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Diagnosis of early invasive breast cancer relies on radiology and clinical evaluation, supplemented by
biopsy confirmation. At least three issues burden this approach: a) suboptimal sensitivity and suboptimal
positive predictive power of radiology screening and diagnostic approaches, respectively; b) invasiveness
of biopsy with discomfort for women undergoing diagnostic tests; c) long turnaround time for recall
tests. In the screening setting, radiology sensitivity is suboptimal, and when a suspicious lesion is
detected and a biopsy is recommended, the positive predictive value of radiology is modest. Recent
technological advances in medical imaging, especially in the field of artificial intelligence applied to
image analysis, hold promise in addressing clinical challenges in cancer detection, assessment of treat-
ment response, and monitoring disease progression. Radiomics include feature extraction from clinical
images; these features are related to tumor size, shape, intensity, and texture, collectively providing
comprehensive tumor characterization, the so-called radiomics signature of the tumor. Radiomics is based
on the hypothesis that extracted quantitative data derives from mechanisms occurring at genetic and
molecular levels. In this article we focus on the role and potential of radiomics in breast cancer diagnosis
and prognostication.

© 2019 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In 2018, breast cancer (BC) was the leading cancer among
women in every European country and the leading overall cause of
death from cancer in women in Europe [1]. It has been estimated
that variations observed in breast cancer incidence across European
countries can at least in part be due to differences in organized and
opportunistic screening activities and differences in the prevalence
and distribution of the major risk factors [1]. It is likely that the
combined effects of earlier detection and improvements in treat-
ment options underpinned declines in BC mortality rates in most
European countries, with greater decreases in Northern and
Western European countries relative to Central and Eastern Europe
[2]. Therefore, the early diagnosis of BC remains a crucial cancer
control strategy. Detection of BC at an early-stage contributes to
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better outcomes in treated patients because small non-metastatic
(early) disease can be effectively treated, with potential to obtain
a survival gain at 5 years from the diagnosis [3]. BC screening
strategies are implemented to improve patient outcome [4,5]. In
addition, early detection and treatment of BC also improve
women’s quality of life due to the adoption of less invasive surgical
procedures [6]. Many countries adopts population-wide BC
screening, initially performed with film-screen and then with
digital mammography, aiming to lower mortality from BC by earlier
detection of the disease. However, DM has moderate sensitivity, for
which estimates vary from 67.3% to 93.3% [7]. Digital Breast
Tomosynthesis enabling pseudo-3D imaging of the breast result in
better discrimination of tissue structures and improves visualiza-
tion of cancer. In women with mammographically dense breasts,
digital breast tomosynthesis increased sensitivity but not speci-
ficity in diagnosis [7]. Contemporary diagnosis of early invasive BC
relies on radiology and clinical evaluation, supplemented by biopsy
confirmation. Unfortunately, at least three issues burden this
approach: a) suboptimal sensitivity and suboptimal positive
icense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Abbreviations

BC breast cancer
MRI magnetic resonance imaging
AI artificial intelligence
RQS radiomics quality score
ROI region of interest
DBT digital breast tomosynthesis
AUC area under the curve
TRIPOD Transparent reporting of a multivariable

prediction model for individual prognosis or
diagnosis

DWI diffusion weighted imaging
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predictive power of radiology screening and diagnostic approaches,
respectively; b) invasiveness of biopsy with discomfort for women
undergoing diagnostic tests; c) long turnaround time for recall tests
[7]. In particular, diagnosis of early BC relies on the combined use of
mammography or tomosynthesis, ultrasound with different bio-
ptical approaches to reach a gold standard for definitive confir-
mation of malignancy. Such an approach has some limitations: in
the screening setting, radiology sensitivity is suboptimal, and when
a suspicious lesion is detected and a biopsy is recommended, the
positive predictive value of radiology is limited, implying that bi-
opsies often yield negative results [7,8]. Increasing accuracy in the
diagnostic setting of early BC is an unmet need of oncology. In
addition, the biology of cancer is complex: cancer is a self-
sustaining and adaptive process interacting dynamically with its
microenvironment, which continues to challenge researchers, and
clinicians despite significant progress in understanding its biolog-
ical keystones [9]. Recent technological advances in medical im-
aging, especially in the field of artificial intelligence applied to
image analysis, hold promise in addressing clinical challenges in
cancer detection, treatment assessment, and monitoring of disease
progression [10,11]. One of the ultimate goals of medical imaging is
to detect a neoplastic lesion as early as possible, then to classify the
lesion and predict its clinical course and its biological aggressive-
ness to optimize the type and intensity (appropriateness) of
treatment.

