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We investigate theoretically and numerically the self-similar propagation of optical pulses in the
presence of gain, positive Kerr nonlinearity and positive (i.e. normal) dispersion of even order m.
Starting from a modified nonlinear Schrödinger equation, separating the evolution of amplitude
and phase, we find that the resulting equations simplify considerably in the asymptotic limit. Exact
solutions to the resulting equations indicate that the temporal intensity profile follows a 1−Tm/(m−1)

function with an m-dependent scaling relation, with a T 1/(m−1) chirp, where T is the pulse’s local
time. These correspond to a triangle and a step function respectively, as m→∞. These results are
borne out by numerical simulations, though we do observe indications of non-asymptotic behaviour.

I. INTRODUCTION

Self-similarity is a property of physical systems in a
wide range of contexts, from hydrodynamics to solid-
state and plasma physics [1]. Self-similar properties
can be used to find exact solutions to differential equa-
tions describing complex physical systems by reducing
the number of degrees of freedom through symmetry re-
duction. In optics, self-similar techniques have also had
an important impact and have been used to study the
dynamics of chaotic optoelectronic systems [2, 3], stimu-
lated Raman scattering [4], wave collapsing processes [5],
soliton-based fractal pattern formation [6], formation of
phase gratings in optical fibers [7] and the evolution of
self-written waveguides [8, 9]. This approach has also
allowed for the discovery of new classes of nonlinear
waves [10]. Self-similarity can also be used to design
novel devices. For example, broadband detectors based
on structures consisting of self-similar nanoantenna ar-
rays, have recently been demonstrated [11].

One of the optical applications that has benefited the
most from the study of self-similar dynamics is the propa-
gation of nonlinear pulses in fibre amplifiers [12]. Ampli-
fication is a key process that allows for the regeneration
of signals in telecommunication systems [13], or compen-
sation of losses in laser cavities [14]. With anomalous
dispersion (β2 < 0), pulse propagation leads to the for-
mation of solitons, in which nonlinear effects are limited
and balance the dispersion [15]. However, these pulses
collapse under strong amplification or in the presence of
noise [16]. In contrast, in the presence of normal dis-
persion (β2 > 0) and gain, large nonlinearities can be
exploited to access a new regime, where the optical pulse
evolves self-similarly as it is amplified [12, 17, 18]. The
amplified pulse evolves toward a parabolic intensity pro-
file, with amplitude and temporal width scaling exponen-
tially [19]. Moreover, theses pulses have a strictly linear

chirp which means that they can be easily recompressed
to generate ultrashort pulses with high peak powers [20].
Transferring this self-similar amplification approach in a
laser geometry has allowed for the development of sources
emitting ultrashort pulses with high-energy [21–23].

Previous studies of self-similar propagation of opti-
cal pulses focused on optical waveguides with dominant
second-order dispersion as it is the largest contribution in
standard fibers used in amplifiers and lasers [15]. How-
ever, recent work shows that stable optical pulses can also
be formed in the presence of even negative higher-order
dispersion (βm < 0, for m > 2) and Kerr nonlinearity
[24–26]. A conclusion from these studies is that, instead
of acting as disrupting effects, higher-order dispersion can
be used to generate novel optical pulses with applications
in frequency comb generation and lasers [27–29].

We recently considered the nonlinear propagation of
optical pulses in media with positive fourth-order dis-
persion (β4 > 0), Kerr nonlinearity and gain, and found,
theoretically and numerically, that pulses also evolve self-
similarly [30]. In the asymptotic regime, the pulses have
a triangle-like, 1 − T 4/3 intensity profile, where T is the
pulse’s local time, with a T 1/3 chirp. This chirp pro-
file gives rise to a double-peaked spectrum which might
be used in two-color spectroscopy or terahertz genera-
tion via frequency difference mixing [31, 32]. Despite sig-
nificantly different characteristics, quadratic and quartic
self-similar pulses both rely on the combined interaction
of gain, Kerr nonlinearity and the group velocity mono-
tonically decreasing with frequency, which suggests that
self-similar pulses could exist in the presence of any pos-
itive even-order dispersion.

