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Evolution of thermally stratified open channel flow after removal of a volumetric heat
source is investigated using direct numerical simulation. The heat source models radiative
heating from above and varies with height due to progressive absorption. After removal of
the heat source the initial stable stratification breaks down and the channel approaches a
fully mixed isothermal state. The initial state consists of three distinct regions: a near wall
region where stratification plays only a minor role, a central region where stratification
has a significant effect on flow dynamics, and a near-surface region where buoyancy effects
dominate. We find that a state of local energetic equilibrium observed in the central region
of the channel in the initial state persists until the late stages of the destratification
process. In this region local turbulence parameters such as eddy diffusivity kh and flux
Richardson number Rf are found to be functions only of the Prandtl number Pr and a
mixed parameter Q, which is equal to the ratio of the local buoyancy Reynolds number
Reb and the friction Reynolds number Reτ . Close to the top and bottom boundaries
turbulence is also affected by Reτ and vertical position z. In the initial heated equilibrium
state the laminar surface layer is stabilised by the heat source, which acts as a potential
energy sink. Removal of the heat source allows Kelvin-Helmholtz-like shear instabilities
to form that lead to a rapid transition to turbulence and significantly enhance the mixing
process. The destratifying flow is found to be governed by bulk parameters Reτ , Pr and
the friction Richardson number Riτ . The overall destratification rate D is found to be a
function of Riτ and Pr.

Key words:

1. Introduction

When open channel flow is subjected to short-wave radiative heating from above
progressive absorption of radiation by the fluid leads to a volumetric heat source that
decreases with depth. This, combined with turbulence generation due to shear at the solid
bottom surface, leads to a non-uniform stable temperature stratification profile in which
stratification and its damping effects on turbulence are strongest close to the surface and
weaken with depth. This situation occurs in rivers, canals, estuaries and shallow seas
under the influence of solar heating. Damping of turbulence reduces mixing of solutes
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in the fluid body. In the context of the environmental flows listed above, this can affect
the levels and distribution of ecologically important chemical species such as dissolved
oxygen, carbon dioxide, contaminants and nutrients (Turner & Erskine 2005).
For a given radiative forcing, the degree of turbulence damping that occurs increases

as the flow rate decreases due to the associated reduction in turbulence generation due
to shear at the channel bottom. Thus changes to natural flowing systems, such as the
extraction of water from river systems for human purposes for example, can lead to
reduced levels of dissolved oxygen along with increased contaminant concentrations,
causing long-term damage to ecosystems (Turner & Erskine 2005). Reduced flow rates can
also lead to acute ecological damage such as mass fish kills and cyanobacterial outbreaks,
commonly known as algal blooms. These events have been found to be strongly associated
with conditions in which high radiation levels combined with low flow rate leads to strong
and persistent stable stratification (Sherman et al. 1998; Webster et al. 2000; Bormans
et al. 2005).
In previous work Williamson et al. (2015) studied the statistically steady state reached

by a turbulent open channel flow subjected to radiative heating. The radiative heating
was modelled using a volumetric heat source following the Beer-Lambert law. The
volumetric heat source acts as a sink of gravitational potential energy, so the equilibrium
flow state represents a state in which the turbulent kinetic energy generated by shear
within the channel is in global balance with a combination of viscous dissipation and this
potential energy sink. Conversion of turbulent kinetic energy to potential energy occurs
through a downwards buoyancy flux. This steady state flow models the situation in a
physical system in which solar heating has occurred over a long enough period of time
for steady state to be achieved, for example the state of a river at the end of a sunny
day.
In the current paper we study the evolution of the same flow when this heat source

is removed and both top and bottom boundaries are kept adiabatic. In terms of the
physical analogues mentioned above, this corresponds to situations in which solar forcing
is removed and there is negligible heat transfer across the upper surface and bottom.
This might occur when the sky becomes cloudy or the sun sets while air temperature
and humidity remain relatively high. A study of the flow with a non-adiabatic upper
surface representing convective and radiative cooling that occurs at night or as the result
of the passing of a cold front is the subject of a second paper.
With no heat input the temperature field gradually mixes and stratification weakens

