
Generalized dispersion Kerr solitons

Kevin K.K. Tam∗ and Tristram J. Alexander
Institute of Photonics and Optical Science, School of Physics, University of Sydney, 2006, Australia

Andrea Blanco-Redondo
Nokia Bell Labs, 791 Holmdel Road, Holmdel, New Jersey 07733, USA

C. Martijn de Sterke†

Institute of Photonics and Optical Science, School of Physics, University of Sydney, 2006, Australia and
University of Sydney Nano Institute, University of Sydney, 2006 Australia.

(Dated: September 5, 2022)

We report a continuum of pulse-like soliton solutions to the generalized nonlinear Schrödinger
equation with both quadratic and quartic dispersion and a Kerr nonlinearity. We show that the
well-known nonlinear Schrödinger solitons, which occur in the presence of only negative (anomalous)
quadratic dispersion, and pure-quartic solitons, which occur in the presence of only negative quartic
dispersion, are members of a large superfamily, encompassing both. The members of this family,
none of which are unstable, have exponentially decaying tails, which can exhibit oscillations. We
find new analytic solutions for positive quadratic dispersion and negative quartic dispersion and
investigate the soliton dynamics. We also find evidence that a combination of the quadratic and
quartic dispersion, rather than exclusively quadratic dispersion, is likely to improve the performance
of soliton lasers.

I. INTRODUCTION

Nonlinear Schrödinger (NLS) solitons, solitons that are
solutions to the nonlinear Schrödinger equation, have
been widely studied and have enabled a plethora of appli-
cations. They occur in a great variety of fields, including
water waves [1], Bose-Einstein condensates [2, 3], and
plasmas [4]. In an optics context, they are characterized
by quadratic dispersion and a Kerr nonlinear medium,
i.e., a medium in which the refractive index depends lin-
early on intensity [5]. Many generalizations have been
studied over the past decades, particularly higher-order
nonlinearities [6], and more complicated geometries [7]
with coupled modes involving different waveguides, po-
larizations, frequencies, propagation directions, or com-
binations of these. In comparison to this, deviations from
perfectly quadratic dispersion have not been widely stud-
ied and have generally been treated as a perturbation of
NLS solitons. Recently we studied Kerr nonlinear media
at a frequency where the dispersion is purely quartic, and
demonstrated experimentally and theoretically, that in
such media pure quartic solitons (PQSs) can arise [8, 9].
Though the experiments were carried out in a photonic
crystal waveguide, PQSs should similarly occur in optical
fibers [10] and in microresonators [11].

In practice it is difficult to achieve purely quadratic
or purely quartic dispersion. We therefore consider here
Kerr nonlinear media in the presence of both quadratic
and quartic dispersion, without treating either as a per-
turbation. We take the quartic dispersion coefficient to
be negative (β4 < 0), whereas the quadratic dispersion

∗ ktam6495@uni.sydney.edu.au
† martijn.desterke@sydney.edu.au

coefficient (β2) can have either sign. Nonlinear pulse
propagation in the presence of negative β2 and negative
β4 has been considered earlier [12], [13], [14], [15], [16],
[17], [18], [19]. Karlsson and Höök [12] found pulse-like
analytic solutions in the form of a squared hyperbolic se-
cant, whereas Akhmediev et al. [13] found that, depend-
ing on the parameters, the exponentially decaying tails of
these solutions can have additional oscillations. Buryak
and Akhmediev [14] studied the interactions between the
solitons, and also showed [15] that the solutions with the
oscillating tails may form bound states. The properties
of these bound states depend on the relative alignment
of the oscillations. Piché et al. [16] rederived the solu-
tions found by Karlsson and Höök, and also considered
the effect of nonzero β3. More recently, Roy and Bian-
calana [17] considered the propagation of high-intensity
pulses in specially designed slot waveguides in numerical
experiments. By considering a geometry that minimizes
Raman scattering, they found that it is possible to gen-
erate a large number of solitons, the spectral interference
of which leads to a continuum. The work of Bansal et
al. [18] and Biswas et al. [19] concentrates on finding
analytic solutions in the presence of quartic and cubic
dispersion.

In this paper, we demonstrate that NLS solitons and
PQSs are in fact part of a single continuous soliton super-
family, which we refer to as Generalized Dispersion Kerr
Solitons (GDKSs), that also includes the set of analytic
solutions for β2 < 0 and β4 < 0 reported by Karlsson
and Höök [12]. By considering the tails of the solutions
we can, based on analytic arguments, divide the param-
eter space into three distinct areas: (i) a region where
the solutions have straight exponential tails; (ii) a region
where the solutions have exponential tails with oscilla-
tions; and (iii) a region where no pulse-like solutions ex-
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ist. We find that near the boundary of regions (ii) and
(iii) the solutions take the form of a carrier with a slowly
varying envelope, and show that the envelope, which in
fact is the envelope of an envelope, satisfies the nonlinear
Schrödinger equation.

One application of NLS solitons is in lasers, where
they facilitate the formation of well-defined, short pulses.
However, soliton lasers, which currently exploit only
quadratic dispersion, are limited to low energies. Though
we do not perform a detailed laser analysis, we discuss the
potential of GDKSs for use in ultrafast lasers, and show
that the presence of quartic dispersion may improve the
laser performance. This potential application for PQSs
was hinted at as early as 1994 [20], but was never sys-
tematically investigated.