In current radiological practice, mammographic, ultrasono-
graphic, or MRI evaluation of tumor is largely qualitative including
subjective evaluations such as tumor aspect (e. g., spiculated,
rounded, with necrosis, microcalcification), density, type of
enhancement, anatomic relationship to the surrounding tissues in
order to inform further treatment. However, in recent years, it has
become evident that the future of medicine lies not only in early
diagnosis of disease, but also in individually tailored treatments.
This concept that has been designated as ‘personalized medicine’
(PM), aims to deliver the right treatment to the right patient at the
right time [12]. In this scenario, quantitative evaluation of clinical
medical images is the natural consequence of the path towards
personalized medicine. Recent significant advancements within
the field of medical image analysis relies on the application of
Artificial Intelligence (AI) methods for the processing of large
quantities of iconographic data from different imaging modalities.
In this framework three different broad approaches can be identi-
fied, whose tentative definitions, although continuously updated,
can be currently outlined as follows:

� Radiomics is the process of extracting quantitative properties,
named features, from an image (or from a specific Region of
Interest (ROI) identified in an image). This feature extraction
activity is typically realized by means of pattern recognition
algorithms and provides, as a result, a set of numbers, each one
representing a quantitative description of a specific either
geometrical or physical property of the image portion under
consideration. In oncological applications, examples of features
are tumor size, shape, intensity, and texture, collectively
providing a comprehensive tumor characterization, called the
radiomics signature of the tumor [13]. From an epistemological
perspective, radiomics is based on the hypothesis that the
extracted features reflect mechanisms occurring at genetic and
molecular levels [13e17]. Coherently, the suffix “-omics” is a
term that originated in molecular biology to characterize DNA
(genomics), RNA (transcriptomics), proteins (proteomics), and
metabolites (metabolomics).

� Machine learning indicates those computational algorithms
that utilize as input the image features extracted by radiomics in
order to provide as output predictions concerning disease out-
comes on follow-up. Unsupervised machine learning classifies
the radiomics features without using any information provided
by or determined by an available historical set of imaging data of
the same kind of the one under investigation. Supervised ma-
chine learningmethods are first trained bymeans of an available
data archive, i.e. all parameters in the algorithm are tuned until
the method provides an optimal trade-off between its ability to
fit the training set and its generalization power when a new data
example arrives. In the world of supervised machine learning,
sparsity-enhancing regularization networks are able to make
the prediction while, at the same time, identifying the extracted
features that mostly impact such prediction.

� Deep learning is an extreme modification of machine learning,
in which the image is directly given as input to a multi-layer
neural network whose task is to sequentially modify the im-
age and reduce its size until a set of numbers is automatically
produced. These numbers represent the set of features to give as
input to a supervised machine learning method that performs
the prediction task.

According to a rather simplified perspective, the advantage of
using unsupervised learning methods is that they do not need the
training phase to work (and the availability of an appropriate his-
torical database with which to realize such phase) but are typically
used just for classification purposes. Supervised methods require
the training phase to work but have more general applicability
conditions and, for example, can be used for regression and to
realize multi-task prediction. Supervised methods may utilize
features as input data, which are typically image properties with a
specific meaning in the application framework; but, in a deep
learning approach, the methods may learn these features during
the prediction process. This latter approach avoids the feature
extraction step, which may be critical, but introduces an uncer-
tainty element in the interpretation of the automatically extracted
features.

