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Abstract. Purpose: To estimate 3D prostate motion in real-time during irradiation

from 2D prostate positions acquired from a kV imager on a standard linear accelerator

utilising a Kalman Filter (KF) framework. The advantage of this novel method is

threefold: (1) eliminating the need of an initial learning period, therefore reducing

patient imaging dose, (2) more robust against measurement noise and (3) more

computationally efficient. In this paper, the novel KF method was evaluated in silico

using patients’ 3D prostate motion and simulated 2D projections.

Methods: A KF framework was implemented to estimate 3D motion from 2D

projection measurements in real-time during prostate cancer treatments. The noise

covariance matrix was adaptively estimated from the previous 10 measurements. This

method did not require an initial learning period as the KF process distribution

was initialised using a population covariance matrix. This method was evaluated

using a ground-truth motion dataset of 17 prostate cancer patients (536 trajectories)

measured with electromagnetic transponders. 3D motion was projected onto a rotating

imager (SID=180cm) (pixel size=0.388mm) and rotation speed of 6◦/s and 2◦/s to

simulate VMAT treatments. Gantry-varying additive random noise (≤ 5 mm) was

added to ground-truth measurements to simulate segmentation error and image quality

degradation due to the patient’s pelvic bones. For comparison, motion was also

estimated using the clinically implemented Gaussian Probability Density Function

(PDF) method initialised with 600 projections.

Results: Without noise, the 3D root-mean-square-errors (3D RMSEs) of motion

estimated by the KF method were 0.4± 0.1 mm and 0.3± 0.2 mm for 2◦/s and 6◦/s

gantry rotation, respectively. With noise, 3D RMSEs of KF estimated motion were

1.1± 0.1 mm for both slow and fast gantry rotation scenarios. In comparison, using a

Gaussian PDF method, with noise, 3D RMSE was 2±0.1 mm for both gantry rotation

scenarios.

Conclusion: This work presents a fast and accurate method for real-time 2D to

3D motion estimation using a Kalman filter approach to handle the random-walk

component of prostate cancer motion. This method has sub-mm accuracy and is
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2D to 3D estimation with Kalman Filter 2

highly robust against measurement noise.
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2D to 3D estimation with Kalman Filter 3

1. Introduction

In current radiation therapy, image guided radiation therapy (IGRT) is routinely applied

at the start of treatment to align the target with its planned position. However, tumours

in the thorax, abdomen and pelvis are not static during treatment. Hence, methods to

monitor tumour motion during treatment are highly desirable, even more so with dose

escalation and hypofractionation.

In the case of prostate cancer radiotherapy treatments, studies with electromagnetic

transponders showed that the prostate can travel up to 15 mm during treatment

(Langen et al. 2008). As prostate stereotactic body radiotherapy (SBRT) treatments

become clinical standard, it is recommended that real-time motion monitoring is used

during these high dose treatments to ensure the dose delivered faithfully reflects the

treatment plan (Lovelock et al. 2014). A number of different intrafraction real-time

guidance methods have been used during prostate cancer treatments. Systems such as

CyberKnife (Accuray, Sunnyvale, CA) and the real-time tracking radiotherapy (RTRT)

system use real-time kilovoltage (kV) images from two (CyberKnife) or four (RTRT

system) orthogonal room-mounted imagers to track the prostate position based on

segmented positions of implanted fiducial markers (King et al. 2009, Kitamura et al.

2002, Sazawa et al. 2009, Shimizu et al. 2000, Shirato et al. 2003, 2000)). The

commercial systems Calypso (Varian, Palo Alto, CA) (Kupelian et al. 2007) and

RayPilot (Micropos, Gothenburg, Sweden) (Castellanos et al. 2012) utilise implanted

electromagnetic transponders, transmitting positional signals to an external receiver.

Emerging real-time guidance technologies include ultrasonography Ballhausen et al.

(2015) and integrated magnetic resonance imaging (MRI)-radiation therapy systems

(Fallone et al. 2009, Raaymakers et al. 2009). Common to all these methods is the need

for additional dedicated and typically expensive equipment to perform the real-time

guidance.

