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Abstract—While privileged information may not be as informa-

tive as example features in the context of making accurate label

predictions, it may be able to provide some comments on the effi-

cacy of the learned model. In a departure from conventional static

manipulations of privileged information within the support vector

machine (SVM) framework, this paper investigates iterative

privileged learning (IPL) within the context of gradient boosted

decision trees. As the learned model evolves, the comments

learned from privileged information to assess the model should

also be actively upgraded instead of remaining static and passive.

During the learning phase of the gradient boosted decision

tree method, we discover new decision trees to enhance the

capability of the model, and iteratively update the comments

generated from the privileged information to accurately assess

and coach the up-to-date model. The resulting objective function

can be efficiently solved within the gradient boosting framework.

Experimental results on real-world datasets demonstrate the

benefits of studying privileged information in an iterative manner,

as well as the effectiveness of the proposed algorithm.

Index Terms—Learning using privileged information, gradient

boosted trees.

I. INTRODUCTION

T
RADITIONAL supervised classification methods were
once developed over a set of data points, each of which

consists of an example feature vector and its corresponding
label. These methods differ in the techniques used to approx-
imate the underlying mapping from the feature space to the
label space. In addition to the feature vectors and labels, it is
often practical in some applications to collect some auxiliary
information in order to assist the mapping approximation. For
example, in an object recognition task, we can manually set
bounding boxes to filter out the objects of interest in images,
which may decrease the influence of messy backgrounds and
improve recognition accuracy. This auxiliary information is
often regarded as privileged information, since it only exists
in the training stage but cannot easily be applied in the test
phase.

An increasing number of studies have demonstrated that
privileged information of this kind can help to improve the
performance of learning models in various applications. In
digit classification tasks, a poetic description of each training
image is additionally supplied to further boost the classifica-
tion performance [1]. In real-world applications, visual data for
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scene recognition are usually down-sampled as low-resolution
images to save on storage, but superior performance can be
obtained with the aid of high-resolution images in the training
phase [2]. In addition, some facial attributes associated with
aging, such as skin smoothness, face shape, face acne, wrinkles
and under-eye bags, have been used as privileged information
in solving age estimation problems [3].

The concept of learning using privileged information (LUPI)
was first introduced by Vapnik and Vashist [1], [4]. As in
human learning, where teachers provide additional sources of
explanation along with training examples during the learning
process, LUPI also investigates training data with additional
information (referred to as privileged information) that is only
available at the training stage and not available at the test stage.
Beginning with the successful SVM+ algorithm which was
adapted from the support vector machine (SVM) framework
[1], the LUPI paradigm has attracted increasing interest in
the community [5]–[11]. SVM+ replaces the original slack
variables in the standard SVM by means of a linear auxiliary
function of privileged information. In so doing, the mistakes
made by the classifier can be assessed with the help of
privileged information, which will be beneficial for coaching
the learning of an optimal classifier. Since its inception, many
variants of SVM+ have been further explored by researchers.
For example, the relative attribute support vector machine
(raSVM+) algorithm takes relative attributes as privileged
information in order to improve the accuracy of age estimation
by controlling outliers and guiding the learned predictor over
the training data [3]. SVM+ has also been extended to the
multi-instance learning scenario, solving object recognition
and image retrieval problem by exploiting privileged informa-
tion derived from web data [6]. In addition, privileged infor-
mation has been incorporated into structured SVM learning
framework to obtain better generalization performance [12].
There have also been some studies on optimization techniques
to solve linear SVM+ and kernel SVM+, such as gSMO, CVX-
SVM+, MAT-SVM+ and `2-loss SVM+ [2].

However, while these methods have achieved satisfactory
performance by taking advantage of the LUPI paradigm, we
must also ask whether it is possible to investigate privileged
information beyond the SVM framework. Most importantly,
it is instructive to note that practical human learning is not
an one-off intervention, but an iterative process. Students
enhance their capabilities with the help of comments from
teachers, at the same time teachers’ comments need to be
updated regularly to accurately reflect and address students’
current capabilities. Hence, rather than exploiting privileged
information in a "static" manner by means of a fixed auxiliary
function, the comments generated from privileged information
should be updated constantly so that they remain consistent
with the most up-to-date model.
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Privileged information has rarely been investigated using
this developmental approach. The most relevant work here
may be the GB+ method [13], which iteratively encourages
the consistent predictions of two decision trees constructed
with example features and privileged features, respectively.
However, the privileged information is often not informative
as the example features to make accurate label predictions
in practice, which makes the consistence constraint unfea-
sible. Therefore, rather than treating privileged information
as equivalent to the example features when learning the
prediction model, we tend to regard the privileged information
as auxiliary data to generate comments which makes some
corrections on the learned model.

In this paper, we propose a new method called itera-
tive privileged learning (IPL) within the context of gradient
boosted decision trees (GBDT). In each iteration of GBDT,
a weak learner (i.e., a new tree) is trained to upgrade the
existing model, and a corresponding additional linear auxiliary
function is employed to generate comments (e.g., the values
of the auxiliary function) from the privileged information on
this weak learner. These comments depict the discrepancy
(i.e. residuals) between predictions and ground-truth values,
and will coach the learning process of a new decision tree.
Moreover, we integrate the learning of the new decision tree
and the auxiliary function into a unified objective function. In
doing so, we closely connect the upgrading of the prediction
model with the exploitation of the privileged information. As
the comments from the privileged information on each weak
learner are updated iteratively, the model can always be accu-
rately assessed and its capability gradually enhanced as more
and more single weak learners (i.e., decision trees) are boosted
into the model. Considering that in the current iteration, the
new learned projection vector of the additional linear auxiliary
function may have relations with projection vectors learned
in the previous iterations, we further introduce a variant of
our IPL method referred as sparse IPL. Experimental results
on real-world datasets demonstrate the effectiveness of the
proposed iterative privileged learning algorithms by utilizing
the privileged information.

The rest of this paper is arranged as the following. The
related works is briefly reviewed in Section II. Section III
presents the baseline gradient boosted decision tree (GBDT)
method. Section IV describes the proposed IPL method and
its variant named sparse IPL, and their solution are provided.
In section V, the effectiveness of the proposed method is
evaluated compared with several approaches on several real-
world datasets. Section VI concludes this paper.

II. RELATED WORKS

Inspired by the human learning and teaching process, the
learning using privileged information (LUPI) framework has
attracted increasing interest in the machine learning field since
it was proposed by Vapnik and Vashist [1]. Unlike the classical
machine learning paradigm, which solely employs example
features and their corresponding ground-truth labels in model
learning, LUPI also considers comments from teachers. That
is, in the LUPI paradigm, models are not only trained using

labeled examples, but also can access teachers’ comments,
explanations, comparisons and so on. Although this help from
teachers is only available in the training stage, the superiority
of this advanced learning paradigm has been demonstrated in
diverse problems [1].

