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Summary

Blundell, Pistaferri, and Preston (American Economic Review, 2008, 98(5),

1887–1921) report an estimate of household consumption insurance with

respect to permanent income shocks of 36%. In replicating findings for their

model and data, we find that this estimate is distorted by a code error and is

not robust to weighting scheme for generalized method of moments (GMM) or

consideration of quasi maximum likelihood estimation (QMLE), which pro-

duces a significantly higher estimate of consumption insurance at 55%. For

sub-groups by age and education, the differences between estimates across

methods are even more pronounced, and QMLE provides new insights into

heterogeneity across households compared to the original study. Monte Carlo

experiments using non-normal shocks suggest that consumption insurance

estimates for the model are more accurate for QMLE than GMM, including

when correcting for bias and especially given a smaller sample such as is only

available when looking at sub-groups.

1 | INTRODUCTION

How does idiosyncratic income risk impact consumption when households have only limited access to insurance via
formal markets or informal arrangements? In a seminal study, Blundell et al. (2008) (BPP hereafter) constructed a novel
panel dataset of income and (imputed) consumption for the Panel Study of Income Dynamics and, by employing gener-
alized method of moments (GMM) minimum distance methods, estimated a low degree of household consumption
insurance based on their proposed model for the data. Numerous other influential studies have followed their approach
(e.g., Auclert, 2019; Kaplan, Violante & Weidner, 2014) or used their estimate to calibrate structural models
(e.g., Kaplan, Mitman, & Violante, 2020). In this replication study, we re-visit the estimation in BPP and consider
robustness issues, including to using quasi maximum likelihood estimation (QMLE) instead.

Based on diagonal weights for GMM, BPP reported an estimate of consumption insurance with respect to perma-
nent income shocks of 36%. In replicating findings for their model and data, we find that this estimate is distorted by
an error in their original code. In particular, not all sample moments are matched correctly to model-implied moments
due to a misplaced transpose. For the BPP data, fixing this error does not alter the GMM estimate based on diagonal
weights very much (we find an estimate of 35%), but it could lead to extremely inaccurate estimates in other applica-
tions and we found it did so when conducting Monte Carlo experiments, including bootstrap replications used to cor-
rect for possible bias. The GMM estimate is also fairly imprecise and highly dependent on weighting scheme. Given
optimal weights instead, we find a very different estimate of consumption insurance at 68%. Furthermore, GMM esti-
mates become much less precise and more sensitive to weighting scheme when considering smaller samples of sub-
groups by age and education.

For the same data, we find that QMLE leads to a relatively precise and significantly higher estimate of consumption
insurance than reported in BPP at 55%. For sub-group analysis, differences in estimates between GMM and QMLE are
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even more pronounced. Notably, QMLE produces significantly different estimates across households grouped both by
age and by education. For sub-groups based on age, we find that younger households have significantly lower consump-
tion insurance, but BPP did not report estimates in this case due to their apparent imprecision. As in BPP, we find that
households with college education have more consumption insurance. But our estimates based on QMLE are quite dif-
ferent than theirs and are again much more precise.

Unlike with the GMM approaches considered in our replication analysis, we note that QMLE avoids the need to
estimate a weighting matrix, although it does require specifying a distribution. We directly consider an unobserved
components representation of the BPP model and apply the Kalman filter to construct the likelihood under the assump-
tion of normality. However, given the widely noted non-normality of the data (see, e.g., Guvenen, Karahan, Ozcan, &
Song, 2015), we interpret this approach as corresponding to QMLE, following White (1982).

To help understand our empirical results, we conduct Monte Carlo experiments for the BPP model with two
different sample sizes and highly non-normal shocks drawn from skewed and heavy-tailed empirical distributions.
The Monte Carlo results support the use of bias-corrected estimates, especially for GMM. For the same large sam-
ple size as the full BPP dataset, we find that QMLE is the most accurate in terms of root mean squared error and
reported precision. GMM using diagonal weights is far less accurate, whereas GMM using optimal weights is
closer in accuracy to QMLE. However, for a smaller sample size, QMLE performs much better than GMM regard-
less of weighting scheme. These Monte Carlo results generally reconcile the differences in estimates for the BPP
data and support our consideration of QMLE as well as GMM when estimating household consumption
insurance.