Here, we generalize our previous work and present a
theoretical and numerical study of the propagation of op-
tical pulses in the presence of Kerr nonlinearity, gain and
any positive dispersion of even orderm (i.e., βm > 0). We
find a generalized asymptotic solution for each dispersion
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order m corresponding to a 1−Tm/(m−1) intensity profile
and an associated T 1/m chirp. We find different ampli-
tude and width scaling for each dispersion order. Our
theoretical predictions are confirmed by numerical sim-
ulations. We expect these results to stimulate research
in photonics and applied mathematics in nonlinear wave
propagation in media with complicated dispersion.

The outline of this paper is as follows. In Section II we
give analytic expressions for the asymptotic solutions for
arbitrary (even) dispersion order, their associated spec-
tra, and the general properties of both. These results are
based on the ability to identify the asymptiotic terms in
the relevant evolution equation. Then in Section III we
compare these to full numerical results. In Section IV we
confirm and discuss the asymptotic terms in the evolu-
tion equation. In Section V we discuss some of the non-
asymptotic behaviour we observed, while in Section VI
we discuss our results and conclude. The Appendices pro-
vide details of the derivation of the results in Section II.

II. SELF-SIMILAR SOLUTIONS

We begin our analysis by considering the evolution of
an optical pulse in a medium with mth order disper-
sion, where m is an even integer, Kerr nonlinearity and
gain. We also assume a pulse spectral bandwidth nar-
rower than the amplifier bandwidth, and the absence of
gain saturation. These assumptions are appropriate for
high-gain, broadband fiber amplifiers [12, 17, 18]. This
evolution can be described by the modified nonlinear
Schrödinger equation (NLSE)

i
∂ψ

∂z
= −(−1)

m
2
βm
m!

∂mψ

∂Tm
− γψ|ψ|2 + i

g

2
ψ, (1)

where ψ = ψ(z, T ) is the slowly varying amplitude of
the pulse envelope, z is the propagation coordinate, γ
characterizes the strength of the nonlinearity, and g is the
distributed gain coefficient. In the amplifier, the pulse
energy evolution Ep(z) =

∫∞
−∞ |ψ(z, T )|2dT must satisfy

the conservation integral

Ep(z) = Ep(0)egz. (2)

where Ep(0) is the input pulse energy.

To find a self-similar solution we write ψ(z, T ) =
A(z, T )eiϕ(z,T ) where A is the amplitude and ϕ is the
phase. Substituting this into Eq. (1) we find a complex
equation, the real and imaginary parts of which can be
written separately. Each of these equations includes nu-
merous terms arising from the mth partial time deriva-
tive of the product Aeiϕ. As z →∞, terms that contain
high time derivatives tend to be small and can be ne-
glected. Therefore, the terms that dominate, are those
that only contain the lowest derivatives of A and ϕ [30],
as discussed in more detail in Section IV. The real and

imaginary parts of the equation then reduce to

Az
A
− g

2
=

βm
(m− 1)!

AT
A

(ϕT )m−1 +

βm
2(m− 2)!

(ϕT )m−2ϕTT , (3)

and

ϕz =
βm
m!

(ϕT )m + γA2. (4)

where the subscripts indicate partial derivatives.
Equations (3) and (4) can be solved in closed form pro-

vided that γβm > 0, and give (see Appendix for details)

A(z, T ) = A0 e
µmgz/2

[
1−

(
T

T0(z)

) m
m−1

]1/2
, (5)

with

A0 =

(
(m− 1)(m− 1)!

2m
gEin

)µm/2
β−µ/2m (m!γ)µ(1−m)/2,

(6)
and

T0(z) = (m!)
m−1
m

2m− 1

(m− 1)(m− 1)!