The outline of this paper is as follows: in Section II
we review current knowledge of solitons with quadratic
and quartic dispersion. In Section III we demonstrate
that conventional NLS solitons and PQSs are members
of a single superfamily. Then in Section IV we classify
the members of this superfamily based on the behaviour
of their tails. In Section V we consider novel approxi-
mate analytic solutions in a limiting case. The scaling of
the solutions is discussed in Section VI, followed in Sec-
tion VII by a discussion of the effects of cubic dispersion,
and a discussion in Section VIII of the dynamics of the
solutions. Finally, in Section IX we discuss our results
and conclude.

II. BACKGROUND

The propagation of high-intensity, nonlinear pulses in
optical fibers is described by the nonlinear Schrödinger
equation [5]

i
∂ψ

∂z
− β2

2

∂2ψ

∂τ2
+ γ|ψ|2ψ = 0, (1)

where ψ is the complex envelope of the electric field which
modulates the underlying carrier wave, τ is the retarded
time in the frame of the pulse, z is the propagation dis-
tance, β2 is the quadratic dispersion parameter obtained
by Taylor expansion of the dispersion relation about the
carrier frequency, and γ is the nonlinear parameter. The
nonlinear Schrödinger equation (1) is integrable and has
soliton solutions [5]. These maintain their hyperbolic se-
cant shape upon propagation by balancing anomalous
quadratic dispersion (β2 < 0) with positive Kerr non-
linearity (γ > 0) [21], and take the form

ψ(τ, z) =

√
2µ

γ
sech

(√
2µ

|β2|
τ

)
eiµz, (2)

where parameter µ gives the rate of change of the phase
due to the nonlinearity. Different values of µ correspond
to different particular solutions, taken from a family of
conventional solitons with the same shape, but varying
peak powers and widths. In this case, peak power in-
creases monotonically with µ.

In 2016, Blanco-Redondo et al. experimentally discov-
ered PQSs in a photonic crystal waveguide at a carrier
frequency where β2 and the cubic dispersion parameter
β3 were negligible [8]. Instead, the leading order of dis-
persion was quartic, so that the pulse envelope is de-
scribed by a generalized NLS equation

i
∂ψ

∂z
+
β4

24

∂4ψ

∂τ4
+ γ|ψ|2ψ = 0, (3)

where β4 is the quartic dispersion parameter. While
this equation is non-integrable, in a recent comprehen-
sive paper [9] we numerically demonstrated the existence
of PQSs for β4 < 0, with temporal profiles character-
ized by exponentially decaying tails with additional os-
cillations. PQSs obey a favourable energy-width scaling
U ∼ w−3, as opposed to U ∼ w−1 for NLS solitons [9].
Since Eq. (3) is non-integrable, PQSs are technically not
solitons. But for convenience, we use the term “soliton”
for the solutions discussed in this paper.

Here we consider pulse propagation and the existence
of solitons under the combined effects of different orders
of dispersion. Higher orders of dispersion have tradition-
ally been treated as perturbations to the NLS solitons,
becoming important for sub-picosecond pulses because
of their large bandwidths. We consider the generalised
nonlinear Schrödinger equation

i
∂ψ

∂z
− β2

2

∂2ψ

∂τ2
+
β4

24

∂4ψ

∂τ4
+ γ|ψ|2ψ = 0, (4)

where β2 and β4 are obtained by Taylor expansion of the
dispersion relation about the frequency ω0 where β3 = 0.
Over the last decades, a number of authors have consid-
ered this equation [12], [13], [15], [16], [17], all of whom
considered β2 < 0 and β4 < 0. In particular, in 1994
Karlsson and Höök [12] reported analytic solutions (for
β2 < 0 and β4 < 0)

ψ(τ, z) = 3

√
β2

2

5β4
sech2

(√
3β2

β4
τ

)
exp

(
i

24β2
2

25|β4|
z

)
, (5)

with an equivalent solution later reported by Piché et al.
[16]. Unlike the PQS, the temporal profile of Eq. (5) has
exponentially decaying tails. For each value of β2 and β4,
there exists a single solution (5) with fixed peak power,
width and

µ =
24β2

2

25|β4|
. (6)

This should be contrasted with NLS solitons and PQSs,
where µ remains a free parameter. The isolated solu-
tion (5) can be understood by examining the scaling
properties of Eq. (4). Amongst the four terms in Eq. (4),
only 3 quantities (ψ, z, τ) can be rescaled for fixed values
of β2, β4 and γ. As such, the scaling relations observed
for NLS solitons and PQSs do not apply. However, we
will see in Section VI that in the presence of both β2 and
β4 a more general scaling relation can be established.
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NLS solitons are solutions for β2 < 0 and β4 = 0,
and PQSs exist when β4 < 0 and β2 = 0, whereas the
isolated solutions of Karlsson and Höök exist for β2 < 0
and β4 < 0. The natural question is whether these three
types of solution are related to each other and whether
other related types of solution are possible. We now turn
to these questions.

