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Abstract—Blind source separation (BSS) aims to discover the
underlying source signals from a set of linear mixture signals
without any prior information of the mixing system, which is
a fundamental problem in signal and image processing field.
Most of the state-of-the-art algorithms have have independently
handled the decompositions of mixture signals. In this paper,
we propose a new algorithm named Multi-task Sparse model
(MTS) to solve the blind source separation problem. Source
signals are characterized via sparse techniques. Meanwhile, we
regard the decomposition of each mixture signal as a task and
employ the idea of multi-task learning to discovery connections
between tasks for the accuracy improvement of the source signal
separation. Theoretical analyses on the optimization convergence
and sample complexity of the proposed algorithm are provided.
Experimental results based on extensive synthetic and real-world
data demonstrate the necessity of exploiting connections between
mixture signals and the effectiveness of the proposed algorithm.

Index Terms—Blind source separation, Multi-task learning

I. INTRODUCTION

THE Blind Source Separation (BSS) problem is well-
known in many signal and image processing applications.

It originates from the cocktail party problem, where a number
of people are speaking simultaneously in a room and the
listener is trying to follow one of the speakers [1], as shown
in Fig.1(a). After that, the power of BSS has been revealed
in a number of practical applications of different areas. For
example, due to the semi reflected phenomenon of transparent
medium [2], a virtual image will appear in the photo and
superimposed on the image scene (see Fig.1(b)). In the remote
sensing image interpretation [3], given the limitation of the
imaging sensors’ spatial resolution, a pixel in the captured
remote sensing image usually contains a variety of ground
object information, [4] (see Fig.1(c)). To explore the activity
of the brain, high density array sensors placed on the human’s
head are employed to collect brain wave information [5] (see
Fig.1(d)), but the captured EEG signals are often mixtures
because of the resolution restriction of the sensors. The aim
of BSS is thus to separate and recover the original sources
from the recorded mixtures.

So far, a number of methods have been proposed to solve
the BSS problem [6], and they can be categorized into two
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Fig. 1. Illustrations of (a) cocktail party problem, (b) reflected phenomenon,
(c) remote sensing image and (d) EEG.

groups: deterministic approaches and statistical approaches
[7]. Deterministic approaches impose weak assumptions such
as nonnegative and geometrical constraints on the sources
distribution to solve the BSS problem. These approaches
include nonnegative matrix factorization and some geomet-
rical methods. Non-negative Matrix Factorization (NMF) [8]
assumes that both the sources and estimated mixing matrix
are nonnegative and estimates the result by minimizing a
divergence measure between the sources and estimated matrix.
While the nonnegativity constraint alone is insufficient to
guarantee the uniqueness of the factorization, some additional
constraints such as geometrical and sparsity constraint were
incorporated in NMF to improve the physical meaning and
restrict the possible solutions. More variants include the
flexible component analysis based NMF [9], the minimum
volume constrained NMF [10] and linear predictive coding
compression error NMF [11] were proposed.Sparse constraint
with different norm regularization is introduced in basic NMF
and obtain good performance and L1/2 NMF is one kind of
sparse NMF methods which uses the L1/2 norm as the sparse
regularization term. [12]. There are also some geometrical
methods, which use the geometrical constraint to improve
the physical meaning of the source signals. For example,
Mekni et al. [13] estimated the mixing matrix by finding the
slopes of the parallelogram containing the scatter plot of mixed
data. Babaie-Zadeh et al. [14] estimated the mixing matrix by
clustering the scatter plot of mixed data and fitting a line (for
dimension 2) or hyper-plane (for dimensions greater than 2)
to each cluster.

Statistical methods investigate the statistical properties [15]
of source signals to design the separating algorithms. Consid-
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Fig. 2. Basic model of the proposed method

ering the statistical independence among the source signals,
independence component analysis (ICA) [16] attempts to de-
compose a multivariate signal into several independent signals.
If the source signals fit the assumptions of independence,
the method will obtain promising results. In general, differ-
ent independence measures and constraints generate different
forms of ICA models and there are a series of ICA methods,
such as fast independent component analysis (FICA) [17],
nonnegative independent component analysis (N-ICA) [18],
sparse independent component analysis (SPICA) [2] and so
on. In the algorithm based on Bayesian theory, the sources and
the mixing profiles are modeled by random variables. A prior
probability density to each variable is assigned to derive the
joint posterior probability density to each variable. The sources
and mixing matrix are obtained by an a posterior estimator
using Bayes rules. The Bayesian Inference based blind source
separation [19] uses a nonnegative prior probability density
for both sources and mixture coefficient.

