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1. Introduction 

The railway network plays an essential role in the development of the economic system, 

such as commuting, entertainment, and tourism, with the movement of freight and lighter 

goods relying on a stable railway network. The demand for railway transport generally 

increases in line with economic development resulting in an expansion of the network. As 

part of a complex multi-modal transport network, the flexibility of a rail transport system 

can decrease while the complexity of the whole transport network is increasing, which 

makes it vulnerable to deal with unexpected events. For instance, the failure of a power 

system would result in partial or even complete suspension of the whole railway network. 

The temporary closure of lines or stations creates significant unsatisfied demand with the 

adverse effects often spreading to the whole transport network (Khademi et al., 2018).  

Whilst the burden from a growing economic system on its railway network is increasing, 

and the cost of new railway infrastructure becomes an unaffordable choice for many 

Governments, the question of how to increase the stability of the existing network with 

limited resources has become a significant issue. To capture the impact after a disruption 

(such as a service suspended due to the autumn leaves) or a disturbance (such as a delay 

due to variations in the operation), two terms are widely discussed in disruption research: 

vulnerability and resilience. Previous studies usually interpret the concept of vulnerability 

and resilience as two sides of the same coin (Bates et al., 2014; Mattsson and Jenelius, 2015; 

Reggiani et al., 2015). The connotation of vulnerability in the context of transportation links 

to the reduction of capacity caused by a disruptive event, which can be estimated by any 

quantifiable metrics, such as total delay to passengers or the number of canceled trains. On 

the other hand, resilience is concerned with the recovery of a system or the impact a system 

can absorb while facing a disruption. Although some might argue that it is oversimplified 

to treat vulnerability as the other side of resilience (see Seeliger and Turok, 2013), such 

segmentation has become the mainstream. 

Despite the motivation of most vulnerability studies is either to reduce the losses during 

disruptions or to increase performance during or after disruptions, the relationship between 

the nature of disruptions and vulnerability is still unclear. In other words, although previous 

studies have identified several measures to estimate either the consequence of disruptions 

or the allocation of resources before, during, and after a disruption, the sequences of a 

disruptive event have not been fully revealed due to the lack of data. Nevertheless, rail 

transport has been recognized as a system with two special characteristics: “linear 

interactions” and “tight coupling” (Shrivastava et al., 2009). The “linear interactions” refers 

to the fact that the sequences of events in an accident tend to be foreseeable and in familiar 

sequences according to previous accidents, and the “tight coupling” means the variability 
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of the results between two identical processes is minor, the time lag between the execution 

and result is short (Perrow, 1984). The abovementioned characteristics imply that accidents 

in a rail transport system usually contain sequential events, and each component in such a 

system is interdependent due to the connection among them (Perrow, 1984; Rausand, 2013). 

Given such system characteristics, it has been proven that the interaction between 

disruptive events and components is critical; however, only limited research is devoted to 

discovering how and why a railway accident happened. More explicitly, more emphasis 

should be placed on analyzing the causes of railway accidents and the causality between 

hazard factors given rail transport has been proven as a linear interactions system. Such a 

knowledge gap might place operators at a disadvantage in terms of managing disruptions 

and their impact.  

There are a considerable number of review papers in this context, which discuss, for 

example, the agenda of approaches to evaluating resilience in railway transport systems 

(Bešinović, 2020), the methodological insights (Zhou et al., 2019), and the relationship 

between vulnerability, resilience, and the connectivity (Reggiani et al., 2015). However, 

the analysis of the vulnerability of railway disruptions is seldom reviewed. Additionally, 

the definitions of elements in this context are not clearly integrated. To fill the research gap, 

this paper aims to not only provide a clear definition of terminology and a comprehensive 

literature review, but also indicate directions for further research. 

To present a review of current literature addressing rail transport system vulnerability 

analysis, this paper is organized as follows: firstly, the review methodology is introduced 

(section 2). Secondly, we give a brief historical context of vulnerability in the field of 

transportation research (section 3). Thirdly, a review of theories in the context of 

vulnerability analysis is illustrated from the literature (section 4). Approaches used in the 

context of railway vulnerability analysis are highlighted in this section. Next, we 

concentrate on the empirical and methodological insights in the literature (section 5). Lastly, 

the outcomes of the literature review are synthesized for discussion; several gaps are 

identified and suggestions are made for future studies (section 6). 

2. Literature review methodology 

The review process in this paper adopts the method used by Bešinović (2020), which begins 

with a target paper, uses the related keywords to search online corpora, and remove 

unrelated papers through reading the titles, abstracts and full texts step by step. However, 

this approach has some limitations in our review due to covering multiple topics. Therefore, 

several combinations of keywords are applied when searching databases. Only peer-

reviewed academic papers published in the last 20 years are considered, and the procedure 

of selecting papers consists of three steps: (1.) searching the selected online databases with 
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the combinations of the keywords, (2.) manually checking the titles, abstracts, and 

keywords, removing the non-vulnerability related papers, and (3.) final refining and 

analyzing. The review process was conducted on two popular academic research paper 

databases: Web of Science (Core Collection) and Scopus. 