× (βm(γA2
0)m−1)1/m

g
eµ(m−1)gz, (7)

where Ein is the input pulse energy, and where µ ≡
(2m − 1)−1. We note that for m = 2 and m = 4, the
asymptotic solution A2(z, T ) ∝ T 2 and A2(z, T ) ∝ T 4/3,
consistent with, respectively, Fermann et al. [12], and
Runge et al. [30]. More generally, we find that, in this
approximation, A2 ∝ Tm/(m−1) and that the pulses have
finite width 2T0, with both the intensity and the width
growing exponentially. The associated temporal phase is
given by

ϕ(z, T ) = ϕ0 −
m− 1

m
(µ(m− 1)(m− 1)!)

1/(m−1)×(
g

βm

)1/(m−1)

Tm/(m−1) +

(
γA2

0

)
µmg

eµ(m−1)gz.

(8)

where ϕ0 is an integration constant. This corresponds to
an instantaneous frequency

δω(T ) = − ∂

∂T
ϕT (z, T )

=

(
(m− 1)(m− 1)!

2m− 1

) 1
m−1

(
gT

βm

) 1
m−1

. (9)

Thus the self-similar asymptotic solutions to Eq. (1) are
given by Eqs. (5) and (8) for the amplitude and phase,
respectively.



3

Next, we consider the associated spectrum of this gen-
eralized asymptotic solution defined by

ψ̃(z, ω) =
1√
2π

∫ ∞
−∞

ψ(z, T )eiωT dT. (10)

Results of Eqs. (5)-(8) do not allow the Fourier transform
to be evaluated analytically. Instead, we use the method
of stationary phase [18, 33, 34] to evaluate the Fourier
integral approximately, and we find that

|ψ̃(z, ω)|2 ∝ A2
0

(
ωm−2eµmgz −Kω2m−2) , (11)

where K = βm/(m! γA2
0). We determine the spectral

width by determining the value of ω = ωmax for which
the right-hand side of (11) vanishes, and find

ωmax =
1

K1/m
eµgz, (12)

which equals δω(±T0) (see Eq. (9)). The spectrum takes
its maximum value at the frequencies ±((m− 2)/(2m−
2))1/mωmax. It is then straightforward to see that the
maximum value of the spectrum increases as e2µ(m−1)gz.

We now discuss some of the general properties of these
asymptotic solutions. First, we consider the temporal
intensity, which according to Eq. (6) takes the (normal-

ized) shape 1−(T/T0(z))
m

m−1 . It varies between the well-
known parabolic shape for m = 2 [12, 17, 18] to a trian-
gular shape as m → ∞, with the peak intensity Imax

increasing exponentially at a rate µmgz. The normal-
ized temporal asymptotic shape for m = 2, 4, 8, 10 are
shown in Fig. 1(a). The associated instantaneous fre-
quency, calculated from Eq. (9), is shown in Fig. 1(b).
This shows that the pulses have a T 1/(m−1) chirp, which
does not depend on z. Thus, while the chirp is linear and
easily compressible for m = 2, for higher orders the chirp
becomes increasingly nonlinear, and eventually evolves
to a step-like function.

The corresponding normalized spectra are shown in
Fig. 1(c). Whereas the spectrum is parabolic for m =
2, it exhibits two peaks for m = 4 [30]. These two
lobes become narrower as m increases. As m → ∞
the spectrum consists of two parts, each of which ar-
bitrarily narrow. This can be seen from the frequency
((m− 2)/(2m− 2))1/mωmax where the spectrum reaches
its peak value; as m grows, the peak frequency can be
approximated as (1 − (ln(2))/m)ωmax, and it thus ap-
proaches ωmax. This feature can be understood by recall-
ing Fig. 1(b). The large, steep chirp gives rise to a double-
peaked spectrum which is consistent with the spectra
shown in Fig. 1(c) [30, 35]. As discussed in Ref. [30],
due to the positive dispersion, the front half of the pulse
corresponds to the low-frequency lobe, whereas the back
half of the pulse corresponds to the high-frequency lobe.