2. Technical issues

At the present time, radiomics is a complex process that involves
several steps and, generally, the application of radiomics to stan-
dard clinical images is not fully automated. For example, a Radio-
mics Quality Score (RQS) [17] can be assigned as an indicator of
study factors that imply reliable results related to radiomics
application in medical imaging. RQS is determined according to a
set of recommendations established for the reporting of studies
developing, validating, or updating a prediction model using
radiomics, regardless of whether the model serves diagnostic or
prognostic purposes, However, a review of the literature (to



Fig. 1. Radiomics flow-chart. Radiomics analysis can be divided into distinct processes.
The first step included image acquisition and reconstruction with download of
radiological images, generally in DICOM format. After image adjustment, the second
step includes segmentation and features extraction. Finally, data are organized and
collected in the database before analysis. Example of ROI positioning of a nodular
spiculated lesion on mammography is shown.
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February 2018) identifying 17 retrospective studies, all published
after 2015, that provided BC-related radiomics data on 3928 pa-
tients, found that the overall RQS was relatively low [18]. Specif-
ically, it was reported that for RQS estimated on a 36-points scale,
mean RQS scorewas only 11.88± 5.8 [18] across studies, reflecting a
32.73% strength of the overall quality of studies, which is limited.
The low values of RQS reported in previous studies, suggest that a
careful look at the overall quality of the study is mandatory to
overcome or minimize some known limitations of radiomics
feature extraction. To reach a clinical utility for BC-related radio-
mics studies, research with potential to influence treatment, pa-
tient outcome, and social impact has to be strongly encouraged.
Indeed, high-quality studies have the potential to place radiology
(and radiomics related researchers) at the pinnacle of quality in
evidence-based practice [19]. To help researchers and clinicians to
improve the overall study quality in this field, a modified RQS
description is reported in Table 1 for BC-related radiomics studies,
adapted and simplified from the one elaborated by Lambin et al.
[17].

3. Steps of radiomics workflow

Before analyzing radiomics-derived data, a typical workflow in
breast imaging includes first the acquisition of high-quality images
and the selection of a region of interest (ROI), identified and
segmented either manually or automatically. The ROI selection
process is not standardized and introduces variability, since it can
include either the whole tumor or some parts of it [13e17]. In Fig. 1
a schematic representation of a typical radiomics workflow is
presented. After the segmentation is completed, the selected re-
gions are converted into three dimensions, to become volumes.
Then, dedicated open source or in-house developed software
extract quantitative features from the obtained volumes to produce
a report, which is inserted into a database and could be integrated
with other data (clinical information, genomic profiles, serum
markers, and/or histology data) [20]. The database can be shared
across different centers or institutions [13].

4. Machine learning and deep learning in the radiomics
workflow

Radiomics and, specifically, radiomics for BC, relies on the use of
machine learning methods to provide predictive models based on
the analysis of the features extracted from radiological data
[15e20].

At a first, pre-processing level, unsupervised machine learning
algorithms allow the automatic stratification of BC patients realized
Table 1
RQS for BC-related studies (adapted from Lambin et al: [17]). Ten items for a maxim

Criteria

1 Image protocol quality: well-documented image protocols (for example, co
sequences etc., timing) and/or usage of public image protocols

2 Segmentation procedure well documented (segmentation by different phys
3 Feature reduction or adjustment for multiple testing. N.B.: Overfitting is ine

features exceeds the number of samples
4 Multivariable analysis with non radiomics features. It permits correlating/in

radiomics and non radiomics features
5 Assessment of reproducibility/replicability
6 Discrimination statistics - report discrimination statistics (for example, C-st

their statistical significance (for example, p-values, confidence intervals).
7 Prospective study registered in a trial database
8 Comparison to ‘gold standard’
9 External Validation
10 Open science and data (scans, region of interest segmentations, code, radiom

representative ROIs)
by clustering the feature sets according to specific similarity mea-
sure [26]. In fact, this data partition is obtained through the mini-
mization of a cost function involving distances between data and
cluster prototypes, and optimal partitions are obtained through
iterative optimization procedures that start from a random
initialization and move from one cluster to another until no further
improvement in the cost function optimization is noticed [27]. In
classical approaches, each feature sample may belong to a unique
cluster [28], while in fuzzy and possibilistic clustering formulations
[18,29] a different degree ofmembership is assigned to each sample
with respect to each cluster and a probabilistic interpretation of
such degree of membership is rather straightforward.

Supervised frameworks require a more sophisticated data
preparation process and the use of prediction algorithms that need
the realization of a training phase to work properly. Typical su-
pervised schemes for radiomics (as well as for most applications)
rely on the following ingredients:

� A historical archive of feature sets extracted from the imaging
data by means of pattern recognition algorithms.