To identify relevant papers, we searched the keywords ‘Rail*’, ‘transport’, and 

‘vulnerability’ in the title, 72 and 63 papers were retrieved from Web of Science and Scopus 

respectively. The titles, keywords, and abstracts of retrieved papers were manually screened, 

some non-vulnerability, network without considering rail transport, and non-rail related 

papers were removed. Finally, 74 papers were chosen after the removal of duplicated papers. 

The distribution of papers in the field of rail transport vulnerability by year of publication 

is shown in Figure 1. The number of published papers increases dramatically after 2015. 

Table 1 shows the distribution of papers per journal in the context of rail transport 

vulnerability. The majority of papers are published in transport-related and environment-

related journals. The journals publishing the most rail transport vulnerability-related papers 

are Transportation Research Part A: Policy and Practice, which has published six papers, 

and Transportation and Sustainability have both published five papers. Most of the journals 

listed in Table 1 also have a strong background in the context of public transport and rail 

transport resilience analysis as well (Bešinović, 2020; Zhou et al., 2019). 

 

 
Figure 1, Distribution of papers by year of publication 
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Table 1, Distribution of papers per journals in the context of rail transport vulnerability 
Journal title References 

Transportation Research Part A: Policy and Practice 6 

Sustainability 5 

Transportation 5 

Transportation Research Part D: Transport and Environment 4 

Journal of Transport Geography 3 

Transportation Research Record 3 

Physica A: Statistical Mechanics and its Applications 3 

Journal of Advanced Transportation 3 

Transportmetrica A: Transport Science 2 

Reliability Engineering and System Safety 2 

Public Transport 2 

Natural Hazards 2 

International Journal of Critical Infrastructure Protection 2 

European Journal of Transport and Infrastructure Research 2 

Transportation Research Part E: Logistics and Transportation Review 2 

Others (with one publication) 28 

Total 74 

 

Before we investigate the selected papers, the critical definitions of terms used in this 

context and the foundational theoretical basis should be reviewed first to differentiate the 

review of rail transport systems from other resilience-related review articles. Additionally, 

the theoretical basis and methodology used in each context are distinctive in vulnerability-

related and resilience-related studies. Further discussion will be presented in the following 

sections.  
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3. An overview of the concept and elements of vulnerability in the rail transport literature 

The definitions of Vulnerability, Resilience, and Robustness in the context of railway transport are not yet 

consistent in the literature, and mainly depend on the topic of research. To discriminate between these 

terms, this review paper will introduce the definition of vulnerability first, followed by the comparison 

with other keywords. 

Vulnerability is commonly defined as “the sensitivity of a system to threats and hazards” (Rausand, 2013), 

such as developing the framework for managing the risk of vulnerable infrastructure (Haimes, 2006); 

estimating the vulnerability of electricity delivery networks (Holmgren, 2004); and optimizing the priority 

of road maintenance (Jenelius et al., 2006). Additionally, works that quantitatively measure vulnerability 

have converged on a definition of vulnerability as the amount of performance that diminishes during 

disruption (Berdica, 2002; Bešinović, 2020; Yu et al., 2018; Zhang et al., 2018; Zhou et al., 2019). In 

practical research, the metric of performance varies depending on its topic, for instance, the cost of travel 

while considering a road transport network (Jenelius et al., 2006).  

The definition of vulnerability changes in response to a specific scenario. Laurentius (1994) and Berdica 

(2002) deem vulnerability as susceptibility for either rare or sudden, unpredicted events; Rausand (2013), 

argues that the vulnerabilities are only visible when a system begins to be destroyed by minor further stress 

and the capacity reaches its maximum, like “Little strokes fell great oaks.” On the other hand, Sarewitz et 

al. (2003) point to the disadvantage of considering the probability of failure while analyzing vulnerability 

as the estimation of probabilities in the analysis of extreme events is impractical. Sarewitz et al. (2003) 

then propose the use of conditional vulnerability (or exposure in D’Este and Taylor (2003) and Jenelius et 

al. (2006)) to calculate the aggregate result of consequences given a hazardous event occurs. 

On the other hand, resilience also has several definitions depending on the purpose of the study. Generally, 

resilience is defined as “the capability to persist and absorb a disruption without affecting performance” 

in the context of general transport systems (Mattsson and Jenelius, 2015). Operationally, resilience can 
also be referred to as the resources which a system requires to balance demand and supply (Zhou et al., 

2019). In socio-technical systems, such as a healthcare system, resilience would be the ability to prevent 

a disruptive event. Moreover, it can be deemed as the time a system needs to recover from shocks of 

disruptive events (Taysom and Crilly, 2017). Alternatively, in the research field of transport networks, 

resilience means the capability to maintain functionality under disruptions or the resources which are 

required to recover. Additionally, more research is considering Resilience Engineering as a paradigm for 

safety management, offering a broader socio-technical framework to cope with infrastructure threats and 

disruptions, including preparedness, response, recovery and adaptation (Worton, 2012). 