Real-time motion monitoring should ideally be performed using a standard linear

accelerator (linac) without relying on additional hardware. To this end, a number of

algorithms have been proposed for the purpose of estimating the target’s position in 3D

based on its location on a 2D image, which can be acquired using a linear accelerator

gantry mounted kilovoltage (kV) x-ray imager system. An apparent advantage of

utilising the kV imager is that: most modern linear accelerators have a kV imager,

mounted orthogonally to the treatment beam. However, as the target position on the

kV imager only contains 2D information, a 2D → 3D target position estimation is often

required. The sparse information renders the problem of solving for the target’s 3D

position ill-posed, hence, some prior knowledge is usually required.

A different approach for 2D → 3D estimation is to make use of interdimensional

correlation (IDC), which works for two reasons: (1) thoracic tumour motion in

the anterior–posterior (AP) and left–right (LR) are correlated to its motion in the

superior–inferior (SI) direction; and (2) as the gantry rotates around the patient, the

SI position of the tumour is always visible on the kV images. Poulsen et al. (2008a)
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2D to 3D estimation with Kalman Filter 4

implicitly incorporated IDC into their Maximum Likelihood Estimation (MLE) of a

Gaussian distribution. Other authors have shown that IDC can be used exclusively

for 2D-3D estimation, i.e without probability estimation, including (Cho et al. 2012)

and (Chung et al. 2016). Unfortunately, for tumours outside of the thoracic and upper

abdominal region, the IDC method does not work. Poulsen et al. (2008) proposed a

maximum likelihood estimation (MLE) algorithm to estimate the target’s 3D position

assuming a Gaussian distribution, which can be built after a learning arc. This solution

has been clinically implemented as the kilovoltage intrafraction monitoring (KIM)

system, and is currently being trialled for real-time tumour motion guidance in a pilot

clinical trial and a multi-centre clinical trial (Keall et al. 2016, Nguyen et al. 2017).

Prostate motion represents a particularly challenging problem as the motion is a

random walk, with ever fluctuating IDC and motion magnitude (Ballhausen et al. 2015).

For accurate estimation of intrafraction prostate motion from 2D projection information,

(Poulsen et al. 2009) and subsequent work (Keall et al. 2015) updated the probability

density function (PDF) frequently after the initial learning arc of 120 degrees. Such

re-optimisation is both time consuming and computationally expensive.

In this work, we present a Kalman filter approach to estimate prostate 3D

intrafraction motion from 2D projection information without requiring re-optimisation.

Another distinct advantage of our method is that by initialising with a population

covariance matrix, a learning period is thus not necessary.

2. Methodology

In this section, we first describe our implementation of a solution for the 2D → 3D

estimation problem using a Kalman filter approach. Then, we present the simulation

framework to evaluate our Kalman filter approach in a number of different clinical

scenarios using patient prostate traces from a database of 17 patients and 536 treatment

fractions (Langen et al. 2008).

2.1. 2D → 3D prostate motion estimation with a Kalman filter approach

In accordance with Kalman filter literature (Kalman 1960), the following notations are

used:

• x̂k: the estimated positional vector of the target (x = [x y z]T in the patient 3D

IEC coordinate system, at the current projection.

• x̂k−1: the estimated positional vector of the target (x) in the previous projection

projection.

• Fk: the state transition matrix of the system from xk−1 to xk.

• Pk: the predicted error covariance matrix at the current projection.

• Qk: the covariance of the process at the current projection.

• Rk: the covariance of the observation noise at the current projection.
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2D to 3D estimation with Kalman Filter 5

• zk: the vector of the measurement, i.e. 2D segmentation of the marker, at the

current projection, zk = [ux, uy]
T in the imager coordinate.

• ỹk: the residual error between the estimated measurements and the actual

measurements.

In addition, the matrix Hk denotes the transformation between the target 3D

positional vector xk and its measurable 2D position on the imager zk = [ux, uy]
T . For a

linac geometry, with the imaging system rotates around y–axis, the following projection

equation applies:

P(xk|θ) =

(
ux
uy

)
=

SID

SAD − (x cos θ + z sin θ)
B(xk|θ) (1)

where:

• θ: the current projection angle.

• SID : source to imager distance in mm.

• SAD : source to axis (isocenter) distance in mm.