� A set of labels, each one associated to a feature set and encoding
information concerning the follow-up of the disease (this
um value of 12 points, representing 100% of quality.

Points

ntrast, slice thickness, þ1 (if protocols are well-documented)
þ1 (if public protocol is used)

icians/algorithms/software) þ1
vitable if the number of þ1

ferencing between þ1

þ1 only internal þ2 also external
atistic, ROC curve, AUC) and þ1

þ1
þ1
þ1

ics features calculated on a set of þ1
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information may either be binary or include different quanti-
tative parameters characterizing the disease evolution, like its
latency or aggressiveness).

� A machine learning algorithm, which is trained by means of the
historical database and the corresponding set of labels.

When a new set of un-labelled features becomes at disposal, the
trained machine learning method is now able to generalize and
provide a probabilistic prediction of the unknown labels (i.e., absence
or presence, or level of, disease or outcome).

Supervised machine learningmethods for radiomics include, for
example, standard feature-based multi-layer perceptrons [29e31]
and regularization networks that require the optimal minimiza-
tion of functionals made of two terms: one describing the ability of
the algorithm to fit the historical data and the other one describing
its generalization power [21e23]. Ensemble methods represent a
more modern approach to radiomics and, in particular, Random
Forest [25,33] works as a large collection of decorrelated decision
trees (a decision tree classifier organizes a series of test questions
and conditions in a tree structure, recursively splitting training
samples into subsets based on the value of a single attribute). One
of the technical problems concerning both regularization networks
and Random Forest is the optimal selection of the many input pa-
rameters characterizing these algorithms. This optimization step is
typically addressed by means of methods borrowed from regula-
rization theory [34], although more recently hybrid approaches
that utilize unsupervised clustering for accomplishing optimization
tasks showed a notable effectiveness [35]. Both regularization
networks and decision trees compute a quantitative output
parameter for each feature that can be identified as the relative
importance of that feature with respect to the predictability of the
target variable (or variables). These quantitative predictors can be
therefore ranked by means of specific techniques that, for example,
may work in a recursive manner, i.e. they train the classifier,
compute the ranking for all features, remove the feature with the
smallest ranking and go back to the training phase [17,36e39]. One
of the critical aspects of machine learning for radiomics is related to
the robustness of the forecasting procedure with respect to the
feature extraction process. In fact, such a process obviously de-
pends on the kind of pattern recognition method applied to the
acquired images: different methods typically provide different
image properties, which impacts both the effectiveness of the
training process and the reliability of the prediction outcome. Deep
learning overcomes this drawback by using Convolutional Neural
Networks (CNNs) that directly use as input the reconstructed im-
ages and process them through several image processing layers
[32e34]. The image features segmented by this iterative process are
fed to a standard supervised machine learning method that per-
forms the probabilistic prediction. The notable automation degree
of these approaches and their flexibility for application to multi-
modal imaging clearly make them the best candidate for next
generation radiomics, although the prediction effectiveness of
CNNs (for this specific application and, in particular for BC radio-
mics), and the correct interpretation of the segmented features are
still open issues to investigate.