A similar term to resilience, is robustness, but there is an inconsistent agreement between the definition of 

resilience and robustness. For instance, in the rail context, Bešinović (2020) deems that robustness is the 

ability to mitigate from impacts caused by disturbances, whereas resilience means the ability of a system 

to provide the effective service in normal conditions and the ability to resist or recover from disruptive 

events. However, Zhou et al. (2019) argue that the term robustness should be used when the system is still 

able to maintain itself in its original state regardless of the impact which the disruption creates; but once 
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the impact makes a system unable to keep normal status, then resilience should be considered as the proper 

topic. Both studies support the idea that resilience research is relevant to considering the remaining 

capacity under disruptions. But when it comes to robustness, Bešinović (2020) assumes the performance 

has been affected and regular service is no longer available, whereas Zhou et al. (2019) suppose the 

performance remains the same whilst under disruption. 

The different levels of disruption might cause an apparent contradiction in the definition. Zhou et al. (2019) 

argue that the difference between resilience and robustness depends on whether the network can provide 

the same performance while disrupted. To put this in a clear way, if an adverse event occurs and a transport 

network can still provide the same level of service, then the event is a disturbance (Nielsen, 2011), and 

the robustness means to what extent a system can defend a disturbance. On the other hand, if an adverse 

event degrades a transport network, the event would be referred to as a disruption (Nielsen, 2011), and the 

term resilience will be used to estimate the impact of the event as a result. Note that we are considering 

resilience from the aspect of performance or capability rather than the time a network takes to recover to 

normal status. In the context of time aspect, Dynamic Resilience (or namely Rapidity) is used to describe 

the time that a system requires to return to a state of normal function after a severe perturbation, such as 

after an intentional terrorist attack (Wang et al., 2016). 

The terms mentioned above can be shown diagrammatically, such as McDaniels et al. (2008) proposed, in 

Figure 2.  

 

 
Figure 2, The relationship between Vulnerability, Resilience and Robustness (revised from McDaniels et al. 

2008) 

Assume P0 is a regular capacity of a transport system network, and a disruption (e.g. terrorist attack) 

occurs at time ta and reduces the capacity to the most disrupted point P(!!) at time !! . The gap of 

capability between P0 and P(!!) refers to the vulnerability of the network. In addition, the rest capacity 

(P0 - P(!!)) is considered as the resilience of the network. To put it in another way, the vulnerability in a 

network represents the susceptibility to a disruption resulting in a considerable reduction, whereas the 
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resilience in a network stands for the rest capacity after the degradation due to a disruption (Berdica, 

2002; Mattsson and Jenelius, 2015). On the other hand, when a disturbance occurs at time !", the network 

absorbs the disturbance, and the capacity remains the same as usual. The potential loss of capacity 

absorbed by the network is robustness. The gray area derived from the dotted line and solid line implies 

that if resilience engineering is conducted to help improve the network when disruption is persisting, then 

the degree of impact will decrease on rapidity and vulnerability. For instance, if the design of the rolling 

stock could absorb more impact, which is caused by explosion and prevent itself from the derailment, 

then the cost of time will be reduced dramatically because no heavy machinery is required to handle the 

disruption. 

Although the concept McDaniels et al. (2008) proposed is able to explain how a disturbance and a 

disruption impact a network in the context of railway, the effect of varying demand during the disruption 

has not been considered in the definitions. Consider the demand and the supply of a railway transport in 

a normal business day, which is shown in Figure 3. The operators will not provide 100% volume of 

service for the whole day. In contrast, only the volume which is equivalent to demand would be provided 

in addition to a small surplus in case of the perturbation. Therefore, there would be a natural gap between 

demand and supply. The definitions of disruptions and disturbances should be slightly adjusted to meet 

such circumstance. Hence, this review paper proposes new definitions for both terms as the followings.  

A disturbance can be divided into two types depending on whether the scheduled supply is affected. A 

disturbance that does not affect scheduled supply, even though an incident makes the maximum volume 

of a network decrease, does not have any impact on the way the operators provide service. For instance, 

if there is either a planned or unplanned maintenance on a two-track terminal station, which will occupy 

one track and leave the other track remaining to hold trains. However, the currently designed schedule 

will not be affected, and all trains can run on time by using the single track in that terminal station. Then 

we refer to this incident as a disturbance without affecting scheduled supply.  

On the other hand, a disturbance, which would affect the scheduled supply, refers to an incident that 

means the planned supply can no longer to be reached. However, it does not create unsatisfied demand 

in the network. For example, a single-track operation is conducted due to a broken locomotive in a branch 

line, most trains cannot sustain their scheduled timetable, resulting in a decrease in supply. However, all 

demands can be satisfied because of the dispatching skill of the train operator. Then we refer to this 

incident as a disturbance affecting scheduled supply but not actual demand. 

When it comes to a disruption, this means an incident that makes the scheduled supply unsustainable and 

the demand can no longer be satisfied. For instance, an earthquake resulting in a tunnel collapse shutting 

down specific links in a network would result in unsatisfied demands. 
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Figure 3, The relationship between supply, demand, and the effect of a disruptive event 

The definitions of terms relating to research on disruption in railway systems inferred through literature 

are summarized in Table 1. 
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Table 2, Definition of terms relating to research on disruption in the railway system 
Terms Definition Source 

Vulnerability Descriptive Definition:  

Sensitivity to threats and hazards, or a susceptibility to incidents 

that can result in considerable reductions of performance in a 

system. 