III. RELATIONSHIP BETWEEN PURE
QUARTIC SOLITONS AND CONVENTIONAL

SOLITONS

We search for stationary solutions to Eq. (4) which
maintain their shapes throughout propagation, i.e.,

ψ(τ, z) = u(τ)eiµz (7)

in the β2, β4 < 0 quadrant of parameter space in Fig. 1a
bounded by PQSs (vertical axis; blue) and conventional
solitons (horizontal axis; red). Here, and in the remain-
der of this paper we only consider the case µ > 0, which
is associated with pulse-like solutions, i.e. ψ → 0 as
τ → ±∞. Localized solutions do not exist for µ < 0
due to resonance with the linear wave spectrum. With
ansatz (7), Eq. (4) becomes a nonlinear ordinary differen-
tial equation for the temporal profile u(τ), which we take
to be real to describe a uniform temporal phase, leading
to

−µu− β2

2
u′′ − |β4|

24
u′′′′ + γu3 = 0. (8)

We solve Eq. (8) numerically by the Newton conjugate-
gradient method [22]. Given a sufficiently accurate ini-
tial guess u0(τ), the method converges upon the exact
stationary solution u(τ) by computing successive correc-
tions. We use known solutions such as the PQS or the
NLS solitons as initial guesses u0(τ) to a stationary so-
lution at a nearby point in the β2 − β4 parameter space
(Fig. 1a). By gradually modifying the dispersion param-
eters, we trace a path (black) in the parameter space,
and explore the limits of existence for soliton formation.

We define the two paths in the parameter space in
Fig. 1a so as to link the PQS, indicated by a blue dot,
with NLS solitons, indicated by the red dot. The paths
are otherwise chosen arbitrarily, to illustrate that the
PQS and the NLS solitons are connected to each other
by small successive variations of the parameters β2 and
β4. Indeed, we find that at each point along the path in
Fig. 1a, there is a soliton for any positive value of µ. To
illustrate this, starting with the PQS, indicated by the
blue dot in Fig. 1a, we show the power |u|2 of the solu-
tion for a particular value of µ = 1.78 mm−1 in Fig. 1b.
The oscillating tails are characteristic of PQSs [9]. As
we approach the horizontal axis (red) corresponding to
NLS solitons, while keeping µ constant, the period of
the oscillating tails increases (Fig. 1c), until the tails be-
come exponentially decaying (Fig. 1d) as for NLS solitons
(Fig. 1e). Thus, we can continuously deform PQSs into

NLS solitons, passing the analytic Karlsson and Höök
solutions along the way (Fig. 1d). Evidently there ex-
ists a general soliton family at each value of β2, β4 < 0
and peak power (specified by µ) which continuously joins
all previously known classes of solutions: PQSs, conven-
tional solitons, and the solutions reported by Karlsson
and Höök [12].

PQS

NLS

Karlsson 
& Höök

b)

c)
d)

e)
a)

b) c)

d) e)

PQS

NLS

Karlsson 
& Höök

b)

c)
d)

e)
a)

b) c)

d) e)

FIG. 1: (a) β2 versus β4 parameter space for fixed
µ = 1.78 mm-1. The horizontal axis (red) represents

conventional NLS solitons while the vertical axis (blue)
represents PQSs. The grey dashed curve represents the
family of Karlsson and Höök solutions at this value of
µ. (b)-(e) Power (logarithmic scale) versus time for

stationary solutions indicated in (a).

The solutions we have found represent part of the
GDKS superfamily. We now classify the members of
this family, and demonstrate that they are not limited
to β2 < 0.
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IV. CLASSIFICATION OF THE GDKS
SUPERFAMILY

We classify the GDKS family by an analytic descrip-
tion of their tails. In the low-power tails, we can discard
the nonlinear term in Eq. (8) and find (see also [13], [15],
[23], [24])

−µu− β2

2
u′′ − |β4|

24
u′′′′ = 0, (9)

which has solutions that are linear combinations of terms
of the form eλτ , where the λ are given by

λ2 = −6β2

|β4|
±

√
36β2

2

β2
4

− 24µ

|β4|
. (10)

The roots λ are either all real (±λ1, ±λ2) or occur in
complex conjugate pairs (±λ, ±λ∗). We classify these
configurations on the β2 versus µ parameter diagram of
Fig. 2a, with a fixed β4 = −1 ps4 mm-1 which is a typical
value for photonic crystal waveguides [8]. Let

µ0 ≡
3β2

2

2|β4|
(11)

denote the critical value of µ where the discriminant in
Eq. (10) vanishes [13]. This results in a degeneracy where
the roots λ become all real if β2 < 0 and all imaginary if
β2 > 0. As such we have three regions in the parameter
diagram of Fig. 2a: µ > µ0 (grey), µ < µ0 and β2 < 0
(white), µ < µ0 and β2 > 0 (black). We discuss each
of these regions in turn. We note that similar analyses
has been carried out before. Akhmediev et al. [13] and
Buryak and Akhmediev [15] consider the case of β2 < 0,
whereas Buffoni et al. [23] and Champneys and Toland
[24] consider the case with quadratic nonlinearity.

A. β2 < 0; µ < µ0

For β2 < 0 and µ < µ0, all λ’s are real (Fig. 2b), so
these solitons have exponentially decaying tails without
oscillations (Fig. 2e). These solutions are represented by
the white region under the red parabola µ = µ0 in Fig. 2a.
The solutions found by Karlsson and Höök [12], repre-
sented by Eq. (6), firmly lie within this region as expected
from the sech2 temporal profile (see Eq. (5)). Since β4 is
fixed in Fig. 2a, conventional solitons lie infinitely far to
the left, which is also under the red parabola µ = µ0.

B. β2 > 0; µ < µ0

For β2 > 0 and µ < µ0, all λ’s are imaginary (Fig. 2d).
As such, the linear tails are purely oscillatory. Therefore,
in Fig. 2a, there are no localized pulse-like solutions in
the black region under the red parabola µ = µ0. As
our focus is on localized solutions, we do not discuss this
region further.

