2.4d). In contrast, unsupervised DL takes on board

remarkable properties related to the distribution of x, including Boltzmann machines and

2.3 DEEP LEARNING 17

Artificial Intelligent (AI)

Machine Learning (ML)

Deep Learning (DL)

a. DL, ML and AI b. Plain Neuron Model

c. DL Modelfor Multiple Datatypes

Input Output

Images

Text Output

d. Popular Architecture
Convolution Neural Network (CNN) Recurrent Neural Network (RNN)

Convolution

Sub-sampling

Convolution

Sub-sampling

Fully Connected

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Layer

Layer

Layer

Layer

Layer

Layer

x1 Wk1

Input

x2 Wk2

x3 Wk3

xm

Output

Bias Activation

Wkm

(.) ykbk

Function

FIGURE 2.4. Deep Learning [28].

autoencoders. Deep RL is a semi-supervised technique for partially labeled datasets as it can

act with limited input data. For instance, if a deep RL network is fed several tumor cells, it

can overinterpret an image to detect insignificant aspects [67].

18 2 LITERATURE REVIEW

2.3.1 Activation function

An activation function is a critical element of DL as it adds non-linearity by taking the

weighted sum of the inputs in one layer and converting it into an output value [68]. Then, this

value is conveyed to nodes in the subsequent layer. Table 2.1 illustrates common activation

functions including sigmoid, Hyperbolic Tangent (TanH), Rectified Linear Unit (ReLU) [7],

and leaky ReLU functions [69]. The sigmoid function is one of the earliest activation methods

used in neural networks but can cause network instability or freeze network learning. The

limitations of the TanH function are similar, as it is a scaled form of the sigmoid function.

Meanwhile, the ReLU function performs better than sigmoid functions, as it was the first to

be successfully used for neural networks by Glorot et. al., [7]. It converts the weighted sum

of inputs to zero if they are less than zero or to the same inputs if they are equal to or greater

than zero. The leaky ReLU function is an extension of the ReLU function that outputs small

negative numbers if the inputs are negative. If not, it produces the same outputs as the ReLU

function. Researchers tend to begin with ReLU functions and then apply other activation

functions if they do not obtain optimal results.

All traditional CNN activation functions output a single result for a single input, except the

softmax function. Instead, it produces multiple outputs. It is useful as it converts the output of

the last neural network layer into a probability distribution. In practice, the softmax function is

used in multi-class classifications, while the sigmoid function is used in binary classifications

[70].

2.3.2 Convolutional neural network

A CNN is a type of multi-layer neural network that uses minimal processing to recognize

visual patterns from pixel images [71]. One of the main advantages of a CNN is its ability

to automatically amalgamate low-level features (including lines and edges) into high-level

features (such as shapes) within subsequent layers [14]. For each, convolutional layer l, a set

of k kernels, W1,W2, ...,Wk, with biases b1, b2, ..., bk convolve an input image to generate

feature maps, Xk. These generated maps have a non-linear transform, φ(.), in each layer

2.3 DEEP LEARNING 19

TABLE 2.1. Activation Function for DL.

Name Equation Plot Characteristics

Sigmoid sigmoid(x) = Range [0,1]
1

(1+e−x)
Not zero-centered
Have an exponential center

TanH tahn(x) = Range [-1, 1]
2

(1+e−2x)
− 1 Zero-centered

ReLU [7] ReLU(x) = Does not saturate
0, x < 0ORx, x ≥ 0 Fast

Leaky leakyReLU(x) = Overcomes the dead ReLU
ReLU [69] x, x < 0OR∂x, x ≥ 0 problem

(refer to Eq. [(2.1)]).

X l
k = φ(W l−1

k ×X l−1 + bl−1
k) (2.1)

There are several CNN models, including deep feed-forward CNNs for images and word-

embedding networks for text. The histogram of oriented gradients and scale-invariant feature

transform are two examples of convolutional image features. However, deep CNNs signific-

antly outperform shallow learning frameworks and hand-crafted image features, as they need

larger collections of training data [72].

20 2 LITERATURE REVIEW

Recently, CNNs have become the primary frameworks for mining medical data as the number

of papers published on CNNs methods and applications has increased rapidly since 2015

[14][22]. In radiology, a CNNs is the most applicable DL algorithm for performing various

tasks including medical image classification and segmentation [73]. Interestingly, CNNs can

transfer learning from a large database unrelated to the current task (e.g., ImageNet [5]) into a

related one (e.g., IU X-Ray [31]).

2.3.2.1 Architecture

The most popular CNN architectures have been proposed by top competitors at the ILSVRC.

These include the following architectures: AlexNet [74], ZFNet [75], Visual Geometry Group

(VGG) [76], GoogLeNet [77], Residual Network (ResNet) [78], ResNeXt [79], CUImage

Team [80], and Squeeze and Excitation Network (SENet) [81], as listed in Table 2.2. ImageNet

is a project that aims to create an enormous visual database that can be utilized by researchers

in the field of visual object recognition [5]. It should be noted that ImageNet runs ILSVRC,

an annual contest where software programmers classify and detect objects and scenes.

TABLE 2.2. The CNN Architectures (ILSVRC Winners).

Winer by year No. of conv. layers Top-5 error rate (%)

2012 - AlexNet [74] 8 16.4
2013 - ZFNet [75] 8 11.7
2014 second - VGG-16 [76] 16 7.4
2014 first - GoogLeNet [77] 22 6.67
2015 - ResNet [78] 152 3.57
2016 second - ResNeXt [79] 101 3.03
2016 first - CUImage Team [80] 152 2.99
2017 - SENet [81] 152 2.25

In 2012, Krizhevsky et al. [74] noted how AlexNet was the first model to considerably

improve image classification performance. It obtained a 16.4% error rate using the ImageNet

dataset. This model minimized the overfitting problem using data augmentation and dropout

procedures. Two remarkable models were then proposed in 2014: VGG-16 (7.4% error

rate), which reduces the spatial size of the input in each layer, and GoogLeNet (6.67% error

2.3 DEEP LEARNING 21

rate), which permits procedures, such as pooling and convolution to run in parallel to each

other. AlexNet uses eight convolutional layers and 650,000 neurons (60,000,000 parameters)

and has an error rate of 16.4%. In contrast, VGG-16 consists of 16 convolutional layers

and 133,000,000 parameters and has a 7.4% error rates [82]. It is clear that VGG-16 is a

significantly deeper model than AlexNet, which is why its error rate is lower.

By 2015, automatic image classification models could outperform human manual annotation

with a 5%–10% error rate. This first occurred when He et al. [78] introduced Microsoft

Deep ResNet. It contains 152 layers that apply residual connections in CNNs to address

the issues of vanishing gradients [83] and degradation. The ILSVRC 2016 winner was the

CUImage team [80], which assembled the following six architectures: Inception v3, Inception

v4, Inception ResNet v2, ResNet 200, Wide ResNet 68, and Wide ResNet 3. However, the

2016 runner-up, ResNext [79], introduced a simple framework that consists of branches in a

residual block. Each branch conducts a transformation aggregated by a summation function at

the end. Although this model is based on ResNet and uses less layers, it outperforms ResNet,

Inception-v3 and Inception ResNet v2 [84]. It can be generalizable by reshaping it using other

models like AlexNet.

In 2017, the ILSVRC was concluded, as researchers considered the problem of supervised

image classification solved [9]. The 2017 winner was SENets. These networks are based on

the ResNeXt-152 model and adds recalibration to adaptively reweight feature maps.

To interpret radiology images, researchers follow some ImageNet CNN network settings as

well as those of other reliable architectures. These include the Network in Network (NIN) [85]

and Densely Connected Convolutional Network (DenseNet) [86], with slight modifications.

For instance, Shin et al. [26], noted that AlexNet is a complex method; instead, they used

NIN as it is a simpler and faster model. In addition, they suggested that GoogLeNet is the

baseline CNN model, and they used it to train their data. Although AlexNet and GoogLeNet

have different depths, Wang et al. [72] utilized both to train their Looped Deep Pseudo-Task

Optimization (LDPO) network model.

22 2 LITERATURE REVIEW

When extracting features from images, VGG-16 is the preferred choice for some researchers

in the visual pattern recognition community [87]. This is largely because VGG-16 offers

uniform CNN architecture and publicly available weight configuration.6 For example, Shin et

al. [65] and Dong et al. [66] adopted this architecture to read radiology images, and Yarnal

[88] used it to classify CXRs.

2.3.3 Recurrent neural networks

An RNN is a neural network that processes sequential information while maintaining a state

vector within its hidden neurons [89]. Equation (2.2) is the basic RNN that preserves hidden

state h at time t, which is the outcome of a non-linear mapping from its input, xt, and the

previous state, ht−1, where W and R are the shared weight matrices over time. Unlike CNNs,

which are the preferred networks for pixels in an image and other clear, spatially structured

data, RNNs work well with natural language and similar, sequentially ordered data [10].

They can predict the next words based on the former ones in a Language Model (LM) [90].

However, it is hard to save information for a long time, as the weights are equal in all RNN

layers. Another issue is the requirement for a backpropagation algorithm to train the RNN as

the gradients either grow or shrink. Consequently, variations of RNNs have been introduced

to overcome these limitations.

ht = φ(Wxt +Rht−1 + b) (2.2)

The most popular extensions of RNNs are Long Short-Term Memory (LSTM) [91] and Gated

Recurrent Unit (GRU) [92] architectures. Long short-term memory uses memory blocks to

save the network temporal state and gates to monitor the information flow. Meanwhile, a

GRU is a lighter form of RNN than LSTM in terms of topology, computational expenses, and

complexity. At present, researchers must choose between the faster model offered by GRU

that needs fewer parameters or the higher-performing model provided by LSTM that contains

sufficient data and computational power [8].

6https://www.robots.ox.ac.uk/~vgg/research/very_deep/.

https://www.robots.ox.ac.uk/~vgg/research/very_deep/

2.3 DEEP LEARNING 23

2.3.4 Data augmentation

A method that artificially inflates the original training set, S, with label-preserving transform-

ations is data augmentation. It can be mapped as ϕ : S 7→ T , where T is the augmented set

of S. The label-preserving transformation means that if image x ⊂ y, then ϕ(x) ⊂ y [93].

Hence, the artificially enlarged training set is defined as S ′ = S ∪ T , where S ′ consists of S

and the corresponding transformations denoted by ϕ. Resizing, flipping, and zooming are

examples of data augmentation methods.

Data augmentation improves CNN performance [94], prevents overfitting [93], and is easy to

implement [95]. Training a CNN on limited data inhibits its ability to generalize results to

unseen data due to the over-fitting issue. However, inflating the dataset using data augment-

ation methods adds more invariant cases and thus prevents overfitting. In addition, generic

methods are easy to implement and computationally inexpensive. Several recent works have

proven the benefits of data augmentation in improving CNN-based models for various DL

applications [93][94][95].

However, limited existing methods specifically address data augmentation in detecting dis-

eases from CXRs. A shortcoming of existing studies is the limited amount of data augmenta-

tion methods evaluated. As such, we will investigative data augmentation briefly in Chapter 4

(Binary Image Classification) and thoroughly in Chapter 6 (Multi-Class Image Classification:

COVID-19 Detection) because data augmentation leads to positive results when training CNN

on limited data but only when using suitable augmentation techniques for each dataset [96].

2.3.5 Hyperparameters

Convolutional neural network hyperparameter optimization aims to find the optimal combin-

ation of values that must be selected for a given dataset before the training starts within a

reasonable amount of time. The optimizer function, learning rate, loss function, number of

epochs, and batch size are examples of CNN hyperparameters.

24 2 LITERATURE REVIEW

Deep learning practitioners aim to identify such values through automatic software, such

as Optuna [97], or through a trial-and-error method. For example, Nishio et al. [98] util-

ized Optuna to implement Bayesian optimization in segmenting the lungs from severely

abnormal CXRs. In Chapter 6 (Multi-Class Image Classification: COVID-19 Detection),

we demonstrate the effects of hyperparameter optimization in diagnosing COVID-19 from

CXRs.

2.3.6 Software

There are several software packages that support CNN and RNN implementations, including

TensorFlow7 [99], Tensorpack8 [100], Keras9 [101], Convolutional Architecture for Fast

Feature Embedding (Caffe)10 [102], PyTorch11 [103][104], and fastai12 [105]. These software

packages are open_source projects that utilize NVIDIA support to enhance performance

through Graphics Processing Unit (GPU) acceleration. Of note, DL training can be accelerated

through an advanced GPU that facilitates parallel processing.

Using both TensorFlow and Tensorpack, Wang et al. [34] implemented a Text–Image Em-

bedding Network (TieNet) that produces thorax disease reports. The DualNet [106] and the

Hybrid Retrieval-Generation Reinforced Agent (HRGR-Agent) [27] frameworks are based on

PyTorch. Caffe is a common software package utilized by practitioners to classify multiple

image modalities. Using Caffe, Shin et al. [65] trained their deep CNN model to map X-rays

into specified document categories, and Kisilev et al. [107] implemented a multi-task-loss

CNN model to describe medical images. Additionally, using Caffe, Dong et al. [66], Wang et

al. [72], and Rajpurkar et al. [108] acquired pre-trained CNN models on ImageNet for their

radiology annotation systems.

7https://www.tensorflow.org/.
8https://github.com/ppwwyyxx/tensorpack/.
9https://keras.io.

10http://caffe.berkeleyvision.org/.
11http://pytorch.org/.
12https://docs.fast.ai

https://www.tensorflow.org/
https://github.com/ppwwyyxx/tensorpack/
https://keras.io
http://caffe.berkeleyvision.org/
http://pytorch.org/
https://docs.fast.ai

2.4 CXR DATASETS 25

PyTorch and fastai are the main software used to propose various models in this thesis. They

simplify training fast and accurate neural nets using modern best practices [109]. We also use

fastai’s low-level flexibility and optional high-level convenience to work on different research

ideas while shortening training cycles.

2.4 CXR datasets

This section introduces employed CXR datasets in this thesis, as summarized in Table 2.3,

and the COVID-19 CXR datasets, as presented in Table 2.4. Then, briefly, we outline some

private CXR datasets and public datasets of different medical image modalities. Researchers

have employed these radiology datasets for developing and evaluating DL models.

2.4.1 IU X-Ray

The IU X-Ray dataset [31] was the first large X-ray dataset that was released in 2015. It

consists of 7,470 CXRs with 3,955 radiology reports available through OpenI; OpenI is an

open-source collection of literature and biomedical images. It contains IU X-Ray, 2,064

orthopedic illustrations, and more than three million images from PubMed and the NLM.

Often researchers refers to IU X-Ray as "OpenI".

However, the data in IU X-Ray comes from fully anonymized reports from two hospitals. As a

result, some keywords, findings, and images are missing. Additionally, IU X-Ray is relatively

small because the pathologies were manually annotated. Researchers [27][26][32][33][34]

have used this dataset to demonstrate how their proposed DL models label and describe the

diseases associated with the images.

26
2

L
IT

E
R

A
T

U
R

E
R

E
V

IE
W

TABLE 2.3. The CXR Datasets Employed in this Thesis. Our dataset is bolded.

Dataset Source Patients Images Images Reports Lables Lables Base annotation Employed by
Count Count Format Count Count Method

Open-I (IU X-ray)13 Indiana University NOS 7,470 DICOM 3,955 NOS Manual Thorax diseases. CXRlabeler (ch.3),
Demner-Fushman, et al. [31] 2015 [27][26][32][33][34]

ChestX-ray1414 National Institutes 30,805 112,120 PNG private 14 NegBio Consolidation, infiltration, pneumothorax, CovidXrayNet (ch.6),
Wang, et al. [110] 2017 of Health (NIH) atelectasis, edema, emphysema, mass, [27] [34]

fibrosis, effusion, pneumonia, nodule,
pleural thickening, cardiomegaly & hernia.

CheXpert15 Stanford 65,379 224,316 JPEG private 14 CheXpert Lung lesion, lung opacity, pneumothorax, Xclassifier (ch.5),
Irvin, et al. [13] 2019 Hospital pleural other, cardiomegaly, atelectasis, [111][112]

edema, enlarged cardiomediastinum,
no finding, pleural effusion, pneumonia,
fracture, consolidation & support devices.

MIMIC-CXR16 Beth Israel 65,079 377,110 JPEG (V1), 227,835 14 NegBio, Lung lesion, lung opacity, pneumothorax, CXRlabeler (ch.3),
Johnson, et al. [113] 2019 Deaconess Medical DICOM (V2) CheXpert pleural other, cardiomegaly, atelectasis, MultiViewModel (ch.4),

Center edema, enlarged cardiomediastinum, Xclassifier (ch.5),
no finding, pleural effusion, pneumonia, [106][112][114]
fracture, consolidation & support devices.

PadChest17 Valencian Region 67,625 168,861 DICOM 109,931 193 PadChest Cardiomegaly, pleural effusion, pneumothorax, CXRlabeler (ch.3),
Bustos, et al. [115] 2019 Medical ImageBank pneumonia, no finding, atelectasis, edema, [116]

(BIMCV) consolidation, fracture & 184 more labels.

COVID-19 image data collection18 Multiple 282 589 JPEG, 0 20 NOS Viral, bacterial, fungal, lipoid, CovidXrayNet (ch.6)
Cohen, et al. [117] 2020 PNG aspiration & unknown

COVIDx19 Multiple 13,870 13,975 JPEG, 0 3 Auto COVID-19, normal, & Pneuomonia CovidXrayNet (ch.6)
Wang, et al. [118] 2020 PNG [118]

COVIDcxr20 Multiple 960 960 JPEG, 0 3 Auto COVID-19, normal, & Pneuomonia CovidXrayNet (ch.6)
Monshi, et al. [119] 2021 PNG

13https://openi.nlm.nih.gov.
14https://nihcc.app.box.com/v/ChestXray-NIHCC.
15https://stanfordmlgroup.github.io/competitions/chexpert/.
16https://archive.physionet.org/physiobank/database/mimiccxr/.
17http://bimcv.cipf.es/bimcv-projects/padchest/.
18https://github.com/ieee8023/covid-chestxray-dataset.
19https://github.com/ncbi-nlp/COVID-19-CT-CXR.
20https://github.com/MaramMonshi/CovidXrayNet/blob/main/Dataset/COVIDcxr-generate.ipynb.

https://openi.nlm.nih.gov
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://stanfordmlgroup.github.io/competitions/chexpert/
https://archive.physionet.org/physiobank/database/mimiccxr/
http://bimcv.cipf.es/bimcv-projects/padchest/
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ncbi-nlp/COVID-19-CT-CXR
https://github.com/MaramMonshi/CovidXrayNet/blob/main/Dataset/COVIDcxr-generate.ipynb

2.4 CXR DATASETS 27

2.4.2 ChestX-ray14

The ChestX-ray14 dataset [110] (previously named ChestX-ray8) was released by the National

Institute of Health (NIH) clinical center in 2017. At the time, this was the largest open access

CXR dataset available, containing 112,120 frontal-view CXR images of 30,805 unique

patients. However, the first CXR in this dataset was taken in 1992, and the most recent CXR

was taken in 2015; X-ray technology evolved during this long time span.

At first, researchers used NLP to extract eight of the most common disease labels from the

original radiological reports. Then, they used text mining to extract 14 prevalent diseases

from the same radiological data to create the ChestX-ray14 labels. The labels are atelectasis,

consolidation, infiltration, pneumothorax, edema, emphysema, fibrosis, effusion, pneumonia,

pleural thickening, cardiomegaly, nodule, mass, and hernia. However, the complete text

reports are not publicly available.

2.4.3 CheXpert

The CheXpert dataset [13] was made available by the Stanford Hospital in 2019. It consists

of 224,316 chest radiographs of 65,240 patients. There are two variations of this dataset: a

high-resolution dataset and a downsampled-resolution dataset.

Unlike ChestX-ray14, which uses an automatic labeler to extract labels from reports, CheXpert

offers radiologists labeled validation and expert scores. Each radiograph is abeled with 14

observations: atelectasis, cardiomegaly, consolidation, edema, enlarged cardiomediastinum,

fracture, lung lesion, lung opacity, no finding, pleural effusion, pleural other, pneumonia,

pneumothorax, and support devices. The labels contain positive, negative, uncertain, and

missing values. They were extracted from unstructured radiology reports using the CheXpert

labeler. Figure 2.5 shows the dependencies between labels in the CheXpert dataset. For

instance, pleural effusion CXRs are positively correlated with lung opacity CXRs.

Note that a CheXpert competition is organized by the Stanford Machine Learning Group,

which maintains private testing data for final evaluation of the Area Under the Receiver

28 2 LITERATURE REVIEW

FIGURE 2.5. The CheXpert Labels Heatmap.

Operating Characteristic Curve (AUC) score on detecting five chosen diseases, i.e., atelectasis,

cardiomegaly, edema, consolidation, and pleural effusion.

2.4.4 MIMIC-CXR

The Medical Information Mart for Intensive Care Chest X-ray (MIMIC-CXR) dataset [113] is

the largest open access chest radiography dataset to date and was co-released with CheXpert

by Beth Israel Deaconess Medical Center. It includes 377,110 CXRs linked to 227,835 reports

2.4 CXR DATASETS 29

FIGURE 2.6. The MIMIC-CXR Labels Heatmap.

for 65,379 patients. There are two releases of this dataset. including the DICOM version

[113] and the JPEG version [120]; the latter was generated by converting DICOM files into a

more accessible format.

The MIMIC-CXR images were labeled by two automatic labelers, namely, the NegBio labeler

[121] and CheXpert labeler [13]. Then, a board of experienced radiologists validated the

generated labels against 687 reports and concluded that CheXpert outperformed NegBio. The

labels include 12 pathologies (atelectasis, cardiomegaly, consolidation, edema, enlarged cardi-

omediastinum, fracture, lung lesion, lung opacity, pleural effusion, pleural other, pneumonia,

30 2 LITERATURE REVIEW

and pneumothorax) as well as "support devices" and "no finding", which indicates the absence

of all 12 pathologies. These labels overlap with those of the popular ChestX-ray14 dataset

and match those of the co-released CheXpert dataset. Each label has four classes (positive,

negative, uncertain, or missing). Figure 2.6 represents the label co-occurrence in this dataset.

For instance, atelectasis CXRs are positively correlated with lung opacity CXRs.

2.4.5 PadChest

The PAthology Detection in Chest radiographs (PadChest) dataset [115] contains 168,861

CXRs from six different views and the associated 109,931 Spanish reports of 67,625 patients,

collected from San Juan Hospital. It provides researchers with the opportunity to address

unfinished investigations, such as by measuring DL model performance using the CXR views

[116].

Compared to other CXR datasets, PadChest is labeled with the largest number of English

annotations including 174 radiology findings, 19 diagnoses, and 104 anatomic locations.

These labels can be used regardless of the language because they are mapped onto the

standard Unified Medical Language System [122].

2.4.6 COVID-19 datasets

Table 2.4 outlines the public datasets of COVID-19 CXRs. These datasets are constantly

updated with new images added by researchers around the world. Nevertheless, none of these

datasets provides complete metadata for all patients, except our proposed COVIDcxr dataset

[119] (refer to section (6.2.1).

The largest public dataset in terms of presented positive COVID-19 cases and the most popu-

lar dataset among researchers is COVIDx [118]. It includes 15,496 CXRs generated from

five public datasets; where three of them— the COVID-19 Image Data Collection, Figure 1

COVID-19 Chest X-Ray Dataset Initiative, and ActualMed COVID-19 Chest X-Ray Dataset

2.4 CXR DATASETS 31

Initiative can be downloaded from the GitHub repository, and two datasets—RSNA Pneumo-

nia Detection Challenge dataset and COVID-19 Radiography Database can be obtained from

Kaggle. It contains three classes of CXRs: COVID-19, pneumonia, and normal. Note that

COVIDx is expanding on a regular basis with the addition of new patient records for training

while maintaining the same test dataset for consistency.

However, COVIDx is unbalanced, as the number of cases in the COVID-19 class (589) is far

lower than that in the pneumonia (6,056) and no_finding (8,851) classes. This may cause a

sharp increase and decrease in the loss values while training a DL model. To address this

issue, Bridge et al. [123] proposed a Generalized Extreme Value (GEV) as an alternative to

the common sigmoid activation function. They proved that the GEV distribution improves

the performance of COVID-19 classification from unbalanced datasets.

COVIDcxr is our proposed dataset in this thesis, aiming to create a balanced, unbiased,

and complete COVID-19 CXR dataset. We will describe and use this dataset in Chapter 6

(Multi-Class Image Classification: COVID-19 Detection).

TABLE 2.4. The COVID-19 CXR Datasets.

Dataset Description

Figure 1 COVID-19 Chest X-Ray Dataset Initiative21 [124] 56 CXRs, metadata & clinical notes
ActualMed COVID-19 Chest X-Ray Dataset Initiative22 239 CXRs, metadata & clinical notes
covid-19-ct-cxr23 [125] 263 CXRs & relevant text
COVID-19 image data collection24 [117] 654 CXRs, metadata & clinical notes
COVID-19 radiography database25 219 COVID-19, 1341 normal & 1345 pneuomonia CXRs
COVIDx26 [118] 13917 CXRs for training & 1579 CXRs for testing
COVIDcxr27 [119] 320 COVID-19, 320 normal & 320 pneuomonia CXRs

21https://github.com/agchung/Figure1-COVID-chestxray-dataset.
22https://github.com/agchung/Actualmed-COVID-chestxray-dataset.
23https://github.com/ncbi-nlp/COVID-19-CT-CXR.
24https://github.com/ieee8023/covid-chestxray-dataset.
25https://www.kaggle.com/tawsifurrahman/covid19-radiography-database.
26https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md.
27https://github.com/MaramMonshi/CovidXrayNet/blob/main/Dataset/

COVIDcxr-generate.ipynb.

https://github.com/agchung/Figure1-COVID-chestxray-dataset
https://github.com/agchung/Actualmed-COVID-chestxray-dataset
https://github.com/ncbi-nlp/COVID-19-CT-CXR
https://github.com/ieee8023/covid-chestxray-dataset
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md
https://github.com/MaramMonshi/CovidXrayNet/blob/main/Dataset/COVIDcxr-generate.ipynb
https://github.com/MaramMonshi/CovidXrayNet/blob/main/Dataset/COVIDcxr-generate.ipynb

32 2 LITERATURE REVIEW

2.4.7 Private datasets

Moreover, researchers have trained their DL frameworks on several privately-owned datasets,

including the PACS from the NIH clinical center [65] and CX-CHR [27]. The PACS from

the NIH clinical center consists of 216,000 2D images with radiology reports that offer

visual references to pathologies. The CX-CHR dataset contains CXRs of 35,500 patients and

contains Chinese reports.

2.4.8 Beyond CXR

Apart from X-ray collections, the Digital Database for Screening Mammography (DDSM)28

[126] and the Pathology Education Informational Resource (PEIR)29 [127] are open source

datasets of different image modalities.

The PEIR is a digital library created by the University of Alabama for medical education. It

contains 4,732 images and sentence-level descriptions of 20 different body parts, including

the abdomen, adrenal, aorta, breast, chest, head, and kidneys.

The DDSM, however, contains 2,620 scanned films of normal, benign, and malignant breast

mammography with verified pathology information. It is supported by the University of

South Florida, and it has been widely used by researchers due to its scale and ground truth

validation. Kisilev et al. [107] selected a subset of the DDSM database that consists of 974

images annotated with semantic descriptors to test their multi-task-loss CNN-based model. It

outperformed the accuracy of current techniques by up to 10% when detecting and describing

lesions.

2.5 CXR report labeling

Generally, radiology reports are semi-structured and use standardized documentation tem-

plates [113]. Consequently, researchers have proposed open_source NLP tools to extract

28http://www.eng.usf.edu/cvprg/Mammography/Database.html.
29https://peir.path.uab.edu/library/.

http://www.eng.usf.edu/cvprg/Mammography/Database.html
https://peir.path.uab.edu/library/

2.5 CXR REPORT LABELING 33

controlled vocabulary from radiology reports. Natural language processing explores the use

of machines to process/understand human languages and carry out useful tasks. Traditional

learning algorithms for NLP are often incapable of absorbing large volumes of training data,

as feature engineering requires significant human expertise [128]. Several years ago, NLP

was brought forward by a new era of DL algorithms using a philosophy named “NLP from

scratch” [129]. Such DL waves have the capacity to learn representations from text through

layers of nonlinear neurons for feature extraction.

Several NLP systems have been proposed for extracting medical labels from CXR reports.

These are based on feature engineering, such as NegBio [121] and CheXpert [13], or DL

algorithms, such as Recurrent Neural Network with Attention (RNN-ATT) [115], CheXpert++

[130], CheXbert [131], and our CXRlabeler [132] in Chapter 3. Table 2.5 summarizes these

existing labelers.

TABLE 2.5. The CXR Report Labelers. Our contribution in this thesis is
bolded.

Labeler Model Paper Dataset

Feature Engineering NegBio30 Peng et al. 2018 [121] ChestX-ray14
CheXpert31 Irvin et al. 2019 [13] CheXpert & MIMIC-CXR

Deep Learning CheXpert++32 McDermott et al. 2020 [130] CheXpert
CheXbert33 Smit et al. 2020 [131] CheXpert
RNN-ATT34 Bustos et al. 2020 [115] PadChest
CXRlabeler35 Monshi et al. 2021 [132] MIMIC-CXR, PadChest & IU x-ray

2.5.1 Feature engineering approaches

Feature engineering-based methods are rule-based systems that rely on medical terms and

grammatical rules to extract structured labels from CXR reports. The most popular systems

are the NegBio labeler and CheXpert labeler.

30https://github.com/ncbi-nlp/NegBio.
31https://github.com/stanfordmlgroup/chexpert-labeler.
32https://github.com/mmcdermott/chexpertplusplus.
33https://github.com/stanfordmlgroup/CheXbert
34https://github.com/auriml/Rx-thorax-automatic-captioning.
35https://github.com/MaramMonshi/CXRlabeler.

https://github.com/ncbi-nlp/NegBio
https://github.com/stanfordmlgroup/chexpert-labeler
https://github.com/mmcdermott/chexpertplusplus
https://github.com/stanfordmlgroup/CheXbert
https://github.com/auriml/Rx-thorax-automatic-captioning
https://github.com/MaramMonshi/CXRlabeler

34 2 LITERATURE REVIEW

NegBio was developed by the NIH and used to annotate the ChestX-ray14 dataset. It employs

universal dependency and subgraph matching for pattern definition and graph traversal search,

respectively. However, it extracts mentioned observations from the reports automatically

using MetaMap [133] and DNorm [134], which may result in weak extraction as reported by

Irvin et al. [13].

CheXpert was built by the Stanford Machine Learning Group and based on NegBio. It

overcomes the limitations of NegBio by avoiding automatic mention extractors and capturing

the variations of negation and uncertainty. As a result, CheXpert has achieved a higher F1

score. Although CheXpert is very useful in extracting thoracic labels, McDermott et al.

[130] demonstrated three significant issues associated with its performance: a slow run-time

speed, lack of differentiability, and lack of availability of continuous probabilistic output as it

produces binary labels.

NegBio and CheXpert have been employed to generate labels for the most extensive publicly

available CXR datasets, including ChestXray14, CheXpert, and MIMIC-CXR, despite their

known limitations relating to label quality. For example, Oakden-Rayner et al. [135] estimated

that the Positive Predictive Values (PPVs) of ChestXray14 labels are 10%_30% lower than

the values noted in the clinical records.

2.5.2 Deep learning approaches

In contrast to the feature engineering_based approach to labeling radiology reports, DL-

based methods are capable of capturing the complexity, ambiguity, and subtlety in the text.

Therefore, recently, researchers have introduced CheXpert++, CheXbert, RNN-ATT, and this

these introduces CXRlabeler.

CheXpert++ is based on Bidirectional Encoder Representations from Transformers (BERT)

[136]. The CheXpert++ model is initialized from the clinical BERT [137] with a multitask

classification head. It is a suitable drop-in replacement for the rule-based system, CheXpert,

because it runs 1.8 times faster, generates better labels, and can be integrated with neural

pipelines and active learning systems.

2.5 CXR REPORT LABELING 35

CheXbert is also based on BERT, but a more detailed annotation study was performed

using two board-certified radiologists and error resolution policies, improving the labeling

performance. However, CheXbert was fine-tuned with a small set of manual annotations

augmented with automatic back_translation that introduced noise into the reports.

The RNN-ATT model combines a bi-directional LSTM and a per-label attention mechanism

[138] in an RNN. As a result, it learns diverse text representations for each label. This model

has achieved a 0.93 micro F1 score and was used to label 73% of the PadChest dataset. One

downside is that the generated labels are not reliable when considering equal weights for each

class because the macro F1 score is low (60.1%).

CXRlabeler is the method proposed in this thesis that combines the benefits of both LM fine-

tuning and classifier fine-tuning to achieve highly accurate automated CXR report labeling.

We have dedicated Chapter 3 (Report Labeling) to explaining and evaluating this model.

2.5.3 Beyond report labeling

Since 2010, DL has been productively applied to NLP tasks [139], including natural language

generation from meaning representation. This can be considered the inverse of natural

language understanding [140]. Through this, DL can generate fluent, communicative, and

new image descriptions.

In addition to labeling reports, NLP assists with converting text into a structured report,

extracting meaningful information when applied to a free-form radiologist text [141]. A

recent NLP technique is neural language modeling, which includes word embedding and

recurrent LMs [142]. Word embedding converts words into vectors to allow for less sparse

data representation. Using this, DL models can be trained with smaller datasets. Advanced

word embedding has been applied to a large collection of radiology reports to generate word

vectors of radiology image descriptions [27][32][33][34][65][143]. Recurrent LMs predict

word outputs based on a sequence of arbitrary past words. As such, they are not limited by

fixed input dimensions.

36 2 LITERATURE REVIEW

2.6 CXR image classification

Binary, multi-class, and multi-label classifications are the most popular classification problems

in radiology, as outlined in Table 2.6. In such tasks, the DL algorithms access the data labels,

where data entries x1, ..., xn have to be categorized into predefined classes C1, ..., Cl. If the

input is to be classified into one of two non-overlapping classes (C1, C2), then this is a binary

classification task. However, multi-class classification classifies the input into one of l non-

overlapping classes. In addition, the input can be classified into several of l non-overlapping

Cj in a multi-labeled classification task.

TABLE 2.6. The DL Models for Classifying CXR Images. Our contributions
in this thesis are bolded.

Classifier Model Paper Dataset

Binary CheXNet Rajpurkar et al. 2017 [108] ChestX-ray14
Learn-Diagnose Wang et al. 2017 [144] ChestX-ray14
DualNet Rubin et al. 2018 [106] MIMIC-CXR
Thorax-Net Wang et al. 2019 [145] ChestX-ray14
MultiViewModel Monshi et al. 2019 [146] MIMIC-CXR
AG-CNN Guan et al. 2020 [147] ChestX-ray14
VGG16 Yarnall 2020 [88] MIMIC-CXR
COVIDX-Net Hemdan 2020 [148] COVID-19 collection
CovXNet Mahmud 2020 [149] Guangzhou Medical Center & Sylhet Medical College
ResNet-50 Narin 2020 [150] COVID-19 collection & Kaggle
DarkCovidNet Ozturk 2020 [151] COVID-19 collection & ChestXray-14

Multi-label Latent-space Gyawali et al. 2019 [111] CheXpert
CheXpert Irvin et al. 2019 [13] CheXpert
CheXclusion Seyyed-Kalantari et al. 2020 [112] CheXpert & MIMIC-CXR
VSE-GCN Hou et al. 2021 [114] MIMIC-CXR
Xclassifier Monshi et al. 2022 [152] CheXpert & MIMIC-CXR

Multi-class VGG-16 Nishio et al. 2020[153] COVID-19 collection & RSNA
DarkCovidNet Ozturk 2020 [151] COVID-19 collection & ChestXray-14
CovXNet Mahmud 2020 [149] Guangzhou Medical Center & Sylhet Medical College
COVID-Net Wang et al. 2020 [118] COVIDx
MobileNet-v2 Apostolopoulos 2020 [154] COVID-19 collection, RSNA, Radiopaedia, SIRM & Kermany
CNN-SVM Sethy et al. 2020 [155] COVID-19 collection, COVID-19 radiography & Kermany
CovidXrayNet Monshi et al. 2021 [119] COVIDx & COVIDcxr

2.6.1 Binary

The most common methods introduced to solve the CXR classification problem in the literat-

ure are based on binary classification with CNNs. Theoretically, binary classifiers are much

less complicated than multi-label or multi-class classifiers because each CXR has only two

2.6 CXR IMAGE CLASSIFICATION 37

possible target outcomes (i.e., positive or negative). For instance, CheXNet [108], Learn-

Diagnose [144], DualNet [106], Thorax-Net [145], our MultiViewModel [146], Attention-

Guided Convolutional Neural Network (AG-CNN) [147], VGG-16 [88], COVIDX-Net [148]

CovXNet, [149], ResNet-50 [150], and DarkCovidNet [151] train independent binary classifi-

ers for each label with CNNs.

In 2017, CheXNet achieved benchmark performance in detecting pneumonia using a modified

DenseNet. In 2019, Thorax-Net incorporated an additional attention branch into CNN

based on gradient-weighted class activation mapping [156]. This exploited the correlation

between labels and disease locations. In 2020, Yarnall [88] studied the effect of various

CNN architectures with different hyperparameters on classification accuracy. The study used

VGG-16 [76] with the ReLU activation function, resulting in an accuracy that ranged from

62.23% to 83.52% for each label. However, these single-label classifiers did not consider any

pathology correlations and ignored the relationship information among labels.

Researchers tend to classify thorax diseases from frontal CXRs using ChestX-ray14 via neural

networks such as CheXNet, Learn-Diagnose, Thorax-Net and AG-CNN. However, Bertrand et

al. [116] and Hashir et al. [157] suggested that using lateral CXRs enhances the performance

for certain prediction tasks, such as those for pleural effusion. Furthermore, Rubin et al.

[106] proposed a DualNet model to prove that simultaneous processing of both frontal and

lateral CXR inputs results in better classification performance. Unlike ChestX-ray14 [110],

which only presents the frontal view of CXRs, MIMIC-CXR is a multi-view version of

a radiograph dataset. DualNet employed a limited released version of the MIMIC-CXR

dataset to automate the reading of frontal and lateral CXRs. In Chapter 4 (Binary Image

Classification), we propose MultiViewModel to show that processing multi-view CXRs

simultaneously results in better binary classification performance.

For a COVID-19 detection task, COVIDX-Net [148] achieved 90% with only 25 CXRs for

patients with COVID-19 and 25 CXRs for normal patients. Another balanced dataset with

305 cases in each class was used to train the CovXNet model, resulting in 97.40% accuracy

[149]. With a combination of ResNet-50, InceptionV3, and Inception-ResNetV2, Narin et

al.’s [150] model achieved 98% accuracy. The 50 healthy CXRs in this study [150], however,

38 2 LITERATURE REVIEW

belonged to children (one to five years old) from a Kaggle repository [158]. Using a larger

but unbalanced dataset of 1,125 images, DarkCovidNet [151] achieved 98.08% accuracy.

Moreover, Wang et al. [159] localized the pulmonary location coordinates of COVID-19 (i.e.,

left lung, right lung, or both [bi-pulmonary]) using a residual attention network [160].

2.6.2 Multi-label

From a practical perspective, some CXR labels might be closely linked and their interdepend-

ency is very important for the final diagnostics. For example, infiltration is often associated

with atelectasis [110], and cardiomegaly tends to be linked with pulmonary edema [144].

To examine multiple labels simultaneously, a latent-space self-ensemble model employed

stacked semi-supervised learning using unsupervised disentangled representation learning

[111]. This model achieved a 66.97% AUC on CheXpert [13].

Recently, the Visual-Semantic-Embedded Graph Convolutional Network (VSE-GCN) model

fed joint features of label embeddings and visual features into a GCN to model the correlations

among CXR labels [114]. Meanwhile, CheXclusion investigated fairness gaps in DL-based

CXR classifiers to evaluate the true positive rate disparity for public datasets [112]. The

VSE-GCN model and CheXclusion achieved 72.10% and 83.40% accuracy, respectively, on

MIMIC-CXR [113]. In Chapter 5 (Multi-Label Image Classification), we extend this wave of

research using more efficient training methods.

2.6.3 Multi-class

For the multi-class classification problem, the output of a DL model will give exactly one label

as the output class. The three-class classification task (COVID-19, normal, or pneumonia)

has recently become an urgent problem to solve. Nishio et al. [153] achieved 83.68%

accuracy using a VGG-16-based model with a combination of data augmentation methods.

By starting with a real-time object detection system, named "you only look onece," (YOLO),

which is based on the Darknet-19 [161] classifier, DarkCovidNet achieved 87.02% accuracy

[151]. However, this result could be biased due to the small number of COVID-19 cases

2.6 CXR IMAGE CLASSIFICATION 39

(125) compared to (500) pneumonia cases and (500) normal cases. To compensate for this

issue, Mahmud et al. [149] transferred training from a large dataset of normal cases and

viral/bacterial pneumonia cases to a small balanced COVID-19 dataset, achieving 90.3%

accuracy for their CovXNet model.

Furthermore, COVID-Net [118] leveraged the generative synthesis [162] to determine the

optimal design, where the COVID-19 sensitivity and PPV were at or above 80%. Conversely,

Oh et al. [163] proposed a patch-based CNN method that may handle the issue of small

datasets, as it uses only 11.6 million trainable parameters on COVIDx. Apostolopoulos and

Mpesiana [154] achieved 93.48% accuracy by transferring the learning of MobileNet v2 [164].

They concluded that MobileNet v2 was better than VGG-19 [76] for this particular COVID-19

classification task, as it had the fewest instances of False Negatives. Furthermore, Sethy et al.

[155] added a Support Vector Machine (SVM) to classify the features obtained from CNN

models and achieved 95.33% accuracy. In Chapter 6 (Multi-Class Image Classification), we

propose CovidXrayNet, which outperforms benchmark models.

2.6.4 Beyond CXR classification

Classifying multiple image modalities: Table 2.7 summarizes the main characteristics of

the multiple-image-modality classifiers. In 2015, the first text/image DL framework with a

large-scale PACS was proposed by Shin et al. [65] and used in a national research hospital.

This process is explained in more detail in [87]. This system used approximately 780,000

radiology reports and around 216,000 2D images to extract and mine the semantic interactions

between them. This framework was capable of matching images with their descriptions

automatically using NLP. Latent Dirichlet Allocation (LDA) [165] was applied to obtain

the semantic interpretation of diagnostic images, and a CNN was trained to map the images

into document categories. The weak supervision method was used to generate interpretations

of radiology images, and the strict supervision method was used to detect the absence or

presence of several common diseases.

40 2 LITERATURE REVIEW

Nevertheless, the clusters in [65] were highly unbalanced. This was because most images were

clustered into three groups, as they were derived from text modalities only (approximately

780,000 reports). However, Wang et al. [72] created the LDPO model, which forms clusters

from text reports as well as image cues to offer a more visually coherent and balanced method

in terms of clustering. As such, LDPO is an iterative system that extracts deep CNN features

based on fine-tuned radiologist topic labels and mutual information shared between discovered

clusters. When the LDPO model was applied to discovery clusters, visually coherent and

highly balanced clusters were observed. However, the looped property is specific to deep

CNN classification_clustering methods, as other kinds of classifiers cannot learn satisfactory

image characteristics simultaneously.

Generating sentence-level radiology reports: Table 2.8 summarizes the main characteristics

of the sentence-level report generators. This area of research was inspired by recent work

in generating text descriptions of natural images through intermodal connections between

language and visual features [166].

In contrast to the above image classifiers, Shin et al. [26] described the context of a disease

in a similar way to a radiology report. They introduced a recurrent neural cascade model to

detect and describe the disease location, severity, and the affected organs to offer a better

understanding of the disease. This system computed labels based on joint text/image contexts

after initial CNN/RNN training using single-object labels from the IU X-Ray dataset [31].