(Berdica and 

Mattsson, 2007; 

Taylor and D’Este, 

2007) 

Operational Definition:  

Based on descriptive definition, it refers to how much 

performance is taken by a disruption. 

(Berdica, 2002; 

Bešinović, 2020; 

Zhang et al., 2018; 

Zhou et al., 2019) 

Conditional 

vulnerability 

(Exposure) 

The aggregate consequences a given hazardous event makes to a 

system. 

(D’Este and 

Taylor, 2003; 

Jenelius et al., 

2006) 

Disruption An event or a series of events caused by external or internal factors 

that leads to substantial deviations from planned operations. From 

the perspective of risk management, a disturbance event turns into 

a disruption after it begins to lead to deviations. 

(Nielsen, 2011; 

Zhou et al., 2019) 

Disturbances A disturbance indicates an event that causes part of the railway 

operations to deviate from the operational plans, but the system can 

still provide the same level of service as usual. 

(Nielsen, 2011; 

Zhou et al., 2019) 

Resilience Descriptive Definition:  

The ability of a transport system to prepare for and to withstand, 

absorb and adapt to shocks, and to recover from the consequences 

in a timely and efficient manner in the context of disruption. 

(Berdica, 2002; 

Mattsson and 

Jenelius, 2015) 

Operational Definition:  

The rest capacity after the degradation due to a disruption. 

Dynamic 

Resilience 

The rapidity with which a system returns to a state of normal 

function after a severe perturbation 

(Wang et al., 2016) 

Resilience 

engineering 

A subject offering a much broader socio-technical framework to 

cope with infrastructure threats and disruptions, including 

preparedness, response, recovery, and adaptation 

(Worton, 2012) 

Robustness The capability to withstand disturbances with an acceptable 

reduction in operating performance, measured by the potential 

decrease of capacity  

(Pagani et al., 

2019; Zhou et al., 

2019) 
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4. A review of theories in the context of rail transport vulnerability analysis 

Research on vulnerability analysis was mainly treated in a qualitative way before 1970 (Rausand, 2013). 

Subsequently, the quantitative approaches were popularly applied in this context after the development of 

probability theory, which allows researchers to demonstrate the risk of an accident in a specific situation 

event as a number between 0 and 1 (Parzen, 1960). Another advantage of using probability theory in 

vulnerability analysis is that the frequency and the condition of adverse events can be clearly delivered 

through the application of mathematical logic. For example, the nature of uncertainty of an unexpected 

event was well demonstrated through probability theory (see: Silva et al., 2008). 

One of the most widely used theories in this context of vulnerability analysis was Reliability Theory 
(Bazovsky, 1961) which aims to apply either mathematical models or statistical approaches to managing 

the performance of vulnerable systems. Additionally, research in this context considers both the purpose 

of the system and the economic context during operation to optimize the system's performance (Barlow 

and Proschan, 1996). However, reliability theory is a practice-oriented theory, which concentrates on the 

probability and the result of a disruptive event. Compared with the identification of hazards, reliability 

theorists care more about how to estimate the reduction of operation (Barlow and Proschan, 1975). The 

interaction between hazardous elements, which might be the causes of a disruption, in a complex socio-

technical system is less considered.  

To gain a better understanding of the complexity of a how disruption occurs in a complicated system, the 

concept of system accident is argued, which is known as the normal accident theory (Perrow, 1984). The 

normal accident theory assumes that a complex system (or socio-technical system) would encounter 

accidents naturally. Given that disruption is inevitable, Perrow argues that the analysis should “focus on 

the properties of systems themselves, rather than on the errors that owners, designers, and operators make 

in running them” (Perrow, 1984). In doing so, normal accident theory proposes that the interaction between 

hazards in a complex system should be emphasized to increase the reliability. Despite normal accident 

theory receiving heavy criticisms due to not providing any metrics to evaluate the interactive complexity 

(Sammarco, 2003) and the underestimation of human error (Shrivastava et al., 2009), a distinct framework 

on organizational structure and situations during the period of a disruption still makes normal accident 

theory widely applied (Shrivastava et al., 2009).  

Another popular theory used to explain the complexity of systems is systems theory. Systems theory argues 

that every system has its own purpose and structure, which might be influenced by the environment, other 

systems and even itself (Whitchurch and Constantine, 2008). The core assumption of systems theory is 

that each technology would develop independently at first, but all technologies would eventually overlap 

with civil systems, social systems, or technologies per se. A hierarchy is often built up to illustrate the 

complexity of the socio-technical system (Miles Jr, 1973). In terms of the application in the context of 

vulnerability analysis, the idea of the imposition of constraints and control loops in a system are widely 

considered to build the model. In contrast with normal accident theory and reliability theory, systems 

theory can interpret the etiology of accidents in modern society in a comprehensive way. 