Existing BSS methods are effective and have achieved
promising performance in a wide range of applications [20],
but they share a non-negligible limitation that the decom-
position of each mixture signal used to be independently
treated. Each mixture signal is decomposed without thorough
investigation on the decompositions of other mixture signals,
and thus underlying relationships between mixture signals,
which are widespread in practice, are discarded. For example,
a pixel of the hyperspectral image can be regarded as a mixture
signal, which contains several kinds of ground objects. Dif-
ferent mixed pixels may share some common ground objects
and own some private ground objects as well. In medical
image processing, the EEG signals are collected by a series
of array sensors, but only part of the array sensors will be
actived in a mixed signal. Different EEG signals thus contain
the information from the common active sensors and those
from their private active sensors. To explore and exploit the
connections between different mixture signals, we resort to
Multi-task Learning (MTL) [21]–[23] for help.

In this paper, we regard the decomposition of each mixture
signal as a task. Thus separating source signals simultaneously

for multiple mixture signals naturally leads to a multi-task
learning problem. We assume that the mixing matrix comes
from a common space. Then the selection matrix chooses some
parts from the common matrix for each of the different mixture
signals. Then the resulting mixing coefficient is a linear
combination of some rows of the shared. Given the mixing
coefficients of two different mixture signals, they may have
some coincident parts representing the common information,
and some different parts describing their private information.
The multi-task decomposition process can make full use of
the underlying connections between tasks to improve the
performance of unmixing algorithm. The resulting objective
function can be efficiently solved, and the convergence is
theoretically analyzed. We discuss the sample complexity of
the proposed algorithm. Experimental results on toy data and
real-world datasets demonstrate the promising performance of
the proposed algorithm.

The remainder of the paper is organized as follows. In
Section II, we formulate our multi-task learning algorithm for
blind source separation. Section III provides the optimization
method and some theoretical analysis on the proposed method
follows in Section IV. We conduct experiments in Section V.
Finally, a conclusion is given in Section VI.

II. PROBLEM FORMULATION

A. Blind Source Separation

The Blind Source Separation (BSS) problem is to recover
source signals without any detailed knowledge about them
from a series of mixtures of sources. In most practical ap-
plications, the linear BSS problem can be expressed as the
following linear mixing model [24]:

X = BS + E (1)

where X is the observed mixture matrix and B is the mixing
matrix. S denotes the source signals. For simplicity the noise
matrix E is usually negligible.

According to the central limit theorem, the distribution
of a sum of independent random variables tends toward a
Gaussian distribution, under certain condition. In other words,
a sum of two independent random variables usually has a
distribution that is closer to Gaussian than any of the two
original random variables. Hence, non-Gaussian maximization
used to be employed to discover the independent source
signals. The main unmixing method used here is derived from
ICA. The real power of ICA comes from the shape of the prior-
i.e., the manner in which it is chosen to be non-Gaussian (or
negative kurtosis), rather than the factorial per se. The basic
model used here is extensions of ICA utilize sparse [25]. The
basic sparse blind source separation model is formulated as:

min
S

∑
i

‖biS− xi‖2F + Cg(S) (2)

where the g(·) is a nonlinear convex function to encourage
the sparseness, e.g., L1 norm penalty, and the parameter
C is the tradeoff between reconstruction error and sparsity.
Elaborate usage of kinds of sparse norm is given in [26]. By
solving the model in (2), we can discover the original source
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signals from the mixture signals. However, the sparse model
decomposes each mixture signal independently [27] and thus
useful relationships between them for source signal separation
are discarded. By contrast, the decomposition of one mixture
signal can be regarded as a task, and thus multi-task learning
theory is applicable to pick up the useful information from
homologous tasks to improve the accuracy of the separation.

B. Multi-task learning

Exploiting the connections between multiple tasks in the
hypotheses space with the help of sparsity regularization tech-
niques is a widely used approach for multi-task learning [28]
[29]. l1,∞ regularizer is a representative method to encourage
the sparseness of the multi-task variable matrix A ∈ Rm×T :

‖A‖1,∞ =

m∑
j=1

max
i
|aj,i| (3)

where ai = [a1i, a2i, ..., ami] is defined as the transpose of
the i-th column of matrix A. Given a convex loss function
L(xi, A) to measure the loss incurred by ai on the training
sample Xi for the i-th task, the multi-task objective function
with respect to A can be written as:

min
A

T∑
i=1

L(xi, ai) + δ‖A‖1,∞ (4)

where the l1,∞ regularizer induces the solution where on-
ly a few rows of A contain non-zero values, and δ is a
constant to capture the trade-off between the loss and the
regularization. For the basic ICA methods, mixing coefficients
{b1, b2, · · · } can be independently solved. By contrast in Eq.
(4), {a1, a2, · · · } are connected with each other and cannot
be independently solved any more, because of the row-wisely
sparse of matrix A.