FIG. 2: (a) µ vs β2 parameter diagram of solutions to
Eq. (8), for fixed β4 = −1 ps4 mm-1. (b)-(d)

Configurations of roots λ in the complex plane (see
Eq. (10)), corresponding to each of the coloured regions
in (a). (e) Power (logarithmic scale) versus time for the
stationary solution corresponding to (b). (f) Same as in

(e), but corresponding to (c).

C. µ > µ0

For µ > µ0 and any β2, λ is complex (Fig. 2c). Al-
though the nature of the linear exponentially decaying
solutions we are considering here does not guarantee the
existence of pulse-like nonlinear solutions [13], particu-
larly for β2 > 0, our numerical investigations outlined
below indicate that such solutions indeed exist. These
solutions are represented by the grey region above the
red parabola µ = µ0. The real part of λ gives the decay
rate of the tails while the imaginary part gives the os-
cillation period. These solitons must have exponentially
suppressed oscillations in the tails (Fig. 2f). The expo-
nential decay rate decreases when moving towards the
right of the diagram, and so the solitons become increas-
ingly wide. The PQSs, represented by the blue vertical
axis, lie firmly within this region. For β2 < 0, there is
less than one oscillation per e2π increase in u(τ), whereas
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for β2 > 0 there is more than one oscillation for the same
increase. Figure 2a shows that for β2 > 0 these solutions
have a threshold in terms of µ. We comment on this in
Section V.

V. META-ENVELOPE SOLITONS

We saw in Section IV C that solitons become increas-
ingly wide on the right side of the parameter diagram
in Fig. 2. Indeed, as we approach the red parabola in
Fig. 2a, i.e. µ → µ0, the characteristic time of decay in
the tails becomes substantially larger than the period of
oscillation, giving rise to solutions such as the blue curve
in Fig. 3a.

In this limit the solutions can be thought of as rapid
oscillations, modulated by a slowly varying envelope (red
curve in Fig. 3a). Using multiple scales analysis [25], we
isolate the envelope and neglect the oscillations which
arise solely due to linear dispersion. To do this we in-
troduce a small parameter ε, which is used to separate
terms that differ greatly in magnitude.

We expand µ about the critical value µ0 as defined in
Eq. (11) by the parametrization

µ = µ0(1 + ε2). (12)

Equation (10) then becomes

λ2 = −6β2

|β4|
(1± iε). (13)

For ε� 1, Eq. (13) reduces to

λ ≈ ±i

√
6β2

|β4|

(
1± iε

2

)
. (14)

The imaginary part gives an oscillation frequency

ωc ≡
√

6β2/|β4|, (15)

independent of ε. In the linear limit, 1/πε oscillations
correspond to a 1/e decay in the tails. Thus, we are
motivated to describe the soliton as

u(τ) = εf(ετ) cos (ωcτ) , (16)

where, since ε is a small parameter, f(ετ) is a slowly-
varying envelope. Recall, though, that u(τ) (blue curve
in Fig. 3a) in Eq. (8) itself describes a wave envelope
modulating an underlying carrier [5]. Thus εf(ετ) is in
fact an envelope of an envelope, which we refer to as a
meta-envelope (red curve in Fig. 3a).

To understand the significance of the meta-carrier fre-
quency ωc, consider the dispersion relation around ω0,
with β2 > 0 and β4 < 0

∆β =
β2

2
∆ω2 +

β4

24
∆ω4, (17)

where ∆ω is the frequency offset from the expansion fre-
quency ω0, ∆β is the propagation constant offset from
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FIG. 3: (a) Power versus time for highly oscillatory
solution (blue solid) for β4 = −2.2 ps4 mm-1 β2 = 0.81

ps2 mm-1 µ = 1 mm-1 γ = 1 W-1 mm-1. The
corresponding meta-envelope is given by the red dashed
curve. (b) Spectral amplitude of the stationary solution

of (a). (c) 2D Fourier transform of the stationary
solution of (a), with the spectral amplitude from (b)

shown by the colour scale. The linear dispersion
relation is represented by the blue dashed curve.

its value at ω0, and β2 and β4 are the dispersion coef-
ficients about ∆ω = 0. This dispersion relation is illus-
trated by the solid curve in Fig. 4. It has two maxima
at ∆ω = ±ωc, where ∆β takes the cutoff value µ0 (see
Eq. (11)). As indicated in Fig. 3c, the soliton dispersion
relation for ε � 1 (coloured line) is thus on the verge
of intersecting with the linear dispersion relation (blue
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dashed), which would lead to instability by radiation.
The local curvature of the dispersion relation at ±ωc is
negative (i.e. anomalous), and has the value −2β2, as
can be found by taking the second derivative of Eq. (17)
at ±ωc.

μ0 ωcωc

Δβ

Δω

FIG. 4: Dispersion relation (17) (solid curve) for β2 > 0
and β4 < 0. When the frequency spectrum of the field is

concentrated around the two maxima, the dispersion
relation can be approximated by the dashed curve.

The meta-envelope f in ansatz (16) corresponds to the
slowly-varying envelope that multiplies the underlying
carrier at the two maxima in the dispersion relation in
Fig. 4. By the convolution theorem of Fourier transforms,
we would expect the spectrum of u(τ) to be highly local-
ized around those maxima, consistent with Fig. 3b and
c.