progressively until it approaches a fully mixed isothermal state. This can again be
interpreted in terms of energy transfers. In this case however, both mean flow kinetic
energy and turbulent kinetic energy are converted into potential energy. Since the
potential energy sink has been removed, potential energy increases as the flow approaches
a final isothermal state.
A key finding of the study by Williamson et al. (2015) was that the turbulence in the

central region of the steady state flow is in a state of local energetic equilibrium, that is
P ≈ B+ε, where P is shear production, B buoyancy destruction and ε viscous dissipation
of turbulent kinetic energy. As a consequence, this region exhibits behaviour similar to
that seen in studies of homogeneous stratified sheared turbulence such as those of Shih
et al. (2005) and Chung & Matheou (2012). In the destratifying flow, we find that this
region remains in energetic equilibrium as the flow evolves. As a consequence, as the flow
destratifies, it sweeps through large ranges of local turbulence parameters such as the
gradient Richardson number Ri and buoyancy Reynolds number Reb, making it a useful
flow for determining scaling relationships between these local turbulence parameters and
local flow properties such as eddy diffusivity kh.
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Previous studies of stratified channel flow such as those of Garg et al. (2000), Taylor
et al. (2005) and Garcia-Villalba & del Alamo (2011) have found the friction Richardson
number Riτ to be a useful parameter for characterising buoyancy effects in this context.
Again, our destratifying flow sweeps through a large range of this parameter allowing us
to explore the relationships between Riτ and local flow parameters and properties such
as Reb and kh, as well as bulk flow behaviour such as the destratification rate.
Studies of the time evolution of turbulent flows due to a change in thermal forcing are

relatively few in number. A recent experimental study by ? investigates the effect on a
turbulent boundary layer of decreasing wall temperature. In their flow stratification is
increasing with time, in contrast to our case where stratification decreases.
The overarching aim of this paper is to determine a scaling relationship for the

destratification rate in terms of bulk parameters that can be predicted by large scale
forecasting models such as hydraulic river models. Global destratification rate is depen-
dent on vertical turbulent transport of heat within the channel, which depends on eddy
diffusivity. So our approach is to first investigate relationships between eddy diffusivity kh
and local turbulence parameters such as Ri and Reb. We then extend this to include bulk
parameters Reτ and Riτ . This leads finally to a scaling relationship for destratification
rate in terms of bulk parameters that is justifiable in terms of our observations regarding
the physical processes occurring locally within the channel.
The remainder of this paper is structured as follows. § 2 describes the mathematical

formulation of the problem including the governing equations and non-dimensionalisation
approach used. Details of the numerical simulations including the numerical methods used
and the parameter ranges considered are given in § 3. In § 4 we give an overview of the
flow evolution and initial conditions. § 5 shows how vertical profiles of important local
turbulence parameters change as the flow evolves. § 6 discusses bulk flow energetics and
energy transfers. § 7 discusses relationships amongst local parameters in the central region
of the channel and introduces the mixed parameter Q = Reb/Reτ while § 8 addresses
the dynamics of the near-surface region. In § 9 we compare our data with various scalings
based on Monin-Obukhov theory while § 10 discusses scalings between local turbulence
parameters and the friction Richardson number Riτ . Finally in § 11 we derive a scaling
relationship for destratification rate in terms of bulk parameters and present results to
support this model.