Equation (6) shows that the pulse intensity increases
at an exponential rate µmg, whereas according to Eq. (7)
the width increases at an exponential rate µ(m− 1)g, so
the pulse energy increases as egz consistent with Eq. (2).
Similarly, the spectral pulse width and intensity increase
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FIG. 1. Normalized asymptotic (a) temporal intensity, (b)
chirp and (c) spectral intensity for m = 2 (solid red), m = 4
(dashed blue), m = 8 (Dash-dot green) and m = 10 (dotted
black). The temporal solutions have been shifted vertically
for clarity.

exponentially at rates µg and 2µ(m − 1)g, respectively,
indicating again that the pulse energy grows as egz. The
exponential growth rates are summarised in Table I

Width Intensity

Temporal µ(m− 1)g µmg
Spectral µg 2µ(m− 1)g

TABLE I. Exponential growth rates of the width and the
peak power of the self-similar pulses in time and frequency.
Parameter µ = (2m− 1)−1.

The analytic expressions in Eqs. (5) and (11) imply
finite support in both time and frequency, contradicting
the Amrein–Berthier theorem [36]. However, these ex-
pression are approximate; when accurate numerical so-
lutions are considered there is no contradiction and the
theorem is not violated.
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III. NUMERICAL SIMULATIONS

To verify our assumptions and the theoretical results
presented in the previous section, we numerically solve
Eq. (1), using a standard split-step Fourier method [15],
to simulate the evolution of a pulse in Kerr nonlin-
ear material with gain and positive high-order disper-
sion. In our set of simulations, we used Gaussian in-
put pulses with a full width at half maximum (FWHM)
duration ∆τ = T0 × 1.665 = 250 fs and input energy
Ein = 15 pJ, in a 7 m long amplifier. We consider wave-
guides with the following parameters: dispersion coeffi-
cient βm = Tm0 /LD where LD = 1 m; g = 1.9 m−1 and
γ = 5.8 W−1km−1. All the other dispersion coefficients
are set to zero.

Results of these simulations are summarized in Fig. 2.
In the top row, we show the simulated temporal inten-
sity (red circles) and instantaneous frequency (blue cir-
cles) for m = 4, 8 and 10, in Fig. 2(a), (b) and (c),
respectively. These results are in very good agreement
with the asymptotic solutions (solid color lines) calcu-
lated from Eqs. (5) and (9) for the same parameter val-
ues. Such agreement is worth noticing, given the high
order derivatives of Eq. (1). The corresponding simu-
lated (circles) and asymptotic (solid curve) spectra are
shown in the bottom row. We note again a good agree-
ment between the numerical and asymptotic results. The
most striking result, is that, while all pulse character-
istics increase exponentially, the growth of the spectral
width slows with increasing m, consistent with Table I.
This is because for high orders m the dispersion increases
very rapidly with frequency, and thus increasingly high
intensities are needed to prevent the pulse’s disintegra-
tion. From Eq. (2) this implies that the spectral width
increases at a low rate.

We now consider the pulse evolution throughout the
fiber. The simulated temporal amplitude and width evo-
lution for m = 8, and for the parameters corresponding
to Fig. 2(b), are shown in Fig. 3 (solid blue curve). Be-
fore the pulse reaches the asymptotic regime it undergoes
several phases. In the first 3 meters, the pulse amplitude
grows at a rate egz/2, faster than the predicted asymp-
totic growth (dashed red line), while the corresponding
pulse width is approximately constant. This is because
initially the pulse power is too weak to induce significant
nonlinear effects, and the dispersion induced-chirp is too
small to lead to pulse broadening. The pulse then enters
a more complicated phase where the pulse is shaped by
both the dispersion and nonlinearity, before converging
to the asymptotic regime from z ∼ 5.5 m. Examples of
the pulse temporal intensity profile in the three different
regimes compared to the predicted asymptotic profile for
z = 2, 4 and 6.5 m are shown in the insets of Fig. 3(a).