To continue our multiple scales analysis, we substitute
Eq. (12) and Eq. (16) into Eq. (8), and equate terms of
the same order in ε. The O(ε) and O(ε2) terms are found
to be

O(ε) : −µ0f cos(ωcτ) + ω2
c

β2

2
f cos(ωcτ)

−ω4
c

|β4|
24

f cos(ωcτ) = 0, (18)

O(ε2) : ωcβ2f
′ sin(ωcτ)− ω3

c

|β4|
6
f ′ sin(ωcτ) = 0.

The first of these is satisfied because we have chosen ωc
to satisfy Eq. (17) when ∆β = µ0. The second is satisfied
because at ±ωc the inverse group velocity vanishes. The
first non-trivial result then comes at O(ε3), for which

−µ0f cos(ωcτ)− β2

2
f ′′ cos(ωcτ)

ω2
c

|β4|
4
f ′′ cos(ωcτ) + γf3 cos3(ωcτ) = 0 (19)

We truncate the perturbation expansion at O(ε3). This
means that we neglect cubic and quartic dispersion in the
two narrow frequency ranges for which the meta-envelope
spectrum is appreciable (see Fig. 3b and c), and corre-
sponds to approximating dispersion relation (17) by the
dashed curve in Fig. 4, which has the same value and cur-
vature as the original dispersion relation at ∆ω = ±ωc.

We now rewrite Eq. (19) as

−µ0f cos(ωcτ)− −2β2

2
f ′′ cos(ωcτ) + γf3 cos3(ωcτ) = 0.

Multiplying by cos(ωcτ) and averaging over a period
gives an NLS equation for the meta-envelope

−µ0f −
−2β2

2
f ′′ +

3

4
γf3 = 0. (20)

We recover the full spatial dependence if we take the
ansatz ψ(τ, z) = εf(ετ) cos(ωcτ) exp(iµ0(1 + ε2)z) in
Eq. (4).

i
∂F

∂Z
− −2β2

2

∂2F

∂T 2
+

3

4
γF 3 = 0, (21)

where Z = ε2z, T = ετ and F = εf(T ) exp(iµ0Z) are
slowly varying variables. Equation (21) may be recog-
nized as the nonlinear Schrödinger equation. Although
the quadratic dispersion is normal at the expansion fre-
quency ω0, the effective quadratic dispersion parameter
in Eq. (21) is β2, c = −2β2, corresponding to the anoma-
lous dispersion at the actual carrier frequency ∆ω = ±ωc.
The effective nonlinearity is reduced to 3γ/4 since a frac-
tion γ/4 is associated with the third harmonic, i.e.

cos3(ωcτ) =
3

4
cos(ωcτ) +

1

4
cos(3ωcτ). (22)

The fact that the nonlinear Schrödinger equation arises
in this context is perhaps not surprising since it gener-
ally can be shown to apply to the envelope of nonlinear
Hamiltonian systems [25].

Equation (21) is solved by hyperbolic secant-shaped
meta-envelopes

F (T,Z) = 2ε

√
β2

2

γ|β4|
sech

(√
3β2

2|β4|
T

)
eiµ0Z . (23)

We refer to these as fundamental meta-solitons, in anal-
ogy to the conventional fundamental solitons. We have
tested the accuracy of this meta-envelope description by
comparing with numerical solutions of the full Eq. (8).
Fig. 5 shows that percentage error in peak power pre-
dicted by Eq. (23) is less than 10% for ε < 0.6.
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FIG. 5: Percentage error in the meta-envelope peak
power compared with numerical solutions as a function

of the expansion parameter ε.

Higher order meta-solitons, in analogy to higher order
conventional solitons, would also be expected [26]. In
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Fig. 6a, we multiply the amplitude of a highly oscilla-
tory solution (ε = 0.05) by a factor of N = 2, where N
is analogous to the soliton number for conventional soli-
tons. By the split-step numerical method, we simulate
its propagation. As shown in Fig. 6b, the meta-envelope
periodically contracts and returns to its original shape,
similar to higher order conventional solitons. The period
of evolution is as expected from soliton theory

Lm =
π

2
LGVD =

πT 2
0

4|β2|
, (24)

where

T0 =

√
2|β4|
3β2

1

ε
(25)

is the half-width at sech2(1) ≈ 0.42 of the intensity
maximum of the meta-envelope. Over this meta-soliton
period, the radiation of energy into dispersive waves is
gradual, which indicates that deviations from the meta-
envelope description are small.
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FIG. 6: (a) Power versus time at various propagation
distances for stationary solution of Fig. 3 multiplied

with an amplitude multiplier N = 2. (b) Power versus
time for the input pulse in (a). (c) Pulse in (b) after
propagation by 5 meta-soliton periods πT 2

0 /(4|β2|)
Having found the meta soliton solutions, we can now

understand the finite threshold of µ for β2 > 0. As dis-
cussed below Eq. (17), at the expansion frequency ω0 the
dispersion is normal and bright solitons thus do not exist
at low peak powers. Solitons are only possible once the

peak power reaches a threshold, where the soliton spec-
trum attains sufficient width so as to sense the anomalous
dispersion at ∆ω = ±ωc.