2. Problem formulation

2.1. The initial heated equilibrium state flow

We use the framework for the radiatively heated equilibrium state flow described
by Williamson et al. (2015). A schematic of the flow is shown in figure 1. It is an
open channel flow with an adiabatic, no-slip wall at the lower surface, an adiabatic,
free-slip impermeable boundary at the upper surface and periodic boundaries in the
streamwise and spanwise directions. The flow is driven by a constant pressure gradient
in the streamwise direction and radiative heating is represented by a depth-dependent
volumetric heat source q̃r(z̃) following the Beer-Lambert Law,

q̃r(z̃) = Ĩsα̃e
(z̃−h̃)α̃. (2.1)

Here Ĩs is the shortwave radiative heat flux through the upper surface, α̃ the attenuation
coefficient due to turbidity, and h̃ the channel depth. Here and throughout this paper
a tilde ·̃ indicates a dimensional quantity, whereas a variable with no tilde is non-
dimensional.
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Figure 1. Schematic of the radiatively heated equilibrium flow.

The temperature field φ̃ is decomposed into a time varying mean and a statistically
steady fluctuating component,

Φ̃(x̃, t̃) = Φ̃v(t̃) + φ̃(x̃, t̃). (2.2)

Here Φ̃v(t̃) is the domain averaged temperature at time t̃, which increases with time
according to

dΦ̃v

dt̃
=

Q̃r

ρ̃bc̃p
, (2.3)

where ρ̃b and c̃p are a reference density and the specific heat of the fluid, and Q̃r is the
domain averaged radiative heat source,

Q̃r =
1

h̃

∫ h̃

0

q̃r(z̃)dz̃. (2.4)

The heat source is non-dimensionalised as,

qr(z) =
q̃r(z̃)− Q̃r

Q̃N

, (2.5)

where

Q̃N =
1

h̃2

∫ h̃

0

(Q̃r − q̃r(z̃))(h̃− z̃)dz̃. (2.6)

The temperature fluctation field is non-dimensionalised as,

φ(x, t) =
Φ̃(x̃, t̃)− Φ̃v(t̃)

Φ̃N

, (2.7)

where

Φ̃N =
Q̃N h̃

ρ̃bc̃pũτ
. (2.8)
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Here ũτ is the friction velocity associated with the shear stress on the lower solid surface.

Williamson et al. (2015) define a non-dimensional bulk stability parameter,

λ = h̃/L̃ , (2.9)

where L̃ is a bulk Obukhov length scale defined as,

L̃ =
ũ3
τ

g̃β̃Ĩs/ρ̃bc̃p

(

1

2
−

1

α̃h̃

)

−1

. (2.10)

Here g̃ is gravitational acceleration and β̃ the coefficient of thermal expansion, which
relates fluid density ρ̃ to temperature through dρ̃/ρ̃b = −β̃dφ̃. This formulation of the
Obukhov length scale results from the current context in which the heat flux into the
domain takes the form of a volumetric heat source given in (2.1), which leads to,

Q̃N ≈
Ĩs

h̃

(

1

2
−

1

α̃h̃

)

. (2.11)

Combining this with (2.8) gives an alternative expression for λ,

λ =
β̃g̃Φ̃N h̃

ũ2
τ

, (2.12)

which has the same form as a friction Richardson number.

The heated equilibrium state flow is governed by the Oberbeck-Boussinesq form of the
equations for conservation of mass, momentum and energy for an incompressible fluid.
These are written in non-dimensional Cartesian tensor form as,

∂uj

∂xj
= 0, (2.13)

∂ui

∂t
+

∂uiuj

∂xj
= −

∂p

∂xi
+ ν

∂2ui

∂x2
j

+ δi1 + λ0φδi3, (2.14)

∂φ

∂t
+

∂φuj

∂xj
= σ

∂2φ

∂x2
j

+ qr. (2.15)

Here ui are the Cartesian components of the velocity vector u, p the pressure, xi the
components of the position vector x, t time, ν kinematic viscosity and σ thermal diffusiv-
ity. δij represents the Kronecker delta. Summation over repeated indices is assumed. The
flow is driven by a constant uniform pressure gradient, δi1, in the streamwise direction.
qr is the radiative volumetric heat source given in (2.1) and (2.5).