C. Multi-task Learning for BSS

Recalling the mixing model in Eq. (1) to exploit the con-
nections between multiple mixture singles, their corresponding
mixture coefficients {b1, b2, ..., br} are supposed to be gener-
ated from a shared coefficient matrix W ∈ Rm×r, i.e.:

bi = aiW (5)

where b1 ∈ R1×r is the i-th row of the mixing matrix.
a1 ∈ R1×m is the transpose of the i-th column of the
selection matrix A. Given the mixing coefficients of two
different mixture signals, they may have some coincident parts
representing the common information, and some different parts
describing their private information. Thus separating source
signals simultaneously for multiple mixture signals naturally
leads to a multi-task learning problem. The basic sparse blind
source separation model can therefore be re-formulated as
multi-task objective function in Eq. (6). Hence, the resulting
object function can be written as:

min
W,A,S

T∑
i=1

‖aiWS− xi‖2F + c1‖W‖1 + c2‖A‖1,∞+c3‖S‖1 (6)

where T is the number of mixture signals. ai ∈ R1×m is a
sparse vector corresponding to the i-th mixture signal and it
is the transpose of the i-th column of the selection matrix A.
W ∈ Rm×r is the common matrix. S ∈ Rr×n denotes the
source signals. c1 and c3 are used to balance the error term
and the l1norm regularization. c2 is used to adjust the impact
of multi-task learning in the proposed method. The low-rank
assumption is used in the proposed method implicitly. The rank
of mixing matrix is usually constrained by m ≤ r. In practice,
considering the connections between different mixture signals,
the mixture signals may contain more than one source signal,
and less than r kinds of source signals will thus be applicable.
We use the l1 penalty to make the source signal and coefficient
matrix sparse. The l1,∞ norm regularizer encourages row
sparsity. In this case, the regularizer l1,∞ is used to promote
feature sharing across tasks and discover solutions where only
a few features are non-zero in any of the i tasks. By solving
the objective function Eq. (6), we can take full advantage of
the useful information between different unmixing tasks for a
better blind source separation solution.

III. OPTIMIZATION

We will use the alternating iteration method to optimize the
three variables in Eq. (6).

A. Solving for S
In order to optimize matrix S, we will use the Proximal

Gradient Descent method [30] and fix the matrix A and W in
the meantime. The objective function can be rewritten as the
following given the fixed matrices A and W:

min
S

∥∥ATWS− X
∥∥2
F

+ c3‖S‖1 (7)

where ATW is the mixture coefficient of source signals for
different tasks. The problem can be summarized as the Lasso
criterion and solved by the iterative soft-thresholding algo-
rithm (ISTA) [31]. Based on Eq. (7), we define the problem
as:

f1(S) =
∥∥ATWS− X

∥∥2
F

+ c3‖S‖1 (8)

which can be reshaped as:

f1(S) = g(S) + h(S) (9)

For the problem min
S
f1(S), the problem f1 is not differen-

tiable. Given f1 = g + h, g is differentiable. We could solve
g by quadratic approximation and leave h alone:

Sk = arg min
S

g(S) + h(S)

= arg min
S

g(Sk−1) +∇g(Sk−1)T (S− Sk−1)

+ 1
2λ ‖S− Sk−1‖22 + h(S)

= arg min
S

1
2λ ‖S− (Sk−1 − λ∇g(Sk−1))‖22 + h(S)

(10)
where λ is a step-size of gradient descent. Define the soft-
thresholding operator:
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Softπ(sij) =

 sij − π if sij > π
0 if −π ≤ sij ≤ π

sij + π if sij < −π
,j = 1, · · · , n

(11)
Hence the proximal gradient update is:

S+ = Softλc3(S + λ(ATW)T (X − ATWS)) (12)

B. Solving for W
The aforementioned ISTA method can be employed for

solving the shared coefficient matrix W as well. Fixing source
matrix S and the selection matrix A, the original objective
function can be reduced to:

min
W

∥∥ATWS− X
∥∥2
F

+ c1‖W‖1 (13)

which is similar to the form of problem in Eq. (7). The gradient
of W is:

∇g(ATWS) = A∇g(W)ST (14)

The update rule of W is thus:

W+ = Softλc1(W + λA(X − ATWS)ST ) (15)

C. Solving for A
Fixing the source matrix S and the shared coefficient matrix

W, the sub-problem with respect to the multi-task learning part
can be written as:

min
A

T∑
i=1

‖aiWS− xi‖2F + c2‖A‖1,∞ (16)

where c2 is a parameter that balances the error and sparsity,
and the first part is a convex loss function that measures the
loss incurred by A and sample X. Define function q(·) as:

q(A) =
∥∥ATWS− X

∥∥2
F

(17)

For optimizing the problem min
A
q(A), the projected sub-

gradient method [32] is used to minimize the convex function
subject to generate a sequence of approximate solutions:

A(k+1) = A(k) − ηk∇q(A(k)) (18)

where ηk determines the step size. Considering the penalty of
l1,∞ norm in Eq. (16), the optimal A can be solved from the
following objective function :

min
A
q(A) s.t.‖A‖1,∞ ≤ C (19)

where C is a bound on ‖A‖1,∞. To optimize the equation in
(19), the projected subgradient method is used for minimizing
the convex function subject to convex constraints [32]. It is
carried out by a sequence of solutions Ak via:

