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1 Introduction 
Light commercial vehicles (LCV) tend to receive little attention in city and freight logistics studies even 
though they represent a significant traffic volume in cities, particularly in the last two years with the 
shift to online shopping and growing work opportunities for tradespeople who are in high demand for 
house renovations and repairs as more and more people work from home. Since the start of COVID-
19, online shopping has increased dramatically in Australia which is expected to last well past this 
pandemic (Australia Post, 2021). The vast majority of online shopping deliveries are undertaken by 
LCVs, and thus their impact in cities has and will continue to increase in the coming years. This calls 
for a modelling framework that can account for LCV movement, in addition to passenger and heavy 
vehicle movement. 

Tour-based stop choice models for LCV movement usually pool observations across multiple stops on 
the same service tour, effectively ignoring the sequence of stops in the decision-making process (see 
for example Ellison et al., 2017). This modelling approach is probably fine if the model implementation 
step uses a micro-simulation approach (cf. statistical approach) which relies on random draws to 
decide which locations are selected (i.e., the probability of a location being selected is either 1 or 0). 
A micro-simulation approach, however, requires a very large synthesis population to cover the entire 
probability distribution. Since the simulated choice is unique, one person has one choice at the time, 
be it mode, or time of day or location, etc. This will prolong the run time in application because the 
choice probability matrices become very large due to the large number of synthetic households or 
synthetic LCV workers, each with multiple choices (e.g., workplace, number of jobs/deliveries taking 
for the date, etc.). Regarding run time, the statistical approach has merits over the micro-simulation 
because the former requires only a few hundred synthetic households/LCV workers given to its ability 
to predict individual probabilities (ranging between 0 and 1) which when expanded, using the weight 
that each synthetic household/worker carries, would represent the choices made by the simulated 
population. The statistical approach, however, requires that all decisions regarding LCV movement, 
including the number of stops/deliveries, locations, and sequence of stops be modelled and properly 
connected to obtain internal consistencies (e.g., total number of stops visited across all service tours 
equals the number of deliveries required).  

The paper proposes a multi-step modelling method to ensure internal consistency while speeding up 
running time. The multi-step approach uses a nested structure to describe a series of decisions LCV 
drivers make. These include the number of service tours to fulfil the job (e.g., deliver online shopping), 
the number of stops on each service tour and then the locations of these stops. Our proposed nested 
logit (NL) model uses the upper level to describe different tour types, defined by the number of stops 
chained onto a tour, and the lower level to decide simultaneously the location and sequence of stops 
visited before the vehicle is returned to the depot for the next tour or by the end of the day. The 
empirical model was estimated using data collected from 2007 to 2014 in Sydney, Australia through 
different sources. It contains information on the LCV industry and household location, LCV driver 
characteristics (e.g., age, gender, income), and destination characteristics such as time and distance 
from the current location, employment and populations density.  

This paper is organised as follows. The next section provides a brief background of the light 
commercial vehicle literature and destination choice modelling. The following section explains the 
methodology used in this research for each of the models. Section 4 describes the data sources used 
in this research. The next section presents the model results and elasticities, and the final section 
discusses the most important findings.   
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2 Background 
Freight modelling can be categorised into two streams: commodity-based and trip-based. Commodity-
based modelling approaches freight movement from the commodity-based decisions in terms of the 
goods production and consumption and its relationship to economic characteristics, such as 
employment, industry size, and revenues (Hutchinson, 1974; Ogden, 1978; Wisetjindawat et al., 
2006). By contrast, trip-based modelling, or its recent advancement – tour-based modelling, simulates 
vehicle movement as a chain of trips connecting multiple stops. Tour-based models that describe 
commercial vehicle movement can be further classified into two groups, based on the input data being 
disaggregate or aggregate.  

Disaggregate models require data on each vehicle with different locations, destinations, vehicles and 
constraints; so they require a large amount of data with detailed information (Crainic et al., 2009; 
Ruan et al., 2012; Musolino et al., 2018; Thoen et al., 2020). Aggregate models estimate the average 
behaviour of vehicles, grouping them into categories. One aggregate model approach used is referred 
to as partial shares model which has two approaches: incremental growth or multi-step approach. 
Incremental growth studies consider that the vehicles decide where to stop first, and after each stop 
consider if they should go back to their base or continue (Hunt & Stefan, 2007; Wang & Holguín-Veras, 
2008). The multi-step approach considers that the vehicle first decides how many stops will they do 
in their trip, and then decides the destinations of each stop (Nuzzolo & Comi, 2013; Ellison et al., 2017; 
Comi et al., 2021). Holguín-Veras et al. (2013) present a comprehensive overview of empirical findings 
and models that deal with urban freight tours.  

Nuzzolo & Comi (2013) use the multi-step approach to understand tour-based visits carried out in 
Rome in 2008. They use delivery tour data collected on 500 truck drivers including medium and light 
goods vehicles. They define two models, one defining the number of stops and vehicle type (light or 
medium), and the second one the delivery location choices. The number of stops and vehicle type 
model include explanatory variables such as an accessibility index, distance between the origin and 
the study area (which is an inner zone of the city) and delivered quantity. The delivery location choices 
model was separated into the first delivery location model and the next delivery location zone model. 
The explanatory variables include retail employees in the destination area, an accessibility index 
(which takes into account accessibility indicators such as area pricing, route constraints or vehicle type 
constraints), distance, delivery share, and a memory variable. The memory variable represents the 
history of the tour, i.e., the ratio between the distance to be covered to reach the next delivery 
location and the current distance covered. Their results show that there are important differences 
between the first stop and subsequent stops, with the memory variable being statistically significant 
and negative, suggesting that the systematic utility of choosing a destination is a cost function of the 
distance from the current stop location. Comi et al. (2021) use an aggregate approach to estimate the 
tour-based visits of light goods vehicles in the Veneto Region, Italy. Their approach is similar to the 
one described by Nuzzolo & Comi (2013), where they separate the first delivery zone and the next 
zones. They used data collected using global position system (GPS) which enables them to obtain true 
freight origin- destination matrices.   

Wang & Holguín-Veras (2008) use an incremental growth approach, also known as a stop-go model, 
to describe the probability of terminating the trip and returning to the origin. They use a synthetic 
dataset that contains a set of tours. They separate their modelling into the destination choice and the 
tour termination process. Their results show that the termination model is a function of a memory 
variable that represents the amount of cargo the truck has delivered up to that point in the 
termination model, and the distance to the origin. This study provides insights on the variables that 
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should be considered in modelling freight movement. Hunt & Stefan (2007) use an incremental growth 
approach to understand tour-based movements in Calgary, Canada in 2001. Their study includes light 
vehicles, heavier single unit and multi-unit configurations. They include explanatory variables such as 
travel time, primary purpose, employment, residential land use, have a statistically significant 
influence in the next stop destination model.  