The first approach proposed in the LUPI paradigm, which
is based on the support vector machine (SVM) framework,
is called SVM+ [1]. The basic assumption of SVM+ is that
the misclassification loss of each training example can be
measured using a correcting function derived from privileged
information. Hence, a classifier is learned contemporaneously
with the correcting function. SVM+-based research has at-
tracted extensive attention and many variants of SVM+ have
been proposed and implemented for various applications, such
as L1-regularized SVM+ [14], multi-class SVM+ [15], multi-
task multi-class SVM+ [16], structural SVM+ [12], multi-label
SVM+ [17], SVM+ for domain adaptation [6], and the rank
transfer method [5], and so on. By introducing L1-norm SVM
into the LUPI paradigm, less time will be spent in tuning
model parameters and feature selection can be realized in the
training stage, unlike the standard L2-norm SVM+ [14]. It is
demonstrated that SVM+ is closely associated with the well-
known weighted SVM, and that the privileged information
from SVM+ can be encoded through instance weights [18].

In addition to the ordinary classification task, the LUPI
paradigm has been applied to a number of different problems.
One example [19] involved generalizing the classical metric
learning methods using a fixed threshold in the generic empiri-
cal risk framework by building a locally adaptive decision rule
with privileged information. Inspired by knowledge transfer,
the standard hash learning method has also been extended in
a transfer learning scenario [20]. The quantization error was
approximated using a function learned from auxiliary data, and
the geometry structure of the auxiliary data was explored to
obtain more accurate binary codes in the target domain.

The present work is also related to the decision tree (DT)
methods. DT is a non-parametric supervised learning method
used for classification and regression. By building simple
decision rules learned from the data features, DT attempts to
create a model that predicts the value of a target variable.
In this paper, we focus on a specific DT method called the
classification and regression trees (CART) method [21]. The
CART model, which has been one of the most popular decision
tree methods since it was first introduced, utilizes tree-building
algorithms that employ a set of if-then conditions for split to
make prediction or classification. In more detail, CART starts
by analyzing all expositive variables and then determines how
best to make a binary division of a single expositive variable
in order to reduce deviance in the response variable. The split
process is continued and repeated for each portion of the data
resulting from the previous split, until homogeneous end points
or terminal nodes are arrived at in a hierarchical tree.

Subsequently, a tree-based ensemble method called gradient
boosted decision trees (GBDT), which was developed in order
to create more powerful prediction models based on decision
trees, has achieved widespread use in real-world applications
[22]. GBDT [23] is a generalization of gradient boosting [24],
[25] that builds additive models of multiple decision trees [26],
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[27] and has been successfully applied in the machine learning
field [28], [29]. Unlike the random forest method [30], which
combines a forest of randomly different trees in parallel, the
main purpose of GBDT is to build a series of trees. Typically,
GBDT uses many small trees with shallow depth, which are
known as ‘weak learners’ in machine learning. When training
each tree, the method tries to correct the mistakes of the
previous tree in the series, by sequentially fitting a simple
parameterized function to the current target residuals based on
the least square. As more and more decision trees are learned
and added, the created tree model will make fewer and fewer
mistakes.

III. GRADIENT BOOSTED DECISION TREE

In this section, we briefly introduce the gradient boosted
decision tree (GBDT) method. GBDT aims to improve the
performance of a single decision tree by fitting a series of
decision trees and combining them in order to make predic-
tions. Instead of learning many large trees with a high variance
and high depth, GBDT learns and adds small trees with a low
depth, combining these weak single decision trees into a strong
decision model in an iterative fashion.

Let Gt (·) be the integrated decision function to be main-
tained, while Gt (xi) is the prediction of the example xi in
the t-th iteration. Given yi as the ground-truth label of xi ,
the goal of GBDT is to discover the function Gt (·) that can
approximately estimate yi with ỹi = Gt (xi). Mean squared
error can be employed to measure the discrepancy between
the predicted label ỹi and the ground-truth label yi , and the
optimal Gt (·) can be solved by minimizing:

Loss =
1
2

nX

i=1
(Gt (xi) � yi)2. (1)

In the t-th iteration, we plan to improve the imperfect
model Gt�1(·) from the previous iteration by also considering
a small decision tree ht (·), such that Gt (·) can be upgraded
with Gt (xi)  Gt�1(xi) + ht (xi). The gradient boosting
technique considers gradient descent in the example space
X = [x1, x2, · · · , xn] 2 Rd⇥n, and the current prediction Gt (xi)
for the example xi can be adjusted using a gradient step as
follows:

Gt (xi)  Gt�1(xi) � �
@Loss
@Gt�1(xi)

, (2)

where � > 0 is referred to as the learning rate, and the negative
gradient � @Loss

@Gt�1 (xi ) is equal to the residual ri = yi �Gt�1(xi)
from the previous iteration. We can thus obtain the new
decision tree ht (·) by minimizing the mean squared error, as
follows:

min
ht

nX

i=1
(ht (xi) � ri)2. (3)

Eq. (3) can be solved using the standard CART algorithm
with {(x1, r1), . . . , (xn, rn)} as the input training data. Two
hyper-parameters are employed in the construction of the
decision tree, i.e., tree depth k, and the number of features to
consider when looking for the best split s. We set tree depth
k  5 and consider all features for each split according to
the suggestions outlined in [22]. There are also two important

parameters required to launch gradient boosting, including
the maximal number of iterations (i.e., number of boosted
trees) N and the learning rate � > 0. Before the (t + 1)-
th iteration, the residual ri and the current model Gt (·) are
updated using ri  ri � �ht (xi) and Gt (·) = �

Pt
j=1 h j (·),

respectively. Finally, when either the maximal number of
iterations is reached or the objective value in Eq. (1) becomes
stable, the algorithm converges and outputs the final model:
G(·) = �PN

t=1 ht (·).

IV. THE PROPOSED APPROACH

In this section, we first illustrate the theory of our proposed
iterative privileged learning (IPL) method. Then, we introduce
a variant of our IPL method called sparse IPL method, which
learns the projection of the auxiliary function of IPL based on
sparse representation.

A. Iterative Privileged Learning
For the GBDT method, in the t-th iteration, the current weak

learner ht (xi) is learned by satisfying Gt�1(xi) + ht (xi) = yi
for each example xi . That is, the new decision tree (the
weak learner) with the training data in order to minimize
the difference between the prediction values and the ground-
truth labels. However, consider the case where the target
value cannot be reached without error, we introduce some
auxiliary variables ⇠i to estimate and depict the error as
Gt�1(xi) + ht (xi) � yi = ⇠i .

