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A B S T R A C T   

Most COVID-19 cases are mild or asymptomatic and recover well, suggesting that effective immune responses 
ensue, which successfully eliminate SARS-CoV-2 viruses. However, a small proportion of patients develop severe 
COVID-19 with pathological immune responses. This indicates that a strong immune system balanced with anti- 
inflammatory mechanisms is critical for the recovery from SARS-CoV-2 infections. Many vaccines against SARS- 
CoV-2 have now been developed for eliciting effective immune responses to protect from SARS-CoV-2 infections 
or reduce the severity of the disease if infected. Although uncommon, serious morbidity and mortality have 
resulted from both COVID-19 vaccine adverse reactions and lack of efficacy, and further improvement of efficacy 
and prevention of adverse effects are urgently warranted. Many factors could affect efficacy of these vaccines to 
achieve optimal immune responses. Dysregulation of the gut microbiota (gut dysbiosis) could be an important 
risk factor as the gut microbiota is associated with the development and maintenance of an effective immune 
system response. In this narrative review, we discuss the immune responses to SARS-CoV-2, how COVID-19 
vaccines elicit protective immune responses, gut dysbiosis involvement in inefficacy and adverse effects of 
COVID-19 vaccines and the modulation of the gut microbiota by functional foods to improve COVID-19 vaccine 
immunisations.   

1. Introduction 

The COVID-19 pandemic caused by severe acute respiratory syn
drome coronavirus 2 (SARS-CoV-2) infections is a huge global medical 
issue. There are no current and specific anti-viral medicines to combat 
the infections. The vaccines to prevent spread of the virus has become 
the most effective approach to stop the further spread of the pandemic. 
Currently numerous COVID-19 vaccines have been developed or are 
under development and numerous studies are ongoing (Clinical-Trials- 
Org, 2020–2021). While most of the vaccines are in preclinical stages, 11 
COVID-19 vaccines have been approved for emergent use worldwide 
(Vasireddy et al., 2021). Generally, the applications of these vaccines 
have sharply reduced the new cases in countries with high percentages 
of populations vaccinated such as USA and Isreal. However, improving 
efficacy and reducing adverse effects of the COVID-19 vaccines are still 
issues which need to be solved urgently. A small proportion of vacci
nated people infected with SARS-CoV-2 virus have developed severe 
COVID-19 disease (Brazal, 2021; Frenck et al., 2021). In addition, 

vaccination has caused serious adverse effects (including deaths), which 
decreases the acceptance of COVID-19 vaccines by many people. 
Therefore, sufficient understanding of the mechanisms of human im
mune responses to SARS-CoV-2 infections and factors related to COVID- 
19 vaccine efficacy and adverse effects are necessary to solve the 
problems. 

SARS-CoV-2 mainly enters through respiratory tract to infect humans 
but it may also enter through the gastrointestinal tract (Chen, J. et al., 
2021). The virus enters cells by binding to angiotensin-converting 
enzyme 2 (ACE2) receptors. As most human cells express ACE2, the 
virus can infect numerous organs contributing to inflammation from 
ACE2 signaling driving multiple organ failure in severe infections 
(Iwasaki et al., 2021). The consequences of the infections depend on the 
interactions of viral loads and human immune responses. Adequate 
immune responses could eliminate the virus, leading to complete re
covery from the disease. Pathological immune responses are character
ized by hyperinflammation and lymphopenia that causes acute 
respiratory distress syndrome (ARDS) and multi-organ failure, leading 
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to death. Most COVID-19 cases are asymptomatic or mild, indicating 
sufficient immune responses for elimination of the virus. COVID-19 
vaccines are designed to elicit strong and balanced immune responses 
to prevent SARS-CoV-2 infections or reduce the severity of the disease if 
still infected. Most vaccines produce antibodies against receptor binding 
domain (RBD) of the spike protein of the virus to prevent the virus from 
entering human cells. The efficacy of some vaccines such as those from 
Moderna and Pfizer can reach 95% with minor side-effects in most cir
cumstances while others have reached 50–80% efficacy. The COVID-19 
vaccines may become less effective in people with advanced age or 
underlying chronic diseases. New variants of SARS-CoV-2 may reduce 
vaccine efficacy (Kumar, A. et al., 2021; Xie et al., 2021; Zou et al., 
2021). Therefore, it is important to study the factors that cause COVID- 
19 vaccine inefficacy and the adverse-effects that can develop. 

In this narrative review, we summize human beneficial immune re
sponses to the SARS-CoV-2 virus infections and immune responses to 
COVID-19 vaccines. We disscuss the aging intestinal microbiome and 
mucosal immunity, the effects of gut dysbiosis on vaccination for 
COVID-19, and modulation of the gut microbiota for improving the ef
ficacy and the prevention of adverse effects from the vaccines. 

2. Immunity and intestinal bacteria 

The composition of the intestinal microbiome and its physiological 
functions have close links to host health, metabolic diseases as well as 
aging (Turroni et al., 2009). The intestinal microbiota is well-known to 
be associated with the development of immune cells and maintenance of 
adequate immune responses (Lynn et al., 2021; Vitetta et al., 2017). An 
important distinghuishing feature of the aging intestines is the over- 
expression of pro-inflammatory activity such as cytokine IL-6 which 
has an adverse effect on the function of the intestinal barrier and the 
mucosal immune system (Man et al., 2015). Immune decline is charac
teristic of advancing age (i.e., immunosenescence), and as such the 
immune system is subject to significant remodelling (Jiang et al., 2013; 
Weiskopf et al., 2009) with consequent deleterious outcomes to health 
and survival. 

Intestinal dysbiosis has been linked to immunological disequilibrium 
(Baradaran Ghavami et al., 2021). The immunological disequilibrium 
has often been described as a T-helper 2 (Th2) hyperactivity and Treg 
deficiency (Baradaran Ghavami et al., 2021; Mezouar et al., 2018). The 
involvement of the intestinal microbiota and immune related outcomes 
has been recently reviewed (Zheng et al., 2020) and specific effects that 
the intestinal microbiota induces on end-organs such as the lungs and 
the liver are presented in Table 1. 

Experimental and clinical epidemiological studies (Yu et al., 2016) 
highlight the importance of a pivotal cross-talk between the the intestine 
and lung that generates a gut-lung axis that progresses homeostasis 
(Dang and Marsland, 2019). The gut microbiome therefore can be seen 
as a functional mediator of lung health or disease. Adverse changes in 
the intestinal microbiome (i.e., dysbiosis) through injudicious dietary 
practices and obesity, the adminitration of antibiotics and disease pro
cesses (e.g., T2D) can disrupt the inflammatory tone of the gut skewed 
toward proinflammatory immune responses (see Table 2). 

The lung microbiome has been recently reviewd (Yagi et al., 2021). 
Suffice in brief to add herewith that independent molecular techniques 
have reported that a diverse and low abundance of micro-organisms 
coexist in the lungs and associated airways. This given the constant 
exposure of the lungs to the external environment. In the lower airways 
of healthy individuals studies have reported the diverse presence albeit 
in low abundance of bacteria from the Streptococcus, Prevotella and 
Veillonella groups (Dickson et al., 2016; Hilty et al., 2010; Mathieu 
et al., 2018; Pattaroni et al., 2018; Yu et al., 2016). In lung disease states 
studies that have compared the lung microbiome in health and disease 
have reported significant differences 

in composition (Philley et al., 2019; Yagi et al., 2021). Lung disese 
has been associated with the loss of bacterial diversity with the 

Table 1 
Laboratory animal studies: effects induced by the intestinal microbiota on end- 
organ immunity outcomes.  