Boarnet et al. (2017) study freight movements at an aggregate level in Los Angeles in 2005. They 
estimate a regression model to understand freight activity as a function of geographic characteristics, 
employment, and accessibility. Their results show that employment is an important driver of freight 
activity. 

Ellison et al. (2017) study light commercial vehicle destination choices in Sydney. They use a multi-
step approach to modelling destinations visited, but they do not estimate a model for the number of 
stops visited or the sequence of these visits. That is, the utility function for a location to be chosen is 
the same, with the stop sequence not modelled per se but simulated by random draws. Their findings 
suggest that occupation and industry are very important explanatory variables in light commercial 
vehicle trip making.  

The aforementioned studies provide relevant guidelines as to what are the most important variables 
to include. In the current paper, we propose a nested structure and estimate a separate model for 
each stop number. The models from the upper levels are connected to the ones in the lower levels 
through a logsum parameter, an index of expected maximum utility. This structure directly accounts 
for the cumulative effect of the number of stops and the distance travelled on tour formation and 
destination choices within a utility-maximisation framework that is internally consistent and quick in 
run time. This is the main contribution of this paper which, to the best of our knowledge, has not been 
done before in the LCV and freight modelling literature. 

3 Methodology 
The aim of this paper is to estimate an operational LCV model that can be implemented within an 
integrated transport and land use modelling framework, called MetroScan (see, Hensher et al., 2020)   
to account for the competing demands for roads generated by moving passengers, services, and 
freight. The contribution of the method used in this research and main focus of this paper is on the 
LCV preferences’ variations across different stops and different tour types. To this end, we developed 
a tour-based nested logit model structure for the movement of LCVs based on the Sydney Household 
Travel Survey (HTS) 7-year pooled dataset from which all movement of LCVs registered for business 
(cf. private) were filtered and restructured into a tour-based dataset (see Ho & Mulley, 2013 for more 
details). Our model structure reflects the interdependent decisions observed for this sector, namely 
tour generation (i.e., number of tours generated per day), tour type (i.e., number of stops on each 
tour), destination locations and stop sequence (i.e., which locations to visit in what order). The tour 
generation sub-model is structured to as a NL model with the number of levels equal to the maximum 
number of tours observed for each LCV driver. The tour type sub-model was also structured to have a 
NL form with five nests, each representing the number of stops chained into that tour. The two sub-
models were linked with the destination and stop sequence choice model through the maximum 
expected utility concept (aka. logsum see, e.g., Hensher et al., 2015). The latter is the focus of this 
paper.  
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The destination and stop sequence choice model uses a travel zone (TZ) defined by Transport for New 
South Wales (TfNSW) as the smallest spatial unit of geography.1 There are over 2,000 TZs within the 
Greater Sydney Metropolitan Area (GSMA). Thus, using TZs as elementary choices of the NL model 
results in a very large choice set, presenting challenges for model estimation and application. Thus, 
the technique we used to go around this large choice set issue involved separating, econometrically, 
the destination/stop sequence decision into two steps: (1) the driver first decides which Statistical 
Area Level 3 (SA3, a relatively large spatial unit of geography defined by the relevant authorities) to 
visit and then (2) decides which TZ to visit within the selected SA3. The GSMA is divided into 58 SA3s, 
each contains multiple TZs (the maximum TZs within a SA3 is 123). Hence, the choice set reduces from 
more than 2000 alternatives (TZs) to 58 for the choice of SA3 and a maximum of 123 for the choice of 
TZ. This technique allows us to estimate a destination and stop sequence choice model 
simultaneously, without imposing arbitrary constraints on the choice set. That is, all SA3 and TZs are 
available for all LCVs. 

We estimated the destination and stop sequence choice model using the multi-step approach with 
partial share models (see Section 2). The multi-step approach model structure is illustrated in Figure 
1. The LCV driver first chooses how many stops to visit per tour (i.e., tour type). Given a positive 
number of stops, they will then need to decide what stops (SA3 location, followed by TZ location) to 
visit first, second, third, etc. until all stops are visited. For example, if the tour includes two stops, they 
need to decide, in sequential order, the SA3 and the TZ of the first stop, then the SA3 and TZ for the 
second stop before returning to their home or the depot for the next tour. The decision levels within 
the same branch (i.e., TZ stop t  SA3 stop t  TZ stop t-1  SA3 stop t-1  …) are connected via a 
logsum which is obtained from the bottom levels to feed into the top levels. This logsum represents 
the utilities of the bottom levels which are required to define the utilities of the top levels. For 
example, the TZ model for stop 3 in branch 4 (i.e., with a total number of 4 stops), will influence the 
top-level model, which is the SA3 model for stop 3 in branch 4 stops. Similarly, the SA3 model for stop 
3 in branch 4 will influence the TZ model for stop 2 in branch 4.  

The last choice, going back to their home/depot, always has a probability of 1, owing to the 
assumption that all LCVs return to the home/depot by the end of the day. Therefore, for model 
estimation, the trips going back to the home/depot will be excluded; however, in implementation, this 
so-called empty trip is added to the LCV demand matrix, using the last TZ as the origin and the driver’s 
home/depot as the destination, before passing on to the network assignment. We estimated separate 
models for different tour types (i.e., branch). This approach will allow us to gain a better understanding 
of how the different attributes are more or less important in the different tour types (i.e., total number 
of stops) and throughout the trajectory (i.e., between stops in the same tour). The models for branch 
with 5 or more stops represent the longest sequential estimation, since it has the longest decision-
process as was presented in Figure 1, with 10 levels – hence 10 models excluding the number of stops 
model. The models for each branch will be estimated sequentially.  

The next subsections provide more details of the model formulation for the TZ destination choice 
model, the SA3 destination choice models, and the number of stops choice. The last two subsections 
(3.4 and 3.5) detail the approach used to define the generalised cost used in the models, which 
represents the time and distance between the origin and destinations, including: (1) generalised cost 
between the origin and the possible SA3s; (2) generalised cost between the chosen SA3 and the 

 

1 https://opendata.transport.nsw.gov.au/dataset/travel-zones-2016 
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possible TZs within the SA3, referred to as normalised generalised cost; and (3) generalised cost 
between the origin and the driver’s home/depot.  