As use of the auxiliary data has been demonstrated to assist
in constructing a better predictive rule [1], we further investi-
gate GBDT in the LUPI paradigm. Under the LUPI paradigm,
we suppose that during training process Ideal Teacher can
provide Student with the values of auxiliary variables as
privileged information. Thus, triplets are supplied to Student

(x1, ⇠
0
1, y1), (x2, ⇠

0
2, y2), . . . , (xn, ⇠0n, yn),

where ⇠0i , i = 1, . . . , n are the auxiliary variables. In order to
learn the decision tree in the t-th iteration, the functional is
minimized

nX

i=1
L(Gt�1(xi) + ht (xi) � yi � ⇠i). (4)

where L is a general loss function which is set to be quadratic
in this paper. Define ri = yi � Gt�1(xi) and we minimize the
functional

nX

i=1
(ht (xi) � ri � ⇠i)2. (5)

Noticeably, real Intelligent Teacher actually cannot provide
auxiliary values which Teacher does not know. However, they
can do something else instead, i.e., defining a space X⇤ where
a set of real-valued auxiliary functions f (x⇤i ) to approximate
belongs, and generating privileged information for examples
in the training set to supply Student with triplets,

(x1, x⇤1, y1), (x2, x⇤2, y2), . . . , (xn, x⇤n, yn),

where xi 2 Rd and x⇤i 2 Rd
⇤ are the example feature

vector and corresponding privileged feature vector of the i-
th training example, and yi is its ground-truth label. X =
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[x1, x2, . . . , xn] 2 Rd⇥n and X⇤ = [x⇤1, x
⇤
2, . . . , x

⇤
n] 2 Rd⇤⇥n are

the example feature (EF) training data matrix and privileged
feature (PF) training data matrix, respectively. n is the number
of training examples in the training set, and d and d⇤ are the
dimensions of the example features and privileged features,
respectively. Note that PF data x⇤ is available only in the
training stage, not in the test stage.

More specifically, we employ auxiliary functions which can
generate comments from the privileged information to measure
the discrepancy (i.e., residuals) between the predictions and
ground-truth labels. In this way, the current remaining pre-
diction error of the boosted decision tree model can be more
accurately depicted, which will be beneficial for learning the
next new decision tree. Consequently, the primary question is
now how the auxiliary function might be constructed in order
to generate the comments from the privileged information. In
particular, we consider a linear auxiliary function defined in
the PF space, and some nonlinear function could be straight-
forwardly applied as well. For the privileged feature x⇤i of the
i-th example, the comment generated from x⇤i is supposed to
be f (x⇤i ) = wx⇤i , where w 2 R1⇥d⇤ is the projection vector.
Hence, during the process of learning a new decision tree,
the prospective target is not only affected by the difference
between the predictions of the current model and the ground-
truth labels, but also influenced by the comments from the
privileged information.

The next problem to be solved concerns how the most
suitable auxiliary function might be selected; in other words,
how the best projection w might be found? Our solution is that
w is not fixed. In fact, it is iteratively learned and updated
each time a new tree is added and the model is updated.
That is to say, the comments provided by the privileged
information are also iteratively updated as the model grows
stronger. This idea, which resembles the teaching process
in a human classroom (in that the comments provided by
teachers are changed and updated as students become more
knowledgeable), is ignored by almost all existing methods in
the LUPI paradigm. Therefore, our iterative privileged learning
(IPL) aims to iteratively learn, add a new tree and update the
comments of the privileged information on the newly derived
decision model. Accordingly, in the t-th iteration, rather than
generating the new decision tree ht (·) as GBDT in Eq. (3), we
instead consider minimizing the following loss function with
the help of the privileged information:

min
ht,wt

nX

i=1
(ht (xi) � ri)2 + C1

nX

i=1
(ht (xi) � ri � wt x⇤i )2. (6)

The second term depicts the difficulty in quantizing the pre-
diction error of the current model. Moreover, it also considers
the current auxiliary function f t (x⇤i ) = wt x⇤i as the tolerance
function to allow the little prediction error to a certain extent.
In this way, the prediction error can be regularized to avoid
over-fitting. And C1 > 0 is a parameter to control the influence
of the privileged information on both the residual target and
the learning of the decision tree. In this way, the comments
provided by the auxiliary function f t (x⇤i ) can be balanced to
better correct the residual target.

Algorithm 1 Iterative Privileged Learning (IPL)
Input: Dataset {(x1, x⇤1, y1), . . . , (xn, x⇤n, yn)}, parameters in-

cluding tree depth k, the number of trees N , learning rate
�, tradeoff parameters C1 and C2

1: Initialization: t = 1, wt 2 R1⇥d⇤ is randomly initialized in
range (0,1), ri = yi , where i ranges from 1 to n

2: for t = 1 to N do

3: repeat

4: Update ht (·) based on Eq. (10):
5: r⇤i = ri + C1

C1+1wt x⇤i , where i ranges from 1 to n
6: ht (·)  C ART ((x1, r⇤1), . . . , (xn, r⇤n), k)
7: Update wt based on Eq. (12):
8: wt =

C1
C1+C2

AX⇤T(X⇤X⇤T)�1

9: until convergence or maximum iteration is reached
10: Update wt+1  wt , ri  ri � �ht (xi), where i ranges

from 1 to n
11: end for

Output: Final IPL model G(·) = �⌃Nt=1ht (·)

It should be noted that, in the LUPI paradigm, privileged
information effectively serves as auxiliary information used to
improve the decision tree model’s predictions on the example
feature data; the values of the auxiliary function can be either
positive or negative. In order to prevent its magnitude from
growing too large, the value of the auxiliary function f t (x⇤i )
has to be constrained. Therefore, we further introduce an L2
regularization to assist in this matter. The final objective of
the proposed IPL method is as follows:

min
ht,wt

nX

i=1
(ht (xi) � ri)2 + C1

nX

i=1
(ht (xi) � ri � wt x⇤i )2

+ C2

nX

i=1
kwt x⇤i k22,

(7)

where C2 > 0 is a tradeoff parameter used to balance the
influence of the third term on the whole minimization problem.

At the t-th iteration, the best ht and wt are learned by
solving the optimization problem (7), while the new tree ht (·)
is added to the current model Gt (·) = �

Pt
j=1 h j (·). Moreover,

the learned wt in the current iteration serves to initialize the
projection vector wt+1 of the auxiliary function in the next
iteration. The residual target ri  ri � �ht (xi) for each
example is then updated for the next iteration.

B. Sparse IPL
In the proposed IPL method, the projection w is updated at

each iteration. Noticeably, since the projection wt in the t-th
iteration may have some relations with the previous learned
projections {wi }, i = 1, . . . , t � 1, we consider to represent
w with a linear combination of {wi }, i = 1, . . . , t � 1. We
assume after ⌘ iterations, there are efficient learned projections
{w j }, j = 1, 2, . . . ⌘ that can construct a dictionary D =
[wT

1 ,w
T
2 , . . . ,w

T
⌘ ] 2 Rd⇤⇥⌘ , where ⌘ represents the number of

atoms. Thus, in the m iteration (m > ⌘), we can represent
the wm as wm = Dvm. Moreover, due to the similarity of the
projections {w j }, vm can be sparse. In order to reduce the cost
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Algorithm 2 Sparse IPL
Input: Dataset {(x1, x⇤1, y1), . . . , (xn, x⇤n, yn)}, parameters in-

cluding tree depth k, the number of trees N , learning rate
�, the number of atoms ⌘, tradeoff parameters C1 and C2

1: Initialization: t = 1, wt 2 R1⇥d⇤ is randomly initialized in
range (0,1), ri = yi , where i ranges from 1 to n

2: for t = 1 to N do

3: repeat

4: if t  ⌘ then

5: Update ht (·) based on Eq. (10):
6: r⇤i = ri + C1

C1+1wt x⇤i , where i ranges from 1 to n
7: ht (·)  C ART ((x1, r⇤1), . . . , (xn, r⇤n), k)
8: Update wt based on Eq. (12):
9: wt =