2 | DATA, MODEL, AND ESTIMATION

For our replication analysis, we use the dataset created by BPP available at https://www.aeaweb.org/articles?id=10.
1257/aer.98.5.1887. Most of the original data come from the Panel Study of Income Dynamics (PSID) sample of con-
tinuously married couples headed by a male (with or without children) aged 30 to 65 years. Income is measured by
family disposable income, which includes transfers. For consumption, a similar sample selection strategy is adopted
in the Consumer Expenditure Survey (CEX). Because the CEX has detailed nondurable consumption data, while the
PSID primarily has only food expenditure consumption data for the years under consideration, annual nondurable
consumption for each household is imputed using estimates of food demand from the CEX. The constructed dataset is
then a panel of annual observations for income and imputed nondurable consumption over the sample period of
1978–1992. To calculate idiosyncratic income and consumption, we follow BPP by using residuals from regressions of
log household income and consumption on controls for education, race, family size, number of children, region,
employment status, year and cohort effects, residence in large city, and presence of income recipients other than hus-
band and wife.

We consider an unobserved components representation of the BPP model of idiosyncratic household income and
consumption with time-varying volatility for income and consumption shocks. Income and consumption for household
i at time t are given as follows:

yi,t ¼ τi,tþϵi,tþθϵi,t�1, ϵi,t � i:i:d:ð0,σ2ϵ,tÞ, ð1Þ

ci,t ¼ γητi,tþ κi,tþυi,t, υi,t � i:i:d:ð0,σ2υ,tÞ, ð2Þ

where τi, t is a common stochastic trend for income and consumption (“permanent income”), ϵi, t is a transitory income
shock with moving-average parameter jθj<1, κi, t is an additional stochastic trend for consumption, and υi, t is a transi-
tory consumption shock. The trends are specified as random walks:

τi,t ¼ τi,t�1þηi,t, ηi,t � i:i:d:ð0,σ2η,tÞ, ð3Þ

κi,t ¼ κi,t�1þ γϵϵi,tþui,t, ui,t � i:i:d:ð0,σ2u,tÞ, ð4Þ
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while the structure of the time-varying volatility for each shock is assumed to be deterministic and the same as in BPP.1

The transitory income shock, ϵi, t, captures events such as a surprise bonus or temporary leave due to illness, whereas
the transitory consumption shock, υi, t could capture measurement error due to the imputation of nondurable consump-
tion. The permanent income shock, ηi, t, reflects severe health shocks, promotion, or other idiosyncratic factors that
result in a change in permanent income, whereas the permanent shock to consumption, ui, t, could reflect taste and
preference shocks or other shocks to non-labor income, such as wealth shocks. The main parameters we focus on are γη
and γϵ, which respectively capture the responses of consumption to permanent and transitory income shocks. The
implied “consumption insurance” against permanent income shocks is then 1� γη.

To estimate the model in (1)–(4), we propose using QMLE. This involves casting the model into state-space form
(see the online appendix) and assuming the shocks are normally distributed in order to use the Kalman filter to calcu-
late the likelihood based on the prediction error decomposition. Again, as noted in the introduction, because the actual
shocks are likely to be non-normal at the household level, this approach should be thought of as QMLE. We consider
how well QMLE performs relative to GMM for this model despite non-normal shocks in our Monte Carlo analysis.

For purposes of comparison, we also consider GMM estimation using the same moment conditions as in BPP.2 We
employ two methods for weighting the moment conditions corresponding to the diagonally weighted minimum dis-
tance (DWMD) estimator used in BPP and the optimal minimum distance (OMD) estimator. DWMD generalizes an
equally weighted minimum distance approach, but allows for heteroskedasticity, whereas OMD allows for covariance
between moment conditions in the weighting matrix. See BPP and their online appendix for details of GMM estimation,
including for different weighting schemes.