The variables are non-dimensionalised using the following scheme:

u =
ũ

ũτ,0
, φ =

φ̃

Φ̃N,0

, p =
p̃

ρ̃bũ2
τ,0

, x =
x̃

h̃0

, t =
ũτ,0t̃

h̃0

, (2.16)

ν =
ν̃

ũτ,0h̃0

≡
1

Reτ,0
, σ =

σ̃

ũτ,0h̃0

≡
1

Reτ,0Pr
.

The subscript 0 indicates use of the characteristic length, velocity and temperature
scales for the equilibrium state, that is h̃0, ũτ,0 and Φ̃N,0 respectively. This distinction

is necessary because in the subsequent destratifying flow the length scale h̃ and velocity
scale ũτ will typically vary with time.
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Hence, for the equilibrium state, the friction Reynolds number is

Reτ,0 =
ũτ,0h̃0

ν̃
, (2.17)

the molecular Prandtl number,

Pr =
ν̃

σ̃
, (2.18)

the stability parameter,

λ0 =
β̃g̃Φ̃N,0h̃

ũ2
τ,0

, (2.19)

and the characteristic temperature scale,

Φ̃N,0 =
Q̃N,0h̃0

ρ̃bc̃pũτ,0
. (2.20)

Boundary conditions for the bottom (z = 0) and top (z = 1) boundaries are:

z = 0 : u = v = w = 0;
∂φ

∂z
= 0, (2.21)

z = 1 :
∂u

∂z
=

∂v

∂z
= 0; w = 0;

∂φ

∂z
= 0. (2.22)

Boundary conditions for all lateral boundaries are periodic.
The equilibrium state flow is defined by specifying Reτ,0, λ0, Pr and a non-dimensional

turbidity parameter α0 = α̃h̃0.
A random realisation of the equilibrium state flow is used as the initial conditions of

the destratifying flow.

2.2. The destratifying flow

When a physical open-channel flow evolves from an initially stratified state to a final
neutrally stratified state, changes in the balance between turbulent and laminar shear
stresses within the channel lead to changes in the mean velocity profile, resulting in an
increase in the coefficient of friction, Cf = 2(ũτ/Ũb)

2. Here Ũb is the bulk flow velocity.
In a physical open channel flow, the flow will typically respond with a change in height
and deceleration of the flow.
In our simulations the height h is fixed and the flow is driven by a constant pressure

gradient. As a result, an increase in Cf leads to an increase in the friction velocity, leading
to an imbalance between wall shear stress and the applied pressure gradient. Over time,
this imbalance causes the flow to gradually decelerate, reducing the friction velocity, until
the force balance is restored.
In order to model the physical flow, the equations for the simulations of the destrati-

fying flow are non-dimensionalised in terms of a time varying friction velocity ũτ (t̃) and
height h̃(t̃). The characteristic temperature scale used is fixed at the scale of the initial
equilibrium state Φ̃N,0. This gives governing equations,

∂uj

∂xj
= 0, (2.23)

∂ui

∂t
+

∂uiuj

∂xj
= −

∂p

∂xi
+ ν

∂2ui

∂x2
j

+ δi1 + γφδi3, (2.24)

∂φ

∂t
+

∂φuj

∂xj
= σ

∂2φ

∂x2
j

, (2.25)
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where,

u =
ũ

ũτ
, φ =

φ̃

Φ̃N,0

, p =
p̃

ρ̃bũ2
τ

, x =
x̃

h̃
, ∂t =

ũτ∂t̃

h̃
, t̂ =

ũτ,0t̃

h̃0

, (2.26)

ν =
ν̃

ũτ h̃
≡

1

Reτ
, σ =

σ̃

ũτ h̃
≡

1

ReτPr
, γ =

β̃g̃Φ̃N,0h̃

ũ2
τ

.