Intestinal microbiota… Immune related outcome 

…immune axis with the lungs 
SCFAs 

Prebiotics → SCFAs (i.e., 
butyrate) 

↑ myeloid cells | shape beneficial immunity of the 
lung 
(Trompette et al., 2018) 

C. orbiscindens → 
Desaminotyrosine 

↑ Type I IFN signaling | influenza protection 
(Steed et al., 2017) 

Pseudomonas 
Lactobacilli 
PneumotypeSPT 

↑ Th17 type response | regulation basal 
inflammatory tone 
(Larsen et al., 2015; Segal et al., 2016; Yadava et al., 
2016) 

…immune axis with the liver 
LPS TLR4 signaling → hepatic stellate cell induction → 

fibrosis 
(Ma et al., 2018; Paik et al., 2003) 

MAMP Kupffer cells | critical components of innate 
immunity 
(Corbitt et al., 2013) 

Probiotics NKT cells | antitumor immunosurveillance 
(Ma et al., 2018; Wang, X. et al., 2021) 

Prebiotics → SCFAs (i.e., 
butyrate) 

↑ Bacterial metabolites (e.g., butyrate) | anti- 
inflammatory 
(Golonka and Vijay-Kumar, 2021) 

K. pneumoniae – translocated 
pathogen 

↑ Th17 type responses | responses induced in the 
liver 
(Nakamoto et al., 2019) 

…immune axis with the brain 
SCFAs (acetate | propionate | 

butyrate) 
Microglial homeostasis | contribution by the 
microbiota metabolite signaling 
(Cryan and Dinan, 2015; Erny et al., 2015) 
↑ Treg cells | counter-regulate autoimmunity in the 
CNS 
(Bhutia and Ganapathy, 2015; Haghikia et al., 
2015) 

SCFAs = short chain fatty acids; LPS = Lipopolysaccharides; MAMP = Microbe 
Associated Molecular Patterns; Clostridium orbiscindens Klebsiella pneumoniae; 
CNS = Central Nervous System. 

Table 2 
Clinical trials on gut microbiota and COVID-19 vaccination efficacy (Clin
icaltrials.gov).  

NCT#* Title Intervention Main aims Location 

04980560 Gut 
microbiota 
profile and its 
impact on 
immunity 
status in 
COVID-19 
vaccinated 
cohorts 

An observation 
study 

Compare 
microbiome 
profile in 
subjects with 
different 
COVID-19 
vaccination 
and subjects 
recovered from 
COVID-19 

Prince of 
Wales 
Hospital, 
Hong 
Kong 

04884776 Modulation of 
gut microbiota 
to enhance 
health and 
immunity 

3 Bifidobacteria 
at 2 × 1010 CFU 
for 12 weeks 

Restore gut 
microbiota to 
increase 
COVID-19 
vaccine 
efficacy and 
reduce side- 
effects 

Prince of 
Wales 
Hospital, 
Hong 
Kong 

04798677 Efficacy and 
tolerability of 
ABBC1 in 
volunteers 
receiving the 
influenza or 
COVID-19 
vaccine 

ABBC1 including 
beta-glucans, 
Inactivated 
saccharomyces 
cerevisae, 
Selenium, and 
Zinc 

Enhance 
immune 
responses 
including 
generation of T 
cells, IgM and 
IgG 

Hospital 
Mare de 
Déu de la 
Merc, 
Spain 

*NCT# is the National Clinical Trial Number. 

J. Chen et al.                                                                                                                                                                                                                                     



Journal of Functional Foods 87 (2021) 104850

3

dominance of one taxon or a small group of taxa (Tunney et al., 2013). 
A microbiota fecal analysis cross sectional study with participants 

from different age groups, reported that age-related profiles in the in
testinal microbiota presented changes in composition and diversity with 
advancing age (Claesson et al., 2011). Core microbiota families Bifido
bacteriaceae, Bacteroidaceae, Ruminococcaceae, and Lachnospiraceae 
become less abundant in the older age groups (Biagi et al., 2016; 
Claesson et al., 2011; Rampelli et al., 2020; Wu et al., 2019). Vaccines 
continue to be the most effective means for preventing infectious dis
eases (de Jong et al., 2020). Plausible suggestions synthesized from 
murine studies and causal reports point to the impact of the microbiome 
on human immunity (de Jong et al., 2020). Yet, while there is a expo
nential growth in discussions of a connection between the intestinal 
microbiota as a whole and the immune system, the impact of the 
microbiota on immunity to vaccinations remains poorly understood. In 
vitro and in vivo experimentation models have reported that the genus 
Bifidobacterium with species such as B. adolescentis, was effective in 
decreasing the binding of a Norovirus to Caco-2 cells and HT-29 cells (Li 
et al., 2016) and Coxsackievirus B3 to HeLa cells (Kim et al., 2014). Tan 
and colleagues (Tan et al., 2016) demonstrated that in the intestines of 
germ-free mice, B. adolescentis induced a robust Th17 response without 
any adverse effects on gut inflammation. Furthermore, in low chronic 
inflammation animal models of intestinal diseases, Phillip and col
leagues (Philippe et al., 2011) reported that B. bifidum and B. animalis 
strains restored immune markers and intestinal epithelial barrier 
integrity. B. longum CECT 7347 attenuated inflammatory cytokine pro
duction with a concomitant CD4+ T cell-mediated immune response in 
the gut of a gliadin-induced enteropathy animal model (Laparra et al., 
2012). Studies from more than a decade ago have supported the posit 
that the genus Bifidobacterium can exert beneficial outomes to the health 
of the host through immunomodulatory actions. In particular a recent 
review (c.f. Ruiz et al., 2017) has comprehensively reported on 
numerous animal and human studies supporting evidence that the genus 
Bifidobacterium within the phylum Actinobacteria exhibits significant 
immunomodulatory effects. Moreover, members of the genus Bifido
bacterium are early colonizers of the neonate intestine and as such this 
genus is very much pronounced in infants during the lactation years 
(Milani et al., 2017). 

The elderly have a significantly increased susceptibility to infections. 
Early clinical investigations have reported that probiotic bacteria from 
the genus Bifidobacterium can enhance certain aspects of cellular im
munity in the elderly (Chiang et al., 2000; Gill et al., 2001). A systematic 
review (Miller et al., 2017) that evaluated clinical evidence from an 
albeit small study, concluded that Bifidobacterium animalis ssp. lactis 
HN019 enhanced natural killer (NK) cell and polymorphonuclear cell 
functionalities in healthy elderly adults. 

Furthermore, it has been recently reported that aging in long-term 
surviviors can lead to a rearrangement of bacterial species co- 
occurrence networks that presented a feature of increased abundances 
of subdominant species (Rampelli et al., 2020). This observation 
correlated with intestinal bacterial enrichment and an increased abun
dance of bacterial health-associated species from such bacterial orders 
Verrucomicrobiales (i.e., Akkermansia), Bifidobacteriales, and Chris
tensenellaceae. At the species level, the contributions from specific bac
teria included Bifidobacterium adolescentis, Bifidobacterium longum, 
Bacteroides uniformis, Faecalibacterium prausnitzii, Ruminococcus bromii, 
Subdoligranulum sp., Anaerostipes hadrus, Blautia obeum, Ruminococcus 
torques, Coprococcus catus, Coprococcus comes, Dorea longicatena, and 
Roseburia sp., were reported to be associated with improved intestinal 
health (Rampelli et al., 2020). 

3. Immune responses to Sars-Cov-2 infections 

Most patients infected by SARS-CoV-2 virus experience asymptom
atic or mild disease manifestations. The immune reactions in these pa
tients were efficacious with an adaptive immune response. Adaptive 

immune outcomes were indicative of immune system recognition with 
an appropriate response that effectively eliminated the viruses and 
enabled the patients to recover from the disease (Chen, J. et al., 2021; 
Maecker, 2021). 