5. Radiomics in breast cancer diagnosis

A radiomics methodology, first applied to head and neck and to
lung cancer imaging, has been more recently applied to breast
imaging [8,9]. One of the possible applications of radiomics is
motivated by the necessity to increase the accuracy of standard
radiological techniques such as mammography, tomosynthesis and
MRI [40,41]. Several research studies have investigated the use-
fulness and reliability of radiomics in distinguishing benign breast
lesions or normal breast parenchyma from cancers. In general these
studies demonstrate that, by adding radiomics to the standard
radiological workflow, it would be possible to improve diagnostic
accuracy of breast imaging [13]. In an MRI-based radiomics study,
entropy of malignant lesions was found to be a useful parameter:
entropy values were higher in malignant lesions compared to
benign lesions, reflecting the tumoral heterogeneity and its
vascular status [42]. Another study based on dynamic contrast-
enhanced-MRI tried to identify a set of quantitative features
extracted from MR images to differentiate luminal breast cancers
from benign breast lesions [43]. The retrospective analysis of dy-
namic contrast-enhanced-MRI images of 508 lesions and 38
extracted features gave an area under the curve (AUC) for
maximum linear size alone of 0.797 in comparison to 0.846 and
0.848 for feature selection protocols including and excluding size
features, respectively [51]. Several models or radiomics classifiers
allowed distinguishing benign from malignant lesions accurately
with varying but acceptable AUC values (0.842e0.851). These
values are lower than those of expert breast radiologists (AUC of
0.959), suggesting that the adjunct value of radiomics in differen-
tiating malignant from benign lesion needs to be better evaluated
[44]. Bickelhaupt et al. [23] used unenhanced MRI sequences in a
multicentric prospective study to evaluate a radiomics model of
suspicious breast lesions (BI-RADS 4 and 5) extracted from breast
tissue, and reported promising results. Using radiological X-ray
based techniques, a multicentric and prospective study applied a
radiomics approach to digital breast tomosynthesis (DBT) exami-
nations from women with dense breast [13,45] and was the first
study to explore radiomics in this clinical context. In this study,
twenty patients with negative standard mammography and a DBT
detected histology-proven breast cancer were enrolled as well as a
control group of 20 patients of similar age and breast density with
negative DBT. From 104 radiomics features extracted, 3 (skewness,
entropy, and 90 percentile) were found to differ significantly be-
tween the two groups [41]. These preliminary results are encour-
aging, suggesting that a radiomics analysis of DBT images could
have potential utility in cancer detection. It has been reported that,
using more sophisticated computational methods including deep-
learning and machine learning algorithms, an AI system achieved
a cancer detection accuracy comparable to an average breast radi-
ologist in a retrospective setting [10]. In this study, nine multi-
reader, multi-case and multi-vendor study datasets previously
used for different research purposes in seven countries were
collected. The radiological exams of digital mammography were
verified by histopathological analysis or follow-up, yielding a total
of 2652 exams (containing 653 malignant cases) and in-
terpretations by 101 radiologists for a total of 28 296 independent
interpretations. The AI system analyzed these exams yielding an
AUC of 0.840 (95% confidence interval [CI]¼ 0.820 to 0.860)
whereas the averaged AUC of the radiologists was 0.814 (95%
CI¼ 0.787 to 0.841) (difference 95% CI¼�0.003 to 0.055). The AI
system had an AUC higher than 61.4% of the radiologists [10] so
clearly a good proportion of radiologists still outperformed the AI
model. The authors of the study stated that the performance and
impact of such a system in a screening setting need further inves-
tigation [10]; nonetheless the results seem promising and could
impact on diagnostic imaging of the breast as well as screening
pending further studies to determine generalizability. Another
recent study tested the feasibility of AI algorithms to reduce the
breast cancer screening reading workload by automatically iden-
tifying normal digital mammography exams [46]. This study hy-
pothesized that there is potential to use AI to automatically reduce
the breast cancer screening reading workload by excluding exams
with a low likelihood of cancer and that the exclusion of exams
with the lowest likelihood of cancer in screening might not change
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radiologists’ breast cancer detection performance [46]. This area is
worthy of further research including the acceptability of such a
strategy in real-world screening settings.