The boundary conditions are the same as those for the equilibrium state flow.
Due to the time variation of the velocity and length scales used to non-dimensionalise

(2.23) to (2.25), integrating them in time is problematic. Instead, we have chosen to solve
a dynamically equivalent set of equations and then renormalise the solution to give the
solution to the equations above. This procedure is described in § A.
Whilst equations (2.23) to (2.25) were not solved directly, they are useful in the context

of scaling analysis because they give the time rate of change of the dependent variables,
u, p and φ, relative to a characteristic friction time-scale t̃τ = h̃/ũτ determined from flow
conditions at a particular instant in “measured time”, t̂. In our simulations, measured
time, t̂, is dimensional time t̃ normalised in terms of the initial friction velocity and height
as shown in (2.26). Thus, in the following, t is used only within differentials ∂t and dt,
while t̂ refers to the point in time within the process at which a particular set of flow
conditions occur.
In place of the stability parameter λ0, the buoyancy term of the momentum equations

for the destratifying flow (2.24) uses γ, which is defined as,

γ =
β̃g̃Φ̃N,0h̃

ũ2
τ

. (2.27)

In the destratifying flow, λ0 no longer has the same function as it does in the equilibrium
state equations. In the equilibrium state equations, λ0, through its dependence on QN ,
couples the heat source qr in the temperature equation to the buoyancy term λ0φ in the
momentum equations. At the same time it is also a function of the wall shear stress via
friction velocity ũτ,0. Through these interconnections it detemines the stability of the
equilibrium state flow. In the transient flow simulations this coupling no longer exists
since qr has been removed and φ is normalised by Φ̃N,0 frozen at its equilibrium state
value.
Like λ, γ also has a form similar to the friction Richardson number,

Riτ =
β̃g̃∆φ̃h̃

ũ2
τ

, (2.28)

where ∆φ̃ is the difference between the mean temperature at the top and bottom of the
channel. Riτ can be reformulated in terms of our non-dimensional variables as

Riτ =
γ∆φh

u2
τ

. (2.29)

The friction Richardson number Riτ is a bulk parameter that represents the ratio
between stabilizing effects of temperature stratification and the destabilizing effects of
shear at the wall. At high Riτ the effects of temperature stratification are dominant
and the flow is strongly affected by buoyancy. At low Riτ the effect of shear dominates
and the flow is only weakly affected by buoyancy. The destratification process involves
moving from an initial state in which the flow is strongly affected by buoyancy to a final
state in which buoyancy effects are insignificant.
Riτ has been found to be a useful bulk parameter for characterising buoyancy effects in
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other types of stratified channel flow (see Garg et al. 2000; Garcia-Villalba & del Alamo
2011, for example). Based on this, and given that λ determines the stability of the heated
equilibrium flow and has a form similar to Riτ , we suggest that Riτ plays the equivalent
function in the destratifying flow.
Thus the proposed governing parameters for the destratifying flow are Reτ , Riτ , Pr

with α0 and λ0 affecting the flow only via the initial conditions.

3. Numerical simulations

A set of initial states covering a range of tubulence and stability conditions was
generated by running direct numerical simulations (DNS) of the heated equilibrium
state flow solving equations (2.13) to (2.15). Equilibrium states were generated for the
parameter combinations shown in table 1. Whilst we have proposed that Riτ takes the
place of λ0 as a governing parameter for the destratifying flow, since it is not a governing
parameter for the equilibrium state flow it was not possible generate initial conditions
corresponding to specific values of Riτ . Instead we have varied λ0. The initial values of
the friction Richardson number Riτ,0 are also shown.
Each simulation was run for an initial spin-up period of t = 0− 30 for the λ0 = 0− 1

cases and t = 0 − 40 for the λ0 = 2 cases. By these times bulk parameters such as wall
shear stress, bulk and mean velocity, and the temperature difference between the upper
and lower surfaces had reached statistically steady state. Full realisations of the flow
state were then recorded over a further 20 time units at an interval of 0.5 time units to
allow the calculation of equilibrium state statistics where required.
Using each of these equilibrium states as the initial conditions, a set of transient