The initial characterization of such an adequate immune response 
were from a case study which showed the course of immune responses 
and the recovery from SARS-CoV-2 infections (Thevarajan et al., 2020). 
In a female patient diagnosed with mild to moderate COVID-19, both 
strong humoral and cellular immune responses were found in the early 
stages of SARS-CoV-2 infections. The specific IgG and IgM antibodies 
against the virus were produced at the early stage (day 7 and day 9 of 
symptom onset), which were concomitant with increased antibody 
secreting cells (day 7) and circulating T follicle helper cells (day 7) 
(Thevarajan et al., 2020). Cytotoxic CD8+ T cells increased at day 7, 
reaching to the highest level at day 9 and decreased at day 20 with 
increased granzyme A, granzyme B and perforin (Thevarajan et al., 
2020). The blood levels of CD16+CD14+ monocytes were lower than 
that of healthy donors, indicating homing of these cells to infection sites. 
No differences in NK cells were found in the blood samples from the 
patient and healthy patients. Slightly increased proinflammatory cyto
kines and chemokines were found, suggesting no cytokine storm was 
formed in this patient. 

The following studies have further presented a wider picture of im
mune responses to SARS-CoV-2 infections, which involved both innate 
and adative immune responses (Fig. 1). The important roles of innate 
immunity in COVID-19 are demonstrated. Most importantly, temporal 
interferon I (IFN I) production, which inhibits viral replication and or
chestrates proinflammatory responses, is associated with mild COVID- 
19 and delayed low IFN I production causes robust viral replication 
and severe disease (Zhou, Z. et al., 2020). Persistent/excessive IFN I and 
excessive inflammatory cytokine levels cause multiple tissue damage 
and can also cause severe disease. 

Innate immune cells can prevent viral invasion. Dendritic cells (DC) 
and macrophages secrete appropriate amounts of IFN I as well as 
proinflammatory cytokines (IL-6, TNF-alpha and IL-1beta) and chemo
kines (CCL2 and CCL7) to exert protective effects (Zhou, R. et al., 2020). 
These cells also present antigens to adaptive immune cells. But over 
response with a cytokine storm is pathological, resulting in severe 
COVID-19. NK cells can secrete granzyme B and perforin to eliminate 
viral-infected cells to reduce viral replication (Zuo and Zhao, 2021). 
Neutrophils are quickly recruited to infectious sites by chemotactic 
factors from infected epithelial cells. Neutrophils can limit pathogenesis 
by phagocytosis, releasing anti-microbial molecules and forming 
neutrophil extracellular traps (Laforge et al., 2020). But activated neu
trophils can produce reactive oxygen species, proteases and neutrophil 
extracellular traps, which if excessive can cause tissue damage (Kang 
et al., 2021). Adequate innate immune responses provide first line fast 
protection from SARS-CoV-2 infections. The failure of innate immune 
responses can cause increased viral loads and hyperinflammation, 
leading to severe disease. For example, decreased DCs are associated 
with severe COVID-19. 

Antigen-specific adaptive immune responses including humoral and 
cellular responses are activated by antigen presentation through mac
rophages and DCs. The important role of antibodies in containing SARS- 
CoV-2 infections has been highlighted (Leslie, 2020). Another study 
showed that neutralizing antibody levels were associated with protec
tion capabilities (Khoury et al., 2021). It was sufficient to protect the 
host from infection and severe COVID-19 if the levels of neutralizing 
antibodies reached 20.2% and 3% of the convelescent mean value 
respectively. Mantus et al. (2021) characterized the humoral responses 
in hospitalized COVID-19 patients and found the antibodies produced 
included anti-RBD, anti-full-length-spike, anti-nucleoprotein with high 
levels of IgG against RBD being associated with major virus neutrali
zation (Mantus et al., 2021). Sterlin et al. (2021) found IgA was robustly 
secreted in early stage infections and that the IgA antibody neutralised 
SARS-CoV-2 virus more robustly than did IgG and IgM (Sterlin et al., 
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2021). 
A model of T cell responses in COVID-19 has been proposed. In mild 

forms of the disease, IL-2, type I and type III interferon promotes clonal 
expansion of activated T cells, which become effector T cells, terminally 
differentiated T cells or memory T cells (Chen and John Wherry, 2020). 
Consistently, Liao et al (2020) found highly clonally expanded CD8 + T 
cells in moderate cases of the disease (Liao et al., 2020). In severe dis
ease, IL-6, IL-10, CXCL proteins (such as CXCL8) and TNF-alpha may 
reduce the T cell pool and number of activated T cells and lead to 
exhausted or terminally differentiated T cells (Chen and John Wherry, 
2020). This can also be supported by recent findings that PD-L1/PD-1 
axis were increased, which could result in T cell exhaustion (Chen, J. 
and Vitetta, L., 2021; Vitte et al., 2020). Therefore, T cell responses are 
also critical in combating SARS-CoV-2 infections. 

Convalescent immune profiles of recovered COVID-19 patients have 
revealed various protective effects to subsequent SARS-CoV-2 infections. 
Immune responses to endemic coronavirus infections have been shown 
to be unable to protect hosts from subsequent infections but able to 
reduce disease severity (Tan et al., 2021). Similarly, convalescent im
mune responses from asymptomatic or mild SARS-CoV-2 infections are 
not able to elicit strong immunity against subsequent infections (Sui 
et al., 2021). Moderate and severe COVID-19 infections resulted in the 
ability to elicit strong humoral and cellular immune responses, which 
could protect the hosts from subsequent infections (Yan et al., 2020; 
Zhang, J. et al., 2021). Zhang et al. (2021) showed that there were high 
titers of anti-S1 and anti-S2 antibodies in convalescent sera in severe 
COVID-19 compared with non-severe COVID-19 (Zhang, J. et al., 2021). 
Antigen-specific CD4+ T-cells particularly subset of CXCR3+ were 
correlated with antibody titers. These cells also secreted IL-21 and IFN- 
gamma. The duration of convalescent antibodies has also been ques
tioned. It has been shown that IgG and IgA begin to decline after 6 to 10 
weeks following the onset of symptoms and the neutralizing ability of 
the antibodies decreases after a few weeks (Beaudoin-Bussières et al., 
2020). Memory B cells and T cells may exert protective effects for longer 
periods even after mild COVID-19 infections (Gaebler et al., 2021; 
Rodda et al., 2021). These cells will allow rapid expansion of antigen- 
specific T cells and B-cells as well as rapid production of antibodies 

when encounting second infections (Cox and Brokstad, 2020; Sokal 
et al., 2021; Tavukcuoglu et al., 2021). 

How immune responses to SARS-CoV-2 become pathological has 
been an important topic of enquiry. This could be related to chronic 
inflammatory status and decreased anti-inflammatory mechansisms 
(Chen, J. et al., 2021). Gut dysbiosis is closely associated with such a 
status, which facilitates the formation of hyperinflammation. In severe 
COVID-19, pro-inflammatory macrophages are abundant (Grau and 
Félez, 1987). Hyperinflammation could activate PD-L1, leading to CD8+

T-cell exhaustion, which delays the elimination of the virus (Chen, J. 
and Vitetta, L., 2021). Similarly, gut dysbiosis could disturb the appro
priate immune responses elicited from vaccinations, which will be dis
cussed in a later section in greater detail. 

In summary, the innate and adaptive immune responses provide first 
line and second line protection to SARS-CoV-2 infections. Adequate re
sponses could eliminate invading viruses, leading to the recovery from 
the disease. However, insufficient responses such as delayed type I IFN 
secretion with rapid replication of the viruses or over-responsive im
munity with hyperinflammation can result in severe disease and fatality. 
The various convalescent immune profiles in preventing reinfections 
have been studied with short-term protection by antibodies and long- 
term by memory B cells and memory T cells. 