6. Radiomics in breast cancer prognostication

The concept that by using radiomics it should be possible to
obtain supplemental data that are not identified by human eyes
[47], is particularly useful in breast cancer prognostication. Indeed,
maximal information from standard of care images are extracted
using radiomics to predict several features of breast cancer such as:
lymph node status, prognosis and even treatment response [13].
Although some researchers have claimed that standard
mammography can be used to implement AI tools to predict BC
development in advance, we have to consider that the wide
application of radiomics in clinical practice is only in early devel-
opment, and much remains exploratory at this stage. Researchers
created a deep-learning model that can predict from a mammo-
gram if a patient is likely to develop breast cancer as much as five
years in advance with an accuracy reported to be better than the
Tyrer-Cuzick model (version 8) [48]. That AI model was trained on
mammograms with known outcomes from over 60 000 patients;
the model presumably learned the subtle patterns in breast tissue
that are precursors to malignant tumors. In addition, patients with
non-dense breasts and model-assessed high risk had 3.9 times the
cancer incidence of patients with dense breasts and model-
assessed low risk [48] suggesting good discrimination of future
breast cancer risk. Breast cancer prediction models based on
radiomics to predict BC development are only a small part of the
entire radiomics arsenal in BC prognostication. For example two
different studies found that a radiomics model is able to predict
sentinel lymph node or axillary metastases [49,50], which may
have clinical utility since axillary lymph node status is still a
mandatory variable in the diagnostic and prognostic evaluation of
BC patients. Dong et al. [55] found that radiomics features extracted
from diffusion weighted imaging (DWI) sequences, which are
considered stable sequences, showed high correlationwith sentinel
lymph node metastases [49]. Further validation of these results is
still needed, but it seems possible that radiomics could help in
clinical decision-making potentially avoiding invasive procedures
to the axilla. Another application is related to the Ki67 labeling
index, which is routinely used as a prognostic marker in breast
cancer and aims to estimate both cell proliferation and therapeutic
response [13]. Recent studies have examined the possibility to
predict the proliferation marker Ki67 expression through a radio-
mics approach. One study used a semiautomatic segmentation of
DCE-MRI images, extracting radiomics features (morphological,
grey-scale statistic, and texture features) on 377 women diagnosed
with invasive breast cancer and found that quantitative radiomics
imaging features of breast tumor extracted from these data are
associated with breast cancer Ki67 expression [51]. Differentiation
form low-Ki67 and high-Ki67 expression using naive Bayes classi-
fication method achieved the best performance yielding an AUC of
0.773, 0.757 for overall accuracy, 0.777 for sensitivity and 0.769 for
specificity [51]. Another prospective study based on DBT acquired
in 70 women diagnosed with invasive breast cancer, 40 patients
with low Ki-67 expression (Ki-67 proliferation index< 14%) and 30
patients with high Ki-67 expression (Ki-67 proliferation in-
dex� 14%), found that a combination of five features (sphericity,
autocorrelation, interquartile range, robust mean absolute devia-
tion, and short run high grey level emphasis) yielded AUC of up to
0.698 to differentiate low- and high Ki67 expression, and that
thirty-four radiomics features were significantly (p� 0.001)
correlated with Ki-67 [52]. Despite the above-described encour-
aging results, future larger studies are needed to further evaluate
these preliminary findings and to find towhat extent radiomics and
AI approaches can be integrated in clinical practice in a useful and
reliable strategy [53,54]. A recent study based on ultrasound im-
ages found the a radiomics approach demonstrated a strong cor-
relation between receptor status and BC subtypes (P < 0.05; area
under the curve, 0.760) and that the appearance of hormone
receptor-positive cancer and human epidermal growth factor re-
ceptor 2enegative cancer on ultrasound scans differs from that of
triple-negative cancer [55].
7. Current limitations of radiomics

Promising results of radiomics approaches are still not widely
available in daily clinical practice. A quick PubMed search for
radiomics, imaging biomarkers or radiogenomics reveals well over
4000 articles. However, surprisingly, given this amount of pub-
lished research, outside of academic literature there is no wide-
spread clinical application or clinically-based evaluation of these
technologies [56]. Several issues reduce the application of the
proposed radiomics approaches in clinical practice: the lack of
knowledge of its basic concepts among radiologists, limited avail-
ability of efficient and standardized or reproducible systems of
feature extraction, and limited data sharing for external validation.
In addition, the majority of radiomics studies are mostly pre-
liminary with a retrospective design, a relatively small sample size,
and often with questionable or uncertain repeatability assessment
[57,58]. Larger, high-quality prospective studies are needed to
validate such preliminary results. Reproducibility of methods in
radiomics research is crucial and should be extensively assessed.
Indeed, according to a recent study, the overall scientific quality and
reporting of radiomics studies is insufficient, especially regarding
feature reproducibility, analysis of clinical utility, and open science
categories [57]. Using the TRIPOD statement improvements are
possible in stating study objective, blind assessment of outcome,
sample size, and missing data categories [57].
8. Conclusion

Without a crystal ball it cannot be said whether further ad-
vances in AI might one day replace radiologists or other roles in
diagnostics currently performed by humans, but certainly AI will
play a role in radiology, one that is unfolding rapidly at present.
Furthermore, an important strength of radiomics analysis is that it
is a non-invasive approach to characterize the tumor directly from
clinical medical images. Therefore focus on better quality research
studies with potential to influence treatment, patient outcome, and
social impact should be encouraged [19]. Possibly in the next
decade, Radiomics will be used to speed-up workflow and reduce
the number of invasive procedure.
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