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Technology choices in public transport planning: a classification 

framework 
 

Abstract 

Choice of public transport technologies in cities is not straightforward: while the academy 

focuses on optimization models to determine which modes should a specific city have, policy 

makers rely on simple recommendations which are based on city population and income. We 

estimated six types of classification models that could allow for more precise recommendations 

yet are simple enough to be applied by the authorities. We considered typical variables as 

population and Gross Domestic Product of cities but also geographic and morphologic 

characteristics in a database of 400 cities from North and South America. Ordered Probit and 

Multinomial Logit models were the most accurate, with a success rate over 80% in the 

validation subset. Among the explanatory variables, city population and GDP per capita were 

as expected the most significant, but fare integration, car ownership and city shape were also 

relevant. Even if existent public transport modes in cities are not necessarily optimal, the 

classification models developed can give an insight for policy makers, in the sense that cities 

whose public transportation complexity cannot be explained by the models are more likely to 

have a suboptimal public transportation system. 

 

Keywords: public transport, transport modes, cities, classification models, ordered Probit 

JEL codes: R40, R41, R58,  

 
1. Introduction 

There is a growing gap between lecturers and decision makers concerning which public 

transport modes to recommend in cities. While the academic literature focuses on optimization 

models that incorporate the specific behavior of people, stakeholders taking strategic decisions 

usually rely on general recommendations (Chen, 2017) which are based on limited case 

studies, such as  the Bus Rapid Transit guide (TRB, 2003) that recommends this technology 

for cities over 750,000. These recommendations consider the public transport modes that cities 

currently have but are usually poor in explanatory variables and use small datasets. That said, 

we propose to correlate the existent public transport modes with the characteristics of diverse 

cities through classification models. This will be useful to provide more specific 

recommendations to policy makers on the public transportation technologies to consider in 

their cities. 

1.1. Problem and research gap 

In this section, we will present the relevant literature on studies that recommend public 

transport modes based on the existent systems, focusing on the research gaps, such as 

ignored variables and limited datasets. 
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The recommendation of public transport modes in cities is usually divided in two groups of 

studies: 

1) Mathematical models that compare costs of different transport options in a given network or 

line. Most of these models are focused on tactical parameters, such as the optimal frequency 

in a transit line (Mohring, 1972), optimal vehicle size (Oldfield & Bly, 1988) or optimal distance 

between stops (Medina et al., 2013). However, other studies are focused on a strategic 

analysis, which compares total costs in a network or line for different technologies, usually 

high-capacity modes as Metro, Light Rail Transit (LRT) or Bus Rapid Transit (BRT). Their 

results are usually expressed in demand thresholds, i.e. minimum levels that justify the 

implementation of a given mode. 

2) General recommendations based on the performance of existent public transport systems 

in selected cities. These recommendations are usually very simple, setting minimum 

populations (thresholds) for cities to consider a given public transport mode as BRT, LRT or 

Metro, such as the TCRP 90 (Transportation Research Board, 2013) guideline.  

Table 1 below summarizes the minimum standards to justify different transit modes according 

to various studies. The first part of the table refers to optimization models corresponding to the 

first group of studies described above. The second part of the table refers to operational 

analysis and other general recommendations. It is worthwhile noting that recommendations 

might be expressed in different units, and therefore may not be comparable.  

Table 1 - Demand thresholds that justify the construction of public transport modes in 

optimization models & other data sources 

Optimization models 

Authors 
Network 

type 

Minimum thresholds to justify transit modes 

Unit BRT LRT Metro 
Moccia & Laporte 
(2016) 

Single line 
Users/hour (both directions, 
70%-30% balance) 

4,000 13,000 20,000 

Tirachini et al. 
(2010) 

Circle with 
radial lines 

Users/day (total network 
demand) 

 3,200,000 

Daganzo (2010) 
Grid with trunk 
& feeder lines 

Users/hour (total network 
demand) 

 
None (BRT has lower costs in 
all scenarios) 

Other data sources 

Authors & context 
Minimum thresholds to justify transit modes 

Unit BRT LRT Metro 

Pushkarev & Zupan (1980) – cost 
analysis in US cities 

Users/peak hour/direction 
(revised by Kain (1988)) 

 

8,000 (level) 
to 27,000 
(grade 
separated) 

30,000 (above 
ground) to 
58,000 (tunnel) 

Hidalgo (2005) – cost analysis for a 
transit line in Colombia 

Users/peak hour/direction   40,000 

Verma & Dhingra (2001) – 
operational analysis in Indian cities 

Users/peak hour/direction  12,000 50,000 

AECOM (2012) – segregated 
busway requirement in Canberra 
(Australia) 

Vehicles/hour 75   

LAMTA (2012) – bus lanes 
requirement in Los Angeles (USA) 

Users/peak hour/direction 1,000   

Cells in grey indicate no data available 

Most of the relevant literature refers to high capacity modes, such as Metro, LRT or BRT. Wide 

differences are observed among different data sources, depending on the methodology and 

the national/regional context, which makes difficult to set generalized recommendations. Even 

in the most rigorous mathematical models, demand thresholds that define the superiority of 
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implementing a given technology are highly sensitive to factors such as construction costs and 

users’ value of time. 