Eventually, it generated image descriptions by training the RNN with the new CNN image

embedding (refer to Eq. [(2.3)]), where I is the input image, t is the time step, N is the

number of words in the annotation, Y is the output word, S is the correct word and him:text

represents the joint image/text context vector from the first iteration, iter = 0.

L(I, S) = −
N∑
t=1

[PRNN iter=1
(Yt = St)|{CNNiter=1(I)|him:textiter=0

}] (2.3)

2.6
C

X
R

IM
A

G
E

C
L

A
S

S
IFIC

A
T

IO
N

41
TABLE 2.7. The DL Models for Classifying Multiple Image Modalities.

Model Proposed by Image Modality Dataset Organ Pathology Software CNN Architecture
Base
Technique Task

Deep Shin, et al. CT PACS of Multiple Multiple Caffe [102] AlexNet [74] LDA & RNN Generate semantic
mining [65] 2015 MRI clinical (e.g., neck, (e.g. VGG-16 [76] labels
model PET center [87] bone, adenopathy VGG-19 [76] CNN Map from images

Computed liver, metastasis to label spaces
radiography brain and and sinus
Ultrasound heart) diseases)

LDPO: Wang et al. CT PACS of Mutiple Multiple Caffe AlexNet [74] CNN Initialze looped
looped deep [72] 2016 MRI clinical (e.g., neck, (e.g., optimization
pseudo task PET center [87] bone, adenopathy Cluster images
optimization Computed liver, metastasis K-means/RIM Extracts semantically
network radiography brain and and sinus NLP relevant words

Ultrasound heart) diseases)

TABLE 2.8. The DL Models for Generating Sentence-Level Radiology Reports.

Model Proposed by Image Modality Dataset Organ Pathology Software CNN Architecture
Base

Technique Task

Recurrent neural Shin, et al. X-Ray IU X-Ray [31] Chest Thorax diseases _ NIN [85] CNN Classify images
cascade model [26] 2016 cardiomegaly, GoogLeNet [77] LSTM-RNN [91] / Describe disease

and granuloma) GRU-RNN [92] contexts

Multi-task-loss Kisilev, et al. Mammograph DDSM Breast Tumour Caffe [102] AlexNet (5 conv. CNN Produce ranked ROIs
CNN model [107] 2016 Ultrasound Private layers) [74] Generate semantic

dataset [34] description

Multi-task Jing, et al. Multiple PEIR Gross 21 organ Multiple _ VGG-19 [76] CNN Learn visual features
learning model [32] 2017 categories MLC Predict relvent tags

(e.g. kidney)

42 2 LITERATURE REVIEW

Similarly, the multi-task-loss CNN-based system generated radiologist sentences to describe

tumor lesions (shape, margin, and density) in breast images [107]. Essentially, this system

was trained using the DDSM dataset and a private dataset of mammography and US images to

produce and rank the Rectangular Regions of Interest (ROIs). The highest ROIs were fed into

the remaining network layers, which in turn generated semantic descriptions of subsequent

ROIs. This system provided automatic lesion detection in breast images alongside semantic

descriptions. Jing et al. [32] added a co-attention mechanism to describe abnormal lesions by

discovering visual and semantic information.

Generating paragraph-level radiology reports: Table 2.9 summarizes the main character-

istics for the paragraph-level report generators. Overall, the purpose of the proposed models

is to generate interpretations of radiology images. During training, the input for these models

was a collection of images and associated reports. First, researchers proposed models to align

disease descriptions to relevant visual regions using multimodal embedding. They then used

the outcomes as training data for additional models. This training data allowed the additional

models to learn how to generate the image descriptions.

The first work towards generating truly radiology reports with long and diverse topics is a

multitask learning model with a co-attention mechanism [32]. It contained a hierarchical

LSTM to produce long descriptive paragraphs through capturing long-range semantics. Al-

though this model achieved outstanding results when generating descriptive radiology reports

using the IU X-Ray dataset, the produced paragraphs contained repeated sentences due to a

lack of contextual coherence in the hierarchical models.

However, Xue et al. [33] generated sentences using the same dataset through an attention input

of the image encoding and the first generated sentence. This method maintained coherence in

the resultant paragraphs as it used a CNN and LSTM in a recurrent way. As Xue et al. [33]

filtered reports without two associated images (frontal and lateral CXRs) and reports with

missing information from the IU X-Ray dataset, the training was performed using a small

dataset. As a result, the generated text was missing some abnormal descriptions and contained

sentences that were different from the ones in the training set.

2.6
C

X
R

IM
A

G
E

C
L

A
S

S
IFIC

A
T

IO
N

43

TABLE 2.9. The DL Models for Generating Paragraph-Level Radiology Reports.

Model Proposed by Image Modality Dataset Organ Pathology Software CNN Architecture
Base
Technique Task

Multi-task Jing, et al. X-Ray IU X-Ray [31] Chest Thorax diseases _ VGG-19 [76] CNN Learn visual features
learning model [32] 2017 Hierarchical LSTM Generate long paragraphs

MLC Predict relevant tags

Multimodal Xue, et al. X-Ray IU X-Ray Chest Thorax diseases _ ResNet-152 [78] CNN Extract visual features
recurrent model [33] 2018 Single layer LSTM Sentence decoding
with attention Bi-LSTM and Sentence encoding

ID CNN

TieNet: text-image Wang, et al. X-Ray IU X-Ray Chest Thorax diseases TensorFlow ResNet-50 [78] NLP Mine disease labels
embedding [34] 2018 [81] CNN-RNN Link words with image
network Tensorpack regions

HRGR-Agent: Li, et al. X-Ray IU X-Ray Chest Thorax diseases PyTorch [104] DensNet [86] LSTM-RNN Produce reports
hybrid retrieval- [27] 2018 CX-CHR VGG19 [76] CNN Extract visual features
generation reinforced (Chinese
agent reports) [27]

44 2 LITERATURE REVIEW

Using the same dataset, Wang et al. [34] proposed TieNet, which integrated multi-level

attention with a CNN-RNN framework for classification and reporting. The CNN, RNN, and

LSTM were based on ResNet-50, the visual spatial attention approach [167], and standard

LSTM, respectively. Multiple RNNs may have enhanced TieNet by learning the disease

attributes more efficiently, which in turn may have improved the auto-report quality.

Recently, Li et al. [27] introduced the first retrieval model with a generative neural network

using RL. It is called the HRGR-Agent. The HRGR-Agent extracts visual features of CXRs

from the last convolutional layer of DenseNet or VGG-19 and improves text generation by

empowering an RNN with an attention mechanism. Experiments on two medical databases,

IU X-Ray and CX-CHR, showed high performance in generating precise text that described

rare abnormal findings. The CX-CHR database utilized was a proprietary dataset of Chinese

reports and linked images. This made it difficult to compare the HRGR-Agent with other

recent state-of-the-art models.

In contrast, Guo et al. [168] used the largest public intensive care unit patient dataset to

introduce a framework that learned multiple disease labels from two types of features: medical

charts and notes. Instead of considering the correlation between diseases in the same way

as existing methods, this approach used disease-specific features. However, the paper only

demonstrated an intuitive implementation of the disease-specific feature construction, rather

than using multiple clusters for positive and negative instances.

2.7 CXR computer-aided applications

Computer-Aided Detection uses a computer as a tool to generate output that can assist

clinicians in making a definitive diagnosis [169]. Unlike automated computer diagnosis,

CAD’s final diagnosis is not based on computer algorithms alone. Researchers sometimes use

Computer-Aided Detection (CADe) and Computer-Aided Diagnosis (CADx) interchangeably.

However, CADe minimizes the risk of missing diseases of interest by marking abnormal areas

in images, and CADx offers assessment and pathology classification in medical images. There

are several CXR applications associated with the CAD, including the applications discussed

2.8 EVALUATION 45

in this chapter (i.e., labeling reports in section 2.5, classifying images in section 2.6, and

generating reports in section 2.6.4) and the applications that are beyond the scope of this

thesis (i.e., segmentation, localization, and image generation).

Segmentation in CXR images refers to segmenting the anatomy to obtain the ROIs for various

purposes, such as detecting pulmonary nodules [169]. For example, researchers may aim

to segment the lung fields [170], the contours of the lung fields [171], the ribs [172] or the

diaphragm. Among the various types of CXR image segmentation, lung field segmentation is

essential, as it is related to identifying the ROIs that are linked to lung opacity, consolidation,

cavities, and nodules.

Localization in CXR images can be described as the identification of a specific region within

the CXR image by a bounding box or a point location [173]. It is an important application

to define foreign objects (e.g., catheters) [174], anatomical regions (e.g., ribs) [175], and

abnormalities (e.g., nodules) [176] and is easier to accomplish than precise segmentation.

Image generation in CXR images refers to generating new and realistic images to get more

interpretable images (e.g., enhancing resolution and removing noise), to obtain additional

images for training (e.g., augmenting data), or to increase task performance (e.g., detecting

abnormalities) [177]. Since Goodfellow et al. [178] introduced the generative adversarial

network in 2014, image generation has become a popular research topic in the medical

imaging community [179].

2.8 Evaluation

Evaluating report labeling, image classification, and image captioning models has become

increasingly essential due to the rapid introduction of DL approaches to large medical datasets.

Both quantitative (machine-based) and qualitative (human-based) evaluations have been

employed to compare the benchmark models. Qualitative evaluation is more expensive than

quantitative evaluation and is not repeatable. However, it may offer additional valuable

measurements for DL outcomes.

46 2 LITERATURE REVIEW

2.8.1 Quantitative classification metrics

The most common evaluation metrics for classification tasks are the accuracy, precision,

recall, specificity, F1, AUC [180], and Matthews Correlation Coefficient (MCC) [181]. Table

2.10 compares these metrics for the binary classification task in terms of their purposes and

algorithms. Note that tp denotes True Positives classifications, fn refers to False Negatives

classifications, tn means True Negatives classifications, and fp presents False Positives

classifications. Since accuracy depends mostly on the number of samples in each class,

CNN-based models seemingly perform well in the imbalanced datasets, such as CXR datasets.

This may result in an inaccurate conclusion. Therefore, a combination of multiple evaluation

metrics should be the criterion for selecting the best CXR classifier.

TABLE 2.10. Evaluation Metrics (Binary Classification Measures).

Metric Purpose Algorithm

Accuracy Overall classifier effectiveness tp+tn
tp+fn+fp+tn

Precision Class agreement with the classifier- tp
tp+fp

positive labels

Recall Classifier effectiveness in identifying tp
tp+fn

(Sensitivity) positive labels

Specificity Classifier effectiveness in identifying tn
fp+tn

negative labels

F1 Relations between classifier positive (β2+1)tp
(β2+1)tp

+ β2fn+ fp

labels and data-positive labels

AUC Classifier effectiveness to limit false 1
2

(
tp

tp+fn
+ tn

tn+fp

)
classification

MCC Indicator of total unbalanced prediction (tp∗tn)−(fn∗fp)√
(tp+fn)∗(tn+fp)∗(tp+fp)∗(tn+fn)

Accuracy and AUC metrics are not adequate for a highly imbalanced dataset, such as a CXR

dataset. The F1 score, however, combines the strengths of recall (i.e., the ratio of true positive

predictions to positive samples) and precision (i.e., the ratio of true positive predictions to

the sum of all positive predictions, true and false). Hence, the F1 score can fairly compare

2.8 EVALUATION 47

benchmarks regardless of CXR dataset imbalance, where most cases are negative (i.e., healthy

patients).

For multi-class classification, Eqs. (2.4), (2.5), (2.6) and (2.7) explain the accuracy, macro

average precision, macro average recall, and macro F1 score, respectively, for generic class k.

Note that TP refers to True Positives classifications, FN denotes False Negatives classifica-

tions, TN presents True Negatives classifications, and FP means False Positives classific-

ations. In the macro approach, all classes are considered basic elements of the calculation

[182] (i.e., each class has the same weight in the average regardless of its size).

Accuracy =

∑K
k=1

TNk+TPk

TNk+TPk+FNk+FPk

K
(2.4)

PrecisionMacro =

∑K
k=1

TPk

TPk+FPk

K
(2.5)

RecallMacro =

∑K
k=1

TPk

TPk+FNk

K
(2.6)

F1Macro = 2× PrecisionMacro ×RecallMacro

Precision−1
Macro +Recall−1

Macro

(2.7)

Furthermore, the AUC [180] for multi-class classification is defined in Eq. (2.8), where

AUC(ci) is the area under the class reference receiver operating characteristic ROC curve

for the positive class, ci. This implementation of the AUC score is simple and fast but it is

sensitive to class distributions and error costs. The MCC, however, is a good indicator of

total unbalanced prediction models, as defined in Eq. (2.9), where c represents all correctly

predicted cases, s represents all cases, pk is the number of instances that class "k" was

predicted to be, and tk is the number of instances when class "k" truly occurred.

AUCtotal =
∑
ciϵC

AUC(ci)× p(ci) (2.8)

48 2 LITERATURE REVIEW

MCC =
c× s−

∑K
k Pk × tk√

(s2 −
∑K

k p2k) (s
2 −

∑K
k t2k)

(2.9)

2.8.2 Quantitative captioning metrics

The most common evaluation metrics for image captioning and machine learning are Bilingual

Evaluation Understudy (BLEU) [183], Recall-Oriented Understudy for Gisting Evaluation

(ROUGE) [184], METEOR [185], Consensus-Based Image Description Evaluation (CIDEr)

[186], and Semantic Propositional Image Caption Evaluation (SPICE) [[187]. Table 2.11

compares these metrics using their original purposes, main ideas, strengths, and weaknesses.

These evaluation metrics are employed by researchers to compare their proposed models

of generating radiology reports against the benchmarks. They automatically calculate an

accuracy score for a new model by observing the similarities and differences between the

generated captions and the radiologist’s written descriptions from empirical observation.

Increased performance is indicated through higher scores in BLEU, ROUGE, METEOR,

CIDEr, and SPICE. The MS COCO evaluation kit36 offers the implementation script for these

evaluation metrics in terms of caption generation.

The BLEU-n metrics are precision metrics for machine translation that are computed by

multiplying n-gram precision scores by a penalty for short sentences. They have been

employed to measure the similarity between a pair of sentences. A superior version of BLEU

was proposed by Lin et al. [188]. However, BLEU suffers from a low performance in explicit

word matching.

The ROUGE metric is a recall metric for summarization systems that matches intersecting

n-grams, word sequences, and word pairs; ROUGE-L is a version of ROUGE that calculates

the longest common sub sequences between two sentences.

The METEOR metric is a recall metric for machine translation that utilizes synonyms,

paraphrase matching, precision, and unigram recall to obtain harmonic overlapping between

36https://github.com/tylin/coco-caption.

https://github.com/tylin/coco-caption

2.8 EVALUATION 49

sentences. It overcomes BLEU’s weaknesses in failing to locate semantic similarity by

applying synonym matching based on WordNet. Nonetheless, observing synonyms alone may

not be adequate to capture semantic similarities.

The CIDEr metric is an evaluation metric for image captioning that calculates cosine similarity

between candidate image ci annotation and the associated sentences produced by humans. It

works via purely linguistic means, but its evaluations are ineffective as it sometimes provides

large weighting for insignificant sentence details.

The SPICE metric is a recent evaluation metric for image captioning that uses scene-graph

tuples to parse a sentence into semantic tokens including object classes, relation types, and

attribute types. Thus, the quality of the parsing determines CIDEr’s performance. In some

cases, this may result in failure, as illustrated by an example in Kilickaya et al.’s work [189].

Similar to METEOR, SPICE utilizes WordNet synonym matching for tuple matching.

The different design choices of evaluation metrics, such as n-grams and scene-graphs, result

in metrics that have different strengths and weaknesses. For example, BLEU, ROUGE, and

CIDEr use only exact n-gram matches, but METEOR adds synonyms and phrases. Although

BLEU is based on precision, METEOR and ROUGE are recall-based metrics. As a result,

Kilickaya et al. [189] suggested that existing evaluation metrics should complement each other

in measuring the quality, accuracy, and robustness of the generated annotations. Table 2.12

compares the results of the reports generated by the models in Table 2.9 through quantitative

evaluation metrics.

However, the original purpose of these common metrics was not to evaluate generated

radiology reports. Therefore, some researchers have designed complementary metrics. For

instance, a metric called keywords accuracy calculates accuracy by dividing the number of

correctly generated words by the number of ground truth words from the Medical Text Indexer

annotations [33].

50
2

L
IT

E
R

A
T

U
R

E
R

E
V

IE
W

TABLE 2.11. Evaluation Metrics (Image Caption Measures).

Metric Purpose Algorithm Strengths Weaknesses

BLEU [183] 2002 Machine translation Ngram precision Correlates with human Lack of explicit word
judgments matching

ROUGE [184] 2004 Document summarization Ngram recall Favors long sentences Works only in single-
document summarization

METEOR [185] 2005 Machine translation Ngram with synonym matching Benefits from synonyms and Lack of semantic
phrase matching similarity capturing

CIDEr [186] 2015 Image captioning Ngram with corpus reweighting Works via linguistics means May weight irrelevant
sentences'details

SPICE [187] 2016 Image captioning fobjects ∗ fattributes ∗ frelations Can match nouns / objects Reliant on the performance
between captions of parsing

TABLE 2.12. Quantitative Evaluation of Generated Radiology Reports based on DL Models.

Model Database BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGH ROUGH_L CIDER

Sentence-level

Recurrent neural cascade model LSTM [26] IU X-Ray [31] 0.793 0.091 0.000 0.000 _ _ _ _
Recurrent neural cascade model GRU [26] IU X-Ray 0.785 0.144 0.047 0.000 _ _ _ _
Multi-task learning model [32] PEIR 0.300 0.218 0.165 0.113 0.149 0.279 _ 0.329

Paragraph-level

Multi-task learning model [32] IU X-Ray 0.517 0.386 0.306 0.247 0.217 0.447 _ 0.327
Multimodal recurrent model with attention [33] IU X-Ray 0.464 0.358 0.270 0.195 0.274 0.366 _ _
TieNet [34] IU X-Ray 0.286 0.160 0.104 0.074 0.108 _ 0.226 _
HRGR-Agent [27] IU X-Ray 0.438 0.298 0.151 _ 0.322 _ _ 0.343

CX-CHR 0.673 0.587 0.530 0.486 _ 0.612 _ 0.290

2.9 DISCUSSION AND FUTURE DIRECTIONS 51

2.8.3 Qualitative measures

Qualitative evaluation involves comparing ground-truth reports with model-generated reports

using content coverage, length, medical term accuracy, and text fluency. For example, Li et

al. [27] utilized Amazon Mechanical Turk to conduct surveys. Here, participants chose the

generated report that best matched the ground truth report. Jing et al. [32] manually compared

the generated paragraphs from their co-attention model with the ground truth to establish

which models captured normality and abnormality most efficiently.

2.9 Discussion and future directions

Deep learning algorithms have the potential to be used in all fields of medicine and could

significantly alter the way medicine is practiced. Future DL research should utilize the wealth

of medical images and relevant diagnostic reports that were recently released to automatically

interpret CXRs. Recent attention has focused on classifying CXR images due to the value of

this task to the healthcare system.

In a radiology database, the data is unbalanced because abnormal cases are rarer than normal

cases. For example, the healthy cases in the IU X-Ray dataset consist of 2,696 images (37%)

compared to the 840 images (12%) that represent common diseases and 655 images (9%)

that show less common diseases. Shin et al. [26] attempted to address this issue by training

CNNs with different regularization methods including batch normalization and data dropout.

In addition, it is challenging to automate labels for medical images as radiologist reports often

include ambiguous words. This includes disease predictions rather than clear indications as

to whether a disease is present [87]. It should be noted that it is difficult to compare various

models because researchers conduct their experiments using diverse and sometimes private

datasets. For example, researchers conduct experiments using different database subsets. This

makes it difficult to compare the performance of their proposed approaches.

Researchers consider DL as a black box that takes an input, such as a medical image, and gen-

erates an output to state a conclusion (e.g., “There is a 0.8 probability of melanoma”) without

52 2 LITERATURE REVIEW

clear explanations [23][190]. This is unacceptable in the medical domain, as radiologists

need to provide findings as well as underlying justifications. For instance, researchers may

attempt to provide the rationale behind a radiologist’s description using their proposed models.

Considerably more research will need to be conducted to offer reasonable explanations for

DL model outcomes.

Most research uses CNNs to apply text-image mining in medical imaging. As such, CNNs

have the widest variety of architecture, including AlexNet, VGG-16, GoogLeNet, and ResNet.

In the last three years, end-to-end trained CNN use has become the preferred approach for

medical imaging interpretation. As such, this could be considered standard practice for mining

medical images. In addition, it is likely that the volume of research in leveraging radiology

reports for CNN training will increase in the near future.

Deep learning has several limitations that should be addressed to improve the task of CXR

interpretation. A reliable AI system may require tens of millions of accurately labeled images

which are not yet readily available [23]. Furthermore, these samples should be structured

without scattered or noisy information to facilitate the learning process for DL models. To

date, there are few medical datasets that are large and accessible enough to train multimodal

deep CNNs. Improving the quantity and quality of radiology data remains an ongoing task.

Creating multipurpose reporting systems for radiologists that can detect several diseases is

another current challenge. Medical findings often correlate with certain body parts such as

metastatic spread to the liver and lymph nodes. Despite the promising results of interpreting

CXR image interpretations, several questions must be addressed. For example, what are the

clinically related image annotations to be defined? How should the large volume of radiology

images required for DL techniques be labeled? To what extent is the deep CNN framework

generalizable for radiology images? Future work should explore valuable semantic diagnostic

information and map the many well-written radiologist reports and relevant images available.

Beyond medical image classifications and single-sentence-based descriptions, generating

radiology-coherent paragraphs has recently attracted researchers’ interest. This presents

a more practical and challenging application that can bridge visual medical features with

2.10 CONCLUSION 53

radiologist interpretations. Notably, CNNs and RNNs have quickly become popular choices

for mining radiology images and text, respectively. The main challenge now lies in how to

obtain ImageNet-level semantic labels on a large collection of medical images.

2.10 Conclusion

This chapter presented a comprehensive literature survey of DL in CXR interpretations

to place and justify our contributions in the following chapters. Deep learning in CXR

interpretations is crucial, as DL techniques can quickly and accurately provide additional

diagnostic criteria by reporting observable data from the images and text.

The rest of this thesis is structured as follows: In Chapter 3, we introduce our CXR text-

labeling tool. Then, we describe our CXR classifiers: the binary classifier in Chapter 4, the

multi-label classifier in Chapter 5, and the multi-class classifier in Chapter 6. The thesis

concludes with Chapter 7.

CHAPTER 3

Report Labeling1

The path to the development of Chest X-ray (CXR) interpretation models based on Deep

Learning (DL) starts with extracting multiple image annotations from radiology reports. This

chapter proposes CXRlabeler, a labeler that extracts multiple observations from CXR reports.

It fine-tunes a pre-trained Language Model (LM) to the corpus of radiology impressions and

then uses the LM encoder with a new head to classify CXR reports.

3.1 Introduction

There is an urgent need to automatically label large CXR datasets using radiology reports

to facilitate the training of deep neural networks. However, this task creates a significant

bottleneck as it requires considerable medical skills and time to output high-quality informa-

tion. Fortunately, Natural Language Processing (NLP) methods offer the ability to annotate

free-text reports automatically. Researchers have implemented several rule-based NLP and

expert-defined labeling systems [13][121] to extract labels from CXR reports to be used as

structured labels for CXR images. Even though these systems have been helpful to researchers,

they have several problems, such as low accuracy and a slow run time [130].

Currently, there are three public CXR datasets that release complete radiology reports,

i.e., Indiana University Chest X-Ray (IU X-Ray) [31], PAthology Detection in Chest ra-

diographs (PadChest) [115], and Medical Information Mart for Intensive Care Chest X-

ray (MIMIC-CXR) [113] datasets, as described in section 2.4. Figure 3.1 shows an example

1The content in this chapter has been published in the International Conference on Artificial Neural Networks
(ICANN), "Labeling Chest X-Ray Reports Using Deep Learning", Monshi, M., Poon, J., Chung, V., Monshi, F.
(2021).

54

3.1 INTRODUCTION 55

Report Labels

Atelectasis
Cardiomegaly
Consolidation
Edema
Enlarged Cardio.
Fracture
Lung Lesion
Lung Opacity
No Finding
Pleural Effusion
Pleural Other
Pneumonia
Pneumothorax
Support Devices

0,0
1.0

NaN
NaN

1.0
NaN

1.0
NaN
NaN
-1.0
0.0

NaN
NaN

1.0
PORTABLE AP CHEST FILM, — AT 11:18

CLINICAL INDICATION: —-year-old status post CABG,
status post chest tube removal, question pneumothorax. A
portable AP upright chest flm, — at 11:18 is submitted.

IMPRESSION: 1. Interval removal of the left chest tube.
No evidence of pneumothorax. Right internal jugular
central line has its tip in the distal SVC near the cavoatrial
junction, unchanged. Status post median sternotomy for
CABG with stable postoperative cardiac and mediastinal
contours. There is elevation of the left hemidiaphragm
with some adjacent streaky opacities, suggestive of
atelectasis. Blunting of the left costophrenic angle likely
refects a small efusion. There is also possibly a tiny
right pleural efusion. No evidence of pulmonary edema.

FIGURE 3.1. Example of a Labeled Report from the MIMIC-CXR Dataset.
Each label contains one of four values, 1.0, −1.0, 0.0, or NaN , which indicate
positive, negative, uncertain, or missing observations, respectively [132].

of a labeled report from the MIMIC-CXR dataset. Each label contains one of four values, i.e.,

1.0, −1.0, 0.0, or NaN , which indicate positive, negative, uncertain, or missing observations,

respectively.

For multilabel classification in the radiology domain, the task is to predict the probability

of multiple target medical observations linked to a report. This type of classification is a

common task in many real-life domains, such as in extracting probable diseases based on

observed clinical symptoms and automatic document tagging [191]. Chest X-ray reports

are typically semi-structured, where the impression section summarizes the most relevant

findings, describing multiple observations and important features of the CXR [28].

Several NLP systems have been proposed for extracting medical labels from CXR reports.

These are based on feature engineering, such as NegBio [121] and CheXpert [13], or DL

algorithms, such as Recurrent Neural Network with Attention (RNN-ATT) [115], CheXpert++

56 3 REPORT LABELING

[130], and CheXbert [131]. We described these labelers in the previous chapter (i.e., section

2.5).

3.1.1 Contributions

Differing from rule-based methods, which cannot handle the extensive linguistic ambiguity in

radiology reports, including misspellings and broken grammar, the work in this chapter is

related to DL approaches for labeling CXR reports. Deep learning models have been shown

to be beneficial in the training of high-quality models even in the absence of trustworthy

training labels [192].

This chapter proposes a novel model named CXRlabeler. It is a DL labeler that inputs raw

radiology text and extracts multiple positive/negative CXR observations as its output. For

labeling these reports, it utilizes the encoder learned from fine-tuning an LM on CXR reports.

For highly accurate automated CXR report labeling, our proposed method takes advantage of

both LM fine-tuning and classifier fine-tuning.

First, our CXRlabeler uses a popular pre-trained LM, named the Averaged Stochastic Gradient

Descent Weight-Dropped Long Short-Term Memory (AWD-LSTM) model [193]. Second,

CXRlabeler fine-tunes the AWD-LSTM using a corpus of CXR reports. Lastly, CXRlabeler

uses the AWD-LSTM body (i.e., the encoder) with a new head to classify the impression

sections of the CXR reports.

3.2 Proposed CXRlabeler model

As the input, CXRlabeler takes a radiology text with pre-tagged mentions of CXR observations

and checks whether a particular observation is positive or negative. This study used the pre-

trained LM/AWD-LSTM network. Figure 3.2 represents the overall pipeline of CXRlabeler.

The detailed steps are explained in the following subsections.

3.2 PROPOSED CXRLABELER MODEL 57

Probabilities for words

Language Model (AWD-LSTM)

Fine-tuning for 10 epochs

E
m

be
dd

in
g

3
hi

dd
en

L
ST

M
la

ye
rs

So
ft

m
ax

Tokenization (SpaCy)

Pre-training

Transfer

Multi-Label Classifier

True or False for 14 observations

Fine-tuning for 10 epochs

Atelectasis

Probabilities for words

Inductive Sequential

(Wikitext-103 of 28,595 articles)
(MIMIC-CXR of 156,790 impressions)

Learning

Transfer Learning

Cardiomegaly
Consolidation
Edema
Enlarged Cardio.
Fracture
Lung Lesion
Lung Opacity
No Finding
Pleural Effusion
Pleural Other
Pneumonia
Pneumothorax
Support Devices

False
False

True
False
True
False
False
False
False
False
False
False
True
False

Normalization (min-freq=3, max-vocab=60000)

The heart remains enlarged. There is opacity along the
medial left hemidiaphragm, which is known to ... ect.

(CXR impressions with 14 labels one-hot encoded)

FIGURE 3.2. The CXRlabeler Structure [132].

58 3 REPORT LABELING

3.2.1 Data preparation

From the MIMIC-CXR dataset (refer to section 2.4.4), this study extracted 152,855 unique

impressions for training and 3,935 for testing (merging the official validation and test split).

A binary mapping approach was followed, called the U-Zeros model [13], where uncertain

and missing values are mapped to negative instances. Table 3.1 records the frequency of the

14 labels in the preprocessed MIMIC-CXR dataset.

TABLE 3.1. Frequency of the 14 Labels in the Preprocessed MIMIC-CXR
Dataset. The study extracted 156,790 unique impressions, of which 152,855
were used for training and 3,935 for testing. It reported the number of positive
and negative cases for each label, with missing and uncertain labels considered
negative labels.

Label Positive Negative

Train Test % Train Test %

Atelectasis 42,052 1,038 27 110,803 2,897 73
Cardiomegaly 40,970 1,160 27 111,885 2,775 73
Consolidation 9,962 293 7 142,893 3,642 93
Edema 24,035 842 16 128,820 3,093 84
Enlarged Cardio. 6,589 199 4 146,266 3,736 96
Fracture 4,040 99 3 148,815 3,836 97
Lung Lesion 5,843 183 4 147,012 3,752 96
Lung Opacity 47,757 1,368 31 105,098 2,567 69
No Finding 24,487 472 16 128,368 3,463 84
Pleural Effusion 50,035 1,497 33 102,820 2,438 67
Pleural Other 1,851 71 1 151,004 3,864 99
Pneumonia 14,665 433 10 138,190 3,502 90
Pneumothorax 9,644 178 6 143,211 3,757 94
Support Devices 61,768 1,634 40 91,087 2,301 60

From the PadChest dataset (refer to section 2.4.5), nine labels were extracted that matched

those of the MIMIC-CXR dataset (atelectasis, cardiomegaly, consolidation, edema, fracture,

pleural effusion, pneumonia, and pneumothorax). As a result, the study ended up with 121,808

unique Spanish reports for training and 39,053 for testing, drawn from the PadChest reports

manually labeled by qualified radiologists. Table 3.2 reports the frequency of the nine labels

in the preprocessed PadChest dataset.

3.2 PROPOSED CXRLABELER MODEL 59

After performing similar data preparation on the IU X-Ray dataset (refer to section 2.4.1), we

ended up with 1,776 unique reports. This was a relatively small dataset and was attributed to

the many missing sections in the IU X-Ray dataset, which was derived from two hospitals

after a full anonymization process.

TABLE 3.2. The Frequency of Nine English Labels in the Preprocessed
PadChest Dataset. The study extracted 29,365 unique Spanish reports, of
which 22,275 were for training and 7,090 for testing. The testing split was
manually labeled [115].

Label Positive Negative

Train Test % Train Test %

Atelectasis 4,401 1,471 20 17,874 5,619 80
Cardiomegaly 5,898 2,300 28 16,377 4,790 72
Consolidation 1,370 232 5 20,905 6,858 95
Edema 1,169 71 4 21,106 7,019 96
Fracture 2,101 751 10 20,174 6,339 90
No Finding 3,042 1,303 15 19,233 5,787 85
Pleural Effusion 5,520 1,193 23 16,755 5,897 77
Pneumonia 3,854 1,084 17 18,421 6,006 83
Pneumothorax 275 67 1 22,000 7,023 99

3.2.2 Language model

Before a multi-label classifier was built, the LM was pre-trained on Wikitext-103 [194],

containing 28,595 preprocessed Wikipedia articles, and 103 million words. Then, the LM

was fine-tuned to the radiology corpus to introduce the LM to the medical language, medical

terms and informative sentence structures. This recently introduced fine-tuning approach has

been found to enhance the classifier prediction significantly [195]. For the PadChest dataset,

the LM was pre-trained on Spanish Wikipedia with a 15,000-word vocabulary.

The LM was fine-tuned on the entire CXR radiology corpus regardless of the data split

following the transfer learning and freezing/unfreezing layer protocol [195]. For this self-

supervised learning, all impression sections in the MIMIC-CXR dataset were fed to the LM

without labels, as it was able to get labels from the data automatically. The resulting LM

60 3 REPORT LABELING

could predict the next word in a radiology report based on previous words with an accuracy

of 62.92% for MIMIC-CXR and 49.99% for PadChest.

3.2.3 Multi-label classifier

In multilabel classification, the task is to learn a function, h : X → 2Y , which assigns a subset

of related medical observations from a finite set of Q predefined labels, Y = {y1, y2, ..., yQ},

to each report from an instance space, X = {x1, ..., xN}, X ⊆ Rn. In this study, first, the

learned encoder was loaded from the LM, which was then used for vocabulary and text.

Second, all of the pre-trained layers were frozen, and the last layer was trained for one epoch.

Finally, all layers were unfrozen and trained for 10 epochs while adjusting the learning rates

using the discriminative learning rates protocol [195]. This protocol enabled us to optimize

the neural net efficiently by training it with different learning rates for various layers.

This approach was based on inductive sequential transfer learning, where the source and the

target task are not the same and the source data’s general knowledge is transferred to a single

task [196]. Howard et al. [195] concluded that this method of transfer learning has led to the

most significant improvements in text classification benchmarks by decreasing errors by an

incredible 18%_24% on several datasets.

3.3 Experiment

For the DL training, this study used the PyTorch software [103], the Fastai v2 library [105],

and an n1-highmem-8 (8 vCPUs, 52 GB memory) machine with a single NVIDIA Tesla V100

Graphics Processing Unit (GPU). Fastai outperforms existing DL libraries in handling the

multi-label text classification tasks [197]. To avoid overfitting, the training was continued

while the validation loss was lower than the training loss. From the Learning Rate (LR) finder

graph, the study selected the middle point of the most significant downward slope as the LR.

3.4 RESULTS AND DISCUSSION 61

Our proposed CXRlabeler is available in Appendix (B), and more details about the im-

plementation of this model can be found on https://github.com/MaramMonshi/

CXRlabeler.

3.4 Results and discussion

The accuracy, macro Area Under the Receiver Operating Characteristic Curve (AUC), macro

precision, macro recall, and macro F1 score were used to evaluate CXRlabeler. We explained

these metrics in the previous chapter (i.e., section 2.8.1). Each matrix gave valuable insight

into CXRlabeler’s performance. However, the accuracy and AUC metrics are not adequate for

a highly imbalanced dataset, as shown in Table 3.1 and Table 3.2. Therefore, the thresholds

for accuracy were set to above 0.8 to build a robust model. The F1 score, however, combines

the strengths of recall and precision. As a result, it could fairly compare CXRlabeler with

the benchmarks despite the CXR dataset imbalance issue, where most cases were healthy

patients.

Table 3.3 compares CXRlabeler with other models on the multi-label classification task.

Previous labelers used input sentences from a CXR report, and the output for each finding

was one of the following classes: positive, negative, uncertain, or blank. For CXRlabeler, the

outputs were one of the two following classes: positive or negative. CXRlabeler achieved

an F1 of 96.17%, significantly higher than the baseline performance of RNN-ATT (60.10%),

CheXpert++ (79.10%), CheXbert (79.80%), NegBio (94.40%), and CheXpert (94.80%).

Moreover, transfer learning a fine-tuned LM increased the classifier F1 score by 12.53%, as

recorded in Table 3.3. To pre-train CXRlabeler, we applied AWD-LSTM to an unlabeled

corpus of 156,790 CXR impressions from the MIMIC-CXR dataset. This pre-training stage

on CXR reports is especially important, as spelling and abbreviations vary greatly between

CXR reports and Wikitext-103 [198]. According to Drozdov et al. [199], including more

reports in the pre-training corpus may improve performance even more in the CXR report

labeling task.

https://github.com/MaramMonshi/CXRlabeler
https://github.com/MaramMonshi/CXRlabeler

62 3 REPORT LABELING

TABLE 3.3. Comparing CXRlabeler with the Benchmarks in Labeling CXR
Reports. CXRlabeler classifies each label as positive or negative.

Model Dataset Accuracy AUC Precision Recall F1

NegBio [121] OpenI _ _ 89.80 85.70 87.30
NegBio [121] ChestX-ray14 _ _ 94.40 95.70 94.40
CheXpert [13] CheXpert _ _ _ _ 94.80
CheXpert++ [130] CheXpert _ _ _ _ 79.10
RNN-ATT [115] PadChest 86.40 _ _ _ 60.10
CXRlabeler (without LM) PadChest 95.26 92.94 65.53 58.80 60.06
CXRlabeler (with LM) PadChest 99.16 98.95 96.55 89.01 92.08
CheXbert [131] MIMIC-CXR _ _ _ _ 79.80
CheXpert [13] MIMIC-CXR _ _ 79.30 91.16 82.54
CXRlabeler (without LM) MIMIC-CXR 97.58 98.10 87.62 81.24 83.64
CXRlabeler (with LM) MIMIC-CXR 99.23 99.80 95.92 96.45 96.17

Table 3.4 illustrates some examples of the labels extracted from radiology reports using the

automated labeling system of CXRlabeler. In most cases, the labeler extracted all observations

correctly. Benchmark NLP labelers NegBio and CheXpert were built and validated using

the ChestX-ray14 and CheXpert datasets, respectively. These datasets released images and

associated labels without the associated radiology reports. Since this study did not have

access to these reports, CXRlabeler was evaluated using the MIMIC-CXR, and the PadChest

datasets. In addition, CXRlabeler achieved a very low F1 score of 37.73% on the IU X-Ray

because of the dataset size limitation described earlier.

The CXR reports in the MIMIC-CXR dataset describe important CXR findings with respect

to anatomical locations using spatial prepositions, as presented in Table 3.4. For example, the

phrase “mild streaky opacities are present in the left lung base” states the CXR findings (i.e.,

opacities) in reference to the anatomy (i.e., the left lung base) through a spatial preposition

(i.e., in). However, spatial language understanding remains little studied in the radiology

domain due to the complexity of the language used to define spatial relations [26][200].

Recently, Datta et al. [201] employed the spatial role labeling method [202] to extract the

spatial information related to CXR findings, providing a preliminary step to understanding

the textual spatial semantics in CXR reports.

3.4 RESULTS AND DISCUSSION 63

TABLE 3.4. Examples of the Labels Predicted by CXRlabeler and the Target
Labels.

Ex. Input Target Predicted Result

1 Large right and moderate left pleural ef-
fusions and severe bibasilar\n atelectasis
are unchanged. Cardiac silhouette is ob-
scured. No pneumothorax. \n Pulmonary
edema is mild.

Atelectasis,
Edema,
Pleural Effu-
sion

Atelectasis,
Edema,
Pleural Effu-
sion

Correct

2 1. Slowly growing peripheral right up-
per lobe lung nodule is concerning for
primary lung adenocarcinoma. 2. Low
lung volumes limit assessment of the
lung bases for pneumonia.

Lung Lesion,
Pneumonia

Lung Lesion,
Pneumonia

Correct

3 xxmaj the pre-existing very diffuse bilat-
eral interstitial opacities , likely reflecting
interstitial lung edema, are unchanged.
xxmaj this is supported by the presence
of pleural effusion, evident on the lateral
image . xxmaj however , in the right lung
, subtle calcified granulomas are present
. xxmaj the patient also shows several
calcified mediastinal lymph nodes.

Cardiomegaly,
Edema,
Lung Opacity,
Pleural Effu-
sion, Pneumo-
nia, Support
Devices

Cardiomegaly,
Edema,
Lung Opacity,
Pleural
Effusion,
Pneumonia

Wrong
(missed
support
devices)

Advanced CXR report labelers lead to higher-performing models that interpret CXR images.

Jain et al. [203] demonstrated how robust CXR labelers (particularly VisualCheXbert [204])

can assist in further increasing the accuracy of CXR classification models. In the future, DL

models will be trained on labels generated by CXRlabeler and recent automatic CXR report

labelers.

This study followed the binary assignment of 0s (negative) and 1s (positive), where the

uncertainty label did not add information to the classifier and, hence, may have degraded the

decision-making performance. Irvin et al. [13] suggested treating the uncertain label, u, as a

separate class to better disambiguate the uncertain cases, where the probability output of the

three classes is p0, p1, pu ϵ[0, 1], p0 + p1 + pu = 1. In the future, the scope of this method

will be extended to detect uncertainty, which is critical knowledge in the medical domain.

64 3 REPORT LABELING

3.5 Summary and conclusion

One of the primary challenges in the development of CXR interpretation models is the lack of

large datasets with multi-label image annotations extracted from CXR reports. This chapter

proposed CXRlabeler, which can simultaneously extract multiple observations from free-text

radiology reports as positive or negative and is abbreviated as CXRlabeler. It fine-tuned a

pre-trained LM/AWD-LSTM, to the corpus of CXR radiology impressions and then used it

as the base of the multilabel classifier. Experimentation demonstrated that the LM fine-tuning

increased the classifier F1 score by 12.53%. Overall, CXRlabeler achieved a 96.17% F1 score

on the MIMIC-CXR dataset. To further test the generalization of CXRlabeler, it was tested

on the PadChest dataset. This testing showed that the CXRlabeler approach was helpful in a

different language environment.

CHAPTER 4

Binary Image Classification1

In the previous chapter, we looked at the process of labeling Chest X-ray (CXR) images

by extracting labels from CXR reports. In this chapter, we look at interpreting CXRs using

large-scale labeled images. We propose a stage-wise model, named MultiViewModel, that is

founded on a Residual Network (ResNet)-based deep Convolutional Neural Network (CNN)

architecture [78] to detect the presence and absence of thorax diseases. This novel binary

classifier incorporates various recent techniques, such as transfer learning, fine-tuning, fit-one-

cycle functions [205], and discriminative Learning Rate (LR) [195].

4.1 Introduction

Currently, CXR analysis depends on the availability of professional radiologists. In some

regions, access to such radiologists is limited [13]. Additionally, clinicians in emergency

departments and intensive care units need fast and accurate interpretations of medical images

[106]. An automated and precise binary classifier that can flag potentially life-threatening

diseases could allow care providers to handle emergency cases efficiently.

However, interpreting CXRs to detect thoracic diseases is still a challenging job. This is due

to the highly diverse appearance of lesion areas on CXRs. Unlike the traditional Computer-

Aided Detection (CAD) systems that interpret medical images automatically to offer an

objective diagnosis that assists radiologists [15], Deep Learning (DL) is able to learn useful

features that are beyond the limits of radiology detection [16]. Researchers have shown

1The content in this chapter has been published in International Conference on Neural Information Processing
(ICONIP), "Labeling Chest X-Ray Reports Using Deep Learning", Monshi, M., Poon, J., Chung, V. (2019).

65

66 4 BINARY IMAGE CLASSIFICATION

+ReLU activation
Convolution Convolution

ReLU activation

FIGURE 4.1. A Basic Residual Block [146].

a significant performance boost using their DL-based models over the conventional CAD

systems [17][18].

As a result, several DL models that classify thorax diseases have been proposed, as explained

in Chapter 2 (Literature Review), section 2.6.1. Most of these models classify thorax diseases

from frontal CXRs using the ChestX-ray14 dataset [110][108][144][145][147]. However,

recent studies have pointed out that using lateral views enhances the performance for certain

prediction tasks, such as those for pleural effusion [106][116][157]. Therefore, we used

multiple CXR views to build our binary classifier model.