As discussed below in Section 4, preliminary Monte Carlo analysis reported in our online appendix suggests there
can be nontrivial bias in the parameter estimates, even in the large-sample case. Related to Newey and Smith (2004),
this finding could reflect asymptotic bias, including due to skewness in the distribution of the data and, in the case of
GMM, estimation of the weighting matrix. Thus, to address possible bias, we apply a bootstrap correction to the esti-
mates of γη and γϵ. In particular, we take initial parameter estimates from QMLE or GMM and calculate smoothed
estimates of shocks based on the Kalman filter/smoother in order to construct artificial samples of data from a semi-
parametric bootstrap data generating process (DGP). For each bootstrap replication, we apply QMLE or GMM, exactly
as done for the sample data, and record the resulting estimate. The difference between the average estimate across boot-
strap replications and the initial sample estimate (i.e., the “true” parameter for the bootstrap DGP) provides our esti-
mated bias used to correct the initial estimate. To save computational time and motivated by the use of a stopping rule
in Davidson and MacKinnon (2007), we continue bootstrap replications until bias estimates for all model parameters
remain stable up to three decimals.

3 | EMPIRICAL RESULTS

Table 1 reports bias-corrected estimates for the two parameters of interest related to the responses of consumption to
permanent and transitory income shocks when considering the full BPP dataset (see the online appendix for initial esti-
mates of all parameters in the BPP model). The estimates are relatively precise compared to DWMD and lie in between
the GMM estimates for both parameters. The DWMD estimate of γη is close to what was reported in Table 6 of BPP.
However, there are differences in the estimates due to bias correction and an error in the original BPP code.3 The OMD
estimates are very different from the DWMD estimates, suggesting a high sensitivity to weights on moments. QMLE

1Shocks are generally allowed to have different variances in each period, although some variances are set to be the same across certain years to help
with econometric identification. See BPP or our online appendix for more details.
2GMM estimation is applied to first differences of income and consumption, whereas QMLE is applied to levels. For QMLE, we assume the initial
conditions for the unobserved stochastic trends are exogenous and not drawn from a stationary distribution. However, by placing highly diffuse priors
on their values when initializing the Kalman filter and evaluating the likelihood from the second time period of the data in levels, our approach
accommodates the lack of a stationary distribution and is equivalent to considering the likelihood for the model in first differences. The benefit of
working with levels is that it allows us to incorporate more information in estimation if there are missing observations for households in one of two
consecutive time periods, as is often the case in the BPP dataset. Estimates for QMLE based on first differences are similar but less precise due to
more missing observations. See the online appendix for more details about estimation in levels and differences, as well as the estimates for QMLE
with first differences.
3In the BPP code, md_AER:prg, there is a missing transpose on line 289 and an unnecessary transpose on line 290. If we use their original code, we
obtain identical estimates based on DWMD to those reported in Table 6 of BPP. However, the misplaced transpose results in a mismatch of some
model-implied moments with sample moments and leads to substantially different estimates on average in Monte Carlo and bootstrap analysis.
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and OMD imply a significantly higher degree of consumption insurance with implied point estimates between 55-68%
compared to 35% for DWMD. Estimates for the effect of a transitory income shock are all insignificantly different than
zero, but the estimate for QMLE is the most precise.

Table 2 reports bias-corrected estimates of the consumption response parameters when considering sub-groups by
age and education. As with the full dataset, the results vary substantially by estimation method, with the estimates for
QMLE being relatively precise compared to DWMD and often taking on values in between the GMM estimates. The
DWMD estimates for younger (ages 30–47 years) and older (ages 48–65 years) households are not precise enough to
show a significant difference from each other and, indeed, BPP did not report estimates by age, but explicitly noted their
imprecision in footnote 31 of their paper. Meanwhile, the DWMD estimate of γη by education is again similar to what
was reported in Table 6 of BPP, with differences in estimates due to bias correction and the original code error noted
above. In terms of the effect of permanent income shocks, only the QMLE results correspond to the intuitive pattern of
higher consumption insurance for both older and college-educated households. Contrary to what must be true in popu-
lation, DWMD implies very low consumption insurance for both younger and older households compared to the esti-
mate for all households in Table 1, with younger households having counter-intuitively higher consumption insurance
than older households at 29% versus 13%. OMD suggests the counter-intuitive result that households with no college
education have substantially higher consumption insurance of 72% versus 57% for households with college education.
Again, the estimates display a high sensitivity to weights on moments, particularly with implied consumption insurance
for older households ranging from 13% for DWMD to 81% for OMD and for households with no college education