4. Intestinal dysbiosis-caused inefficacy of vaccines and 
mechanisms 

Various COVID-19 vaccines have been developed to initiate proper 
immune responses to defend from SARS-CoV-2 infections. However, the 
risk factors that interfere with immune responses to SARS-CoV-2 could 
also reduce the efficacy of COVID-19 vaccines. Gut dysbiosis has been 
associated with the severity of COVID-19 caused by many risk factors 
(Chen, J. et al., 2021). Indeed, the roles of the gut microbiota in immune 
responses to vaccination against viruses other than SARS-CoV-2 have 
been well demonstrated in both animal experiments and clinical studies 
(Lynn et al., 2021; Vitetta et al., 2017). In animal models, germ-free (GF) 
mice or antibiotics-treated mice had decreased immune responses in 
various aspects. Kim et al. (2016) showed that the immune responses to 

Fig. 1. Natural immune responses to SARS-CoV-2. SARS-CoV-2 infections elicit both innate and adaptive immune responses. Activation of innate immune cells 
including DCs, Macrophages, NKs and neutrophils results in secretion of IFNs, proinflammatory cytokines granzymes, antimicrobial molecules and phagocytosis to 
contain the virus. DCs and macrophages also present antigens to adaptive immune cells to elicit humoral and cellular immune responses. Antibodies produced can 
neutralize the virus and cytotoxic CD8+ T-cells can eliminate virus-infected cells. Memory B cells and memory T cells are produced which provide rapid responses 
with subsequent infections of the virus. 
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intranasal cholera toxin mucosal vaccination were reduced in GF or 
antibiotics-treated mice including reduction in B cell numbers, antigen- 
specific IgG, recall-stimulated cytokine responses and follicular helper T 
cell responses (Kim et al., 2016; Kim et al., 2019). Ichinohe et al. (2011) 
revealed that combination treatment of mice with a mix of antibiotics 
including vancomycin, neomycin, metronidazole and ampicillin 
reduced immune responses to respiratory influenza virus infection 
(Ichinohe et al., 2011). Both CD4+ T-cells, CD8+ T-cells and virus- 
specific antibody titers were decreased while viral titers in the lung 
was increased. In an LCMV (lymphocytic choriomeningitis virus) mouse 
model, Abt et al. (2012) demonstrated that antibiotic-treated mice had 
delayed virus clearance with decreased CD8+ T-cell and LCMV-specific 
IgG production (Abt et al., 2012). The study also showed that macro
phages had also decreased responses to type I and type II IFNs and 
impaired capacity to limit virus replication. These animal experiments 
indicate that gut commensal bacteria are necessary for effective immune 
responses to defend from viral infections. Indeed, Bifidobacterum longum 
subsp. infantis has been correlated with antigen-specific T cell responses 
in vaccines for tuberculosis, polio virus and tetanus toxin (Huda et al., 
2014). Furthermore, dysbiosis caused by deficient protein diets also 
resulted in reduced immune responses to oral attenuated human rota
virus vaccination such as decreased cell number of antibody secreting 
cells, CD4+ T cells, CD8+ T cells and Tregs as well as decreased cytokine 
production (Kim et al., 2020; Michael et al., 2020; Miyazaki et al., 
2018). 

In humans, the roles of the gut microbiota in vaccine efficacy have 
been evidenced by various approaches. The same vaccines elicited 
different responses in lower middle income countries (LMICs) and high 
income countries (HICs) and the low efficacy in LMICs was accounted 
for by gut dysbiosis in the populations (Lynn et al., 2021). Gut dysbiosis 
in infants with short-term breast-feeding, malnutrition and diarrhea was 
linked with the lower efficacy of oral polio vaccines (Haque et al., 2014). 
Gut dysbiosis was also associated with the effect of pre-vaccination 
immune status on vaccine efficacy. The immune responses to vaccina
tion has been associated with immune status before vaccination. For 
example, influenza vaccine efficacy was only 30–50% in a population 
older than 65 years compared to 70–90% in younger adults (Osterholm 
et al., 2012). In elderly RSV (respiratory syncytial virus) vaccine non- 
responders, there were baseline immune profiles with higher (HLA- 
DR+) CD4+ and CD8+ T cells and increased expression of CCR7, CD127 
and CD69, indicating a chronic inflammatory status (Lingblom et al., 
2018). Fourati et al. (2016) found that pre-vaccination inflammation 
was associated with hyporesponse to HepB vaccination (Fourati et al., 
2016). These could be explained by gut dysbiosis-caused chronic 
inflammation that causes decreased immune responses to vaccination. 

The mechanisms for the roles of gut microbiota in vaccine efficacy 
have been attributed to pattern recognition receptors (PRRs) of antigen 
presenting cells activated by gut bacterial molecules such as flagellin 
and peptidoglycan (Lynn et al., 2021). PRRs are abundant in innate 
immune cells, which will respond to stimuli rapidly once activated by 
gut bacterial molecules (i.e., termedimmune training) (Smith et al., 
1988; Yakabe et al., 2021). Binding of the PRR, Nucleotide-binding 
oligomerization domain-containing protein 2 (Nod2), by peptidogly
cans increased cAMP production, which promotes DCs to secrete cyto
kines (Kim et al., 2016; Kim et al., 2019). Activation of Nod2 with 
synthetic agonists reconstituted cholera toxin-caused immune responses 
in GF or antibiotic-treated mice, indicating the critical role of Nod-2 in 
gut microbiota-stimuated immune responses (Kim et al., 2016; Kim 
et al., 2019). It was reported that Nod2 stimulation by symbiotic/ 
commensal bacteria contributed to the optimal CT-mediated antigen- 
specific oral vaccination efficacy and that this was meditated through 
the induction and subsequent increased levels of IL-1β. Toll-like receptor 
5 (TLR5) requires activation by flagllin for plasma cell development and 
antibody production (Oh et al., 2014; Pabst and Hornef, 2014). TGF-β 
can be stimulated by clusters IV and XIVa clostridia to activate regula
tory T cells (Treg cells), which are important for maintaining in 

equillibrium immune responses (Atarashi et al., 2011). In contrast, gut 
dysbiosis causes chronic inflammation and reduced anti-inflammatory 
mechanisms through altered commensal bacterial metabolites such as 
butyrate (Chen, J. et al., 2021). Butyrate is well-known to activate 
regulatory T cells to exert anti-inflammatory effects (Chen and Vitetta, 
2018; Furusawa et al., 2013). In a mouse model, butyrate facilitated IgA 
production in the colon through activation of GPR41 and GPR109a, and 
inhibition of histone deacetylases (Isobe et al., 2020). Butyrate is also 
important in maintaining the integrity of the gut barrier. Decreased 
butyrate production results in the translocation of endotoxin and bac
teria into the circulation system and extra-intestinal organs, facilitating 
the formation of hyperinflammation caused by SARS-CoV-2 that cause 
direct tissue damage (Chen, J. et al., 2021). Intestinal microbial dys
biosis that can disrupt immune responses through hyperresponses and 
inflammation could possibly disturb immune response elicited by 
COVID-19 vaccinations and thus affect COVID-19 vaccine efficacy 
(Ferreira et al., 2020a, 2020b). 

5. Intestinal dysbiosis linking risk factors to inefficacy of 
COVID-19 vaccines 

Based on the effects that the gut microbiota has on the efficacy of 
vaccines against various microbes and the role of dysbiosis in the 
severity of COVID-19, it is not surprising that the gut microbiota may be 
critical for the efficacy of COVID-19 vaccinations (Ferreira et al., 2020a; 
Stefan et al., 2021) and that gut dysbiosis could reduce COVID-19 vac
cine efficacy (Lynn et al., 2021). It has been proposed that the vulnerable 
population that presents with severe COVID-19 and high mortality 
should be vaccinated with priority (Leong et al., 2021; Russo et al., 
2021; Wingert et al., 2021). The vulnerable population is characterized 
by advanced age, underlying chronic diseases (such as obesity, diabetes, 
chronic cardiovascular, pulmonary, liver and kidney diseases) and 
psychiatric disorders (such as stress, anxiety and depression) (Chen, J. 
et al., 2021; Koff et al., 2021; Stefan et al., 2021). Gut dysbiosis is one of 
the mechanisms by which these risk factors cause a pathological im
mune response. Risk factors that reduce defences againts SARS-CoV-2 
infections could also reduce their responses to COVID-19 vaccines and 
increase adverse effects. A recent study showed that aging, obesity and 
hypertension markedly reduced the efficacy of the Pfizer/BioNTech 
vaccine (Koff et al., 2021; Pellini R et al., 2021; Stefan et al., 2021). 