C1
C1+C2

AX⇤T(X⇤X⇤T)�1

10: else

11: Update ht (·) based on Eq. (14):
12: r⇤i = ri + C1

C1+1 x⇤i
TDvt , where D =

[wT
1 ,w

T
2 , . . . ,w

T
⌘ ] 2 Rd⇤⇥⌘ and i ranges from

1 to n
13: ht (·)  C ART ((x1, r⇤1), . . . , (xn, r⇤n), k)
14: Update vt based on Eq. (17) using the coordinate

descent in Scikit-learn [31]
15: end if

16: until convergence or maximum iteration is reached
17: Update wt+1  wt , ri  ri � �ht (xi), where i ranges

from 1 to n
18: end for

Output: Final IPL model G(·) = �⌃Nt=1ht (·)

of time and memory of the IPL method, we further introduce
sparse representation to learn vm. And the optimal vm can
be obtained by solving the new sparse IPL problem which is
formulated as:

min
hm,vm

nX

i=1
(hm(xi) � ri)2 + C1

nX

i=1
(hm(xi) � ri � x⇤i

TDvm)2

+ C2

nX

i=1
kvmk1,

(8)
where vm is a ⌘-dimensional sparse vector (i.e., vm has only
a few nonzero entries), whose entries are the weights of the
corresponding atoms in D; C1 > 0 are tradeoff parameters
used to balance the influence of the second term on the whole
minimization problem. C2 > 0 is a parameter to balance the
effect of the L1 norm sparse term on the objective function.

C. Solution for IPL
From the viewpoint of optimization, both learning steps

in the IPL method with respect to the new tree ht (·) and
the projection vector wt are convex optimization problems.
Therefore, we adopt an alternating optimization strategy to
efficiently solve the objective problem in Eq. (7), i.e., the
new tree ht (·) and the projection vector wt are alternatively
updated until the convergence is reached. The convergence
is shown in Fig. 8 in the experimental part. After almost 5

iterations, an optimum can be achieved in the experiments.
More specifically, we first fix the variable wt and solve for
the new tree ht (·), and then the current learned new tree ht (·)
is fixed and the variable wt is updated.

1) Optimization of ht (·): If t = 1, we initialize wt with
random values between 0 and 1. Otherwise, wt is set as the
same value of wt�1 obtained for the last model. The next
decision tree ht (·) can be obtained by solving the following
optimization problem:

min
ht

nX

i=1
(ht (xi) � ri)2 + C1

nX

i=1
(ht (xi) � ri � wt x⇤i )2. (9)

By means of some simple mathematical operations, Eq. (9)
can be further reformulated as follows:

min
ht

nX

i=1
[ht (xi) � (ri +

C1
C1 + 1wt x⇤i )]2. (10)

Eq. (10) can now be solved efficiently by the standard
classification and regression trees (CART) algorithm [21].
Here, r⇤i = ri + C1

C1+1wt x⇤i plays the same role as ri in Eq.
(3). However, it is instructive to note that the privileged
feature x⇤i has been included in order to adjust the target
value r⇤i . Given the input features {x1, . . . , xn} and target labels
{r⇤1, . . . , r⇤n}, classical CART solvers can be straightforwardly
applied. There are two hyper-parameters to be determined
before launching CART: the maximum depth of the single tree
k, and the number of features to consider when looking for
the best split at each split s. We let s be equal to the number
of all features by default [22]. The tree and its predictor value
of input data {x1, . . . , xn} can then be solved based on CART
algorithm, as ht (·)  Cart({(x1, r⇤1), . . . , (xn, r⇤n)}, k).

2) Optimization of wt : After obtaining the new tree ht (·),
we fix it and update wt by solving the following optimization
problem:

min
wt

C1

nX

i=1
(ht (xi) � ri � wt x⇤i )2 + C2

nX

i=1
kwt x⇤i k22. (11)

In order to simplify the expression of the problem (11),
we transform it into the matrix optimization problem. We let
H = [ht (x1), . . . , ht (xn)] 2 R1⇥n, R = [r1, . . . , rn] 2 R1⇥n, and
A = H � R 2 R1⇥n, such that Eq. (11) can be rewritten as:

min
wt

C1kA � wt X⇤k22 + C2kwt X⇤k22 . (12)

We solve the optimal wt by setting the deviation with
respect to wt to zero. In this way we can obtain the optimal
wt =

C1
C1+C2

AX⇤T(X⇤X⇤T)�1.

D. Solution for Sparse IPL

Although the proposed Sparse IPL method is non-convex
with respect to the new tree hm(·) and the sparse vector vm;
however, the local solution of each variable can be solved
when the other is fixed. Then the local optimum of the
proposed sparse IPL method can be obtained.
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1) Optimization of hm(·): To optimize hm(·), we first
fix sparse vector vm, and solve the following optimization
problem regarding hm(·):

min
hm

nX

i=1
(hm(xi) � ri)2 + C1

nX

i=1
(hm(xi) � ri � x⇤i

TDvm)
2
.

(13)
By means of some simple mathematical operations, Eq. (13)
can be further reformulated as follows:

min
hm

nX

i=1
[hm(xi) � (ri +

C1
C1 + 1 x⇤i

TDvm)]2.. (14)

Similarly as in IPL, we adopt the standard classification and
regression trees (CART) algorithm to efficiently solve the opti-
mization problem in Eq. (14), and r⇤i = ri+ C1

C1+1 x⇤i
TDvm plays

the same role as ri in Eq. (3). By using CART, the current
tree hm(·) and its predictor value of input data {x1, . . . , xn} can
then be solved as hm(·)  Cart({(x1, r⇤1), . . . , (xn, r⇤n)}, k).

2) Optimization of vm: Now we consider the optimization
of vm. Considering hm(·) is fixed, the optimization problem is
rewritten as:

min
vm

C1

nX

i=1
[hm(xi) � ri � x⇤i

TDvm]2 + C2

nX

i=1
kvmk1 (15)

By means of some simple mathematical operations, Eq. (15)
can be further reformulated as follows:

min
vm

C1

nX

i=1
(bi � vT

m x̃)2 + C2

nX

i=1
kvmk1 (16)

where bi = hm(xi) � ri 2 R and x̃i = DTx⇤i 2 R⌘⇥1. Note
that the minimization problem in Eq. (16) is a typical least
absolute shrinkage and selection operator (LASSO) optimiza-
tion problem [32]. And Eq. (16) can be further reformulated
as Eq. (17), which can be efficiently solved by the coordinate
descent in Scikit-learn [31].

min
vm

1
2n
kB � X̃Tvmk22 + kvmk1 (17)

where B = [b1, . . . , bn]T 2 Rn, X̃ = [x̃1, . . . , x̃n] 2 R⌘⇥n, and
� = C2

2C1
.