To better understand the structure of transport networks, researchers tend to describe a transport network 
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as a topological problem, containing several nodes connected by links. The original motivation of 

topological analysis in the context of transportation is to find the most efficient network with a series of 

constraints (Alderighi et al., 2007), which means the networks are generated randomly by a specific 

cumulative probability distribution. However, such assumption is too strict to follow, and almost all real-

world networks are governed by robust organizing principles. Therefore, the complex networks theory has 

been developed to offer researchers more flexibility to do practical analysis. In the transport analysis 

context, the analysis of networks has two main approaches, the unweighted networks approach and the 

weighted networks approach. The former is the traditional topological analysis with random networks or 

specific statistical distribution, and the latter designs a network with several real-world rules on the basis 

of complex networks theory. The rules could be the traffic congestion (Li et al., 2011), the volume of 

passengers (Huang et al., 2015), or the characteristics of routes of movements (Alderighi et al., 2007). 

Notably, both unweighted and weighted networks approaches are derived from graph theory, which are 

mathematical structures applied to model pairwise relations between objects (Erdös, 1959). The original 

graph theory did not consider the characteristics of society, which can simplify the research topic. In the 

context of rail transport vulnerability analysis, research that applies graph theory, usually assumes the links 

in a network are uniform, and evaluates accessibility by a metric identifying the degree of vulnerability of 

each node and link (Borghetti and Malavasi, 2016; Liu et al., 2017). Furthermore, complex networks 

theory is the foundational basis of research that considers the demand or the behavior of passengers (de 

Regt et al., 2019; Jiao et al., 2020; Sun et al., 2018). 

5. Empirical and methodological insights 

Research in rail transport vulnerability and resilience analysis is foundationally distinct. For example, the 

vulnerability studies concentrate on the results or impacts of a disruptive event on a rail transport system, 

whereas resilience studies consider either how to optimize the resources to make the systems operable or 

mitigate the impact of disruptions on a rail transport system. According to Table 2, the operational 

definition of resilience is equal to that of vulnerability, which means papers from both contexts have 

similar approaches. 

The methodology applied in the context of rail transport vulnerability analysis mainly consists of 

topological analysis, simulation, statistical approach, risk analysis, and optimization. The distribution of 

selected articles based on research approaches and applied theoretical basis is demonstrated in Figure 4. 

The category “others” in Figure 4 (a) contains two literature review papers (Thaduri et al., 2020; Wang et 

al., 2020) and one interview paper (Lindgren et al., 2009). Articles that utilize more than one approach 

appear more than once in Figure 4. Most of the articles which apply more than one approach combine the 

topological approach and simulation. The topological analysis is popularly used in estimating the 

vulnerability of rail transport systems, which is followed by the simulation and statistical approaches. The 

statistical approach makes up 20% of the total, and articles which apply this approach commonly try to 

explain the critical components of a disruption. On the other hand, only 7% of articles use the optimization 

approach, which is inconsistent with the result which rail transport resilience review papers have observed 

(Bešinović, 2020). Such differences might result from the distinct research objectives. The purpose of most 

vulnerability analysis papers is to evaluate the severity of disruption events or find the vulnerable points 
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in a transport network. For instance, Lu (2018) proposes a model to estimate the impacts of accumulative 

affected passengers due to a disruption, and Shi et al. (2019) provide an index to quantify the vulnerable 

nodes in a rail transport network. These purposes are relatively suitable to be solved through simulation 

or topological analysis. On the other hand, the topic of resilience analysis is usually concerned with either 

how to make the best use of resources immediately after a disruption, or how to allocate the resources 

properly to recover from a disruption as soon as possible. In this case, optimization would become the best 

choice of resilience analysis.  

 

 

 
Figure 4, Distribution of selected articles based on (a) research approaches and (b) applied theorical basis. 

In terms of the distribution of selected articles based on applied theoretical basis (Figure 4 (b)), the use of 

graph, systems and reliability theories has dominated the vulnerability research. The distinction between 

the use of different theories depends on the purpose and the scale of the study. For instance, if the study 

focuses on a micro-level aspect like the failure of specific components, the reliability theory would be 

considered (Gonzva et al., 2017; Khoudour et al., 2011). The probability theory is usually applied to 

estimate the chance of specific disruptive events as well as the impact on the rail transport system, such as 

identifying the tree fall hazard along railway tracks (Bíl et al., 2017) and evaluating the risk posed to 

railway infrastructure at level crossings (Bureika et al., 2017). The complex network theory, graph theory 

and systems theory are widely applied to estimate the vulnerability from a large-scale perspective, which 

would consider that each node is interdependent (Liu et al., 2017; Sun et al., 2015) or the use of intermodal 

transport (Meng et al., 2020; Miller-Hooks et al., 2012). The normal accident theory is conducted to create 

the conceptual framework of vulnerability, such as listing an unclassified set of attacks, which might 

disrupt rail traffic (Hartong et al., 2008).  

Next, the approaches and the applications for rail transport vulnerability are introduced. The categories of 

approaches follow Figure 4. Generally, the methods used in literature can be broadly classified as statistical 

approach, topological analysis, simulation and optimization, and risk analysis (Bešinović, 2020; Zhou et 
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al., 2019). 