A Convolutional Neural Network (CNN) which is a supervised DL model, is the most

commonly used network for thoracic disease classification. Convolutional neural networks

also have the largest variety of architectures, as discussed in Chapter 2 (Literature Review),

section 2.3.2.1. Moreover, ResNet is the CNN architecture that won the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC) in 2015 with a 3.6% top-five error rate [78].

It enabled automated image classification to beat human brains within 5% error for the first

time. It is a feed-forward network that contains several basic residual blocks (refer to Fig. 4.1)

to handle vanishing gradients [83] and the degradation issue. We built our binary classifier

based on ResNet.

4.1.1 Contributions

In this chapter, we present a supervised DL model using CNN to detect 12 thoracic diseases

by reading a given CXR. Here, ResNet-50 was the backbone network for our model because

it has clearly shown outstanding performance in computer vision.

Consistent with recently proposed CNN models on automated CXR classification [106][108]-

[66], we focused on training CNN models to detect 12 common thoracic diseases, namely

4.2 PROPOSED MULTIVIEWMODEL 67

enlarged cardiomediastinum, cardiomegaly, airspace opacity, lung lesion, edema, consolida-

tion, pneumonia, atelectasis, pneumothorax, pleural effusion, pleural other and fracture (Fig.

4.2).

Unlike past works, we propose MultiViewModel, a novel stage-wise training approach, to

observe the model’s performance, reduce the training time, and increase accuracy. We trained

our model on multiple CXR views, including Posteroanterior (PA), Anteroposterior (AP),

and lateral views. Furthermore, we adopted a combination of recent DL techniques for

CXR classification, including transfer learning, fine-tuning, fit-one-cycle functions, and

discriminative LR.

4.2 Proposed MultiViewModel

4.2.1 Data preparation

We organized a subset of 10% of the Medical Information Mart for Intensive Care Chest

X-ray (MIMIC-CXR) v1.0.0 dataset (refer to section 2.4.4) into training and validation sets

that contained 33,195 and 3,688 images, respectively. The validation set was selected at

random. During training, the uncertain and unknown labels were ignored. Table 4.1 shows

the positive and negative cases for each observation.

Prior to the model training, we employed several augmentation strategies (refer to Table 4.2),

as data augmentation is a critical step of deep CNN training in medical imaging [206]. We

cropped each X-ray in both the training and validation sets to 224 by 224 pixels to reduce

the training time while maintaining the model’s robust performance. For example, training

the model to diagnose cardiomegaly using images of 299× 299 pixels would have increased

the training time without improving the Area Under the Receiver Operating Characteristic

Curve (AUC) per epoch (refer to Table 4.3). We performed a horizontal flip only for each

image in the training set, since vertical flips often do not reflect CXRs (i.e., an upside-down

CXR may not improve the training). The maximum lighting of the image was set to 0.3 with

68 4 BINARY IMAGE CLASSIFICATION

Enlarged cardiomediastinum

Cardiomegaly

Lung opacityLung lesion

Edema

Consolidation

Pneumonia Pneumothorax

Pleural effusion

Fracture

Atelectasis

Pleural other

FIGURE 4.2. Examples of 12 Thoracic Diseases from MIMIC-CXR Dataset.
Each disease is associated with frontal and lateral views of CXRs [146].

an applied probability of 0.5. Note that no vertical flips, rotations, zooms, or warps were done

to the images. In addition, uncertain and unknown labels were dropped.

4.2.2 Structure overview

The task of detecting thorax diseases in CXRs was divided into 12 sub-tasks, where each

task considered the presence and absence of a specific disease. This simplified the automated

CXR interpretation problem to a binary classification task. Combining binary CXR labels

and CNN showed promise in a tunable classifier that performed similar to expert radiologists

[207].

4.2 PROPOSED MULTIVIEWMODEL 69

TABLE 4.1. The MIMIC-CXR Dataset with 12 Labeled Pathologies. We
counted the numbers of positive and negative observations in 10% of the
dataset.

Pathology Positive (%) Negative (%)

Enlarged Cardiom. 1,019 2.8 35,367 97.19
Cardiomegaly 6,932 18.79 29,951 81.2
Airspace Opacity 7,582 20.42 29,542 79.57
Lung Lesion 1,060 (2.82 36,472 97.17
Edema 3,964 11.06 31,859 88.93
Consolidation 1,410 3.8 35,634 96.19
Pneumonia 2,738 7.83 32,202 92.16
Atelectasis 6,356 17.54 29,876 82.45
Pneumothorax 1,523 4.05 36,059 95.94
Pleural Effusion 7,869 21.34 28,994 78.65
Pleural Other 425 1.13 37,132 98.86
Fracture 805 2.13 36,829 97.86

TABLE 4.2. Data Augmentation for the CXRs. We applied a list of transforms
parameters to the trained images.

Parameter Value

Size 224
Flip (horizontally) TRUE
Lighting 0.3
Affine 0.5

TABLE 4.3. The AUC per Epoch for Training the ResNet-50 CNN. This
model detects cardiomegaly using CXRs of 299× 299 or 224× 224 pixels of
chest X-rays.

Image Epoch Avg AUC

Size 1 2 3 4 5 6 7 8 per Epoch

299 0.565 0.733 0.758 0.791 0.798 0.804 0.804 0.807 0.757
224 0.725 0.733 0.747 0.785 0.793 0.799 0.802 0.802 0.773

Among the proposed variations of ResNet layers (i.e., 34, 50, 101, 152, and 1,202), we

adopted the popular ResNet-50 network, which consists of 49 convolution layers and ends

with one fully connected layer. Equation (4.1) defines the last output of residual unit xl,

where F (xl−1) is the generated output after performing the convolution operations, batch

70 4 BINARY IMAGE CLASSIFICATION

normalization and activation function on xl−1. Importantly, we use cyclical learning rates

to enhance performance by decreasing the number of epochs required to accomplish the

accuracy threshold. For each binary label problem, ResNet-50 was used as the baseline CNN

architecture in the three main training stages (Fig. 4.3).

xl = F (xl−1) + xl−1 (4.1)

4.2.3 Training stages

In the first stage, the pre-trained ResNet-50 with the default fastai [105] hyperparameter

values was trained for three epochs. That meant setting all layers to frozen, excluding the final

dense layer and examining each X-ray three times. In other words, the first stage embraced the

transfer learning approach to train faster with a model that was already trained to recognize

1,000 categories of things in ImageNet. At the end of stage 1, the model’s weights were saved.

In the second stage, the whole model was trained again for one epoch by unfreezing the layers

and using the fit-one-cycle method. The objective of this stage was to observe the model’s

performance to reduce the training time and increase the accuracy. If the AUC was decreased

at the end of this training stage, the stage 1 weights were reloaded.

In the third stage, the whole model was trained again for four epochs using the optimal LR

finder. The LR was set by default to about 1e− 3 in stage 1 and changed manually to a range

of lower LRs (1e− 6 to 1e− 4) in stage 3. Figure 4.4 illustrates the plotted LR after the first

and second stages of the model, where the red dots in the graphs indicate the steepest gradient

points. Using different LRs for each layer at this stage was in line with the discriminate

fine-tuning technique to tune each layer with various LRs. In this case, the model’s parameters,

θ, and the LR, η, were split into {θ1, ..., θL} at time step "t" and {η1, ..., ηL}, respectively,

where "L" is the number of layers. This updated version of the regular Stochastic Gradient

Descent (SGD) with discriminative fine-tuning was defined as in Eq. (4.2), where ∇θlj is the

gradient of the model’s objective function.

4.2 PROPOSED MULTIVIEWMODEL 71

Output Classes 0 (Normal) 1 (Abnormal)

Stage 3

Input Image

Tuning

Stage 1

Frozen Layers
Epoch = (1-3)

LR = 1e-3

Training
(ResNet-50)

Chest X-ray
(3 * 224 * 224)

Batch = 64

PA Lateral AP

Fine

Stage 2

Unfrozen Layers
Epoch = 4
LR = 1e-3

Load Stage-1 Training Weights

Unfrozen Layers
Epoch = (5-8)

LR = (1e-6 , 1e-4)

Yes
No

Fine Tuning

stage-2 AUC >

Save Stage-1 Training Weights

stage-1AUC

FIGURE 4.3. Overall Illustration of MultiViewModel [146].

θlt = θlt−l − ηl ×∇θlj(θ) (4.2)

72
4

B
IN

A
R

Y
IM

A
G

E
C

L
A

S
S

IFIC
A

T
IO

N

Enlarged cardiomediastinum Cardiomegaly Lung opacity

Lung lesion Edema Consolidation

Pneumonia Atelectasis Pneumothorax

Pleural effusion Pleural other Fracture

FIGURE 4.4. Fluctuated LR. Per pathology, the plot on the right represents the LR after the stage 1 training, and
the plot on the left shows the LR after the stage 2 training. Note that the x-axis represents what happened as the LR
increased, and the y-axis indicates what the loss was (color figure online) [146].

4.4 RESULTS AND DISCUSSION 73

For a more precise classification, the ResNet-50 was fine-tuned by batch normalization and

weight optimization. Tajbakhsh et al. [208] proved that training a fine-tuned CNN model

takes substantially less time and gives better accuracy than a CNN model trained from scratch.

This is because the weights in the fine-tuned CNN model are initialized to specific values

learned from previous knowledge. Furthermore, the one-cycle policy was utilized to achieve

high classification performance with only eight epochs of training. Previous research has

demonstrated the one-cycle policy’s effectiveness, showing that training a model for 20 epochs

with this policy achieves a similar performance to training the model for 100 epochs without

this policy [209]. After each training epoch, we printed the training loss, validation loss, and

the AUC matrix on the validation set to examine the model’s performance using an unseen

dataset, where lower losses indicated better model performance.

4.3 Experiment
The training algorithms were evaluated with 12 pathologies: enlarged cardiomediastinum,

cardiomegaly, airspace opacity, lung lesion, edema, consolidation, pneumonia, atelectasis,

pneumothorax, pleural effusion, pleural other and fracture. We used the PyTorch software

[103], fastai library, n1-highmem-8 (8 vCPUs, 52 GB memory) machine and 4 x NVIDIA

Tesla P4 Graphics Processing Units (GPUs). This was in accordance with Coleman et al.’s

work [210], which demonstrated how the time per epoch for the ResNet-50 architecture scale

was much better when training it on multiple GPUs. Table 4.4 records the time per epoch for

training the ResNet-50-based model to detect cardiomegaly using different numbers of GPUs,

where parallel training on four GPUs reduced the training time by around 20 minutes.

Our proposed MultiViewModel is available in Appendix (B), and more details about the

implementation of this model can be found on https://github.com/MaramMonshi/

MultiViewModel.

4.4 Results and discussion

Table 4.5 shows the AUC results of each pathology computed on the validation set for each of

the eight training epochs. It can be seen that the detection performance for each pathology

https://github.com/MaramMonshi/MultiViewModel
https://github.com/MaramMonshi/MultiViewModel

74 4 BINARY IMAGE CLASSIFICATION

TABLE 4.4. Time per Epoch for Training the ResNet-50 CNN. This model
detects cardiomegaly using a single NVIDIA Tesla P4 GPU or four NVIDIA
Tesla P4 GPUs in a parallel training. Note that the batch size was set to 64
images, and the image size was set to 224 pixels.

No. of Epoch Avg. Time per

GPUs 1 2 3 4 5 6 7 8 Epoch (min)

1 32:42 32:26 32:36 34:34 33:40 33:52 33:58 34:00 33:28
4 13:32 12:54 13:01 13:05 13:07 13:08 13:07 13:06 13:07

TABLE 4.5. The Compression of the AUC Scores in each Epoch. We trained
each pathology for eight epochs.

Pathology Epoch

1 2 3 4 5 6 7 8

Enlarged Cardiom. 0.670 0.694 0.700 0.544 0.702 0.705 0.708 0.710
Cardiomegaly 0.725 0.733 0.747 0.785 0.793 0.799 0.802 0.802
Airspace Opacity 0.621 0.687 0.694 0.712 0.730 0.730 0.733 0.737
Lung Lesion 0.520 0.638 0.612 0.638 0.651 0.688 0.730 0.729
Edema 0.816 0.848 0.857 0.887 0.892 0.894 0.896 0.897
Consolidation 0.748 0.758 0.769 0.778 0.788 0.797 0.797 0.799
Pneumonia 0.556 0.531 0.545 0.497 0.550 0.585 0.580 0.587
Atelectasis 0.706 0.706 0.743 0.827 0.830 0.835 0.837 0.838
Pneumothorax 0.710 0.786 0.817 0.839 0.853 0.862 0.868 0.860
Pleural Effusion 0.837 0.869 0.881 0.891 0.903 0.906 0.905 0.899
Pleural Other 0.585 0.637 0.676 0.533 0.707 0.736 0.739 0.727
Fracture 0.546 0.563 0.576 0.606 0.636 0.648 0.607 0.741
Average 0.670 0.704 0.718 0.711 0.753 0.765 0.766 0.777

fluctuated over the epochs. For the individual training epochs, the eighth unfrozen epoch

achieved a higher average AUC (0.777) compared to the first (0.670), second (0.704), third

(0.718), fourth (0.711), fifth (0.753), sixth, (0.765) and seventh (0.766) epochs. Compared

with stage 1 (epochs 1–3) and stage 2 (epoch 4), stage 3 (epochs 5–8) resulted in larger AUC

values for all pathologies. This difference was likely due to the discriminative LRs in the

third stage of training.

Furthermore, we followed the one-cycle training technique [205] to make ResNet-50 converge

faster based on LR. The one-cycle training enabled the MultiViewModel to use higher LR

than other types of training to train faster and overfit less by skipping over the sharp local

4.4 RESULTS AND DISCUSSION 75

minima and ending up in a smother part of the loss. Smith and Topin [209] pointed out that

faster training can be achieved by training with maximum LR and named this phenomenon

"super-convergence."

Table 4.6 compares the pathology AUC results between our proposed model and the DualNet

architecture using the MIMIC-CXR dataset. We employed 10% of the dataset using all

available frontal and lateral views of the CXRs. DualNet, however, considered a combination

of PA and lateral views as well as a composite of AP and lateral views. In five out of seven

overlapped pathologies, our model performed better than both DualNet models. Overall, it can

be seen that average AUC was higher for our MultiViewModel classifiers (0.779), compared

to both the PA-lateral (0.722) and AP-lateral (0.677) classifiers.

However, the DualNet model performed better than our proposed MultiViewModel in de-

tecting pneumonia and cardiomegaly using PA and lateral views. The combination of these

two views, PA and lateral, is the standard chest examination, where a patient can stand in

front of an X-ray source, and has better image quality than the PA views [211]. Pezzotti

[212] recommended that the AP view should be reserved for very ill patients who cannot

stand because the heart and other structures in the anterior part of the chest look bigger in the

AP view. Thus, the AP view may lead to the false detection of several CXR findings, such

as cardiomegaly [213]. Since MultiViewModel used the AP view in training, it had lower

performance in detecting pneumonia and cardiomegaly than the DualNet model.

In the DualNet model, the CXR labels were extracted from the associated radiology reports

using an open source tool developed by the National Institute of Health (NIH), the NegBio

labeler [121]. This tool was used to annotate the popular ChestX-ray14 dataset. In contrast,

our model followed the labels publicly released by Johnson et al. [113] that utilized a different

open source tool by the Stanford Machine Learning Group, the CheXpert labeler. Although

the labeling algorithm of CheXpert was built upon the work of NegBio, it achieves a higher

F1 score. Hence, our model is trained on better-annotated CXRs than the DualNet model.

Interestingly, we obtained improved results compared to those achieved by DualNet using

smaller image sizes of 224× 224 pixels instead of 512× 512 pixels.

76 4 BINARY IMAGE CLASSIFICATION

TABLE 4.6. The Compression of AUC Scores. The DualNet model used an
older limited released version of the MIMIC-CXR dataset. Our model used
10% of the publicly released version of the dataset. Note that we ignored
uncertain and unknown labels.

Pathology DualNet [2] Our

PA + Lateral AP + Lateral MultiViewModel

Enlarged Cardiom. - - 0.710
Cardiomegaly 0.840 0.755 0.802
Airspace Opacity - - 0.737
Lung Lesion - - 0.730
Edema 0.734 0.749 0.897
Consolidation 0.632 0.623 0.799
Pneumonia 0.625 0.593 0.587
Atelectasis 0.766 0.671 0.838
Pneumothorax 0.706 0.621 0.868
Pleural Effusion 0.757 0.733 0.906
Pleural Other - - 0.739
Fracture - - 0.741
Average 0.722 0.677 0.779

Nevertheless, the MIMIC-CXR dataset has the largest number of open source X-ray images to

date; the class labels in the training set are noisy because they were mined by Natural Language

Processing (NLP) tools, rather than by experienced radiologists. Figure 4.5 visualizes the

most common X-rays incorrectly predicted by our model with heatmaps using the activations

of the wrongly predicted class. In addition, the positive negative subsets ratio was highly

imbalanced in the enlarged cardiomediastinum, lung lesion, consolidation, pneumothorax,

pleural other, and fracture sets (Table 4.1). However, our model’s AUC for each of these

pathologies was above 0.7 (Table 4.6).

4.5 Summary and conclusion

In this chapter, ResNet-50 CNN-based stage-wise models were proposed to detect 12 thorax

diseases in 10% of the largest CXR dataset to date, the MIMIC-CXR dataset. The absolute

labeling performance with an average weighted AUC of 0.779 is encouraging, since we

4.5 SUMMARY AND CONCLUSION 77

Enlarged cardiomediastinum

Cardiomegaly

Lung opacityLung lesion

Edema

Consolidation

Pneumonia

Atelectasis

Pneumothorax

Pleural effusion

Pleural other

Fracture

FIGURE 4.5. Examples of the Most Confused CXRs with Heatmaps. Each
image was associated with the prediction, actual, loss and probability values
after the stage 1 training, where 0 and 1 represent negative and positive
pathology respectively [146].

used only a subset of the available CXRs. In future work, we plan to improve our Mul-

tiViewModel’s performance through utilizing common image-based classification techniques,

particularly data augmentation. Importantly, we will incorporate useful information from

the free-text radiology reports. such as patients’ history and clinical records, to accurately

recognize the presence and absence of thorax diseases.

CHAPTER 5

Multi-Label Image Classification1

Binary chest radiography classifiers have been widely proposed in the literature, including

our MultiViewModel in the previous chapter, due to the evolution of Deep Learning (DL) and

the availability of large Chest X-ray (CXR) datasets. However, these automatic classifiers

neglect label co-occurrence and interdependency in CXRs and fail to make full use of

accelerators, resulting in inefficient and computationally expensive models. This chapter first

studies the effect of CXR image formats, variations of the Densely Connected Convolutional

Network (DenseNet) [86] architecture, and parallel training on chest radiography multi-label

classification tasks. Then, we propose Xclassifier, an efficient multi-label classifier that

trains an enhanced DenseNet with a blur pooling framework to classify CXRs based on 14

predefined labels.

5.1 Introduction

Chest X-rays are of great importance for clinical diagnosis as they contain rich relationship

information among pathologies, such as label co-occurrence of multiple observations [214].

The availability of large public CXR datasets [13][110][113][115] and the evolution of

DL offer an optimal solution for the multi-label chest radiography classification problem.

Consequently, many models have recently been proposed for applications in classifying

chest radiographs [34][88][108][146]. We described these models in Chapter 2 (Literature

1The content in this chapter has been published in the International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications (VISIGRAPP), "Distributed Deep Learning for
Multi-Label Chest Radiography Classification", Monshi, M., Poon, J., Chung, V. (2022).

78

5.1 INTRODUCTION 79

Review), section 2.6.2. However, these models did not capture the label dependencies in chest

radiographs, and effectively accomplishing this task is still a challenge [215].

On the computation side, the computational power grows tremendously with the introduction

of a state-of-the-art Graphics Processing Unit (GPU) such as NVIDIA A100 [216] or NVIDIA

V100 [217], but on-device memory is often constrained. The NVIDIA A100 GPU is the

new generation of accelerator GPUs but is still not supported on all platforms. Parallel

training, however, is performing multiple processes on devices of a single machine or multiple

machines. As public chest radiography datasets and the number of DL layers increase, one

GPU quickly becomes insufficient to accelerate neural network training. However, evaluation

of these techniques in real-world applications, such as classifying CXRs, are limited.

Training a DL model in parallel trains a model across multiple GPUs to speed up neural

network training. This training approach is essential for training the large public CXRs

that have been recently introduced one after another. For example, ChestX-Ray14 [110],

PAthology Detection in Chest radiographs (PadChest) [115], CheXpert [13], and Medical

Information Mart for Intensive Care Chest X-ray (MIMIC-CXR) [113] have 112,120, 168,861,

224,316, and 377,110 images, respectively.

Parallel training can be achieved by Data Parallel (DP) or Distributed Data Parallel (DDP)

[218] techniques. The DP technique means performing one process (i.e., training a DL model)

on multiple devices (i.e., multiple GPUs) of a single machine by distributing batches of the

data on the available GPUs. Although a batch size can be large in the DP technique, the

processing time is long due to the limitation of using one process. Meanwhile, the DDP

technique enables each device to independently conduct one process on a portion of the

training dataset [218].

Furthermore, existing chest radiography classifiers’ performances can be improved by lever-

aging label co-occurrence [215], selecting the optimal radiographs format [219], and training

with an efficient approach. In studying previous methods used to solve these issues, it can be

noted that the existing literature rarely discusses the efficiency of chest radiography classifiers.

80 5 MULTI-LABEL IMAGE CLASSIFICATION

(a) Joint Photographic Experts Group (JPEG). (b) Digital Imaging and Communications in Medicine (DICOM).

FIGURE 5.1. The CXR Image Formats [152].

5.1.1 Contributions

Our contributions can be outlined as follows: Regarding the multi-label CXR classification

task, we quantify the value of the optimal image format, study parallel DL in accelerating

neural network training, and compare the performance of variations of DenseNet-121. Then,

we propose the Xclassifier, an efficient and accurate multi-label CXR classifier, based on an

enhanced DenseNet-121 framework with antialiasing blur pooling and parallel training.

The most common file format used to store medical imaging data for patient medical scans,

such as CXRs, Computed Tomography (CT) scans, and Magnetic Resonance Imaging (MRI)

scans, is Digital Imaging and Communications in Medicine (DICOM) [38]. However, most

existing DL models in medical image prediction utilize the Joint Photographic Experts

Group (JPEG) format due to the limitations of Compute Engine machines. Figure 5.1 shows

an example of DICOM and JPEG CXRs. Recently, researchers have started to extract image

categories from DICOM metadata (i.e., study and image descriptions) and map them to the

World Health Organization manual of diagnostic imaging [220]. However, to the best of our

knowledge, there has not been any comparison between DICOM and JPEG formats on the

performance of multi-label classifiers for chest radiographs using DL.

5.2 PROPOSED XCLASSIFIER MODEL 81

5.2 Proposed Xclassifier model

5.2.1 Data preparation

The MIMIC-CXR and CheXpert datasets were used in this study with more than 500,000

labeled chest radiographs, as described in Chapter 2 (Literature Review), section 2.4 CXR

datasets. We utilized 356,225 CXRs from MIMIC-CXR, and 212,498 of the low-resolution

images from CheXpert. Unlike the CheXpert competition, the task of this study was to to

detect 14 observations simultaneously rather than five. We explicitly examined the depend-

encies between labels on the MIMIC-CXR dataset in Table 5.1. The table illustrates, for

instance, that 37% of the cardiomegaly-labeled CXRs were also labeled pleural effusion.

Table 5.2 represents the label co-occurrence in the CheXpert dataset. For instance, 43% of

the atelectasis-labeled CXRs were also labeled lung opacity. The dependencies between the

labels in each dataset emphasized the importance of labeling the datasets in a multi-label

method rather than a single label method.

In both datasets, we converted uncertain and missing values to negative, following the U-Zeros

model [13]. We ensured that each CXR had at least one positive label because a positive “no

finding” label indicated the absence of all pathologies. In addition, we randomly shuffled the

CXRs into three splits, i.e., 80% for training, 10% for validation, and 10% for testing, using a

fixed random seed of 42.

5.2.2 Multi-label classifier

Data augmentation: For the data augmentation, we squished each CXR to 240× 240 pixels

(i.e., resized each CXR by squishing it on the horizontal axis), rotated it by 20◦, zoomed in by

1.2 scale, warped it by 0.2 magnitude, lightened it by 0.3 scale, and normalized it. These data

augmentation parameters increased the accuracy of detecting abnormalities from CXRs based

on the extensive experiment results in Chapter 6. Importantly, we have only applied data

augmentation on the training set, where the validation and test sets always had the original

images.

82 5 MULTI-LABEL IMAGE CLASSIFICATION

TABLE 5.1. Positive Label Co-occurrence of MIMIC-CXR.

Label % of all % of label co-occurrence

data At Ca Co Ed EC Fr LL LO NF PE PO Pa Px SD

Atelectasis (At) 18 100 29 5 13 5 2 3 31 0 48 1 8 6 39
Cardiomegaly (Ca) 18 28 100 5 23 4 2 2 25 0 37 1 8 4 41
Consolidation (Co) 4 22 23 100 21 5 2 6 27 0 50 1 22 4 44
Edema (Ed) 10 24 40 8 100 4 1 2 29 0 51 1 11 2 37
Enlarged Cardiom. (EC) 3 32 23 7 14 100 3 6 33 0 36 2 7 8 45
Fract (Fr) 2 21 19 2 6 4 100 3 19 0 21 3 4 9 23
Lung Lesion (LL) 3 18 13 8 6 5 2 100 46 0 26 3 11 4 18
Lung Opacity (LO) 21 27 21 5 14 4 2 7 100 0 32 2 17 4 31
No Finnding (NF) 40 0 0 0 0 0 0 0 0 100 0 0 0 0 10
Pleural Effusion (PE) 22 41 31 10 24 5 2 4 31 0 100 1 9 6 41
Pleural Other (PO) 1 15 25 4 9 6 7 8 39 0 26 100 10 5 25
Pneumonia (Pa) 7 20 18 12 15 3 1 5 48 0 26 1 100 1 21
Pneumothorax (Px) 4 28 17 5 6 6 5 3 21 0 33 1 3 100 54
Support Devices (SD) 24 31 31 8 16 5 2 2 28 16 37 1 7 9 100

TABLE 5.2. Positive Label Co-occurrence of CheXpert.

Label % of all % of label co-occurrence

data At Ca Co Ed EC Fr LL LO NF PE PO Pa Px SD

Atelectasis (At) 16 100 12 6 27 5 4 3 43 0 49 1 2 9 60
Cardiomegaly (Ca) 13 14 100 5 43 7 3 2 48 0 44 1 2 3 58
Consolidation (Co) 7 14 10 100 21 4 3 5 38 0 50 2 7 5 52
Edema (Ed) 25 17 22 6 100 4 2 2 53 0 51 1 2 3 64
Enlarged Cardiom. (EC) 14 18 6 20 20 100 6 5 48 0 36 2 1 7 52
Fract (Fr) 4 14 9 4 11 7 100 4 40 0 27 3 2 12 40
Lung Lesion (LL) 4 11 7 8 9 6 4 100 58 0 36 3 5 9 35
Lung Opacity (LO) 50 13 12 5 26 5 3 5 100 0 49 2 4 9 58
No Finnding (NF) 11 0 0 0 0 0 0 0 0 100 0 0 0 0 39
Pleural Effusion (PE) 41 19 14 9 31 5 3 4 61 0 100 1 2 8 61
Pleural Other (PO) 2 11 9 9 9 5 8 9 53 0 26 100 4 7 39
Pneumonia (Pa) 3 10 8 17 20 3 2 8 67 0 29 2 100 2 29
Pneumothorax (Px) 9 16 4 4 8 4 5 4 47 0 34 1 1 100 60
Support Devices (SD) 55 17 13 7 29 5 3 3 53 8 46 1 2 10 100

Convolutional neural network architecture: Xclassifier was based on DenseNet due to the

success of this architecture in recent classification models using CXR datasets [108][144][215]-

[221][222]. DenseNet utilizes dense blocks to connect all layers directly with each other by

matching feature map sizes. As demonstrated in Fig. 5.2, each layer in this CNN passed on

its own feature maps to all successive layers and collected additional inputs from all prior

layers to maintain the feed-forward nature.

5.2
P

R
O

P
O

S
E

D
X

C
L

A
S

S
IFIE

R
M

O
D

E
L

83

blur-layer

transition-layer

dense-block
(6 x conv-block)

conv (7x7 + 2(s))

dense-block
(12 x conv-block)

blur-layer

transition-layer

dense-block
(24 x conv-block)

blur-layer

transition-layer

dense-block
(16 x conv-block)

AveragePool

SoftMax

Input

Output

h1(x) h2(x) h3(x) h4(x)

dense-block

Chest X-rays with 14 pre-tagged
Input

observations (224 x 224)

transition-layer

base

conv (1x1)

AP (2x2 + 2(s))

Output

conv-block

concatenate

conv (1x1)

conv (3x3)

concatenate

Multi-label Classification

Atelectasis
Cardiomegaly
Consolidation
Edema
Enlarged Cardio.
Fracture
Lung Lesion
Lung Opacity
No Finding
Pleural Effusion
Pleural Other
Pneumonia
Pneumothorax
Support Devices

False

True
False

False
False
False
False
False
False
True
False
True
False
False

Output

Distributed Data Parallel

Rotate 20, Zoom 1.2, Wrap 0.2
Data Augmentation

and Light 0.3

GPU 0 - batch 64

DenseNet-121 with
antialiasing blur pool

Data Augmentation

GPU 1 - batch 64

DenseNet-121 with
antialiasing blur pool

Data Augmentation

GPU 2 - batch 64

DenseNet-121 with
antialiasing blur pool

Data Augmentation

GPU 3 - batch 64

DenseNet-121 with
antialiasing blur pool

Data Augmentation

DenseNet-121 with
antialiasing blur pool

FIGURE 5.2. The Xclassifier Structure [152].

84 5 MULTI-LABEL IMAGE CLASSIFICATION

TABLE 5.3. The DenseNet-121 Variations Models and Training Performances.
We used the full MIMIC-CXR dataset and trained for 10 epochs.

Model Description Accuracy AUC

DenseNet-121 Single 7x7 convolution layer with no antialiasing layer 90.69 81.34
DenseNet-121d Three 3x3 convolution layers with no antialiasing layer 90.73 81.28
DenseNetblur-121d Three 3x3 convolution layers with antialiasing blur pool 90.80 81.96

Equation (5.1) represents the dense connectivity where [x0, x1, ..., xℓ−1] donates the concat-

enation of the feature maps produced in layers 0, 1, ..., ℓ − 1. Each DenseNet architecture

consisted of four dense blocks with a varying number of layers. Xclassifier had six, 12,

24, and 16 layers in the four dense blocks as in DenseNet-121. We did not use the deeper

architectures of DenseNet (i.e., 161, 169, 201, and 264) because increasing the number of

DenseNet hidden layers would not improve the CXR classification performance [88].

xℓ = Hℓ([x0, x1, ..., xℓ−1]) (5.1)

Anti-aliasing and subsampling: Before each downsampling step in DenseNet, we inserted a

blur kernel, m×m, as an antialiasing filter. We found that this minor modification increased

the CXR classification accuracy, as illustrated in Table 5.3. Additionally, previous research

has shown that modifying the backbone of several CNN architectures by adding a blur kernel

can increase the accuracy of ImageNet classification [223]. We applied the anti-aliasing, as

depicted in Eq. (5.2), at stride 2 of DenseNet. Note that BlurPoolm,s denotes the image

processing function that combines blurring and subsampling, where k is the kernel and s is

the stride.

Relu ◦ Convk,s → BlurPoolm,s ◦Relu ◦ Convk,1 (5.2)

Fine-tuning: To fine-tune Xclassifier, we adopted the fit-one-cycle policy [205] and discrim-

inative learning rates [195]. This policy of cyclical learning rates worked as a regularization

technique to achieve faster and better training and hence kept the network from overfitting.

5.3 EXPERIMENT 85

(a) Data Parallel (DP). (b) Distributed Data Parallel (DDP).

FIGURE 5.3. Visualizing Parallel Training Approaches. We used four Tesla
V100 GPUs and trained DenseNetblur-121d for multi-label classification tasks
[152].

Distributed data parallel: With the DDP technique [218], we could use a large batch size of

64 images for each of the four GPUs to accelerate the convergence. In every training iteration,

the single-device memory was frequently above 91% during backward propagation, where

each GPU independently performed one copy of the training on part of the dataset. Figure

5.3b captures a live example of the Xclassifier training job using four Tesla V100-SXM2-16

GB GPUs. It shows the normalized GPU utilization of both the computing core and memory

usage.

5.3 Experiment

For distributed DL, we used the PyTorch DDP [218], PyTorch image models (timm) [224],

the Fastai v2 library [105], and an n1-highmem-32 (32 vCPUs, 208 GB memory) machine

with four NVIDIA Tesla V100 GPUs. We used a batch size of 64 for each of the four GPUs

and trained the model for 30 epochs.

Our proposed Xclassifier is available in Appendix (B), and more details about the im-

plementation of this model can be found on https://github.com/MaramMonshi/

Xclassifier.

https://github.com/MaramMonshi/Xclassifier
https://github.com/MaramMonshi/Xclassifier

86 5 MULTI-LABEL IMAGE CLASSIFICATION

TABLE 5.4. Image Formats for the CXRs and Training Performance. We used
10% of the MIMIC-CXR and trained ResNet-18 for 10 epochs.

Chest x-ray format Accuracy AUC Avg. time per epoch (min)

DICOM 89.40 80.02 111
JPEG 89.58 81.57 6

5.4 Results and discussion

CXR image format: A comparison of the accuracy and Area Under the Receiver Operating

Characteristic Curve (AUC) values for the DICOM versus JPEG format for the multi-label

classification task is demonstrated in Table 5.4. Although the DICOM format is more readily

applicable than the JPEG format to clinical practice, it did not improve the automated neural

network accuracy here. In fact, it took significantly more time to train with the DICOM files

(i.e., 111 minutes per epoch) than their JPEG counterparts (i.e., six minutes per epoch), using

10% of the MIMIC-CXR dataset. Therefore, we decided not to train the DICOM files any

further.

This ablation study suggested that JPEG images are more efficient than their DICOM coun-

terparts in the multi-label classification task using DL, as documented in Table 5.4. However,

in practice, radiologists use a finer resolution of CXR, i.e., the DICOM format, to detect

multiple observations carefully. Therefore, for future work, we plan to investigate the use of

DICOM images in detecting diseases with small and complex structures to understand our

initial findings better.

DensNet-121 variations: A comparison of the accuracy and AUC values for DenseNet-121

versus DenseNet-121d versus DenseNetblur-121d for the multi-label classification task is

shown in Table 5.3. DenseNet-121 with the blur pooling outperformed its variations, so

we built the Xclassifier on top of this architecture. Due to the shift-variant nature of CNNs,

anti-aliasing filters were used to increase the accuracy of Xclassifier.

Compared to the basic DensNet-121 model, Xclassifier anti-aliased the stride layers of

DensNet-121 and fine-tuned DensNet-121 on the MIMIC-CXR dataset using the fit-one-cycle

5.4 RESULTS AND DISCUSSION 87

TABLE 5.5. Training Approaches and Training Performance. We used the
NVIDIA V100 GPU.

Training Approach Dataset Accuracy AUC Avg. time per epoch (min)

Single GPU (1 x GPU) CheXpert 88.09 78.55 16
Data parallel (4 x GPUs) CheXpert 88.36 79.25 14
Distributed data parallel (4 x GPUs) CheXpert 88.33 80.10 4

Data parallel (4 x GPUs) MIMIC-CXR 90.27 80.97 181
Distributed data parallel (4 x GPUs) MIMIC-CXR 90.31 81.76 54

policy and discriminative learning rates. These modifications to the basic DensNet-121

resulted in faster and better training and kept the network from overfitting.

This ablation study compared different variations of DenseNet-121, as recorded in Table 5.3,

and concluded that adding an anti-aliasing filter to CNNs may enhance the performance of

multi-label CXR image classifiers due to the shift-variant nature of CNNs. However, the

effectiveness of adding an anti-aliasing filter to other popular CNN architectures in the CXR

image classification domain (e.g., ResNet [78] and EfficientNet [225]) should be investigated.

We leave this anti-aliasing filter investigation as a future research direction.

Parallel training: A comparison of the average time per epoch for a single GPU versus

DP versus DDP for the multi-label classification task using DenseNetblur-121d is illustrated

in Table 5.5. The DDP technique was the best training approach for CheXpert in terms of

time efficiency, providing a four-fold increase in speed over the single GPU, and a 1.14- to

3.35-fold increase in speed over the DP technique.

Benchmark: The proposed Xclassifier improved the multi-label classification performance

by 0.70% AUC (84.10% vs. 83.40%) on the MIMIC-CXR and by 3.39% AUC (83.89%

vs. 80.50%) on the CheXpert (refer to Table 5.6). As Xclassifier depended on the DDP

of DenseNet blur 121, it allowed the CNN layers to be deeper, more accurate in learning

label co-occurrence, and more efficient to train. Figure 5.4 represents a sample of the labels

correctly produced by Xclassifier.

Label co-occurrence learning is beneficial in the field of multi-label CXR classification

[215][226]. Our research showed that multi-label classifiers boost training performance in

88 5 MULTI-LABEL IMAGE CLASSIFICATION

TABLE 5.6. Comparing Xclassifier with the Benchmark.

Multi-label classifier Dataset Accuracy AUC

Latent-space self-ensemble [111] CheXpert _ 66.97
CheXclusion [112] CheXpert _ 80.50
Xclassifier CheXpert 89.61 83.89

VSE-GCN [114] MIMIC-CXR _ 72.10
CheXclusion [112] MIMIC-CXR _ 83.40
Xclassifier MIMIC-CXR 92.17 84.10

edema;lung opacity;pleural effusion
edema;lung opacity;pleural effusion

atelectasis;edema
atelectasis;edema lung lession;support devices

lung lession;support devices

FIGURE 5.4. Correct Output Sample by Xclassifier [152].

terms of speed and accuracy compared to CXR binary classifiers, such as our MultiViewModel

in the previous chapter (4). For example, the first CXR image in Fig. 5.4 has positive labels

for edema, lung opacity, and plural effusion and negative labels for atelectasis, cardiomegaly,

consolidation, enlarged cardiomediastinum, fracture, lung lesion, no finding, pleural other,

pneumonia, pneumothorax, and support device. Such output labels would take at least 17

hours of training of the MultiViewModel (i.e., binary label classifier) with an average of 77.90

AUC, compared to less than 9 hours with an average of 84.10 AUC using Xclassifier (i.e.,

multi-label classifier). However, more advanced methods using interdependencies between

CXR findings remain unexplored.

5.5 SUMMARY AND CONCLUSION 89

5.5 Summary and conclusion

We introduced Xclassifier, an efficient multi-label classifier that trains an enhanced DenseNet-

121 framework with blur pooling to detect 14 observations from a CXR. It accomplished

an ideal memory utilization and GPU computation and achieved 84.10% AUC on the

MIMIC-CXR dataset and 83.89% AUC on the CheXpert dataset. Xclassifier used features

of all complexity levels to handle label co-occurrence training. The DDP technique is a true

data parallelism process. It is useful in performing multi-processes on devices of multiple

machines but can also be used on devices of just a single machine as well.

For future work, we plan to investigate the use of DICOM images in detecting diseases

with small and complex structures to offer a greater degree of understanding of our initial

findings. In practice, radiologists use a finer resolution of CXRs, i.e., the DICOM format,

and rely on additional information, such as the patients’ electronic health records, to detect

multiple observations. Furthermore, we plan to link patient data, such as age and gender, to

the flattened layer to improve prediction.

CHAPTER 6

Multi-Class Image Classification: COVID-19 Detection1

As seen in the previous chapters, Chest X-ray (CXR) images coupled with Convolutional

Neural Network (CNN) algorithms can speed up the diagnostic process of lung-related

diseases. In this chapter, we detect a current pandemic lung disease named Coronavirus

Disease 2019 (COVID-19) from CXRs through optimizing the CNN hyperparameters and

the data augmentation in terms of the validation accuracy. We propose CovidXrayNet, a

multi-class classifier that is based on EfficientNet and our optimization results to classify a

CXR as being either "COVID-19," "normal," or "pneumonia."

6.1 Introduction

Coronavirus disease 2019, caused by Severe Acute Respiratory Syndrome Coronavirus

2 (SARS-CoV-2), became a global pandemic in less than four months after first appearing in

December 2019 in Wuhan, China. It has since caused 620.30 million confirmed cases and

over 6.54 million deaths worldwide as of October 13, 2022 [12]. It has caused devastating

issues in public health and the global economy. Patients with COVID-19 may have one or

more of the following symptoms: fever, cough, sore throat, headache, fatigue, muscle pain,

and shortness of breath [55]. Early detection of positive COVID-19 cases is the most critical

factor in slowing the spread of this pandemic.

The golden standard for diagnosing patients with COVID-19 is the Reverse Transcription

Polymerase Chain Reaction (RT-PCR) testing, which detects SARS-CoV-2 through collected

1The content in this chapter has been published in Computers in Biology and Medicine, "CovidXrayNet:
Optimizing data augmentation and CNN hyperparameters for improved COVID-19 detection from CXR",
Monshi, M., Poon, J., Chung, V., Monshi, F. (2021).

90

6.1 INTRODUCTION 91

respiratory specimens of nasopharyngeal or oropharyngeal swabs [227]. However, RT-PCR

testing is time-consuming and laborious, and shows poor sensitivity [228]. Alternatively, chest

radiography imaging, including Computed Tomography (CT) or CXR, may be examined

by a radiologist to inspect any visual indicators linked to SARS-CoV-2 [229]. While CT

scans have greater detail, CXR images are more accessible, portable, and offer rapid triaging.

Moreover, CXR imaging is more accessible in most healthcare systems than CT, which

requires expensive equipment and maintenance. The portability of the CXR systems reduces

the risk of COVID-19 transmission by performing the exams within the isolation room,

which is not possible with fixed CT scanners. Importantly, CXRs allow for rapid triaging of

suspected COVID-19 cases in most affected countries, such as the United States of America,

Spain, and Italy, which have run out of both hospital capacity and RT-PCR testing supplies

[230]. Combining laboratory results with radiological image features can speed up the process

of COVID-19 detection.

Artificial Intelligence (AI) applications coupled with chest radiological imaging can speed

the COVID-19 diagnosis process. Deep Learning (DL) in particular enables AI-based models

to achieve accurate results without manual feature extraction [231]. For example, CNNs,

which are a supervised DL approach, have recently gained popularity among the research

community of AI in medicine. For COVID-19 detection from CXR images, CNNs produced

the best classification accuracy compared to other classification techniques, such as Artificial

Neural Network (ANN), Support Vector Machine (SVM) and K-Nearest Neighbor (KNN)

[232].

Typically, a CNN model is created by combining one or more of the following layers: a

convolution layer, a pooling layer, and a fully connected layer. They extract features from the

input, minimize the size for computational performance, and classify an image, respectively.

Simultaneously, the CNN model adjusts its internal parameters to achieve a specific task,

e.g., classifying CXRs [34][146]. The performance of such CNN models can be improved in

various ways, such as by optimizing the data augmentation and CNN hyperparameters.

A growing number of research publications have demonstrated the compelling ability of

DL CNNs to automatically detect COVID-19 from CXR images. They used public datasets

92 6 MULTI-CLASS IMAGE CLASSIFICATION: COVID-19 DETECTION

of COVID-19 CXRs as descried in Chapter 2 (Literature Review), section 2.4.6. These

COVID-19 datasets are constantly updated with new images added by researchers around the

world. Nevertheless, none of these datasets provides complete metadata for all patients.

Table 6.1 summarizes the CNN-based models proposed in the literature, which can be

grouped into binary classification (i.e., COVID-19 or normal) and multi-class classification

(COVID-19, pneumonia, or normal) models. We analyzed these models in detail in Chapter 2

(Literature Review), section 2.6.