IV. IDENTIFICATION OF ASYMPTOTIC
TERMS

Equations (3) and (4) are derived from the mod-
ified NLSE (Eq. (1)) using the ansatz ψ(z, T ) =
A(z, T )eiϕ(z,T ). As discussed in Sec. II and in Ref. [30]
this leads to many terms when a high time derivative is
taken. In order to determine the asymptotic solution,
it is therefore crucial that only the relevant terms are
retained. The argument below, though phrased differ-
ently, is similar to that of Runge et al. [30]. First, we
note from Eq. (8) that the phase depends on the position
only through a uniform, time-dependent contribution, so
that the instantaneous frequency does not depend on po-
sition as explicitly seen in Eq. (9). The effect of the chirp
changes with propagation as the temporal width grows
as eµ(m−1)gz. The pulse thus increasingly overlaps with
a fixed phase function.

A heuristic way to find the asymptotic terms is that
the instantaneous frequency δω approaches a step func-
tion as m increases. This implies a different behaviour
around the center of the pulse, where the phase and its
derivatives vary rapidly, while, elsewhere, time deriva-
tives become increasingly smaller. Since the instanta-
neous frequency does not change with propagation dis-
tance, the fixed central part of the pulse, where it changes
rapidly, becomes less important as the pulse width in-
creases with propagation. Outside the central region
of the pulse, the instantaneous frequency is almost con-
stant. This means that the phase φ and its low deriva-
tives dominate and time derivatives higher than second
can be neglected. Thus, the asymptotic terms are those
with the highest power of φ and its temporal deriva-
tives. As an illustrative example, for m = 4, the asymp-
totic terms are S1 = A(φT )4, S2 = 4AT (φT )3 and
S3 = 6A(φT )2φTT . The evolution of the values of these
terms at the FWHM and at the center of the pulse are
shown in Fig. 4(a) and (b), respectively in blue (S1),
red (S2), and green (S3). The higher order terms, ne-
glected in the calculation of the asymptotic solution, are
H1 = 3ATT (φT )2, H2 = 6AT φT φTT , H3 = 3A(φTT )2

and H4 = 3AφT φTTT . As a comparison we also show the
evolution of the magnitude of the largest non-asymptotic
term (black). We note that the largest term may vary
with propagation distance. As expected, at the FWHM
the asymptotic terms are all much larger than the non-
asymptotic terms (see Fig. 4(a)) once the propagation
has sufficiently progressed. In contrast, near the center
of the pulse, which becomes less important with prop-
agation, the non-asymptotic terms are larger than the
asymptotic terms, as seen in Fig. 4(b).

V. NON-ASYMPTOTIC DYNAMICS

While the asymptotic behaviour is expected at long
propagation distances, non-asymptotic excitations can
play an important role in the dynamics. We show
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FIG. 2. Top row: simulated (circles) and asymptotic (solid curves) temporal intensity profile (red) and chirp (blue) for different
order of dispersion m. Bottom row: corresponding simulated (circles) and calculated spectrum (solid curves). For m = 4 (a)
and (d), m = 8 (b) and (e), and m = 10 (c) and (f).

in Fig. 5 two different types of non-asymptotic excita-
tion. First, we observed transient oscillations originating
around the center of the temporal intensity profile of the
pulse and moving toward the edges as the pulse propa-
gates. This regime is similar to what was reported for the
m = 2 case [18] and is illustrated in Fig. 5(a) which shows
a zoom of the trailing edge of the temporal intensity pro-
file. We find that as the dispersion or order increases,
the transient period becomes longer, for the same effec-
tive length scales. Eventually we see that the interplay
between the effects of dispersion, gain and nonlinearity
can lead to long-lived non-asymptotic behaviour. An ex-
ample of this type of excitation is shown in Fig. 5(b).
Here we see that the asymptotic solution still dominates
the appearance of the pulse, however high frequency ex-
citations persist on the pulse background.