TABLE 1 Bias-corrected estimates

of consumption responses for the full

dataset

Parameter QMLE DWMD OMD

γη 0.45 0.65 0.32

(0.04) (0.09) (0.03)

γϵ 0.03 �0.04 0.05

(0.02) (0.04) (0.03)

Note: Point estimates are reported, with standard errors in parentheses. The point estimates are corrected for
bias using semi-parametric bootstrap replications based on initial parameter estimates and smoothed
estimates of shocks until bias estimates remain stable up to three decimals. The standard errors for QMLE

are based on the Huber–White sandwich formula using numerical derivatives, and the standard errors for
GMM are calculated as in BPP. There are a total of 1765 households and 15 years of data in levels but with
many missing observations.

TABLE 2 Bias-corrected estimates

of consumption responses for sub-

groups

Parameter QMLE DWMD OMD QMLE DWMD OMD

YOUNGER OLDER

γη 0.55 0.71 0.50 0.25 0.87 0.19

(0.06) (0.11) (0.05) (0.06) (0.22) (0.03)

γϵ �0.01 �0.14 �0.06 0.11 0.07 0.20

(0.00) (0.07) (0.04) (0.01) (0.05) (0.03)

NO COLLEGE COLLEGE

γη 0.64 0.95 0.28 0.29 0.45 0.43

(0.08) (0.17) (0.04) (0.04) (0.09) (0.04)

γϵ 0.02 0.05 0.24 0.05 �0.15 �0.34

(0.01) (0.06) (0.03) (0.02) (0.05) (0.04)

Note: Point estimates are reported, with standard errors in parentheses. The point estimates are corrected for
bias using semi-parametric bootstrap replications based on initial parameter estimates and smoothed

estimates of shocks until bias estimates remain stable up to three decimals. The standard errors for QMLE
are based on the Huber–White sandwich formula using numerical derivatives, and the standard errors for
GMM are calculated as in BPP. For the sub-groups based on education, there are 883 households classified
as “No College” and 882 households as “College.” For age, there are 1413 households classified as
“Younger” (ages 30–47 years) and 708 households classified as “Older” (ages 48–65 years). There are

15 years of data in levels but with many missing observations and changes in classification by age.
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ranging from 5% for DWMD to 72% for OMD. In comparison, the sub-group estimates for QMLE imply plausible levels
of consumption insurance based on age (45% for younger versus 75% for older) and education (36% for no college versus
71% for college) given the estimate of 45% for all households. Finally, the estimates for the effect of a transitory income
shock are always the most precise for QMLE.

4 | MONTE CARLO ANALYSIS

Although the QMLE estimates in Tables 1 and 2 are relatively precise, it is a reasonable question whether this might
be a false precision due to the normality assumption made when constructing the likelihood for the unobserved compo-
nents representation of the BPP model. To address this question, we consider Monte Carlo experiments where the DGP
corresponds to the BPP model with shocks drawn from their skewed and heavy-tailed empirical distributions based on
the estimated model in the previous section. In particular, given QMLE parameter estimates, we employ the Kalman fil-
ter to extract estimates of the underlying permanent and transitory income and consumption shocks. Notably, these
shocks display negative skewness and an extremely high degrees of kurtosis. Simulated data using these as the “true”
shocks exhibit similar skewness and kurtosis to the sample data. For our experiments, we draw, with replacement, from
the empirically distributed shocks for each time period and use the BPP model with stylized parameters (γη ¼ 0:50, γϵ ¼
0:10, θ¼ 0:20) to construct artificial panels of idiosyncratic income and consumption data that have the same dimen-
sion and missing observations as the original BPP data. Then to evaluate the accuracy of a particular estimator, we con-
sider root mean squared error (RMSE). We also report on the underlying sources of the overall RMSE in terms of bias
and standard deviation of an estimator, as well as the root mean squared differences between the estimates across
methods in a given sample.

