COST EFFICIENCY OF NSW RAIL PASSENGER SERVICES
1951/52–1991/92:
A CASE STUDY IN CORPORATE STRATEGIC MODELLING

IAN TUDOR MOLYNEUX DE MELLOW

A thesis presented for the degree of Doctor of Philosophy

Institute of Transport Studies
Graduate School of Business
The University of Sydney
Sydney NSW, Australia
June 1996
TO WHOM IT MAY CONCERN

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university and, to the best of my knowledge and belief, the thesis contains no material previously published or written by another person, except where due reference is made in the text.

Ian Tudor Molyneux De Mellow
DEDICATION

To those thousands of honest, hardworking, railwaymen and railwaywomen (from all parts of the organisation), who died, became ill, or simply gave up in despair, over the last 50 years, trying to give the people of NSW a modern, efficient railway system. The human cost has been appalling.
ACKNOWLEDGMENTS

My thanks to the State Rail Library and Archives staff and above all, my immediate colleagues between 1991 and 1995, for their help and encouragement. They know who they are.

In particular, I would like to thank Professor David Hensher, my supervisor, for his creation of the Institute of Transport Studies, his constant encouragement, help and relentless drive for excellence.

My particular thanks to the staff and the students of Sydney University's Graduate School of Business and the Institute of Transport Studies. They have created a culture of freedom of thought and expression which is precious and worth preserving at all costs.

I should also like to acknowledge my family and a large group of friends who have brought me from a level of incompetence with the PC to a reasonable level of proficiency between 1991 and 1995. In particular I should like to acknowledge the dedicated efforts of my wife Marie and son Alan in preparing the thesis for publication. This was done with the considerable help of a true genius with computers, Gregory Giles. I would also like to acknowledge the final editing by Ahmed Nawaz, whose knowledge of railways and fastidiousness with the English language was an invaluable contribution. Finally, my thanks to Rhonda Daniels, Institute of Transport Studies, for desktop publishing the thesis to the standards of excellence required by the Institute.

It needs to be clearly noted that no official State Rail help was sought, or given, in the completion of this study.
ABSTRACT

During the 1990s, governments, managements and unions have been focused upon improving the cost efficiency of firms. This focus has been strongest for firms in the public sector where improved outcomes can be expected to significantly improve the Gross Domestic Products of whole economies.

This case study looks at the cost efficiency of NSW rail passenger services over a 41 year period to 1991/92, long suspected (but hitherto only tentatively demonstrated) as a paradigm of cost inefficiency.

The case study focuses upon the use of the total factor productivity (TFP) index, as a datum point for measuring change in productivity in four markets: suburban, interurban, country and interstate passenger services since 1951/52. From this datum, changes over the years in management, technology and other external factors can be identified and assessed.

The thesis identifies management quality (the organising element in the firm) as the pre-eminent factor in determining productivity change, and the role that new technology plays in its impact on failures in management.

We establish the linkages between management and innovation, with TFP, pricing efficiency and economic resource use efficiency, to present a rich paradigm for assessing the economic performance of any business firm.

Borrowing from systems theory and other management practices such as total quality management, we disaggregated the case firm into its component systems, sub-systems and processes, for separate study in relation to impact on TFP. The database for 41 years of rail behaviour is the richest ever compiled for any railway in Australia, and with enhanced modelling, enables a systematic treatment of the performance through time of State Rail’s passenger services.
TABLE OF CONTENTS

CHAPTER ONE
Introduction

1.1 THE PROBLEM ... 1
1.2 HOW IS THE PROBLEM ADDRESSED? 4
1.3 OUTLINE OF THE THESIS .. 6

CHAPTER TWO
Factors and Other Studies Motivating This Study

2.1 NEED BY GOVERNMENT FOR PERFORMANCE MEASURES 9
2.2 METHODS OF COMPARISON ... 16
 2.2.1 Index Numbers .. 16
 2.2.2 Non-Parametric (Data Envelopment Analysis—DEA) 17
 2.2.3 Econometric Methods ... 18
 2.2.4 Consideration of Economies of Scale, Density and Scope 20
2.3 THE MEASUREMENT OF OVERSEAS RAILWAYS' PERFORMANCE ... 20
2.4 NEED FOR PERFORMANCE MEASURES IN THE PRIVATE SECTOR 26
2.5 CONCLUSIONS ON THE NEED FOR PERFORMANCE MEASURES 27

CHAPTER THREE
The Quadrae Corporate Model: A Context for Measuring TFP

3.1 INTRODUCTION TO THE MODEL 29
3.2 THE FIRM AS A SYSTEM ... 30
3.3 THE NEXUSES BETWEEN THE QUADRAE MODEL, TFP AND TQM 36
3.4 THE FIELDING MODEL ... 37
3.5 THE QUADRAE MODEL ... 40
 3.5.1 Triangle HF1 .. 41
 3.5.2 Triangle HF2 .. 44
 3.5.3 Triangle HF3 .. 45
3.6 CONCLUSION .. 46

CHAPTER FOUR
A Detailed Consideration of the Data Used in the TFP Model (HF1)