The efficacy and adverse effects in aged people, particularly those 
with underlying diseases have been a critical issue for COVID-19 vac
cinations (Connors et al., 2021; Soiza et al., 2021). Indeed, aging has 
been considered to be the most important risk factor for severe COVID- 
19 infections (Wingert et al., 2021). Aging is associated with chronic 
inflammation and reduced immune responses. These changes could be 
caused by the aging gut microbiota, which causes both immunosene
sence and inflammaging (Bosco and Noti, 2021; Connors et al., 2021). 
Studies have shown that aging populations respond to vaccinations 
poorly (Bosco and Noti, 2021). A meta-analysis showed that vaccines 
were unable to evoke optimal antibody responses in older adults 
although vaccines could reduce hospitalization and mortality rates 
(Almasri and Holtzclaw, 2021). Importantly biological aging indicated 
by a frailty index is more correlated with an associated gut dysbiosis 
change than chronological aging (Kim and Jazwinski, 2018; Maffei 
et al., 2017). Muller et al. (2021) compared the immune responses to the 
Pfizer vaccine in two groups of patients less than 60 years and more than 
80 years of age (Müller et al., 2021). The latter had significantly lower 
antibody titers. Even after second doses, no neutralizing antibodies were 
detected in the older age group in 31.3% and only 2.2% in the younger 
group (Müller et al., 2021). It was hence suggested to promote earlier 
revaccinations or increased vaccine doses. However, a recent clinical 
trial reported that Astrazeneca is well tolerated in the older aged pop
ulation and produced similar immunogenicity results (Ramasamy et al., 
2021). A systemic review showed that the older aged population were 
usually excluded in most clinical trials of COVID-19 vaccines, leading to 
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insufficient data to analyse vaccine efficacy (Hou et al., 2021). The 
involvement of gut dysbiosis in inefficacy of COVID-19 in the older age 
groups warrants extensive studies. Modulation of the gut microbiota 
may comprise a better approach at increasing COVID-19 efficacy. 

Malnutrition such as a deficiency of proteins has been demonstrated 
to reduce antibody secreting cells, leading to decreased IgA and IgG 
production in rotavirus infections in animal models (Michael et al., 
2020; Miyazaki et al., 2018). This may suggest that nutritional status 
could be important in COVID-19 vaccine efficacy. Indeed, nutraceuticals 
such as vitamin C, vitamin D, lactoferrin, omega-3 fatty acids and trace 
elements such as zinc, selenium and magnesium can improve the gut 
microbiota and reduce COVID-19 severity (Chen, J. and Vitetta, L., 
2021). Deficiency of these components causes severe COVID-19. 

Obesity is also a major concern for reduced efficacy in COVID-19 
vaccinations (Kipshidze et al., 2021; Ledford, 2020; Townsend et al., 
2021). Although it has been shown that under-weight and normal 
weight patients have much high efficacy in antibody titers than over- 
weight and obese patients, other immune responses could be further 
investigated (Pellini R et al., 2021). Obesity, characterized by chronic 
inflammation, is a risk factor for severe COVID-19 and gut dysbiosis is 
one of the mechanisms that results in ineffective immune responses 
(Chen, J. et al., 2021). How gut dysbiosis is involved in the inefficacy of 
COVID-19 vaccination warrants further dedicated studies. It has also 
been reported that humoral immune responses in kidney or liver 
transplantation patients, which usually are excluded in clinical trails, 
were reduced (Marjot et al., 2021; Mossad, 2021; Sui et al., 2021). A 
recent study reported that as much as 61% of liver transplantation pa
tients and 24% of other chronic liver diseases had poor antibody re
sponses to COVID-19 vaccinations (Thuluvath et al., 2021). The low 
immunogenicity of COVID-19 vaccine in liver transplantation were 
associated with factors of age, renal function and immunosuppressive 
medications (Rabinowich et al., 2021). In contrast, a study demon
strated that NAFLD did not affect the efficacy of a COVID-19 vaccines 
(Wang, J. et al., 2021). It may be necessary to distinguish mild and se
vere liver diseases on vaccine efficacy (Cornberg and Eberhardt, 2021). 
A study reported that chronic kidney disease was associated with 
decreased vaccine efficacy (Hou et al., 2021) due to the uremic milieu- 
vitamin D deficiency- and insufficient erythropoitin-caused antigen 
presenting cell dysfunction and reduced B cell numbers. Both a uremic 
milieu and vitamin D deficiency are known to cause gut dysbiosis 
(Chaves et al., 2018; Chen, J. et al., 2021). 

Gender differences in COVID-19 severity has been well demon
strated, an outcome that is due to the difference in immune responses 
elicited (Alwani et al., 2021; Mateus et al., 2021). These immune re
sponses could also underpin differences in COVID-19 vaccine efficacy. 
Sex steroids are known to regulate the gut microbiota (Manosso et al., 
2021; So and Savidge, 2021) and thus could mediate vaccine efficacy 
through the gut microbiota. As such studies are warranted that would 
investigate the role of the gut microbiota in gender differences in 
COVID-19 vaccine efficacy. 

6. Efficacy of COVID-19 vaccines 

Currently numerous COVID-19 vaccines have been developed, 
including live-attenuated virus vaccines, inactivated virus vaccines, 
protein subunit vaccines, replication-deficient vectors and genetic vac
cines (DNA and RNA vaccines) (Min and Sun, 2021). Currently at least 
more than 10 COVID-19 vaccines have been approved for emergency use 
worldwide. These vaccines have been shown to elicit immune responses 
against SARS-CoV-2 with various levels of efficacy from clinical trials. 
Three USA vaccines (Pfizer/BioNTech, Moderna and Johnson and 
Johnson) and one UK vaccine (Astrazenica) have been used extensively 
in Western countries. 

6.1. mRNA vaccines 

mRNA vaccines are the most successful vaccines. mRNAs were 
designed to encode viral proteins, which are then translated into antigen 
proteins to elicit immune responses. Pfizer-BioNtech mRNA vaccine 
encodes RBD of the S protein while Moderna vaccine encodes the S-2P 
antigen (Noor, 2021). Nanotechnology has been applied for the delivery 
of mRNAs to prevent quick degradation in human bodies. Lipid nano
particles (LNP) are employed to formulate both mRNA vaccines. The 
route of mRNA vaccines to produce immune responses are shown in 
Fig. 2 (Kowalczyk et al., 2016). After the vaccine particles are engulfed 
(i.e., phagocytosis) by dendritic cells, mRNAs are released into the 
cytosol, where mRNAs are translated into antigen proteins. The antigens 
are bound to MHC I in the endoplasmic reticulum and presented to the 
cell surface, which activate B-cells produce antigen-specific antibodies 
and activate CD8+ T cells into antigen-specific cytotoxic T cells in 
draining lymph nodes (Kowalczyk et al., 2016). The released mRNAs in 
the circulation can also activate the innate immune system through 
recognization by TLRs 3,7,8 and RIG-I (retinoic acid-inducible gene), 
leading to increased production of INF I and stimulation of Th1cells 
(Cagigi and Loré, 2021). LNPs in the formulae can also elicit immune 
responses through TLR pathways (Chung et al., 2020). Both mRNA 
vaccines reach very high rates of efficacy with Moderna being 94.1% 
and Pfizer/BioNTech 95.0% in clinical trials (Baden et al., 2021; Polack 
et al., 2020). These clinical trials have excluded immunosuppressed 
individuals, who are likely to have lower response rates to the vaccines. 
For example, the use of ocrelizumab, an anti- B cell CD20 antibody and 
fingolimod, an immune-modulator that sequesters lymphocytes 
decreased Pfizer/BioNTech humoral immune response efficacy rates to 
22.7% and 3.8% respectively (Achiron et al., 2021). 