5.1 Statistical approach 

Three methods are typically used in the context of statistical modeling of historical disruptions: Data-
driven approach, probabilistic risk assessment and experts’ judgment system. The data-driven approach 

directly analyses historical data to develop performance indicators (Bešinović, 2020). However, such a 

method requires sufficient data to conduct, so they are rare in a rail transport vulnerability context. Hong 

et al. (2015) applied the multi-step methodology (Monte Carlo simulation) to estimate vulnerability on 

the basis of 30-year flood data in China, which is popularly considered a novel approach to estimate the 

vulnerability of a transport network. Zuo et al. (2020) used the data from the Chinese Railway Company 

to estimate the component failure occurrence probability and the vulnerability of high-speed rail networks. 

However, the availability of disruption data is extraordinarily difficult to collect (Alexakis et al., 2014) 

and the statistical approach cannot accurately estimate the probability of a rare disruption. 

Secondly, probabilistic risk assessment assumes the portability of each type of disruption follows a 

specific distribution, which can be found through detailed investigation. For instance, Han et al. (2020) 

proposed a wind risk warning model for rail transport by several kinds of wind data observation. This is 

a classic micro-scale vulnerability analysis, which only concentrates on a specific hazard. Most studies 

applying probabilistic risk assessment usually deal with the topic relating to climate impacts, such as the 

risk of falling trees (Bíl et al., 2017), emission from the sun and stars (Thaduri et al., 2020), and flooding 

and drought hazards (Hu et al., 2016). 

Finally, the experts’ judgment system assumes that the real probability of a disruption can be measured 

through objective data rather than subjective data based on the following reasons (An et al., 2011). Firstly, 

the statistical methods are not able to handle the uncertainty of information. The insufficient number of 

disruptive events usually leads to significant bias when estimating the probability. Secondly, the statistical 

data does not exist or is not recorded. Even if the data is available, it is hard to analyze due to a lack of 

crucial information, fragmentation, inconsistency, or a high level of uncertainty. Lastly, the existence of 

data relating to disruptive events can contradict the reputation of operators. Almost all disruption data is 

generated and recorded by operators themselves instead of third-party organizations. This makes 

disruption data not only confidential but also suspect. Unfortunately, there is only one paper in our review 

that considers experts’ judgment (Green and Chmutina, 2019). However, there are many studies in the 

context of accident analysis which successfully estimate the probability of a disruption by conducting the 

expert assessment. For example, Alexakis et al. (2014) overcome the difficulty relating to the issue of 

probability by applying the expert assessment and the Cellular Automata Markov Model to evaluate and 

predict the probability of landslides in Cyprus; An et al. (2011) determine the relative importance of the 

risk contributions in the context of the railway industry through expert judgment. 

Nevertheless, the issue relating to evaluating the probability of a disruption is gradually rising; however, 

there is no study tending to analyze disruption at a microscopic scale. Even though some studies consider 

the probability when analyzing the risk of a disruption instead of conditional vulnerability in the context 

of the railway industry, there is limited in-depth research analyzing the causality between infrastructure 

and disruption.  
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 5.2 Topological analysis 

Whilst the considered literature suffers from a lack of data to apply statistical analysis, many studies apply 

the concept of conditional vulnerability to evaluate a critical transport network which allows them to build 

an assessment model without considering the probability of disruptive events. Mattsson and Jenelius 

(2015) indicate that two traditional ways are topological vulnerability analysis of transport networks and 

system-based vulnerability analysis of transport networks, both of which allow researchers not only to 

assess the vulnerability in a quantitative way, but also avoid considering the probability of disruption.  

The topological approach has been divided into several branches with specific characteristics to adapt the 

features of the transport network. For instance, air transport networks tend to be scale-free with only a 

few hubs but many connections. Hence, the hub-and-spoke topology is the foundational approach for air 

transport (Zanin and Lillo, 2013). However, private car trips usually are modeled without transfers, so 

transport planning uses a point-to-point network or a completely connected network.  

Several studies have successfully estimated the vulnerability of the rail transport system by topological 

analysis. For instance, Lu and Lin (2019) provide an accessibility-based measurement for the vulnerability 

analysis of rail transit network through topological analysis; Liu et al. (2017) propose a critical node 

recognition measure to identify the vulnerable node in the rail network, and Li and Rong (2020) build a 

complicated two-layer network model to estimate the impact of failure effects on stations and high-speed 

trains.  

However, traditional topological analysis usually estimates the vulnerability of a network by calculating 

the connectively or the affected Origin-Destination (O-D) pairs of a network after one or more nodes are 

removed from the network (Bababeik et al., 2019; Ye and Kim, 2019, 2021). Firstly, the traditional 

topological analysis applied in transport systems is commonly accepted not to consider the behavioral 

response of passengers during a disruption. Distinctly, the reactions of individual passengers in the 

network cannot be considered during the disruptive event, such as to what extent he reroutes his trip and 

changes his trip (Bešinović, 2020; Jenelius et al., 2006; Mattsson and Jenelius, 2015; Zhou et al., 2019). 