V. EXPERIMENTS

In this section, we evaluate the efficiency of our proposed
IPL method and compare it with several representative existing
algorithms: 1) two algorithms use only example feature data,
including a gradient boosted decision tree (GBDT) algorithm
[22] and a standard support vector machine (SVM) method
using the Gaussian kernel; 2) four algorithms that use privi-
leged information, including linear kernel SVM+ referred as
SVM+(linear), gaussian kernel SVM+ referred as SVM+(rbf)
[1], L2-SVM+ [2], and gradient boosted with privileged infor-
mation referred as GB+ [13]. Specifically, we first conduct two
simulated experiments on a UCI dataset named Pima Indians
Diabetes and a Galaxy dataset [33]. Then, we study different
types of privileged information in real applications, including
holistic description for digit classification task, attribute anno-
tations for object recognition task, and depth information for

face pose classification task. In order to further evaluate the
performance of sparse IPL that is a variant of our IPL method,
we evaluate it on the RGB-D dataset, as an example.

TABLE I
DESCRIPTION OF DATASETS.

Dataset Examples PF EF Classes
Pima Indians Diabetes 768 4 4 2

Galaxy 505 21 127 2

A. Parameter setting
There are five parameters in our proposed IPL model, in-

cluding the depth of a tree k, the number of trees to be boosted
N , the learning rate �, and two tradeoff parameters C1 and C2.
We tune the parameters �, d and N from the range of {0.05,
0.1, 0.2, 0.3}, {2, 5, 10} and {100, 300, 500}, respectively.
We also tune the parameters C1 and C2 of IPL from the
range of 10[�2,�1,...,1,2]. For the GBDT and GB+ method, we
also vary the tree depth k and the learning rate � and the
number of trees N in the range of {2, 5, 10}, {0.05, 0.1,
0.2, 0.3}, and {100, 300, 500}, respectively. For the standard
SVM, SVM+(rbf), L2-SVM+ and SVM+(linear) methods, the
tradeoff parameter C is set in the range of 10[�2,�1,...,1,2]. The
Gaussian kernel is used for the standard SVM, SVM+(rbf),
and L2-SVM+methods, and the linear kernel is used for the
SVM+(linear) method.

B. Simulated experiments
1) Datasets: In this section, in order to show the potential

of methods using the privileged information, we control the
features that constitute the example and privileged feature
spaces, respectively. The experiments are conducted on two
publicly available datasets, including a standard classification
dataset in the UCI repository (Pima Indians Diabetes), and
a novel dataset that predicts the galaxy types (Galaxy) [33].
The Pima Indians Diabetes dataset contains 768 data items
described by 8 attributes and classified into two classes.
Following the same setting as [13], we select a certain number
of features (i.e., the 1st, 4th, 5th and 7th attributes) as the
example features, and the rest (i.e., the 2nd, 3rd, 6th and
8th attributes) as the privileged features. Another dataset,
Galaxy contains galaxy images derived from the Sky Survey

GB_EF GB_PF GB_CCA GB+ IPL
65

70

75

80

A
cc
ur
ac
ie
s(
%
)

Methods

(a) Pima Indians Diabetes
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(b) Galaxy

Fig. 1. Classification performances of GB_EF, GB_PF, GB_CCA, GB+ and
IPL methods on two datasets: (a) Pima Indians Diabetes, and (b) Galaxy.
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TABLE II
MEANS AND STANDARD DEVIATIONS OF THE CLASSIFICATION ACCURACIES (%) OBTAINED BY DIFFERENT METHODS ON THE PIMA INDIANS

DIABETES AND GALAXY DATASETS.

Dataset GBDT SVM Linear-SVM+ SVM+(rbf) L2-SVM+ GB+ IPL
Diabetes 75.53±2.62 74.94±2.35 67.16±5.18 75.55±2.69 75.86±2.56 74.21±2.48 78.92±2.49

Galaxy 73.68±3.29 73.08±3.00 61.78±4.46 73.28±2.80 73.86±1.50 73.77±3.13 77.42±3.16
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 GBDT    SVM     GB+    L2-SVM+  
 SVM+(linear)    SVM+(rbf)     IPL

Fig. 2. Means and standard deviations of the classification accuracies obtained
by different methods on the MNIST+ dataset.

Database [34]. Similar to the settings used in [33], galaxy
images are classified into the spiral and non-spiral classes. And
the shape information is used to generate privileged features
into a 21-dimensional vector, while example features into a
100-dimensional vector are extracted from color information.
Details of the information used in the experiments are summa-
rized in Table I, which lists the total number of examples in
the dataset, the size/dimensions of both privileged feature data
and example feature data, and the number of classes. For both
datasets, 80% of examples are randomly split into the training
set for five times and the remaining examples are used as the
test set. We use 5-fold cross-validation scheme in the training
set to find the best parameters.

2) Results: The average classification accuracies over five
random trials are summarized in Table II for different methods
on the Pima Indians Diabetes and Galaxy datasets. It can
be seen from the classification results that our IPL method
achieves the best performance on both datasets. Compared
with the baseline GBDT, our IPL achieves obviously better
results on two datasets, which demonstrates the efficiency of
the proposed IPL method that uses privileged information
to learn a better classification model. In addition, our IPL
method performs better than GB+. This supports our decision
to regard privileged information as auxiliary data in order
to generate comments, as well as underscores the fact that
privileged information is insufficient on its own for making
label predictions. The GB+ method can be observed to be
slightly more accurate as GBDT on the Galaxy dataset. But
its accuracy is obviously lower than that of GBDT on the
Pima Indians Diabetes dataset. One possible explanation is
that the privileged information in this dataset is not informative

enough to be equivalent to the example features for learning
the prediction model, or the probability distribution of EF
data and PF data is different a lot. Therefore the consistency
constraint of GB+ is unfeasible and the use of privileged
information in GB+ does not help to improve the classification
performance. The possible explanation is discussed in detail
in the following subsection.

SVM+(rbf) and L2-SVM+ can obtain better classifica-
tion accuracies than the baseline SVM, which demon-
strates their effectiveness to use privileged information. And
SVM+(rbf)and l2-SVM+ obviously outperform linear-SVM+,
which suggests the efficiency of the gaussian kernel strategy.
Generally, L2-SVM+ gets better results than other methods
except our IPL.

3) Quality of the privileged information: We also evaluate
the quality of the privileged information and indicate its effects
on the performance of classification of example feature data
in some aspects. Since the example feature (EF) data and the
privileged feature (PF) data are in different feature spaces, we
perform CCA [35] between EF and PF data to map them into
a common feature space (referred as a CCA space), and the
transformed EF data and PF data are referred as EF_CCA and
PF_CCA, respectively. We compare the performance of several
algorithms under different combinations of EF_CCA data and
PF_CCA data all in the CCA space, including GB_EF, GB_PF,
and GB_CCA. Also, GB+ and the proposed IPL method are
also compared without using CCA.