4.1 INTRODUCTION TO HF1 ... 47
4.2 THE MEASURES AND MEANINGS OF OUTPUT 47
4.3 SEAT KILOMETRES ... 54
4.4 PASSENGER JOURNEYS .. 57
4.5 PASSENGER KILOMETRES .. 58
4.6 PASSENGER REVENUE .. 60
4.7 THE MEASURES AND MEANINGS OF INPUT 64
 4.7.1 Labour .. 64
 4.7.2 Energy .. 75
 4.7.3 Materials .. 76
 4.7.4 Capital ... 77
4.8 CONCLUSIONS ... 88
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Estimated payment for unremunerative journeys, 1966/67–1990/91</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>NSW rail passenger services: stocks of railway land valued at market prices, 1951/52 to 1991/92</td>
<td>85</td>
</tr>
<tr>
<td>5.1</td>
<td>Country and Interstate train services: intermediate output and input measures, 1951/52 and 1966/67</td>
<td>105</td>
</tr>
<tr>
<td>5.2</td>
<td>Country and Interstate train services: partial productivity indicators of intermediate output and input measures, 1951/52 and 1966/67</td>
<td>105</td>
</tr>
<tr>
<td>5.3</td>
<td>Suburban train services: intermediate output and input measures, 1963/64 and 1991/92</td>
<td>108</td>
</tr>
<tr>
<td>5.4</td>
<td>Suburban train services: partial productivity indicators of intermediate output and input measures, 1963/64 and 1991/92</td>
<td>108</td>
</tr>
<tr>
<td>5.5</td>
<td>Interurban train services: intermediate output and input measures, 1969/70 and 1991/92</td>
<td>111</td>
</tr>
<tr>
<td>5.6</td>
<td>Interurban train services: partial productivity indicators of intermediate output and input measures, 1969/70 and 1991/92</td>
<td>111</td>
</tr>
<tr>
<td>5.7</td>
<td>Country train services: intermediate output and input measures, 1982/83 and 1991/92</td>
<td>114</td>
</tr>
<tr>
<td>5.8</td>
<td>Country train services: partial productivity indicators of intermediate output and input measures, 1982/83 and 1991/92</td>
<td>114</td>
</tr>
<tr>
<td>7.1</td>
<td>Capital input cost: train running sub-system 1951/52 to 1991/92</td>
<td>202</td>
</tr>
<tr>
<td>7.2</td>
<td>Capital input cost: corridor sub-system 1951/52 to 1991/92</td>
<td>203</td>
</tr>
<tr>
<td>7.3</td>
<td>Capital input cost: terminal (station) sub-system 1951/52 to 1991/92</td>
<td>204</td>
</tr>
<tr>
<td>7.4</td>
<td>Capital input cost: B and C administration sub-system 1951/52 to 1991/92</td>
<td>205</td>
</tr>
<tr>
<td>8.1</td>
<td>Explaining productivity variation in NSW rail passenger services by market segment, 1951/52–1991/92</td>
<td>231</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 3.1 The NSW rail passenger services system .. 32
Figure 3.2 The Fielding model of transit performance ... 37
Figure 3.3 The Quadrae ... 40
Figure 3.4 KAIZEN in the management process of any corporation 43

Figure 5.1 Types of innovation .. 92

Figure 7.1 Schematic outline of NSW passenger services subsystems and the
PPFs describing performance (numbers refer to Figures in Ch 7) 167
Figure 7.2 Thousand passenger journeys per train running labour 187
Figure 7.3 Thousand passenger kilometres per train running labour 187
Figure 7.4 Thousand seat kilometres per train running labour 188
Figure 7.5 Train running fuel consumption (gigajoules) per passenger journey 188
Figure 7.6 Passenger kilometres per gigajoule of fuel .. 189
Figure 7.7 Seat kilometres per gigajoule of fuel .. 189
Figure 7.8 Train running materials and other cost per passenger journey 190
Figure 7.9 Train running materials and other cost per passenger kilometre 190
Figure 7.10 Materials and other cost per seat kilometre ... 191
Figure 7.11 Terminal (station) running labour per thousand passenger journeys 191
Figure 7.12 Terminal (station) running labour per thousand passenger kilometres 192
Figure 7.13 Terminal (station) running labour per thousand seat kilometres 192
Figure 7.14 Terminal running materials and other cost per passenger journey 193
Figure 7.15 Terminal running materials and other cost per passenger kilometre 193
Figure 7.16 Terminal running materials and other cost per seat kilometre 194
Figure 7.17 Corridor labour VT maintenance cost per thousand passenger journeys ... 194
Figure 7.18 Corridor labour VT maintenance cost per thousand passenger kilometres .. 195
Figure 7.19 Corridor labour VT maintenance cost per thousand seat kilometres 195
Figure 7.20 Corridor labour fixed corridor cost per thousand passenger journeys 196
Figure 7.21 Corridor labour fixed corridor cost per thousand passenger kilometres 196
Figure 7.22 Corridor labour fixed corridor cost per thousand seat kilometres 197
Figure 7.23 Corridor materials/other cost (VTM) per passenger journey 197
Figure 7.24 Corridor materials/other cost (fixed) per passenger journey 198
Figure 7.25 Business and corporate administration labour per thousand passenger journeys .. 198
Figure 7.26 Business and corporate administration labour per thousand passenger kilometres .. 199
Figure 7.27 Business and corporate administration labour per thousand seat kilometres .. 199
Figure 7.28 Business and corporate administration materials and other cost per passenger journey .. 200
Figure 7.29 Business and corporate administration materials and other cost per passenger kilometre .. 200
Figure 7.30 Business and corporate administration materials and other cost per seat kilometre .. 201

Figure 8.1 GFTPd, measured in passenger kilometres .. 217
Figure 8.2 GTFPs, measured in seat kilometres ... 218