An interesting open question is whether the asymp-
totic behavior can break down in particular regions of
the parameter space. This question is complicated by the
challenges of numerically simulating higher-order deriva-
tives in the presence of gain. We find that the simu-
lated dynamics are sensitive to the transverse temporal
discretization, with the emergence of numerical instabil-
ities if the discretization is too coarse. The longitudinal
discretization also has more stringent requirements for
numerical stability than the standard split-step Fourier
method [15] when used in the presence of higher-order
dispersion. For instance, for m = 4 it appears that the
simulation of non-asymptotic behavior requires a step
size to be ∆z ∼ (∆τ)4. These conditions on both the
transverse and longitudinal discretization introduce se-
vere numerical costs for simulation, making an exhaus-

tive analysis of the parameter space beyond the scope of
this work.

VI. DISCUSSION AND CONCLUSION

We have presented a theoretical and numerical study
of self-similar propagation of optical pulses in the pres-
ence of positive even high-order dispersion, Kerr non-
linearity and gain. We find asymptotic solutions for
each even order of dispersion m, corresponding to a
pulse with a 1 − Tm/(m−1) temporal intensity profile
and a T 1/(m−1) associated instantaneous frequency. As
m → ∞ the pulse becomes triangular and the instanta-
neous frequency jumps discontinuously, so the front and
back of the pulse have different frequencies. However,
even for finite m, the large chirp leads to a double-peaked
spectrum. These asymptotic solutions are broadly con-
sistent with our numerical simulations, although both
transient and long-lived excitations were found on the
asymptotic background.

Whereas the temporal pulse shape becomes progres-
sively more triangular with increasing order of disper-
sion, the associated spectrum approaches two narrow fea-
tures, symmetrically spaced with respect to the centre
frequency. This is consistent with the behaviour of the
instantaneous frequency. It indicates that the spectrum
is increasingly concentrated at the frequencies for which
the dispersive and nonlinear properties can balance each
other. This feature may find applications in two-color
spectroscopy or for the generation of high-power tera-
hertz or far infrared radiation via difference frequency
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FIG. 3. Evolution of the temporal (a) amplitude and (b)
width versus propagation distance for m = 8 and with input
pulse and fiber parameters corresponding to Fig. 2(b). The
predicted asymptotic evolution is indicated by the dashed red
line. Insets show the simulated (blue) and asymptotic (dashed
red) temporal intensity profiles at z = 2, 4 and 6.5 m.

mixing [31, 32, 37].
Carrying out the numerical simulations for these sys-

tems with sufficient precision can be challenging and
partly stems from the exponentially growing intensity.
As a consequence, the nonlinear length [15], the length
scale over which nonlinear effects become significant, be-
comes increasingly smaller, necessitating a very small
step size. Moreover, the higher-order of dispersion re-
quires the computation of high-order derivatives, which
can be challenging in its own right and requires high
transverse resolution. A more fundamental challenge
is that as the order of dispersion increases, the asymp-
totic solution approaches a triangle function increasingly
closely. Since this function has a discontinuous derivative
at the centre, numerical methods that rely on a degree
of smoothness of the solution may struggle for high dis-
persion orders.

We observe discrepancies between the analytic solu-
tions and the numerical results, which point to interesting
dynamics beyond the asymptotic orders, as discussed in
Sec. V. While a full investigation of the numerical stabil-
ity conditions in the presence of higher order dispersion
is beyond the scope of this work, it appears that the gen-
eralization to higher-order systems with gain introduces
additional non-asymptotic dynamics, worthy of further
study. Another open question is the propagation length
required for reaching the asymptotic regime (given an ini-
tial conditions and system parameters). While Kruglov
et al. [18] reported such a distance for quadratic disper-

10
45

10
50

10
55

10
60

T
e
rm

 v
a
lu

e

(a)

0 1 2 3 4 5 6 7

Propagation distance z (m)

10
45

10
50

10
55

T
e
rm

 v
a
lu

e

(b)

FIG. 4. Amplitude evolution for m = 4 of the asymptotic
S1 (solid blue), S2 (dashed red), S3 (dash-dot green) and
largest non-asymptotic terms (dotted black), at (a) the pulse’s
FWHM; and (b) near the center.

sion, the generalization to higher orders remains open.