 

Figure 1: Nested structure used for sequential model estimation 

3.1 TZ Models 
The first model to be estimated in each branch is the one in the lowest level, i.e., the TZ model for the 
last stop S (in branch S, with S stops). This model is estimated using the observation of the last stop S, 
for LCVs that did a tour with S stops (i.e., belong to branch S). The utility function for destination TZi 
given the LCV driver already choose the SA3 destination, is as follows: 
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where ind j  is a dummy variable equal to 1 if the LCV driver is in industry j, 0 otherwise; sex is the 
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driver (in AUD$); SS SS
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generalised cost is associated with several parameters: 
GC

SSβ  by itself, SS
sexβ  interacting with the driver’s 

gender, SS
ageβ  interacting with driver’s age and SS

hincβ  interacting with driver’s income.  

The TZ utility formulation for the rest of the stops (i.e., that are not the last one) is the same as the 
one presented in Equation (4) but it includes the logsum parameter for the bottom SA3 model (refer 
to Figure 1). That is, the logsum parameter for TZ stop t model is calculated using the SA3 model for 
stop t+1, S(t+1)3

lnSumSt
DSA

. The utility expression for the TZ model for stop t (t < S) can be written as: 
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where St
lnsumβ  represents the parameter associated with the logsum of the SA3 model for the next stop 

t+1, and it has to be between 0 and 1 to comply with the underlying assumption of expected utility 
maximisation. If it is equal to 0, then the results would be suggesting that the SA3 for t+1 stop model 
does not have an influence on the current stop t TZ model.  

3.2 SA3 Models 
The SA3 model for stop t (t ≤ S) branch S will be estimated sequentially after the TZ stop t branch S 
model, as it is related to the bottom model through the logsum of the TZ model, StlnSumSt

DTZ
. The 

utility function for SA3 i in stop t Branch S, given that the previous TZ stop t-1 has already been chosen, 
will be defined as: 
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where S(t-1) St, 3
GenCost

iDTZ DSA
 represents the generalised cost between the TZ chosen in the previous 

stop t-1 and SA3 i; St3 ,
GenCostHH

HHiDSA DTZ
represents the generalised cost between SA3 i and the TZ 

driver’s home/depot (i.e., representing the time and distance that would take the driver to go back to 
their origin); and St3

CBD
iDSA

 is a dummy variable equal to 1 if SA3 i is located in the Central Business 
District (CBD) area, 0 otherwise. The β s are the parameters associated to each attribute and, similar 
to the TZ models, the generalised cost interacts with the LCV driver characteristics (industry, age, 
gender, income).  

3.3 Tour Type Model 
The tour type model, describing the number of stops an LCV driver visits on each tour, is the last to be 
estimated because it includes the logsum of the destination and stop sequence choice model. The 
utility function for branch b (b between 1 to 5+ stops) will be defined as follows: 
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where HHCBD  is a dummy variable equal to 1 if the LCV driver home/depot is located in the CBD 
area, 0 otherwise; weekend is a dummy variable equal to 1 if the tour is completed on a weekend 
day, 0 otherwise; S13

lnSum bBr
DSA

represents the logsum of the first stop of branch b; and the β s are the 
associated parameter estimates.   

3.4 Generalised Cost and Normalised Generalised Cost 
The nested structure considers the LCV first choosing the SA3 to stop (SA3 destination) and, given that 
SA3, they choose the TZ within that SA3. For the SA3 decision, we assume LCV drivers consider the 
distance between their origin and the possible SA3 destinations , 3OTZ DSAd  - which is calculated as the 
average distance between their origin (travel zone) and all the travel zones within each SA3 
destination. For the TZ decision, given that LCV drivers already chose the SA3 destination, we assume 
they evaluate a “normalised” distance 3,

n
DSA DTZd  which is the distance between their chosen SA3 

destination and the possible TZ destinations, calculated as: 

3, , , 3
n

DSA DTZ OTZ DTZ OTZ DSAd d d= −         (5) 

where ,OTZ DTZd  is the distance between the origin TZ to destination TZ (given by the OD matrix which 
is represented by travel zones). We calculate the equivalent for time, and calculate a generalised cost 
as follows: 

, , , , ,

, ,

VOC VOCGenCost + =TimeAM DistAM
VTTS VTTS

37 cents/kmTimeAM DistAM
58.33 cents/min

OTZ DTZ OTZ DTZ OTZ DTZ OTZ DTZ OTZ DTZ

OTZ DTZ OTZ DTZ

t d= ⋅ + ⋅

= + ⋅
 (6) 

where VOC is the value of operating costs which is equal to 37cents/km (ATAP, 2016). The VTTS used 
is derived from several non-commuting work-related studies (Mackie et al., 2003; Ellison et al., 2017; 
Batley, 2015), which is 35 $/hour (58.33 cents/minute).  

The normalised generalised cost which are used in the TZ decisions assuming the LCV driver has 
already chosen the SA3, are as follows: 

( ) ( )

3, 3, 3,

, , 3 , , 3

VOCGenCost +
VTTS

VOC=
VTTS

n n n
DSA DTZ DSA DTZ DSA DTZ

OTZ DTZ OTZ DSA OTZ DTZ OTZ DSA

t d

t t d d

= ⋅

− + ⋅ −
   (7) 

A graphical representation of these normalised distances calculation is presented in Figure 2, which is 
represented by the black line. This is the difference between: the distance between travel zones (light 
blue line) – which is obtained from the OD matrix; and the distance between the travel zone and the 
SA3 centre (green line).  
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Figure 2: Graphical representation of normalised distance between SA3 origin and TZ destination 

As mentioned above, the centre of each SA3 is calculated as the average distance between all the 
travel zones within that SA3 (not only the ones chosen in the dataset, but all available according to 
the OD matrix). An example is shown in Figure 3, where the average between all the light blue 
distances (between TZs) is equal to the green distance (distance between a TZ and the centre of the 
SA3). 

 

Figure 3: Graphical representation of the centre of each SA3 

It is important to note that the normalised distance (represented by the black line in Figure 2) can be 
negative, when the destination travel zone is closer to the travel zone origin, relative to the SA3 centre; 
or positive, when the destination travel zone is more distant to the origin than the SA3 centre. An 
example is presented in Figure 4. The TZ 2984 is more distant to the origin (TZ 5144) than the SA3 
10201 centre, so the normalised distance for TZ 2984 from the SA3 10201 centre is positive and 
represented by the dotted black line. Contrarily, TZ 2985 is closer to the origin (TZ 5144) than the SA3 
10201 centre, so the normalised distance for TZ 2985 from the SA3 10201 centre is negative and 
represented by the solid black line. 