A simpler method, based on the characteristics of cities, is set in public transport planning 

guides, consultancy reports or handbooks. Most of these recommendations consist of 

suggesting the minimum population that a city should have to adopt a specific technology, 

particularly for high capacity modes such as BRT, LRT and Metro. These recommendations, 

summarized in Table 2, show lower limits of between 0.25 and 1 million inhabitants to build 

BRT, between 0.3 and 3 million for LRT and between 1 and 6 million for Metro. 

In practice, national policy frameworks that sets criteria for developing transit systems in cities 

based on city characteristics are also quite simple: 

- Chen (2017) reports that the Chinese government relies on 3 criteria (“population 

scale”, “transport demand” and “economic development level”) to fund the construction 

of new Metro and Light Rail systems. Chinese cities should require a minimum 

population of 3 million to be eligible for Metro funding, or a minimum of 1.5 million to 

apply for Light Rail. 

- According to White (1979), planners in the Soviet Union considered “indispensable” the 

construction of Metro systems in cities over one million inhabitants. Several cities of 

the USSR built Metro lines between the 1960s and 1980s after exceeding that 

population, in every case with national State funds. 

- Colombia has, as reported by Jiménez (2017) a national urban transport policy, in 

which bus systems that include BRT lines are planned by the national government – 

subject to specific demand studies – for cities over 600,000. 

A more comprehensive analysis to set a reference for the construction of metro lines was 

performed by Loo & Cheng (2010). The authors gathered the main characteristics of 57 cities 

in 20 countries at the time they built their first metro line. The population (5 million) and per 

capita GDP averages (11,400 US dollars) are proposed as “useful benchmarks”. Loo & Cheng 

(2010) identified missing factors in these benchmarks such as environmental, political and 

technological considerations, as well as the existence of “wide regional variations” between 

cities in Europe – with an average of 2.9 million inhabitants when building their first Metro lines 

– and cities of poorer continents which required 8 million (Africa) and 5.7 million (Asia). An 

opportunity to study the influence of the income and other variables on the thresholds arises 

from these findings. 

An intermediate method between optimization models and study cases was explored by Verma 

& Dhingra (2001). Based on an operational analysis for Indian cities, they found that metro is 

suitable over 50,000 passengers/hour/direction (pphpd), while LRT is recommended over 

12,000 pphpd. The authors estimated transit demand for three types of cities (linear, semi-

circular and circular) with 3 activity structures (mononuclear, polynuclear uniform and 

polynuclear non-uniform) through simulation models. By comparing estimated transit ridership 

with the demand thresholds, the recommendation of public transport modes depends on city 

population, shape and activity structure: for instance, Metro is recommended for every linear 

city above 3 million, but for circular cities above 6 million only. 

Table 2 below summarizes city population thresholds recommended in diverse studies: 
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Table 2 - City population thresholds recommended for new public transport modes 

Authors Population thresholds (million) Comments 

bus BRT LRT Metro 
Chen (2017)   1.5 3 Report on Chinese 

Govt. criteria 

Lehner (1975)   0.3-0.8 1 Based on western 
European cities 

Verma & Dhingra (2001)   1.5 - 3 3 - 6 Dependent on city 
shape + activity 
structure (Indian 
cities) 

Transportation Research 
Board – TCRP 90 (2003) 

 0.75   Guidelines for US 
and Canadian cities 

Levinson et al. (1975) 0.025 – 0.05 0.25 – 0.3 (“min”), 1 
(“greatest potential”) 

  * referred to as 
“express bus” on 
freeways + busways 

Loo & Cheng (2010)    5 “Wide regional 
variations” observed 

Cells in grey indicate no data available 

As we have seen, most of the studies base their recommendations on the population of cities, 

while some authors (Verma & Dhingra, 2001) also take into account city structure and others 

(Loo & Cheng, 2010) warn about “regional variations” related with GDP. Establishing simple 

criteria based on known variables for local authorities is undoubtedly attractive. However, a 

large difference is observed in the population thresholds recommended by different authors 

that use data from different countries, which suggests that the variability between regions of 

different characteristics should be considered. 

Babalik-Sutcliffe (2002) performed an ex-post analysis of existing urban rail systems based on 

performance measures such as operating costs per passenger, impact on mode share, and 

the comparison between existing and forecast demand to derive what factors define the 

success or failure of a given system. The author uses data from eight cities of similar income 

and population located in the United States, Canada and Europe, which built Metro or LRT 

lines between 1980 and 1995. Among the factors that identify the success or failure of a given 

project, Babalik-Sutcliffe (2002) identifies the urban form, population density, predominance of 

the CBD (Central Business District) and fare integration. These variables can be added to the 

population of cities in order to provide more precise recommendations. 

It is also known that other variables are relevant in travel patterns and particularly in public 

transport use, such as the road network (Crane, 2000) and car ownership (Paulley et al., 2006). 

We propose to estimate classification models that allow to correlate the main characteristics 

of a given city with the modes of public transport that the city has, incorporating the relevant 

variables mentioned in previous paragraphs. As Babalik-Sutcliffe (2002) explains, the 

presence of a given public transport mode in a city does not necessarily imply that it should 

exist: in any case, classification models based on a large sample of cities will allow to set more 

precise recommendations than those provided by the planning manuals. Next, we will explain 

the criteria used to classify cities by their urban public transport system. 