VI. SCALING OF GDKS

Generalized NLS equation (8) is invariant under the
following rescaling of the amplitude u, temporal and spa-
tial coordinates τ , z and dispersion coefficients β2, β4:

u→ αu µ→ α2µ

β2 → δ1/2αβ2 β4 → δβ4 τ → δ1/4α−1/2τ. (26)

To see the significance of such a transformation, consider
first the case where δ = 1. This keeps β4 constant and
thus generates the entire parameter diagram of Fig. 2.
The values of β2 and µ that result as α varies lie on the
same half-parabola µ ∼ β2

2 as the original values. Thus,
all the stationary solutions on such half-parabolas, such
as the Karlsson & Höök solutions given by Eq. (6), are
simply rescaled versions of one another with altered peak
powers and pulse widths. Likewise, for equal values of
ε (see Eq. (12)), the meta-soliton solutions discussed in
Sec. V are related by this transformation. Seen this way,
the PQS corresponds to the degenerate case where the
two half-parabolas coincide.

In the general case of the transformations of Eq. (26),
the combination µ|β4|/β2

2 remains unchanged. We thus
define the dimensionless GDKS shape parameter as

σ =

√
3

2µ|β4|
β2, (27)

where the factor 3/2 was included such that σ = ±1
corresponds to the red parabola separating the various
regions in Fig. 2. σ = 0 corresponds to the PQSs (blue
line in Fig. 2). The Karlsson & Höök solutions (green
dashed in Fig. 2; Eq. (6)) are given by σ = −5/4. No
localized solutions exist for σ > 1.

We can reformulate the GNLS Eq. (8) in terms of
the GDKS parameter. Suppose we parametrize β2 =
σ
√

2µ|β4|/3 in terms of σ. Eq. (8) then becomes

−u− σ

√
|β4|
6µ

u′′ − |β4|
24µ

u′′′′ + γu3 = 0. (28)

If we define a normalized amplitude and time as

U =

√
γ

µ
u, T =

(
24µ

|β4|

)1/4

τ, (29)

then Eq. (28) becomes

U + 2σU ′′ + U ′′′′ = U3. (30)

Thus this system of mixed quadratic and quartic disper-
sion is solely characterized by the GDKS shape param-
eter, which describes the relative strength of β2 and β4.
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As we increase the peak power and thus µ, larger val-
ues of β2 are required to maintain the same value of σ.
This is because the solutions become spectrally wider and
the quartic dispersion thus becomes more dominant over
quadratic dispersion for a fixed value of β4.

Each value of σ describes a family of solitons existing
for all values of β2 and β4 with the appropriate signs,
and that are related by the scaling relations (26). In
other words, all the solutions which exist in the three-
dimensional parameter space (β2, β4, µ), can be repre-
sented by a single parameter σ. Solutions with the same
value of σ have the same shape, i.e., they are related
to each other by linear transformations of the horizontal
and vertical axes. A similar one-parameter parametriza-
tion was reported earlier by Akhmediev et al [13]. The
solutions at each σ can thus be characterized by quan-
tities that are invariant under the transformations (26).
One such quantity is the time-bandwidth product, which
is the product of the full-width at half-maximum of
the temporal and spectral intensity profiles. The time-
bandwidth product (TBP) versus σ is shown in Fig. 7. It
is not well-defined in the meta-envelope region (σ → 1),
where the temporal profile becomes increasingly oscilla-
tory (see Fig. 3a), since the spectrum develops two dis-
tinct maxima. We note that another natural choice of
metric, the root-mean-square time-bandwidth product,
diverges for σ > 0.5. This is why we only show results
for σ < 0.5. Note that the time-bandwidth product in-
creases monotonically with σ. At σ = 0 we find that
the time-bandwidth product is 0.53, consistent with the
result found earlier for PQSs [9]. As σ becomes large
and negative it approaches the value 0.32 for hyperbolic
secant pulses. This means that, for the same pulse dura-
tion, the pulse’s bandwidth increases with increasing σ.
This is not surprising, perhaps, since the oscillations in
the tails, the amplitude of which increases with σ, intro-
duce additional frequencies that lead to spectral broad-
ening.
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FIG. 7: Time-bandwidth product versus GDKS shape
parameter σ.

We now turn to the energy-width scaling within the
GDKS family. To contrast the effects of varying β2 and
β4, we focus on solutions which lie on the black line in

the β2 − β4 parameter plane of Fig. 1a, which joins a
conventional soliton (red) with a PQS (blue). The corre-
sponding values of β2 and β4 are shown on the horizontal
axis of Fig. 8, which shows the pulse energy (colour scale)
as a function of pulse width w (vertical axis) for the speci-
fied values of the dispersion parameters. To provide some
idea of the magnitudes of these parameters, we have cho-
sen the dispersion parameters to be consistent with those
in the experiments of Blanco-Redondo et al. [8].

Undefined 
FWHM

𝛽"	(ps"mm())
-0.2              -1.2            -2.2             -3.2            -4.2

FIG. 8: Energy of stationary solutions versus specified
values of β2 and β4 (varying according to the straight
part of the contour in Fig. 1) and pulse width. Red
solid line represents the NLS solitons while the blue

dashed line represents the PQSs.

The figure shows that for long pulses, the highest pulse
energies lie to the left in Fig. 8. This means that neg-
ative β2 is more important than negative β4 in achiev-
ing high pulse energies at relatively large pulse widths.
The top right of the diagram corresponds to the highly
delocalized solutions when β2 > 0, for which the full-
width at half-maximum is not well-defined (Section V).
In contrast, for sufficiently narrow pulses, the highest
pulse energies lie to the right of Fig. 8, beyond even the
PQSs (blue dashed). This implies that in the design of
soliton supporting platforms, it is possible to go beyond
the advantageous PQS energy scaling [2] by considering
a dispersion relation with moderate positive values of
β2. However, this comes at the expense of more oscil-
latory behavior in the tails of the pulses. This presents
a clear trade-off in laser applications, for instance, where
a higher energy at a fixed width can be obtained at the
expense of increasingly prominent oscillations in the tails.