A(k+1) = proj(Ak − ηk∇q(Ak)) (20)

TABLE I
ALGORITHM OF MTS MODEL

Algorithm 1 Multi task Learning for BSS
Input: Observation mixture signals X, number of mixed
features T, number of sources r, regularization parameters
c1,c2,c3, maximum iterations Maxiter

Output: Source matrix S, mixing matrix W and A

Begin:
1. Initialize:

a) Randomly initialize W, S and A;
b) Whiten the mixture signals and get the whiten matrix;

2. Repeat:
a) Fix the matrix W and A, solve the problem
min

S

∥∥AT WS− X
∥∥2
F

+ c3‖S‖1 by Eq. (12)

b) Fix the matrix S and A, update the common coefficient
matrix W by formula (15)
c) Fix the matrix W and S, solve the

min
A

T∑
i=1
‖aiWS− xi‖2F + λ‖A‖1,∞ and update the

multi-task coefficient matrix A by formula (20)
Until stopping criterion is met;
End;

where proj(·) is the projection function to the l1,∞ ball which
is proposed in [32]. ηk is the step size and ∇g is a subgradient
of the convex loss function. The constraints express that the
cumulative mass removed form a row is kept constant across
all rows. With the update rule in Eq. (20) we could find
an optimization method used in our algorithm to solve the
multi-task problem. Standard results in optimization literature
[33] show that given the convex Lipschitz function (16), the
gradient projection algorithm will converge to a ε-accurate
solution in O(1/ε) iterations.

D. Initialization and the Stopping Condition

The first stage for blind source separation is usually to
whiten the observed data because whitening can make the
problem simplified a lot. Given the written process:

Z = VX (21)

where the real whitening matrix V is chosen to make sure
CZ = E{(Z − Z̄)(Z− Z̄)T } = In where Z̄ is the mean of Z
and whiten is essentially decorrelation and scaling operation.
Considering F as the orthogonal matrix of eigenvectors of
Cx = E{(x − x̄)(x− x̄)T } and D = diag(d1, · · · , dn) as the
diagonal matrix of corresponding eigenvalues, the whitening
matrix can be obtained as:

V = C−1/2x = FD−1/2FT (22)

where D−1/2 = diag(d1
−1/2, · · · , dn−1/2) and Cx is estimat-

ed from sample covariance normally [16]. We do not remove
the mean of the data in the whitening transform Eq. (21), since
it would lose some useful information about the sources.

The algorithm should be stopped when a stationary point
is reached. We used two approaches to stop the iteration
process here: i) when the maximum number of iterations
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is reached; and ii) given a threshold τ , when the objective
function satisfies: ∥∥ATWS− X

∥∥2
F
≤ τ (23)

the procedure can be stopped.
Given all the above optimization methods for sub-problems,

the whole algorithm can be summarized as shown in TABLE
I.

IV. THEORETICAL ANALYSIS

In this section, we theoretically analyze the convergence of
the optimization problem, and discuss the sample complexity
of the proposed algorithm.

A. Convergence analysis

We aim to prove that the objective desired value of the
source signal S converges to a local minimum. Define the
quadratic approximation of the Eq. (9) as:

Q(S′,S) = g(S) +
〈
S′ − S,∇g(S)

〉
+

1

2λ

∥∥S′ − S
∥∥2
2

+ h(S′)
(24)

which is used in Eq. (10). It admits a unique minimizer:

p(S) = arg min{Q(S′,S) : S,S′ ∈ Rr×n} (25)

Firstly, we have the following lemma as basic to prove the
convergence.

Lemma 1. For any S,S′ ∈ Rr×n:

F (S′)−F (p(S)) ≥ 1

2
‖p(S)− S‖2 +

〈
S− S′, p(S)− S

〉
(26)

where the 〈a, b〉 = aT b and F (·) is the objective function.

Then we can use the Lemma 1 to prove the convergence
of source signal S. Let {Sk, k = 1, 2, 3, . . .} be the sequence
generated by the update rules and S∗ be the optimal solution.

Theorem 1. For any k ≥ 1:

F (Sk)− F (S∗) ≤ αL(f) ‖S0 − S∗‖
2k

, (27)

where α=1 is for the constant stepsize setting and α=η is
for the backtracking stepsize setting. L(f) is a given Lipschitz
constant of ∇f .