The traditional topological analysis performs well on pre-disruption planning, such as estimating the 

impact of climate change (Chen and Wang, 2019; Chinowsky et al., 2019; Oswald and Treat, 2013) and 

handling rerouting problems (Gedik et al., 2014), but is poor at predicting the flows in a network. On the 

contrary, recent topological studies have overcome such limitation by deeming passenger behaviors (Cai 

et al., 2017; Huang et al., 2015) and passenger flows (Jiang et al., 2018; Khanmohamadi et al., 2018; Pant 

et al., 2016; Sun et al., 2015) as independent variables in an optimal model to estimate the vulnerability 

of the rail network. Moreover, a growing number of studies begin to consider the economic variables 

around rail transport infrastructures while assessing the vulnerability of a rail transport system through 

topological analysis (Jiang et al., 2018; Kim and Song, 2018; Wang et al., 2017). On the other hand, 

topological analysis inevitably makes itself assume not only the severity and frequency of disruptions are 

equal, but also the condition of each node (or station when we refer to a railway network) is the same. In 

other words, it only considers the result of the removal of each node and link regardless of its characteristic. 

Nevertheless, the type of disruption varies depending on the type of a station (underground, ground, or 

elevated station) and the time of a year. For example, the exposure of trespass in a ground station is 
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relatively higher than that in an underground station. The exposure of leaf fall in autumn is relatively 

higher than in other seasons. This implies that the vulnerability of a network would depend on various 

attributes, which also implies that the probability of disruptive events might be totally different from each 

other. 

 5.3 Simulation and optimization 

To simplify the complexity of a system, studies in the context of vulnerability analysis of a rail transport 

system would try to turn the level of vulnerability into several metrics for further analysis. (Bešinović, 

2020). The metrics are used as either the objective variables or independent variables in simulation and 

optimization models. Some articles also apply economic data to find the relationship within the rail system 

(Jiang et al., 2018; Kim and Song, 2018; Wang et al., 2017).  

Firstly, simulation models are commonly applied in the analysis of large-scale transportation networks 

(Zhou et al., 2019). Due to the large-scale application, simulation models tend to use graph theory and 

modify the question in a topological way, which overcomes some constraints of a pure topological 

approach, such as the issue of operations dynamics (Bešinović, 2020). However, due to the complexity of 

simulation analysis, literature only concentrates on a limited number of disruption analyses in a single 

study. For instance, the risk of track buckling failures (Villalba Sanchis et al., 2020) and the sea level rise 

(Han et al., 2017). Furthermore, some simulation studies only consider the result of a disruption regardless 

of the failure mechanisms, such as the works of Cats and Krishnakumari (2020), Xing et al. (2017), Chang 

and Nojima (2001), and Fikar et al. (2016). 

On the other hand, the optimization approach is less applied in vulnerability analysis compared with 

resilience analysis. The purpose of optimization models in transportation research is to either address the 

questions from the demand side or supply side (Khademi et al., 2018; Morlok and Chang, 2004), or find 

the balance between performance and resource allocation (Miller-Hooks et al., 2012; Zuo et al., 2020).  

Both simulation and optimization approaches can provide sufficient numerical results for decision-makers 

to do further cost-benefit analysis. However, they cannot provide insights into the probability of events. 

The shortage might result from the usage of reliability theory in this context. Although the outcome of a 

disruption can be perfectly understood and estimated, however the real risk is still unknown without 

assessing the probability of the disruption. 

5.4 Risk analysis 

Compared with the concept of conditional vulnerability, risk analysis puts more emphasis on what could 

happen in the future. Despite there is no standard definition of the word “risk”, literature usually associates 

risk with the answers to the following questions: (1.) what can go wrong? (2.) what is the probability of 

that occurring?, and (3.) what are the consequences? (Lemos, 2020; Rausand, 2013). A risk analysis is an 

application to provide the answer to these questions. 

Researchers in risk analysis have devoted much work on mitigating the impact which accidents make. 

One popular approach is to reveal the causes of previous accidents in case of repeating itself, which is 

also known as sequential accident models (Rausand, 2013). Hence, many models are proposed for the 

purpose of understanding the causality of accidents dating back to Heinrich’s domino theory (Heinrich, 
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1941), which argues an accident consists of a series of events and a linear one-to-one progression would 

eventually lead to an unexpected result (Kim and Yoon, 2013; Rausand, 2013). Subsequently, Heinrich’s 

domino is revised by Bird and Germain (1986) and Rasmussen and Svedung (2000) and some critical 

components have been added. For instance, the concept of property loss (Bird and Germain, 1986); and 

hazardous environment (Rasmussen and Svedung, 2000).  

The risk analysis applied in the railway industry usually concentrates on either the role latent conditions 

play in an accident (Elms, 2001), or how an accident occurs in terms of active failure (Elms, 2001; Kim 

and Yoon, 2013). The aim of the former is to focus on how to build a model to explore the importance of 

latent factors in an accident, whereas the latter aims to emphasize the sequential accident model, which 

can help to integrate the knowledge from historical incidents and gain an understanding on how to prevent 

accidents in the future. 