VII. EFFECTS OF CUBIC DISPERSION: β3 6= 0

Having ignored cubic dispersion until now, we turn
to its effect on GDKS formation. The generalized NLS
equation that includes β3 reads

i
∂ψ

∂z
− β2

2

∂2ψ

∂τ2
− iβ3

6

∂3ψ

∂τ3
− |β4|

24

∂4ψ

∂τ4
+γ|ψ|2ψ =0, (31)



9

This equation was studied by Piché et al. [16] who
showed that when β3 is sufficiently small, corresponding
to β2(ω) not changing sign over the width of the pulse
spectrum, then the pulse moves slowly with respect to
the rest frame, but is otherwise unchanged. Stationary
solutions for nonzero β3, for which the phase depends on
τ , were reported by Kruglov and Harvey [27]. However,
such a time-dependence can be interpreted as a shift ∆ω
in the carrier frequency away from the expansion fre-
quency ω0 where the dispersion parameters β2,3,4 were
defined by Taylor expansion. Indeed it is more natu-
ral to perform this expansion about the actual carrier
frequency ω0 + ∆ω. The value of ∆ω in the solutions of
Kruglov and Harvey corresponds to the unique frequency
on a quartic dispersion relation where β3 vanishes

∆ω = −β3

β4
. (32)

As such, the solutions of Kruglov and Harvey, which also
have a sech2 amplitude profile, are the Karlsson and Höök
solutions (Eq. 5) when viewed in the more natural rest
frame of the carrier, where β3 = 0.

Now consider a more general ansatz for a moving soli-
tary wave

ψ(τ, z) = u
(
τ − z

v

)
eiµz (33)

where the real amplitude profile u now travels at an in-
verse velocity v−1 relative to the rest frame of the expan-
sion frequency ω0. Substituting Eq. (33) into Eq. (31),
the imaginary part gives

−1

v
u′ − β3

6
u′′′ = 0 (34)

as an additional constraint to the (real) Eq. (8). We have
found that this additional constraint is inconsistent with
the solutions to Eq. (8), unless v−1 = 0, which means
that the group velocity of the pulse is equal to that at
ω = ω0. We thus find that for real u, the generalized
ansatz (33) does not contribute solutions in addition to
the solutions following from ansatz (7).

VIII. DYNAMICS

We now turn to the dynamical properties of GDKSs.
We apply small normal mode perturbations f, g � 1 to
a GDKS u(τ) [28]

ψ(τ, z) =
(
u(τ, z) + f(τ)eΛz + g∗(τ)eΛ∗z

)
eiµz. (35)

Λ,Λ∗ are eigenvalues characterizing the evolution of the
conjugate modes f, g, which are coupled by the nonlinear-
ity. Substituting Eq. (35) into Eq. (4) and retaining only
terms linear in f, g gives the system of coupled ODEs

−β2

2
f ′′− |β4|

24
f ′′′′+(2γu2 − µ)f+γu2g = −iΛf,

β2

2
g′′+

|β4|
24

g′′′′− (2γu2−µ)g− γu2f =−iΛg. (36)

These may be solved numerically by expressing f, g in
terms of Fourier series [22]. The linearized eigenspectrum
of the GDKS for β2 = 0.7 ps2 mm-1, β4 = −1 ps4 mm-1

and µ = 1 mm-1 is shown in the complex plane in Fig. 9a.
We observe that all eigenvalues Λ are imaginary, indicat-
ing that no linear perturbations grow exponentially. We
have observed that the entire GDKS family is linearly
stable.

We focus on the features of the eigenspectrum in
Fig. 9a. The green star shows the zero eigenvalues which
correspond to the translational and phase invariance of
Eq. (4). The red lines represent a continuum of high
spatial frequency modes which are unbound by the po-
tential of the soliton. Such perturbations radiate into
the far field as dispersive waves. Isolated discrete eigen-
values (blue diamonds), which must occur in conjugate
pairs, correspond to internal modes [28]. These are per-
sistent small-amplitude shape oscillations which decay
only by the nonlinear generation of higher harmonics ly-
ing within the dispersive wave continuum. Unlike NLS
solitons, which have no internal modes [29], and the sin-
gle symmetric internal mode of the PQS [9], the GDKS
in Fig. 9a has two internal modes. The smaller eigen-
value corresponds to a symmetric mode, where energy is
exchanged between the central maximum and the adja-
cent tail maxima. On the contrary, the larger eigenvalue
represents an antisymmetric mode where energy is ex-
changed between the two sides of the pulse while the
central maximum remains unchanged. This mode profile
is shown in Fig. 9b. The thick red and thin blue solid
curves depict the conjugate modes f and g corresponding
to the shapes of different phases of the shape oscillation.
The yellow dashed curve shows the soliton for compari-
son.

Fig. 9c shows the result of subjecting the GDKS to a
5% perturbation by the antisymmetric internal mode of
Fig. 9b. The observed oscillation period is as predicted
by

Tint =
2π

|Λint|
, (37)

where Λint is the internal mode eigenvalue. We can also
observe such internal modes by generating GDKSs from
Gaussian inputs in split-step propagation simulations.
As the pulse sheds energy in order to develop the correct
shape of a GDKS, the internal mode(s) of the correspond-
ing soliton is excited, leading to out-of-phase oscillations
in the peak power and temporal width of the pulse. The
equilibrium peak power and pulse width of such oscilla-
tions match the values for our numerical solutions to the
GDKS superfamily.