Table 6.2 and Table 6.3 outline the data augmentation and the CNN hyperparameters, respect-

ively, in the recently proposed models. Nishio et al. [153] showed that combining multiple

data augmentation techniques is more effective than only using one or not using any in detect-

ing COVID-19 from CXRs. They utilized a random search [233] to select the optimal Visual

Geometry Group VGG-16 [76] hyperparameters and data augmentation methods, including

conventional method and mixup methods [143]. This resulted in an increase in their model’s

accuracy from 78.72% to 83.68%. However, this approach of hyperparameter tuning is hard

to achieve with complex networks, such as EfficientNet [225], due to the large number of

trainable parameters.

In terms of optimizing CNN hyperparameters, existing models use pre-trained architectures

on ImageNet, Adam optimizer [234], epochs that range from 10 to 100, and a batch sizes of

eight, 32, 64, or 128. Notably, several proposed architectures apply few arbitrary transformers

to the X-rays based on random choices rather than well-justified motives. For instance, Ozturk

et al. [151] applied the default values in the fastai v1 library. However, selecting the optimal

CNN hyperparameters and data augmentation methods improves the robustness of CNN

models [95].

6.1
IN

T
R

O
D

U
C

T
IO

N
93

TABLE 6.1. Models for Detecting COVID-19 from CXRs.

Classification Model Acc (%) Repositories / Datasets
of cases

COVID-19 Pneumina Normal

Binary COVIDX-Net [148] 90.00 COVID-19 image data collection 25 _ 25
CovXNet [149] 97.40 Guangzhou Medical Center in

China & Sylhet Medical College
in Bangladesh

305 _ 305

ResNet-50 [150] 98.00 COVID-19 image data collection
& Kaggle

50 _ 50

DarkCovidNet [151] 98.08 COVID-19 image data collection
& ChestXray-14

125 _ 500

Multi-class VGG-16 [153] 83.68 COVID-19 image data collection
& Radiological Society of
North America (RSNA)

215 533 500

DarkCovidNet [151] 87.02 COVID-19 image data collection
& ChestXray-14

125 500 500

CovXNet [149] 90.30 Guangzhou Medical Center in
China & Sylhet Medical College
in Bangladesh

305 305-Viral
305-Bacterial

305

COVID-Net [118] 93.30 COVIDx 53 5526 8066
MobileNet-v2 [154] 94.72 COVID-19 image data collection,

Radiological Society of North
America (RSNA), Radiopaedia,
and Italian Society of Medica, In-
terventional Radiology (SIRM) &
Kermany dataset

224 700 504

CNN-SVM [155] 95.33 COVID-19 image data collection,
COVID-19 radiography database &
Kermany dataset

127 127 127

94
6

M
U

LT
I-C

L
A

S
S

IM
A

G
E

C
L

A
S

S
IFIC

A
T

IO
N

:
C

O
V

ID
-19

D
E

T
E

C
T

IO
N

TABLE 6.2. Data Augmentation for Detecting COVID-19 from CXRs.

Model Software Norm. Size Flip Rotate Zoom Light Extra

VGG-16 [153] Keras, Tenserflow _ 220*220 HORIZ 15
85-

_
shear transformation

115% mixup: 0.1
DarkCovidNet [151] fastai v1, Pytorch yes 256*256 _ _ _ _ defult values of fastai

CovXNet [149] Keras, Tenserflow yes uniform _ 30 0.2 _ rescale: 1/255
shift: 0.1

COVID-Net [118] Keras, Tenserflow yes 480*480 HORIZ yes yes _ intensity shift
MobileNet v2 [154] _ _ 200*266 _ _ _ _ blackground: 1:1.5

TABLE 6.3. The CNN Hyperparameters for Detecting COVID-19 from CXRs.

Model CNN Pretrained Optimizer Learning Rate Loss Function Epoch Batch

VGG-16 [153] VGG-16 yes Adam 1e-4 cross entropy 100 8
DarkCovidNet [151] YOLO DarkNet-19 yes Adam 3e-3 cross entropy 100 32
CovXNet [149] CovXNet yes Adam 1e-3 cross entropy 70 128
COVID-Net [118] COVID-Net yes Adam 2e-4 & lr policy _ 22 64
MobileNet v2 [154] MobileNet v2 yes Adam _ _ 10 64

6.2 PROPOSED COVIDXRAYNET MODEL 95

6.1.1 Contributions

The main contribution of this study is the implementation of CovidXrayNet, which improves

the detection rate of COVID-19 from CXRs by means of optimizing the data augmentation

pipeline and CNN hyperparameters. To the best of our knowledge, CovidXrayNet is one of

the first models to demonstrate the effects of data augmentation pipelines on CXR quality

while also investigating several CNN hyperparameters. This in turn may significantly enhance

the accuracy of CNNs in diagnosing COVID-19. In addition, we introduce COVIDcxr, a

balanced and complete dataset that consists of CXRs and the associated tabular data.

In this chapter, we use a three-class classification ("COVID-19," "pneumonia," "normal")

because these three automatic predictions can help doctors quickly triage patients for RT-PCR

testing for COVID-19 diagnosis confirmation and choose a suitable treatment plan based on

the presence and cause of infection (i.e., COVID-19 infection or non-COVID-19 infection).

We investigate the effects of different data augmentation approaches on the COVID-19 CXR

classification task to observe the differences between them in terms of the model’s accuracy.

We also explain and visualize the chosen data augmentation techniques on CXRs, (including

resizing, flipping, rotating, zooming, warping, lighting, and normalizing) to understand what

happens behind the scenes.

6.2 Proposed CovidXrayNet model

6.2.1 Proposed COVIDcxr dataset

COVIDcxr is the dataset of COVID-19 that we generated from two open source repositories,

ChestX-Ray14 [110] and the COVID-19 Image Data Collection [117], with the associated

tabular data (i.e., gender, sex, and views) for each patient. It is comprised of 960 CXR images.

Our aim was to create a balanced, unbiased, and complete COVID-19 CXR dataset. We

randomly selected 320 no-finding and 320 pneumonia cases from ChestX-Ray14 and 320

COVID-19 cases from the COVID-19 Image Data Collection, along with complete metadata.

96 6 MULTI-CLASS IMAGE CLASSIFICATION: COVID-19 DETECTION

There were 568 male and 392 female cases, and the average age of these subjects was about

56 years.

A step-by-step guide to the creation of COVIDcxr dataset is available in Appendix (B), and

more details about building a single neural network based on both images (CXRs) and tabular

data (sex, age, and views) can be found on https://github.com/MaramMonshi/

CovidXrayNet/tree/main/Dataset.

6.2.2 Data preparation

We trained CovidXrayNet on two datasets, including COVIDx [118] and our introduced

COVIDcxr. Both datasets contain three classes of CXRs: COVID-19 viral infection, pneu-

monia (i.e., non-COVID-19 infections, such as viral and bacterial infections), and normal

(i.e, no infection), as illustrated in Fig. 6.1. COVIDx is the largest and most popular dataset

among researchers to date. It is expanding on a regular basis with the addition of new patient

records for training while maintaining the same test dataset for consistency. We employed

COVIDx-v3 in this research. However, it does not provide complete metadata for all patients

and is unbalanced, as the number of cases in the COVID-19 class (589) is far lower than that

in the pneumonia (6,056) or no-finding (8,851) class. COVIDcxr, however, is a balanced,

unbiased, and complete COVID-19 CXR dataset.

6.2.3 Architecture

The overall structure of our proposed CovidXrayNet, which classifies a CXR as either

"COVID-19," "normal," or "pneumonia," is presented in Fig. 6.2. Before feeding the CXRs

to the pre-trained EfficientNet-B0 along with the optimized CNN hyperparameters, we

performed several augmentation techniques on the data.

https://github.com/MaramMonshi/CovidXrayNet/tree/main/Dataset
https://github.com/MaramMonshi/CovidXrayNet/tree/main/Dataset

6.2 PROPOSED COVIDXRAYNET MODEL 97

(a) COVIDcxr (a random split was performed [with a fixed seed] by setting 20% of the data for the
validation set).

(b) COVIDx (the validation set consists of 100 COVID-19, 594 pneumonia, and 885 normal cases, in
a fixed manner).

FIGURE 6.1. Dataset Distribution [119].

6.2.3.1 Data augmentation

Data augmentation enhances CNN performance [94], prevents overfitting [93], and is easy to

implement [95]. Training a CNN on limited COVID-19 data inhibits its ability to generalize

results to unseen data due to the overfitting issue. However, inflating a dataset using data

augmentation methods adds more invariant cases and thus prevents overfitting. We defined

the concept of data augmentation in Chapter 2 (Literature Review), section 2.3.4.

98
6

M
U

LT
I-C

L
A

S
S

IM
A

G
E

C
L

A
S

S
IFIC

A
T

IO
N

:
C

O
V

ID
-19

D
E

T
E

C
T

IO
N

Pneumonia

Normal

COVID-19

Input Shape OutputCNN

2. Training

Optimizer: Adam
32

x
12

80
x

15
x

15
32

x
12

80
32

x
12

80
x

1
x1

32
x

12
80

x
15

x
15

32
x

32
x

24
0

x
24

0
32

x
32

x
24

0
x

24
0

32
x

32
x

24
0

x
24

0

32
x

3
x

48
1

x
48

1

32 x 3 x 480 x 480 EfficientNet-B0 for 30 Epochs 3-Class Classification

Learning Rate: discriminative

Loss Function: Label Smoothing Cross

Callbacks: Train Evaluation Callback,

Entropy Loss

Recorder & Progress Callback

Input CPU GPU

Resize ->

Rotate: 20

1. Data Augmentation Pipeline

Original CXR for Items Transforms for Batch Transforms

Value: 480

Method: Squish

Mode: Zero

To Tensor

Zoom: 1.2 Wrap: 0.2 Light: 0.3

Int To Float Tensor -> Affine Coord Transform -> Lighting Transform -> Normalize

Parameters:1,323,016 trainable
trainable

and
0 non-

FIGURE 6.2. The CovidXrayNet Structure [119].

6.2 PROPOSED COVIDXRAYNET MODEL 99

As there is an endless array of mappings, ϕ(x), we examined common data augmentation

methods, including resizing, flipping, rotating, zooming, warping, lighting, and normalizing.

Our investigative space was determined by consultations with practical radiologists and

research on common techniques in the literature. From a radiologist’s perspective, the use of

portable devices that minimize the infection control issues of COVID-19 results in low-quality

CXR and incorrect rotation. From a literature perspective, researchers tend to apply resizing,

zooming, warping, and lighting to increase the number of cases to handle the issue of limited

COVID-19 data.

First, we performed several deliberate data augmentations based on extensive experiments

on COVIDcxr dataset using Residual Network (ResNet)-18 [78], as it can be seen in Table

6.4. Figure 6.3 plots all transformer techniques against each other to observe the differences

between them.

At the item transformation level, we resized each CXR to 480 × 480 pixels by squishing

the CXR on the horizontal axis on the Central Processing Unit (CPU). This constricted the

ribcage toward the center while preserving all the parts of the CXR. Our method differed from

the common approach in the literature, which resizes each CXR to the same aspect ratio to set

the smallest dimension to a specified size and then arbitrarily crops it on the other dimension,

as illustrated in Fig. 6.4. This cropping method may erase important CXR details from the

edges of the image. Resizing all CXRs to a fixed size is a data augmentation prerequisite for

classifying them using a CNN.

At the batch transformation level, we applied a group of optimized augmentation parameters

on a Graphics Processing Unit (GPU) to minimize the number of computation and lossy

operations. We used a pipeline to combine the best transformers’ values. A series of

experiments on the COVIDcxr dataset, with a fixed seed, was used to find the best combination

of choices and orders of data augmentation that ensured ResNet-18 achieved the best accuracy,

as recorded in Table 6.4.

We applied a random rotation with a maximum of 20◦ and 75% probability to overcome the

incorrect rotation of some of the acquired images. Such low-quality CXRs are the result

100 6 MULTI-CLASS IMAGE CLASSIFICATION: COVID-19 DETECTION

TABLE 6.4. Pipeline for Data Augmentation on CXRs. For each independent
parameter, we trained ResNet-18 on COVIDcxr for 30 epochs to examine the
effects of various transformers on COVID-19 CXR classification.

Independent Resize Rotate Zoom Wrap Light Extra (%)

Parameter Size Method Acc AUC F1

Resize 224*224 crop 0 0 0 0 none 78.12 90.84 78.04
pad 79.68 90.66 79.39
squish 74.47 88.63 74.47

256*256 crop 79.16 92.12 79.12
pad 76.04 90.62 75.55
squish 78.12 90.15 78.22

480*480 crop 80.72 94.42 80.65
pad 82.81 94.67 82.86
squish 83.85 94.14 83.95

512*512 crop 80.72 93.35 80.78
pad 78.64 93.22 78.62
squish 77.08 92.67 77.22

Rotate 480*480 squish 0 0 0 0 none 83.85 94.14 83.95
10 85.93 95.73 85.95
20 86.45 96.48 86.56
30 86.45 95.97 86.58
50 84.89 95.72 85.03

Zoom 480*480 squish 0 1 0 0 none 83.85 94.14 83.95
1.2 85.41 95.86 85.48
1.3 82.29 95.77 82.37
1.4 84.37 95.60 84.45
1.5 81.25 95.29 81.21

Warp 480*480 squish 0 0 0 0 none 83.85 94.14 83.95
0.1 84.37 95.36 84.42
0.2 85.41 96.33 85.50
0.3 84.89 96.34 84.94

Lighting 480*480 squish 0 0 0 0 none 83.85 94.14 83.95
0.1 81.77 93.12 81.93
0.2 83.85 94.34 83.91
0.3 85.41 95.10 85.46
0.4 82.81 95.34 82.97
0.5 84.37 95.89 84.46

Flip (dihedral) 480*480 squish 0 0 0 0 flip 83.85 95.69 83.81
Mixup (0.4) mixup 83.33 94.88 83.29
Erasing (random) erase 80.72 94.11 80.91
Normalize (imagenet) norm 83.85 94.14 83.95

Multiple Param 480*480 squish 20 1.2 0.2 0.3 flip 81.77 95.70 81.69
(pipline) 480*480 squish 20 1.2 0.2 0.3 mixup 82.81 95.86 82.48

480*480 squish 20 1.2 0.2 0.3 flip, norm 81.77 95.70 81.69
480*480 squish 20 1.2 0.2 0.3 norm 88.02 96.20 88.14

6.2 PROPOSED COVIDXRAYNET MODEL 101

(a) Resize

(b) Flip

(c) Rotate

(d) Zoom

(e) Warp

(f) Lighting

(g) Mix-up

(h) Random Erasing

FIGURE 6.3. Visualizing Data Augmentation Effects on a CXR. The CXR is
for a 25-year-old COVID-19-positive female taken from the COVID-19 Image
Data Collection [119].

102 6 MULTI-CLASS IMAGE CLASSIFICATION: COVID-19 DETECTION

(a) Common approach: Crop (b) Our method: Squish

FIGURE 6.4. Resizing Method. We propose squishing a 480×480 pixel CXR
rather than cropping it to preserve important CXR details at the edges of the
image [119].

of using portable devices that minimize the infection control issues of COVID-19 [235].

In addition, it is not uncommon, especially for Anteroposterior (AP) supine CXRs, for the

patient to be rotated, which makes interpretation difficult. In addition to rotating CXRs, we

also applied zooming, warping, and lighting as we relied on data augmentation to handle

the issue of limited COVID-19 data through increasing the number of cases [94] and, hence,

preventing overfitting. With a 75% probability, we zoomed the CXRs by a scale of 1.2,

lightened them by a scale of 0.3, and warped them by a magnitude of 0.2. Warping and

lightening augmentations may help in situations wherein patients face the X-ray device at

different angles and in various lighting setups. We attempted to apply the random erasing

[236] and mix-up [143] techniques, but we did not notice improved performance.

6.2.3.2 CNN architectures and hyperparameters

Next, we replaced the head of EfficientNet-B0 with a head suitable for the three-class classific-

ation and trained it for 30 epochs. To compensate for the small dataset, we performed transfer

learning with the pre-trained weights from ImageNet. Then, we fine-tuned EfficientNet-B0

using one NVIDIA Tesla V100. EfficientNet scaled CovidXrayNet’s width and depth accord-

ing to the size of 480× 480 pixels, which resulted in substantially less computational power

use and fewer parameters with a high performance compared to other CNN architectures.

6.2 PROPOSED COVIDXRAYNET MODEL 103

Table 6.5 presents the performance of the optimized data augmentation on the two datasets,

COVIDcxr (small and balanced dataset) and COVIDx (large and unbalanced dataset), us-

ing the benchmark deep neural network architectures, including VGG-16, VGG-19 [76],

ResNet-18, ResNet-34, ResNet-50 [78], and EfficientNet-B0 [225]. Among the various CNN

architectures, EfficientNet-B0 accomplished the best results in classifying COVID-19 from

COVIDcxr and COVIDx based on various evaluation metrics, such as accuracy, precision,

recall, and F1 scores. Please refer to Chapter 2 (Literature Review), section 2.8.1, for more

details about these evaluation metrics.

TABLE 6.5. The CNN Architectures on COVIDx and COVIDcxr. We trained
the popular CNN architectures on both datasets for 30 epochs using the optim-
ized data augmentation pipeline.

CNN Dataset Accuracy (%) AUC (%) MCC (%) Precision (%) Recall (%) F1 (%)

VGG-16 COVIDcxr 80.73 94.68 72.29 82.03 81.35 80.53
VGG-19 84.90 95.67 77.74 85.31 85.26 84.92
ResNet-18 85.94 96.72 79.40 86.84 86.31 86.14
ResNet-34 79.69 94.91 70.02 80.26 80.03 79.70
ResNet-50 82.81 95.90 75.31 84.90 83.29 83.12
EfficientNet-B0 88.02 _ 82.01 87.98 88.03 88.00

VGG-16 COVIDx 93.41 98.70 87.74 94.40 89.41 91.61
VGG-19 93.60 98.55 88.06 95.29 85.53 89.24
ResNet-18 93.29 98.86 87.48 95.03 86.73 90.05
ResNet-34 94.74 99.10 90.19 95.85 89.95 92.53
ResNet50 95.12 99.22 90.92 96.08 91.76 93.72
EfficientNet-B0 95.69 _ 92.01 96.24 94.76 95.48

EfficientNet introduces a new and simple compound scaling technique to scale the number of

layers, α, the number of channels, β, and the number of pixels, γ, in an image, representing

the CNN width, depth, and resolution, respectively [225], as depicted in Eq. (6.1). This

technique uses a compound coefficient, ϕ, which defines the amount of available resources to

determine how to scale α, β, and γ. The constraint (α · β2 · γ2) ≈ 2 is applied in order to

make sure that the total Floating-Point Operations per Second (FLOPS) do not exceed 2ϕ.

104 6 MULTI-CLASS IMAGE CLASSIFICATION: COVID-19 DETECTION

depth: d = αϕ

width: w = βϕ

resolution: r = γϕ

s.t. α · β2 · γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

(6.1)

CovidXrayNet was based on baseline network EfficientNet-B0, where the optimal values

are α = 1.2, β = 1.1, and γ = 1.15. Using this multi-objective neural architecture search,

we optimized both the accuracy and FLOPS. Although the original EfficientNet-B0 uses

the standard input size of 224 × 224 pixels, it handles 480 × 480 CXR pixels perfectly.

We customized the final output layer of EfficientNet-B0 to suitably perform multi-class

classification.

In addition, CovidXrayNet is coupled with a narrow-wide-narrow structure [237], squeeze-

and-excitation blocks [81], and swish activation function [238]. In the narrow-wide-narrow

structure, the residual blocks are coupled with 3× 3 and 5× 5 depth-wise convolution. The

squeeze-and-excitation blocks allowed CovidXrayNet to alter the weighting of each feature

map adaptively. The swish activation function, defined by φ(x) := x
1+e−βx

, is a smooth

function that interpolates non-linearly between a linear function for β = 0 and the rectified

linear unit function for β → ∞. During back-propagation, the swish activation function

mitigated the issue of vanishing gradient.

Furthermore, we studied various CNN hyperparameters on COVIDcxr and COVIDx, including

the loss function, the number of epochs, and the batch size, as demonstrated in Table 6.6 and

Table 6.7. Based on this trial-and-error method, we selected the optimal hyperparameters

for EfficientNet-B0 on the COVIDx dataset including the label smoothing [239] of the

cross-entropy loss function, 30 epochs, and a batch size of 32. The label smoothing for our

three-class problem is presented in Eq. (6.2), where (1− ϵ) is the prediction of the correct

class and ϵ is the prediction of the other two classes. In this formula, ce(x) donates the

standard cross-entropy loss of x, ϵ is a small positive number, i is the correct class, and N is

6.3 EXPERIMENT 105

the number of classes. This regularization technique improved CovidXrayNet’s performance

and robustness by computing the cross-entropy with a weighted mixture of the hard targets

from the COVIDx dataset using the uniform distribution.

cross entropy loss = (1− ϵ) ce(i) + ϵ
∑ ce(j)

N
(6.2)

We fine-tuned CovidXrayNet using fit-one-cycle policy [205] and discriminative learning rates

[195]. Equation (6.3) defines this discriminative fine-tuning technique, where CovidXrayNet’s

parameters θ are split into {θ1, ..., θL}, and the learning rates, η, are split into {η1, ..., ηL} at

time step "t" for the number of layers, "L". Using this function, we started with a learning

rate of 2e− 3 and then automatically adjusted this value for both COVIDx and COVIDcxr,

where the gradient of the CovidXrayNet’s objective function is ∇θlj.

θlt = θlt−l − ηl ×∇θlj(θ) (6.3)

6.3 Experiment

We used the PyTorch software [103], the fastai library [105], an n1-highmem-8 (8 vCPUs, 52

GB memory) machine, and one NVIDIA Tesla V100 GPU. Fastai is a DL library that enables

the implementation of CovidXrayNet with its unique ability to join several transformers inside

a pipeline that manages the minimum number of computations and lossy operations.

Our proposed CovidXrayNet is available in Appendix (B), and more details about the im-

plementation of this model can be found on https://github.com/MaramMonshi/

CovidXrayNet.

https://github.com/MaramMonshi/CovidXrayNet
https://github.com/MaramMonshi/CovidXrayNet

106 6 MULTI-CLASS IMAGE CLASSIFICATION: COVID-19 DETECTION

TABLE 6.6. Optimizing CNN Hyperparameters using COVIDcxr. For each
independent parameter, we trained several architectures on COVIDcxr to
examine the effects of various hyperparameters on the accuracy of COVID-19
CXR classification.

CNN Epoch Batch Size Loss Function Acc (%) MCC (%) F1 (%)

VGG-16 10 32 Cross Entropy 77.08 68.15 76.26
20 32 Cross Entropy 77.60 66.71 77.43
30 32 Cross Entropy 80.73 72.29 80.53
40 32 Cross Entropy 83.33 75.51 83.31
30 8 Cross Entropy 85.42 79.20 85.43
30 16 Cross Entropy 84.38 76.61 84.27
30 32 Label Smoothing 79.17 69.62 78.91

VGG-19 10 32 Cross Entropy 78.65 68.38 78.89
20 32 Cross Entropy 82.81 74.25 82.96
30 32 Cross Entropy 84.90 77.74 84.92
40 32 Cross Entropy 84.38 76.66 84.35
30 8 Cross Entropy 84.90 78.36 84.96
30 16 Cross Entropy 82.81 74.90 82.74
30 32 Label Smoothing 85.42 78.30 85.51

ResNet-18 10 32 Cross Entropy 81.25 73.69 81.25
20 32 Cross Entropy 82.29 74.21 82.45
30 32 Cross Entropy 85.94 79.40 86.14
40 32 Cross Entropy 85.42 78.16 85.37
30 8 Cross Entropy 81.25 73.56 81.39
30 16 Cross Entropy 82.29 74.20 82.37
30 32 Label Smoothing 84.38 76.95 84.46

ResNet-34 10 32 Cross Entropy 81.25 72.10 81.20
20 32 Cross Entropy 81.25 71.93 80.91
30 32 Cross Entropy 79.69 70.02 79.70
40 32 Cross Entropy 81.25 71.94 81.23
30 8 Cross Entropy 86.46 80.12 86.54
30 16 Cross Entropy 85.94 79.00 85.87
30 32 Label Smoothing 83.85 76.08 83.85

ResNet-50 10 32 Cross Entropy 81.77 73.18 82.09
20 32 Cross Entropy 84.90 77.32 84.93
30 32 Cross Entropy 82.81 75.31 83.12
40 32 Cross Entropy 85.42 78.12 85.45
30 8 Cross Entropy 86.46 80.49 86.52
30 16 Cross Entropy 86.98 80.84 87.16
30 32 Label Smoothing 83.85 76.21 84.05

EfficientNet-B0 10 32 Cross Entropy 83.33 75.36 83.65
20 32 Cross Entropy 84.38 76.67 84.41
30 32 Cross Entropy 88.02 82.01 88.00
40 32 Cross Entropy 85.42 78.10 85.42
30 8 Cross Entropy 88.02 82.06 87.89
30 16 Cross Entropy 86.98 80.45 86.99
30 32 Label Smoothing 88.54 82.83 88.62

6.3 EXPERIMENT 107

TABLE 6.7. Optimizing CNN Hyperparameters using COVIDx. For each in-
dependent parameter, we trained several architectures on COVIDx to examine
the effects of various hyperparameters on the accuracy of COVID-19 CXR
classification.

CNN Epoch Batch Size Loss Function Acc (%) MCC (%) F1 (%)

VGG-16 10 32 Cross Entropy 92.08 85.20 86.99
20 32 Cross Entropy 93.35 87.56 90.10
30 32 Cross Entropy 93.41 87.74 91.61
40 32 Cross Entropy 94.24 89.25 91.99
30 8 Cross Entropy 93.86 88.56 91.03
30 16 Cross Entropy 94.30 89.38 92.00
30 32 Label Smoothing 94.05 88.88 91.35

VGG-19 10 32 Cross Entropy 92.53 86.04 87.29
20 32 Cross Entropy 93.98 88.77 91.57
30 32 Cross Entropy 93.60 88.06 89.24
40 32 Cross Entropy 93.29 87.46 88.72
30 8 Cross Entropy 94.49 89.73 92.14
30 16 Cross Entropy 94.93 90.56 92.79
30 32 Label Smoothing 93.79 88.40 90.10

ResNet-18 10 32 Cross Entropy 93.10 87.08 88.43
20 32 Cross Entropy 93.60 88.06 90.07
30 32 Cross Entropy 93.29 87.48 90.05
40 32 Cross Entropy 93.86 88.53 90.87
30 8 Cross Entropy 94.17 89.11 91.17
30 16 Cross Entropy 94.43 89.60 92.49
30 32 Label Smoothing 94.30 89.35 91.58

ResNet-34 10 32 Cross Entropy 94.05 88.89 91.41
20 32 Cross Entropy 94.62 89.97 93.32
30 32 Cross Entropy 94.74 90.19 92.53
40 32 Cross Entropy 94.43 89.63 93.38
30 8 Cross Entropy 94.87 90.44 92.43
30 16 Cross Entropy 95.31 91.28 94.50
30 32 Label Smoothing 94.62 89.96 92.50

ResNet-50 10 32 Cross Entropy 94.93 90.55 92.62
20 32 Cross Entropy 94.81 90.34 93.37
30 32 Cross Entropy 95.12 90.92 93.72
40 32 Cross Entropy 94.81 90.35 93.14
30 8 Cross Entropy 93.03 87.01 91.99
30 16 Cross Entropy 95.57 91.76 95.35
30 32 Label Smoothing 95.12 90.91 93.36

EfficientNet-B0 10 32 Cross Entropy 95.69 91.99 94.52
20 32 Cross Entropy 95.19 91.02 93.38
30 32 Cross Entropy 95.69 92.01 95.48
40 32 Cross Entropy 95.00 90.72 95.00
30 8 Cross Entropy 94.68 90.16 93.25
30 16 Cross Entropy 95.38 91.40 94.88
30 32 Label Smoothing 95.82 92.24 96.16

108 6 MULTI-CLASS IMAGE CLASSIFICATION: COVID-19 DETECTION

6.4 Results and discussion

6.4.1 Quantitative evaluation

We computed the accuracy, macro average precision, macro average recall, macro F1 score,

Area Under the Receiver Operating Characteristic Curve (AUC) [180], and Matthews Correl-

ation Coefficient (MCC) [181] of CovidXrayNet in distinguishing between the three classes

("COVID-19," "pneumonia," and "normal"). We used this combination of evaluation metrics

to be the criterion for selecting the best model to avoid an inaccurate conclusion. For example,

since accuracy depends mostly on the number of samples in each class, CNN-based models

perform seemingly well in imbalanced datasets, such as COVIDx. In addition, we followed

the macro approach because it considers all classes as basic elements of the calculation [182]

(i.e., each class has the same weight in the average regardless of its size). We explained these

evaluation metrics in Chapter 2 (Literature Review), section 2.8.1.

In order to evaluate our proposed data augmentation pipeline, we compared the reported

results of VGG-19 and ResNet-50 in the COVID-Net paper [118] with our results on the

COVIDx dataset, as recorded in Table 6.8. With only 30 epochs of learning cycles, the

accuracy of VGG-19 increased by 11.93%, while the accuracy of ResNet-50 improved by

4.97%. The results clearly indicated the effect of our proposed method on enhancing the

accuracy of COVID-19 classification from CXRs.

TABLE 6.8. Comparing our Optimized Data Augmentation Pipeline and
CNN Hyperparameters with the Benchmark. Both papers used VGG-19
and ResNet-50 on the COVIDx dataset but with different transformers and
hyperparameters.

CNN Paper Parameters (M) Accuracy (%) AUC (%) MCC (%) F1 (%)

VGG-19 COVID-Net [118] 20 83.00 _ _ _
CovidXrayNet 94.93 98.69 90.56 92.79

ResNet-50 COVID-Net [118] 25 90.60 _ _ _
CovidXrayNet 95.57 99.29 91.76 95.35

Table 6.9 compares CovidXrayNet to other studies in the literature that are based on a three-

class classification. We achieved better accuracy (95.82%) over the other models, including

6.4 RESULTS AND DISCUSSION 109

DarkCovidNet (87.02%), COVID-Net (93.30%), and MobileNet v2 (93.48%). Furthermore,

the F1 score for CovidXrayNet (96.16%) was higher than that of DarkCovidNet (87.37%),

and the precision score of CovidXrayNet (96.93%) was better than that of DarkCovidNet

(89.96%). Significantly, the overall sensitivity of CovidXrayNet was 95.43%. Our reported

results are reproducible. We used the same test dataset as COVID-Net.

TABLE 6.9. Comparing CovidXrayNet with the Benchmark. All models
were based on a three-class COVID-19 classification; COVID-Net and Cov-
idXrayNet employed the COVIDx dataset.

Model Accuracy (%) MCC (%) Precision (%) Recall (%) F1 (%)

DarkCovidNet [151] 87.02 _ 89.96 _ 87.37
COVID-Net [118] 93.30 _ _ _ _
MobileNet v2 [154] 93.48 _ _ _ _
CovidXrayNet 95.82 92.24 96.93 95.43 96.16

6.4.2 Qualitative evaluation

We ensured the robustness of CovidXrayNet by sharing its top prediction errors and actual

labels with expert radiologists (refer to Fig. 6.5). CovidXrayNet classified four patients with

COVID-19 as having pneumonia. Since COVID-19 is a subset of pneumonia diseases, the

diagnosis was correct, but the interpretation was not. For this reason, CovidXrayNet could

only offer a second opinion to the radiologist in the clinical setting.

6.4.3 Optimization in deep learning

We aimed to implement an AI model, CovidXrayNet, that could identify COVID-19 infection

based on CXRs. CovidXrayNet optimizes data augmentation to enable CNN models to

observe visual features that are not noticeable to a radiologist’s eye. With data augment-

ation, CNN models will generalize better results. However, the implications of choosing

efficient and effective augmentation techniques depend on the dataset at hand. Using CXRs

with COVID-19 datasets, we performed a separate search phase that was computationally

expensive. Recently developed methods, such as RandAugment [240] and AutoAugment

110 6 MULTI-CLASS IMAGE CLASSIFICATION: COVID-19 DETECTION

FIGURE 6.5. Top Prediction Errors Generated by CovidXrayNet on COVIDx
Test Dataset [119].

[241], suggest removing the need for a search phase to reduce the parameter space for data

augmentation. However, incorrect choices in the COVID-19 classification task may lead to

the erasure or dilution of vital features.

Notably, the individual data augmentation methods yielded a minor increased task perform-

ance, as seen in Table 6.4. For example, the optimal warping value improved the classification

task accuracy by only 1.56%. However, a combination of these optimized methods (i.e., our

proposed data augmentation pipeline and CNN hayperparameters) increased the performance

significantly, as can be seen in Table 6.8. It increased the accuracy of the popular CNN

architectures VGG-19 and ResNet-50, by 11.93% and 4.97%, respectively.

We found that EfficientNet-B0 performed well for COVID-19 CXR classification with the

following data augmentation pipeline: squishing the CXR to 480 × 480 pixels, rotating

it by 20◦, zooming it by 1.2 scale, warping it by 0.2 magnitude, lighting it by 0.3 scale,

and normalizing it. Additionally, the label-smoothing cross-entropy loss function, with a

batch size of 32 with 30 epochs, increased the accuracy of CovidXrayNet on the COVIDx

dataset. EfficientNet is rapidly becoming the DL practitioners’ choice over ResNet for many

6.4 RESULTS AND DISCUSSION 111

classification tasks. It allows practitioners to use the minimum FLOPS while achieving the

best possible accuracy by compound scaling the network’s depth, width, and input resolution.

6.4.4 Limitation and future direction

While CovidXrayNet performed well as a whole (see Fig. 6.6), it misidentified four patients

with COVID-19 as having pneumonia, and one patient with COVID-19 as being normal (refer

to the confusion matrix in Fig. 6.7). However, it is important to limit the number of missed

patients with COVID-19 to be isolated as well as the number of patients with false-positive

COVID-19 to avoid an unnecessary burden on clinical sites. Therefore, CovidXrayNet is still

in the research stage and is not suitable for direct clinical diagnosis. It could be built upon

and optimized with additional data augmentation and better CNN hyperparameters.

Without conducting a proper clinical study, the achieved accuracy of CovidXrayNet (95.82%)

on the COVIDx dataset did not indicate that CovidXrayNet is sufficient for detecting

COVID-19 from CXRs. Our aim is to empower this research wave through our optim-

ized data augmentation pipeline and CNN hyperparameters. Therefore, we have released the

source code of CovidXrayNet to enable researchers to reproduce the results and experiment

on different datasets.

As there is an endless array of transformations, our work evaluated common augmentation

techniques in the CXR classification literature (i.e., resizing values, resizing methods, rotating,

zooming, warping, lighting, flipping and normalizing), recently proposed methods (i.e.,

mix-up and random erasing), and combinations of these methods. Future research could

enhance our model with de-noising or segmentation steps. In addition, the proposed data

augmentation pipeline was tested only on a three-class classification task ("COVID-19,"

"normal," or "pneumonia"). Researchers may investigate the effects of the proposed technique

on the detection of other common CXR observations including atelectasis, cardiomegaly,

consolidation, edema, enlarged cardiomediastinum, fracture, lung lesion, lung opacity, pleural

effusion, pleural other, pneumonia, and pneumothorax.

112 6 MULTI-CLASS IMAGE CLASSIFICATION: COVID-19 DETECTION

FIGURE 6.6. Randomly Generated Results for CovidXrayNet on COVIDx
Test Dataset [119].

FIGURE 6.7. Confusion Matrix for CovidXrayNet on COVIDx Test Dataset
[119].

Designing a fair testing protocol can be highly challenging. Datasets with large differences

have been merged in order to respond to the global challenge of quickly identifying COVID-19

[117]. The COVIDx and COVIDcxr datasets were collected from public sources. They were

also indirectly collected from hospitals and physicians. For COVIDx, we tested our model

with the official split recommended by the COVIDx paper to allow for future comparison.

For the COVIDcxr dataset, we released the dataset generation scripts. Future research should

assess the validity of the available testing protocol by validating the COVID-19 CXRs with

clinical experts and determining the ground truth.

6.5 SUMMARY AND CONCLUSION 113

FIGURE 6.8. Data Loader from COVIDcxr that Combines both Tabular Data
and CXRs [119].

COVIDcxr is suitable for building a single neural network based on both images (CXRs)

and tabular data (sex, age, and views), as can be seen in Fig. 6.8. However, we did not

observe better performance for such a model than for a linear model with embedding. Even

though a multi-modal network, with multiple input modalities, receives more information,

it is often prone to overfitting [242]. Future research may explore training multi-modal

classification networks based on the COVIDcxr dataset using various CNN architectures and

hyperparameters.

6.5 Summary and conclusion

The rapid spread of the COVID-19 pandemic along with the limited number of RT-PCR test

kits and qualified radiologists, has led to the need for accurate automated detection systems.

114 6 MULTI-CLASS IMAGE CLASSIFICATION: COVID-19 DETECTION

Chest radiography is one of the main imaging methods that are fast, non-invasive, affordable,

and possibly able to be completed at the bedside to monitor the progression of COVID-19

infection. However, radiologists with expertise in CXR interpretation may not be available at

every institution.

In this chapter, we proposed CovidXrayNet based on EfficientNet-B0 and our optimization

results. We evaluated CovidXrayNet on two datasets, including our generated balanced

COVIDcxr dataset (960 CXRs) and the benchmark COVIDx dataset (15,496 CXRs). With

only 30 epochs of training, CovidXrayNet achieved a state-of-the-art accuracy of 95.82% on

the COVIDx dataset in the three-class classification task (COVID-19, normal, or pneumonia).

We have demonstrated that optimizing data augmentation and CNN hyperparameters results in

outstanding effects on the automatic extraction of features from CXRs related to the diagnosis

of COVID-19. CovidXrayNet only required 30 learning cycles to process a CXR yet achieved

95.82% accuracy on the COVIDx dataset.

CHAPTER 7

Conclusion

Throughout this dissertation, we made contributions to the five areas of Deep Learning

(DL) in Chest X-ray (CXR): the understanding of CXR and DL intersections (Chapter

2), report labeling (Chapter 3), binary CXR classification (Chapter 4), multi-label CXR

classification (Chapter 5), and multi-class CXR classification of Coronavirus Disease 2019

(COVID-19) (Chapter 6). In this final chapter, we summarize the proposed methods (section

7.1), recapitulate our findings (section 7.2), and present an outlook on future research (section

7.3).

7.1 Summary of the proposed methods

In this thesis, we investigated DL in CXRs, from report labeling to image classification. We

first extensively studied the literature in Chapter 2 to provide practical guidelines for this

relatively recent direction of research. We explained radiology text and image structures, DL

algorithms, available datasets, report labeling, image classification, report generation, and

model evaluation methods.

Then, in Chapter 3, we contributed to the understanding of one of the main challenges in CXR

interpretation, which is extracting multiple labels from reports. We proposed CXRlabeler, a

novel framework that combines the strengths of both Language Model (LM) fine-tuning and

classifier fine-tuning to achieve highly accurate automated CXR report labeling.

Lastly, we proposed three novel Convolutional Neural Network (CNN) classifiers: MultiView-

Model in Chapter 4, Xclassifier in Chapter 5, and CovidXrayNet in Chapter 6. MultiView-

Model tackled the binary classification task through a stage-wise training technique that used
115

116 7 CONCLUSION

frontal and lateral CXRs. Xclassifier was a multi-label classifier that used distributed DL

methods and an anti-aliasing filter. It reduced the computational complexity while preserving

the classifier accuracy. For the multi-class classification problem, we investigated the role

of data augmentation and CNN hyperparameters in increasing the accuracy of detecting

COVID-19. Based on this investigation, we proposed CovidXrayNet, which achieved high

accuracy on two datasets: the benchmark dataset and our introduced COVIDcxr dataset.

7.2 Summary of findings

Over the course of this thesis, we strove to address the research questions we laid out initially

in Chapter 1, aiming to build efficient and accurate CXR classifiers. We presented multiple

novel methods for different classification scenarios and evaluated them across multiple

datasets. We now summarize our contributions and findings.

Understanding the gaps in the literature (RQ 1.): We extensively reviewed the existing

literature on the DL path employed in radiology, from report labeling to image classification

and image captioning. We noticed that binary, multi-class, and multi-label classifications are

the most common classification problems in radiology. However, limited existing methods

specifically consider efficiency in their proposed frameworks, such as by optimizing data

augmentation, CNN hyperparameters, CXR formats, and training techniques.

Extracting multiple labels from CXR reports (RQ 2.): We realized that DL models can be

beneficial in extracting labels from CXR reports, even in the absence of trustworthy training

labels. Using the benefits of both LM fine-tuning and classifier fine-tuning can result in highly

accurate automated CXR report labeling. Our tests on different datasets showed that this

method of sequential transfer learning works well in a different language environment.

Classifying CXRs using DL techniques (RQ 3.): We found that combining multiple views

of CXRs in a training set can result in better binary classification. In addition, reducing

the training time and increasing the accuracy can be achieved by observing the model’s

performance in a stage-wise training manner. Additionally, we demonstrated the benefit

7.3 FUTURE WORK 117

of combining several recent DL approaches with the CXR classifiers, including transfer

learning, fine-tuning, fit-one-cycle functions, and discriminative learning rates. Among the

various CNN architectures, Residual Network (ResNet), Densely Connected Convolutional

Network (DenseNet), and EfficientNet are the best architectures for the CXR classification

problem.

Building efficient multi-label classifiers (RQ 4.): We noticed that the Distributed Data

Parallel (DDP) technique is a true data parallelism process. It is useful for performing

multi-processes on devices of just a single machine to accomplish ideal memory utilization

and Graphics Processing Unit (GPU) computation for multi-label CXR classification. Deep

learning models that use CXRs in the Joint Photographic Experts Group (JPEG) format are

faster and more accurate than the ones that use the Digital Imaging and Communications

in Medicine (DICOM) format for detecting multiple diseases simultaneously. Anti-aliasing

filters can be used to increase the accuracy of CXR classifiers due to the shift variant nature

of CNNs.

Optimizing CNN classifiers (RQ 5.): We discovered that optimizing data augmentation and

CNN hyperparameters resulted in outstanding effects on the automatic extraction of features

from CXRs related to the diagnosis of COVID-19. An optimal data augmentation pipeline

for CXR classification may include squishing the CXR to 480× 480 pixels, rotating it by 20◦,

zooming in by 1.2 scale, warping it by 0.2 magnitude, lighting it by 0.3 scale, and normalizing

it. Our CovidXrayNet only required 30 learning cycles to process a CXR but achieved 95.82%

accuracy on the COVIDx dataset. Our optimization increased the accuracy of the popular

CNN architectures such as the Visual Geometry Group VGG-19 and ResNet-50 by 11.93%

and 4.97%, respectively.

7.3 Future work

The number of contributions in the field of CXR DL research has been growing due to the

release of extremely valuable public datasets in recent years, with more than 739,000 labeled

CXRs released between 2017 and 2022 [173]. However, there are multiple technical and

118 7 CONCLUSION

clinical issues to be considered in relation to their use, including label and image quality,

CXR captioning, explainable systems, and clinical transition.

Label and image qualities: Public datasets are labeled through one or more of the following

methods: report parsing, DL, radiologist interpretations of reports, radiologist interpretations

of CXRs, radiologist cohort agreement on CXRs, and laboratory tests. For evaluation and

comparison of the state-of-the art models, it is recommended to use "gold standard" test

data labels, such as those acquired by radiologist cohort agreement on CXRs. Image quality

is another factor that is often overlooked by the CXR research community, whose datasets

often have reduced-quality images. Although Chapter 5 studies the effect of image quality on

valuable diagnostic information, more research should address this issue.