simulations was run solving equations (2.23) to (2.25). Realisations of the transient flow
were recorded at intervals of 0.1 time units. The total integration time for transient
simulations depends on the initial conditions and ranged between approximately 5 and
15 time units.
As discussed above, the friction velocity increases as a the flow destratifies and adapts

to the changes in the turbulent shear stress profile. As a result the actual friction Reynolds
number of the time evolving simulations increases. This increase is significant, especially
for the high λ0 cases. The maximum Reynolds number reached in each case is shown in
table 1.
Simulations were performed using the PUFFIN code (Kirkpatrick 2002). The equations

are discretised in space using a finite volume formulation on a non-uniform, staggered,
Cartesian grid. The grid is uniform in the x and y directions. Here, the grid cell sizes in
viscous wall units are ∆x+

0 = ∆y+0 = 2.95. In the z direction the grid is stretched from
∆z+0 = 0.36 at the bottom boundary, to ∆z+0 = 2.2 for z = 0.4 − 0.8, and then down
to ∆z+0 = 0.9 at the upper boundary. These values are based on the initial Reynolds
number of the simulation. For λ0 = 2 cases, in which the friction velocity increases
by approximately 20% during the simulation, these ∆+ values will also increase by
approximately 20%. The number of cells in each direction depends on Reτ,0 and is given
in table 2.
A domain with dimensions 2π×π×1 in the x, y and z directions respectively was used

for all simulations. Williamson et al. (2015) present results for the heated equilibrium
flow on domains of size up to 8π × 4π × 1. The differences between the results on the
8π× 4π× 1 and 2π× π× 1 domain for the flow parameters that will be discussed in this
paper were found to be negligible.
The spatial discretisation uses fourth-order central differences for the advection terms

in the momentum and energy equations. The fourth-order interpolations are computed
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Case Reτ,0 Reτ,max λ0 Riτ,0 Pr α0

1 540 570 0.5 30 0.71 8
2 540 610 1 101 0.71 8
3 540 660 2 284 0.71 8
4 225 285 2 175 0.71 8
5 360 445 2 233 0.71 8
6 360 410 1 82 0.71 8
7 360 410 1 64 0.5 8
8 360 415 1 117 1 8
9 360 410 1 74 0.71 4
10 360 410 1 97 0.71 16
11 360 360 0 0 0.71 8

Table 1. Simulation parameters defined in terms of initial heated equilibrium state.

Grid Reτ,0 Nx ×Ny ×Nz Lx × Ly × Lz

A 225 480 × 240 × 162 2π × π × 1
B 360 768 × 384 × 200 2π × π × 1
C 540 1152 × 576× 264 2π × π × 1
D 360 1152 × 576× 264 2π × π × 1

Table 2. Grids and domain sizes used for each Reynolds number.

using the scheme of Hokpunna & Manhart (2010). All other terms in the momentum,
energy and pressure correction equations are discretised using second-order central dif-
ferences. The equations are integrated in time using a second-order accurate fractional
step method. The momentum and energy equations are integrated using a second-order
hybrid Adams-Bashforth / Adams-Moulton scheme in which the diffusion terms are
solved implicitly while all other terms are solved explicitly. Mass conservation is enforced
using the pressure-correction method of van Kan (1986) and Bell et al. (1989). The
time step ∆t was adjusted automatically to ensure that the maximum CFL number
(∆tui/∆xi) in the domain remained in the range 0.18− 0.2. Here ∆xi is the cell width
in the direction of the velocity component ui.