1.2 How to describe a public transport system? A 5-tier classification 

Most of the relevant literature is focused on the drivers that trigger high-capacity transport 

mode investments, such as Metro or BRT. Large urban areas are therefore the bulk of these 

studies, while small and medium size cities are usually ignored. In this work, we will 



5 
 

characterize the public transport system of a given city by the technology that provides more 

capacity, by proposing a 5-tier scale based on the right-of-way classification proposed by 

Vuchic (2005).  

Vuchic (2005) divides public transportation modes in 3 classes, according to the right-of-way 

(ROW) of their alignment: 

- ROW “C”, corresponding to mixed traffic conditions. This includes standard bus services, 

trolleybuses and trams, with a typical average commercial speed below 20 km/h and maximum 

capacity below 7,000 pphpd (Deen & Pratt, 1992). 

- ROW "B", which corresponds to a partially separated right-of-way, in which public transport 

operates on segregated lanes but with level crossings, such as BRT and LRT lines, with 

commercial speeds of 20 to 40 km/h (O'Flaherty et al., 1997) and usual maximum capacities 

between 5,000 and 30,000 pphpd. 

- ROW "A", consisting of a full segregated right-of-way, which may be present in metro lines, 

regional trains or high capacity BRT corridors with dedicated infrastructure and separate-grade 

intersections. Typical maximum capacities for these systems range between 10,000 and 

70,000 pphpd, with average speeds above 25 km/h (Vuchic, 2005). 

Based on this classification, we propose to divide the urban public transport systems into five 

classes. The three superior categories are associated with the highest capacity mode 

according to Vuchic (2005), while the two remaining classes represent towns without public 

transport or with demand-responsive transit only. 

- Type I systems, where mobility is carried out only in private modes (such as cars, 

motorcycles, non-motorized transport). 

- Type II systems, in which public transport is carried out exclusively through demand-

responsive services such as taxis or minivans. Point deviation systems - vehicles that respond 

to orders within an area but must pass through some sites on a mandatory basis (Potts et al., 

2010) - are also included in this category. 

- Type III systems, in which the mode of greatest capacity corresponds to ROW "C", regardless 

of the capacity of the runners. Examples of these systems include cities whose public transport 

is provided through conventional buses such as Oxford (England), trams such as Belgrade 

(Serbia) or trolleybuses such as Salzburg (Austria). 

- Type IV systems, in which the highest capacity mode corresponds to ROW “B”, usually in the 

form of BRT - as in Quito (Ecuador) - or LRT lines as in Porto (Portugal). Although the concept 

of BRT implies diverse standards of buses, corridors and infrastructure, a minimum standard 

of 3 kilometers of exclusive track with specific design for buses (ITDP, 2014) was considered. 

- Type V systems, in which the highest capacity mode corresponds to ROW “A”, which 

corresponds to Metro systems such as in Moscow (Russia) or urban heavy rail lines (HRT) 

such as Johannesburg (South Africa). Some high-capacity full segregated BRT corridors, such 

as Troncal Sur in Bogotá (Hidalgo, 2013) also fit in this class. 
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The modal offer is usually cumulative: given that almost every city having a given public 

transport mode also has technologies that belong to inferior categories1, the proposed classes 

can be considered as an accurate representation of the complexity of public transport systems, 

covering both small towns and large metropolitan areas.  

Characteristics of the proposed classification are presented in Table 3 below: 

Table 3 - Proposed classification for public transport systems in cities 

Class Highest capacity public 
transport modes 

Typical ROW Typical max 
capacity (pphpd) 

I (no public transport, private modes only) 

II Demand-responsive (taxi) "C" (mixed traffic) - 

III Bus, tram, trolleybus "C" (mixed traffic) 0 – 7,000 

IV BRT, LRT "B" (partial priority) 5,000 – 30,000 

V Metro, HRT, BRT (high 

standard corridors) 

“A” (full priority) 10,000 – 70,000 

In this work, we propose to determine which factors explain the public transport modes chosen 

by each city using a dataset from 400 cities located in South and North America through 

classification models. The dependent variable will be represented by the public transport mode 

that offers most capacity in passengers/h using a I-V scale, in which “I” represents cities without 

public transport, “II” corresponds to cities that only have demand-responsive modes such as 

taxis, while “III”, “IV” and “V” correspond to cities in which the highest capacity modes are 

normal buses or trams (III), light rail (LRT) or Bus Rapid Transit (BRT) lines (IV), and heavy 

rail/Metro lines (V). It is noteworthy that almost every city belonging to a given category has 

modes that belong to every inferior class, so that the scale proposed represents accurately the 

complexity of a public transport system. 

2. Drivers explaining public transport modes in cities 

Here we explain which types of variables influence on the public transport modes that different 

cities have. As many authors have stated, it is expected that more populated cities have more 

complex public transport systems, usually with Metro or BRT lines. Other factors, such as GDP 

and car ownership, may also have a significant impact on trip patterns in a given city, thus 

affecting public transport modes: as car ownership grows, the incentive to have an efficient 

public transport may decline, while a higher GDP may allow for more investments allocated to 

dedicated infrastructure. City shape and interaction between nearby cities can also be relevant: 

a linear city should imply longer trip distances which may justify more efficient modes 

compared with a circular city of similar area, and trip attraction produced by adjacent larger 

cities might have a similar effect. We will represent city shape through two indicators 

(compactness and attractiveness) that are defined in this chapter. Finally, road network and 

slopes may also affect the appeal of public transport compared with other modes. 