• B(xk|θ) =

(
x sin θ − z cos θ

y

)
While the optimal Kalman filter framework requires Hk to be linear such that

zk = Hkxk, we approximate Hk as:

Hk =
SID

SAD − (xk−1[1] cos θ + xk−1[3] sin θ)
Θ (2)

with Θ =

(
cos(θ) 0 sin(θ)

0 1 0

)
.

Finally, as the prostate generally does not often move or move very little from one

projection to the next, the state transition matrix Fk is initialised and set to the the

identity matrix:

F = Fk = I =

1 0 0

0 1 0

0 0 1

 (3)

2.1.1. Initialisation Kalman filter is an iterative framework, which allows the optimal

estimation of the measurement and process error to be optimally re-estimated from the

current and past measurements. To start the iterative process, it is necessary to initialise

the following parameters: Q0, R0, P0 and x0.

As stated above, the matrix Q0 represents the process covariance, which for

the purpose of motion estimation, represents both the range of motion and the
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2D to 3D estimation with Kalman Filter 6

interdimensional correlation of the motion:

Qk = Σ(x) =

Σ(x, x) Σ(x, y) Σ(x, z)

Σ(y, z) Σ(y, y) Σ(y, z)

Σ(z, x) Σ(z, y) Σ(z, z)

 (4)

From a large database of 17 prostate motions with 536 motion traces from different

treatment days, we obtained the population covariance of prostate motion:

Q0 = Qk =

 0.3136 0.0114 −0.0775

0.0114 1.8820 1.5051

−0.0775 1.5051 2.4733

 (5)

For the measurement error matrix R0, initially, it is difficult to estimate the error

of the measurement process, we initialised this matrix as:

R0 =

(
0.2 0.2

0.2 0.2

)
(6)

with the intention that Rk will be updated using the measurement history. The value

0.2 was chosen to give reasonable credit to the measurement system initially. As the

measurement error matrix will be updated as soon as the measurement, i.e. projection,

occured, this initial value is actually not important for our Kalman filter framework.

With similar logic, error matrix P0 is also initialised to be a zero matrix with the

reasonable expectation that the entire system has limited to no error.

Finally, x0 was initialised to the initial prostate position of the patient on the

treatment day. In a realistic clinical scenario, a patient’s markers would be the used.

The initial markers’ position of the day can be easily obtained by performing IGRT,

either with kV-kV match or Cone Beam CT, both of which are clinical standard.

2.1.2. Prediction phase The following equation describe the prediction phase of

Kalman filter, which estimates the current position, based purely on the information of

the motion distribution up to the last frame (k − 1):

x̂k|k−1 = Fx̂k−1|k−1 (7)

In addition, following Kalman (1960) the current measurement error matrix Pk

can also be estimated based on the previous distribution Pk−1|k−1 and the expected

distribution of prostate motion Qk, as described above.

Pk|k−1 = FPk−1|k−1F
T + Qk (8)

2.1.3. Update phase With measurement information, zk, the error between the

predicted and actual measurement is calculated as:

ỹk = zk −Hkx̂k|k−1 (9)
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2D to 3D estimation with Kalman Filter 7

with Hk updated based on equation (2).

The following operations are then used to calculate the optimal Kalman gain (Kk)

given the residual error of the prediction (Kalman 1960):

Sk = Rk + HkPk|k−1H
T
k (10)

Kk = Pk|k−1H
T
k S−1k (11)

We can then re-estimate the current position given the current projection

information:

x̂k|k = x̂k|k−1 + Kkỹk (12)

Finally, the a posteriori covariance can be estimated optimally to be used for future

prediction and update, as:

Pk|k = (I−KkHk)Pk|k−1 (13)

2.1.4. Measurement noise matrix update To acquire 2D measurement zk of the target

at the current projection k, some type of segmentation of the target on the projection

would be required. For prostate, this is mostly likely segmentation of the implanted

fiducial markers. Most segmentation algorithms in this space to date use template

matching (Flelidius et al. 2012). Thus, the measurement noise matrix can be estimated

from the normalised cross correlation value, ρk, between the segmented marker and the

template used. When there is limited information on the noise error, this value can be

used as the surrogate to indicate how reliable the measurement is:

Rk = w

(
(1− ρk) (1− ρk)

(1− ρk) (1− ρk)

)
(14)

the weight factor w is included as the normalised cross correlation is only a surrogate

for the error. When evaluated the present method, w was set to 0.5.