While waveguides with dominant high-order normal
dispersion are not currently available, promising ap-
proaches have been recently developed in photonic crys-
tal fibers [38], microresonators [39–41] and dispersion-
managed cavities [29]. These techniques offer an unprece-
dented level of dispersion control and could be used to
design waveguides with the required dispersion to sup-
port these novel self-similar pulses.

Inevitable residual amounts of low-order dispersion do
not affect the asymptotic solution strongly. The reason
is that as the spectrum grows exponentially, the highest
order of dispersion must ultimately dominate, and thus
ensure the evolution described in Section IV. We have
confirmed this by numerical simulations.

Our investigation is in line with the growing interest
in the study of nonlinear systems with complicated dis-
persion properties [24, 28, 29, 41] and we expect them to
stimulate future investigations and discoveries in other
areas of physics, engineering and applied mathematics.

ACKNOWLEDGMENTS

The authors acknowledge the financial support of the
Australian Research Project (ARC) Discovery Project
(DP180102234), and the Asian Office of Aerospace R&D
(AOARD) grant (FA2386-19-1-4067).



7

50 60 70 80 90 100

Time (ps)

0

0.2

0.4

0.6
P

o
w

e
r 

(
 1

0
5
 W

)
(a)

-60 0 60

Time (ps)

0

0.2

0.4

0.6

0.8

1

P
o

w
e

r 
(

 1
0

5
 W

)

40 45 50 55 60 65 70 75 80

Time (ps)

0.2

0.3

0.4

0.5

0.6

0.7

P
o

w
e

r 
(

 1
0

5
 W

) (b)

-60 0 60

Time (ps)

0

0.2

0.4

0.6

0.8

1

P
o

w
e

r 
(

 1
0

5
 W

)

FIG. 5. Example of non asymptotic dynamics. (a) Transient
non asymptotic excitation for m = 8. The red arrow indicates
the direction of the excitation through the intensity profile as
the pulse propagates. (b) Long-lived non-asymptotic excita-
tion for m = 10. The inset at the bottom left is a zoom of the
high frequency excitation. The insets on the top right show
the temporal intensity profiles over the entire range, with the
red rectangles indicating the range in the main figures.

Appendix A: Self-similar solution derivation

We look for a solution with a positive definitive am-
plitude and phase of the form ψ(z, T ) = A(z, T )eiϕ(z,T ).
We substitute this ansatz into Eq. (1), drop the non-
asymptotic terms, and find Eqs. (3) and (4). We then
try solutions of the form

A = A0e
σgz

(
1−

(
T

T0

)m/(m−1))1/2

,

T0 = Keρgz, (A1)

ϕ = ϕ0 + αTm/(m−1) + η
(
γA2

0

)
e2σgz,

where α, η, ρ, σ, and K are unknown coefficients.
We find from Eqs (A1) that

1

A
Az = σg +

ρg

2

m

m− 1

(
T
T0

)m/(m−1)
1−

(
T
T0

)m/(m−1) ,
1

A
At = − 1

2T0

m

m− 1

(
T
T0

)1/(m−1)
1−

(
T
T0

)m/(m−1) , (A2)

ϕTT = α
m

(m− 1)2
T−(m−2)/(m−1).

Substituting these into Eq. (3) it is then found that

(σ − 1

2
)g =

βm
2(m− 2)!

mm−1

(m− 1)m
αm−1,

ρg

2

m

m− 1
= − βm

2(m− 1)!

mm

(m− 1)m
αm−1. (A3)

Taking the ratio of these equation gives

2σ + ρ = 1 (A4)

This is as required, since ρg is the growth rate of the pulse
width and 2σ gives the growth rate of the intensity. Thus
the total rate is (2σ + ρ)g = g, consistent with Eq. (2).

Now turning to Eq. (4) we find that

2σgη(γA2
0)e2σgz =

βm
m!