Specifically, GB_EF only uses the EF_CCA data to train
and test the GBDT model. GB_PF indicates that GBDT is
trained with PF_CCA data and tested on the EF_CCA data.
While GB_CCA uses both EF_CCA data and PF_CCA data
to train a GBDT and then tests on the testing set of EF_CCA
data. The GB+ and the proposed IPL are trained using both EF
and PF data and are then tested on EF data. We can observe
that in Fig. 1 (a), the classification results of GB_PF and
GB+ are obviously worse than those of GB_EF on the Pima
Indians Diabetes dataset. Moreover, GB_CCA also gets almost
the same results though twice as many training examples are
used. While from the results shown in Fig. 1 (b), GB_PF
obtains slightly lower performance than GB_EF, and GB_CCA
exhibits better performance than GB_EF. And GB+ also gets
a slightly better result than GBDT as shown in Table II.
Noticeably, for methods such as the GB+ method, which
depend heavily on auxiliary data, the better performance is
obtained when the predictions of example feature data and
auxiliary data are as similar as possible. When the probability
distributions of the example feature data and auxiliary data
are quite different, or the quality of PF is not good enough,
the performance of GB+ may suffer. This is evident from
the results on the Pima Indians Diabetes shown in Table II,
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TABLE III
CLASSIFICATION ACCURACIES FOR ONE-VS-ALL BINARY CLASSIFICATIONS. THE FEATURE EXTRACTED FROM THE IMAGE IS THE EXAMPLE VIEW,

AND THE ATTRIBUTE ANNOTATION OF THE IMAGE IS THE AUXILIARY VIEW. BEST ACCURACIES ARE HIGHLIGHTED IN BOLDFACE.

GBDT SVM SVM+(linear) SVM+(rbf) L2-SVM+ GB+ IPL
Bag 75.48±1.24 76.66±2.60 74.64±1.92 76.43±2.08 76.79±2.17 71.43±1.96 77.40±1.39

Building 81.34±1.88 84.22±2.59 80.41±2.31 83.61±3.42 84.22±2.95 78.66±1.71 84.23±1.74

Carriage 74.78±1.87 76.52±3.19 73.91±5.30 77.61±2.88 76.74±3.49 69.87±2.13 78.04±2.10

Centaur 80.67±2.49 85.33±3.33 85.33±2.79 87.33±2.98 87.33±2.78 89.23±0.82 89.33±2.78

Donkey 86.19±4.29 89.28±4.68 89.76±3.73 90.48±3.91 90.24±4.26 89.15±3.73 89.76±3.82
Goat 75.71±3.61 81.02±4.11 77.35±3.56 80.41±3.58 81.63±3.22 76.43±2.96 82.45±3.18

Jetski 77.17±3.21 79.67±3.00 76.42±1.83 80.42±1.74 80.33±1.41 72.08±3.42 81.58±1.94

Monkey 67.86±2.93 72.14±1.94 71.25±2.78 72.67±1.74 72.14±1.32 65.98±2.80 71.96±1.92
Mug 77.94±1.61 79.41±1.69 77.64±2.58 79.56±1.83 79.12±1.85 72.97±3.58 79.56±1.27

Statue of people 76.77±2.57 78.71±3.14 77.74±2.46 79.35±2.70 80.00±2.98 72.87±2.42 79.52±2.20
Wolf 75.24±1.75 77.05±2.46 74.92±3.09 76.89±1.97 77.05±1.42 69.90±2.10 77.70±1.86

Zebra 75.07±2.19 76.99±2.13 76.02±3.06 77.53±1.48 77.94±2.44 70.77±2.88 78.49±2.93

where the accuracies obtained by GB+ are even lower than
those obtained by GB_EF. However, our IPL method uses the
privileged information as auxiliary data to provide comments
on the learned model and help to improve its learning, which
can be successful even if the PF data is not as informative as
the example features for making accurate label predictions.

C. Holistic Description as Privileged Information

1) Dataset: We consider the digit classification task of
classifying two digits “5” and “8” in the MNIST+ dataset
with the help of privileged information. MNIST+ dataset has
been widely used to evaluate the effectiveness of the auxiliary
textual descriptions as the privileged information [1]. The
MNIST+ dataset contains 2943 images of the digit “5” and
3025 images of digit “8” from the MNIST database. And
each image is additionally supplied with a holistic (poetic)
description (see [1] for examples) that serves as the privileged
feature data. In order to make it more difficult to distinguish
between these two digits, all images of two digits are resized
into 10⇥10 pixels in the MNIST+ dataset. We treat the 100-
dimensional vector of raw pixels as the example feature data
for each image. The holistic (poetic) description for each
image is translated into a 21-dimensional feature vector.

The 100 examples of 10⇥10 images are used as a training
set, and remaining examples are randomly split into a val-
idation set of 4002 images and a test set of 1866 images.
In the experiment, we use training sets of increasing size of
40, 50, 60, ..., 90. For each method, we perform five rounds
of experiments using randomly selected samples from the
training set, validation set and test set, and the average of
test classification accuracies and the standard deviations are
reported in Fig. 2.

2) Results: As we can see in Fig. 2, the classification
accuracies of all methods show an upwards trend when the
training data size increases. As the number of training exam-
ples varies, SVM+(rbf) and L2-SVM+ obviously outperform
the baseline SVM, and IPL clearly improves classification
accuracies compared with its baseline GBDT. This shows the
utilizing holistic description as privileged information for the
digit classification is generally useful. Moreover, the proposed
IPL method outperforms all compared methods, which demon-
strates its robustness and efficiency in the utilizing of the

privileged information. However, GB+ gets poorer results than
GBDT, which shows the consistence constraint of GBDT is
unfeasible on this dataset. According to the results, L2-SVM+
generally performs better than SVM+(rbf), due to the effective
new formulation of L2-SVM+ and its dual coordinate descent
algorithm. And SVM+(linear) generally gets the worst results
and performs significantly worse than SVM+(rbf) that uses the
Gaussian kernel, which demonstrates that the linear kernel is
less suitable than the gaussian kernel on this dataset.

D. Attributes as Privileged Information
1) Dataset: We use the a-Yahoo dataset [36], which con-

tains twelve object categories from the Yahoo image search.
The objects in the a-Yahoo dataset are: bag, building, carriage,
centaur, donkey, goat, jet ski, monkey, mug, statue of people,
wolf, and zebra. All images in the dataset are used as the
example data, and they are also labeled with attribute annota-
tions which are used as the privileged information. According
to [36], the example feature data for each image is given
by a 9751-dimensional feature by describing local texture,
HOG, edge, and color descriptors inside the bounding box,
shapes and locations. Then PCA is performed for the example

2

11
9

12
10

5 8

13

6

1

43
7

Kinect

The user

Fig. 3. Each person looks at fixed points on a wall behind the Kinect sensor.
The Kinect is placed on point number 7.
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TABLE IV
MEANS AND STANDARD ERRORS OF THE AP PERFORMANCE OVER 5 RUNS. THE FEATURE EXTRACTED FROM THE RGB IMAGE IS THE EXAMPLE VIEW,

AND THE FEATURE OBTAINED FROM THE DEPTH IMAGE IS THE AUXILIARY VIEW. BEST ACCURACIES ARE HIGHLIGHTED IN BOLDFACE.