With accumulated projection information, a better estimate of the measurement

noise can be determined based on the recent history of measurements. For prostate

motion, it is reasonable to assume that the target does not move significantly from one

projection to the next. With hardware limitation of the gantry, which prevents it from

moving at high speed, we can also assume that the measured target position from one

frame to the next is small. Thus, the error of measurement can be estimated as:

εk = zk − zk−1 (15)

If N recent measurement errors are considered, the following covariance of

measurement noise can be estimated:

Σ(ε(k−N)→k) = Σ(εux

(k−N)→k, ε
uy

(k−N)→k) (16)

Combining the equations (15) and (16), when more than N measurements are

available, the measurement noise matrix can be estimated as:
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2D to 3D estimation with Kalman Filter 8

Rk = Σ(ε(k−N)→k) + w

(
(1− ρk) (1− ρk)

(1− ρk) (1− ρk)

)
(17)

Lastly, a segmentation algorithm are sometimes constrained by the pixel spacing

on the detector, which is 0.388 mm in most modern linear accelerator kV systems. An

additional parameter representing the error due to pixelation (0.388 mm) can be added

to the overall Rk measurement noise matrix. For the in silico evaluations, N = 10 was

used.

2.2. Evaluation framework with patients’ prostate traces

Figure 1. 3D Intrafraction prostate motion estimation using the Kalman Filter

method (KF) compared with ground-truth motion and the clinically implemented PDF

method. KF method is more accurate as the random-walk prostate motion is better

handled. In both cases, the imaging frequency was simulated at 10 Hz with no added

noise.

The evaluation framework is outlined in Figure 1. To characterise the performance

and validate the Kalman method, a ground-truth dataset of 17 prostate cancer patients

with implanted Calypso transponders, who were treated at the MD Anderson Cancer

Centre in Orlando (FL, USA) in 2005 and 2006 Langen et al. (2008) was used. The

transponders data represented the ground-truth motion of the patients’ prostates during

treatment, recorded at 10 Hz. Each patient had between 24 to 34 treatment fractions,

each resulted in a motion trajectory in the ground-truth dataset, with length between
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2D to 3D estimation with Kalman Filter 9

405 s to 800 s. In total, this ground-truth dataset consisted of 536 motion trajectories

with more than 92 hours of recording. The range of motion in this database was [-3.6

4.8] mm in the x (Left-Right) direction, [-10.1 16.4] mm in the y (Superior-Inferior)

direction and [-11.2 17.9] mm in the z (Anterior-Posterior) direction.

In order to test the accuracy of the proposed Kalman filter approach in estimating

prostate motion, for each patient trajectory in the ground-truth dataset, the ground-

truth 3D positions of the transponders were projected onto an imager using the

projection equation (1). The SAD and SID value were set at 1000 mm and 1800 mm,

respectively. This projection step is to simulate a realistic scenario during treatment in

which radio-opaque implanted markers can be segmented from intrafraction kV images.

All simulations started with the MV gantry (90◦ to the imaging projection angle) starts

at 180◦.

We investigated the accuracy and precision of the Kalman filter method at different

imaging rate by down-sampling the input projection data to: 1 Hz, 0.3 z and 0.2 Hz.

The resilience of the Kalman filter method in the presence of measurement noise was

also investigated. The measurement noise was modeled in two ways: (1) Gaussian white

noise and (2) Random uniformly distributed noise. Both types of noise was additive

noise. We also modeled pixelation for a typical pixel spacing of 0.388 mm, usually found

for the X-ray imager of a linear accelerator. Gaussian white noise of two Signal-to-Noise

ratios (SNRs) 5 dB and 20 dB were evaluated. For random noise, the following noise

levels were tested:

• additive ±2 mm random noise applied uniformly to every measurement

• additive ±5 mm random noise applied uniformly to every measurement

• additive ±5 mm random noise applied uniformly to measurements for gantry angles

within ±10◦ of the lateral imaging angles, i.e. 90◦ and 270◦.

The last noise modeling was to simulate the effect of the reduction in imaging

quality for prostate patients during treatments due to kV and MV scatter through the

patient’s hip bones.