9 
 

 

Figure 4: Graphical representation of positive (dotted lines) and negative (solid lines) normalised 
distances between a SA3 centre and a travel zone 

A graphical representation of an example of the normalised distances for all travel zones within a SA3 
is shown in Figure 5.  

 

Figure 5: Graphical representation of normalised distances within an SA3 

3.5 Generalised Cost to Home/Depot 
In terms of destination choice, it seems plausible that LCVs consider the distance and time back to 
their origin, whether it is the LCV driver’s home or depot, when deciding where to go next. This 
generalised cost to home/depot was included in the SA3 models as presented in subsection 3.2. To be 
able to include the log generalised cost back to the household, lGenCostHH, we need to verify that its 
correlation with the generalised cost between the current location and the SA3 alternatives, lGenCost, 
does not cause a severe multicollinearity problem, using a rule of thumb value of 0.8 for partial 
correlation. That is, if the correlation between lGenCost and lGenCostHH is higher than 0.8 then we 
only include lGenCost in the model. 
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The correlation results are presented in Table 1. The generalised costs for the SA3 first stop are 
obviously highly correlated since they represent the same two points but in opposite direction (going 
to the SA3 or coming back to the house which is the starting point), so the distance is the same, but 
the time slightly changes. In all branches, the generalised costs are highly correlated for stop 2 as well, 
so the generalised cost back household are not included in any of the stop 1 or 2 SA3 models.  

Table 1: Correlation between lGenCost and lGenCostHH 

Correlation lGenCost and 
lGenCostHH  in SA3 models 

Branch 
stop 1 

Branch 
stop 2 

Branch 
stop 3 

Branch 
stop 4 

Branch 
stop 5 

Stop 1 0.966 0.956 0.962 0.961 0.958 
Stop 2 - 0.840 0.851 0.859 0.880 
Stop 3 - - 0.788 0.787 0.796 
Stop 4 - - - 0.791 0.776 
Stop 5 - - - - 0.790 

 

4 Data 
The data used in this study was obtained pooling four sources of data: 

1. LCV movement: These data include LCV tours constructed from the 7-year pooled Sydney 
Household Travel Survey data (2007 to 2014). This is the base data for the number of trips and 
destination choice modelling (TZ and SA3). 

2. Employment and population data: Includes employment and populations projections per 
industry class. 

3. Distance and time OD matrix: These data contain all the information for times and distances 
between each TZ pairs. 

The TZ and SA3 destination choice models, as well as the number of trips model, were estimated using 
the pooled freight trips data, employment and population data, and the distance and time OD matrix 
(used to calculate the generalised costs). These pooled data are referred to as the destination choice 
data, which contains information for 1,302 tour-based trips; and the expanded version that considers 
each stop separately contains 3,649 observations for all tour-based trips. The freight trips data also 
contain information on the age, gender and household income of the LCV drivers (in ‘000$AUD), as 
well as their occupation and industry. 

The occupation of LCVs driver is presented in Figure 6, where 45.8% of these data represents people 
with occupation technicians and trade workers, 16.9% represents managers, 11.6% represents 
professionals, etc. Even though almost half of the observations are represented by technicians and 
trade workers, the other half of work-related tours corresponds to different occupations. 



11 
 

 
Figure 6: Occupation of LCV drivers 

The percentage of tour-based trip types by occupation is presented in Figure 7. The distribution across 
occupations is relatively similar, that is, the most frequent branch is the 1-stop branch, and the lowest 
is the 4-stop branch. The 2, 3 and 5-stop branches have different percentages across occupations. The 
5-stop branch is close or over 25% in machinery operators and drivers, clerical and administrative 
workers, and community and personal service workers. For sales workers, the second most common 
branch is the 3-stop branch. Therefore, it is important to note that the number of stops model will be 
representing the technicians and trades workers shares, where the 2, 3 and 5-stop branches are 
almost equally frequent. It is important to note that even though the branch with lowest number of 
observations is the 4-stops branch, it still has over 100 valid tour-based trips, which is enough to 
estimate the TZ and SA3 models. All the other tour-based trip types will be estimated with over 200 
observations.  

 
Note: Number of stops excludes the last household stop 

Figure 7: Tour-based trip types by occupation 

Table 2 presents the LCV occupation by industry. Most of the technicians and trade workers are in the 
construction sector, while the majority of sales workers and managers are in the wholesale and retail 
trade industry, and the majority of the machinery operators and drivers work in transport and 
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warehousing. As expected, occupations are highly related to the industry type, which is what will be 
included in the models.  

Table 2: LCV occupation by industry 
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Accommodation and food services  19% 2%  4%  4% 1% 2% 
Agriculture and mining 4%  8% 1% 5%   1% 2% 
Construction 2%  28% 13% 16% 1%  58% 34% 
Education and training  5% 5%  0% 17%  1% 2% 
Financial and insurance services 4%    2% 2%   1% 
Health care and social assistance 5% 30% 3%  1% 14%  1% 3% 
Manufacturing 22%  9% 20% 19% 10% 9% 14% 14% 
Media, professional, scientific and ICT services 11%  1% 1% 4% 23% 9% 4% 5% 
Public administration 15% 16% 3% 3% 1% 12%  3% 4% 
Real estate, administration and other services 15% 30% 30% 4% 9% 14% 9% 12% 14% 
Transport and warehousing 11%  5% 40% 5% 5%  1% 6% 
Wholesale and retail trade 13%  5% 19% 34% 1% 70% 5% 13% 

 

General descriptives of the TZ and SA3 destination choice datasets and the number of stops dataset 
are presented in Table 3. Note that the average normalised generalised cost in the TZ destination 
choice data is negative, which means that LCVs tend to choose a TZ that is closer to their origin than 
the centre of the chosen SA3. The average distance to the SA3 chosen destination is approximately 
17.6 kms, while the travel time by car is of 31.6 minutes. The average age of LCV drivers in the 
destination choice data is almost 42 years, 12% of the drivers are female and their average household 
annual income is of AUD$110k. 