The above result can be interpreted as follows. The number
of iterations of the method required to obtain an ε-optimal
solution that F (S) − F (S∗) ≤ ε is at

⌈
αL(f)‖S0−S∗‖

2 /ε
⌉

.
Now we discuss the convergence of our algorithm. Let
the object function be F (A,W,S) and the initialized val-
ue be F (Ak,W k, Sk). For fixed A,W , since the conver-
gence of source signal S is proved in Appendix A, we
have F (Ak,W k, S(k+1)) ≤ F (Ak,W k, Sk). For fixed A,S,
we can achieve the convergence of W using the simi-
lar analysis in Lemma 1 and Theorem 1. Thus we have
F (Ak,W (k+1), S(k+1)) ≤ F (Ak,W k, S(k+1)). In fact Tropp
[34] showed that under certain conditions the l1,∞ regular-
ization norm is convex. The convex proof relies on standard
results from convex analysis. As it is usually presented,

this subject addresses the properties of real-valued convex
functions defined on real vector spaces and the condition was
satisfied in the proposed method. Thus for fixed S,W , due to
the convexity of A, we have F (A(k+1),W (k+1), S(k+1)) ≤
F (Ak,W (k+1), S(k+1)). Therefore, the convergence of our
algorithm is guaranteed.

B. Sample Complexity

The performance of the proposed algorithm can be analyzed
from the notion of sample complexity, since the deviation
between the empirical risk and its expectation has been shown
to be proportional to the covering dimension of the hypotheses.
The upper-box counting dimension of the set is known as the
covering dimension, and it is computed by

d(X ) = lim
ε→0

logN (X , ε)
log 1/ε

, (28)

whereN (X , ε) is the covering number of set X , and its precise
definition is given by

Definition 1. Let (X, d) be a matrix space and let ε > 0. A
subset Nε of X is called an ε-net of X if every point x ∈ X
can be approximated to within ε by some point y ∈ Nε, i.e., so
that d(x, y) ≤ ε. The minimal cardinality of an ε-net of X , if
finite, is denoted N (X, ε) and is called the covering number
of X (at scale ε).

Equivalently, the covering number N (X, ε) can be inter-
preted as the minimal number of balls with radius ε and with
centers in X needed to cover X .

For the proposed algorithm, we measure its sample com-
plexity through the following theorem.

Theorem 2. Suppose the sparsities of A, W and S are
controlled by ‖A‖0 ≤ δA, ‖W‖0 ≤ δW and ‖S‖0 ≤ δS ,
respectively. The covering dimension of the hypotheses of
interest is bounded by δA + δW + δS .

Given the same number of training examples, a better
generalization performance can be expected from the proposed
algorithm, due to the reduced sample complexity from original
O(mn) to O(δA + δW + δS). Most importantly, connec-
tions between different tasks are established by constraining
{a1, · · · , aT } as a whole, which increases the sparsity of A
and influences the generalization ability as a result.

V. EXPERIMENTS

In this section, both toy and real word datasets were used
to evaluate the performance of MTS. Because of the different
scales of the decomposition results, we used the angle distance
(AD) [35] to evaluate the unmixing result. It can measure the
similarity between the estimated results and the references.
AD is defined as:

AD =
1

n

n∑
i=1

max
1≤j≤n

∣∣ŝisTj ∣∣
‖ŝi‖ ‖sj‖

(29)

where ŝ is the estimated source signals and s is the corre-
sponding reference signals. The results of proposed method
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have the permutation ambiguity like ICA methods. We search
and compare each of the sources with one reference and
select the one that get the minimum AD values. For the
hyperspectral datasets, we will use another metric to evaluate
the decomposition of the mixing matrix which is called
endmember spectra matrix in the hyperspectral datasets. In
order to measure the similarity between the true spectrum
and the estimate one of hyperspectral datasets better, we will
use the spectral information divergence (SID) [36] as another
metric. The probability distribution vector associated with each
endmember signature is given by p = α/

∑
j αj . This vector

can be used to describe the variability of the spectral signature.
let p̂ denote the probability distribution vector of the estimate
α̂. Then, the similarity between α and α̂ can be measured by
the relative entropy:

D(α|α̂) =
∑

j
pj log(

pj
p̂j

) (30)

Since the relative entropy is not symmetric, the following
measure is used:

SID = D(α|α̂) +D(α̂|α) (31)

which is widely used as a measure in spectral similarity.
The proposed algorithm is compared with several classic

and state-of-the-art methods including Independent Compo-
nent Analysis (ICA) [16], Sparse Independent Component
Analysis (SPICA) [2], Nonnegative Independent Component
Analysis (N-ICA) [18], Complex Independent Component
Analysis (CREBM) [35], Minimum Volume Constraint NMF
(MVCNMF) [10] and L1/2 NMF [12]. In addition, basic
Sparse Unmixing (SU),which is one of single-task methods
and Corresponds to Eq. (2) , is used here to show the merit
of multi-task learning.

For generality, we use the random initialization for the
common coefficient matrix W, multi-task coefficient matrix A
and source matrix S. The result is the average result of several
times of experiments. The parameters, including initialization,
termination condition and regularization parameters are con-
firmed in the experiment. The maximum number of iterations
is set as 8000 and the threshold value is 0.01 here. There are
three parameters need to be sure here and we use the grid
search method [44] to make sure that only one parameter is
changing at a time.