6.2. Adenovirus-based vaccines 

Adenovirus-based vaccines express SARS-CoV-2 antigens from 
transgenes in an adenoviral backbone using a strong adenoviral pro
moter. Astrazenica-Oxford vaccine (AZD1222) employs a chimpanzee 
adenovirus developed by Oxford University (chAdOx1), which enter but 
do not replicate in human cells (Derikvand et al., 2020). The AZD1222 
transgene is the spike protein from SARS-CoV-2. The following phase II/ 
III trial confirmed previous results with efficacy of 70.4% (Ramasamy 
et al., 2021; Voysey et al., 2021). Jansen Pharmaceuticals vaccine 
(Johnson and Johnson) produced Ad26.COV2.S, which only needs one 
dose immunization. The vector is the replication-incompetent adeno
virus 26 and the transgene is the full length SARS-CoV-2 spike protein 
(Bos et al., 2020). A single dose immunization has been shown to elicit 
robust immune responses with antigen-specific antibodies sufficient to 
protect from SARS-CoV-2 infections with overall efficacy of 66.3% 
(Mercado et al., 2020; Sadoff et al., 2021). Sputnik V developed in 
Russia has been made from two adenovirus types, 26 and 5, to carry 
cDNA encoding for the spike protein of COVID-19 (Logunov et al., 
2020). Phase I/II clinicals showed it safety and tolerability; the vaccine 
produced 100% of antibody and cellular immune responses and 91.6% 
efficacy (Logunov et al., 2021; Logunov et al., 2020). Sputnik has been 
now used in many countries worldwide. Ad5-nCoV (Convidecia) from 
CanSino Biologicals (Wu et al., 2020) have been approved by some 
countries including China, Hungary, Chile, Mexico and Pakistan for 
emergent use; but not yet by WHO. A clinical trial (PhaseI/II) showed 
that it is safe and efficacious (Zhu et al., 2020a; Zhu et al., 2020b). 

Animal models have been used to test the immunogenicity of 
adenovirus-based vaccines. In a recent adult rhesus macaques experi
ment, both 1x1011 Ad26.COV2.S viral particles (vp) and 5x1010 vp 
produced robust immune responses at week two, which further 
increased at week four. The higher dosage vp immunization had 1.6-fold 
higher binding and 2.1-fold higher neutralization antibodies than that of 
the lower dosage (Solforosi et al., 2021). In both cases, binding anti
bodies declined more rapdly than neutralizing antibodies. A second dose 
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immunization given 4 or 8 weeks later increased binding antibodies by 
5.7- and 11.8 fold, respectively, and neutralizing antibodies by 7.6- and 
15.2 fold, respectively; measured 2 weeks after the second dose (Sol
forosi et al., 2021). The immune reponses were also sufficient to protect 
most aged rhesus macaques although the protection ability may be 
weakened. 

Recently, a new adenovirus-based anti-COVID-19 vaccine has been 
developed to target the S1 protein (a protease degradation product fo 
the S protein; Ad5.SARS-CoV-2-S1) and tested in mice through subcu
taneous and intranasal administrations (Kim et al., 2021). A single dose 
immunization produced robust responses including production of S1- 
specific IgG, IgG1 and IgG2a that peaked at 2 weeks and induction of 
S1-specific B cells in cervical and axillary lymph nodes. The vaccine also 
elicited antigen-specific T-cell responses. In an experimental model of 
rehesus macaques, an adenovirus-vectored COVID-19 vaccine elicited 
strong humoral immune responses and protected from SARS-CoV-2 virus 
challenge (Feng et al., 2020). 

6.3. Inactivated or attenuated virus vaccines 

Inactivated or attenuated virus vaccines are traditional approaches 
which require both destruction of infectivity and retaining immunoge
nicity (Xia et al., 2020; Xia et al., 2021). Sinovac Biotech developed a 
formaldehyde-inactivated whole-virus SARS-CoV-2 vaccine – Corona
Vac, which was approved by WHO for emergent use (Gao et al., 2020; 
Mallapaty, 2021). The vaccine formulae includes alum as adjuvant. The 
immune responses activated include monocyte-secreted IFN, CD4+ T 
cells, B-cells, antibodies and CD8+ T cells. The clinical trial (Zhao Y, 
2020) showed that the vaccine was safe and was tolerated in aged 
participants (Wu et al., 2021). Sinopharm also produced an inactivated 
vaccine called BBIBP-CorV (approved by WHO), which are in clinical 
trials (Garcia C, 2020; Yang Y, 2020). The results reported from the a 
phase III clinical trial (Yang Y, 2020) showed that inactivated vaccines 
from SARS-CoV-2 WIV04 and HB02 reached 72.8% and 78.1% efficacy, 
respectively (Al Kaabi et al., 2021b). Covaxin home-grown and pro
duced vaccine by Bharat Biotech will be widely available and adminis
tered to millions of healthcare workers (Kumar, V. M. et al., 2021). The 
phase I clinical trial showed efficacy, safety and tolerability (Thiagar
ajan, 2021). An ongoing clinical trial with 25,800 participants predicted 
an efficacy of 81% (Thiagarajan, 2021). Therefore, inactivated vaccines 
could produce sufficient protection effects although the efficacies are 
lower than that of mRNA vaccines. 

6.4. Vaccination of patients recovered from covid-19 

The COVID-19 vaccines have been shown to further increase immune 
responses of the population that has had SARS-CoV-2 infections. Maz
zoni et al. (2021) revealed that one dose of Pfizer/BioNTech vaccination 
was sufficient to increase hormural and cellular immunity in COVID-19 
recovered patients and second dose vaccination did not further increase 
immune responses (Mazzoni et al., 2021). In contrast, second dose 
vaccination is necessary for naïve vaccinated patients to reach high 
immune responses. Levi et al. (2021) showed that after the first dose of 
Pfizer/BioNTech vaccination there was an exponential increase in the 
levels of IgG after 5–8 days in previously exposed COVID-19 patients 
compared to naïve patients (Levi et al., 2021). However, asympotamic 
and naïve patients required a second dose of the vaccine to reach 
optimal immune responses. Sasikala et al. (2021) showed that single 
dose of mRNA vaccines dramatically increased neutralizing antibodies 
(1124.73 ± 869.13 vs94.23 ± 140.06 AU/ml) in 280 healthcare workers 
who previously infected with SARS-CoV-2 (Sasikala et al., 2021). 
Therefore, vaccination is able to further increase immune profiles in the 
population who had SARS-CoV-2 exposure but with not sufficient im
mune responses elicited. 

6.5. Influence of variants on vaccine efficacy 

With the expanding COVID-19 pandemic and increased infections of 
the population, many SARS-CoV-2 variants have emerged. It has been 
demonstrated that various variants produce resistance to vaccination- 
caused immune responses, this, to different extent. According to the 
scope of resistance, WHO distinguishes variants into variants of concern 
and variants of interest. There are now four strains of variants of concern 
including B1.1.7, B. 1.351, P1 of B.1.1.28 and B.1.167 (Jia and Gong, 
2021). It has also been shown that antibodies isolated from natural in
fections and vaccinations are less effective against variants (Chen, R. E. 
et al., 2021; Hoffmann et al., 2021; Jia and Gong, 2021; Khoury et al., 
2021; Röltgen et al., 2021; Wang, Z. et al., 2021). A meta-analysis 
showed that neutralizing antibodies induced by natural infections or 
vaccinations had 1.5-fold reduction against B.1.1.7, 8.7-fold reduction 
against B1.351 and 5-fold reduction against P1 (Chen, X. et al., 2021). 
The newly found variant B.1.167.1 was also 6.8 fold more resistant to 
these antibodies than the wild type (Edara et al., 2021). The two mRNA 
vaccines elicited robust T cell responses to wild type spike and nucleo
capsid proteins (even more than that in convalescent plasma) but their 

Fig. 2. Immune responses to COVID-19 mRNA vaccines. mRNA vaccines enter into antigen-presenting cells through endocytosis. mRNAs are released into cytoplasm 
and translated into S proteins. S proteins bind to MHC class I in ER and are presented by MHC class I to the cell surface. The antigens then activate B cells to produce 
antigen-specific antibodies and memory B cells and T cells to produce effector T cells and memory T cells. 
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effects on variants (B1.1.7, B. 1.351, P1 of B.1.1.28 and B.1.167) were 
greatly diminished (Gallagher et al., 2021). According to a CDC report, 
64% COVID-19 breakthrough cases were mutant variants (“COVID-19 
Vaccine Breakthrough Infections Reported to CDC - United States, 
January 1-April 30, 2021,” 2021). 