2.1. Population, urban area & density 

Population of cities is, as described above, the variable most frequently used to recommend 

public transport modes in cities. A larger population is correlated with higher public transport 

                                                
1 In the sample analyzed, more than 95% of the cities belonging to a given class also have technologies associated 
with the lower categories. 
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ridership (Taylor & Fink, 2003), which may justify public transport systems with higher capacity 

modes. 

A larger urban area usually involves longer trips: by increasing the travel distance, faster 

technologies allow greater time savings, so that these modes can be more beneficial. On the 

other hand, modes with the highest average speed are those corresponding to ROW "A" and 

ROW "B" (Vuchic, 2005). In this sense, larger cities would be expected to have public transport 

systems of higher categories. 

However, when considering the effect of population on the surface of cities - that is, when using 

density as independent variable - predicting the expected effect is not straightforward. On one 

hand, a greater density implies a smaller surface in cities with a given population, which is 

associated with shorter trip distances and therefore can discourage the construction of faster 

modes. On the other hand, a lower population density implies a lower concentration of trips, 

and therefore a lower efficiency of high capacity modes such as Metro and BRT, which need 

a minimum amount of trips to be cost-effective (see Table 1). In general, a higher urban 

population density is considered a favorable condition for the implementation of high capacity 

public transport modes (Babalik-Sutcliffe, 2002). 

2.2. Socioeconomic factors 

Income of users is one of the main variables that explain mode choice in transport (Train & 

McFadden, 1978). Since value of time tends to increase with income (Jara-Diaz, 2000) it is 

expected that more expensive but faster modes such as Metro are prioritized in wealthier cities 

over slower and cheaper technologies such as buses. Given that in many countries there is 

scarce information about average income of residents in their cities, national and regional per 

capita GDP were used as proxies for income. 

Although greater car ownership is usually correlated with less use of public transport 

(Kitamura, 2009), cities that have similar car ownership may have significant differences in 

public transport trip share (McIntosh et al., 2014). That said, the presence of higher user costs 

in public transport is also correlated with the purchase of private vehicles (Dargay, 2002). 

Therefore, car ownership may be an endogenous variable for public transport classification 

models, because of simultaneity with the dependent variable (Train, 1980; Kitamura, 2009). 

For this reason, fuel prices were also considered as a proxy for car ownership in our models. 

Fuel prices are correlated with the use of public transport (Currie & Phung, 2007) and with car 

purchases (Dargay, 2002), while public transport use does not have an apparent influence on 

fuel prices. When fuel prices increase, the incentive to acquire or use private cars diminishes, 

which should result in a greater demand for public transport and therefore in the use of more 

efficient modes in a city. 

Other economic and political variables that were not analyzed in this work should be taken 

into account in further studies, such as parking costs (Taylor & Fink, 2003), financial costs for 

infrastructure project – which is especially relevant in the construction of metro lines – and the 

degree of political centralization in the funding of public transport projects. 

2.3. Geographic and morphologic variables 

Shape of cities can be studied under different approaches, among which graph theory 

(Fielbaum et al., 2017) and spatial shape metrics (Huang et al., 2007) are widely known. In 
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this work, we characterized city shape by simple indicators that are available for any urban 

area. That said, city shape is represented with 3 generalized indicators: 

Compactness: this standardized shape factor, whose formula is 
2√𝜋 .  a𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
 (Jiang, 2007), 

measures in practical terms how similar a shape is to a circle. The indicator takes values 

between 0 and 1, and the smaller the compactness the greater the average distance for areas 

of equal surface. More compact cities (where the urban form favors shorter travel distances 

and a greater dispersion of origins and destinations) are expected to have less high capacity 

corridors in their public transport networks, while in less compact cities trips tend to be longer 

and with greater spatial concentration, which favors the adoption of more efficient modes in 

terms of capacity and speed such as Metro or BRT. 

Slenderness: this indicator is a proxy of the ratio between major and minor semi axes of a 

given shape, through the expression 
𝑆𝐶

𝑆𝐹
, where Sf is the surface of the city to be analyzed and 

Sc is the area of the minimum envolving circle (Baker & Cai, 1992). The effect of this indicator 

should be alike that of compactness: in general, more slender cities tend to be less compact, 

so that a growing slenderness should be related to the greater complexity of transport systems, 

as well as other factors. However, there are some differences between both indicators: as 

illustrated below, there are different possible combinations of slenderness and compactness. 

Table 4 – Slenderness and compactness of different shapes 

Low slenderness 
High compactness 

Low slenderness 
High compactness 

High slenderness 
Low compactness 

Low slenderness 
Low compactness 

 

 
 

 
 

 

 

Attractiveness: this indicator, whose mathematical expression for a city "i", based on 

Schneider (1959), is 𝐴𝑖 = 𝑚𝑎𝑥𝑗 [
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗

(𝑑𝑖𝑠𝑡𝑖𝑗)𝑛 ] where "n" is a positive number to calibrate, allows 

to identify the proximity of a city with other localities "j". It is presumed that cities that interact 

more with their neighbors (those with greater attractiveness) can have a more complex public 

transport system than similar isolated cities, since they have greater probability of having a 

joint transportation system. 

Street provision, measured in km of street per square km, and network density, measured 

in intersections per square km, may also be relevant. These variables should have a similar 

effect to road length per capita, whose increase favors car use and discourages public 

transport share (McIntosh et al., 2014). 