A. Data generation experiment

In the experiment, for nature image dataset, the source
signals are mixed artificially to simulate the mixing process.
In this subsection, we use the sparse simulation dataset1

to evaluate the unmixing result of different data generation
methods. Firstly, we generate a random matrix and randomly
made 50% element of the matrix to zero to obtain matrix
W. We generated another random matrix and randomly made
50% column of the matrix to zero to obtain matrix A. Hence
AW leads to the first mixing method. For simplicity, we use

1The dataset is from ICALAB http://www.bsp.brain.riken.jp/ICALAB/ I-
CALABImageProc/benchmarks/

Fig. 3. the AD values of different mixing model

(a) (b)

Fig. 4. (a) the source figure (b) the decomposition result of our method

a random matrix whose rank is m as the mixing matrix. In
addition, as the same to traditional method [7], a random
matrix without any constraint is used to generate mixture
signals. The unmixing result of all the three initialization
methods is shown in the Fig. 3. We find that the proposed
algorithm obtains the best result for different initializations.
It performs better given the two-step initialization method,
which is exactly consistent with the starting point of our
proposed method. Since the two-step initialization method is
rather complex, we randomly generated a matrix of the specific
rank as an alternative initialization approach.

B. Nature image simulation dataset

The dataset mentioned in part B is used here to evaluate
the effectiveness of proposed method for sparse dataset. The
source signals were mixed by a random matrix to simulate
the mixture signal. The proposed method is used to deal with
the mixture data to obtain the decomposition results. And
the proposed method is compared with some state-of-the-art
methods mentioned before.

Fig. 5. the AD values of ten sparse image signals
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(a)

(b) (c)

(d) (e)

Fig. 6. (a) the source figure (b) the decomposition result of MVCNMF (c)
result of N-ICA (d) result of proposed method (e) result of ICA

Fig. 7. the AD values of five hyperspectral signals

In this experiment, there are 10 sparse figures used here
shown in Fig. 4(a) and the image size is 128*128. First of
all, let us observe the decomposition results of the proposed
methods which are shown in Fig. 4(b). We can observe
that the result of our method is very well comparing with
source images. From Fig. 5, we can observe the effects of
different algorithms intuitively by the quantitative evaluation
result of different source signals. The proposed method obtains
the best result in all of the sparse image signals and the
result of our method is the best compared with those of
comparison algorithms. The comparing methods are not as
good as the proposed method for that they can not extract
the useful information between different unmixing tasks. Our
method presented very good performance for that it could
take advantage of the useful information between different
unmixing tasks by multi-task learning.

C. Hyperspectral simulation dataset

In this experiment, we use the hyperspectral simulation
dataset mentioned in part A to testify the effectiveness of
proposed method for remote sensing application. Six algo-
rithms are used here to decompose the hyperspectral image
including MTS, ICA, N-ICA, MVCNMF, SU and L1/2 NMF.
Because the source number and mixture number are required
to be equivalent in CERBM and SPICA, the two methods
cannot solve the hyperspectral problem and they are not

(a) (b)

Fig. 8. (a) reference endmember signature (b) estimate endmember signature

(a) (b)

Fig. 9. (a) reference endmember signature (b) estimate endmember signature

included. In hyperspectral datasets, endmember signatures are
very informative to verify the decomposition results which are
shown in Fig. 8. The endmember signatures are normalized
and we can see that, the results from the proposed method
are in good accordance with the real endmember signatures.
Meanwhile, the decomposition results are shown in Fig. 6(b)-
(e). It shows that our method can obtain the abundances of
different ground features which are very useful for further
analysis [37]. The quantitative evaluation is shown in Fig. 7
from which we can know that the results obtained by our
method are better than those yielded by the other algorithms
in general. From the SID shown in Fig. 10(a), the proposed
method has better performance than the other methods too.
Comparing with the basic sparse unmixing model (SU), it
is worth noting that the proposed method has a significant
improvement. It is due to that the proposed method could use
the common information between different unmixing tasks by
multi-task learning.

(a) SID of hyperspectral toy dataset (b) SID of hyperspectral real dataset

Fig. 10. SID values of different methods for hyperspectral dataset
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(a)

(b)

Fig. 11. (a) the reference abundance (b) estimate abundance of MTS

TABLE II
THE SID VALUES FOR REAL HYPERSPECTRAL DATASET OF DIFFERENT METHODS

Tree Grass Road Roof Average
MTS 0.0514 0.0752 0.0694 0.2401 0.1090
ICA 0.6369 0.5061 0.6471 0.6983 0.6221
N-ICA 0.2989 0.2650 0.2596 0.3344 0.2895
SU 0.5854 0.1671 0.4921 0.6530 0.4744
L1/2NMF 0.1580 0.1934 0.1521 0.3680 0.2179
MVCNMF 0.3400 0.2930 0.5753 0.3273 0.3839