GBDT SVM SVM+(linear) SVM+(rbf) L2-SVM+ GB+ IPL Sparse IPL
Class 1 vs Class 2 93.52±0.97 94.53±1.11 93.86±1.56 95.76±0.93 95.87±0.85 90.71±1.16 95.42±0.81 95.76±0.49
Class 2 vs Class 3 76.87±1.10 78.50±2.11 69.91±3.28 78.66±1.77 79.28±1.85 74.12±1.99 79.30±1.20 80.89±1.42

Class 1 vs Class 3 88.03±2.54 88.52±2.74 82.41±3.36 88.66±2.78 89.01±2.96 82.43±2.80 90.00±1.40 90.63±1.67

feature to reduce computational expense and we fix the PCA
dimension to 200 in the experiment. The attribute annotations
capture 64 binary properties that characterize shape, material,
and the presence of important parts of the visible object.
And we use the 64 dimensional attributes as the privileged
information. We conduct 12 binary classification experiments
for each class versus the rest classes. We use 40%, 30% and
30% examples from the desired class and the same number
of examples randomly drawn from the remaining classes
for training, validation and testing, respectively. We repeat
the experiment for five rounds by using different randomly
sampled pairs. And the average of classification accuracies
and the standard deviations are reported in Table III, where
the maximum values of the average accuracies in the corre-
sponding rows are marked in bold.

2) Results: As we can see from Table III, in general
utilizing attribute annotations as privileged information for
the object classification is useful. The proposed IPL method
performs better than the baseline GBDT in 12 cases out of 12.
And SVM+(rbf) outperforms the baseline SVM in 8 cases out
of 12, while L2-SVM+ also outperforms SVM in 10 cases out
of 12. The GB+ method only exhibits better performance than
the baseline GBDT method in 3 cases out of 12, which shows
the consistence constraint of GBDT is unfeasible in most cases
on this dataset. SVM+(linear) obtains worse results than both
SVM+(rbf) and L2-SVM+ in 12 cases out of 12. Moreover,
SVM+(linear) performs better than SVM only in 5 cases out
of 12, which demonstrates that the Gaussian kernel is more
suitable on the dataset than the linear kernel, and the standard
SVM using the Gaussian kernel is a competitive baseline.
Generally, the proposed IPL method outperforms all the other
methods in 9 cases out of 12, followed by SVM+(rbf) obtains
the best performance in 2 cases out of 12. This demonstrates
the effectiveness and robustness of our IPL method.

E. Depth Information as Privileged Information

1) Dataset: In this subsection, we evaluate the performance
of the invariant of IPL method named sparse IPL on the
RGB-D Face dataset [37]. Specifically, we perform face pose
recognition on the dataset, which contains color and depth
images and are taken by a Kinect sensor exactly at the same
time. The RGB-D Face dataset contains color images and
their corresponding depth images from 31 persons in different
face poses. And each pose for each person is repeated 3
times, which results in 3 ⇥ 31 image pairs for each pose. The
different face positions are produced by making each person
sequentially look at thirteen fixed points (seen in Fig. 3) on
a wall behind the Kinect sensor. Since the number of images
per face pose is relatively small, we merge the poses into

three groups: poses in the vertical direction (point number 1,
2, 12, 13 in blue) referred as class 1, the horizontal direction
(point number 5, 6, 8, 9 in green) referred as class 2, and the
non-vertical and non-horizontal direction (point number 3, 4,
10, 11 in black) referred as class 3. Then we perform binary
classification on each pair of groups.

We use 40% color-depth image pairs per class for training,
30% image pairs per class for validation and the rest 30%
for testing. And the train/validation/test split is repeated for
five times. For all images in the data set, we first crop
each image into a fixed size of 150 ⇥ 150. For each RGB
color image, it is converted into the gray image. Then, we
divide each image into 15 ⇥ 15 non-overlapping subregions
with the size of 10 ⇥ 10, and extract the LBP feature from
each subregion. A single 5900-dimensional feature vector is
formed by concatenating the LBP features from all the 100
subregions. The same strategy is also performed to extract a
5900-dimensional feature vector for each depth image. In the
experiment, we use feature vectors extracted from the color
images as the example data representation and those extracted
from the depth images as the auxiliary data. Finally, PCA
is applied for both example features and privileged features
for dimension reduction to obtain 150-dimensional compact
representations. For sparse IPL, we vary the parameter ⌘ in
the range of {50, 70, 100, 150}. The average classification
accuracies and the standard deviations of sparse IPL, IPL and
all compared methods over five random trials are reported in
Table IV. The best results are highlighted in boldface.

2) Classification Accuracies: From the results shown in
Table IV, we observe that the utilizing of the depth images
as privileged information for face pose classification is useful.
The SVM+(rbf) and L2-SVM+ methods achieve better results
than the baseline SVM method in all 3 cases. Similar results
can also be observed in the table that the proposed IPL and
sparse IPL methods clearly outperform the baseline GBDT
method. Noticeably, we can find that sparse IPL further im-
proves the performance of IPL (in all 3 cases) and outperforms
L2-SVM+ (in 2 out of 3 cases), which reveals the effectiveness
of sparse IPL that uses sparse representation to learn a better
auxiliary function base on the previous learned projections.

Moreover, SVM+(linear) which uses the linear kernel
clearly gets worse results than both SVM+(rbf) and L2-
SVM+ which use the Gaussian kernel. Also, the nonlinear
GBDT, GB+, IPL and sparse IPL methods generally outper-
form SVM+(linear). However, the results obtained by GB+
are worse than those of the baseline GBDT method. This
shows that the strategy of GB+ that iteratively encourages the
consistent predictions of two decision trees constructed with
example features and privileged features is not effective for
the face pose classification problem with depth information
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(a) Pima Indians Diabetes (b) Galaxy

(c) MNIST+ (d) a-Yahoo

(e) RGB-D Face

Fig. 4. Effects of the parameters C1 and C2 on different datasets: (a) Pima
Indians Diabetes, (b) Galaxy, (c) MNIST+, (d) a-Yahoo, and (e) RGB-D Face.

as privileged information on this dataset. Rather, the good
performance of the IPL and sparse IPL shows their robustness
and effectiveness compared with GB+.

3) Comparison of Training Time Between IPL and Sparse
IPL: We further use the RGB-D Face dataset as an example
to show the training time of our proposed IPL and Sparse IPL
methods. The experiments are conducted on a workstation with
Intel Xeon CPU@3.50GHz. We compare the average training
times from five rounds of the binary classification of class
1 and class 3, as an example. The number of trees N , the
learning rate �, the tree depth k and parameter ⌘ are set to
500, 0.1, 2 and 70, respectively. As a result, IPL costs 28.85
seconds, while sparse IPL takes 20.03 seconds. And sparse
IPL reduces training time by 30% compared with IPL.

F. Experimental Analysis

1) On the parameters C1 and C2: We introduce a parameter
C1 that is expected to balance the influence of real-valued
auxiliary functions in the privileged space on both the residual
target and the learning of the decision tree in Eq. (7). The
reason is that the privileged information is sometimes not
informative as the example features to make accurate label
predictions in practice. If C1 is too small, the privileged
information has small effect on the new learned model. While
a too large C1 may degrade the performance of our IPL
method because of not informative privileged information.
Moreover, the parameter C2 modulates the influence of the
L2 regularization term

Pn
i=1 kwt x⇤i k22 in Eq. (7). If C2 is too

small, the values of the auxiliary function may be too large,
which will introduce much error for the residual target. In the
following, we discuss the effects of C1 and C2, as well as the
interplay between the two corresponding loss terms.