For each noise scenario, we compared our method motion estimating error with the

ground-truth motion. We also computed the motion estimation by the PDF method

(Poulsen et al. 2009) to directly compared with our results in these scenarios.

3. Results

3.1. Theoretical accuracy

Table 1 shows the statistics of the estimating errors by the proposed Kalman filter

method. The accuracy (mean error) and precision (standard deviation of error) of

the proposed method are sub-millimetric in both tested gantry speed for motion in

Left–Right (LR), Superior–Inferior (SI), Anterior-Posterior (AP) and 3D directions,

respectively. Table 1 also includes the range of errors within 98% and 95% of the mean.

An example of the prostate 3D motion estimated by KF method is shown in 2, showing
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2D to 3D estimation with Kalman Filter 10

the KF method is more accurate than the PDF method in estimating the LR and AP

motion.

Table 1. Accuracy and precision of the Kalman filter method in estimating patients

prostate motion in the tested dataset, assuming no measurement noise. RMSE: Root

Mean Square Error.

Gantry Speed Statistics LR(mm) SI(mm) AP(mm) 3D(mm)

VMAT 2◦/s

Mean ± SD 0.0± 0.2 0.0± 0.0 0.0± 0.3 0.2± 0.3

Median 0.0 0 0 0.2

[2.5th 97.5th] percentile [−0.4 0.4] [−0.0 0.0] [−0.6 0.6] [0.0 0.9]

[1st 99th] percentile [−0.6 0.5] [−0.0 0.0] [−0.9 0.9] [0.0 1.3]

RMSE 0.2 0.0 0.3 0.4

VMAT 6◦/s

Mean ± SD 0.0± 0.2 0.0± 0.0 0.0± 0.2 0.2± 0.2

Median 0.0 0 0 0.1

[2.5th 97.5th] percentile [−0.3 0.3] [−0.0 0.0] [−0.4 0.4] [0.0 0.7]

[1st 99th] percentile [−0.4 0.4] [−0.0 0.0] [−0.7 0.6] [0.0 1.0]

RMSE 0.2 0.0 0.2 0.3

Figure 2. 3D Intrafraction prostate motion estimation using the Kalman Filter

method (KF) compared with ground-truth motion and the clinically implemented PDF

method. KF method is more accurate as the random-walk prostate motion is better

handled. In both cases, the imaging frequency was simulated at 10 Hz with no added

noise.
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2D to 3D estimation with Kalman Filter 11

As the frame rate decreased, the accuracy of the Kalman filter slightly decreased,

as shown in Figure 3. With imaging rates as low as 0.3 Hz, the [1st − 99th] percentile

range of errors in the LR, SI and AP directions were under 1 mm for both fast 6◦/s and

slow 2◦/s gantry rotation treatments. However, with 0.2 Hz imaging rate, only the fast

gantry rotation treatments had more than 98% of errors less than 1 mm. Additionally,

98% of 3D errors were less than 2 mm for all tested imaging rates.

3.2. Kalman Filter vs PDF: in the absence of measurement noise

In the absence,KFr method was as accurate and as precise as Gaussian PDF method

(Poulsen et al. 2008). The 3D RMSEs for both methods, across all tested points, were

0.4mm with slow gantry rotation and 0.3mm with fast gantry rotation. For slow VMAT

treatments, 3D errors were larger than 1 mm for 2.1% of the time when motion was

estimated with Kalman filter method and for 2.5% of the time with the PDF method.

With fast gantry rotation, the percentage of time with 3D errors > 1 mm decreased to

1% with Kalman filter method and 1.14% with PDF method.

For each motion trajectory in the tested dataset, the two algorithms perform

similarly well. However, KF method was more consisitent in its performance with a

tighter distribution of RMSE for all traces, as shown in the box plots in Figure 4.

3.3. Kalman Filter vs PDF: in the presence of measurement noise

The performance of KF method and the PDF method for each motion trajectory in the

tested dataset in the presence of additive Gaussian white noise is summarised in Figure 5.

With both moderate noise level (SNR=20 dB) and high noise level (SNR=5 dB), it was

evident that KF method performed more consistently across more patient traces. The

ranges of RMSE errors were consistently smaller with Kalman Filter method, compared

with PDF method. The mean RMSE values were lower than 1 mm for LR, SI, AP and

3D errors for all tested scenarios, and were similar for both methods.