Topography of cities can also be relevant (Taylor & Fink, 2003). A mountainous topography 

can decrease the average speed of at-grade transport, both private and public, which may 

favor the implementation of technologies such as cable cars, used in cities such as La Paz 

(Bolivia), Medellín (Colombia) and Rio de Janeiro (Brazil). For the models, average and median 

slopes in city networks were estimated through a Google Maps® Api. 
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2.4. Public transport planning variables 

Fare integration is important when analyzing the demand of a particular mode within a public 

transport system. Not only has integration been identified as one of the factors for the success 

of a public transport project (Babalik-Sutcliffe, 2002), but it has also been verified that the 

introduction of an integrated fare can double the demand of a previously existing Metro network 

(Muñoz, Batarce & Hidalgo, 2014). Given that it is reasonable for users to make more transfers 

to faster modes but with less coverage when transfer costs are lower, the presence of fare 

integration should favour the implementation of more efficient transport technologies. 

In the models, the variable "fare integration" was defined as binary, where 1 corresponds to 

transfers for free or at reduced cost between the highest category mode and other modes in a 

given city, or among the different public transport routes in the case of type III cities. 

Meanwhile, 0 is assigned to cities that do not comply with this requirement, including those 

where transfers at reduced cost are limited to a particular station or service. 

Network integration, understood as the existence of a spatially planned public transport 

network (Givoni & Banister, 2010), may also contribute to higher demand for high capacity 

public transport modes as experienced in the trunk-feeder Santiago de Chile network (Muñoz, 

Batarce & Hidalgo, 2014). Alike the fare integration variable, network integration was 

considered as binary, in which 1 is assigned to cities in which lower capacity mode routes are 

(re)designed as feeders for high capacity corridors. 

It should be noted that the dummy specification for the integration variables may introduce 

simultaneity with the dependent variable, as only cities that have mass public transport modes 

(i.e. those belonging to classes III, IV & V) can have fare or network integration. However, 

proper instruments for such (qualitative) variables are yet to be found.  

3. Model 

This chapter is divided in three sections: first, we will explain the six types of model used 

(multinomial Logit, nested Logit, Linear Discriminant Analysis, Quadratic Discriminant 

Analysis, ordered Logit & ordered Probit) with their advantages and disadvantages. We will 

then characterize the data gathering process, focusing on the specific advantages, issues and 

limitations that arise from relying on diverse sources, and we will describe the dataset, which 

consists of 400 cities of 22 countries in North and South America, including all capital cities 

and every city with Metro, LRT and BRT systems. Finally, we will present the modeling process 

and analyze the results, emphasizing on the best functions for every type of model and 

comparing the pros and cons of each. 

3.1. Methodology 

The dependent variable to analyze is discrete in five categories. These may be considered as 

ordered classes, as new public transport modes with higher capacity are added in superior 

categories: in this sense, the classification represents an increasing complexity of public 

transport systems. Meanwhile, most of the explanatory variables are quantitative and 

continuous. 

Models that relate the basic characteristics of cities with their public transport systems were 

proposed by Saidi (2016), who estimated the probability that a given city has circular Metro 

lines through a Multinomial Logit model. The model considered 94 cities, 13 of them with 
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circular Metro lines, with four explanatory variables: city area, population, length of the Metro 

network and the age of the system, while GDP per capita was discarded for not being 

significant. 

In addition to Multinomial Logit models, other functional forms such as ordered functions and 

discriminant analysis functions allow representing discrete variables which depend on 

continuous variables (James et al., 2014). In this paper, we estimated six types of models that 

can be grouped into three categories, which are briefly explained below: 

 Logistic regression models (Multinomial and Nested Logit) 

Logistic regression models, typically used in disaggregated models such as mode choice 

models, are also useful to represent other phenomena where the dependent variable takes 

discrete values. The main advantage of the Logit models is their flexibility, allowing different 

specifications for the functions from which the probability of each category is estimated. In 

particular, nested models assume a correlation between some of the categories (Ortúzar & 

Willumsen, 2011), which can be adapted to decision-making: for example, given certain 

conditions for a city that only has bus lines, its authorities may decide to build a mass transit 

system with BRT (type IV) or Metro (type V) lines. 

 Ordered models (ordered Logit & Probit) 

Ordered Logit and Probit models consist of comparing the value of a linear function of the 

independent variables with thresholds whose values, like the coefficients of the linear function, 

are determined by maximum likelihood. The dependent variable represents quantitative or 

qualitative categories that follow a logical order; in the Probit model, errors are distributed 

according to a normal distribution, whereas they do so according to a Gumbel distribution in 

the Logit model (Train, 2009). Since the linear function is unique for all categories, these 

models are easier to interpret than Multinomial and Nested Logit models, although they have 

less flexibility than these. As the dependent variable should increase as cities grow in 

population and income, these models could be adequate to represent the public transport 

systems of cities. 

 Discriminant Analysis models (LDA, QDA) 

Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) are Bayesian 

methods that assume normal distribution of the variables in the sample (James et al., 2014). 

Despite being more rigid than Logit models since they use the same variables in all categories, 

they allow to represent in a simple way the boundary between the different classes, which for 

two variables is reduced to a line in the case of the LDA and a parabola for the QDA. 