αm
(

m

m− 1

)m
Tm/(m−1)

+(γA2
0)e2σgz

(
1− (T/T0)

m/(m−1)
)
. (A5)

Equating the time-independent terms yields

η =
1

2σg
, (A6)

whereas equating the time-dependent terms gives

βm
m!

αm
(

m

m− 1

)m
= (γA2

0)
e2σgz

(Keρgz)
m/(m−1) . (A7)

This immediately gives

2σ =
m

m− 1
ρ, (A8)

which, combined with Eq. (A4) gives the first main result:

ρ = µ(m− 1); σ = µm/2. (A9)

The other results now follow straightforwardly. Com-
bining the second of Eqs (A3) and (A9) we find that

α = −m− 1

m

(
µ(m− 1)(m− 1)!

g

βm

) 1
m−1

(A10)

and, also using this last result,

Km =
βm(γA2

0)m−1

gm
(m!)m−1(µ(m− 1)(m− 1)!)−m.

(A11)
Combining these results then immediately gives Eqs (6)-
(8) in Section II.
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L. Pesquera, and K. A. Shore, Chaos-based communica-
tions at high bit rates using commercial fibre-optic links,
Nature 438, 343–346 (2003).

[4] C. R. Menyuk, D. Levi, and P. Winternitz, Self-similarity
in transient stimulated raman scattering, Phys. Rev.
Lett. 69, 3048 (1992).

[5] K. D. Moll, A. L. Gaeta, and G. Fibich, Self-similar op-
tical wave collapse: Observation of the townes profile,
Phys. Rev. Lett. 90, 203902 (2003).

[6] S. Sears, M. Soljacic, M. Segev, D. Krylov, and
K. Bergman, Cantor set fractals from solitons, Phys. Rev.
Lett. 84, 1902 (2000).

[7] S. An and J. E. Sipe, Universality in the dynamics of
phase grating formation in optical fibers, Opt. Lett. 16,
1478 (1991).

[8] T. M. Monro, P. D. Miller, L. Poladian, and C. M.
de Sterke, Self-similar evolution of self-written wave-
guides, Opt. Lett. 23, 268 (1998).

[9] L. Poladian, M. Senthilvelan, J. A. Besley, and C. M.
de Sterke, Symmetry analysis of self-written waveguides
in bulk photosensitive media, Phys. Rev. E 69, 016608
(2004).

[10] S. A. Ponomarenko and G. P. Agrawal, Optical similari-
tons in nonlinear waveguides, Opt. Lett. 32, 1659 (2007).

[11] D. Rodrigo, A. Tittl, A. John-Herpin, O. Limaj, and
H. Altug, Self-similar multiresonant nanoantenna arrays
for sensing from near- to mid-infrared, ACS Photon. 5,
4903–4911 (2018).

[12] M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M.
Dudley, and J. D. Harvey, Self-similar propagation and
amplification of parabolic pulses in optical fibers, Phys.
Rev. Lett. 84, 6010 (2000).

[13] R. J. Mears, L. Reekie, M. Jauncey, and D. N. Payne,
Low-noise erbium-doped fiber amplifier operating at 1.54
µm, Electron. Lett. 26, 1026 (1987).

[14] A. E. Siegman, Lasers (University Science Books,
Melville, USA, 1986).

[15] G. P. Agrawal, Nonlinear fiber optics (Academic Press,
1995) 2nd ed.

[16] P. Beaud, W. Hodel, B. Zysset, and H. Weber, Ultra-
short pulse propagation, pulse breakup, and fundamen-
tal soliton formation in a single-mode optical fiber, IEEE
Journal of Quantum Electronics 23, 1938 (1987).

[17] V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D.
Harvey, Self-similar propagation of high-power parabolic
pulses in optical fiber amplifiers, Opt. Lett. 25, 1753
(2000).

[18] V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M.
Dudley, Self-similar propagation of parabolic pulses in
normal-dispersion fiber amplifiers, J. Opt. Soc. Am. B
19, 461 (2002).

[19] J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot,
Self-similarity in ultrafast nonlinear optics, Nature Phys.

3, 597–603 (2007).
[20] J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-
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