CXR captioning: Beyond CXR classification and single-sentence-based descriptions, gener-

ating coherent radiology paragraphs has recently attracted researchers. This presents a more

practical and challenging application that can bridge visual medical features with radiologist

interpretations. Notably, CNN and Recurrent Neural Network (RNN) have quickly become

popular choices for mining radiology images and text, respectively. The main problem now is

obtaining ImageNet-level captions on an extensive collection of medical images.

Explainable systems: The term "explainable Artificial Intelligence (AI)" is frequently used

to describe an ongoing challenge for DL researchers to tackle. In DL for CXRs, most past

research has focused on image-level predictions to generate classification labels without

logical evidence, which presents trust issues for radiologists. Our MultiViewModel in Chapter

4 [146] and Mitra et al. [243] used heatmaps, such as gradient-weighted class activation

maps [244] and saliency maps [245], to indicate which regions in an image are relevant to

the results. However, the lack of a sound assessment of their accuracy is a concern. Future

research should have a localization function that shows where the abnormalities in a CXR

are located (e.g., identification of nodule location with a bounding box). Additionally, many

conditions, such as emphysema, which is indicated by irregular radiolucency throughout

the lung, may be difficult to explain using a heatmap. In these cases, an image could be

labeled (e.g., positive or negative) for a known sequence of radiological aspects related to the

7.3 FUTURE WORK 119

condition being diagnosed, or segmentation information could be used in the classification.

This is one way to build clinically explainable systems.

Clinical transition: Due to legal and ethical policies as well as technical hurdles, the

transition of DL CXR research to clinical use is uncommon [246]. Despite the fact that AI

research for thoracic radiology is among the most advanced in radiology, its use in clinical

practice is still limited. Leeuwen et al. [247] estimated that more than 40 AI applications have

been marked by the European Conformity Marking for thoracic radiology, where half of the

products are designed for chest radiography analysis and the other half for chest Computed

Tomography (CT). After neuroradiology, this is the specialization in radiology with the most

AI applications. Researchers who want to create therapeutically relevant technologies should

pay greater attention to the workflow and requirements of radiologists or clinicians. As a

Two-Dimensional (2D) scan, a CXR can be examined by a radiologist relatively quickly.

Therefore, the goal for DL researchers is to develop systems that save radiologists time,

prioritize critical cases, or increase the sensitivity/specificity of their results.

Bibliography

[1] Statistics » Diagnostic Imaging Dataset. [Online]. Available: https://www.

england.nhs.uk/statistics/statistical-work-areas/diagnostic-

imaging-%20dataset/ (visited on 23/05/2021).

[2] G. S. Lodwick, T. E. Keats and J. P. Dorst, ‘The coding of roentgen images for

computer analysis as applied to lung cancer,’ Radiology, vol. 81, no. 2, pp. 185–200,

1963, ISSN: 0033-8419.

[3] H. C. Becker, W. J. Nettleton, P. H. Meyers, J. W. Sweeney and C. M. Nice, ‘Digital

computer determination of a medical diagnostic index directly from chest X-ray

images,’ IEEE Transactions on Biomedical Engineering, no. 3, pp. 67–72, 1964, ISSN:

0018-9294.

[4] P. H. Meyers, C. M. Nice Jr, H. C. Becker, W. J. Nettleton Jr, J. W. Sweeney and

G. R. Meckstroth, ‘Automated computer analysis of radiographic images,’ Radiology,

vol. 83, no. 6, pp. 1029–1034, 1964, ISSN: 0033-8419.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ‘Imagenet: A large-scale

hierarchical image database,’ in 2009 IEEE conference on computer vision and pattern

recognition, Ieee, 2009, pp. 248–255, ISBN: 1424439922.

[6] I. Goodfellow, Y. Bengio, A. Courville and Y. Bengio, Deep learning. MIT press

Cambridge, 2016, vol. 1.

[7] X. Glorot, A. Bordes and Y. Bengio, ‘Deep sparse rectifier neural networks,’ in

Proceedings of the fourteenth international conference on artificial intelligence and

statistics, JMLR Workshop and Conference Proceedings, 2011, pp. 315–323.

[8] M. Z. Alom, T. M. Taha, C. Yakopcic et al., ‘The history began from alexnet: A

comprehensive survey on deep learning approaches,’ arXiv preprint arXiv:1803.01164,

2018.

120

https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostic-imaging-%20dataset/
https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostic-imaging-%20dataset/
https://www.england.nhs.uk/statistics/statistical-work-areas/diagnostic-imaging-%20dataset/

BIBLIOGRAPHY 121

[9] S. Pouyanfar, S. Sadiq, Y. Yan et al., ‘A survey on deep learning: Algorithms, tech-

niques, and applications,’ ACM Computing Surveys (CSUR), vol. 51, no. 5, pp. 1–36,

2018, ISSN: 0360-0300.

[10] B. Shickel, P. J. Tighe, A. Bihorac and P. Rashidi, ‘Deep EHR: a survey of recent

advances in deep learning techniques for electronic health record (EHR) analysis,’

IEEE journal of biomedical and health informatics, vol. 22, no. 5, pp. 1589–1604,

2017, ISSN: 2168-2194.

[11] O. Ruuskanen, E. Lahti, L. C. Jennings and D. R. Murdoch, ‘Viral pneumonia,’ The

Lancet, vol. 377, no. 9773, pp. 1264–1275, 2011.

[12] WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus Disease (COVID-19)

Dashboard. [Online]. Available: https://covid19.who.int/ (visited on

31/03/2021).

[13] J. Irvin, P. Rajpurkar, M. Ko et al., ‘Chexpert: A large chest radiograph dataset with

uncertainty labels and expert comparison,’ in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 33, 2019, pp. 590–597.

[14] J. Ker, L. Wang, J. Rao and T. Lim, ‘Deep learning applications in medical image

analysis,’ Ieee Access, vol. 6, pp. 9375–9389, 2017, ISSN: 2169-3536.

[15] B. Van Ginneken, C. M. Schaefer-Prokop and M. Prokop, ‘Computer-aided diagnosis:

how to move from the laboratory to the clinic,’ Radiology, vol. 261, no. 3, pp. 719–732,

2011, ISSN: 0033-8419.

[16] M. Kohli, L. M. Prevedello, R. W. Filice and J. R. Geis, ‘Implementing machine

learning in radiology practice and research,’ American journal of roentgenology,

vol. 208, no. 4, pp. 754–760, 2017, ISSN: 0361-803X.

[17] J. Wang, X. Yang, H. Cai, W. Tan, C. Jin and L. Li, ‘Discrimination of breast cancer

with microcalcifications on mammography by deep learning,’ Scientific reports, vol. 6,

no. 1, pp. 1–9, 2016, ISSN: 2045-2322.

[18] J.-Z. Cheng, D. Ni, Y.-H. Chou et al., ‘Computer-aided diagnosis with deep learning

architecture: applications to breast lesions in US images and pulmonary nodules in

CT scans,’ Scientific reports, vol. 6, no. 1, pp. 1–13, 2016, ISSN: 2045-2322.

https://covid19.who.int/

122 BIBLIOGRAPHY

[19] M. P. McBee, O. A. Awan, A. T. Colucci et al., ‘Deep learning in radiology,’ Academic

radiology, vol. 25, no. 11, pp. 1472–1480, 2018, ISSN: 1076-6332.

[20] A. Esteva, A. Robicquet, B. Ramsundar et al., ‘A guide to deep learning in healthcare,’

Nature medicine, vol. 25, no. 1, pp. 24–29, 2019, ISSN: 1546-170X.

[21] D. Ravì, C. Wong, F. Deligianni et al., ‘Deep learning for health informatics,’ IEEE

journal of biomedical and health informatics, vol. 21, no. 1, pp. 4–21, 2016, ISSN:

2168-2194.

[22] G. Litjens, T. Kooi, B. E. Bejnordi et al., ‘A survey on deep learning in medical image

analysis,’ Medical image analysis, vol. 42, pp. 60–88, 2017, ISSN: 1361-8415.

[23] F. Wang, L. P. Casalino and D. Khullar, ‘Deep learning in medicine—promise, pro-

gress, and challenges,’ JAMA internal medicine, vol. 179, no. 3, pp. 293–294, 2019,

ISSN: 2168-6106.

[24] A. Akay and H. Hess, ‘Deep learning: current and emerging applications in medicine

and technology,’ IEEE journal of biomedical and health informatics, vol. 23, no. 3,

pp. 906–920, 2019, ISSN: 2168-2194.

[25] Imaging and radiology: MedlinePlus Medical Encyclopedia. [Online]. Available:

https://medlineplus.gov/ency/article/007451.htm (visited on

30/04/2021).

[26] H.-C. Shin, K. Roberts, L. Lu, D. Demner-Fushman, J. Yao and R. M. Summers,

‘Learning to read chest x-rays: Recurrent neural cascade model for automated image

annotation,’ in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 2497–2506.

[27] C. Y. Li, Z. Hu, X. Liang and E. P. Xing, ‘Hybrid retrieval-generation reinforced agent

for medical image report generation,’ Advances in Neural Information Processing

Systems, vol. 2018-Decem, pp. 1530–1540, 2018, ISSN: 10495258.

[28] M. M. A. Monshi, J. Poon and V. Chung, ‘Deep learning in generating radiology

reports: A survey,’ Artificial Intelligence in Medicine, p. 101 878, 2020, ISSN: 0933-

3657.

https://medlineplus.gov/ency/article/007451.htm

BIBLIOGRAPHY 123

[29] P. L. Schuyler, W. T. Hole, M. S. Tuttle and D. D. Sherertz, ‘The UMLS Metathesaurus:

representing different views of biomedical concepts.,’ Bulletin of the Medical Library

Association, vol. 81, no. 2, p. 217, 1993.

[30] C. P. Langlotz, Radlex: A new method for indexing online educational materials, 2006.

[31] D. Demner-Fushman, M. D. Kohli, M. B. Rosenman et al., ‘Preparing a collection

of radiology examinations for distribution and retrieval,’ Journal of the American

Medical Informatics Association, vol. 23, no. 2, pp. 304–310, 2016, ISSN: 1527-974X.

[32] B. Jing, P. Xie and E. P. Xing, ‘On the automatic generation of medical imaging

reports,’ ACL 2018 - 56th Annual Meeting of the Association for Computational

Linguistics, Proceedings of the Conference (Long Papers), vol. 1, pp. 2577–2586,

2018. DOI: 10.18653/v1/p18-1240.

[33] Y. Xue, T. Xu, L. R. Long et al., ‘Multimodal recurrent model with attention for

automated radiology report generation,’ in International Conference on Medical

Image Computing and Computer-Assisted Intervention, Springer, 2018, pp. 457–466.

[34] X. Wang, Y. Peng, L. Lu, Z. Lu and R. M. Summers, ‘Tienet: Text-image embedding

network for common thorax disease classification and reporting in chest x-rays,’ in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2018,

pp. 9049–9058.

[35] R. M. Thanki and A. Kothari, ‘Data compression and its application in medical

imaging,’ in Hybrid and Advanced Compression Techniques for Medical Images,

Springer, 2019, pp. 1–15.

[36] H. Y. F. Wong, H. Y. S. Lam, A. H.-T. Fong et al., ‘Frequency and distribution of chest

radiographic findings in patients positive for COVID-19,’ Radiology, vol. 296, no. 2,

E72–E78, 2020, ISSN: 0033-8419.

[37] A. C. R. Radiology, ‘ACR recommendations for the use of chest radiography and

computed tomography (CT) for suspected COVID-19. Infection,’ ACR website., 2020.

[38] B. K. Sahu and R. Verma, ‘DICOM search in medical image archive solution e-Sushrut

Chhavi,’ in 2011 3rd International Conference on Electronics Computer Technology,

vol. 6, IEEE, 2011, pp. 256–260, ISBN: 1424486793.

[39] O. Six and B. V. Quantib, The ultimate guide to AI in radiology, 2018.

https://doi.org/10.18653/v1/p18-1240

124 BIBLIOGRAPHY

[40] S. M. Lee, J. B. Seo, J. Yun et al., ‘Deep learning applications in chest radiography

and computed tomography,’ Journal of thoracic imaging, vol. 34, no. 2, pp. 75–85,

2019, ISSN: 0883-5993.

[41] H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty and A.-B. M. Salem, ‘Classi-

fication using deep learning neural networks for brain tumors,’ Future Computing and

Informatics Journal, vol. 3, no. 1, pp. 68–71, 2018, ISSN: 2314-7288.

[42] C. Lam, C. Yu, L. Huang and D. Rubin, ‘Retinal lesion detection with deep learning

using image patches,’ Investigative ophthalmology & visual science, vol. 59, no. 1,

pp. 590–596, 2018, ISSN: 1552-5783.

[43] G. Wang, W. Li, M. A. Zuluaga et al., ‘Interactive medical image segmentation using

deep learning with image-specific fine tuning,’ IEEE transactions on medical imaging,

vol. 37, no. 7, pp. 1562–1573, 2018, ISSN: 0278-0062.

[44] A. Qayyum, S. M. Anwar, M. Awais and M. Majid, ‘Medical image retrieval using

deep convolutional neural network,’ Neurocomputing, vol. 266, pp. 8–20, 2017, ISSN:

0925-2312.

[45] A. S. Chaudhari, Z. Fang, F. Kogan et al., ‘Super-resolution musculoskeletal MRI

using deep learning,’ Magnetic resonance in medicine, vol. 80, no. 5, pp. 2139–2154,

2018, ISSN: 0740-3194.

[46] E. Gibson, W. Li, C. Sudre et al., ‘NiftyNet: a deep-learning platform for medical

imaging,’ Computer methods and programs in biomedicine, vol. 158, pp. 113–122,

2018, ISSN: 0169-2607.

[47] M. Biswas, V. Kuppili, L. Saba et al., ‘State-of-the-art review on deep learning in

medical imaging.,’ Frontiers in bioscience (Landmark edition), vol. 24, pp. 392–426,

2019, ISSN: 1093-4715.

[48] S. N. Jain, T. Modi, Y. Aswani and R. U. Varma, ‘Chest radiography in adult critical

care unit: A pictorial review,’ Indian Journal of Radiology and Imaging, vol. 29,

no. 04, pp. 418–425, 2019, ISSN: 0971-3026.

[49] E. Eisenhuber, C. M. Schaefer-Prokop, H. Prosch and W. Schima, ‘Bedside chest

radiography,’ Respiratory Care, vol. 57, no. 3, pp. 427–443, 2012, ISSN: 0020-1324.

BIBLIOGRAPHY 125

[50] S. Rakshit, I. Saha, M. Wlasnowolski, U. Maulik and D. Plewczynski, ‘Deep learning

for detection and localization of thoracic diseases using chest x-ray imagery,’ in

International Conference on Artificial Intelligence and Soft Computing, Springer,

2019, pp. 271–282.

[51] H. Behzadi-Khormouji, H. Rostami, S. Salehi et al., ‘Deep learning, reusable and

problem-based architectures for detection of consolidation on chest X-ray images,’

Computer methods and programs in biomedicine, vol. 185, p. 105 162, 2020, ISSN:

0169-2607.

[52] D. M. Hansell, A. A. Bankier, H. MacMahon, T. C. McLoud, N. L. Müller and J. Remy,

‘Fleischner Society: Glossary of terms for thoracic imaging,’ Radiology, vol. 246, no. 3,

pp. 697–722, Mar. 2008, ISSN: 00338419. DOI: 10.1148/RADIOL.2462070712.

[53] H. Behzadi-Khormouji, H. Rostami, S. Salehi et al., ‘Deep learning, reusable and

problem-based architectures for detection of consolidation on chest x-ray images,’

Computer methods and programs in biomedicine, vol. 185, p. 105 162, 2020.

[54] J. Zhong, J. Tang, C. Ye and L. Dong, ‘The immunology of COVID-19: is immune

modulation an option for treatment?’ The Lancet Rheumatology, vol. 2, no. 7, e428–

e436, 2020, ISSN: 2665-9913.

[55] T. Singhal, ‘A review of coronavirus disease-2019 (COVID-19),’ The Indian Journal

of Pediatrics, pp. 1–6, 2020, ISSN: 0973-7693.

[56] K. P. Trayes, J. Studdiford, S. Pickle and A. S. Tully, ‘Edema: diagnosis and manage-

ment,’ American family physician, vol. 88, no. 2, pp. 102–110, 2013, ISSN: 0002-838X.

[57] X. Wang, E. Schwab, J. Rubin et al., ‘Pulmonary Edema Severity Estimation in Chest

Radiographs Using Deep Learning.,’ in International Conference on Medical Imaging

with Deep Learning–Extended Abstract Track, 2019, pp. 1–5.

[58] Heart Failure | American Heart Association. [Online]. Available: https://www.

heart.org/en/health-topics/heart-failure (visited on 29/08/2022).

[59] J.-B. Lamare, T. Olatunji and L. Yao, ‘On the diminishing return of labeling clinical

reports,’ arXiv preprint arXiv:2010.14587, 2020.

[60] F. Gaillard, Radiopaedia.org, the wiki-based collaborative Radiology resource, 2014.

[Online]. Available: http://radiopaedia.org/ (visited on 31/08/2022).

https://doi.org/10.1148/RADIOL.2462070712
https://www.heart.org/en/health-topics/heart-failure
https://www.heart.org/en/health-topics/heart-failure
http://radiopaedia.org/

126 BIBLIOGRAPHY

[61] D. H. Livingston, B. Shogan, P. John and R. F. Lavery, ‘Ct diagnosis of rib fractures

and the prediction of acute respiratory failure,’ Journal of Trauma and Acute Care

Surgery, vol. 64, no. 4, pp. 905–911, 2008.

[62] S. Xu, J. Guo, G. Zhang and R. Bie, ‘Automated detection of multiple lesions on

chest X-ray images: Classification using a neural network technique with association-

specific contexts,’ Applied Sciences, vol. 10, no. 5, p. 1742, 2020, ISSN: 2076-3417.

[63] M. H. Antor, ‘Lung opacity identification using mathematical model based on deep

learning,’ International Journal of Engineering Applied Sciences and Technology,

vol. 5, no. 5, pp. 25–29, 2020.

[64] M. Noppen, ‘Spontaneous pneumothorax: Epidemiology, pathophysiology and cause,’

European Respiratory Review, vol. 19, no. 117, pp. 217–219, 2010.

[65] H.-C. Shin, L. Lu, L. Kim, A. Seff, J. Yao and R. M. Summers, ‘Interleaved text/image

deep mining on a very large-scale radiology database,’ in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2015, pp. 1090–1099.

[66] Y. Dong, Y. Pan, J. Zhang and W. Xu, ‘Learning to read chest X-ray images from

16000+ examples using CNN,’ in 2017 IEEE/ACM International Conference on

Connected Health: Applications, Systems and Engineering Technologies (CHASE),

IEEE, 2017, pp. 51–57, ISBN: 1509047220.

[67] S. S. Mousavi, M. Schukat and E. Howley, ‘Deep Reinforcement Learning: An

Overview,’ Lecture Notes in Networks and Systems, vol. 16, pp. 426–440, 2018, ISSN:

23673389.

[68] B. J. Erickson, P. Korfiatis, T. L. Kline, Z. Akkus, K. Philbrick and A. D. Weston,

‘Deep learning in radiology: does one size fit all?’ Journal of the American College of

Radiology, vol. 15, no. 3, pp. 521–526, 2018, ISSN: 1546-1440.

[69] D. A. Clevert, T. Unterthiner and S. Hochreiter, ‘Fast and accurate deep network

learning by exponential linear units (ELUs),’ 4th International Conference on Learning

Representations, ICLR 2016 - Conference Track Proceedings, 2016.

[70] C. Nwankpa, W. Ijomah, A. Gachagan and S. Marshall, ‘Activation functions: Compar-

ison of trends in practice and research for deep learning,’ arXiv preprint arXiv:1811.03378,

2018.

BIBLIOGRAPHY 127

[71] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, ‘Gradient-based learning applied

to document recognition,’ Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,

1998, ISSN: 0018-9219.

[72] X. Wang, L. Lu, H.-C. Shin et al., ‘Unsupervised category discovery via looped deep

pseudo-task optimization using a large scale radiology image database,’ arXiv preprint

arXiv:1603.07965, 2016.

[73] P. Moeskops, M. A. Viergever, A. M. Mendrik, L. S. De Vries, M. J. N. L. Benders and

I. Išgum, ‘Automatic segmentation of MR brain images with a convolutional neural

network,’ IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1252–1261, 2016,

ISSN: 0278-0062.

[74] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘Imagenet classification with deep

convolutional neural networks,’ Advances in neural information processing systems,

vol. 25, pp. 1097–1105, 2012.

[75] M. D. Zeiler and R. Fergus, ‘Visualizing and understanding convolutional networks,’

in European conference on computer vision, Springer, 2014, pp. 818–833.

[76] K. Simonyan and A. Zisserman, ‘Very deep convolutional networks for large-scale

image recognition,’ 3rd International Conference on Learning Representations, ICLR

2015 - Conference Track Proceedings, 2015.

[77] C. Szegedy, W. Liu, Y. Jia et al., ‘Going deeper with convolutions,’ in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2015, pp. 1–9.

[78] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image recognition,’

in Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 770–778.

[79] S. Xie, R. Girshick, P. Dollár, Z. Tu and K. He, ‘Aggregated residual transformations

for deep neural networks,’ in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2017, pp. 1492–1500.

[80] ImageNet. [Online]. Available: https://image-net.org/challenges/

LSVRC/2016/ (visited on 23/05/2021).

[81] J. Hu, L. Shen and G. Sun, ‘Squeeze-and-excitation networks,’ in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141.

https://image-net.org/challenges/LSVRC/2016/
https://image-net.org/challenges/LSVRC/2016/

128 BIBLIOGRAPHY

[82] P. Stock and M. Cisse, ‘Convnets and imagenet beyond accuracy: Understanding

mistakes and uncovering biases,’ in Proceedings of the European Conference on

Computer Vision (ECCV), 2018, pp. 498–512.

[83] X. Glorot and Y. Bengio, ‘Understanding the difficulty of training deep feedforward

neural networks,’ in Proceedings of the thirteenth international conference on artifi-

cial intelligence and statistics, JMLR Workshop and Conference Proceedings, 2010,

pp. 249–256.

[84] C. Szegedy, S. Ioffe, V. Vanhoucke and A. Alemi, ‘Inception-v4, inception-resnet

and the impact of residual connections on learning,’ in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 31, 2017.

[85] M. Lin, Q. Chen and S. Yan, ‘Network in network,’ 2nd International Conference on

Learning Representations, ICLR 2014 - Conference Track Proceedings, 2014.

[86] G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, ‘Densely connected

convolutional networks,’ in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2017, pp. 4700–4708.

[87] H.-C. Shin, L. Lu, L. Kim, A. Seff, J. Yao and R. M. Summers, ‘Interleaved text/image

deep mining on a large-scale radiology database for automated image interpretation,’

The Journal of Machine Learning Research, vol. 17, no. 1, pp. 3729–3759, 2016, ISSN:

1532-4435.

[88] J. Yarnall, X-Ray Classification Using Deep Learning and the MIMIC-CXR Dataset,

2020.

[89] R. J. Williams and D. Zipser, ‘A learning algorithm for continually running fully

recurrent neural networks,’ Neural computation, vol. 1, no. 2, pp. 270–280, 1989,

ISSN: 0899-7667.

[90] T. Mikolov, M. Karafiát, L. Burget, J. Černocký and S. Khudanpur, ‘Recurrent neural

network based language model,’ in Eleventh annual conference of the international

speech communication association, 2010.

[91] S. Hochreiter and J. Schmidhuber, ‘Long short-term memory,’ Neural computation,

vol. 9, no. 8, pp. 1735–1780, 1997, ISSN: 0899-7667.

BIBLIOGRAPHY 129

[92] K. Cho, B. Van Merriënboer, C. Gulcehre et al., ‘Learning phrase representations

using RNN encoder-decoder for statistical machine translation,’ EMNLP 2014 - 2014

Conference on Empirical Methods in Natural Language Processing, Proceedings of

the Conference, pp. 1724–1734, 2014.

[93] C. Shorten and T. M. Khoshgoftaar, ‘A survey on image data augmentation for deep

learning,’ Journal of Big Data, vol. 6, no. 1, pp. 1–48, 2019, ISSN: 2196-1115.

[94] S. Calderon-Ramirez, S. Yang, A. Moemeni et al., ‘Correcting data imbalance for semi-

supervised COVID-19 detection using X-ray chest images,’ Applied Soft Computing,

vol. 111, 2021, ISSN: 15684946.

[95] L. Taylor and G. Nitschke, ‘Improving Deep Learning with Generic Data Augmenta-

tion,’ Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence,

SSCI 2018, pp. 1542–1547, 2019.

[96] L. F. Rodrigues, M. C. Naldi and J. F. Mari, ‘Comparing convolutional neural networks

and preprocessing techniques for HEp-2 cell classification in immunofluorescence

images,’ Computers in biology and medicine, vol. 116, p. 103 542, 2020, ISSN: 0010-

4825.

[97] T. Akiba, S. Sano, T. Yanase, T. Ohta and M. Koyama, ‘Optuna: A next-generation

hyperparameter optimization framework,’ in Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, 2019, pp. 2623–

2631.

[98] M. Nishio, K. Fujimoto and K. Togashi, ‘Lung segmentation on chest X-ray images

in patients with severe abnormal findings using deep learning,’ International Journal

of Imaging Systems and Technology, 2020, ISSN: 0899-9457.

[99] M. Abadi, P. Barham, J. Chen et al., ‘Tensorflow: A system for large-scale machine

learning,’ in 12th USENIX symposium on operating systems design and implementa-

tion (OSDI 16), 2016, pp. 265–283, ISBN: 1931971331.

[100] Y. Wu et al., Tensorpack, https://github.com/tensorpack/, 2016.

[101] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd, 2017.

https://github.com/tensorpack/

130 BIBLIOGRAPHY

[102] Y. Jia, E. Shelhamer, J. Donahue et al., ‘Caffe: Convolutional architecture for fast

feature embedding,’ in Proceedings of the 22nd ACM international conference on

Multimedia, 2014, pp. 675–678.

[103] N. Ketkar, ‘Introduction to pytorch,’ in Deep learning with python, Springer, 2017,

pp. 195–208.

[104] A. Paszke, S. Gross, S. Chintala et al., ‘Automatic differentiation in pytorch,’ 2017.

[105] J. Howard and S. Gugger, ‘Fastai: A layered API for deep learning,’ Information,

vol. 11, no. 2, p. 108, 2020.

[106] J. Rubin, D. Sanghavi, C. Zhao, K. Lee, A. Qadir and M. Xu-Wilson, ‘Large scale

automated reading of frontal and lateral chest x-rays using dual convolutional neural

networks,’ arXiv preprint arXiv:1804.07839, 2018.

[107] P. Kisilev, E. Sason, E. Barkan and S. Hashoul, ‘Medical image description using

multi-task-loss CNN,’ in Deep Learning and Data Labeling for Medical Applications,

Springer, 2016, pp. 121–129.

[108] P. Rajpurkar, J. Irvin, K. Zhu et al., ‘Chexnet: Radiologist-level pneumonia detection

on chest x-rays with deep learning,’ arXiv preprint arXiv:1711.05225, 2017.

[109] J. Howard and S. Gugger, Deep Learning for Coders with fastai and PyTorch. O’Reilly

Media, 2020.

[110] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri and R. M. Summers, ‘Chestx-ray8:

Hospital-scale chest x-ray database and benchmarks on weakly-supervised classi-

fication and localization of common thorax diseases,’ in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2017, pp. 2097–2106.

[111] P. K. Gyawali, Z. Li, S. Ghimire and L. Wang, ‘Semi-supervised learning by disen-

tangling and self-ensembling over stochastic latent space,’ in International Conference

on Medical Image Computing and Computer-Assisted Intervention, Springer, 2019,

pp. 766–774.

[112] L. Seyyed-Kalantari, G. Liu, M. McDermott, I. Y. Chen and M. Ghassemi, ‘CheX-

clusion: Fairness gaps in deep chest X-ray classifiers,’ in BIOCOMPUTING 2021:

Proceedings of the Pacific Symposium, World Scientific, 2020, pp. 232–243.

BIBLIOGRAPHY 131

[113] A. E. W. Johnson, T. J. Pollard, S. J. Berkowitz et al., ‘MIMIC-CXR, a de-identified

publicly available database of chest radiographs with free-text reports,’ Scientific Data,

vol. 6, 2019.

[114] D. Hou, Z. Zhao and S. Hu, ‘Multi-label learning with visual-semantic embedded

knowledge graph for diagnosis of radiology imaging,’ IEEE Access, vol. 9, pp. 15 720–

15 730, 2021, ISSN: 2169-3536.

[115] A. Bustos, A. Pertusa, J.-M. Salinas and M. de la Iglesia-Vayá, ‘Padchest: A large

chest x-ray image dataset with multi-label annotated reports,’ Medical image analysis,

vol. 66, p. 101 797, 2020, ISSN: 1361-8415.

[116] H. Bertrand, M. Hashir and J. P. Cohen, ‘Do lateral views help automated chest x-ray

predictions?’ In International Conference on Medical Imaging with Deep Learning–

Extended Abstract Track, 2019.

[117] J. P. Cohen, P. Morrison, L. Dao, K. Roth, T. Duong and M. Ghassemi, ‘Covid-19

image data collection: Prospective predictions are the future,’ MELBA, p. 18 272,

2020.

[118] L. Wang, Z. Q. Lin and A. Wong, ‘Covid-net: A tailored deep convolutional neural

network design for detection of covid-19 cases from chest x-ray images,’ Scientific

Reports, vol. 10, no. 1, pp. 1–12, 2020.

[119] M. M. A. Monshi, J. Poon, V. Chung and F. M. Monshi, ‘CovidXrayNet: Optimizing

Data Augmentation and CNN Hyperparameters for Improved COVID-19 Detection

from CXR,’ Computers in Biology and Medicine, vol. 133, no. 0010-4825, p. 104 375,

2021.

[120] A. E. W. Johnson, T. J. Pollard, N. R. Greenbaum et al., ‘MIMIC-CXR-JPG, a large

publicly available database of labeled chest radiographs,’ preprint arXiv:1901.07042,

2019.

[121] Y. Peng, X. Wang, L. Lu, M. Bagheri, R. Summers and Z. Lu, ‘Negbio: a high-

performance tool for negation and uncertainty detection in radiology reports,’ AMIA

Summits on Translational Science Proceedings, vol. 2018, p. 188, 2018.

132 BIBLIOGRAPHY

[122] O. Bodenreider, ‘The unified medical language system (UMLS) integrating biomedical

terminology,’ Nucleic acids research, vol. 32, no. suppl-1, pp. D267–D270, 2004,

ISSN: 0305-1048.

[123] J. Bridge, Y. Meng, Y. Zhao et al., ‘Introducing the GEV Activation Function for

Highly Unbalanced Data to Develop COVID-19 Diagnostic Models,’ IEEE Journal

of Biomedical and Health Informatics, vol. 24, no. 10, pp. 2776–2786, 2020, ISSN:

2168-2194.

[124] L. Wang, A. Wong, Z. Q. Lin et al., ‘Figure 1 covid-19 chest x-ray dataset initiative,’

Accessed: May, vol. 9, 2020.

[125] Y. Peng, Y. Tang, S. Lee, Y. Zhu, R. M. Summers and Z. Lu, ‘COVID-19-CT-CXR:

A freely accessible and weakly labeled chest X-Ray and CT image collection on

COVID-19 from biomedical literature,’ IEEE Transactions on Big Data, vol. 7, no. 1,

pp. 3–12, 2021, ISSN: 23327790.

[126] M. Heath, K. Bowyer, D. Kopans, R. Moore and W. P. Kegelmeyer, ‘The digital

database for screening mammography Proc. 5th Int,’ in Workshop on Digital Mammo-

graphy, 2000, pp. 212–218.

[127] K. N. Jones, D. E. Woode, K. Panizzi and P. G. Anderson, ‘Peir digital library: Online

resources and authoring system,’ in Proceedings of the AMIA Symposium, American

Medical Informatics Association, 2001, p. 1075.

[128] L. Deng and Y. Liu, ‘A joint introduction to natural language processing and to deep

learning,’ in Deep learning in natural language processing, Springer, 2018, pp. 1–22.

[129] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu and P. Kuksa, ‘Natural

language processing (almost) from scratch,’ Journal of machine learning research,

vol. 12, no. ARTICLE, pp. 2493–2537, 2011.

[130] M. B. A. McDermott, T. M. H. Hsu, W.-H. Weng, M. Ghassemi and P. Szolovits,

‘CheXpert++: Approximating the CheXpert Labeler for Speed, Differentiability, and

Probabilistic Output,’ in Machine Learning for Healthcare Conference, PMLR, 2020,

pp. 913–927.

[131] A. Smit, S. Jain, P. Rajpurkar, A. Pareek, A. Y. Ng and M. P. Lungren, ‘CheXbert:

Combining automatic labelers and expert annotations for accurate radiology report

BIBLIOGRAPHY 133

labeling using BERT,’ EMNLP 2020 - 2020 Conference on Empirical Methods in

Natural Language Processing, Proceedings of the Conference, pp. 1500–1519, 2020.

[132] M. M. A. Monshi, J. Poon, V. Chung and F. M. Monshi, ‘Labeling Chest X-Ray

Reports Using Deep Learning,’ in International Conference on Artificial Neural

Networks, Springer, 2021, pp. 684–694.

[133] A. R. Aronson and F.-M. Lang, ‘An overview of MetaMap: historical perspective and

recent advances,’ Journal of the American Medical Informatics Association, vol. 17,

no. 3, pp. 229–236, 2010, ISSN: 1527-974X.

[134] R. Leaman, R. Islamaj Doğan and Z. Lu, ‘DNorm: disease name normalization with

pairwise learning to rank,’ Bioinformatics, vol. 29, no. 22, pp. 2909–2917, 2013, ISSN:

1460-2059.

[135] L. Oakden-Rayner, ‘Exploring large-scale public medical image datasets,’ Academic

Radiology, vol. 27, no. 1, pp. 106–112, 2020, ISSN: 1076-6332.

[136] J. Devlin, M. W. Chang, K. Lee and K. Toutanova, ‘BERT: Pre-training of deep

bidirectional transformers for language understanding,’ NAACL HLT 2019 - 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies - Proceedings of the Conference, vol. 1,

pp. 4171–4186, 2019.

[137] E. Alsentzer, J. Murphy, W. Boag et al., ‘Publicly available clinical bert embeddings,’

in Proceedings of the 2nd Clinical Natural Language Processing Workshop, 2019,

pp. 72–78.

[138] J. Mullenbach, S. Wiegreffe, J. Duke, J. Sun and J. Eisenstein, ‘Explainable Prediction

of Medical Codes from Clinical Text,’ in NAACL-HLT, 2018.

[139] L. Deng and Y. Liu, Deep learning in natural language processing. Springer, 2018,

ISBN: 9811052093.

[140] X. He and L. Deng, ‘Deep learning in natural language generation from images,’ in

Deep learning in natural language processing, Springer, 2018, pp. 289–307.

[141] S. Hassanpour and C. P. Langlotz, ‘Unsupervised topic modeling in a large free text

radiology report repository,’ Journal of digital imaging, vol. 29, no. 1, pp. 59–62,

2016, ISSN: 0897-1889.

134 BIBLIOGRAPHY

[142] H.-C. Shin, L. Lu and R. M. Summers, ‘Natural language processing for large-scale

medical image analysis using deep learning,’ Deep learning for medical image ana-

lysis, pp. 405–421, 2017.

[143] H. Zhang, M. Cisse, Y. N. Dauphin and D. Lopez-Paz, ‘MixUp: Beyond empirical

risk minimization,’ 6th International Conference on Learning Representations, ICLR

2018 - Conference Track Proceedings, 2018.

[144] L. Yao, E. Poblenz, D. Dagunts, B. Covington, D. Bernard and K. Lyman, ‘Learning

to diagnose from scratch by exploiting dependencies among labels,’ arXiv preprint

arXiv:1710.10501, 2017.

[145] H. Wang, H. Jia, L. Lu and Y. Xia, ‘Thorax-Net: An Attention Regularized Deep

Neural Network for Classification of Thoracic Diseases on Chest Radiography,’ IEEE

Journal of Biomedical and Health Informatics, vol. 24, no. 2, pp. 475–485, 2019,

ISSN: 21682208.

[146] M. M. A. Monshi, J. Poon and V. Chung, ‘Convolutional Neural Network to Detect

Thorax Diseases from Multi-view Chest X-Rays,’ in International Conference on

Neural Information Processing, Springer, 2019, pp. 148–158.

[147] Q. Guan, Y. Huang, Z. Zhong, Z. Zheng, L. Zheng and Y. Yang, ‘Thorax disease

classification with attention guided convolutional neural network,’ Pattern Recognition

Letters, vol. 131, pp. 38–45, 2020, ISSN: 01678655.

[148] E. E.-D. Hemdan, M. A. Shouman and M. E. Karar, ‘Covidx-net: A framework

of deep learning classifiers to diagnose covid-19 in x-ray images,’ arXiv preprint

arXiv:2003.11055, 2020.

[149] T. Mahmud, M. A. Rahman and S. A. Fattah, ‘CovXNet: A multi-dilation convolu-

tional neural network for automatic COVID-19 and other pneumonia detection from

chest X-ray images with transferable multi-receptive feature optimization,’ Computers

in biology and medicine, vol. 122, p. 103 869, 2020, ISSN: 0010-4825.

[150] A. Narin, C. Kaya and Z. Pamuk, ‘Automatic detection of coronavirus disease

(COVID-19) using X-ray images and deep convolutional neural networks,’ Pattern

Analysis and Applications, vol. 24, no. 3, pp. 1207–1220, 2021, ISSN: 1433755X.

BIBLIOGRAPHY 135

[151] T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim and U. R. Acharya,

‘Automated detection of COVID-19 cases using deep neural networks with X-ray

images,’ Computers in Biology and Medicine, p. 103 792, 2020, ISSN: 0010-4825.

[152] M. M. A. Monshi and J. Poon, ‘Distributed Deep Learning for Multi-Label Chest

Radiography Classification,’ Visigrapp, vol. 4, 2022, pp. 949–956, ISBN: 978-989-

758-555-5.

[153] M. Nishio, S. Noguchi, H. Matsuo and T. Murakami, ‘Automatic classification between

COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy on chest X-ray

image: combination of data augmentation methods,’ Scientific reports, vol. 10, no. 1,

pp. 1–6, 2020, ISSN: 2045-2322.

[154] I. D. Apostolopoulos and T. A. Mpesiana, ‘Covid-19: automatic detection from x-ray

images utilizing transfer learning with convolutional neural networks,’ Physical and

Engineering Sciences in Medicine, p. 1, 2020.

[155] P. K. Sethy, S. K. Behera, P. K. Ratha and P. Biswas, ‘Detection of coronavirus disease

(covid-19) based on deep features and support vector machine,’ International Journal

of Mathematical Engineering and Management Sciences, pp. 643–651, 2020.

[156] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh and D. Batra, ‘Grad-

cam: Visual explanations from deep networks via gradient-based localization,’ in

Proceedings of the IEEE international conference on computer vision, 2017, pp. 618–

626.

[157] M. Hashir, H. Bertrand and J. P. Cohen, ‘Quantifying the value of lateral views in

deep learning for chest x-rays,’ in Medical Imaging with Deep Learning, PMLR, 2020,

pp. 288–303.

[158] P. Mooney, ‘Chest x-ray images (pneumonia),’ 2018.

[159] Z. Wang, Y. Xiao, Y. Li et al., ‘Automatically discriminating and localizing COVID-

19 from community-acquired pneumonia on chest X-rays,’ Pattern Recognition,

p. 107 613, 2020, ISSN: 0031-3203.

[160] F. Wang, M. Jiang, C. Qian et al., ‘Residual attention network for image classification,’

in Proceedings of the IEEE conference on computer vision and pattern recognition,

2017, pp. 3156–3164.

136 BIBLIOGRAPHY

[161] J. Redmon and A. Farhadi, ‘YOLO9000: better, faster, stronger,’ in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2017, pp. 7263–7271.

[162] A. Wong, M. J. Shafiee, B. Chwyl and F. Li, ‘Ferminets: Learning generative ma-

chines to generate efficient neural networks via generative synthesis,’ arXiv preprint

arXiv:1809.05989, 2018.

[163] Y. Oh, S. Park and J. C. Ye, ‘Deep Learning COVID-19 Features on CXR using

Limited Training Data Sets,’ IEEE Transactions on Medical Imaging, pp. 1–1, 2020,

ISSN: 0278-0062.

[164] A. G. Howard et al., ‘Mobilenets: Efficient convolutional neural networks for mobile

vision applications,’ arXiv preprint arXiv:1704.04861, 2017.

[165] D. M. Blei, A. Y. Ng and M. I. Jordan, ‘Latent dirichlet allocation,’ the Journal of

machine Learning research, vol. 3, pp. 993–1022, 2003, ISSN: 1532-4435.

[166] A. Karpathy and L. Fei-Fei, ‘Deep visual-semantic alignments for generating image

descriptions,’ in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2015, pp. 3128–3137.

[167] K. Xu, J. Ba, R. Kiros et al., ‘Show, attend and tell: Neural image caption generation

with visual attention,’ in International conference on machine learning, PMLR, 2015,

pp. 2048–2057.

[168] J. Guo, X. Yuan, X. Zheng, P. Xu, Y. Xiao and B. Liu, ‘Diagnosis labeling with

disease-specific characteristics mining,’ Artificial intelligence in medicine, vol. 100,

no. 90, pp. 25–33, 2018, ISSN: 0933-3657.

[169] C. Qin, D. Yao, Y. Shi and Z. Song, ‘Computer-aided detection in chest radiography

based on artificial intelligence: a survey,’ Biomedical engineering online, vol. 17,

no. 1, pp. 1–23, 2018, ISSN: 1475-925X.

[170] S. Candemir, S. Jaeger, K. Palaniappan et al., ‘Lung segmentation in chest radiographs

using anatomical atlases with nonrigid registration,’ IEEE transactions on medical

imaging, vol. 33, no. 2, pp. 577–590, 2013.

[171] S. Candemir, S. Jaeger, W. Lin, Z. Xue, S. Antani and G. Thoma, ‘Automatic heart

localization and radiographic index computation in chest x-rays,’ in Medical Imaging

2016: Computer-Aided Diagnosis, SPIE, vol. 9785, 2016, pp. 302–309.

BIBLIOGRAPHY 137

[172] H. X. Nguyen and T. T. Dang, ‘Ribs suppression in chest x-ray images by using ica

method,’ in 5th International Conference on Biomedical Engineering in Vietnam,

Springer, 2015, pp. 194–197.

[173] E. Çallı, E. Sogancioglu, B. van Ginneken, K. G. van Leeuwen and K. Murphy, ‘Deep

Learning for Chest X-ray Analysis: A Survey,’ Medical Image Analysis, p. 102 125,

2021, ISSN: 1361-8415.

[174] D. Yu, K. Zhang, L. Huang et al., ‘Detection of peripherally inserted central catheter

(picc) in chest x-ray images: A multi-task deep learning model,’ Computer Methods

and Programs in Biomedicine, vol. 197, p. 105 674, 2020.

[175] J. Wessel, M. P. Heinrich, J. von Berg, A. Franz and A. Saalbach, ‘Sequential rib la-

beling and segmentation in chest x-ray using mask r-cnn,’ in International Conference

on Medical Imaging with Deep Learning–Extended Abstract Track, 2019.

[176] Y. Cho, Y.-G. Kim, S. M. Lee, J. B. Seo and N. Kim, ‘Reproducibility of abnor-

mality detection on chest radiographs using convolutional neural network in paired

radiographs obtained within a short-term interval,’ Scientific Reports, vol. 10, no. 1,

pp. 1–11, 2020.

[177] Y. Karbhari, A. Basu, Z. W. Geem, G.-T. Han and R. Sarkar, ‘Generation of synthetic

chest x-ray images and detection of covid-19: A deep learning based approach,’

Diagnostics, vol. 11, no. 5, p. 895, 2021.