Random noise had a more profound effect on both of the algorithms, as shown

in Figure 6. With additive random noise of up to ±5 mm, across the patients motion

trajectories, with PDF method, RMSEs in LR, SI, AP and 3D were all larger than 1 mm

with both fast and slow gantry rotation. With KF method, the mean of RMSEs were

below 1 mm for motion estimation in the LR and SI directions. On the entire dataset,

with slow gantry rotation, with up to ±5 mm random noise addition, the RMSEs were

0.5 mm, 0.9 mm, 1.2 mm and 1.5 mm in the LR, SI, AP and 3D directions, respectively,

for the Kalman filter method. With the PDF method, the 3D RMSE error increased to

2.4 mm. The RMSEs were slightly lower with fast gantry rotation.

With KF method, when the measurements contained up to 5 mm random errors,

3D errors were larger 2 mm for < 17% of time while with PDF method, 3D errors were

larger than 2 mm for > 60% of time. When the measurements contained up to 2 mm

of random errors, the Kalman filter 3D errors exceeded 1 mm for < 26% of time, whilst

the PDF 3D errors exceeded 1 mm for more than 40% of time.
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2D to 3D estimation with Kalman Filter 12
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Figure 3. Histogram of motion estimation errors with the Kalman filter method with

different imaging frame rates. Above: motion estimation error with gantry rotation

speed of 2◦/s. Below : motion estimation error with gantry rotation speed of 6◦/s.

The y–axis in each graph is the relative frequency of each bin. The bin width was set

to 0.01 mm.

In the last tested scenario where the random noise only applied to measurements

close to the lateral projections, as shown Figure 7, the Kalman filter performed more
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Figure 4. Box plots of the Root Mean Square Error (RMSE) in estimating patients

prostate motion in the ground-truth dataset with Kalman Filter (KF) and Poulsen’s

et al. (2009) Gaussian PDF method (PDF), respectively. The whiskers contain 98%

of data.

consistently across all 536 tested motion trajectories. Using the PDF method to estimate

motion with fast gantry rotation, the 3D RMSE of 54 motion trajectories (10%) were

larger than 1 mm, with 19 of these cases had 3D RMSEs larger than 2 mm. Using the

Kalman filter method under the same condition, only 4 cases (0.75%) had 3D RMSE

larger than 1 mm and none were larger than 2 mm.

4. Discussion

A novel method to estimate the 3D prostate tumour position during radiotherapy

based on the iterative Kalman Filter algorithm was developed. A distinct advantage

of this method compared to previously proposed methods (Poulsen et al. 2008) is

that it does not require a learning arc to initialise. Our method was extensively

evaluated in silico using a 3D prostate motion database from 17 cancer patients in two

different radiotherapy treatment scenarios: normal fractionation VMAT ( 6◦/s) and

SBRT VMAT ( 2◦/s). The database includes 536 motion trajectories, each contains 405

seconds to 800 seconds of intrafraction motion recording. The accuracy and precision

of the proposed method was found to be comparable with the PDF method and was

under 1 mm for all axes of motion at all tested imaging frequency. The accuracy of our

method in tracking the prostate is similar to that of the electromagnetic transponder

system Calypso (Santanam et al. 2008) and outperforms the reported accuracy of the

commercial ultrasound guidance system Clarity (Robinson et al. 2012).

Our KF method does not require an initial learning period to initialise its

parameters. Instead, a population covariance was used as the state-transition covariance

(eqn.5). As the prostate is tracked on more incoming kV images, the a posteriori
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Figure 5. Box plots of the Root Mean Square Error (RMSE) in estimating patients

prostate motion in the ground-truth dataset with Kalman Filter (KF) and Poulsen’s

et al. (2009) Gaussian PDF method (PDF) with additive Gaussian white noise,

respectively. The whiskers contain 98% of data. Top: with SNR = 20 dB. Bottom:

with SNR=5 dB.

covariance of the process distribution iteratively evolves to include errors from previous

estimation using Eqn.8. Poulsen et al. (2009) evaluated the use of the population

covariance to initialise the PDF method for prostate cancer monitoring from kV images.