The performance comparisons of varying C1 and C2 from
10�3 to 103 are shown in Fig. 4, where the Pima Indians Di-
abetes, Galaxy, MNIST+, a-Yahoo and RGB-D Face datasets
are used as examples. Specifically, for the MNIST+ dataset
we use 40 training examples. For the RGB-D Face dataset,
the accuracies of the binary classification of class 1 and class
3 are reported. And for the a-Yahoo dataset, the result of the
binary classification of bag is illustrated as an example.

It can be seen from Fig. 4 (a), (b), (c), (d) and (e), the
accuracies with varying C1 and C2 generally exhibit similar
tendencies. The classification accuracy is poor when C1 is
too large and C2 is small, which demonstrates the necessity
of the L2 regularization term

Pn
i=1 kwt x⇤i k22 and its tradeoff

parameter. And since the target residual learning a new tree is
almost totally decided by the term

Pn
i=1 (ht (xi) � ri � wt x⇤i )2,

C2 should be set at a large value to penalize the regulariza-
tion term much, to control its magnitude from growing too
large. While when C1 is large and C2 becomes larger, the
performance gets better. Generally, when C1 is set at a middle
value, our IPL method performances better than that when C1
is larger or smaller. This demonstrates its efficiency by using
privileged information to provide comments on the residual
targets when learning a new tree. If C1 is small, the privileged
information makes small contribution to the learning of the
model and it performs similar as GBDT. The effectiveness of
the parameter C1 and C2 is clearly demonstrated according to
the results shown in Fig. 4.

2) On the parameters k and N: The depth of a single
decision tree k and the number of iterations (i.e., number
of trees) N are two important parameters in the proposed
IPL method. We further evaluate the performance of our
IPL method with different k as N is increased from 1 to
500. According to the previous researches on the baseline
GBDT [23], [38], they suggest that the depth should be small
and is approximately equal to 4. Therefore, we compare the
performance when k is set at 2, 5 and 10 as N grows, and
other parameters are fixed. The results are illustrated in Fig. 5,
where the Pima Indians Diabetes, Galaxy, MNIST+, and RGB-
D Face datasets are used as examples. Specifically, for the
MNIST+ dataset we used 40 training examples as an example,
while for the RGB-D Face dataset the result of the binary
classification of class 1 and class 3 is reported.

In general, for depths of 2, 5, and 10, as N increases, the
new trees are iteratively added and the comments of the privi-
leged information are iteratively updated. The results show that
the classification accuracies also generally show an upwards
trend across these datasets. This demonstrates the positive
impact of iteratively learning new trees from example features
and corresponding new comments from privileged information
on classification performance. More specifically, in Figures 5
(a), (b), (c) and (d), the accuracies at different tree depths
generally exhibit similar tendencies. When N is less than a
certain value (depending on the datasets and tree depths),
the accuracies improve obviously and rapidly. As the number
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Fig. 5. Classification accuracies of the proposed IPL method with different tree depths k and increasing numbers of boosted trees N on different datasets:
(a) Pima Indians Diabetes, (b) Galaxy, (c) MNIST+, and (d) RGB-D Face.
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Fig. 6. Effects of the parameter � on the convergence and performance of IPL on the MNIST+ and RGB-D Face datasets: (a) Convergence curves and (b)
performance on the MNIST+ dataset; (c) Convergence curves and (d) performance on the RGB-D Face dataset.
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Fig. 7. Effects of the parameter � on convergence of sparse IPL on the
RGB-D Face dataset.
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Fig. 8. Inner convergence on the (a) MNIST+ dataset; and (b) RGB-D Face
dataset.

of iterations continues to increase, the accuracies gradually
change slowly before the rate of improvement stabilizes.

Moreover, it is observed that the classification results are
obviously influenced by different tree depths k. Generally,
better accuracies can be obtained when the tree depth k is

smaller. The proposed IPL method performs the best when k
is set at 2. When k is equal to 10, the performance of the
proposed IPL method becomes significantly worse than those
obtained by IPL with k equaling 2 and 5. Therefore, the tree
depth should be small for better performance of the proposed
IPL method. From the results shown in Fig. 5, the effectiveness
of the tree depth k and the number of boosted trees N is clearly
demonstrated.

3) On the parameter �: The learning rate � > 0 is a
shrinkage parameter which shrinks the contribution of each
tree to the IPL model and should be substantially less than
1. Usually more trees (i.e., larger N) are required if � is
decreased, and vice versa. Generally, a smaller � and relatively
larger N are preferable, which is conditional on specific
situations [39]. In the following we investigate the effects of
� on the convergence and performance of our IPL method.
The MNIST+ dataset with a training set of size 40 and the
RGB-D Face dataset where the binary classification of class
1 and class 3 are used as examples. The objective values and
classification accuracies of our IPL method are illustrated in
Fig. 6 by varing � in the range of {0.05, 0.1, 0.2, 0.3}.

We can observe from Fig. 6 (a) and (c) that the rate of
convergence is significantly influenced by the learning rate
� on both datasets. The smaller the learning rate � is, the
slower the IPL method converges. While the larger � is, the
faster the IPL method converges. Fig. 6 (b) and (d) show that
the bigger value for � approaches obviously better predictive
performance when N is small. While the smaller values for
� gradually get better performance as N grows, and generally
require hundreds of trees to reach minimum error. Generally,
on the MNIST+ dataset, when � � 0.1, the method converges
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in less than 100 iterations. And when � = 0.05, the algorithm
converges in almost 300 iterations. While on the RGB-D Face
dataset, it takes larger N to lead to a convergence. It takes
almost 200, 300, 400 and 500 iterations to converge when �
is equal to 0.05, 0.1, 0.2 and 0.3, respectively. The results
shown in Fig. 6 clearly demonstrate the effectiveness of the
learning rate � and the number of boosted trees N .

4) On parameter � and convergence of sparse IPL: In
this subsection, we analyze the effect of the influence of the
learning rate � on the convergence of sparse IPL. We use the
binary classification between class 1 and 3 on the RGB-D Face
dataset as an example. The results are shown in Fig. 7. We
can observe the rate of convergence is significantly influenced
by the learning rate �. The � is larger, sparse IPL converges
faster.

5) Inner convergence: We discuss the inner convergence of
the optimization of the proposed IPL algorithm, by using the
MNIST+ and RGB-D Face datasets as examples. Fig. 8 shows
the objective function values as the number of inner iterations
grows. According to the convergence curves, it is observed
that the convergence to optimal solution is guaranteed after
almost 5 iterations.

VI. CONCLUSION

In this paper, we propose a novel iterative privileged
learning (IPL) method within the context of gradient boosted
decision trees from the LUPI paradigm aspect. Rather than
letting the comments used to assess the model remain static
and passive, the proposed model ensures that comments from
privileged information are iteratively updated to keep them
compatible with the latest classification model. More specif-
ically, in each iteration of GBDT, a new decision tree is
trained to accurately assess and coach the up-to-date model,
while an additional linear auxiliary function is also employed
to generate comments from the privileged information. The
IPL method integrates the learning of the new decision tree
and the auxiliary function into a unified objective function,
which can be efficiently optimized. And a variant of IPL
named sparse IPL is proposed. Experimental results on real-
world datasets have demonstrated the advantages of exploiting
privileged information in an iterative manner, as well as the the
effectiveness of the proposed IPL and sparse IPL algorithms.
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