D. Real world hyperspectral dataset

In this section, MTS is applied to the real world hyperspec-
tral image. The hyperspectral image is HYDICE Urban data
set, which contains 210 spectral bands with spectral coverage
from 0.4 to 2.5 m. The size of this image is 307*307 pixels,
and its spatial resolution and spectral resolution are 1.56 m
and 10 nm, respectively. In our experiments, the low SNR
bands and the water-vapor absorption bands (bands 1 to 4,
76, 87, 101 to 111, 136 to 153, and 198 to 210) are removed
and the remaining 162 bands are used. This dataset has been
widely used to evaluate hyperspectral unmixing algorithms
[38]. According to the existing analysis in [12], there are
four distinct targets of interest: road, grass, roof and tree. Fig.
11 (a) displays the ground truth for the abundance fractions
of the end-members. Fig. 11 (b) shows the decomposition
results of the proposed method (m=4) and we can see that
most of ground objects are extracted correctly here. In these
images, and from now on, the brightness of a pixel denotes
the abundance of the end-member under consideration.

Then, the endmember signatures are normalized and shown
in Fig. 9. We can see that, the results from the proposed
method are in good accordance with the reference endmember
signatures. In order to analyse the decomposition results quan-

titatively, we use the SID to measure the accuracy of the de-
composition of the spectrum. In Fig. 10(b), we can know that
the proposed method obtained the best decomposition result of
the spectrum extraction. Then we compute SID values between
the estimated endmembers and the reference endmember for
four ground objects. Table II shows that the decomposition
result of MTS is the best comparing with other methods. The
comparing methods are not as good as the proposed method
for that they can not extract the useful information between
different unmixing tasks. Our method presented very good
performance for that it could take advantage of the useful
information between different unmixing tasks by multi-task
learning.

E. Analysis on the hyper-parameter m

In this section, we discuss the influence of hyper-parameter
m on the unmixing result. We used the sparse toy dataset
in experiment A to analyze the influence of hyper-parameter
m because the simulation dataset is much easier to control.
The image size is fixed to 128*128 and the number of source
signals and mixture signals are both fixed to ten. In addition
to the number of hyper-parameter m, the other parameters
are fixed and same as experiment A. In this experiment, we
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randomly generated a set of mixing matrices whose ranks
equal to {40%, 60%, 80%, 100%} ∗ r, respectively. The Table
III shows the influence of estimating hyper-parameter m given
different mixing matrices. We can find that the proposed
method gets the best result when m is set nearby the rank
of mixing matrix.

VI. CONCLUSION

This paper proposes a novel approach named Multi-task
Sparse model (MTS) which introduces the multi-task learn-
ing into sparse unmixing model to solve the blind source
separation problem. Firstly, source signals are characterized
via sparse techniques. Then, the most important is that we
regard the decomposition of each mixture signal as a task and
employ the idea of multi-task learning to discover connections
between tasks for the accuracy improvement of the source
signal separation. Finally, it is solved by a loop of both the
proximal gradient descent method and projected subgradient
method which can guarantee the optimal solution. The pro-
posed method is superior and better than some of the state-of-
the-art BSS methods in both sparse simulated image and real
image. The sparse constraint over source signal matrix S is
one way to pursue the independence between source signals.
Other non-Gaussian constraint can be employed to adapt the
proposed algorithm for non-sparse source signals. This would
be the focus of our future work.

APPENDIX A
PROOF OF LEMMA 1

Proof. For F (p(S)) ≤ Q(p(S),S), we have:

F (S′)− F (p(S)) ≥ F (S′)−Q(p(S),S) (32)

Since functions g(·) and h(·) in Eq. (9) are convex, we have:

g(S′) ≥ g(S) +
〈
S′ − S,∇g(S)

〉
h(S′) ≥ h(p(S)) +

〈
S′ − p(S),∇h(S)

〉 (33)

Summing the above inequalities yields:

F (S′) ≥ g(S) +
〈
S′ − S,∇g(S)

〉
+ h(p(S)) +

〈
S′ − p(S),∇h(S)

〉 (34)

On the other hand, by the definition of p(S):

Q(p(S),S) = g(S) + 〈p(S)− S,∇g(S)〉

+
1

2
‖p(S)− S‖2 + h(p(S))

(35)

Therefore, using Eq. (34) and Eq. (35) in Eq. (32) it follows
that:

F (S′)− F (p(S))

≥ 1
2‖p(S)− S‖2 +

〈
S′ − p(S),∇g(S) +∇h(S)

〉
= 1

2‖p(S)− S‖2 +
〈
S− S′, p(S)− S

〉
,

(36)

which concludes the proof.