However, with the PDF method, the use of the population covariance resulted is less

accurate result (Poulsen et al. 2009). With the proposed KF method, we were able

to achieve similar accuracy and precision to the PDF method with 600 frames of

initialisation. This is because the present KF method updates the motion covariance

with every frame based on the last observed position of the target on the previous kV

image.

Our method is more computationally efficient in that it does not require constant
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Figure 6. Box plots of the Root Mean Square Error (RMSE) in estimating patients

prostate motion in the ground-truth dataset with Kalman Filter (KF) and Poulsen’s

et al. (2009) Gaussian PDF method (PDF) with additive randomn noise, respectively.

The whiskers contain 98% of data. Top: with ±2 mm of random noise. Bottom: with

±5 mm of random noise.

re-optimization to handle the random-walk nature of prostate motion (Ballhausen et al.

2015). Existing methods require constant re-optimisation of parameters to handle

the randomness of prostate motion (Poulsen et al. 2008, Keall et al. 2015), which is

computationally expensive. Our method handles the randomness of prostate motion

through the Kalman gain parameter (Eqn. 12). This process evolves iteratively with

each acquired kV image, requiring no re-optimisation of parameters. In the present

work, we also showed that the KF method is robust with lowering kV imaging frequency.

For prostate cancer monitoring, as the target movement is typically slow, high target

monitoring accuracy at lower frame rate results in less imaging dose to the patient whilst

maintaining the treatment accuracy.
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Figure 7. Box plots of the Root Mean Square Error (RMSE) in estimating patients

prostate motion in the ground-truth dataset with Kalman Filter (KF) and Poulsen’s

et al. (2009) Gaussian PDF method (PDF) with ±5 mm additive random noise at

lateral imaging angles, respectively. The whiskers contain 98% of data.

Measurement noise, i.e. possible errors from marker segmentations and imaging

noise, is handled explicitly with our method with Eqn.14. We evaluated the robustness

of both the proposed KF method and the PDF method by increasing the measurement

noise as Gaussing noise (Figure 5), random noise (Figure 6) and increasing random

noise at lateral imaging angles (Figure 7). In all scenarios, especially with gantry-

varying noise, the KF method was more robust than the PDF method. A limitation of

this work is that noise was simulated instead of measured. A number of noise models

were included to address this limitation. These include Gaussian white noise, which is

dependent on the signal amplitude, random uniformly distributed noise, which is not

amplitude dependent, and gantry-dependent noise. Among these noise, following an

analysis of 46 prostate patient SBRT treatments reported by (Hewson et al. 2019), the

gantry-dependent noise dominated other type of measurement noise during treatment

due to the presence the pelvic bones in patients. The present study found that the KF

method outperformed the PDF method for this type of noise. In reality, measurement

noise on 2D projection is due to (1) a limitation of the segmentation algorithm and (2) a

combination of kV and MV scatter collected by the kilovoltage imager. Because of first

factor, the performance of KF method and its robustness against real measured noise

will depend on the segmentation algorithm used to detect the targets on kV images.

Given KF method interent ability to adapt to measurement noise, it is possible to

achieve accurate 3D estimation with less accurate segmentation methods. Scatter noise

on intrafraction kV images resembles Gaussian noise simulated in the present study as

the overall noise profile is a combination of multiple random processes. All in all, it is

reasonable to expect that KF method will perform better than PDF method against

measurement noise in patients’ images through the results of this study.
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In this study, we purposefully used the Calypso database such that the ground-truth

is known at all time to thoroughly evaluate the theoretically achievable performance of

the KF method. In the immediate next step, we will implement and evaluate the KF

method retrospectively on patients’ intrafraction fluoroscopic images using an existing

database such as the TROG 15.01 SPARK trial (Keall et al. 2017). For this step, the

KF method will need to be combined with an appropriate segmentation algorithm to

delineate the implanted fiducials. The measurement noise in such future study will

directly correlate with the accuracy of the segmentation algorithm.

5. Conclusion

An iterative Kalman Filter method was developed to address the need for estimating

randomly moving targets during cancer radiotherapy on a standard equipped linear

accerator. Extensive evaluation of this method using different treatment scenarios shows

sub-mm accuracy and precision. In addition, the present work allows the target to be

monitored without the need of a learning arc, reducing additional imaging dose to the

patient. Our method is also shown to be more robust against imaging and segmentation

noise than the existing method.
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