7. Adverse effects of covid-19 vaccines 

Adverse-effects for all COVID-19 vaccines have been reported during 
emergency use. In clinical trials, side-effects could be underestimated 
due to the selection criteria of patients for vaccinations (Klimek et al., 
2021). Non-serious adverse-effects have been reported frequently, 
including local pain, redness, swelling and systemic symptoms of fever, 
fatigue, headache, and muscle and joint pain (Polack et al., 2020). 
Recent clinical trials for two inactivated COVID-19 vaccines showed that 
non-serious adverse effects happened in 41.7% to 46.5% of participants, 
most of which were reporting local pain (Al Kaabi et al., 2021a; Zhao Y, 
2020). Serious adverse-effects are rare but have resulted in fatalities, 
which has greatly affected acceptance of vaccinations. There were 23 
deaths of frail elderly patients reported in Norway after COVID-19 
vaccination (Torjesen, 2021). How to avoid severe adverse-effects is 
an important issue with the requisite being for an urgent resolution. 

Allergic reactions have been caused by the two mRNA vaccines 
(Castells and Phillips, 2021; Klimek et al., 2021; Selvaraj et al., 2021). 
Allergy is known to be caused by over production of IgE. IgE binds to a 
high affinity IgE receptor (Fc epsilon RI) on mast cells and basophils, 
causing the release of histamine, prostaglandins, leukotrienes, proteases 
and pro-inflammatory cytokines. The guidance for vaccination partici
pants has been developed to avoid anaphylaxis (Banerji et al., 2021; 
Klimek et al., 2021). A computerized model showed that the possible 
allergen could be the amino acid residues at 437–508 of RBD (spike 
protein sub-unit) that is expressed by mRNA vaccines (Selvaraj et al., 
2021). The components of the nano-delivery system used could also 
cause allergy such as PEG, TRIS and glycophospholipids (Hatziantoniou 
et al., 2021; Selvaraj et al., 2021; Troelnikov et al., 2021). 

Another severe adverse effect reported in COVID-19 vaccination is 
thrombosis, which is also life-threatening. Adenovirus-based vaccines 
including Janssen’s, Astrazenica (Covishield in India) and Sputnik V 
(Gamaleya Research Institute, Moscow, Russia) have been associated 
with thrombosis (Gupta et al., 2021; See et al., 2021). No thrombosis has 
been reported in Ad5-nCOV recipants and clinical trials, although the 
latter has 1% rate of serious adverse effects at a dose of 5 × 109 vp and 
9% at a dose of 1 × 1011, such as high fever and severe fatigue (Zhu 
et al., 2020a; Zhu et al., 2020b). Activation of platelets were considered 
to be the cause of the thrombosis. As most thrombosis happened in 
adenovirus-based vaccines, the vector and the encoded full length spike 
protein have been considered to be the causal material. Currently only 
one case of mRNA-induced thrombosis has been reported (Carli et al., 
2021). A study showed that antibodies against platelet factor 4 were 
found in both adenovirus-based and mRNA vaccination (Thiele et al., 
2021). IgG antibodies that react with and activate platelet factor 4 have 
been detected in high percentage of vaccination participates (19/281). 
However, the titers of the antibodies are usually very low and not suf
ficient to activate platelets. 

Rarely, a cytokine storm has been reported after vaccination with 
BTN162b2 in a patient with colorectal cancer under anti-PD-1 immu
notherapy (Au et al., 2021). There were highly increased proin
flammatory cytokines CRP, IFN-gamma, IL-2, IL-18, IL-16 as well as 
anti-inflammatory cytokine IL-10 accompanied by thrombocytopenia. 
The cytokine storm could be explained by stimulation of vaccines 
together with increased sensitivity of cellular immune responses. Anti- 
PD-1 could increase activation of CD8+ T cells. 

8. Approaches to improve gut microbiota for COVID-19 
vaccinations 

As gut dysbiosis in COVID-19 has affected the efficacy and adverse 
effects of COVID-19 vaccines, improvement of the gut microbiota could 
increase COVID-19 vaccine efficacy as well as reduce side effects (Lynn 
et al., 2021). Indeed, there are several ongoing clinical trials that are 
testing the modulation of gut microbiota on COVID-19 vaccines. A 
clinical trial that is investigating a yeast-based probiotic called ABBC1 to 
enhance the efficacy of a vaccine against COVID-19 detected by both 
humoral and cellular responses (Mateus Rodríguez JA, 2020). ABBC1 
includes β1,3/β1,6-glucan and inactivated Saccharomyces cerevisae as 
well as trace elements selenium and zinc. Another clinical trial has also 
used a formulae with 3 Bifidobacteria to increase COVID-19 vaccine 
efficacy and reduce adverse-effects in elderly type 2 diabetes patients 
(Mak JWY, 2020). A third clinical trial is investigating a functional food 
including 5-ALA-phosphate to increase the efficacy of COVID-19 vac
cines (Darwish A, 2020). 5-ALA-phosphate is known to maintain gut 
microbiota homestasis (Chang et al., 2021). 

Lactobacteria and Bifidobacteria could strengthen the immune re
sponses to COVID-19 vaccinations. MAMPs from these bacteria can 
stimulate TLRs to promote both innate and adaptive immune responses 
(Moradi-Kalbolandi et al., 2021; Vlasova et al., 2013) (Fig. 3). Also a 
clinical trial is ongoing to examine microbiota profiles in vaccinated and 
infected participants (i.e., NCT04980560) (Fig. 3). Various approaches 
are available to improve the diversity of the gut microbiota including 
administration of probiotics, prebiotics, synbiotics, nutraceuticals, trace 
elements, fecal microbiota transplantation (FMT) and food/energy re
striction such as FMD (fasting mimicking diets). All these approaches 
have been applied to various conditions with different levels of success. 
FMT has been successfully used in the treatment of C. difficle infections 
that result from antibiotic-caused gut dysbiosis. FMT is the preferred 
approach for restoring the gut microbiota from C. difficle disruptive in
fections. But it may have severe adverse effects such as pathogenic in
fections. Therefore, it may not be suitable for an adjuvant approach for 
COVID-19 vaccines. Probiotics, prebiotics and synbiotics have been used 
to treat many chronic infectious diseases such as inflammatory bowel 
disease (Chen, J. et al., 2021; Walton et al., 2021). They are highly safe 
with minimal side-effects reported. Most commonly used probiotics are 
from a narrow range of organisms such as Lactobacteria and Bifido
bacteria. Common prebiotics include fructose oligosaccharides, gal
actooligosaccharides, beta-glucans and resistant starches. Some 
prebiotics could have direct anti-viral effect. For example, epi
gallocatechin gallate not only improves gut microbiota but also exerts 
potent anti-viral effect through inhibiting Nsp15 (Hong et al., 2021). 
Both probiotics and prebiotics have been reported to increase influenza 
vaccine efficacy markedly (Lei et al., 2017). These could improve 
COVID-19 vaccine efficacy as well as has been indicated (Akatsu, 2021). 
A synbiotic could be better than a probiotic or a prebiotic alone as it not 
only provides commensal bacteria but also dietary fibre that can elevate 
levels of butyrate production in the gut (Holscher, 2017). Butyrate also 
increases the transition of antigen-activated CD8+ T cells into long-live 
memory cells (Bachem et al., 2019; Ji and Hu, 2019). In addition, indole- 
producing bacteria and bile acid-modulating bacteria could also be 
studied for possible use in COVID-19 vaccination (Fig. 3). So far 85 
species of bacteria have identified to produce tryptophanase that con
verts tryptophan into indole (Lee and Lee, 2010). Indole has anti- 
inflammatory effect through activation of aryl hydrocarbon receptor 
(Rothhammer et al., 2016). Commensal bacteria can produce some de
rivatives of secondary bile acids such as 3-oxolithocholic acid, iso
allolithocholic acid and isoDCA which have anti-inflammatory effect 
through activation of Tregs (Campbell et al., 2020; Hang et al., 2019). 