[178] J. Goodfellow Ian, P.-A. Jean, M. Mehdi et al., ‘Generative adversarial nets,’ in

Proceedings of the 27th international conference on neural information processing

systems, vol. 2, 2014, pp. 2672–2680.

[179] X. Yi, E. Walia and P. Babyn, ‘Generative adversarial network in medical imaging: A

review,’ Medical Image Analysis, vol. 58, p. 101 552, 2019, ISSN: 1361-8415.

[180] T. Fawcett, ‘An introduction to ROC analysis,’ Pattern recognition letters, vol. 27,

no. 8, pp. 861–874, 2006, ISSN: 0167-8655.

[181] J. Gorodkin, ‘Comparing two K-category assignments by a K-category correlation

coefficient,’ Computational biology and chemistry, vol. 28, no. 5-6, pp. 367–374,

2004, ISSN: 1476-9271.

138 BIBLIOGRAPHY

[182] M. Grandini, E. Bagli and G. Visani, ‘Metrics for Multi-Class Classification: an

Overview,’ arXiv preprint arXiv:2008.05756, 2020.

[183] K. Papineni, S. Roukos, T. Ward and W.-J. Zhu, ‘BLEU: a method for automatic

evaluation of machine translation,’ in Proceedings of the 40th annual meeting of the

Association for Computational Linguistics, 2002, pp. 311–318.

[184] C.-Y. Lin, ‘Rouge: A package for automatic evaluation of summaries,’ in Text sum-

marization branches out, 2004, pp. 74–81.

[185] M. Denkowski and A. Lavie, ‘Meteor universal: Language specific translation eval-

uation for any target language,’ in Proceedings of the ninth workshop on statistical

machine translation, 2014, pp. 376–380.

[186] R. Vedantam, C. Lawrence Zitnick and D. Parikh, ‘Cider: Consensus-based image

description evaluation,’ in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2015, pp. 4566–4575.

[187] P. Anderson, B. Fernando, M. Johnson and S. Gould, ‘Spice: Semantic propositional

image caption evaluation,’ in European conference on computer vision, Springer,

2016, pp. 382–398.

[188] C.-Y. Lin and F. J. Och, ‘Automatic evaluation of machine translation quality using

longest common subsequence and skip-bigram statistics,’ in Proceedings of the 42nd

Annual Meeting of the Association for Computational Linguistics (ACL-04), 2004,

pp. 605–612.

[189] M. Kilickaya, A. Erdem, N. Ikizler-Cinbis and E. Erdem, ‘Re-evaluating automatic

metrics for image captioning,’ 15th Conference of the European Chapter of the

Association for Computational Linguistics, EACL 2017 - Proceedings of Conference,

vol. 1, pp. 199–209, 2017.

[190] S. A. Hicks, K. Pogorelov, T. de Lange et al., ‘Comprehensible reasoning and auto-

mated reporting of medical examinations based on deep learning analysis,’ in Pro-

ceedings of the 9th ACM Multimedia Systems Conference, 2018, pp. 490–493.

[191] J. Mańdziuk and A. Żychowski, ‘Dimensionality Reduction in Multilabel Classi-

fication with Neural Networks,’ in 2019 International Joint Conference on Neural

Networks (IJCNN), IEEE, 2019, pp. 1–8, ISBN: 1728119855.

BIBLIOGRAPHY 139

[192] V. Liventsev, I. Fedulova and D. Dylov, ‘Deep text prior: Weakly supervised learning

for assertion classification,’ in International Conference on Artificial Neural Networks,

Springer, 2019, pp. 243–257.

[193] S. Merity, N. S. Keskar and R. Socher, ‘Regularizing and optimizing LSTM language

models,’ 6th International Conference on Learning Representations, ICLR 2018 -

Conference Track Proceedings, 2018.

[194] S. Merity, C. Xiong, J. Bradbury and R. Socher, ‘Pointer sentinel mixture models,’

5th International Conference on Learning Representations, ICLR 2017 - Conference

Track Proceedings, 2017.

[195] J. Howard and S. Ruder, ‘Universal language model fine-tuning for text classification,’

in Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), 2018, pp. 328–339.

[196] S. Ruder, Neural transfer learning for natural language processing, 2019.

[197] S. Harsha Kadam and K. Paniskaki, ‘Text analysis for email multi label classification,’

Open Digital Repository, 2020.

[198] D. Ganeshan, P.-A. T. Duong, L. Probyn et al., ‘Structured reporting in radiology,’

Academic radiology, vol. 25, no. 1, pp. 66–73, 2018, ISSN: 1076-6332.

[199] I. Drozdov, D. Forbes, B. Szubert, M. Hall, C. Carlin and D. J. Lowe, ‘Supervised

and unsupervised language modelling in Chest X-Ray radiological reports,’ Plos one,

vol. 15, no. 3, e0229963, 2020, ISSN: 1932-6203.

[200] X. Huang, Y. Fang, M. Lu, Y. Yao and M. Li, ‘An annotation model on end-to-

end chest radiology reports,’ IEEE Access, vol. 7, pp. 65 757–65 765, 2019, ISSN:

2169-3536.

[201] S. Datta, Y. Si, L. Rodriguez, S. E. Shooshan, D. Demner-Fushman and K. Roberts,

‘Understanding spatial language in radiology: Representation framework, annotation,

and spatial relation extraction from chest X-ray reports using deep learning,’ Journal

of biomedical informatics, vol. 108, p. 103 473, 2020, ISSN: 1532-0464.

[202] P. Kordjamshidi, M. Van Otterlo and M.-F. Moens, ‘Spatial role labeling: Towards

extraction of spatial relations from natural language,’ ACM Transactions on Speech

and Language Processing (TSLP), vol. 8, no. 3, pp. 1–36, 2011, ISSN: 1550-4875.

140 BIBLIOGRAPHY

[203] S. Jain, A. Smit, A. Y. Ng and P. Rajpurkar, ‘Effect of Radiology Report Labeler

Quality on Deep Learning Models for Chest X-Ray Interpretation,’ arXiv preprint

arXiv:2104.00793, 2021.

[204] S. Jain, A. Smit, S. Q. Truong et al., ‘VisualCheXbert: Addressing the discrepancy

between radiology report labels and image labels,’ ACM CHIL 2021 - Proceedings of

the 2021 ACM Conference on Health, Inference, and Learning, pp. 105–115, 2021.

[205] L. N. Smith, ‘A disciplined approach to neural network hyper-parameters: Part 1–

learning rate, batch size, momentum, and weight decay,’ arXiv preprint arXiv:1803.09820,

2018.

[206] Z. Hussain, F. Gimenez, D. Yi and D. Rubin, ‘Differential data augmentation tech-

niques for medical imaging classification tasks,’ in AMIA Annual Symposium Proceed-

ings, vol. 2017, American Medical Informatics Association, 2017, p. 979.

[207] J. A. Dunnmon, D. Yi, C. P. Langlotz, C. Ré, D. L. Rubin and M. P. Lungren,

‘Assessment of convolutional neural networks for automated classification of chest

radiographs,’ Radiology, vol. 290, no. 2, pp. 537–544, 2019, ISSN: 0033-8419.

[208] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu et al., ‘Convolutional neural networks for

medical image analysis: Full training or fine tuning?’ IEEE transactions on medical

imaging, vol. 35, no. 5, pp. 1299–1312, 2016, ISSN: 0278-0062.

[209] L. N. Smith and N. Topin, ‘Super-convergence: Very fast training of neural networks

using large learning rates,’ in Artificial intelligence and machine learning for multi-

domain operations applications, vol. 11006, SPIE, 2019, pp. 369–386.

[210] C. Coleman, D. Kang, D. Narayanan et al., ‘Analysis of dawnbench, a time-to-accuracy

machine learning performance benchmark,’ ACM SIGOPS Operating Systems Review,

vol. 53, no. 1, pp. 14–25, 2019, ISSN: 0163-5980.

[211] E. T. Nader, ‘Chest X-ray interpretation,’ in Perioperative Assessment of the Maxillo-

facial Surgery Patient, Springer, 2018, pp. 119–127.

[212] W. Pezzotti, ‘Chest X-ray interpretation: not just black and white,’ Nursing2020,

vol. 44, no. 1, pp. 40–47, 2014, ISSN: 0360-4039.

[213] V. Ku, ‘A fresh look at chest x-rays,’ Nursing2020 Critical Care, vol. 7, no. 6, pp. 23–

29, 2012.

BIBLIOGRAPHY 141

[214] H. H. Pham, T. T. Le, D. Q. Tran, D. T. Ngo and H. Q. Nguyen, ‘Interpreting chest X-

rays via CNNs that exploit hierarchical disease dependencies and uncertainty labels,’

Neurocomputing, vol. 437, pp. 186–194, 2021, ISSN: 0925-2312.

[215] B. Chen, J. Li, G. Lu, H. Yu and D. Zhang, ‘Label co-occurrence learning with graph

convolutional networks for multi-label chest x-ray image classification,’ IEEE journal

of biomedical and health informatics, vol. 24, no. 8, pp. 2292–2302, 2020, ISSN:

2168-2194.

[216] ‘NVIDIA DGX A100 System Architecture,’ 2020. [Online]. Available: https:

//bit.ly/3izVeFF.

[217] DGX-2 : AI Servers for Solving Complex AI Challenges | NVIDIA, 2018. [Online].

Available: https://www.nvidia.com/en-us/data-center/dgx-2/.

[218] S. Li, Y. Zhao, R. Varma et al., ‘PyTorch Distributed: Experiences on Accelerating

Data Parallel Training,’ Proceedings of the VLDB Endowment, vol. 13, no. 12, 2020.

[219] C. F. Sabottke and B. M. Spieler, ‘The effect of image resolution on deep learning in

radiography,’ Radiology: Artificial Intelligence, vol. 2, no. 1, e190015, 2020, ISSN:

2638-6100.

[220] T. Dratsch, M. Korenkov, D. Zopfs et al., ‘Practical applications of deep learning:

classifying the most common categories of plain radiographs in a PACS using a neural

network,’ European Radiology, vol. 31, no. 4, pp. 1812–1818, 2021, ISSN: 1432-1084.

[221] S. Mo and M. Cai, ‘Deep learning based multi-label chest x-ray classification with

entropy weighting loss,’ in 2019 12th International Symposium on Computational

Intelligence and Design (ISCID), vol. 2, IEEE, 2019, pp. 124–127, ISBN: 1728146534.

[222] K. K. Bressem, L. C. Adams, C. Erxleben, B. Hamm, S. M. Niehues and J. L. Vahl-

diek, ‘Comparing different deep learning architectures for classification of chest

radiographs,’ Scientific reports, vol. 10, no. 1, pp. 1–16, 2020, ISSN: 2045-2322.

[223] R. Zhang, ‘Making convolutional networks shift-invariant again,’ in International

conference on machine learning, PMLR, 2019, pp. 7324–7334.

[224] R. Wightman, Pytorch image models, https://github.com/rwightman/

pytorch-image-models, 2021. DOI: 10.5281/zenodo.4414861.

https://bit.ly/3izVeFF
https://bit.ly/3izVeFF
https://www.nvidia.com/en-us/data-center/dgx-2/
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861

142 BIBLIOGRAPHY

[225] M. Tan and Q. Le, ‘Efficientnet: Rethinking model scaling for convolutional neural

networks,’ in International Conference on Machine Learning, PMLR, 2019, pp. 6105–

6114.

[226] B. Chen, Y. Lu and G. Lu, ‘Multi-label chest X-ray image classification via label

co-occurrence learning,’ in Chinese Conference on Pattern Recognition and Computer

Vision (PRCV), Springer, 2019, pp. 682–693.

[227] W. Wang et al., ‘Detection of SARS-CoV-2 in different types of clinical specimens,’

Jama, vol. 323, no. 18, pp. 1843–1844, 2020, ISSN: 0098-7484.

[228] C. P. West, V. M. Montori and P. Sampathkumar, ‘COVID-19 testing: the threat of

false-negative results,’ in Mayo Clinic Proceedings, vol. 95, Elsevier, 2020, pp. 1127–

1129.

[229] M.-Y. Ng et al., ‘Imaging profile of the COVID-19 infection: radiologic findings and

literature review,’ Radiology: Cardiothoracic Imaging, vol. 2, no. 1, e200034, 2020,

ISSN: 2638-6135.

[230] G. D. Rubin et al., ‘The role of chest imaging in patient management during the

COVID-19 pandemic: a multinational consensus statement from the Fleischner Soci-

ety,’ Chest, 2020, ISSN: 0012-3692.

[231] Y. LeCun, Y. Bengio and G. Hinton, ‘Deep learning,’ nature, vol. 521, no. 7553,

pp. 436–444, 2015, ISSN: 1476-4687.

[232] M. Ahsan, M. Based, J. Haider and M. Kowalski, ‘COVID-19 Detection from Chest

X-ray Images Using Feature Fusion and Deep Learning,’ Sensors, vol. 21, no. 4,

p. 1480, 2021.

[233] J. Bergstra and Y. Bengio, ‘Random search for hyper-parameter optimization.,’ Journal

of machine learning research, vol. 13, no. 2, 2012, ISSN: 1532-4435.

[234] D. P. Kingma and J. L. Ba, ‘Adam: A method for stochastic optimization,’ 3rd

International Conference on Learning Representations, ICLR 2015 - Conference

Track Proceedings, 2015.

[235] J. De Moura, L. R. García, P. F. L. Vidal et al., ‘Deep convolutional approaches for the

analysis of covid-19 using chest x-ray images from portable devices,’ IEEE Access,

vol. 8, pp. 195 594–195 607, 2020, ISSN: 2169-3536.

BIBLIOGRAPHY 143

[236] Z. Zhong, L. Zheng, G. Kang, S. Li and Y. Yang, ‘Random Erasing Data Augmenta-

tion.,’ in AAAI, 2020, pp. 13 001–13 008.

[237] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L.-C. Chen, ‘Mobilenetv2:

Inverted residuals and linear bottlenecks,’ in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2018, pp. 4510–4520.

[238] M. A. Mercioni and S. Holban, ‘Soft-clipping swish: A novel activation function for

deep learning,’ in 2021 IEEE 15th International Symposium on Applied Computational

Intelligence and Informatics (SACI), IEEE, 2021, pp. 225–230.

[239] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, ‘Rethinking the inception

architecture for computer vision,’ in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 2818–2826.

[240] E. D. Cubuk, B. Zoph, J. Shlens and Q. V. Le, ‘Randaugment: Practical automated

data augmentation with a reduced search space,’ in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 702–

703.

[241] S. Lim, I. Kim, T. Kim, C. Kim and S. Kim, ‘Fast AutoAugment,’ Advances in Neural

Information Processing Systems, vol. 32, 2019, ISSN: 10495258.

[242] W. Wang, D. Tran and M. Feiszli, ‘What Makes Training Multi-Modal Classification

Networks Hard?’ In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2020, pp. 12 695–12 705.

[243] A. Mitra, A. Chakravarty, N. Ghosh, T. Sarkar, R. Sethuraman and D. Sheet, ‘A

systematic search over deep convolutional neural network architectures for screen-

ing chest radiographs,’ in 2020 42nd Annual International Conference of the IEEE

Engineering in Medicine & Biology Society (EMBC), IEEE, 2020, pp. 1225–1228.

[244] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh and D. Batra, ‘Grad-

CAM: Visual Explanations from Deep Networks via Gradient-Based Localization,’

International Journal of Computer Vision, vol. 128, no. 2, pp. 336–359, 2020, ISSN:

1573-1405.

144 BIBLIOGRAPHY

[245] K. Simonyan, A. Vedaldi and A. Zisserman, ‘Deep inside convolutional networks:

Visualising image classification models and saliency maps,’ in In Workshop at Inter-

national Conference on Learning Representations, Citeseer, 2014.

[246] S. Schalekamp, W. M. Klein and K. G. van Leeuwen, ‘Current and emerging arti-

ficial intelligence applications in chest imaging: a pediatric perspective,’ Pediatric

Radiology, pp. 1–11, 2021, ISSN: 1432-1998.

[247] K. G. van Leeuwen, S. Schalekamp, M. J. C. M. Rutten, B. van Ginneken and M. de

Rooij, ‘Artificial intelligence in radiology: 100 commercially available products and

their scientific evidence,’ European radiology, vol. 31, no. 6, pp. 3797–3804, 2021,

ISSN: 1432-1084.

APPENDIX A

Poster

MultiViewModel

145

Pathology
Epoch

1 2 3 4 5 6 7 8

Enlarged Cardiom. 0.670 0.694 0.700 0.544 0.702 0.705 0.708 0.710
Cardiomegaly 0.725 0.733 0.747 0.785 0.793 0.799 0.802 0.802
Airspace Opacity 0.621 0.687 0.694 0.712 0.730 0.730 0.733 0.737
Lung Lesion 0.520 0.638 0.612 0.638 0.651 0.688 0.730 0.729
Edema 0.816 0.848 0.857 0.887 0.892 0.894 0.896 0.897
Consolidation 0.748 0.758 0.769 0.778 0.788 0.797 0.797 0.799
Pneumonia 0.556 0.531 0.545 0.497 0.550 0.585 0.580 0.587
Atelectasis 0.706 0.706 0.743 0.827 0.830 0.835 0.837 0.838
Pneumothorax 0.710 0.786 0.817 0.839 0.853 0.862 0.868 0.860
Pleural Effusion 0.837 0.869 0.881 0.891 0.903 0.906 0.905 0.899
Pleural Other 0.585 0.637 0.676 0.533 0.707 0.736 0.739 0.727
Fracture 0.546 0.563 0.576 0.606 0.636 0.648 0.711 0.741
Average 0.670 0.704 0.718 0.711 0.753 0.765 0.776 0.777

Convolutional Neural Network to Detect
Thorax Diseases from Multi-View Chest X-Rays
Maram Monshi, Josiah Poon, Vera Chung

Introduction
Chest X-Ray: It is the most common radiolo-
gist exams in the world that demands correct
and immediate diagnosis of a patient’s thorax to
avoid life threatening diseases.
Problem: Certified radiologists are hard to find.
Stress, fatigue and experience contribute to the
quality of an examination.
Solution: Automated & precise system that can
flag potentially life-threatening diseases to han-
dle emergency cases efficiently.

Dataset: IU X-Ray (2015), ChestX-ray14 (2017), CheXpert, Pad-
Chest & MIMIC-CXR (2019).
Model: CheXNet, text-image embedding network (TieNet) & at-
tention guided convolutional neural network (AG-CNN).
Approach: CNN such as AlexNet, VGG-16, DenseNet & ResNet.
Gap: Using only frontal view, long training time & low accuracy.
Consistent with recent models: We focus on training CNN
models to detect 12 common thorax diseases.

Fig 2. Examples of 12 Thoracic Diseases from MIMIC-CXR Dataset

Unique from past works: We propose a novel stage-wise
training approach to observe the model’s performance => re-
duce training time & increase accuracy. We adopt a combination
of recent techniques on multi-view chest X-rays including
Res-Net-50, transfer learning, fine tuning, fit one cycle function &
discriminative learning rates.

Experiment

Related Work

Proposed Model

Fig 4. Overall Illustration of Our Model

Structure Overview:
We divided the task of
detecting thorax diseases
into 12 sub-tasks. Each
task considers the pres-
ence/absence of a dis-
ease. For each binary la-
bel problem, ResNet-50 is
used as the baseline CNN
architecture. ResNet-50
consists of 49 convolution
layers & ends with 1 fully
connected layer.

Training Stages:
Embrace transfer
learning (PyTorch &
fastai)
Observe the model’s
performance (fit-one-
cycle method)
Use the optimal learn-
ing rate finder

Fig 3. A Basic Residual Block

Dataset: We organized a
subset of 10% of the MIM-
IC-CXR dataset into train-
ing set (33,195) and val-
idation set (3,688). We
dropped uncertain & un-
known labels.
For example, our subset
includes 6932 images with
Cardiomegaly.

Conclusion
Contribution: We proposed ResNet-50 CNN based stage-wise
models to detect 12 thorax diseases on 10% of the largest chest
X-rays dataset to date, MIMIC-CXR. The absolute labelling perfor-
mance with an average weighted AUC of 0.779 is encouraging.
Future Work: We plan to improve our CNN model performance
through data augmentation. We will incorporate useful informa-
tion from the free-text radiology reports like patient’s history to
accurately recognize the presence/absence of thorax diseases.

Analysis: Our model is trained on a better annotated chest
X-rays (CheXpert labeler) than DualNet (NegBio labeler). We
reach improved results over those achieved by DualNet using
small image sizes 224 by 224 pixels instead of 512 by 512.
Limitation: Class labels in the training set are noisy. The posi-
tive-negative subsets ratio was highly imbalanced in some pathol-
ogies. Yet, our model’s AUC is above 0.7.

Fig 5. Examples of the Most Confused Chest X-Rays with Heatmaps

Pre-Processing: We
employed several aug-
mentation strategies.
Training using 224 px re-
duces training time with-
out worsening AUC.

Result: We computed the
Area Under Curve (AUC)
of each pathology on the
validation set for each of
the eight training epochs.
Stage 3 results in larger
AUC values than stage-1
& stage 2 due to the dis-
criminative learning rates.

In 5 out of 7 overlap pa-
thologies, our model per-
forms better than both
DualNet models.

Example: Convolution neural network (CNN) is a supervised
deep learning model that is able to learn useful features which
are beyond the limit of radiology detection.

Fig 1. Radiologist Ex-
amins a Chest X-Ray

Training: We used 4
NVIDIA Tesla P4 GPUs to
reduce training time.

Pathology Positive (%) Negative (%)

Enlarged Cardiom. 1019 (2.8) 35367 (97.19)

Cardiomegaly 6932 (18.79) 29951 (81.2)

Airspace Opacity 7582 (20.42) 29542 (79.57)

Lung Lesion 1060 (2.82) 36472 (97.17)

Edema 3964 (11.06) 31859 (88.93)

Consolidation 1410 (3.8) 35634 (96.19)

Pneumonia 2738 (7.83) 32202 (92.16)

Atelectasis 6356 (17.54) 29876 (82.45)

Pneumothorax 1523 (4.05) 36059 (95.94)

Pleural Effusion 7869 (21.34) 28994 (78.65)

Pleural Other 425 (1.13) 37132 (98.86)

Fracture 805 (2.13) 36829 (97.86)

Parameter Value

Size 224

Flip (horizontally) True

Lighting 0.3

Affine 0.5

Image Size
(pixels)

Epoch Avg. AUC per
Epoch1 2 3 4 5 6 7 8

299 0.565 0.733 0.758 0.791 0.798 0.804 0.804 0.807 0.757

224 0.725 0.733 0.747 0.785 0.793 0.799 0.802 0.802 0.773
No. of
GPUs

Epoch Avg. Time per
Epoch (min)1 2 3 4 5 6 7 8

1 32:42 32:26 32:36 34:34 33:40 33:52 33:58 34:00 33:28

4 13:32 12:54 13:01 13:05 13:07 13:08 13:07 13:06 13:07

Pathology
DualNet Our Model

PA + Lateral AP + Lateral Multi-View
Enlarged Cardiom. - - 0.710
Cardiomegaly 0.840 0.755 0.802
Airspace Opacity - - 0.737
Lung Lesion - - 0.730
Edema 0.734 0.749 0.897
Consolidation 0.632 0.623 0.799
Pneumonia 0.625 0.593 0.587
Atelectasis 0.766 0.671 0.838
Pneumothorax 0.706 0.621 0.868
Pleural Effusion 0.757 0.733 0.906
Pleural Other - - 0.739
Fracture - - 0.741
Average 0.722 0.677 0.779

XCLASSIFIER 147

Xclassifier

	» Dataset:
1. MIMIC-CXR (Johnson et al., 2019)

 377,110 preprosessing 356,225 CXRs
2. CheXpert (Irvin et al., 2019)

 224,316 preprosessing 212,498 CXRs
	› U-zeros method
	› Split (80-10-10)

	» Data Augmentation:

	» CNN Architecture:
	› Xclassifier is based on Dense CNN
(DenseNet-121) (Huang et al.,2017)

Digital Imaging and Communications
in Medicine (DICOM)

Joint Photographic Experts
Group (JPEG)

Store medical imaging data Implement deep learning models

Distributed Deep Learning for Multi-Label
Chest Radiography Classification
Maram Monshi, Josiah Poon & Vera Chung

Problem

	» Chest radiography (CXR) supports the diagnosis and
 treatment for a series of thoracic diseases like pneumonia

	» Recent automatic classifiers use deep learning but:
	›Neglect label co-occurrence & interdependency
	›Fail to make full use of accelerators
	›Result in inefficient & computationally expensive models

	» CXR classifiers’ performance can be improved by:
	›Leveraging label co-occurrence (Chen et al., 2020)

	›Selecting the optimal CXR format (Sabottke and Spieler, 2020)
	›Training with an efficient approach

Evaluation

Literature

Method

Conclusion

Fig 5. Xclassifier structure

Chest x-ray format Accuracy AUC Avg. time per epoch (min)
DICOM 89.40 80.02 111
JPEG 89.58 81.57 6

 Table 4: Image formats for chest x-rays and training performance

 Table 5: Comparing the Xclassifier with the benchmark
Multi-label classifier Dataset Accuracy AUC
Latent-space self-ensemble (Gyawali et al., 2019) CheXpert _ 66.97
CheXclusion (Seyyed-Kalantari et al., 2020) CheXpert 80.50
Xclassifier CheXpert 89.61 83.89
VSE-GCN (Hou et al., 2021) MIMIC-CXR _ 72.10
CheXclusion (Seyyed-Kalantari et al., 2020) MIMIC-CXR _ 83.40
Xclassifier MIMIC-CXR 92.17 84.10

Fig 6. Correct output sample by the Xclassifier Model

 Table 1: Positive label co-occurrence

	» Binary classification with Convolution Neural Network (CNN)
	›CheXNet (Rajpurkar et al., 2017)

	›TieNet (Wang et al., 2018)

	›MultiViewModel (Monshi et al., 2019)

	›VGG16-based model (Yarnall, 2020)

	» Multi-label classification
	›CheXclusion (Seyyed-Kalantari et al., 2020)

	›Latent-space self-ensemble (Hou et al., 2021)

	›VSEGCN (Hou et al., 2021)

We extended this wave
of research using more

efficient training methods

They did not consider
pathology correlation &
ignored labels relation

To increase the accuracy
of detecting abnormalities

from CXRs (Monshi et al., 2021)

Fig 3. Dense block

Due to its success in CXRs
classification (Rajpurkar et al., 2017)
(Yao et al., 2017) (Mo and Cai, 2019) (Chen et al.,
2020) (Bressem et al., 2020)

This increases
ImageNet (Zhang, 2019) &

CXR classification accuracy

 Table 2: DenseNet-121 variations models and training performance

 Table 3: Training approaches and training performance

Fig 4. Visualizing DDP

DDP provides 4x speed-up
over one GPU &

1.14× to 3.35× speed-up
over data parallel

Implementation

 https://github.com/
MaramMonshi/

Xclassifier

DICOM did not improve
accuracy & took

significantly more time to
train than JPEG

Xclassifier improves
multi-label classification
performance by 0.70%

AUC on MIMIC-CXR & by
3.39% AUC on CheXpert

	» Contribution:
	›Propose Xclassifier, an efficient multi-label classifier that trains enhanced
 DenseNet-121 with blur pooling to detect 14 observations from CXRs
	›It accomplishes an ideal memory utilization, GPU computation, & high AUC
 on two large chest radiography datasets, MIMIC-CXR & CheXpert

	» Future Work:
	›Investigate the use of DICOM in detecting diseases with small & complex
structures to offer a greater degree of understanding of our initial findings
	›Concatenate patient data like age and gender to the flattened layer to
improve prediction

	» References:
Bressem et al., (2020). Comparing different deep learning architectures for classification of chest radiographs.
Chen et al., (2020). Label co-occurrence learning with graph convolutional networks for multi-label chest x-ray classification.
Gyawali et al., (2019). Semi-supervised learning by disentangling and self-ensembling over stochastic latent space.
Hou et al., (2021). Multi-label learning with visual-semantic embedded knowledge graph for diagnosis of radiology imaging.
Huang et al., (2017). Densely connected convolutional networks.
Irvin et al., (2019). Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison.
Johnson et al., (2019a). MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports.
Li et al., (2020). PyTorch Distributed: Experiences on Accelerating Data Parallel Training.
Mo & Cai (2019) Deep learning based multilabel chest x-ray classification with entropy weighting loss.

Monshi et al., (2021). CovidXrayNet: Optimizing Data Augmentation and CNN Hyperparameters for Improved COVID-19 Detection from CXR.
Monshi et al., (2019). Convolutional neural network to detect thorax diseases from multi-view chest x-rays.
Rajpurkar et al., (2017). Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning.
Sabottke et al., (2020). The effect of image resolution on deep learning in radiography.
Seyyed-Kalantari et al., (2020). CheXclusion: Fairness gaps in deep chest X-ray classifiers.
Wang et al., (2018). Tienet: Text-image embedding network for common thorax disease classification and reporting in chest x-rays.
Yao et al., (2017). Learning to diagnose from scratch by exploiting dependencies among labels.
Yarnall (2020). X-Ray Classification Using Deep Learning and the MIMIC-CXR Dataset.
Zhang (2019). Making convolutional networks shift invariant again.

Fig 1. CXR Classification

Fig 2. Data Augmentation

Training Approach Dataset Accuracy AUC Avg. time per epoch (min)
Single GPU (1 x GPU) CheXpert 88.09 78.55 16
Data parallel (4 x GPUs) CheXpert 88.36 79.25 14
DDP (4 x GPUs) CheXpert 88.33 80.10 4
Data parallel (4 x GPUs) MIMIC-CXR 90.27 80.97 181
DDP (4 x GPUs) MIMIC-CXR 90.31 81.76 54

𝑿𝑿𝒍𝒍	 = 	𝑯𝑯𝒍𝒍([𝒙𝒙𝟎𝟎, 𝒙𝒙𝟏𝟏, …,	𝒙𝒙𝒍𝒍%𝟏𝟏])

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 ∘ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒌𝒌,𝒔𝒔 → 	𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝒎𝒎,𝒔𝒔 ∘ 𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 ∘ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒌𝒌,𝟏𝟏

	» Antialiasing & Subsampling:
	› Insert a blur kernel m x m before each

 downsampling step in DenseNet

	» Distributed Data Parallel (DDP): (Li et al., 2019)

	› Use 64 CXRs (batch size) for each of the
 4 GPUs to accelerate convergence

Label % of all % of label co-occurrence
data At Ca Co Ed EC Fr LL LO NF PE PO Pa Px SD

Atelectasis (At) 16 100 12 6 27 5 4 3 43 0 49 1 2 9 60
Cardiomegaly (Ca) 13 14 100 5 43 7 3 2 48 0 44 1 2 3 58
Consolidation (Co) 7 14 10 100 21 4 3 5 38 0 50 2 7 5 52
Edema (Ed) 25 17 22 6 100 4 2 2 53 0 51 1 2 3 64
Enlarged Cardiom. (EC)14 18 6 20 20 100 6 5 48 0 36 2 1 7 52
Fracture (Fr) 4 14 9 4 11 7 100 4 40 0 27 3 2 12 40
Lung Lesion (LL) 4 11 7 8 9 6 4 100 58 0 36 3 5 9 35
Lung Opacity (LO) 50 13 12 5 26 5 3 5 100 0 49 2 4 9 58
No Finnding (NF) 11 0 0 0 0 0 0 0 0 100 0 0 0 0 39
Pleural Effusion (PE) 41 19 14 9 31 5 3 4 61 0 100 1 2 8 61
Pleural Other (PO) 2 11 9 9 9 5 8 9 53 0 26 100 4 7 39
Pneumonia (Pa) 3 10 8 17 20 3 2 8 67 0 29 2 100 2 29
Pneumothorax (Px) 9 16 4 4 8 4 5 4 47 0 34 1 1 100 60
Support Devices (SD) 55 17 13 7 29 5 3 3 53 8 46 1 2 10 100

Model Description Accuracy AUC
DenseNet-121 Single 7x7 convolution layer with no anti-aliasing layer 90.69 81.34
DenseNet-121d Three 3x3 convolution layers with no anti-aliasing layer 90.73 81.28
DenseNetblur-121d Three 3x3 convolution layers with anti-aliasing blur pool 90.80 81.96

APPENDIX B

Jupyter Notebook

CXRlabeler

What is CXRlabeler?

CXRlabeler is a deep learning labeler that takes raw radiology text as input and extracts

14 positive/negative CXR observations as its output. It utilizes the encoder learned from

fine-tuning a language model on radiology reports in labeling these reports.

The implementation of CXRlabeler is available below, and more details about the data prepar-

ation and model comparison can be found on https://github.com/MaramMonshi/

CXRlabeler.

Implementation:

• Python: 3.7.8

• PyTorch: 1.7.0

• fastai: 2.1.8

• GPU: 1 x NVIDIA Tesla V100 GPU

• Machine: n1highmem-8 (8 vCPUs, 52 GB memory)

• Platform: Linux-4.19.0-12-cloud-amd64-x86_64-with-debian-10.6

149

https://github.com/MaramMonshi/CXRlabeler
https://github.com/MaramMonshi/CXRlabeler

1 CXRlabeler Model

2 MIMIC-CXR Dataset
[45]: from fastai.basics import *

from fastai.text.all import *
import warnings
warnings.filterwarnings('ignore')
Read in the train and test sets.
path = Path('/home/jupyter/data/mimic-cxr')
df_lm = pd.read_csv(path/"lm.csv")
df_cl = pd.read_csv(path/"labels.csv")
df_train = pd.read_csv(path/"train.csv")
df_test = pd.read_csv(path/"test.csv")

[46]: df_lm.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 156790 entries, 0 to 156789
Data columns (total 2 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 dicom_id 156790 non-null object
1 reports 156790 non-null object
dtypes: object(2)
memory usage: 2.4+ MB

[47]: df_cl.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 156790 entries, 0 to 156789
Data columns (total 17 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 dicom_id 156790 non-null object
1 reports 156790 non-null object
2 Atelectasis 156790 non-null int64
3 Cardiomegaly 156790 non-null int64

1

4 Consolidation 156790 non-null int64
5 Edema 156790 non-null int64
6 Enlarged Cardiomediastinum 156790 non-null int64
7 Fracture 156790 non-null int64
8 Lung Lesion 156790 non-null int64
9 Lung Opacity 156790 non-null int64
10 No Finding 156790 non-null int64
11 Pleural Effusion 156790 non-null int64
12 Pleural Other 156790 non-null int64
13 Pneumonia 156790 non-null int64
14 Pneumothorax 156790 non-null int64
15 Support Devices 156790 non-null int64
16 is_valid 156790 non-null bool
dtypes: bool(1), int64(14), object(2)
memory usage: 19.3+ MB

3 1. Language Model

[48]: df_text = pd.Series.append(df_train['reports'], df_test['reports'])

[49]: df_text = pd.DataFrame(df_text)

[50]: df_text.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 156790 entries, 0 to 3934
Data columns (total 1 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 reports 156790 non-null object
dtypes: object(1)
memory usage: 2.4+ MB

[51]: df_text.head()

[51]: reports
0
No acute cardiopulmonary process.
1
No acute cardiopulmonary abnormality.
2
No acute intrathoracic process.
3 Focal consolidation at the left lung base, possibly representing aspiration
or\n pneumonia.\n \n Central vascular engorgement.
4
No evidence of acute cardiopulmonary process.

2

3.0.1 1.1 Data Block

[53]: bs_lm = (TextBlock.from_df(text_cols='reports', is_lm=True,␣
↪→tok_text_col='text'))

get_x = ColReader('text')
splitter = RandomSplitter(0.1, seed=42)
db_lm = DataBlock(blocks=bs_lm,

get_x=get_x,
splitter=splitter)

3.0.2 1.2 Data Loader

[54]: dl_lm = db_lm.dataloaders(df_text, bs=64)

<IPython.core.display.HTML object>

3.0.3 1.3 Training

[55]: learn_lm = language_model_learner(dl_lm, AWD_LSTM, pretrained=True,␣
↪→metrics=[accuracy, Perplexity()])

[56]: learn_lm.to_fp16()
learn_lm.fine_tune(10, 4e-3)

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

3.0.4 1.4 Testing

[57]: N_WORDS = 40
N_SENTENCES = 2

[58]: TEXT = "Normal heart size. The right"
preds = [learn_lm.predict(TEXT, N_WORDS, temperature=0.75)

for _ in range(N_SENTENCES)]
print("\n".join(preds))

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

Normal heart size . The right hilar mass and calcified hilar lymph nodes
� are consistent with sarcoidosis . No evidence of pneumonia . In comparison

3

with the study of ___ ,,, thethethe patientpatientpatient hashashas
takentakentaken aaa betterbetterbetter
�
�
� inspirationinspirationinspiration …
Normal heart size . The right PICC line is in adequate position . Comparison is
made to previous study from ___ atatat
�
�
� 4:534:534:53 a.m.a.m.a.m.
�
�
�
�
�
� The endotracheal tube , feeding tube , and feeding tube are within the
�

[59]: TEXT = "Subtle patchy opacity along the"
preds = [learn_lm.predict(TEXT, N_WORDS, temperature=0.75)

for _ in range(N_SENTENCES)]
print("\n".join(preds))

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

Subtle patchy opacity along the posterolateral left lower lung field
� likely represents atelectasis , however , infection can not be completely
excluded . As compared to the previous radiograph , the lung volumes have
increased ,
� causing increased crowding of pulmonary
Subtle patchy opacity along the right lateral chest wall which could
� represent an early focus of pneumonia in the correct clinical setting . Right
lower lobe pneumonia . Follow up radiographs after ___
�
�
� weeksweeksweeks areareare recommendedrecommendedrecommended tototo
showshowshow

[60]: TEXT = "Cardiomegaly is severe, unchanged. Pacemaker"
preds = [learn_lm.predict(TEXT, N_WORDS, temperature=0.75)

for _ in range(N_SENTENCES)]
print("\n".join(preds))

<IPython.core.display.HTML object>

4

<IPython.core.display.HTML object>

Cardiomegaly is severe , unchanged . Pacemaker leads are in standard position
� with the leads terminating in the expected location of the right atrium
� and right ventricle . There is no pneumothorax . There is no pleural effusion
or
� pneumothorax .
Cardiomegaly is severe , unchanged . Pacemaker leads terminate in the right
atrium and
� right ventricle . There is no pneumothorax . Lungs are essentially clear .
�
� No pleural effusion or pneumothorax is demonstrated . As compared to the
previous

3.0.5 1.5 Saving

[61]: # save fine-tuned model for classification
learn_lm.save_encoder(path/'lm')

4 2. Multi-Label Classifier
[62]: # fix result

def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True

SEED = 42
seed_everything(SEED)

4.0.1 2.1 Data Block

[63]: labels = ["Atelectasis", "Cardiomegaly", "Consolidation",
"Edema", "Enlarged Cardiomediastinum", "Fracture", "Lung Lesion",
"Lung Opacity", "No Finding", "Pleural Effusion", "Pleural Other",
"Pneumonia", "Pneumothorax", "Support Devices"]

[64]: dl_lm.seq_len

[64]: 72

dl_lm.vocab

5

[65]: ['xxunk',
'xxpad',
'xxbos',
'xxeos',
'xxfld',
'xxrep',
'xxwrep',
'xxup',
'xxmaj',
'.',
'\n�',
'the',
'of',
',',
'is',
'in',
'no',
'and',
'right',
'to',
'left',
'pleural',
'with',
'3',
'_',
'there',
'are',
'lung',
'pulmonary',
'effusion',
'a',
'atelectasis',
'tube',
'pneumothorax',
'\n�\n�',
'edema',
'unchanged',
'at',
'chest',
'or',
'-',
'pneumonia',
'be',
'has',
'on',
'lower',
'small',

6

[65]: dl_lm.vocab

'mild',
'compared',
'as',
'study',
'effusions',
'moderate',
'comparison',
'size',
'lobe',
'evidence',
'normal',
'radiograph',
'tip',
'bilateral',
'cardiac',
'heart',
'cardiomegaly',
'seen',
'stable',
'previous',
'for',
'opacities',
'upper',
'silhouette',
'opacity',
'not',
'change',
'prior',
'vascular',
'position',
'volumes',
'but',
'consolidation',
'1',
'acute',
'interval',
'new',
'line',
'this',
'been',
'likely',
'2',
'base',
'patient',
'lungs',
'low',
'increased',

'congestion',
'catheter',
'since',
'could',
'cm',
'may',
'by',
'improved',
'clear',
'mediastinal',
'stomach',
'appearance',
'from',
'have',
'focal',
'svc',
'mid',
'bibasilar',
'lateral',
'which',
'opacification',
'ct',
'findings',
'ap',
'interstitial',
'again',
'process',
'more',
'consistent',
'due',
'an',
'slightly',
'minimal',
'retrocardiac',
'was',
'clinical',
'above',
'endotracheal',
'than',
'large',
'radiographs',
'mediastinum',
'nasogastric',
'bases',
'present',
'changes',
'parenchymal',

'can',
'sided',
'ends',
'most',
'view',
'infection',
'severe',
'aspiration',
'within',
'picc',
'if',
'that',
'over',
'carina',
'et',
'standard',
'also',
'devices',
'excluded',
'cardiopulmonary',
'support',
'apical',
'central',
'cardiomediastinal',
'jugular',
'well',
'basilar',
'fluid',
'dr',
'contours',
'relevant',
'place',
':',
'venous',
'some',
'enlargement',
'overall',
'junction',
'monitoring',
'persistent',
'reflect',
'earlier',
'enlarged',
'setting',
'represent',
'otherwise',
'decreased',

7

'possible',
'appears',
'subclavian',
'limits',
'approximately',
'reviewed',
'definite',
'atrium',
'superimposed',
'pa',
'known',
'recent',
'recommended',
'similar',
'demonstrated',
'further',
'distal',
'larger',
'slight',
'port',
'infectious',
'continued',
'persists',
'perihilar',
'below',
'loss',
'any',
'borderline',
'tubes',
'terminates',
'image',
'side',
'pre',
'underlying',
'diffuse',
'extensive',
'significant',
'adjacent',
'unremarkable',
'area',
'worsened',
'appreciable',
'greater',
'suggest',
'identified',
'essentially',
'given',

'projecting',
'portable',
'decrease',
'existing',
'elevation',
'increasing',
'obtained',
'drainage',
'though',
'overt',
'after',
'resolution',
'day',
'projects',
'into',
'remain',
'top',
'residual',
'considered',
'middle',
'less',
'minimally',
'cavoatrial',
'difficult',
'through',
'exam',
'associated',
'emphysema',
'atelectatic',
'discussed',
'overload',
'ij',
'collapse',
'grossly',
'these',
'previously',
'diaphragm',
'mildly',
'exclude',
'engorgement',
'multifocal',
'airspace',
'combination',
'fractures',
'a.m.',
'status',
'leads',

'prominent',
'advanced',
'tracheostomy',
'pigtail',
'time',
'positioning',
'vein',
'potentially',
'pacemaker',
'p.m.',
'fracture',
'its',
'mass',
'costophrenic',
'resolved',
'telephone',
'wall',
'feeding',
'possibility',
'layering',
'terminating',
'pacer',
'extends',
'followup',
'pressure',
'substantially',
'lead',
'hemithorax',
'superior',
'out',
'aortic',
'wires',
'suggesting',
'portion',
'signs',
'prominence',
'linear',
'consolidations',
'upright',
'thickening',
'pneumothoraces',
"'s",
'least',
'date',
'removal',
'scarring',
'apex',

'without',
'rib',
'however',
'level',
'placement',
'were',
'abnormality',
'appropriate',
'remains',
'volume',
'increase',
'areas',
'basal',
'substantial',
'region',
'it',
'improvement',
'noted',
'little',
'now',
'other',
'internal',
'although',
'made',
'both',
'would',
'hilar',
'probably',
'chronic',
'aorta',
'removed',
'disease',
'should',
'better',
'patchy',
'worsening',
'post',
'extent',
'air',
'hemidiaphragm',
'ng',
'constant',
'concerning',
'examination',
'still',
'thoracic',
'/',