Analysis in several simulated samples (Pohar et al., 2004) have yielded similar results for 

multinomial Logit models and LDA with more than two classes, even if the variables do not 

adopt normal distributions, so that none of these methods can be discarded a priori.  

3.2. Data Collection 

Demographic, socioeconomic and morphological explanatory variables were obtained or 

calculated from 400 cities in North and South America, including all those with Type IV or V 

systems. Study area was selected as to consider different cities in population density, income 

and car ownership with available data.2 Location of the cities is shown in the map below: 

                                                
2 Reliable statistic information on other cities from developing countries, including many cities from Africa and Asia, 
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Figure 1 – Location of cities in database 

 

Polygons were obtained in Google Earth® as geographic data .kml files for the calculation of 

the surface of the cities and the shape factors - compactness and slenderness - considering 

that the area of the cities is limited to a continuous urban surface. Polygons were then analyzed 

in QGIS3® for the calculation of these variables. 

to display geographic data 

Calculation of distances between cities for estimating attractiveness was made through Google 

Maps®. Estimation of slopes (average, median, standard deviation) and network density in 

cities was performed in Python® with a Google® Api that extracts intersection coordinates 

(X,Y,Z) from Google Maps®. 

On the other hand, the population of the cities, as well as the GDP per capita and the price of 

fuels, were obtained from official sources in each country, such as population censuses and 

Domestic Product estimates. 

Once the data were obtained, the Logit models were estimated in Biogeme® (Bierlaire, 2003), 

and the rest in Stata 12® (StataCorp, 2011). The results are shown below. 

                                                
is difficult to obtain. That said, a broader model that covers cities from other continents would be welcome. 
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3.3. Results 

Descriptive statistics for the main variables are presented in Table 5. As shown, information 

was gathered for cities of diverse population, area, shape and wealth. Type III cities are the 

most common class, representing 36% of the sample. 

Table 5 – Database descriptive statistics 

Variable Definition Mean Min Max 

Class (dependent) 5-tier classification of PT systems - I V 

Population Inhabitants  977,692 300 20,850,000 

Area City surface (km2) 295 0.15 6,108 

National GDP National per capita GDP (US $) 20,775 2,222 59,532 

Regional GDP Subnational (state/province/region) 

per capita GDP (US $) 

21,275 2,169 104,893 

Density Population density (inhabitants/km2) 5,147 524 23,522 

Attractiveness Gravitational indicator representing 

inter-city connectivity 

237 0 4,148 

Compactness Standardized (0-1) shape factor 0.482 0.161 0.863 

Slenderness Min. envolving circle/city ratio 2.976 1.041 32.346 

Fuel price Unleaded fuel price, national 

average (US$/l) 

0.99 0.01 1.70 

Street provision Km of street / km2 10.6 1 26.4 

Interchange density Number of junctions / km2 63.5 0 218.1 

Car ownership Cars/1000 people, nationwide (city 

specific if data available) 

324 38 809 

Average slope Average network slope (%) 2.27 0.26 10.82 

Median slope Median network slope (%) 1.66 0.13 11.00 

Fare integration (dummy) 0.20 0 1 

Network integration (dummy) 0.11 0 1 

We estimated more than 200 models corresponding to six function types: multinomial and 

nested Logit models with separation between classes I-II (node without mass public transport) 

and III-IV-V (node with public transport), single-function ordered Logit and Probit models, and 

LDA and QDA models. 

First, the sample was randomly divided into a set of training data (75% of the dataset) to 

estimate the coefficients, and a test set (25%) used to compare the errors associated with each 

model. Excepting the nested Logit models that did not show significance in the separation 

between categories, all model types have a comparable adjustment to data. 

According to the First Choice Recovery (FC), an error criterion representing the proportion of 

the cities in which the models assign the highest probability to their actual classification, QDA 

and MNL are the best models. However, QDA is more difficult to interpret and does not ensure 

that the coefficients have the proper sign for prediction. Other error indicators, such as Mean 

Absolute Error (MAE) and Root Mean Square Error (RMSE) are quite similar between 

multinomial and ordered models. 
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Table 6 – Error indicators, all model types (test subset for preliminary model selection) 

 
Cells in grey indicate no data available 

Given that the models used are intended to be applied by decision makers, simplicity is a key 

factor: thus, Multinomial Logit and ordered Probit were selected as the most appropriate 

models. Both assign the highest probability to the actual classification of cities in more than 

80% of the sample. 

In order to have a more efficient estimation of coefficients for both model types, 5-fold cross-

validation with random quintiles was performed. Variable and error parameters for both models 

are presented in Table 7:  

Table 7 – General and variable parameters of selected models 

Multinomial Logit (MNL) Ordered Probit (OP) 
Number of variables 19 

Number of significant variables  
(T-test> 95%) 

15 

Log likelihood -161.33 

Rho-squared 0.687 

Rho-squared (adjusted) 0.650 

Cross-Validation First Choice Error (%) 16.25 

C-V Mean Average Error (%) 28.15 

C-V Root Mean Square Error (%) 37.18 
 

Number of variables 8 

Number of significant variables  
(T-test> 95%) 