Table 3: Sample descriptive statistics 

Variables Mean (std dev) Data level 
Number of stops data   

Household in the CBD area (1,0) 17% Stops 
Weekend (1,0) 8% Stops 

Destination choice data   
Distance to household (kms) 21.739 (20.29) SA3 
Distance to SA3 (kms) 17.597 (18.01) SA3 
Generalised cost 42.733 (38.63) SA3 
Generalised cost to household 48.969 (39.45) SA3 
If the destination SA3 is in the CBD area (1,0) 27% SA3 
Travel time by car to household (minutes) 35.181 (27.34) SA3 
Travel time by car to SA3 (minutes) 31.572 (28.04) SA3 
Accommodation and food services industry employment in TZ destination 136.189 (201.83) TZ 
Agriculture and mining industry employment in TZ destination 18.698 (57.32) TZ 
Construction industry employment in TZ destination 179.687 (271.72) TZ 
Education and training industry employment in TZ destination 91.805 (206.94) TZ 
Estimated resident population by destination TZ 1,876.924 (1,371.35) TZ 
Financial and insurance services industry employment in TZ destination 96.939 (421.05) TZ 
Health care and social assistance industry employment in TZ destination 214.047 (628.55) TZ 
Manufacturing industry employment in TZ destination 313.500 (624.63) TZ 
Media, professional, scientific and ICT services industry employment in TZ 
destination 206.977 (494.03) TZ 

Normalised generalised cost -7.153 (13.28) TZ 
Public administration industry employment in TZ destination 130.531 (385.04) TZ 
Real estate, administration and other services industry employment in TZ 
destination 238.518 (321.78) TZ 
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Variables Mean (std dev) Data level 
Transport and warehousing industry employment in TZ destination 178.037 (793.10) TZ 
Wholesale and retail trade industry employment in TZ destination 366.386 (541.91) TZ 
Age of driver  41.830 (13.54) LCV driver 
Female driver (1,0) 12% LCV driver 
Household income of driver in '000$AUD 110.246 (54.45) LCV driver 

 

5 Results Multi-Step Approach 
The TZ model results for each branch are presented in Table 4 and Table 5, and the SA3 models results 
are presented in Table 6 and Table 7. The overall goodness of fit of the models presented at the 
bottom of the tables shows that the models are statistically superior to the restricted version, 
suggesting the explanatory variables are statistically significant when explaining the destination 
choices. The results show that the TZ decision for the current stop (t) does have a statistically 
significant effect in the current stop (t) SA3 decision, as the logsum representing the bottom TZ model 
was statistically significant in all SA3 models. This result was expected since the TZ options within a 
SA3 certainly have an influence on the SA3 chosen for each stop. On the contrary, results show that 
the relationship between stops was not statistically significant as the logsum representing the bottom 
SA3 decision was not statistically significant in any of TZ models. That is, the SA3 decision for the next 
stop (t+1) does not have a significant effect in the current stop (t) TZ decision. This suggests that LCV 
drivers may not consider the convenience of the next stop, measured by the maximum expected utility 
of visiting that stop, when deciding where to stop next.  

It is interesting to note that there are important differences for the explanatory variables that are 
statistically significant in each stop. For instance, the TZ model results for branch 5 stop 5 show that 
LCV drivers that work in accommodation and food services industry are less sensitive to the 
normalised generalised cost (nGenCost), followed by LCV drivers that are in the construction industry, 
compared to the rest of the industries. They also show that as the LCV driver is older, they are less 
sensitive to the nGenCost in stop 5, and female drivers are more sensitive to the nGenCost. In the TZ 
model results for branch 5 stop 4, the only LCV driver characteristic that was statistically significant 
was the manufacturing industry, and it shows that LCV drivers that work in that industry are less 
sensitive to the nGenCost in stop 4. The TZ model results for branch 5 stop 3 show that LCV drivers in 
the financial and insurance services industry are more sensitive to the nGenCost in this stop. The only 
attribute that was statistically significant in all the models for branch 5 was the nGenCost and the 
employment of the driver in the transport and warehousing industry, which suggests that LCV drivers 
who are doing a 5-stop tour are more likely to stop in TZ that have higher employment in transport 
and warehousing industry. Similarly, the results for the rest of the branches also vary across stops with 
the nGenCost being the only statistically significant attribute in all models.  
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Table 4: TZ Model Results for Branch 5 and 4 – mean (t value) 

Attribute Branch 5 Branch 4 
Stop 1 Stop 2 Stop 3 Stop 4 Stop 5 Stop 1 Stop 2 Stop 3 Stop 4 

Normalised generalised cost from the 
current SA3 centroid to alternative TZ 
destination 

-0.059 
(7.39) 

-0.074 
(8.58) 

-0.077 
(8.49) 

-0.101 
(8.99) 

-0.308 
(4.97) 

-0.074 
(6.29) 

-0.068 
(5.77) 

-0.072 
(5.39) 

-0.083 
(6.38) 

Industry type manufacturing (1,0)       0.069 
(2.63)           

Industry type construction (1,0)         0.024 
(1.85)         

Industry type accommodation and food 
services (1,0)         0.073 

(1.88)         

Industry type financial and insurance 
services (1,0)     -0.832 

(2.16)             

Age of driver         0.057 
(3.47)         

Female driver (1,0) -0.056 
(1.97)       -0.065 

(3.16)         

Ln(Estimated resident population by 
destination TZ)   -0.057 

(1.92)       -0.179 
(4.17)       

Agriculture and mining industry 
employment in TZ destination             0.143 

(1.77)     

Manufacturing industry employment in 
TZ destination             0.207 

(3.56)     

Construction industry employment in TZ 
destination 

0.247 
(3.12)                 

Wholesale and retail trade industry 
employment in TZ destination         0.086 

(2.05)       0.265 
(3.49) 

Accommodation and food services 
industry employment in TZ destination     0.262 

(5.28)             

Transport and warehousing industry 
employment in TZ destination 

0.155 
(2.77) 

0.102 
(1.85) 

0.197 
(4.25) 

0.149 
(3.14) 

0.103 
(3.20)         

Media, professional, scientific and ICT 
services industry employment in TZ 
destination 

              0.284 
(2.10)   

Public administration industry 
employment in TZ destination       0.151 

(3.83) 
0.082 
(3.21)       0.115 

(1.73) 
Health care and social assistance industry 
employment in TZ destination 

0.114 
(2.45)         0.139 

(2.15)     -0.201 
(2.73) 

Real estate, administration and other 
services industry employment in TZ 
destination 

  0.334 
(4.54)     0.123 

(1.95)     0.297 
(2.01)   

Number of estimated parameters 5 4 4 4 9 3 3 3 4 
Sample size 232 232 232 232 724 106 106 106 106 
Restricted log likelihood  -1,116.43 -1,116.43 -1,116.43 -1,116.43 -3,484.02 -510.09 -510.09 -510.09 -510.09 
Final log likelihood -787.19 -781.70 -784.66 -778.73 -2,376.81 -375.95 -368.92 -360.09 -355.34 
AIC/n 6.83 6.77 6.80 6.75 6.59 7.15 7.02 6.85 6.78 
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Table 5: TZ Model Results for Branch 3, 2 and 1 – mean (t value) 