8

'performed',
'compressive',
'evaluation',
'aeration',
'multiple',
'structures',
'developing',
'severity',
'course',
'changed',
'abnormalities',
'might',
'passes',
'4',
'vasculature',
'subcutaneous',
'visualized',
'amount',
'widening',
'enteric',
'appear',
'pic',
'proximal',
'suggestive',
'loculated',
'reflecting',
'frontal',
'very',
'markings',
'accompanied',
'elevated',
'views',
'probable',
'sternal',
'ventricle',
'relatively',
'lines',
'postoperative',
'development',
'overlying',
'subsequent',
'dobbhoff',
'blunting',
';',
'recommend',
'today',
'visible',

'presence',
'chf',
'early',
'correlation',
'back',
'esophagus',
'5',
'possibly',
'current',
'nodules',
'including',
'vessels',
'nodular',
'infiltrate',
'cath',
'concern',
'related',
'subtle',
'zone',
'radiographic',
'component',
'following',
'developed',
'bilaterally',
'parenchyma',
'sternotomy',
'moderately',
'suggests',
'swan',
'ganz',
'free',
'all',
'tortuosity',
'correct',
'expected',
'lobes',
'shows',
'clinically',
'single',
'continues',
'same',
'angle',
'partially',
'progression',
'widespread',
'nodule',
'only',

'posterior',
'either',
'apparent',
'appreciated',
'abdomen',
'when',
'improving',
'trace',
'asymmetric',
'ventricular',
'helpful',
'pulled',
'i',
'pericardial',
'artery',
'compatible',
'newly',
'recently',
'degree',
'completely',
'along',
'repeat',
'bibasal',
'tiny',
'placements',
'smaller',
'body',
'midline',
'assessment',
'density',
'technique',
'history',
'up',
'note',
'assess',
'tortuous',
'location',
'complications',
'represents',
'contour',
'paged',
'silhouettes',
'pectoral',
'worse',
'spine',
'dedicated',
'differences',

'esophageal',
'calcified',
'somewhat',
'obscured',
'inspiration',
'hernia',
'failure',
'evaluated',
'persist',
'opacifications',
'limited',
'follow',
'heterogeneous',
'complete',
'particularly',
'descending',
'soft',
'marked',
'intrathoracic',
'one',
're',
'shift',
'received',
'device',
'positioned',
'finding',
'notably',
'distended',
')',
'several',
'displaced',
'evident',
'currently',
'imaging',
'film',
'assessed',
'versus',
'anterior',
'two',
'allowing',
'before',
'images',
'except',
'carinal',
'thorax',
'phone',
'studies',

9

'additional',
'just',
'drain',
'surfaces',
'hemorrhage',
'dual',
'reflects',
'trachea',
'neck',
'median',
'fully',
'representing',
'diameter',
'atrial',
'pronounced',
'lymphadenopathy',
'extubated',
'cleared',
'hours',
'mm',
'hazy',
'expanded',
'surgical',
'between',
'via',
'discovery',
'described',
'transvenous',
'defined',
'advised',
'suggested',
'presumed',
'much',
'lesion',
'clips',
'entirely',
'please',
'engorged',
'placed',
'medial',
'taken',
'absence',
'aspect',
'hiatal',
'surgery',
'valve',
'withdrawn',

'progressed',
'6',
'gas',
'ventilation',
'old',
'treatment',
'widened',
'tension',
'parts',
'ge',
'available',
'streaky',
'main',
'distribution',
'brachiocephalic',
'pneumomediastinum',
'dilated',
'dictation',
'intubated',
'border',
'physician',
'consider',
'such',
'hemi',
'worrisome',
'dense',
'short',
'collection',
'diagnosis',
'crowding',
'x',
'infiltrates',
'part',
'hyperinflated',
'specifically',
'stent',
'non',
'see',
'gastroesophageal',
'cabg',
'coiled',
'infrahilar',
'regions',
'high',
'clearly',
'especially',
'appeared',

'involving',
'vertebral',
'confluent',
'markedly',
'remaining',
'referring',
'supine',
'near',
'partial',
'results',
'adenopathy',
'veins',
'so',
'longer',
'abdominal',
'alveolar',
'almost',
'addition',
'intact',
'subsegmental',
'significantly',
'copd',
'fibrosis',
'bronchial',
'communicated',
'rotation',
'redistribution',
'preceding',
'sinus',
'secondary',
'hilus',
'malignancy',
'decompensation',
'congestive',
'elongation',
'ill',
'metastatic',
'next',
'space',
'peribronchial',
'lies',
'had',
'appropriately',
'bronchus',
'raises',
'optimal',
'fissure',

'extending',
'tissue',
'differential',
'even',
'observation',
'indistinctness',
'rounded',
'demonstrates',
'gastric',
'margin',
'does',
'close',
'detected',
'conventional',
'field',
'procedure',
'calcification',
'whether',
'ray',
'weeks',
'hila',
'imaged',
'notification',
'appreciably',
'predominantly',
'show',
'resolving',
'about',
'concurrent',
'alignment',
'review',
'channel',
'atypical',
'days',
'presumably',
'scan',
'indeterminate',
'hypertension',
'beyond',
'(',
'bowel',
'quadrant',
'healed',
'bronchovascular',
'minor',
'throughout',
'positions',

10

'suspected',
'collapsed',
'distention',
'correlate',
'tissues',
'focus',
'vena',
'cava',
'calcifications',
'inlet',
'laterally',
'bony',
'supervening',
'second',
'evaluate',
'cervical',
'origin',
'compression',
'courses',
'term',
'caused',
'peripheral',
'repositioned',
'arch',
'infusion',
'drains',
'replaced',
'included',
'aside',
'rather',
'degenerative',
'convincing',
'symptoms',
'poor',
'indwelling',
'massive',
'attention',
'caliber',
'thyroid',
'remainder',
'pneumoperitoneum',
'good',
'lucency',
'semi',
'orogastric',
'coursing',
'intra',

'merely',
'definitive',
'site',
'inspiratory',
'bronchiectasis',
'their',
'accentuate',
'satisfactory',
'located',
'like',
'clearing',
'transverse',
'hyperinflation',
'suggestion',
'particular',
'dobhoff',
'subsequently',
'ribs',
'series',
'replacement',
'leftward',
'rotated',
'fundus',
'zones',
'lymph',
'bronchograms',
'oblique',
'relate',
'where',
'hemidiaphragms',
'pattern',
'inferior',
'dependent',
'10',
'minutes',
'need',
'defibrillator',
'projection',
'angles',
'progressive',
'lingula',
'mitral',
'azygos',
'asymmetrical',
'outside',
'cta',
'7',

'balloon',
'radiographically',
'posteriorly',
'arteries',
'access',
'advancement',
'doubt',
'yesterday',
'nearly',
'scoliosis',
'catheters',
'supraclavicular',
'provided',
'8',
'medially',
'metastases',
'largely',
'nipple',
'masses',
'terminate',
'wire',
'apparently',
'background',
'esophagogastric',
'scanning',
'document',
'ensure',
'perhaps',
'tracheal',
'hardware',
'past',
'hyperexpansion',
'pump',
'indicated',
'accentuated',
'obscuration',
'sized',
'whose',
'loops',
'situ',
'overinflation',
'suspicious',
'proper',
'radiation',
'axillary',
'apices',
'expansion',

'lesions',
'report',
'atelectases',
'ett',
'contrast',
'extubation',
'despite',
'generator',
'nonspecific',
'definition',
'severely',
'respectively',
'fat',
'operative',
'sheath',
'hilum',
'third',
'active',
'shoulder',
'ards',
'dilatation',
'lingular',
'hydropneumothorax',
'quite',
'unclear',
'warranted',
'diuresis',
'platelike',
'vague',
'reported',
'sharply',
'indicative',
'relative',
'raising',
'ascending',
'insertion',
'chin',
'etiology',
'basis',
'clavicular',
'exaggerated',
'dialysis',
'intraperitoneal',
'required',
'end',
'4.5',
'obvious',

'torso',
'hematoma',
'node',
'read',
'undergone',
'demonstrate',
'needs',
'fibrotic',
'decreasing',
'segment',
'ending',
'first',
'far',
…]

[66]: dl_lm.max_vocab

[66]: 60000

[67]: bs_cl = (TextBlock.from_df('reports', seq_len=dl_lm.seq_len, vocab=dl_lm.vocab),
MultiCategoryBlock(encoded=True, vocab=labels))

[68]: db_cl = DataBlock(blocks=bs_cl,
get_x=ColReader('text'),
get_y=ColReader(labels),
splitter=ColSplitter('is_valid'))

[69]: db_cl.summary(df_cl.iloc[:100])

Setting-up type transforms pipelines
Collecting items from dicom_id \
0 02aa804e-bde0afdd-112c0b34-7bc16630-4e384014
1 2a2277a9-b0ded155-c0de8eb9-c124d10e-82c5caab
2 68b5c4b1-227d0485-9cc38c3f-7b84ab51-4b472714
3 096052b7-d256dc40-453a102b-fa7d01c6-1b22c6b4
4 8959e402-2175d68d-edba5a6c-baab51c3-9359f700
.. …
95 325f2526-1ea870c1-06d8ff34-1b02764d-9e336cbc
96 38a433f3-1d000dff-a774352f-35c0d838-353e023f
97 4a25692b-e596ad27-5bc2eba3-e518093c-623f4d6a
98 0d24804d-197942ca-7f32a773-b93ba943-40022beb
99 a664e3c4-97f37598-e008ddb5-674d8b24-8a49114f

reports \
0
No acute cardiopulmonary process.
1

11

'includes',
'they',
'configuration',
'repositioning',
'intubation',
'then',
'difference',
'midlung',
'hemodialysis',
'am',
'reticular',
'clavicle',
'inflated',
'asymmetry',

'nondistended',
'trauma',
'suspicion',
'external',
'2.5',
'inserted',
'diaphragmatic',
'towards',
'films',
'complication',
'interim',
'vascularity',
'explain',
'aerated',

'sensitive',
'redemonstrated',
'aligned',
'being',
'paratracheal',
'pneumonic',
'potential',
'obscures',
're-',
'generally',
'thoracentesis',
'rest',
'fields',
'resection',

No acute cardiopulmonary abnormality.
2
No acute intrathoracic process.
3
Focal consolidation at the left lung base, possibly representing aspiration or\n
pneumonia.\n \n Central vascular engorgement.
4
No evidence of acute cardiopulmonary process.
..
…
95 Frontal and lateral views of the chest were obtained. Left basilar\n
atelectasis is seen. There is left basilar and left mid lung\n
atelectasis/scarring. Chain sutures are noted overlying the right\n upper-to-
mid hemithorax. There is subtle focal patchy opacity projecting over\n the
right lateral lower chest, which in the same location on the lateral view,\n
appeared to be a linear opacity dating back to ___. Finding could\n represent
atelectasis/scarring; however, on the current study, it appears more\n amorphous
and a small focus of infection is not excluded. The cardiac and\n medi…
96
No pneumonia.
97 1. The left subclavian PICC line now has its tip in the distal SVC.
Overall,\n cardiac and mediastinal contours are likely unchanged given
differences in\n positioning. There is increased prominence of the pulmonary
vasculature and\n indistinctness in the perihilar region consistent with
interval appearance of\n mild interstitial and perihilar edema. No pleural
effusions. No\n pneumothorax. Surgical chain sutures are again seen in the
right upper lobe\n consistent with prior surgery. This is some fullness to the
right suprahilar\n region which is unchanged and likely corresponds to …
98
Fullness in the right lower paratracheal region of the mediastinum is\n
comparable to the appearance in ___ when a chest CT scan showed no\n appreciable
adenopathy in the mediastinum, instead a distended azygos vein. \n There was
adenopathy in the adjacent right hilus, and the appearance of that\n structure
is stable over these 3 examinations. Aside from small areas of\n linear
scarring, lungs are clear. There is no edema or pneumonia and no\n appreciable
pleural effusion. Heart size is normal.
99
As compared to the previous radiograph, the lung volumes have slightly\n
decreased. There is minimal fluid overload in both the vascular and\n
interstitial compartment. Normal size of the cardiac silhouette. Moderate\n
tortuosity of the thoracic aorta. No pleural effusions. No pneumonia.

Atelectasis Cardiomegaly Consolidation Edema \
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 1 0
4 0 0 0 0

12

[100 rows x 17 columns]
Found 100 items
2 datasets of sizes 100,0
Setting up Pipeline: ColReader -- {'cols': 'text', 'pref': '', 'suff': '',
'label_delim': None} -> Tokenizer -> Numericalize

<IPython.core.display.HTML object>

Setting up Pipeline: ColReader -- {'cols': ['Atelectasis', 'Cardiomegaly',
'Consolidation', 'Edema', 'Enlarged Cardiomediastinum', 'Fracture', 'Lung
Lesion', 'Lung Opacity', 'No Finding', 'Pleural Effusion', 'Pleural Other',
'Pneumonia', 'Pneumothorax', 'Support Devices'], 'pref': '', 'suff': '',
'label_delim': None} -> EncodedMultiCategorize -- {'vocab': ['Atelectasis',
'Cardiomegaly', 'Consolidation', 'Edema', 'Enlarged Cardiomediastinum',
'Fracture', 'Lung Lesion', 'Lung Opacity', 'No Finding', 'Pleural Effusion',
'Pleural Other', 'Pneumonia', 'Pneumothorax', 'Support Devices'], 'sort': False,
'add_na': False}
Setting up after_item: Pipeline: ToTensor
Setting up before_batch: Pipeline: Pad_Chunk -- {'pad_idx': 1, 'pad_first':
True, 'seq_len': 72}
Setting up after_batch: Pipeline:

Building one batch
Applying item_tfms to the first sample:

Pipeline: ToTensor
starting from

(TensorText([2, 8, 16, 81, 160, 120, 9]), TensorMultiCategory([0.,
0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.]))

applying ToTensor gives
(TensorText([2, 8, 16, 81, 160, 120, 9]), TensorMultiCategory([0.,

0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.]))

Adding the next 3 samples

Applying before_batch to the list of samples
Pipeline: Pad_Chunk -- {'pad_idx': 1, 'pad_first': True, 'seq_len': 72}
starting from

[(TensorText([2, 8, 16, 81, 160, 120, 9]),
TensorMultiCategory([0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.])),
(TensorText([2, 8, 16, 81, 160, 194, 9]), TensorMultiCategory([0., 0.,
0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.])), (TensorText([2, 8, 16,
81, 535, 120, 9]), TensorMultiCategory([0., 0., 0., 0., 0., 0., 0., 0., 1.,
0., 0., 0., 0., 0.])), (TensorText of size 23, TensorMultiCategory([0., 0., 1.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]))]

applying Pad_Chunk -- {'pad_idx': 1, 'pad_first': True, 'seq_len': 72} gives
((TensorText of size 23, TensorMultiCategory([0., 0., 0., 0., 0., 0., 0.,

0., 1., 0., 0., 0., 0., 0.])), (TensorText of size 23, TensorMultiCategory([0.,
0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.])), (TensorText of size 23,

13

TensorMultiCategory([0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.])),
(TensorText of size 23, TensorMultiCategory([0., 0., 1., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0.])))

Collating items in a batch

No batch_tfms to apply

[70]: db_cl.splitter(df_cl)

[70]: ((#152855) [0,1,2,3,4,5,6,7,8,9…],
(#3935) [128,129,130,131,132,133,134,135,279,280…])

4.0.2 2.2 Data Loader

[71]: dl_cl = db_cl.dataloaders(df_cl)

<IPython.core.display.HTML object>

[72]: dl_cl.show_batch()

<IPython.core.display.HTML object>

4.0.3 2.3 Training

[74]: loss_func = BCEWithLogitsLossFlat(thresh=0.8)
metrics = [partial(accuracy_multi, thresh=0.8),

F1ScoreMulti(average='macro'),
PrecisionMulti (average='macro'),
RecallMulti (average='macro'),
RocAucMulti (average='macro')]

[75]: learn_cl = text_classifier_learner(dl_cl, AWD_LSTM, metrics=metrics,␣
↪→loss_func=loss_func)

[76]: learn_cl.load_encoder(path/'lm');

[77]: learn_cl.to_fp16()
learn_cl.fine_tune(10)

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

14

4.0.4 2.4 Testing

[78]: learn_cl.validate()

<IPython.core.display.HTML object>

[78]: (#6) [0.02500656060874462,0.9922853708267212,0.9617246278281069,0.95918892731716
7,0.9644917933863287,0.9980315733549691]

[79]: # labels = ["Atelectasis", "Cardiomegaly", "Consolidation",
"Edema", "Enlarged Cardiomediastinum", "Fracture", "Lung␣

↪→Lesion",
"Lung Opacity", "No Finding", "Pleural Effusion", "Pleural␣

↪→Other",
"Pneumonia", "Pneumothorax", "Support Devices"]

[80]: # correct: 1, 0, 0, 1, 0, 0, 0 ,0, 0, 1, 0, 0, 0, 0
learn_cl.predict("""Compared to chest radiographs since ___, most recently ___.

Large right and moderate left pleural effusions and severe bibasilar
atelectasis are unchanged. Cardiac silhouette is obscured. No pneumothorax.
Pulmonary edema is mild, obscured radiographically by overlying abnormalities.␣
↪→""")

<IPython.core.display.HTML object>

[80]: ((#3) ['Atelectasis','Edema','Pleural Effusion'],
tensor([True, False, False, True, False, False, False, False, False, True,

False, False, False, False]),
tensor([9.9958e-01, 2.4344e-03, 1.8244e-03, 9.7096e-01, 1.6865e-04, 5.1527e-04,

3.4268e-05, 3.1259e-04, 7.6621e-05, 9.9919e-01, 3.3475e-05, 1.8387e-03,
7.3686e-05, 1.5844e-04]))

[81]: # correct: 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1
learn_cl.predict("""New mild pulmonary vascular congestion with mild to␣

↪→moderate interstitial
pulmonary edema and increased mild cardiomegaly. No focal consolidation.""")

<IPython.core.display.HTML object>

[81]: ((#2) ['Cardiomegaly','Edema'],
tensor([False, True, False, True, False, False, False, False, False, False,

False, False, False, False]),
tensor([6.0708e-04, 1.0000e+00, 4.1335e-05, 9.9996e-01, 8.2679e-06, 1.5089e-05,

3.1137e-06, 6.7193e-04, 9.9462e-11, 1.2831e-04, 1.2030e-05, 2.5714e-04,
2.0785e-05, 5.3788e-04]))

15

[82]: # correct: 0, 1, 0, 1, 0, 0 ..
learn_cl.predict("""The heart remains enlarged. There is opacity along the␣

↪→medial left
hemidiaphragm, which is known to correspond to a Bochdalek's hernia containing
portion of the left kidney. The right Bochdalek hernia is not as well
visualized on today's examination. There is patchy bibasilar opacity with
likely associated layering effusions. These findings could reflect
compressive atelectasis, although aspiration pneumonia should also be
considered. There is also an asymmetric airspace process involving the left
apex, which likely is not significantly changed dating all the way back to
___ and therefore would favor a benign process. No pulmonary edema. No
pneumothoraces. Mediastinal contours are stable.""")

<IPython.core.display.HTML object>

[82]: ((#4) ['Cardiomegaly','Lung Opacity','Pleural Effusion','Pneumonia'],
tensor([False, True, False, False, False, False, False, True, False, True,

False, True, False, False]),
tensor([4.8858e-02, 9.9418e-01, 1.6403e-02, 5.9803e-03, 2.1085e-02, 3.2504e-04,

5.2609e-03, 9.9921e-01, 5.0251e-05, 9.9440e-01, 3.3015e-04, 9.5615e-01,
4.9245e-03, 1.1774e-04]))

[83]: # correct: 1, 0, 0 ... , 1, 1
learn_cl.predict("""Comparison to the most recent preceding radiograph, there␣

↪→is a
slight reaccumulation of fluid in the right pleural space. Two chest tubes
are noted in that space. A tiny apical pneumothorax is present. Right
atelectasis is also present. The left lung is essentially clear. Cardiac
size is normal.""")

<IPython.core.display.HTML object>

[83]: ((#3) ['Atelectasis','Pneumothorax','Support Devices'],
tensor([True, False, False, False, False, False, False, False, False, False,

False, False, True, True]),
tensor([9.9842e-01, 1.2411e-05, 1.0868e-05, 1.0071e-04, 7.0141e-04, 1.5477e-04,

2.7752e-05, 4.7851e-06, 1.5978e-03, 3.0043e-03, 5.1739e-06, 8.4811e-05,
9.9654e-01, 9.9517e-01]))

[84]: # correct: 0, 0, 0, lung lesion, .., 1,0
learn_cl.predict("""1. Slowly growing peripheral right upper lobe lung nodule␣

↪→is concerning for
primary lung adenocarcinoma. Dedicated chest CT may be considered for more
accurate assessment as well as to evaluate for possible right hilar lymph node
enlargement warranted clinically.
2. Low lung volumes limit assessment of the lung bases for pneumonia. Given

16

clinical suspicion for this entity, this could be further evaluated with
repeat chest radiograph with improved inspiratory level. Dr. ___ was paged
with these results at 8:15 a.m. on ___, at the time of discovery.""")

<IPython.core.display.HTML object>

[84]: ((#2) ['Lung Lesion','Pneumonia'],
tensor([False, False, False, False, False, False, True, False, False, False,

False, True, False, False]),
tensor([1.7961e-03, 2.5072e-05, 2.9009e-03, 4.1085e-04, 1.9647e-03, 1.1412e-04,

9.8138e-01, 2.4845e-02, 1.6832e-05, 9.9153e-05, 4.1501e-03, 9.8510e-01,
4.7470e-04, 2.8797e-06]))

[85]: # correct: 0, 0, 0, fracture,0,1, .., 0,0
learn_cl.predict("""Subtle opacity projecting over the lateral right mid lung␣

↪→may be due to
overlap of structures, but underlying pulmonary opacity or even rib fracture
is not excluded. Findings could be further assessed with shallow oblique
radiographs or chest CT. No displaced rib fracture definitively identified.␣
↪→However, if clinical
concern persists, dedicated rib series or chest CT is more sensitive.""")

<IPython.core.display.HTML object>

[85]: ((#2) ['Fracture','Lung Opacity'],
tensor([False, False, False, False, False, True, False, True, False, False,

False, False, False, False]),
tensor([3.0774e-04, 3.1016e-04, 8.6147e-05, 4.0291e-04, 6.3868e-04, 9.4489e-01,

1.7892e-03, 9.9660e-01, 1.4426e-04, 1.4214e-03, 1.0987e-03, 3.9666e-04,
1.7892e-03, 2.8910e-04]))

4.0.5 2.5 Interpretation

[86]: interp = Interpretation.from_learner(learn_cl)

<IPython.core.display.HTML object>

[87]: interp.plot_top_losses(3)

<IPython.core.display.HTML object>

17

MULTIVIEWMODEL 167

MultiViewModel

What is MultiViewModel?

MultiViewModel is a stage-wise model that is founded on a ResNet-50-based deep con-

volutional neural networks architecture to detect the presence and absence of 12 thorax

diseases.

The implementation of MultiViewModel is available below, and more details about the data

preparation and model comparison can be found on https://github.com/MaramMonshi/

MultiViewModel.

Implementation:

• fastai: 1.0.61

• GPU: 4 x NVIDIA Tesla P4 GPUs

• Machine: n1- highmem-8 (8 vCPUs, 52 GB memory)

https://github.com/MaramMonshi/MultiViewModel
https://github.com/MaramMonshi/MultiViewModel

Multi-View Chest X-Rays
1.1 Using GPU

[1]: import torch
print(torch.cuda.is_available())

True

[2]: !nvidia-smi

Thu Jul 4 03:56:09 2019
+---+
| NVIDIA-SMI 410.72 Driver Version: 410.72 CUDA Version: 10.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla P4 Off | 00000000:00:04.0 Off | N/A |
| N/A 37C P0 23W / 75W | 10MiB / 7611MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla P4 Off | 00000000:00:05.0 Off | N/A |
| N/A 37C P0 23W / 75W | 10MiB / 7611MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla P4 Off | 00000000:00:06.0 Off | N/A |
| N/A 35C P0 23W / 75W | 10MiB / 7611MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla P4 Off | 00000000:00:07.0 Off | N/A |
| N/A 38C P0 23W / 75W | 10MiB / 7611MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+

1

[110]: # learn.destroy() ## this Learner object self-destroyed - it still exists, but␣
↪→no longer usable

torch.cuda.empty_cache()

1.2 Libraries
[1]: %reload_ext autoreload

%autoreload 2
%matplotlib inline
from fastai import *
from fastai.vision import *
from fastai.metrics import *
from fastai.callbacks import *
import warnings
warnings.filterwarnings('ignore')
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True

1.3 Looking at Data

[2]: path = Path('/home/maram_m_monshi/data')
train_csv = pd.read_csv(path/'train.csv')
valid_csv = pd.read_csv(path/'valid.csv')

[5]: path.ls()

[5]: [PosixPath('/home/maram_m_monshi/data/train'),
PosixPath('/home/maram_m_monshi/data/train_p13'),
PosixPath('/home/maram_m_monshi/data/valid'),
PosixPath('/home/maram_m_monshi/data/train_p13.tar'),
PosixPath('/home/maram_m_monshi/data/valid.csv'),
PosixPath('/home/maram_m_monshi/data/train_p10'),
PosixPath('/home/maram_m_monshi/data/train_p12'),
PosixPath('/home/maram_m_monshi/data/models'),
PosixPath('/home/maram_m_monshi/data/train.csv'),
PosixPath('/home/maram_m_monshi/data/mimic-cxr')]

[3]: train_csv['Patient_Id'] = [Path(s).parents[0].parent.name for s in train_csv.
↪→path]

valid_csv['Patient_Id'] = [Path(s).parents[0].parent.name for s in valid_csv.
↪→path]

[6]: train_csv.shape, valid_csv.shape

[6]: ((37739, 16), (2732, 16))

2

[7]: df = pd.read_csv(path/'train.csv')
df.head()

[7]: path view No Finding \
0 train/p11000011/s01/view1_frontal.jpg frontal NaN
1 train/p11000183/s01/view1_frontal.jpg frontal NaN
2 train/p11000183/s02/view1_frontal.jpg frontal NaN
3 train/p11000183/s03/view1_frontal.jpg frontal NaN
4 train/p11000183/s03/view2_frontal.jpg frontal NaN

Enlarged Cardiomediastinum Cardiomegaly Airspace Opacity Lung Lesion \
0 NaN NaN NaN NaN
1 NaN NaN 1.0 NaN
2 NaN NaN 1.0 NaN
3 NaN NaN 1.0 NaN
4 NaN NaN 1.0 NaN

Edema Consolidation Pneumonia Atelectasis Pneumothorax \
0 NaN 0.0 1.0 NaN NaN
1 NaN 1.0 1.0 1.0 NaN
2 NaN NaN NaN 1.0 NaN
3 1.0 NaN 1.0 -1.0 NaN
4 1.0 NaN 1.0 -1.0 NaN

Pleural Effusion Pleural Other Fracture Support Devices
0 NaN NaN NaN NaN
1 1.0 NaN NaN 1.0
2 NaN NaN NaN NaN
3 1.0 NaN NaN NaN
4 1.0 NaN NaN NaN

[8]: train_csv.path[:3]

[8]: 0 train/p11000011/s01/view1_frontal.jpg
1 train/p11000183/s01/view1_frontal.jpg
2 train/p11000183/s02/view1_frontal.jpg
Name: path, dtype: object

[9]: np.sum(train_csv['No Finding']) / len(train_csv)

[9]: 0.3705980550624023

3

1.4 Pre-Processing Data

[4]: tfms = get_transforms(True, False, max_rotate=None, max_zoom=0., max_lighting=0.
↪→3,

max_warp=0, p_affine=0.5, p_lighting=0.5, xtra_tfms=[])
bs = 64; size = 224;
tfms

[4]: ([RandTransform(tfm=TfmCrop (crop_pad), kwargs={'row_pct': (0, 1), 'col_pct':
(0, 1), 'padding_mode': 'reflection'}, p=1.0, resolved={}, do_run=True,
is_random=True, use_on_y=True),

RandTransform(tfm=TfmPixel (flip_lr), kwargs={}, p=0.5, resolved={},
do_run=True, is_random=True, use_on_y=True),

RandTransform(tfm=TfmLighting (brightness), kwargs={'change': (0.35, 0.65)},
p=0.5, resolved={}, do_run=True, is_random=True, use_on_y=True),

RandTransform(tfm=TfmLighting (contrast), kwargs={'scale': (0.7,
1.4285714285714286)}, p=0.5, resolved={}, do_run=True, is_random=True,
use_on_y=True)],
[RandTransform(tfm=TfmCrop (crop_pad), kwargs={}, p=1.0, resolved={},
do_run=True, is_random=True, use_on_y=True)])

1.5 Evaluation (metrix for 2 classes)

[5]: from sklearn.metrics import roc_auc_score

class AUC(Callback):
"AUC score"
def __init__(self):

pass

def on_epoch_begin(self, **kwargs):
self.outputs = []
self.targets = []

def on_batch_end(self, last_output, last_target, **kwargs):
"expects binary output with data.c=2 "
self.outputs += list(to_np(last_output)[:, 1])
self.targets += list(to_np(last_target))

def on_epoch_end(self, last_metrics, **kwargs):
return {'last_metrics': last_metrics + [roc_auc_score(self.targets,␣

↪→self.outputs)]}
auc = AUC()

4

2 Enlarged_Cardiomediastinum

[6]: enlarged_cardiomediastinum = 'Enlarged Cardiomediastinum'
train_enlarged_cardiomediastinum_csv = train_csv[['path',␣

↪→enlarged_cardiomediastinum]].fillna(0).reset_index(drop=True)
U-ignore: ignores uncertain predictions
train_enlarged_cardiomediastinum_csv =␣

␣↪→train_enlarged_cardiomediastinum_csv[train_enlarged_cardiomediastinum_csv[en
larged_cardiomediastinum] →!= -1].reset_index(drop=True)↪

train_enlarged_cardiomediastinum_csv[enlarged_cardiomediastinum] =␣
↪→train_enlarged_cardiomediastinum_csv[enlarged_cardiomediastinum].astype(int)

print(enlarged_cardiomediastinum)
print(train_enlarged_cardiomediastinum_csv['Enlarged Cardiomediastinum'].

↪→value_counts(dropna=False))
train_enlarged_cardiomediastinum_csv[enlarged_cardiomediastinum].

↪→value_counts(True)

Enlarged Cardiomediastinum
0 35367
1 1019
Name: Enlarged Cardiomediastinum, dtype: int64

[6]: 0 0.971995
1 0.028005
Name: Enlarged Cardiomediastinum, dtype: float64

[7]: itemlist = ImageList.from_df(df=train_enlarged_cardiomediastinum_csv,␣
↪→path=path, folder='.', suffix='')

itemlists = itemlist.split_by_rand_pct(0.1)
data = (itemlists.label_from_df()

.transform(tfms, size=size)

.databunch(bs=bs)

.normalize(imagenet_stats))
itemlist, itemlists, data

[7]: (ImageList (36386 items)
Image (3, 3056, 2544),Image (3, 2544, 3056),Image (3, 2544, 3056),Image (3,
3056, 2544),Image (3, 3056, 2544)
Path: /home/maram_m_monshi/data, LabelLists;

Train: LabelList (32748 items)
x: ImageList
Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Image (3, 224,
224),Image (3, 224, 224)
y: CategoryList
0,0,0,0,0
Path: /home/maram_m_monshi/data;

5

Valid: LabelList (3638 items)
x: ImageList
Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Image (3, 224,
224),Image (3, 224, 224)
y: CategoryList
0,0,0,0,0
Path: /home/maram_m_monshi/data;

Test: None, ImageDataBunch;

Train: LabelList (32748 items)
x: ImageList
Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Image (3, 224,
224),Image (3, 224, 224)
y: CategoryList
0,0,0,0,0
Path: /home/maram_m_monshi/data;

Valid: LabelList (3638 items)
x: ImageList
Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Image (3, 224,
224),Image (3, 224, 224)
y: CategoryList
0,0,0,0,0
Path: /home/maram_m_monshi/data;

Test: None)

[8]: data.classes

[8]: [0, 1]

6

[10]: learn = cnn_learner(data=data, base_arch=models.resnet50, metrics=[accuracy,␣
↪→auc])

learn.model = nn.DataParallel(learn.model)

[11]: learn.fit_one_cycle(3)

<IPython.core.display.HTML object>

[12]: learn.lr_find()

<IPython.core.display.HTML object>

LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.

[13]: learn.recorder.plot(suggestion=True)

Min numerical gradient: 7.59E-07

7

Min loss divided by 10: 5.25E-04

[14]:

[15]:

[15]:

[16]:

learn.save('enlarged_cardiomediastinum-stage-1')

interp = ClassificationInterpretation.from_learner(learn)
losses,idxs = interp.top_losses()
len(data.valid_ds)==len(losses)==len(idxs)

True

interp.plot_top_losses(9, figsize=(6,6))

8

[18]:

[18]:

[19]:

interp.most_confused(min_val=2)

[(1, 0, 116)]

learn.unfreeze()
learn.fit_one_cycle(1)

[20]:

[20]:

<IPython.core.display.HTML object>

learn.load('enlarged_cardiomediastinum-stage-1')

Learner(data=ImageDataBunch;

Train: LabelList (32748 items)
x: ImageList
Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Image (3, 224,

224),Image (3, 224, 224)
y: CategoryList
0,0,0,0,0
Path: /home/maram_m_monshi/data;

Valid: LabelList (3638 items)
x: ImageList
Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Image (3, 224,
224),Image (3, 224, 224)
y: CategoryList
0,0,0,0,0
Path: /home/maram_m_monshi/data;

Test: None, model=DataParallel(
(module): Sequential(
(0): Sequential(

(0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3),
bias=False)

(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(2): ReLU(inplace)
(3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1,

ceil_mode=False)
(4): Sequential(
(0): Bottleneck(

(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1),

bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(relu): ReLU(inplace)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
)

)
(1): Bottleneck(

(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

9

track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1),

bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(relu): ReLU(inplace)

)
(2): Bottleneck(

(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1,
1), bias=False)

(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(relu): ReLU(inplace)
)

)
(5): Sequential(
(0): Bottleneck(

(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2),
padding=(1, 1), bias=False)

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(relu): ReLU(inplace)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
)

10

)
(1): Bottleneck(

(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(relu): ReLU(inplace)
)
(2): Bottleneck(

(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(relu): ReLU(inplace)
)
(3): Bottleneck(

(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(relu): ReLU(inplace)
)

)

11

(6): Sequential(
(0): Bottleneck(

(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2),
padding=(1, 1), bias=False)

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(relu): ReLU(inplace)
(downsample): Sequential(
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2),

bias=False)
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
)

)
(1): Bottleneck(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(relu): ReLU(inplace)
)
(2): Bottleneck(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1),

12

bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(relu): ReLU(inplace)

)
(3): Bottleneck(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(relu): ReLU(inplace)
)
(4): Bottleneck(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(relu): ReLU(inplace)
)
(5): Bottleneck(

(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True,

13

track_running_stats=True)
(relu): ReLU(inplace)

)
)
(7): Sequential(
(0): Bottleneck(

(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2),
padding=(1, 1), bias=False)

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(relu): ReLU(inplace)
(downsample): Sequential(
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2),

bias=False)
(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
)

)
(1): Bottleneck(

(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(relu): ReLU(inplace)
)
(2): Bottleneck(

(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1),
bias=False)

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),

14

padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1),

bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(relu): ReLU(inplace)

)
)

)
(1): Sequential(

(0): AdaptiveConcatPool2d(
(ap): AdaptiveAvgPool2d(output_size=1)
(mp): AdaptiveMaxPool2d(output_size=1)

)
(1): Flatten()
(2): BatchNorm1d(4096, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(3): Dropout(p=0.25)
(4): Linear(in_features=4096, out_features=512, bias=True)
(5): ReLU(inplace)
(6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(7): Dropout(p=0.5)
(8): Linear(in_features=512, out_features=2, bias=True)

)
)

), opt_func=functools.partial(<class 'torch.optim.adam.Adam'>, betas=(0.9,
0.99)), loss_func=FlattenedLoss of CrossEntropyLoss(), metrics=[<function
accuracy at 0x7f6bc37141e0>, AUC], true_wd=True, bn_wd=True, wd=0.01,
train_bn=True, path=PosixPath('/home/maram_m_monshi/data'), model_dir='models',
callback_fns=[functools.partial(<class 'fastai.basic_train.Recorder'>,
add_time=True, silent=False)], callbacks=[], layer_groups=[Sequential(

(0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3),
bias=False)

(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(2): ReLU(inplace)
(3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1,

ceil_mode=False)
(4): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(5): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(6): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)
(7): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

15

track_running_stats=True)
(8): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(9): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(10): ReLU(inplace)
(11): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(12): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(13): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(14): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(15): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)
(16): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(17): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(18): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(19): ReLU(inplace)
(20): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(21): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(22): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)
(23): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(24): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(25): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(26): ReLU(inplace)
(27): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(28): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(29): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1),

bias=False)
(30): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(31): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(32): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(33): ReLU(inplace)
(34): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(35): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(36): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(37): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

16

(38): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),
bias=False)

(39): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(40): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(41): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(42): ReLU(inplace)
(43): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(44): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(45): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)
(46): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(47): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(48): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(49): ReLU(inplace)
(50): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(51): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(52): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)
(53): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(54): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(55): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(56): ReLU(inplace)

), Sequential(
(0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1),

bias=False)
(3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(4): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(5): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(6): ReLU(inplace)
(7): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(8): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(9): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(10): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

17

track_running_stats=True)
(11): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)
(12): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(13): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(14): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(15): ReLU(inplace)
(16): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(17): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(18): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)
(19): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(20): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(21): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(22): ReLU(inplace)
(23): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(24): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(25): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)
(26): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(27): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(28): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(29): ReLU(inplace)
(30): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(31): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(32): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)
(33): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(34): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(35): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(36): ReLU(inplace)
(37): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(38): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(39): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)

18

(40): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)

(41): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(42): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(43): ReLU(inplace)
(44): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(45): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(46): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1),

bias=False)
(47): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(48): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(49): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(50): ReLU(inplace)
(51): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(52): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(53): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(54): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(55): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)
(56): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(57): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(58): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(59): ReLU(inplace)
(60): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(61): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(62): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)
(63): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(64): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(65): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(66): ReLU(inplace)

), Sequential(
(0): AdaptiveAvgPool2d(output_size=1)
(1): AdaptiveMaxPool2d(output_size=1)
(2): Flatten()
(3): BatchNorm1d(4096, eps=1e-05, momentum=0.1, affine=True,

19

track_running_stats=True)
(4): Dropout(p=0.25)
(5): Linear(in_features=4096, out_features=512, bias=True)
(6): ReLU(inplace)
(7): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)
(8): Dropout(p=0.5)
(9): Linear(in_features=512, out_features=2, bias=True)

)], add_time=True, silent=None)

[21]: learn.lr_find()

<IPython.core.display.HTML object>

LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.

[22]: learn.recorder.plot(suggestion=True)

Min numerical gradient: 7.59E-07
Min loss divided by 10: 1.58E-07

[23]: learn.unfreeze()
learn.fit_one_cycle(4, max_lr=slice(1e-6,1e-4))

20

<IPython.core.display.HTML object>

[24]: learn.save('enlarged_cardiomediastinum-stage-3')

9 Atelectasis
[30]: # create clean csv drop NAs

atelectasis = 'Atelectasis'
train_atelectasis_csv = train_csv[['path', atelectasis]].fillna(0).

↪→reset_index(drop=True)
U-ignore: ignores uncertain predictions
train_atelectasis_csv =␣

↪→train_atelectasis_csv[train_atelectasis_csv[atelectasis] != -1].
↪→reset_index(drop=True)

21

train_atelectasis_csv[atelectasis] = train_atelectasis_csv[atelectasis].
↪→astype(int)

print(atelectasis)
print(train_atelectasis_csv['Atelectasis'].value_counts(dropna=False))
train_atelectasis_csv[atelectasis].value_counts(True)

Atelectasis
0 29876
1 6356
Name: Atelectasis, dtype: int64

[30]: 0 0.824575
1 0.175425

[31]:

Name: Atelectasis, dtype: float64

itemlist = ImageList.from_df(df=train_atelectasis_csv, path=path, folder='.',␣
↪→suffix='')

itemlists = itemlist.split_by_rand_pct(0.1)
data = (itemlists.label_from_df()

.transform(tfms, size=size)

.databunch(bs=bs)

.normalize(imagenet_stats))

itemlist, itemlists, data

(ImageList (36232 items)
Image (3, 3056, 2544),Image (3, 2544, 3056),Image (3, 2544, 3056),Image (3,
3056, 2544),Image (3, 2544, 3056)

[31]:

Path: /home/maram_m_monshi/data, LabelLists;

Train: LabelList (32609 items)
x: ImageList
Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Image (3, 224,
224),Image (3, 224, 224)
y: CategoryList
0,1,1,0,1
Path: /home/maram_m_monshi/data;

Valid: LabelList (3623 items)
x: ImageList
Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Image (3, 224,
224),Image (3, 224, 224)
y: CategoryList
0,1,0,1,1
Path: /home/maram_m_monshi/data;

Test: None, ImageDataBunch;

22

Train: LabelList (32609 items)
x: ImageList
Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Image (3, 224,
224),Image (3, 224, 224)
y: CategoryList
0,1,1,0,1
Path: /home/maram_m_monshi/data;

Valid: LabelList (3623 items)
x: ImageList
Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Image (3, 224,
224),Image (3, 224, 224)
y: CategoryList
0,1,0,1,1
Path: /home/maram_m_monshi/data;

[32]:

[32]:

Test: None)

data.classes

[0, 1]

[33]: print(atelectasis)
data.show_batch(rows=3, figsize=(5,5))

Atelectasis

[34]: learn = cnn_learner(data=data, base_arch=models.resnet50, metrics=[accuracy,␣
↪→auc])

learn.model = nn.DataParallel(learn.model)

[35]: learn.fit_one_cycle(3)

<IPython.core.display.HTML object>

[36]: learn.lr_find()

<IPython.core.display.HTML object>

LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.

[37]: learn.recorder.plot(suggestion=True)

Min numerical gradient: 1.20E-05

23

Min loss divided by 10: 6.31E-04

[41]: interp.plot_confusion_matrix(figsize=(5,5), dpi=60)

24

[38]:

[39]:

[39]:

[40]:

learn.save('atelectasis-stage-1')

interp = ClassificationInterpretation.from_learner(learn)
losses,idxs = interp.top_losses()
len(data.valid_ds)==len(losses)==len(idxs)

True

interp.plot_top_losses(9, figsize=(6,6))

Min numerical gradient: 1.58E-06
Min loss divided by 10: 3.98E-05

[46]: learn.unfreeze()
learn.fit_one_cycle(4, max_lr=slice(1e-6,1e-4))

<IPython.core.display.HTML object>

[47]: learn.save('atelectasis-stage-3')

25

[42]:

[42]:

[43]:

[44]:

[45]:

interp.most_confused(min_val=2)

[(1, 0, 528), (0, 1, 66)]

learn.unfreeze()
learn.fit_one_cycle(1)

<IPython.core.display.HTML object>

learn.lr_find()

<IPython.core.display.HTML object>

LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.

learn.recorder.plot(suggestion=True)

XCLASSIFIER 193

Xclassifier

What is Xclassifier?

Xclassifier is an efficient multi-label classifier that trains an enhanced DenseNet-121 frame-

work with blur pooling to detect 14 observations from a chest x-ray. It has ideal memory

utilization and GPU computation, and a high AUC for two large chest radiography datasets,

MIMIC-CXR, and CheXpert.

The implementation of Xclassifier is available below, and more details about the data prepara-

tion and model comparison can be found on https://github.com/MaramMonshi/

Xclassifier.