For this particular DGP, preliminary Monte Carlo analysis reported in the online appendix revealed nontrivial bias
in the initial estimates for both QMLE and GMM.4 Thus, similar to the empirical application, we correct parameter esti-
mates using semi-parametric bootstrap replications based on average initial estimates and smoothed estimates of shocks
given the average large-sample QMLE initial estimates. A full bootstrap correction for each simulation would be com-
putationally prohibitive, but the bias corrections based on average initial estimates should at least be indicative of what
the corrections would be for each simulation. Also, by using average large-sample QMLE initial estimates to estimate
empirical shocks, we are keeping the estimated shocks closer to the “true” shocks used in the Monte Carlo experiments
than might occur in a full bootstrap and, therefore, may be somewhat overstating the accuracy of the bias correction in
practice, again especially for GMM. Despite this, we find there is generally still some remaining bias for the estimators,
especially for DWMD in the case of γη. However, the bias corrections are successful to the extent that RMSEs are only
0.01 larger than the standard deviations of the estimators in the DWMD case for γη and the same to two decimals in all
of the other cases. Notably, these findings imply that the comparative results for the different estimators would hold
even if the bias could be perfectly corrected in each case.

Table 3 reports on the accuracy of the estimators for different sample sizes. Focusing first on the results given a large
sample size that is the same as for the full BPP dataset, QMLE performs best in terms of RMSE, with OMD and espe-
cially DWMD considerably less accurate in terms of γη. The estimates also differ substantially across methods in a given
sample, with root mean squared differences generally as large or sometimes even larger than the RMSEs. Particularly
notable is how much the GMM estimates across weighting schemes differ from each other in a given sample. Given that
the correct model is specified in the Monte Carlo experiments, we note that this finding is consistent with Altonji and
Segal's (1996) argument that large differences in GMM estimates across weighting schemes do not necessarily provide
evidence of model misspecification.

Looking back at Table 1, these Monte Carlo results can help explain some of the empirical results. In particular, the
reasonably precise standard errors for the QMLE estimates in Table 1, which are based on the Huber–White sandwich
formula (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðH-1GG0H-1Þ

p
for Hessian H and Jacobian G) given misspecification of the distribution when con-

structing the likelihood, are supported by the standard deviations of the estimators for the large-sample case in Table 3.
By contrast, the standard errors for GMM in Table 1 appear to understate sampling uncertainty, even in the relatively
imprecise case of DWMD. Also, the differences between the QMLE and GMM estimates in Table 1 are generally less

4Based on our bootstrap analysis and further Monte Carlo analysis, biases appear to vary considerably with particular DGPs, especially for GMM. This
sensitivity for GMM is likely due to small sample and asymptotic biases related to estimation of the weighting matrix, as discussed in Altonji and
Segal (1996) and Newey and Smith (2004), respectively.
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than twice the average differences across the Monte Carlo simulations, although the differences are more than twice as
large, but still within simulated ranges, in the case of QMLE and DWMD for γϵ.

Table 3 also reports on the accuracy of different estimators given a small sample size that is the same as for the sub-
group of older households in the BPP dataset. In light of the well-known concerns about OMD in small samples
highlighted in Altonji and Segal (1996), our aim with this experiment is to understand how the performance of QMLE
and GMM compare given a smaller sample size, with the number of observations for older households being the
smallest among the sub-groups.5 As in the large-sample case, QMLE performs best in terms of RMSE, but the improve-
ments over GMM are even more pronounced, especially compared to OMD and notably in terms of γϵ as well as γη.

6

Meanwhile, the estimators again differ substantially from each other in a given sample, especially in the case of γη
across weighting schemes for GMM.

Looking back at Table 2, the Monte Carlo results for the small sample case in Table 3 help explain why the esti-
mates are so different across estimation methods given very large average differences across the Monte Carlo simula-
tions and raise strong concerns about the reported precision of the GMM estimates given the large standard deviations
with a small sample size. The puzzle of lower implied consumption insurance for both younger and older households
based on DWMD in Table 2 compared to what was found for all households can be resolved by the substantial deterio-
ration in accuracy of DWMD with the smaller sample size, as well as, at least in part, by the apparent remaining large
positive bias for even the bias-corrected DWMD estimator of γη. By contrast, the Monte Carlo results provide some reas-
surance about the reported precision of the QMLE estimates in smaller samples, notably so given their standard errors
always being smaller than for DWMD.