Attribute Branch 3 Branch 2 Branch 1 
Stop 1 Stop 2 Stop 3 Stop 1 Stop 2 Stop 1 

Normalised generalised cost from current SA3 centroid to 
alternative TZ destination 

-0.037 
(4.85) 

-0.173 
(2.83) 

-0.072 
(7.78) 

-0.058 
(7.94) 

-0.183 
(2.66) 

-0.046 
(10.41) 

Industry type agriculture and mining (1,0)           -0.066 (2.44) 

Industry type accommodation and food services (1,0) 0.203 
(3.61)           

Industry type health care and social assistance (1,0)         -0.153 
(2.22)   

Female driver (1,0) -0.069 
(2.18)           

Ln(Household income of LCV driver in '000$AUD)   0.027 
(1.95)     0.031 

(2.07)   

Agriculture and mining industry employment in TZ 
destination       0.108 

(1.76)     

Manufacturing industry employment in TZ destination 0.191 
(3.61)     0.118 

(2.09) 
0.146 
(3.55) 0.254 (9.21) 

Construction industry employment in TZ destination   0.158 
(1.77) 

0.433 
(4.74) 

0.166 
(1.73)     

Wholesale and retail trade industry employment in TZ 
destination     0.248 

(3.65)       

Accommodation and food services industry employment in 
TZ destination         0.238 

(4.87) 0.104 (3.06) 

Transport and warehousing industry employment in TZ 
destination 

0.199 
(2.99)           

Financial and insurance services industry employment in TZ 
destination   0.110 

(1.95)         

Media, professional, scientific and ICT services industry 
employment in TZ destination     -0.255 

(3.06)     0.093 (1.91) 

Public administration industry employment in TZ 
destination       0.122 

(2.92)     

Real estate, administration and other services industry 
employment in TZ destination   0.257 

(2.34)         

Number of estimated parameters 5 5 4 5 5 5 
Sample size 200 200 200 209 209 555 
Restricted log likelihood  -962.44 -962.44 -962.44 -1,005.75 -1,005.75 -2,670.76 
Final log likelihood -665.37 -681.93 -651.11 -679.11 -686.50 -1,819.25 
AIC/n 6.70 6.87 6.55 6.55 6.62 6.57 

 

The SA3 model results show that the generalised cost (GenCost), the generalised cost to LCV driver 
home/depot (GenCostHH), and the logsum for the lower level TZ model are statistically significant in 
all models – taking into account that the GenCostHH could not be included in the stop 1 or 2 models 
since it was highly correlated to the GenCost. In branch 5 and branch 4, the results suggest that the 
sensitivity towards the GenCostHH increase as the LCV driver reaches its last stop, i.e., the LCV drivers 
try to get closer to their household (origin) towards the end of their tour-based trip. The CBD area 
dummy variable was statistically significant in several models. In branch 5 it was significant and 
positive in stop 1 and 2, suggesting drivers are more likely to stop in the CBD at the beginning of their 
tour. The same can be inferred from branch 4 results, where the CBD is positive in stop 1 and 2 and 
negative in stop 4. Similar results were found in branch 2, with a positive CBD parameter in stop 1 and 
negative in stop 2.  
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Table 6: SA3 Model Results for Branch 5 and 4 – mean (t value) 

Attribute Branch 5 Branch 4 
Stop 1 Stop 2 Stop 3 Stop 4 Stop 5 Stop 1 Stop 2 Stop 3 Stop 4 

Ln(Generalised cost from previous 
TZ2 stop to alternative SA3 of the 
current stop) 

-5.184 
(4.92) 

-2.461 
(23.26) 

-2.123 
(17.39) 

-2.407 
(17.83) 

-2.400 
(33.20) 

-2.284 
(14.81) 

-2.082 
(15.44) 

-1.903 
(11.52) 

-1.623 
(8.25) 

Ln(Generalised cost to LCV driver 
home/depot)     -0.876 

(5.83) 
-1.069 
(6.90) 

-1.899 
(20.77)     -1.133 

(5.77) 
-2.140 

(10.41) 
If the destination SA3 is in the CBD 
area (1,0) 

0.456 
(2.32) 

0.557 
(2.78)       0.535 

(2.03) 
0.218 
(0.83)   -0.497 

(1.42) 

Industry type manufacturing (1,0)       0.887 
(3.08)           

Industry type transport and 
warehousing (1,0)   0.509 

(1.72) 
-0.878 
(1.87)             

Industry type financial and 
insurance services (1,0)   1.329 

(1.90)     1.177 
(3.01)         

Industry type education and 
training (1,0)         0.887 

(1.87)         

Female driver  (1,0)       -0.901 
(1.77)           

Ln(Household income of LCV driver 
in '000$AUD) 

0.533 
(2.39)                 

Logsum of bottom TZ model 1.000 
(6.56) 

0.636 
(4.49) 

0.787 
(7.22) 

0.526 
(4.90) 

0.778 
(11.02) 

0.862 
(3.90) 

0.937 
(3.93) 

0.348 
(1.95) 

0.389 
(1.47) 

Number of estimated parameters 4 5 4 5 5 3 3 3 4 
Sample size 232 232 232 232 724 106 106 106 106 
Restricted log likelihood  -925.44 -912.18 -916.69 -925.44 -2,927.17 -385.58 -391.02 -388.34 -382.76 
Final log likelihood -463.51 -498.25 -421.13 -405.49 -1,081.66 -220.07 -225.32 -187.57 -161.11 
AIC/n 4.03 4.34 3.66 3.54 3.00 4.21 4.31 3.60 3.12 

 
Table 7: SA3 Model Results for Branch 3, 2 and 1 – mean (t value) 

Attribute Branch 3 Branch 2 Branch 1 
Stop 1 Stop 2 Stop 3 Stop 1 Stop 2 Stop 1 

Ln(Generalised cost from previous TZ2 stop to 
alternative SA3 of the current stop) 

-4.420 
(4.47) 

-4.327 
(4.42) 

-1.612 
(13.40) 

-4.812 
(4.83) 

-2.103 
(21.87) 

-2.251 
(30.14) 

Ln(Generalised cost to household to LCV driver 
home/depot)     -1.863 

(13.94)       

If the destination SA3 is in the CBD area (1,0)       0.354 
(1.81) 

-0.665 
(2.60)   

Industry type manufacturing (1,0)             

Industry type construction (1,0)       0.422 
(1.94)   0.369 (3.12) 

Industry type education and training (1,0)         -1.440 
(1.73)   

Industry type health care and social assistance (1,0)         -1.285 
(1.55)   