Implementation:

• Python: 3.7.10

• PyTorch: 1.9.0

• fastai: 2.4

• GPU: 4 x NVIDIA Tesla V100 GPUs

• Machine: n1- highmem-32 (32 vCPUs, 208 GB memory)

• Platform: Linux-4.19.0-18-cloud-amd64-x86-64-with-debian-10.11

https://github.com/MaramMonshi/Xclassifier
https://github.com/MaramMonshi/Xclassifier

194 B JUPYTER NOTEBOOK

from fastai.vision.all import *

from timm import create_model

from fastai.vision.learner import _update_first_layer

from fastai.distributed import *

import os

def seed_everything(seed):

random.seed(seed)

os.environ[’PYTHONHASHSEED’] = str(seed)

np.random.seed(seed)

torch.manual_seed(seed)

torch.cuda.manual_seed_all(seed)

torch.cuda.manual_seed(seed)

torch.backends.cudnn.deterministic = True

SEED = 42

seed_everything(SEED)

os.chdir("/home/jupyter/data/mimic-cxr-jpg/")

torch.cuda.empty_cache()

import gc

gc.collect()

import warnings

warnings.filterwarnings(’ignore’)

df = pd.read_csv(’/home/jupyter/data/mimic-cxr-jpg/train-jpg.csv’)

df = df.dropna(subset=[’labels’])

df_test = pd.read_csv(’/home/jupyter/data/mimic-cxr-jpg/test-jpg.csv’)

df_test = df_test.dropna(subset=[’labels’])

bs = 64

epoch = 50

metrics=[accuracy_multi,

RocAucMulti(),

PrecisionMulti(),

RecallMulti(),

XCLASSIFIER 195

F1ScoreMulti()]

item_tfms=Resize(224, method=’squish’,

pad_mode=’zeros’, resamples=(2, 0))

batch_tfms=[*aug_transforms(mult=1.0, do_flip=False, flip_vert=False,

max_rotate=20.0, max_zoom=1.2,

max_lighting=0.3, max_warp=0.2,

p_affine=0.75, p_lighting=0.75,

xtra_tfms=None, size=None, mode=’bilinear’,

pad_mode=’reflection’, align_corners=True,

batch=False, min_scale=1.0),

Normalize.from_stats(*imagenet_stats)]

dl = DataBlock(blocks=(ImageBlock, MultiCategoryBlock),

get_x=ColReader(’path’),

get_y=ColReader(’labels’, label_delim=’,’),

splitter=RandomSplitter(seed = SEED),

item_tfms=item_tfms,

batch_tfms=batch_tfms

).dataloaders(df, bs=bs)

test_dl = dl.test_dl(df_test, with_labels=True)

def create_body(arch, n_in=3, pretrained=True, cut=None):

"Cut off the body of the pretrained ‘arch‘ as determined by ‘cut‘"

model = arch(pretrained=pretrained)

_update_first_layer(model, n_in, pretrained)

if cut is None:

ll = list(enumerate(model.children()))

cut = next(i for i,o in reversed(ll) if has_pool_type(o))

if isinstance(cut, int):

return nn.Sequential(*list(model.children())[:cut])

elif callable(cut): return cut(model)

else: raise NamedError("cut must be either integer or a function")

196 B JUPYTER NOTEBOOK

def create_timm_body(arch:str, pretrained=True, cut=None, n_in=3):

"Creates a body from a model in the ‘timm‘ library."

model = create_model(arch, pretrained=pretrained, num_classes=0,

global_pool=’’)

_update_first_layer(model, n_in, pretrained)

if cut is None:

ll = list(enumerate(model.children()))

cut = next(i for i,o in reversed(ll) if has_pool_type(o))

if isinstance(cut, int):

return nn.Sequential(*list(model.children())[:cut])

elif callable(cut): return cut(model)

else: raise NamedError("cut must be either integer or function")

body = create_timm_body(’densenetblur121d’, pretrained=True)

nf = num_features_model(body)

head = create_head(nf, dl.c, concat_pool=True)

net = nn.Sequential(body, head)

learn = Learner(dl, net, metrics=metrics)

with learn.distrib_ctx(sync_bn=False): learn.fine_tune(epoch);

print (learn.validate(dl=test_dl))

COVIDCXR 197

COVIDcxr

What is COVIDcxr?

COVIDcxr is the dataset of 960 CXR images that we have proposed to introduce a balanced,

unbiased, and complete COVID-19 CXR dataset.

A step-by-step guide to the creation of COVIDcxr dataset is available below, and more

details about building a single neural network based on both images (CXRs) and tabular

data (sex, age, and views) can be found on https://github.com/MaramMonshi/

CovidXrayNet/tree/main/Dataset.

https://github.com/MaramMonshi/CovidXrayNet/tree/main/Dataset
https://github.com/MaramMonshi/CovidXrayNet/tree/main/Dataset

COVIDcxr-generate

November 5, 2021

1 Generate COVIDcxr Dataset

[1]: import numpy as np
import pandas as pd
import os
import random
from shutil import copyfile
import pydicom as dicom
import cv2
from fastai2.vision.all import *

1.1 1. COVID-19 Images

Download covid-19 image data collection from: https://github.com/ieee8023/covid-
chestxray-dataset

[12]: # view csv file
covid19_csvpath = '/home/jupyter/covid-chestxray-dataset/metadata.csv'
dfcovid = pd.read_csv(covid19_csvpath)
dfcovid.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 930 entries, 0 to 929
Data columns (total 29 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 patientid 930 non-null object
1 offset 684 non-null float64
2 sex 850 non-null object
3 age 693 non-null float64
4 finding 930 non-null object
5 RT_PCR_positive 582 non-null object
6 survival 358 non-null object
7 intubated 243 non-null object
8 intubation_present 246 non-null object
9 went_icu 392 non-null object
10 in_icu 331 non-null object

1

11 needed_supplemental_O2 88 non-null object
12 extubated 37 non-null object
13 temperature 74 non-null float64
14 pO2_saturation 119 non-null float64
15 leukocyte_count 16 non-null float64
16 neutrophil_count 28 non-null float64
17 lymphocyte_count 37 non-null float64
18 view 930 non-null object
19 modality 930 non-null object
20 date 650 non-null object
21 location 877 non-null object
22 folder 930 non-null object
23 filename 930 non-null object
24 doi 382 non-null object
25 url 930 non-null object
26 license 685 non-null object
27 clinical_notes 748 non-null object
28 other_notes 424 non-null object
dtypes: float64(7), object(22)
memory usage: 210.8+ KB

[13]: # clean the csv file
drop CT images
dfcovid = dfcovid[dfcovid.modality != 'CT']
drop other findings such as ARDS & Lateral View
dfcovid = dfcovid[dfcovid.finding == 'COVID-19']
dfcovid = dfcovid[dfcovid.view != 'L'] #23
drop unused columns
dfcovid = dfcovid.drop(["offset", "RT_PCR_positive", "survival", "intubated",␣

↪→"intubation_present", "went_icu", "in_icu",
"needed_supplemental_O2", "extubated","temperature",
"pO2_saturation", "leukocyte_count", "neutrophil_count",␣

↪→"lymphocyte_count",
"modality", "date", "location", "folder", "doi",
"url", "license", "clinical_notes", "other_notes"], axis=1)

drop NULL values
dfcovid = dfcovid.dropna(subset=['age'])
dfcovid = dfcovid.dropna(subset=['sex'])
dfcovid = dfcovid.dropna(subset=['view'])
re-name columns
dfcovid = dfcovid.rename(columns={"filename": "path"})
re-order columns
dfcovid = dfcovid[['path', 'finding', 'age', 'sex', 'view', 'patientid']]
save dfcovid as a new clean csv
dfcovid.to_csv("/home/jupyter/CovidXrayNet/covid.csv", index=False,␣

↪→encoding='utf-8-sig')

2

[14]: ## view covid.csv
dfcovid.info(), dfcovid.isnull().sum() ,dfcovid['finding'].value_counts(),␣

↪→dfcovid['age'].value_counts(), dfcovid['sex'].value_counts(),␣
↪→dfcovid['view'].value_counts()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 320 entries, 0 to 919
Data columns (total 6 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 path 320 non-null object
1 finding 320 non-null object
2 age 320 non-null float64
3 sex 320 non-null object
4 view 320 non-null object
5 patientid 320 non-null object
dtypes: float64(1), object(5)
memory usage: 17.5+ KB

[14]: (None,
path 0
finding 0
age 0
sex 0
view 0
patientid 0
dtype: int64,
COVID-19 320
Name: finding, dtype: int64,
65.0 20
70.0 19
55.0 18
50.0 18
61.0 12

..
41.0 1
31.0 1
84.0 1
33.0 1
57.0 1
Name: age, Length: 62, dtype: int64,
M 213
F 107
Name: sex, dtype: int64,
AP 119
PA 117
AP Supine 84

3

Name: view, dtype: int64)

1.2 2. Pnumenia and Healthy Images

Download ChestX-ray14 dataset from: https://www.kaggle.com/nih-chest-xrays/data
[23]: # view chestxray14 csv file

chestxray14_csvpath = '/home/jupyter/Data_Entry_2017.csv'
dfpnumenia = pd.read_csv(chestxray14_csvpath)
dfpnumenia.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 112120 entries, 0 to 112119
Data columns (total 12 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 Image Index 112120 non-null object
1 Finding Labels 112120 non-null object
2 Follow-up # 112120 non-null int64
3 Patient ID 112120 non-null int64
4 Patient Age 112120 non-null int64
5 Patient Gender 112120 non-null object
6 View Position 112120 non-null object
7 OriginalImage[Width 112120 non-null int64
8 Height] 112120 non-null int64
9 OriginalImagePixelSpacing[x 112120 non-null float64
10 y] 112120 non-null float64
11 Unnamed: 11 0 non-null float64
dtypes: float64(3), int64(5), object(4)
memory usage: 10.3+ MB

[24]: # drop unused columns
dfpnumenia = dfpnumenia.drop(["Follow-up #", "OriginalImage[Width", "Height]",

"OriginalImagePixelSpacing[x","y]", "Unnamed: 11"], axis=1)
arrange columns
dfpnumenia = dfpnumenia[['Image Index', 'Finding Labels', 'Patient Age',␣

↪→'Patient Gender',
'View Position', 'Patient ID']]

rename columns
dfpnumenia = dfpnumenia.rename(columns={"Image Index": "path", "Finding Labels":

↪→ "finding",
"Patient Age": "age", "Patient Gender": "sex",
"View Position": "view", "Patient ID": "patientid"})

1. pnumenia
dfpnumenia = dfpnumenia[dfpnumenia.finding == 'Pneumonia']
dfpnumenia = dfpnumenia.drop(dfpnumenia.index[320:])

4

dfpnumenia.to_csv("/home/jupyter/CovidXrayNet/pneumonia.csv", index=False,␣
↪→encoding='utf-8-sig')

[26]: dfpnumenia.info(), dfpnumenia.isnull().sum(), dfpnumenia['finding'].
↪→value_counts(), dfpnumenia['age'].value_counts(), dfpnumenia['sex'].
↪→value_counts(), dfpnumenia['view'].value_counts()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 320 entries, 279 to 109877
Data columns (total 6 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 path 320 non-null object
1 finding 320 non-null object
2 age 320 non-null int64
3 sex 320 non-null object
4 view 320 non-null object
5 patientid 320 non-null int64
dtypes: int64(2), object(4)
memory usage: 17.5+ KB

[26]: (None,
path 0
finding 0
age 0
sex 0
view 0
patientid 0
dtype: int64,
Pneumonia 320
Name: finding, dtype: int64,
33 12
46 9
44 9
50 9
63 8

..
75 1
77 1
79 1
82 1
3 1
Name: age, Length: 78, dtype: int64,
M 193
F 127
Name: sex, dtype: int64,
PA 176

5

AP 144
Name: view, dtype: int64)

[27]: # read chestxray14 csv file
chestxray14_csvpath = '/home/jupyter/Data_Entry_2017.csv'
dfhealthy = pd.read_csv(chestxray14_csvpath)
drop unused columns
dfhealthy = dfhealthy.drop(["Follow-up #", "OriginalImage[Width", "Height]",

"OriginalImagePixelSpacing[x","y]", "Unnamed: 11"], axis=1)
arrange columns
dfhealthy = dfhealthy[['Image Index', 'Finding Labels', 'Patient Age', 'Patient␣

↪→Gender',
'View Position', 'Patient ID']]

rename columns
dfhealthy = dfhealthy.rename(columns={"Image Index": "path", "Finding Labels":␣

↪→"finding",
"Patient Age": "age", "Patient Gender": "sex",
"View Position": "view", "Patient ID": "patientid"})

2. healthy
dfhealthy = dfhealthy[dfhealthy.finding == 'No Finding']
dfhealthy = dfhealthy.drop(dfhealthy.index[320:])
dfhealthy.to_csv("/home/jupyter/CovidXrayNet/healthy.csv", index=False,␣

↪→encoding='utf-8-sig')

[28]: dfhealthy.info(), dfhealthy.isnull().sum(), dfhealthy['finding'].
↪→value_counts(), dfhealthy['age'].value_counts(), dfhealthy['sex'].
↪→value_counts(), dfhealthy['view'].value_counts()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 320 entries, 3 to 787
Data columns (total 6 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 path 320 non-null object
1 finding 320 non-null object
2 age 320 non-null int64
3 sex 320 non-null object
4 view 320 non-null object
5 patientid 320 non-null int64
dtypes: int64(2), object(4)
memory usage: 17.5+ KB

[28]: (None,
path 0
finding 0
age 0
sex 0

6

85 2
80 1
84 1
47 1
45 1
89 1
34 1
33 1
90 1
91 1
30 1
25 1
Name: age, dtype: int64,
M 162
F 158
Name: sex, dtype: int64,
PA 230
AP 90
Name: view, dtype: int64)

1.3 3. Combine Images

[2]: # view all csv files
path = Path('/home/jupyter/CovidXrayNet')
os.chdir("/home/jupyter/CovidXrayNet")
df_covid19 = pd.read_csv(path/'covid19.csv')
df_pneumonia = pd.read_csv(path/'pneumonia.csv')
df_healthy = pd.read_csv(path/'healthy.csv')

[9]: df_covid19.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 320 entries, 0 to 319
Data columns (total 6 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 path 320 non-null object
1 finding 320 non-null object
2 age 320 non-null float64
3 sex 320 non-null object
4 view 320 non-null object
5 patientid 320 non-null object
dtypes: float64(1), object(5)
memory usage: 15.1+ KB

[10]: df_pneumonia.info()

7

view 0
patientid 0
dtype: int64,
No Finding 320
Name: finding, dtype: int64,
55 25

23
18
15
15
13
13
12
12
10
9
9
8
8
8

50
70
71
73
67
75
64
69
61
77
68
62
52
54

8
7
7
7
7
7
6
6
5
5
5
4
4
4

 54
56
58
60
53
63
76
65
66
81
74
46
83
59

4
4
3
3
3
2
2
2
2
2
2
2
2

 57
78
87
92
51
48
49
42
32
31
94
72
79
82 2

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 320 entries, 0 to 319
Data columns (total 6 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 path 320 non-null object
1 finding 320 non-null object
2 age 320 non-null int64
3 sex 320 non-null object
4 view 320 non-null object
5 patientid 320 non-null int64
dtypes: int64(2), object(4)
memory usage: 15.1+ KB

[11]: df_healthy.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 320 entries, 0 to 319
Data columns (total 6 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 path 320 non-null object
1 finding 320 non-null object
2 age 320 non-null int64
3 sex 320 non-null object
4 view 320 non-null object
5 patientid 320 non-null int64
dtypes: int64(2), object(4)
memory usage: 15.1+ KB

[14]: # Merge csv files vertically (on top of each other)
frames = [df_covid19, df_pneumonia, df_healthy]
df_covidcxr = pd.concat(frames)
df_covidcxr.to_csv("COVIDcxr.csv", index=False, encoding='utf-8-sig')
df_covidcxr.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 960 entries, 0 to 319
Data columns (total 6 columns):
Column Non-Null Count Dtype
--- ------ -------------- -----
0 path 960 non-null object
1 finding 960 non-null object
2 age 960 non-null float64
3 sex 960 non-null object
4 view 960 non-null object
5 patientid 960 non-null object
dtypes: float64(1), object(5)

8

memory usage: 52.5+ KB

[15]: df_covidcxr.isnull().sum(), df_covidcxr['finding'].value_counts(),␣
↪→df_covidcxr['age'].value_counts(), df_covidcxr['sex'].value_counts(),␣
↪→df_covidcxr['view'].value_counts()

[15]: (path 0
finding 0
age 0
sex 0
view 0
patientid 0
dtype: int64,
COVID-19 320
No Finding 320
Pneumonia 320
Name: finding, dtype: int64,
55.0 51
50.0 50
70.0 37
65.0 32
73.0 29

..
3.0 1
17.0 1
12.0 1
90.0 1
91.0 1
Name: age, Length: 91, dtype: int64,
M 568
F 392
Name: sex, dtype: int64,
PA 523
AP 353
AP Supine 84
Name: view, dtype: int64)

[16]: df_covidcxr['age'].describe()

[16]: count 960.000000
mean 54.669792
std 18.355041
min 3.000000
25% 44.000000
50% 56.000000
75% 69.000000
max 94.000000

9

Name: age, dtype: float64

[18]: ## move covid-19 images to one folder (if the path exist in csv)
dir_src = '/home/jupyter/covid-chestxray-dataset/images'
dir_dst = '/home/jupyter/covidcxr'
for fileName in df_covid19['path']:

file_src = dir_src + "/" + fileName
file_dst = dir_dst + "/" + fileName
try:

copyfile(file_src, file_dst)
except IOError as e:

print('Unable to copy file {} to {}'
.format(file_src, file_dst))

except:
print('When try copy file {} to {}, unexpected error: {}'

.format(file_src, file_dst, sys.exc_info()))

[26]: path = Path ('/home/jupyter/covidcxr')
num_files = len([f for f in os.listdir(path)if os.path.isfile(os.path.

↪→join(path, f))])
num_files

[26]: 320

[]: # Run the following lines into the terminal to combine all nih-chestxary images␣
↪→into one file

mv /home/jupyter/images_001/images/* /home/jupyter/nih-chestxray
mv /home/jupyter/images_002/images/* /home/jupyter/nih-chestxray
mv /home/jupyter/images_003/images/* /home/jupyter/nih-chestxray
mv /home/jupyter/images_004/images/* /home/jupyter/nih-chestxray
mv /home/jupyter/images_005/images/* /home/jupyter/nih-chestxray
mv /home/jupyter/images_006/images/* /home/jupyter/nih-chestxray
mv /home/jupyter/images_007/images/* /home/jupyter/nih-chestxray
mv /home/jupyter/images_008/images/* /home/jupyter/nih-chestxray
mv /home/jupyter/images_009/images/* /home/jupyter/nih-chestxray
mv /home/jupyter/images_010/images/* /home/jupyter/nih-chestxray
mv /home/jupyter/images_011/images/* /home/jupyter/nih-chestxray
mv /home/jupyter/images_012/images/* /home/jupyter/nih-chestxray

[43]: ## move pneumonia cxr to one folder (if the path exist in csv)
dir_src = '/home/jupyter/nih-chestxray'
dir_dst = '/home/jupyter/covidcxr'
for fileName in df_pneumonia['path']:

file_src = dir_src + "/" + fileName
file_dst = dir_dst + "/" + fileName
try:

copyfile(file_src, file_dst)

10

except IOError as e:
print('Unable to copy file {} to {}'

.format(file_src, file_dst))
except:

print('When try copy file {} to {}, unexpected error: {}'
.format(file_src, file_dst, sys.exc_info()))

[44]: path = Path ('/home/jupyter/covidcxr')
num_files = len([f for f in os.listdir(path)if os.path.isfile(os.path.

↪→join(path, f))])
num_files

[44]: 640

[45]: ## move healthy cxr to one folder (if the path exist in csv)
for fileName in df_healthy['path']:

file_src = dir_src + "/" + fileName
file_dst = dir_dst + "/" + fileName
try:

copyfile(file_src, file_dst)
except IOError as e:

print('Unable to copy file {} to {}'
.format(file_src, file_dst))

except:
print('When try copy file {} to {}, unexpected error: {}'

.format(file_src, file_dst, sys.exc_info()))

[46]: path = Path ('/home/jupyter/covidcxr')
num_files = len([f for f in os.listdir(path)if os.path.isfile(os.path.

↪→join(path, f))])
num_files

[46]: 960

[]:

11

COVIDXRAYNET 209

CovidXrayNet

What is CovidXrayNet?

CovidXrayNet model improves the detection rate of coronavirus 2019 (COVID-19), form

Chest X-Rays (CXRs) by means of optimizing the data augmentation pipeline and Convolu-

tional Neural Network (CNN) hyperparameters.

The implementation of CovidXrayNet is available below, and more details about the data pre-

paration and model comparison can be found on https://github.com/MaramMonshi/

CovidXrayNet.

Implementation:

• Python: 3.7.6

• PyTorch: 1.6.0

• fastai: 2.0.16

• GPU: 1 x NVIDIA Tesla V100 GPU

• Machine: n1- highmem-8 (8 vCPUs, 52 GB memory)

• Platform: Linux-4.9.0-12-amd64-x86_64-with-debian-9.12

https://github.com/MaramMonshi/CovidXrayNet
https://github.com/MaramMonshi/CovidXrayNet

1 CovidXrayNet Model

1.1 COVIDx Dataset

[1]: from fastai.vision.all import *
import os.path
path = Path('/home/jupyter/covidx')

[2]: torch.cuda.empty_cache()

[3]: # fix result
def seed_everything(seed):

random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True

SEED = 42
seed_everything(SEED)

[4]: df = pd.read_csv(path/'covidx.csv')
df

[4]: patientid \
0 3
1 3
2 7
3 7
4 9
… …
15491 2c917d3a-95cb-4c11-802c-f83e28cb37bc
15492 3040d9d7-d895-453f-887c-616c10531960
15493 c07f52df-d481-434f-84c1-04263926ac40
15494 c109061a-d815-4cae-8343-9230d8024adf
15495 c18d1138-ba74-4af5-af21-bdd4d2c96bb5

1

path finding \
0 SARS-10.1148rg.242035193-g04mr34g0-Fig8b-day5.jpeg pneumonia
1 SARS-10.1148rg.242035193-g04mr34g0-Fig8c-day10.jpeg pneumonia
2 SARS-10.1148rg.242035193-g04mr34g04a-Fig4a-day7.jpeg pneumonia
3 SARS-10.1148rg.242035193-g04mr34g04b-Fig4b-day12.jpeg pneumonia
4 SARS-10.1148rg.242035193-g04mr34g07a-Fig7a-day5.jpeg pneumonia
… … …
15491 2c917d3a-95cb-4c11-802c-f83e28cb37bc.png pneumonia
15492 3040d9d7-d895-453f-887c-616c10531960.png pneumonia
15493 c07f52df-d481-434f-84c1-04263926ac40.png pneumonia
15494 c109061a-d815-4cae-8343-9230d8024adf.png pneumonia
15495 c18d1138-ba74-4af5-af21-bdd4d2c96bb5.png pneumonia

source is_valid
0 cohen False
1 cohen False
2 cohen False
3 cohen False
4 cohen False
… … …
15491 rsna True
15492 rsna True
15493 rsna True
15494 rsna True
15495 rsna True

[15496 rows x 5 columns]

[5]: df['finding'].value_counts()

[5]: normal 8851
pneumonia 6056
COVID-19 589
Name: finding, dtype: int64

[6]: df['is_valid'].value_counts()

[6]: False 13917
True 1579
Name: is_valid, dtype: int64

2

1.2 Data Block

[7]: get_x=lambda x:path/"images"/f"{x[1]}"
get_y=lambda x:x[2]
splitter=ColSplitter('is_valid')

[8]: metrics=[accuracy,
#RocAuc(average='macro', multi_class='ovr'),
MatthewsCorrCoef(sample_weight=None),
Precision(average='macro'),
Recall(average='macro'),
F1Score(average='macro')]

Data Augmentation Pipeline
[9]: item_tfms=Resize(480, method='squish', pad_mode='zeros', resamples=(2, 0))

batch_tfms=[*aug_transforms(mult=1.0, do_flip=False, flip_vert=False,
max_rotate=20.0, max_zoom=1.2, max_lighting=0.3,␣

↪→max_warp=0.2,
p_affine=0.75, p_lighting=0.75,
xtra_tfms=None, size=None, mode='bilinear',␣

↪→pad_mode='reflection',
align_corners=True, batch=False, min_scale=1.0),
Normalize.from_stats(*imagenet_stats)]

[10]: db = DataBlock(blocks=(ImageBlock(cls=PILImageBW), CategoryBlock),
get_x=get_x,
get_y=get_y,
splitter=splitter,
item_tfms = item_tfms,
batch_tfms=batch_tfms)

[11]: db.item_tfms

[11]: (#2) [ToTensor:
encodes: (PILMask,object) -> encodes
(PILBase,object) -> encodes
decodes: ,Resize -- {'size': (480, 480), 'method': 'squish', 'pad_mode':
'zeros', 'resamples': (2, 0), 'p': 1.0}:
encodes: (Image,object) -> encodes
(TensorBBox,object) -> encodes
(TensorPoint,object) -> encodes
decodes:]

[12]: db.batch_tfms

3

[12]: (#4) [IntToFloatTensor -- {'div': 255.0, 'div_mask': 1}:
encodes: (TensorImage,object) -> encodes
(TensorMask,object) -> encodes
decodes: (TensorImage,object) -> decodes
,Warp -- {'magnitude': 0.2, 'p': 1.0, 'draw_x': None, 'draw_y': None, 'size':
None, 'mode': 'bilinear', 'pad_mode': 'reflection', 'batch': False,
'align_corners': True, 'mode_mask': 'nearest'}:
encodes: (TensorImage,object) -> encodes
(TensorMask,object) -> encodes
(TensorBBox,object) -> encodes
(TensorPoint,object) -> encodes
decodes: ,Brightness -- {'max_lighting': 0.3, 'p': 1.0, 'draw': None, 'batch':
False}:
encodes: (TensorImage,object) -> encodes
decodes: ,Normalize -- {'mean': tensor([[[[0.4850]],

[[0.4560]],

[[0.4060]]]], device='cuda:0'), 'std': tensor([[[[0.2290]],

[[0.2240]],

[[0.2250]]]], device='cuda:0'), 'axes': (0, 2, 3)}:
encodes: (TensorImage,object) -> encodes
decodes: (TensorImage,object) -> decodes
]

[13]: db.splitter(df)

[13]: ((#13917) [0,1,2,3,4,5,6,7,8,9…],
(#1579) [13917,13918,13919,13920,13921,13922,13923,13924,13925,13926…])

1.3 Data Loader

CNN Hyperparameters
[14]: from efficientnet_pytorch import EfficientNet

arch = EfficientNet.from_pretrained("efficientnet-b0")
bs = 32
epoch = 30
loss_func=LabelSmoothingCrossEntropyFlat(axis=-1, eps=0.2, reduction='mean',␣

↪→flatten=True, floatify=False, is_2d=True)

Loaded pretrained weights for efficientnet-b0

[15]: dl = db.dataloaders(df, bs=bs)

4

[16]: dl.after_item

[16]: Pipeline: Resize -- {'size': (480, 480), 'method': 'squish', 'pad_mode':
'zeros', 'resamples': (2, 0), 'p': 1.0} -> ToTensor

[17]: dl.after_batch

[17]: Pipeline: IntToFloatTensor -- {'div': 255.0, 'div_mask': 1} -> Warp --
{'magnitude': 0.2, 'p': 1.0, 'draw_x': None, 'draw_y': None, 'size': None,
'mode': 'bilinear', 'pad_mode': 'reflection', 'batch': False, 'align_corners':
True, 'mode_mask': 'nearest'} -> Brightness -- {'max_lighting': 0.3, 'p': 1.0,
'draw': None, 'batch': False} -> Normalize -- {'mean': tensor([[[[0.4850]],

[[0.4560]],

[[0.4060]]]], device='cuda:0'), 'std': tensor([[[[0.2290]],

[[0.2240]],

[[0.2250]]]], device='cuda:0'), 'axes': (0, 2, 3)}

[18]: dl.show_batch()

5

[19]: dl.show_batch(max_n=6, nrows=1, ncols=6)

1.4 Training

[20]: learn = Learner(dl, model=arch, loss_func=loss_func, metrics=metrics)

[21]: learn.summary()

<IPython.core.display.HTML object>

[21]: EfficientNet (Input shape: ['32 x 3 x 480 x 480'])
==
Layer (type) Output Shape Param # Trainable
==
ZeroPad2d 32 x 3 x 481 x 481 0 False
__
BatchNorm2d 32 x 32 x 240 x 240 64 True
__
ZeroPad2d 32 x 32 x 242 x 242 0 False
__
BatchNorm2d 32 x 32 x 240 x 240 64 True
__
Identity 32 x 32 x 1 x 1 0 False
__
Identity 32 x 8 x 1 x 1 0 False
__
Identity 32 x 32 x 240 x 240 0 False
__
BatchNorm2d 32 x 16 x 240 x 240 32 True
__
MemoryEfficientSwish 32 x 8 x 1 x 1 0 False
__
Identity 32 x 16 x 240 x 240 0 False
__
BatchNorm2d 32 x 96 x 240 x 240 192 True
__
ZeroPad2d 32 x 96 x 241 x 241 0 False
__
BatchNorm2d 32 x 96 x 120 x 120 192 True
__
Identity 32 x 96 x 1 x 1 0 False
__
Identity 32 x 4 x 1 x 1 0 False
__
Identity 32 x 96 x 120 x 120 0 False
__
BatchNorm2d 32 x 24 x 120 x 120 48 True
__

6

MemoryEfficientSwish 32 x 4 x 1 x 1 0 False
__
Identity 32 x 24 x 120 x 120 0 False
__
BatchNorm2d 32 x 144 x 120 x 12 288 True
__
ZeroPad2d 32 x 144 x 122 x 12 0 False
__
BatchNorm2d 32 x 144 x 120 x 12 288 True
__
Identity 32 x 144 x 1 x 1 0 False
__
Identity 32 x 6 x 1 x 1 0 False
__
Identity 32 x 144 x 120 x 12 0 False
__
BatchNorm2d 32 x 24 x 120 x 120 48 True
__
MemoryEfficientSwish 32 x 6 x 1 x 1 0 False
__
Identity 32 x 24 x 120 x 120 0 False
__
BatchNorm2d 32 x 144 x 120 x 12 288 True
__
ZeroPad2d 32 x 144 x 123 x 12 0 False
__
BatchNorm2d 32 x 144 x 60 x 60 288 True
__
Identity 32 x 144 x 1 x 1 0 False
__
Identity 32 x 6 x 1 x 1 0 False
__
Identity 32 x 144 x 60 x 60 0 False
__
BatchNorm2d 32 x 40 x 60 x 60 80 True
__
MemoryEfficientSwish 32 x 6 x 1 x 1 0 False
__
Identity 32 x 40 x 60 x 60 0 False
__
BatchNorm2d 32 x 240 x 60 x 60 480 True
__
ZeroPad2d 32 x 240 x 64 x 64 0 False
__
BatchNorm2d 32 x 240 x 60 x 60 480 True
__
Identity 32 x 240 x 1 x 1 0 False

7

__
Identity 32 x 10 x 1 x 1 0 False
__
Identity 32 x 240 x 60 x 60 0 False
__
BatchNorm2d 32 x 40 x 60 x 60 80 True
__
MemoryEfficientSwish 32 x 10 x 1 x 1 0 False
__
Identity 32 x 40 x 60 x 60 0 False
__
BatchNorm2d 32 x 240 x 60 x 60 480 True
__
ZeroPad2d 32 x 240 x 61 x 61 0 False
__
BatchNorm2d 32 x 240 x 30 x 30 480 True
__
Identity 32 x 240 x 1 x 1 0 False
__
Identity 32 x 10 x 1 x 1 0 False
__
Identity 32 x 240 x 30 x 30 0 False
__
BatchNorm2d 32 x 80 x 30 x 30 160 True
__
MemoryEfficientSwish 32 x 10 x 1 x 1 0 False
__
Identity 32 x 80 x 30 x 30 0 False
__
BatchNorm2d 32 x 480 x 30 x 30 960 True
__
ZeroPad2d 32 x 480 x 32 x 32 0 False
__
BatchNorm2d 32 x 480 x 30 x 30 960 True
__
Identity 32 x 480 x 1 x 1 0 False
__
Identity 32 x 20 x 1 x 1 0 False
__
Identity 32 x 480 x 30 x 30 0 False
__
BatchNorm2d 32 x 80 x 30 x 30 160 True
__
MemoryEfficientSwish 32 x 20 x 1 x 1 0 False
__
Identity 32 x 80 x 30 x 30 0 False
__

8

BatchNorm2d 32 x 480 x 30 x 30 960 True
__
ZeroPad2d 32 x 480 x 32 x 32 0 False
__
BatchNorm2d 32 x 480 x 30 x 30 960 True
__
Identity 32 x 480 x 1 x 1 0 False
__
Identity 32 x 20 x 1 x 1 0 False
__
Identity 32 x 480 x 30 x 30 0 False
__
BatchNorm2d 32 x 80 x 30 x 30 160 True
__
MemoryEfficientSwish 32 x 20 x 1 x 1 0 False
__
Identity 32 x 80 x 30 x 30 0 False
__
BatchNorm2d 32 x 480 x 30 x 30 960 True
__
ZeroPad2d 32 x 480 x 34 x 34 0 False
__
BatchNorm2d 32 x 480 x 30 x 30 960 True
__
Identity 32 x 480 x 1 x 1 0 False
__
Identity 32 x 20 x 1 x 1 0 False
__
Identity 32 x 480 x 30 x 30 0 False
__
BatchNorm2d 32 x 112 x 30 x 30 224 True
__
MemoryEfficientSwish 32 x 20 x 1 x 1 0 False
__
Identity 32 x 112 x 30 x 30 0 False
__
BatchNorm2d 32 x 672 x 30 x 30 1,344 True
__
ZeroPad2d 32 x 672 x 34 x 34 0 False
__
BatchNorm2d 32 x 672 x 30 x 30 1,344 True
__
Identity 32 x 672 x 1 x 1 0 False
__
Identity 32 x 28 x 1 x 1 0 False
__
Identity 32 x 672 x 30 x 30 0 False

9

__
BatchNorm2d 32 x 112 x 30 x 30 224 True
__
MemoryEfficientSwish 32 x 28 x 1 x 1 0 False
__
Identity 32 x 112 x 30 x 30 0 False
__
BatchNorm2d 32 x 672 x 30 x 30 1,344 True
__
ZeroPad2d 32 x 672 x 34 x 34 0 False
__
BatchNorm2d 32 x 672 x 30 x 30 1,344 True
__
Identity 32 x 672 x 1 x 1 0 False
__
Identity 32 x 28 x 1 x 1 0 False
__
Identity 32 x 672 x 30 x 30 0 False
__
BatchNorm2d 32 x 112 x 30 x 30 224 True
__
MemoryEfficientSwish 32 x 28 x 1 x 1 0 False
__
Identity 32 x 112 x 30 x 30 0 False
__
BatchNorm2d 32 x 672 x 30 x 30 1,344 True
__
ZeroPad2d 32 x 672 x 33 x 33 0 False
__
BatchNorm2d 32 x 672 x 15 x 15 1,344 True
__
Identity 32 x 672 x 1 x 1 0 False
__
Identity 32 x 28 x 1 x 1 0 False
__
Identity 32 x 672 x 15 x 15 0 False
__
BatchNorm2d 32 x 192 x 15 x 15 384 True
__
MemoryEfficientSwish 32 x 28 x 1 x 1 0 False
__
Identity 32 x 192 x 15 x 15 0 False
__
BatchNorm2d 32 x 1152 x 15 x 15 2,304 True
__
ZeroPad2d 32 x 1152 x 19 x 19 0 False
__

10

BatchNorm2d 32 x 1152 x 15 x 15 2,304 True
__
Identity 32 x 1152 x 1 x 1 0 False
__
Identity 32 x 48 x 1 x 1 0 False
__
Identity 32 x 1152 x 15 x 15 0 False
__
BatchNorm2d 32 x 192 x 15 x 15 384 True
__
MemoryEfficientSwish 32 x 48 x 1 x 1 0 False
__
Identity 32 x 192 x 15 x 15 0 False
__
BatchNorm2d 32 x 1152 x 15 x 15 2,304 True
__
ZeroPad2d 32 x 1152 x 19 x 19 0 False
__
BatchNorm2d 32 x 1152 x 15 x 15 2,304 True
__
Identity 32 x 1152 x 1 x 1 0 False
__
Identity 32 x 48 x 1 x 1 0 False
__
Identity 32 x 1152 x 15 x 15 0 False
__
BatchNorm2d 32 x 192 x 15 x 15 384 True
__
MemoryEfficientSwish 32 x 48 x 1 x 1 0 False
__
Identity 32 x 192 x 15 x 15 0 False
__
BatchNorm2d 32 x 1152 x 15 x 15 2,304 True
__
ZeroPad2d 32 x 1152 x 19 x 19 0 False
__
BatchNorm2d 32 x 1152 x 15 x 15 2,304 True
__
Identity 32 x 1152 x 1 x 1 0 False
__
Identity 32 x 48 x 1 x 1 0 False
__
Identity 32 x 1152 x 15 x 15 0 False
__
BatchNorm2d 32 x 192 x 15 x 15 384 True
__
MemoryEfficientSwish 32 x 48 x 1 x 1 0 False

11

__
Identity 32 x 192 x 15 x 15 0 False
__
BatchNorm2d 32 x 1152 x 15 x 15 2,304 True
__
ZeroPad2d 32 x 1152 x 17 x 17 0 False
__
BatchNorm2d 32 x 1152 x 15 x 15 2,304 True
__
Identity 32 x 1152 x 1 x 1 0 False
__
Identity 32 x 48 x 1 x 1 0 False
__
Identity 32 x 1152 x 15 x 15 0 False
__
BatchNorm2d 32 x 320 x 15 x 15 640 True
__
MemoryEfficientSwish 32 x 48 x 1 x 1 0 False
__
Identity 32 x 320 x 15 x 15 0 False
__
BatchNorm2d 32 x 1280 x 15 x 15 2,560 True
__
AdaptiveAvgPool2d 32 x 1280 x 1 x 1 0 False
__
Dropout 32 x 1280 0 False
__
Linear 32 x 1000 1,281,000 True
__
MemoryEfficientSwish 32 x 1280 x 15 x 15 0 False
__

Total params: 1,323,016
Total trainable params: 1,323,016
Total non-trainable params: 0

Optimizer used: <function Adam at 0x7f318eebaef0>
Loss function: FlattenedLoss of LabelSmoothingCrossEntropy()

Callbacks:
- TrainEvalCallback
- Recorder
- ProgressCallback

[22]: learn.fine_tune(30)

<IPython.core.display.HTML object>

12

<IPython.core.display.HTML object>

[24]: learn.save('covidxraynet')

[24]: Path('models/covidxraynet.pth')

1.5 Interpretation

[25]: learn.show_results()

<IPython.core.display.HTML object>

13

[26]: learn.show_results()

<IPython.core.display.HTML object>

14

[27]: learn.show_results()

<IPython.core.display.HTML object>

15

[29]: interp = Interpretation.from_learner(learn)

<IPython.core.display.HTML object>

[30]: interp.plot_top_losses(6, figsize=(11,6))

[27]: learn.show_results()

<IPython.core.display.HTML object>

16

[32]: interp2.plot_confusion_matrix(figsize=(5,5), dpi=60)

[33]:

[33]:

interp2.confusion_matrix()

array([[95, 1, 4],
[0, 857, 28],
[0, 33, 561]])

[34]:

[34]:

interp2.most_confused(min_val=1)

[('pneumonia', 'normal', 33),
('normal', 'pneumonia', 28),
('COVID-19', 'pneumonia', 4),
('COVID-19', 'normal', 1)]

[34]:

[34]:

interp2.most_confused(min_val=1)

[('pneumonia', 'normal', 33),
('normal', 'pneumonia', 28),
('COVID-19', 'pneumonia', 4),
('COVID-19', 'normal', 1)]

[34]:

[34]:

interp2.most_confused(min_val=1)

[('pneumonia', 'normal', 33),
('normal', 'pneumonia', 28),
('COVID-19', 'pneumonia', 4),
('COVID-19', 'normal', 1)]

17

[36]: interp.plot_top_losses(9, figsize=(11,9))

[35]: interp.plot_top_losses(6, figsize=(11,9))

	Abstract
	Statement of Originality
	Acknowledgements
	List of Publications
	Authorship Attribution Statement
	Acronyms
	Contents
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1. Background
	1.2. Motivation
	1.3. Contributions
	1.4. Outline

	Chapter 2. Literature Review
	2.1. Introduction
	2.1.1. Contributions

	2.2. Radiology
	2.2.1. Understanding radiology text
	2.2.2. Understanding radiology images
	2.2.3. Understanding CXR findings

	2.3. Deep learning
	2.3.1. Activation function
	2.3.2. Convolutional neural network
	2.3.3. Recurrent neural networks
	2.3.4. Data augmentation
	2.3.5. Hyperparameters
	2.3.6. Software

	2.4. CXR datasets
	2.4.1. IU X-Ray
	2.4.2. ChestX-ray14
	2.4.3. CheXpert
	2.4.4. MIMIC-CXR
	2.4.5. PadChest
	2.4.6. COVID-19 datasets
	2.4.7. Private datasets
	2.4.8. Beyond CXR

	2.5. CXR report labeling
	2.5.1. Feature engineering approaches
	2.5.2. Deep learning approaches
	2.5.3. Beyond report labeling

	2.6. CXR image classification
	2.6.1. Binary
	2.6.2. Multi-label
	2.6.3. Multi-class
	2.6.4. Beyond CXR classification

	2.7. CXR computer-aided applications
	2.8. Evaluation
	2.8.1. Quantitative classification metrics
	2.8.2. Quantitative captioning metrics
	2.8.3. Qualitative measures

	2.9. Discussion and future directions
	2.10. Conclusion

	Chapter 3. Report Labeling
	3.1. Introduction
	3.1.1. Contributions

	3.2. Proposed CXRlabeler model
	3.2.1. Data preparation
	3.2.2. Language model
	3.2.3. Multi-label classifier

	3.3. Experiment
	3.4. Results and discussion
	3.5. Summary and conclusion

	Chapter 4. Binary Image Classification
	4.1. Introduction
	4.1.1. Contributions

	4.2. Proposed MultiViewModel
	4.2.1. Data preparation
	4.2.2. Structure overview
	4.2.3. Training stages

	4.3. Experiment
	4.4. Results and discussion
	4.5. Summary and conclusion

	Chapter 5. Multi-Label Image Classification
	5.1. Introduction
	5.1.1. Contributions

	5.2. Proposed Xclassifier model
	5.2.1. Data preparation
	5.2.2. Multi-label classifier

	5.3. Experiment
	5.4. Results and discussion
	5.5. Summary and conclusion

	Chapter 6. Multi-Class Image Classification: COVID-19 Detection
	6.1. Introduction
	6.1.1. Contributions

	6.2. Proposed CovidXrayNet model
	6.2.1. Proposed COVIDcxr dataset
	6.2.2. Data preparation
	6.2.3. Architecture

	6.3. Experiment
	6.4. Results and discussion
	6.4.1. Quantitative evaluation
	6.4.2. Qualitative evaluation
	6.4.3. Optimization in deep learning
	6.4.4. Limitation and future direction

	6.5. Summary and conclusion

	Chapter 7. Conclusion
	7.1. Summary of the proposed methods
	7.2. Summary of findings
	7.3. Future work

	Bibliography
	Appendix A. Poster
	MultiViewModel
	Xclassifier

	Appendix B. Jupyter Notebook
	CXRlabeler
	MultiViewModel
	Xclassifier
	COVIDcxr
	CovidXrayNet