While a complete characterization of the internal
modes throughout the parameter plane of Fig. 2 is be-
yond our current scope, the single internal mode ob-
served for the PQS [9] appears to vanish for sufficiently
large values of |β2|. In this case, the oscillations in peak
power and pulse width upon perturbation are exponen-
tially damped. As we approach the metasoliton regime,
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multiple internal mode eigenvalues bifurcate from the
continuum, and beat with one another upon excitation.
Sufficiently close to the cutoff µ = µ0 we expect to ob-
serve no internal modes due to the integrability of the
metaenvelope NLS Eq. (21).

IX. DISCUSSION AND CONCLUSIONS

We have provided a comprehensive description of soli-
tons in the presence of a Kerr nonlinearity and quadratic
and quartic dispersion. We propose the term General-
ized Dispersion Kerr Solitons (GDKS) to refer to the su-
perfamily of soliton solutions existing in this parameter
space, which includes the notable cases of NLS solitons
and PQSs, and which are characterized by the single pa-
rameter σ. Since dispersion relations dominated by an
even order of dispersion can at least in principle be iso-
lated from the soliton spectrum, we might infer that this
superfamily should also encompass soliton solutions in
the presence of higher orders of even dispersion (β6, β8,
etc.), although a systematic study of these solutions re-
mains to be carried out.

We note that for the solutions we have discussed their
frequency and wavenumber content does not overlap with
the linear dispersion relation. This is illustrated, for ex-
ample in Fig. 3c, which shows a small, but finite gap
between the dashed curve, which represents the linear
dispersion relation, and the horizontal line, which repre-
sents the nonlinear pulse. By the argument of Akhme-
diev and Karlsson [30], this implies that the nonlinear
pulse is stable against radiation losses, consistent with
the analysis in Section VIII.

One of our satisfying findings is that the solutions
found by Karlsson and Höök [12] naturally fit in the clas-
sification outlined in Fig. 2. One reason, perhaps, why
analytic solutions can be found is that, for the associ-
ated µ given in Eq. (6), the exponential tails are super-
positions of terms that vary as e±λτ and e±2λτ . In other
words, deep in the tails the exponential decay rates differ
by exactly a factor 2. It is straightforward to see that in
the presence of a Kerr nonlinearity this leads to terms
of the form e±mλτ , where m is a positive integer. This
may motivate the search for analytic solutions where the
decay rates are related by other simple rational ratios.

In Section VII we discussed aspects of the effect of
β3. As a more general comment than the particular dis-
cussion in that section, we note that we did not find
any solutions when β3 6= 0 consistent with ansatz (7).
This means that all solutions we find travel at the group
velocity 1/β1 at the frequency where β3 = 0. For the
conventional nonlinear Schrödinger equation, which ex-
hibits Galilean invariance, solutions exist for all frequen-
cies for which β2 < 0, each with an associated group
velocity. However, the inclusion of quartic dispersion re-
moves the Galilean invariance, and so this property does
not carry over. Another way to see this is that chang-
ing the frequency, and neglecting dispersion orders higher
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FIG. 9: (a) Linearized eigenspectrum for the GDKS
with β2 = 0.7 ps2 mm-1 β4 = 1 ps4 mm-1 µ = 1 mm-1.

Red points represent high spatial frequency
perturbations which are radiated as dispersive waves.

Green star represents the zero eigenvalues
corresponding to the translational and phase invariance

of Eq. (4). Blue diamonds represent discrete internal
modes. (b) Conjugate mode profiles f (thick red solid)

and g (thin blue solid) corresponding to the larger
internal mode eigenvalue of (a), with the soliton shown
for comparison (yellow dashed). (c) Power versus time
for the GDKS in (a) perturbed by the internal mode in

(b) over 5 internal mode oscillation periods Tint.

than fourth, changes β1,2,3, leading to a different equa-
tion. Of course, the fact that we do not find solutions
for nonzero β3 does not mean that such solutions do not



11

exist–it merely means that a more complicated ansatz
than Eq. (7), or its direct generalizations [27] is required.

We have found that for highly oscillatory metasoliton
solutions, their basin of attraction does not seem to in-
clude Gaussian-like inputs. In such cases, we have numer-
ically demonstrated that it is possible to generate such
solitons by adiabatically varying the dispersion profile of
the system. Further work is required to find the thresh-
old value of β2 where a GDKS can be generated for a
given Gaussian input pulse.

Our discussion in Section VI, and in particular the in-
formation in Figs. 7 and 8 shows that for applications
in soliton lasers finding the optimal ratio of β2 and β4

is subtle. Figure 8 shows that a combination of negative
quartic dispersion and some positive quadratic dispersion
can lead to high pulse energies. On the other hand, if the
quadratic dispersion becomes too large then the oscilla-
tions become prominent and the time-bandwidth product
increases. Irrespective of these subtleties though, our re-

sults show that pure quadratic dispersion is unlikely to
be optimal, and that investigating and leveraging differ-
ent orders of dispersion can be expected to be worthwhile
to maximize laser performance.

In summary, we have provided a unifying framework to
understand nonlinear pulse propagation in systems with
different significant dispersion orders. From an applica-
tions standpoint our findings may have practical impli-
cations in ultrafast laser design where new energy scaling
laws and pulse shapes become available.
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