Ln(Household income of LCV driver in '000$AUD) 0.485 
(2.30) 

0.474 
(2.27)   0.499 

(2.35)     

Logsum of bottom TZ model 0.753 
(4.97) 

1.000 
(7.44) 

0.669 
(3.85) 

0.539 
(3.76) 

0.794 
(5.18) 

0.953 
(11.24) 

Number of estimated parameters 3 3 3 5 5 3 
Sample size 200 200 200 209 209 555 
Restricted log likelihood  -797.80 -794.06 -790.25 -821.75 -837.53 -2,234.07 
Final log likelihood -502.84 -469.61 -380.91 -482.13 -499.20 -1,750.97 
AIC/n 5.06 4.73 3.84 4.66 4.82 6.32 

 

2 For the first SA3 stop, the generalised cost is calculated from the TZ of the LCV driver’s home/depot. For Stop 
2 to Stop 5, the generalised cost is calculated from the TZ of the immediate previous stop.  
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The number of stops model results are presented in Table 8. The results show that LCVs are more 
likely to do one stop tour-based trips on weekends relative to 2 or more stops. The age of drivers 
seems to have a significant and positive influence on branch 2, which suggests that older drivers are 
more likely to do 2-stop tours, relative to the other number of stops. The logsums in the number of 
stops model, which represent the lower-level models were significant for all branches. The results 
show that the influence of the bottom branch has a higher influence on the 4-stop branch, followed 
by the 5-stop branch, 3-stop branch. These results suggest that there is a relationship between the 
number of stops and the destination choices, which is more relevant when the number of stops is 
higher.  

Table 8: Tour type model describing the number of stops per tour 

Variable Mean (t value) 
Alternative specific constant branch 2 -2.711 (3.20) 
Alternative specific constant branch 3 0.019 (0.05) 
Alternative specific constant branch 4 -0.149 (0.43) 
Alternative specific constant branch 5 0.771 (2.28) 
Age of LCV driver branch 2 0.528 (2.33) 
Industry type education and training branch 1 (1,0) 1.293 (3.00) 
Industry type accommodation and food services branch 1 (1,0) 0.503 (2.93) 
Industry type financial and insurance services branch 5 (1,0) -0.728 (4.29) 
Logsum branch 1 stop 0.006 (1.69) 
Logsum branch 2 stops 0.003 (1.84) 
Logsum branch 3 stops 0.145 (2.34) 
Logsum branch 4 stops 0.518 (3.93) 
Logsum branch 5 stops 0.190 (3.59) 
Weekend branch 1 (1,0) 0.623 (3.24) 
Number of estimated parameters 14 
Sample size 1302 
Restricted log likelihood  -1963.77 
Final log likelihood -1859.42 
AIC/n 2.88 

 

5.1 Generalised cost elasticities  
In this research, we are interested in obtaining a better understanding of how sensitivity towards the 
generalised cost varies across branches and throughout the tour-based trip. The parameter estimates 
presented above cannot be compared directly across models, so the elasticities for the normalised 
generalised costs are presented in Table 9 and Table 10 for the TZ models; and the elasticities for the 
generalised costs in Table 11 and Table 12 for the SA3 models. 

The TZ models use the normalised generalised cost, which has a value close to 0 as it is calculated 
relative to the centre of the SA3. In branch 5, the sensitivity towards the normalised generalised cost 
increase as the trip progresses – although it is slightly higher in stop 1 than in stop 2. That is, the results 
show that there is 6.3% decrease in the probability of choosing a TZ in the first stop if the normalised 
generalised cost is 10% higher; 6.1% in the second stop; 7.0% in the third stop; 7.6% in the fourth stop; 
and 8.6% in the last stop. The interaction terms show that for the first stop, if the driver is male the 
sensitivity is a bit lower, namely, there is a 5.5% decrease in the probability of choosing a TZ when the 
normalised generalised cost is 10% higher. If the driver  is female, then the sensitivity is higher, with a 
decrease of 10.6% in the probability when the cost increases by 10%. The interaction with gender is 
also significant in stop 5 and in branch 3 stop 1; always suggesting a higher sensitivity by female drivers 
towards the normalised generalised cost. It is interesting to note that the average sensitivity in each 
branch seems to decrease with the number of stops, i.e., the elasticity in branch 5 varies between -
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0.61 and -0.86, while in branch 1 it is equal to -0.47. It seems that LCVs are more sensitive towards the 
normalised generalised cost when choosing a TZ if their tour-based trip is longer (with more stops).  

Table 9: TZ Model Elasticities for Branch 5 and 4 

  Branch 5 Branch 4 
  Stop 1 Stop 2 Stop 3 Stop 4 Stop 5 Stop 1 Stop 2 Stop 3 Stop 4 
Normalised generalised cost -0.63 -0.61 -0.70 -0.76 -0.86 -0.67 -0.58 -0.60 -0.75 
Normalised generalised cost if 
industry type manufacturing       -0.85           

Normalised generalised cost if 
industry type construction         -0.91         

Normalised generalised cost if 
industry type accommodation 
and food services 

        -0.86         

Normalised generalised cost if 
industry type financial and 
insurance services 

    -0.63             

Normalised generalised cost if 
gender male -0.55       -0.78         

Normalised generalised cost if 
gender female -1.06       -1.33         

 

Table 10: TZ Model Elasticities for Branch 1, 2 and 3 

 Branch 3 Branch 2 Branch 1 
  Stop 1 Stop 2 Stop 3 Stop 1 Stop 2 Stop 1 
Normalised generalised cost -0.45 -0.49 -0.74 -0.55 -0.50 -0.47 
Normalised generalised cost if industry type agriculture 
and mining           -0.44 

Normalised generalised cost if industry type 
accommodation and food services -0.47           

Normalised generalised cost if industry type health care 
and social assistance         -0.42   

Normalised generalised cost if gender male -0.36           
Normalised generalised cost if gender female -1.08           

 

The elasticity results for the SA3 models are calculated relative to the generalised cost. The results for 
branch 5 suggest that during the tour-based trip LCVs become less sensitive towards the generalised 
cost. Namely, if the generalised cost increase by 10%, there is a 18.8% reduction in the probability of 
choosing a SA3 in stop 1, 17.0% in stop 2, 14.3% in stop 3, 14.4% in stop 4, and 13.6% in stop 3. The 
drop in the elasticity in stop 3 can also be attributed to the generalised cost to the LCV driver 
home/depot, which was significant in this model and gained importance as the trip progressed. That 
is, in stop 3 the probability of choosing an SA3 decreases by 5.7% when the generalised cost to the 
LCV driver home/depot increases by 10%; decreases by 6.6% in stop 4; and by 10.0% in stop 5. 