6 

Log likelihood -154.34 

Pseudo R2 (Mc Fadden) 0.643 

Pseudo R2 adjusted (Mc Fadden) 0.615 

Cross-Validation First Choice Error (%) 20.00 

C-V Mean Average Error (%) 28.72 

C-V Root Mean Square Error (%) 38.11 
 

Coefficient Value T-test Significance 

ASC_2 -14.4 -4.14 >99% 

ASC_3 -44 -6.73 >99% 

ASC_4 -78.2 -8.2 >99% 

ASC_5 -101 -9.07 >99% 

βPop2 (Ln) 4.51 4.6 >99% 

βPop3 (Ln) 11 7.55 >99% 

βPop4 (Ln) 16.3 9.08 >99% 

βPop5 (Ln) 20 9.96 >99% 

βGDP3 (Sqrt) 0.0264 2.8 >99% 

βGDP4-5 
(Sqrt) 

0.029 2.56 99% 

βAttract3(ln) 0.475 1.09 83% 

βAttract4-5(ln) 1.09 2.2 97% 

βCompac3 -4.41 -1.92 94% 

βCompac4 -9.37 -2.4 98% 

βCompac5 -13.3 -2.57 99% 

βDens2-3 
(Sqrt)  

-0.035 -2.86 >99% 

βCarOwn1-2 4.4.10-3 1.85 94% 

βSlope4-5 0.249 1.11 74% 

βFare_int3-5 1.61 2.47 99% 
 

 
 
 

Coefficient Value 
T-

test 
Significance 

βPop (Log) 2.30 5.25 >99% 

βGDP (Ln) 0.799 4.51 >99% 

βAttract 5.13.10-4 3.37 >99% 

βCompac -2.91 -3.33 >99% 

βDens_Pop 
(interaction) 

0.091 2.24 98% 

βCarOwn -1.66. 10-3 -2.16 97% 

βSlope 0.0422 0.71 52% 

βFare_int 0.352 1.37 83% 
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According to both models, the most significant variables are population and per capita GDP 

per capita: cities with a higher population and income tend to have public transport systems 

with higher capacity modes. 

Furthermore, more linear cities with steeper slopes tend to have more efficient modes. It is 

also observed that fare integration, as well as a higher population density, less car ownership 

and presence of nearby cities are related to more complex public transport systems. These 

variables have signs consistent with other studies, but their significance in the models is less. 

Finally, other variables such as the price of fuel, slenderness and network integration were not 

significant in both functions and were therefore not included in the models. 

Although the MNL specification has a slightly better performance as shown in Table 7, the 

main advantage of the ordered Probit model is that a unique function ("Score") is applied for 

all cities, which makes results easier to comprehend. The class assigned by the model to a 

given city arises from comparing this Score with limit values (thresholds between classes) 

estimated by maximum likelihood and called “cuts”, whose values are shown in Table 9. 

Validation results from the ordered Probit model (cross-validation test subset) are shown in 

Table 8 below: 

Table 8 – Cross-Validation results for selected OP model 

Comparison of predicted versus 

actual class (N=80) 

Proportion of cities by probability assigned 

to actual class (probability bands) 

 

 

The OP model assigns highest probability to the actual classification of cities in 80% of the test 

subset. In this subset, the Probit model assigns more than 80% probability to the actual 

classification of nearly half of the cities. In 20% of the cities, the model gives more than 50% 

probability to other classes, which indicates that these cities may actually have different public 

transport modes that most similar cities. 

4. Discussion and conclusions 

Results show that a simple Ordered Probit function can classify accurately the transport 

systems of cities in North and South America, with a success rate above 80%. Among the 

explanatory variables, city population and size are the most relevant as expected. That said, 

socioeconomic factors (regional per capita GDP and access to credit), geographic and 

morphologic variables (city size, represented by the compacity indicator, and interurban 

relation, represented by attractiveness) as well as fare integration are also relevant. 

It is important to remember that the models aim to explain the existent PT modes in cities, 

which are not necessarily the ideal or recommended ones: in the city sample there might be 

cities requiring new public transport infrastructure, such as Metro or Bus Rapid Transit lines, 

OP model

actual class 1 2 3 4 5

1 7 0 0 0 0

2 2 10 1 0 0

3 0 2 37 2 0

4 0 0 4 7 2

5 0 0 0 3 3

model class

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

> 80% 60% - 80% 40% - 60% 20% - 40% < 20%
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and there might be cities that have more infrastructure than what they actually need. However, 

the classification models developed can give an insight for policy makers, in the sense that 

cities whose public transport complexity cannot be explained by the models are more likely to 

have a suboptimal public transport system. 

4.1. Key findings 

The selected model is an Ordered Probit function, which allows assigning a Score to each city, 

according to a linear combination of attributes that can be easily obtained: 

𝑆𝑐𝑜𝑟𝑒 = 2.30 ∗ 𝑙𝑜𝑔10(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) + 0.799 ∗ 𝑙𝑛(𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 𝑟𝑒𝑔. 𝐺𝐷𝑃) + 5.13. 10−4 ∗ 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 −

2.91 ∗ 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 + 5.64. 10−5 ∗ 𝑙𝑜𝑔10(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) ∗ 𝑙𝑛(𝑑𝑒𝑛𝑠𝑖𝑡𝑦) − 1.66. 10−3 ∗ 𝑐𝑎𝑟 𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝 +

0.0422 ∗ 𝑎𝑣𝑔𝑠𝑙𝑜𝑝𝑒(%) + 0.352 ∗ 𝑓𝑎𝑟𝑒𝑖𝑛𝑡(𝑑𝑢𝑚𝑚𝑦)  

The proposed classification models make it possible to establish that the presence of certain 

public transport modes in a city depends not only on its population, but also on its residents’ 

income, the form of the cities and the fare integration in their systems of transport. 