TABLE 3 Properties of bias-corrected estimators

Parameter Estimator property QMLE DWMD OMD QMLE DWMD OMD

Large sample Small Sample

γη ¼ 0:50 RMSE 0.04 0.18 0.08 0.07 0.39 0.36

Bias 0.01 0.06 �0.01 0.01 0.11 �0.01

Standard deviation 0.04 0.17 0.08 0.07 0.38 0.36

Difference from DWMD 0.17 - 0.18 0.38 - 0.53

Difference from OMD 0.08 0.18 - 0.36 0.53 -

γϵ ¼ 0:10 RMSE 0.01 0.03 0.04 0.02 0.05 0.07

Bias 0.00 0.00 �0.02 �0.01 �0.01 0.01

Standard deviation 0.01 0.03 0.04 0.02 0.05 0.07

Difference from DWMD 0.03 - 0.04 0.05 - 0.08

Difference from OMD 0.03 0.04 - 0.07 0.08 -

Notes: RMSE, bias, standard deviation, and (root mean squared) differences for estimators are calculated across 500 simulations. Parameter estimates were
corrected for bias using 100 semi-parametric bootstrap replications based on initial average parameter estimates and smoothed estimates of shocks given the
average large-sample QMLE estimates. The large sample has 32,547 observations and the same missing observations as the full BPP dataset. The small sample
has 11,437 observations and the same missing observations as the sub-group of older households in the BPP dataset.

5Out of the total 32,547 observations of data for all of the households in the dataset, there are 15,735 observations for households with no college
education versus 16,812 observations for college-educated households and 21,110 observations for younger households versus 11,437 observations for
older households.
6The deterioration in the performance of GMM given a smaller effective sample size can also be seen by considering what happens when allowing for
a possible structural break in γη and γϵ near the middle of the estimation sample. This corresponds to smaller effective T for estimating each
parameter. As in the case of the smaller N considered in Table 3, the RMSEs increase substantially, especially for γη and for OMD in particular.
Meanwhile, consistent with QMLE implicitly linking moments over time without requiring estimation of a weighting matrix, there appears to be a
relative loss of efficiency when allowing for a possible structural break in estimating time-invariant parameters in the sense that the RMSE for QMLE
also increases and, unlike most of the cases for GMM, as much as it does when reducing N in Table 3. Full results for this Monte Carlo experiment
are reported in the online appendix.
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5 | CONCLUSIONS

We have examined the replicability of BPP's low estimated degree of consumption insurance in both a “narrow” and
“wide” sense. In a narrow sense, there is an error in BPP's code that we have corrected to avoid extremely inaccurate
estimates in Monte Carlo analysis and other settings. In a wider sense, we find that the result of a low estimated degree
of consumption insurance using GMM based on diagonal weights is not replicable across different estimation methods,
even given the same data, with both QMLE and GMM based on optimal weights implying higher and more precise
estimates of consumption insurance. Estimates for sub-groups are also sensitive to estimation method, with QMLE in
particular suggesting both intuitive and significant heterogeneity across households grouped by age and education.
Monte Carlo analysis assuming non-normal shocks suggests greater accuracy of QMLE versus GMM in estimating
consumption insurance using BPP's model.

We believe our analysis makes two contributions to the literature on household consumption insurance. First, we
have provided evidence that consumption insurance is significantly higher than previously reported for BPP's dataset.
Thus, our finding of higher consumption insurance is consistent with a key implication of Kaplan and Violante (2010),
albeit for the different reason of imprecision of the GMM estimator using diagonal weights, rather than model mis-
specification. Second, we have demonstrated the feasibility and apparent accuracy of QMLE in a panel setting with
highly non-normal shocks and a relatively small sample size. A widely claimed reason why heterogenous agent quanti-
tative models can improve our understanding of the macroeconomy is due to aggregation bias arising out of heteroge-
neous consumption insurance for various sub-groups. Thus, improved performance in estimating this key parameter in
a small sample setting is particularly important and we plan further analysis of the comparative accuracy of QMLE,
including when allowing for different model specifications to address Kaplan and Violante's (2010) concerns, in future
research.
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