The results for branch 4 and branch 3 also suggest that as the trip progresses, the sensitivity towards 
the generalised cost decreases and the generalised cost to the LCV driver home/depot gains 
importance. In branch 2 and branch 1, the generalised cost to the LCV driver home/depot was not 
included as it was highly correlated with the generalised cost, so the results are a bit different. In 
branch 2, the sensitivity towards the generalised cost is actually higher in stop 2 than in stop 1: if there 
is an increase in the generalised cost by 10%, the probability to choose a SA3 decreases by 13.9% in 
stop 1 and 16.5% in stop 2. Gender was only significant in the branch 5 stop 4 model, suggesting that 
female drivers are more sensitive towards the generalised cost than male drivers.  
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Table 11: SA3 Model Elasticities for Branch 5 and 4 

  Branch 5 Branch 4 
  Stop 1 Stop 2 Stop 3 Stop 4 Stop 5 Stop 1 Stop 2 Stop 3 Stop 4 
Generalised cost -1.88 -1.70 -1.43 -1.44 -1.36 -1.72 -1.51 -1.18 -0.97 
Generalised cost to LCV driver 
home/depot     -0.57 -0.66 -1.09     -0.70 -1.28 

Generalised cost if industry type 
manufacturing       -1.54           

Generalised cost if industry type 
transport and warehousing   -1.74 -1.38             

Generalised cost if industry type 
financial and insurance services   -1.72     -1.37         

Generalised cost if industry type 
education and training         -1.37         

Generalised cost if gender male       -1.39           
Generalised cost if gender female       -1.95           

 

Table 12: SA3 Model Elasticities for Branch 1, 2 and 3 

 Branch 3 Branch 2 Branch 1 
  Stop 1 Stop 2 Stop 3 Stop 1 Stop 2 Stop 1 
Generalised cost -1.77 -1.63 -1.12 -1.39 -1.65 -1.71 
Generalised cost to LCV driver home/depot     -1.29       
Generalised cost if industry type construction       -1.47   -1.82 
Generalised cost if industry type education and 
training         -1.62   

Generalised cost if industry type health care and social 
assistance         -1.63   

 

6 Generalised cost simulation 
Using the model results for each branch and each stop, we simulated the probability to choose a TZ 
and a SA3 given different normalised generalised costs (nGenCost) and generalised costs (GenCost), 
respectively. We simulated scenarios where drivers had to choose between 4 different TZ or SA3s; 
that is why the probabilities to choose the TZ or SA3 will be equal to 25% when the generalised cost 
and normalised generalised cost are equal to the sample average (refer to Table 3). The simulated 
results for the TZ choice are presented in Figure 8. These graphs show that for branch 2 the sensitivity 
towards nGenCost is significantly higher in stop 1 than stop 2, particularly for negative nGenCosts (i.e., 
when the TZ is closer to the origin than the chosen SA3 centre). However, for branch 3 and 5 the 
opposite is true, where the sensitivity towards nGenCost is lower in stop 1 and increases in each stop 
– reaching the maximum sensitivity in the last stop.  In branch 4 the first three stops have relatively 
similar sensitivities towards nGenCost, which increases in the last stop. In conclusion, it seems that for 
tour-based trips with at least three stops, LCVs are more sensitive towards the time and distance to 
the TZ towards the end of their trip, given they already chose the SA3.  
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Figure 8: Simulated probability to choose TZ relative to normalised generalised cost 

 

The simulated results which graphically represent the influence of the generalised cost in the SA3 
choice are presented in Figure 9. The results for all branches show a higher sensitivity to the 
generalised cost for the first stop, which decreases in each stop. This is an important finding that 
should be complemented with the fact the time and distance to the LCV driver home/depot gains 
importance in the last three stops. These results are suggesting that LCVs are more sensitive towards 
the time and cost to the next SA3 in the first stops and decreases as they complete their trip. However, 
when they are far enough from their home/depot - which usually occurs in stop 33 - the time and 
distance back to their home/depot starts weighting in their decision-making. 

 

3 After the third stop the generalised cost between the origin and the alternative SA3, and the generalised costs 
between the origin and the household are no longer correlated.  
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Figure 9: Simulated probability to choose SA3 relative to generalised cost 

7 Discussion and conclusions 
The current literature on tour-based trips of light commercial vehicles is somewhat limited. Usually, 
destination choices made by LCV drivers pool the data from different stops and different tour types 
(defined by the total number of stops). The objective of this research was to get a better 
understanding of preferences in different tour types and in different number of stops within the tour. 
The data used contained information of the LCV industry and household of the driver, driver 
characteristics (age, gender, income), and destination characteristics such as time and distance from 
the current location, employment and populations density. Since time and distance are highly 
correlated but they do contribute different measures (such as traffic or number of highways), they 
were combined into a generalised cost.  

The choices studied in this work had three different levels: the first one is the decision of the number 
of stops, which defines the branches or the tour-based trip type; the second one the SA3 destination 
choice (which is a relatively large spatial unit defined in Sydney); and the third one the TZ destination 
choice (a smaller spatial unit) given the SA3 was already chosen. A separate TZ and SA3 destination 
choice model was estimated for each branch and each number of stop. The elasticities were calculated 
for the generalised costs and simulations were presented to show the changes in the probability to 
choose a certain destination given variations in the generalised costs.  

The results show that when choosing the SA3, LCV drivers tend to be more concerned about the 
generalised cost in the first stop, which decreases as the trip is completed reaching its lowest 
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sensitivity to the generalised cost in the last stop. Oppositely, the importance of the generalised cost 
back to the driver’s home/depot increased as the trip is completed reaching a maximum in the last 
stop. That is, it seems like LCV drivers do not mind going further away in the middle stops but do want 
to be closer to their home/depot as they reach the end of their trip. This is an important finding, which 
suggests that it is very important to separate destination decision-making based on the tour type and 
also the stage of the tour. This study found important differences across branches and across the 
number of stops in the same branch.  

Future research should focus on updating these models using data post-COVID. Since the start of 
COVID in 2020, online purchases in Australia have seen an all-time high with a 57% increase, and 
shoppers expect their online shopping 28% higher than before the pandemic (Australia Post, 2021). In 
Sydney, most of these trips are done by light commercial vehicles so it can be expected that these 
models gain importance in the future in city planning and transport logistics. This research provides a 
guideline as to the importance of identifying the number of stop and the total number of stops in the 
tour-based trip when understanding destination choices.  
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