Moreover, fare integration may also be relevant in providing an enhanced system efficiency, 

especially for cities whose Score is close to the threshold of the upper class. The influence of 

network integration, although the associated variable was not significant, should also be taken 

into account in future models. Considering a more detailed specification of integration in public 

transport systems is an interesting opportunity for further works. 

When contrasting this Score with the thresholds estimated by the model, a class is assigned 

to a given city as shown in Table 9:3 

Table 9 – Score ranges and classes in Ordered Probit model 

Score range Assigned class (OP model) 

0 – 16.71 I 

16.71 – 19.31 II 

19.31 – 24.20 III 

24.20 – 26.47 IV 

>26.47 V 

To analyze the influence of the variables other than the population on the limits between the 

different classes, we compared the population thresholds that would require four cities with 

different characteristics to incorporate different transport modes, which is equivalent to find the 

population values in which the probability associated with a certain classification becomes 

greater than that of the lower level. 

Four cities with different characteristics were selected: 

- Asunción (Paraguay), a relatively compact city, with medium / low income, without large 

nearby cities and public transport without integration. 

                                                
3 Score is here defined as the point estimate of the ordered Probit function for a given city. Given that Probit model 
probabilities correspond to the integral of a normal distribution between class thresholds (“cuts”), point estimate 
may differ from maximum probably class, especially if sample size varies among different classes. In our database, 
in which type III cities are the most common class, several cities whose point estimate corresponds to Class II have 
higher probability assigned to Class III. That said, Score thresholds may be nevertheless considered as a simple, 
yet effective criteria for planning purposes. 
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- Memphis (USA), a low-density city, relatively isolated, with representative characteristics of 

several North American cities. 

- Rio de Janeiro (Brazil), a city of high density and complex shape, close to another large 

metropolitan area (Sao Paulo) and intermediate income. 

- Washington (USA), a high-income city, with higher density than the average of North 

American cities and close to other large metropolitan areas (Philadelphia, New York). 

Thresholds for the four city types are shown below: 

Figure 2 – Population thresholds to add public transport modes in different cities 

 

As can be seen, thresholds for cities alike Washington and Rio de Janeiro are much lower than 

those of cities that are compact, isolated and have a lower GDP, such as Asunción. This shows 

that, unlike what the simplest recommendations suggest, the form, density and GDP of cities 

are relevant when analyzing which modes of public transport they have. 

Compared with other recommendations, guidelines for the existence of Metro (type V) that 

arise from our models are generally conservative, while the thresholds for implementing type 

IV modes are consistent with other findings. 

The models are based on the existing modes of cities, which are not necessarily those with 

which a city should have. Next, we will discuss what are the implications of this. 

4.2. Discussion on existent versus optimal modes 

It is evident that public transport modes existing in a given city are not necessarily those that 

should exist. Several failures have been reported in the construction of transport projects, in 

which demand is much lower than was projected, such as the Miami metro (Babalik-Sutcliffe, 

2002) and the BRT systems in Colombian cities apart from Bogotá (Jimenez, 2017). On the 

other hand, there are cities where the construction of more efficient modes than the existing 

has been discussed for decades. 
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It is possible to improve the developed models if the dependent variable is corrected in case 

the most efficient mode transports a number of passengers that is not compatible with its 

proper operation. On the other hand, optimization models representative of the cities of the 

sample can be applied, so that the dependent variable represents a recommended 

classification instead of the current classification of the transport systems of the cities. 

In any case, the recommendations that emerge from the results of this study provide a more 

realistic guideline to transport planners compared to the general guidelines in place, given that 

the recommendation of modes of transport are not only dependent on the population of the 

cities, but also the structure of cities, their location and the income of their inhabitants. 

4.3. Implications for policy makers  

In this paper, classification models of public transport systems of 400 cities in the Americas 

were applied to identify which characteristics of cities determine the public transport 

technologies they have. Using a five-level classification, the selected ordered Probit model 

shows that the existent technologies depend not only on the population of the cities but also 

on other variables such as their form, fare integration between the different modes of transport 

and the GDP per capita. Among the independent variables in the selected model, fare 

integration is the one that can be changed in a short term: the other are related to urban 

planning and imply long-term policies. 

Aggregate variables that can be obtained in any city were used. Thus, models are of general 

application, which is of interest for decision makers in localities where there are no strategic 

models or origin-destination surveys to make a specific analysis. In addition, the classification 

used not only provides a reference for the implementation of high capacity modes such as 

Metro or BRT, but also for the creation of a public transport system with buses, which is unusual 

in the literature. 

Finally, it should be noted that the estimated Score can be useful for decision makers both for 

future projections and to justify interventions that improve the performance of existing modes. 

On the one hand, it is possible to estimate the future evolution of the Score of a city if it has 

projections of population, GDP and urban expansion plans, which allows estimating at what 

moment the characteristics of the city would be adequate to justify greater capacity modes. On 

the other hand, the models applied provide an argument under a simple approach to justify 

that certain interventions, such as increasing fare integration or promoting greater population 

density. This could help existing modes - particularly those that involve large investments in 

infrastructure - increase their demand to levels that are compatible with those originally 

projected. 
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