APPENDIX B
PROOF THEOREM 1

Proof. Invoking Lemma 1 with S′ = S∗,S = Sy . We obtain:

(F (S∗)− F (Sy+1))

≥ ‖Sy+1 − Sy‖2 + 〈Sy − S∗,Sy+1 − Sy〉
=‖S∗ − Sy+1‖2 − ‖S∗ − Sy‖2

(37)

So we can get that:

2

αL(f)
(F (S∗)− F (Sy+1)) ≥ ‖S∗ − Sy+1‖2 − ‖S∗ − Sy‖2

(38)
Summing this inequality over k gives that:

2

αL(f)
(kF (S∗)−

k−1∑
y=0

F (Sy+1)) ≥ ‖S∗ − Sk‖2 − ‖S∗ − S0‖2

(39)
Invoking Lemma 1 one more time with S′ = S = Sy , we

yield:

(F (Sy)− F (Sy+1)) ≥ ‖Sy − Sy+1‖2 (40)

Set the parameter β like α, it follows that:

2

βL(f)
(F (Sy)− F (Sy+1)) ≥ ‖Sy − Sy+1‖2 (41)

Multiplying the last inequality by y and summing over y =
0, · · · , k − 1, we obtain:

2
βL(f)

k−1∑
y=0

(yF (Sy)− (y + 1)F (Sy+1) + F (Sy+1))

≥
k−1∑
y=0

y‖Sy − Sy+1‖2
(42)

which can be simplified to:

2

βL(f)
(−kF (Sk) +

k−1∑
n=0

F (Sy+1)) ≥
k−1∑
y=0

y‖Sy − Sy+1‖2

(43)
Adding up Eq. (39) and Eq. (43) and then scaling the result

with β/α, we get:

2
αL(f) (F (S∗)− F (Sk)) ≥

‖S∗ − Sk‖2 + β
α

k−1∑
y=0

n‖Sy − Sy−1‖2 − ‖S∗ − S0‖2
(44)

And hence it follows that:

F (Sk)− F (S∗) ≤ αL(f) ‖S0 − S∗‖
2k

(45)
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TABLE III
THE AVERAGE AD VALUES FOR DIFFERENT HYPER-PARAMETER m

value of m 2 4 6 8 10
rank(AW)=100%*r 0.9883 0.7907 0.5864 0.3888 0.0538
rank(AW)=80%*r 0.8085 0.6832 0.3444 0.1319 0.2350
rank(AW)=60%*r 0.8232 0.6093 0.1529 0.2750 0.4539
rank(AW)=40%*r 0.7316 0.2996 0.4948 0.6839 0.8692

APPENDIX C
PROOF OF THEOREM 2

Proof. We begin with the study on the source matrix S. For
simplicity of analysis, suppose S comes from the elementary
set S = {S ∈ Rr×n : ‖S‖0 ≤ δS , ‖S‖F ≤ 1}, which can
be regarded as the set of sparse vectors of size r × n and

magnitude smaller than 1. A union of
(
rn

δS

)
(δS −1)-spheres

is thus sufficient to cover the set S.
Recall that the covering number of the (δS − 1)-sphere

equipped with the Euclidean metric satisfies for every ε > 0
that [39]

N
(

(δS − 1)-sphere, ε
)
≤ (1 +

2

ε
)δS . (46)

Hence, we obtain the covering number of S

N (S, ε) ≤
(
rn

δS

)
(1 +

2

ε
)δS . (47)

Similarly considering that A and W are from sets A = {A ∈
Rm×t : ‖A‖0 ≤ δA, ‖A‖F ≤ 1} and W = {W ∈ Rt×r :
‖W‖0 ≤ δW , ‖W‖F ≤ 1}, respectively, the covering numbers
of A and W are

N (A, ε) ≤
(
mt

δA

)
(1 +

2

ε
)δA (48)

and
N (W, ε) ≤

(
tr

δW

)
(1 +

2

ε
)δW . (49)

The covering number of (A,W,S) for the proposed algorithm
is then equivalent to that of the Cartesian product M := A×
W × S, and can be bounded by,

N (M, ε) ≤ N (A, ε)N (W, ε)N (S, ε)

≤
(
mt

δA

)(
tr

δW

)(
rn

δS

)
(1 +

2

ε
)δA+δW+δS .

(50)

Given the fact that(
a

b

)
≤ (a)b

b!
and b! ≥

√
2πb(

b

e
)b, (51)

we obtain

N (M, ε) ≤

(
emt(ε+2)
εδA

)δA( etr(ε+2)
εδW

)δW ( ern(ε+2)
εδS

)δS
2π
√

2πδAδW δS

= (CA)δA(CW )δW (CS)δS (1 +
2

ε
)δA+δW+δS ,

(52)

where CA = emt

δA(2πδA)
1

2δA

, CW = etr

δW (2πδW )
1

2δW

and CA =

ern

δS(2πδS)
1

2δS

. Defining C = max{CA, CW , CS}, we have

N (M, ε) ≤ (C
2 + ε

ε
)δA+δW+δS . (53)

Based on Eq. (28), we get

d(M) ≤ δA + δW + δS , (54)

which concludes the proof.
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