Newer generation probiotics have an expanded bacterial range, and 
in future could include a formulae for complementing COVID-19 vac
cines. Butyrate-producing bacteria such as F. prausnitzii that can produce 
butyrate directly are being included in experimental probiotic 
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formulations (Gautier et al., 2021; O’Toole et al., 2017), which has 
numerous beneficial effects (Leylabadlo et al., 2020) as for example 
improving the efficacy and safety of COVID-19 vaccines (Moradi-Kal
bolandi et al., 2021). An interventional clinical trial showed that 
F. prausnitzii was tolerated and improved metabolic pathways (Lorenzon 
M, 2020) Other next generation of probiotics such as Bacteroides acid
ifaciens, Bacteroides ovatus, Bacillus pumilus and Bacillus megaterium are 
less well studied. B. acidifaciens increased IgA in gnotobiotic mice and 
B. ovatus increased Ig M and Ig G. It has been included in a mixture of 9 
probiotics for the treatment of C. difficle infections (Graham DY, 2020). 
This study is an update of previous work (Tvede and Rask-Madsen, 
1989) that administered through rectal instillation homologous faeces 
to one patient and a mixture of ten different facultatively aerobic and 
anaerobic bacteria diluted in sterile saline to five other patients for the 
treatment of chronic relapsing diarrhoea caused by C. difficile. Recent 
studies have reported that B. pumilus and B. megaterium have been found 
to increase F. prausnitzii in a mouse model, indicating complex bacterial 
interactions (Kotowicz et al., 2019). Whether next generation probiotics 
produce more beneficial effects for COVID-19 vaccines warrants further 
studies. 

Modulation of the gut microbiota could also reduce the side-effects of 
COVID-19 vaccines. It has been shown that probiotics can effectively 
ameliorate allergy (Jing et al., 2020). Several probiotics including 
B. longum, B. breve, L. plantarum, L. casei, L. fermentum and L. rhamnosus 
have been demonstrated to have anti-allergic effects through animal 
studies and clinical trials (Shu et al., 2019). The mechanisms are not 
well-elucidated (Shu et al., 2019). Butyrate could be an important 
mediator. It has been shown that decreased butyrate-producing bacteria 
in gut microbiota are associated with food allergy (Lee et al., 2020). 
Butyrate is known to activate regulatory T cells, which could reduce 
antibody IgE production. The inhibition of pro-inflammatory signalling 
pathways could also be important for butyrate to exert anti-allergic ef
fects. There are possibilities that next generation probiotics could have 
strong preventive effects on allergic responses as some of them can 
produce butyrate. Instead, inclusion of butyrate into COVID-19 vaccine 
formulations may also reduce adverse effects of the vaccines. Prebiotic 
polysaccharides have been proposed for the prevention and treatment of 
COVID-19 (Barbosa and de Carvalho Junior, 2021). Each type of 

polysaccharides could have different effects on the immune system; 
either stimulation or suppression (Barbosa and de Carvalho Junior, 
2021). How these polysaccharides affect COVID-19 vaccine efficacy 
could be studied in animal models first. 

A synbiotic formulation (i.e., probiotic + prebiotic) could provide a 
profound impact on COVID-19 vaccine efficacy and for the prevention of 
adverse effects. An optimal formulation could be advanced. Next gen
eration probiotics could be included, particularly butyrate-producing 
bacteria. Some prebiotics can be added to facilitate the production of 
butyrate, which is a major mediator for gut microbiota to increase im
mune responses in the intestines. 

9. Conclusions 

It is recognised that the intestinal microbiota is subject to changes 
with increasing age (Zhang, S. et al., 2021). There are physiological and 
extrinsic changes that accompany aging such as age-associated inflam
mation, immunosenescence, lifestyle nutritional and physical activity 
changes, medication use and the presence of chronic health conditions 
(DeJong et al., 2020; Zhang, S. et al., 2021). The extent of these changes 
remain to be clarified. What is advanced is that gut dysbiosis (Ragon
naud and Biragyn, 2021) has been recognized to be a concomitant factor 
with aging and is observed in severe COVID-19 infections (Chen, J. et al., 
2021; Prasad et al., 2021). 

COVID-19 vaccines have now been extensively administered in 
developed countries, which have progressed to makerdly reduce COVID- 
19 new cases. However, vaccine efficacy may need to be increased 
further, particularly in vulnerable people who are fragile and aged and/ 
or diagnosed with underlying chronic diseases. Several studies have 
demonstrated that COVID-19 vaccine efficacy is markedly reduced in 
patients with advanced age or with chonic diseases (Soiza et al., 2021). 
Although most adverse effects are minor, the adverse effects, which 
cause severe complications and deaths comprise a major unresolved 
issue. Gut dysbiosis may be linked to the efficacies and adverse effects of 
COVID-19 vaccines. Certainly the Norwegian study investigating deaths 
in elderly frail patients post vaccination (Torjesen, 2021) adds to the 
plausibility of involvement of a dysbiotic gut. Improvement of gut 
microbiota in risk populations could increase vaccine efficacies and 

Fig. 3. Probiotics and prebiotics for Covid-19. Probiotics and next generation probiotics as well as prebiotics can improve the abundance of the gut microbiota and 
increase commensal bacterial metabolites, which strengthen both innate and adaptive immune responses to increase COVID-19 vaccine efficacy. Some commensal 
bacterial metabolites can also activate regulatory T cells to balance immune responses. Improved gut microbiota can also reduce adverse effects of COVID- 
19 vaccines. 
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reduce severe adverse effects. Intestinal dysbiosis effects could be a 
major factor for inefficacy and adverse effects of COVID-19 vaccines in 
susceptible individuals and in the frail and elderly population (Lynn 
et al., 2021). Modulation of the intestinal microbiota with Bifidobacteria 
and bacterial metabolites such as butyrate (Chen and Vitetta, 2020; 
Lynn et al., 2021) could be a practical approach as an adjuvant for 
vaccine COVID-19 efficacy improvement in the frail elderly. Incorpo
ration of next generation probiotics with or without prebiotics, partic
ularly inducing butyrate-producing bacteria, could be necessary 
requisites for improving the abundance and diversity of the gut micro
biota, as important adjuvant mediators COVID-19 vaccine efficacy and 
the abrogation of vaccine adverse effects. 
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Loréal, O., & Bousarghin, L. (2021). Next-Generation Probiotics and Their 
Metabolites in COVID-19. Microorganisms, 9(5), 941. https://doi.org/10.3390/ 
microorganisms9050941 

Gill, H. S., Rutherfurd, K. J., Cross, M. L., & Gopal, P. K. (2001). Enhancement of 
immunity in the elderly by dietary supplementation with the probiotic 
Bifidobacterium lactis HN019. American Journal of Clinical Nutrition, 74(6), 833–839. 
https://doi.org/10.1093/ajcn/74.6.833 

Golonka, R. M., & Vijay-Kumar, M. (2021). Atypical immunometabolism and metabolic 
reprogramming in liver cancer: Deciphering the role of gut microbiome. Advances in 
Cancer Research, 149, 171–255. https://doi.org/10.1016/bs.acr.2020.10.004 

Graham, D. Y. (2020). Defined Fecal Microbiota Transplantation for Clostridium Difficile 
Diarrhea accessed 2 July 2021 https://clinicaltrials.gov/ct2/show/NCT01868373. 
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