However, the understanding on the link between the nature of the risk and vulnerability in the context of 

rail transport systems is limited. Most studies applying the risk analysis approach in a vulnerability context 

are qualitative. For instance, Hartong et al. (2008) applies the concept of risk to list an unclassified set of 

attacks; Khoudour et al. (2011) use the understanding of risk in the railway sector to suggest general 

approaches for risk analysis and threat evaluation; and Sa’adin et al. (2016) link the risk of climate change 

to the vulnerability of a rail transport system. Given that several hazardous factors and their possible result 

have been discussed in previous studies (Sa’adin et al., 2016; Pregnolato and Dawson, 2018; Sanderson 

et al., 2016; Song et al., 2017), implementations in real cases are required. Unfortunately, the quantitative 

research in vulnerability analysis is limited, and almost all studies there use the concept of conditional 

vulnerability, which ignores the probability of accidents. Nevertheless, the understanding of the sequence 

of rail accidents is still not clear, which means the vulnerability can only be analyzed under a specific 

disruption (Lindgren et al., 2009). The real risk that makes rail transport vulnerable cannot be revealed 

without further risk analysis through quantitative means. 

6. Discussion and further applications 

This paper has reviewed how literature deals with the problem of assessing vulnerability in the field of 

rail transport systems. The concept of vulnerability in the literature has been defined (section 3) and the 

applied theories have been discussed (section 4). We conclude that the conflict of definition in literature 

in the context of vulnerability assessment is due to the divergent point of view.  

Subsequently, a holistic review on vulnerability analysis in the context of the rail transport system has 

been presented in section 5. We conclude that most studies have been completed on the basis of graph 

theory, reliability theory, and systems theory. Next, several approaches and their applications have been 

introduced. The statistical approach mainly applies historical data to demonstrate the impact of disruptions 

and estimate the system's vulnerability. However, such an approach is limited due to the insufficient 

recorded data. Hence, researchers turn to apply the concept of conditional vulnerability to handle the 

difficulty of acquiring data.  

The concept of conditional vulnerability makes the topological approach extremely popular in 

vulnerability analysis due to the good accessibility of the input data and the powerful computing 
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technology, which has even been revised to weighted networks analysis which allows researchers to 

impose the characteristics of passengers or the traffic flow. However, such an approach only considers the 

result of a disruption instead of the probability, which cannot perfectly perform the nature of risk and 

vulnerability. In terms of optimization and simulation, although both use the concept of conditional 

vulnerability, both of these practice-oriented approaches can provide direct suggestions on the issues of 

resource allocation to decision-makers. Lastly, the risk analysis is an approach that aims to consider the 

nature of the risk in vulnerability analysis. The concept of risk contains two core ideas: the probability 

and the consequence. Most studies have done well in exploring the latter, but only limited studies take the 

probability into account. Nevertheless, studies considering the probability are only in single subject areas, 

such as climate or a specific component in the rail transport system. No horizontal study has been done 

in this context, which might result in the decision-makers being disadvantaged while managing risk and 

mitigating the vulnerability. 

In summary, this review paper identifies the following suggestions (gaps) for further studies in the context 

of vulnerability analysis of rail transport systems. Firstly, more attention is required on the link between 

vulnerability and risk analysis. The vulnerability is the result of a disruption, which has a close relation 

to the risk of making the system exposed to dangers. Secondly, the difficulty of acquiring disruptions data 

should be solved by state-of-the-art approaches. For example, literature to date usually uses statistical 

data instead of text data. Several studies have dealt with their research question using machine learning 

and text mining techniques (Hua et al., 2019; Soleimani et al., 2019). The usage of expert judgment is 

also worth considering. Researchers in a vulnerability context could consider putting attention towards 

methods for improving the vulnerability of rail transport systems. Thirdly, only limited practice-oriented 

studies have been done in this context, which constrains the communication between academia and the 

railway industry.  

Although big-scale analysis can contribute a lot in the planning phase, given that railway systems around 

the world are gradually completed, more attention should be drawn to help decision-makers understand 

how to manage risk to prevent the occurrence of disruptions. Previous studies have put much emphasis 

on analyzing the risk of natural hazards and infrastructure failures. However, limited studies have 

concentrated on the vulnerability caused by human error. Given that there have been a considerable 

number of studies in the context of risk management, the knowledge from both sides should be aggregated 

to develop comprehensive and multidisciplinary prediction models. Lastly, only limited studies in our 

selected papers consider the vulnerability of inter-modal transportation. Both passenger and freight 

transportation use more than one network. Hence, research should address estimating the risk and 

vulnerability an inter-modal transportation system experiences; this would improve the safety of real-

world transportation. 

In conclusion, the continuing need for rail transport systems vulnerability analysis is increasing though 

the focus has transferred from planning a rail transport network to maintaining a rail transportation system. 

Both private and government sectors seek solutions that can reduce the vulnerability and ensure the safety 

of rail transportation. The link between risk and vulnerability is still weak and offers a continuing research 

challenge.  
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