Resolution relative to the Kolmogorov scale η can be estimated for Case 3 from the
plot of Kolmogorov scale given in figure 9. For this case the grid size in the x and
y directions is ∆x = ∆y = 5.5 × 10−3 while in the z direction the grid varies from
∆z = 7 × 10−4 at the bottom boundary, to ∆z = 4 × 10−3 for z = 0.4 − 0.8, and then
to ∆z = 1.7× 10−3 at the upper boundary. Vertical profiles of the Kolmogorov scale for
the equilibrium and time-evolving flows for Case 3 (figure 9) show that the minimum
values of η range from η ≈ 2.2 × 10−3 close to the bottom boundary to η ≈ 4 × 10−3

in the central region of the channel and η ≈ 8× 10−3 close to the top surface. Thus the
grid cell size relative to Kolmogorov scale ranges from approximately ∆x/η = ∆y/η ≈ 2
close to the bottom boundary, to ∆x/η = ∆y/η ≈ 1.5 in the central region, and then
∆x/η = ∆y/η ≈ 0.5 close to the upper surface. In the vertical direction ∆z/η ≈ 0.3 close
to the bottom boundary, ∆z/η ≈ 1 in the central region, and ∆z/η ≈ 0.2 close to the
upper surface. Similar ratios apply to the other cases. Since the highest Prandtl number
case uses Pr = 1, the Batchelor scale, given by λB = η/Pr1/2 > η for all cases. With our
fourth-order spatial discretisation scheme and this degree of resolution the simulations
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are expected to resolve scales of motion of the order of the Kolmogorov and Batchelor
scales.
To check the accuracy of the solutions Case 4 was rerun with Grid D which has spatial

and temporal resolution one and a half times higher than that used for the remaining
simulations. The increased resolution was found to have an indiscernable effect on the
results indicating that the errors due to the numerical discretisation schemes with the
grids used are negligible.

4. Overview of the flow evolution

Figures 2 and 3 show the time evolution of the temperature and vorticity fields for
Case 3 for which Reτ,0 = 540; λ0 = 2; Pr = 0.71; α0 = 8. The temperature fields are at
different scales in order to clearly show features. The vorticity field contours show the
absolute value of the vorticity vector, |ω|. The initial temperature state shows that the
channel is weakly stratified in the lower half of the channel and becomes progressively
more strongly stratified as the upper surface is approached. In the initial state the
vorticity field exhibits characteristic features of turbulent channel flow up to a height
of z ≈ 0.5, whereas in the region z = 0.5 − 0.8 the turbulence is intermittent, and the
strongly stratified region above z = 0.8 is essentially laminar. As the flow evolves the
turbulence in the flow becomes noticeably more energetic as the stratification breaks
down and the temperature field mixes through the channel. In particular, the flow for
t̂ = 1.5 − 7 contains a large number of shear instabilities that have features, such as
over-turns in the temperature field and braided cat’s eyes in the vorticity field, that
are qualitatively similar to Kelvin-Helmholtz instabilities (see Smyth & Moum 2000, for
example). At the end of the flow evolution the flow returns to a less energetic state.
Figure 4 shows the buoyancy profiles for each of the initial equilibrium states. Here

buoyancy is calculated as λ0〈φ(z)−φb〉, where φb is the temperature at the bottom of the
channel and the angled brackets 〈 · 〉 indicate averaging over both horizontal planes and
time. Increasing the stability parameter λ0 of the equilibrium state increases the surface
buoyancy directly via the presence of λ0 in λ0〈φ− φb〉. It is further increased indirectly
due to the increased stability. In the initial equilibrium state the radiative heat source
must be balanced by the combination of turbulent and molecular heat fluxes in order
to maintain a steady state. As λ0 increases, the turbulent heat flux in the near-surface
region decreases. As a result the vertical temperature gradient must increase in order to
provide the increased molecular heat flux required to balance the radiative heat source.
Increasing Reynolds number Reτ,0 also increases the surface buoyancy. This can be

understood by considering the case of constant ũτ,0 and h̃0. In this situation increasing
Reτ,0 implies decreasing molecular diffusivity. As with the indirect effect of λ0 above, a
larger temperature gradient is then required in order to provide the necessary molecular
heat flux. Increasing Pr leads directly to lower molecular diffusivity, again requiring a
larger temperature gradient, and hence increasing surface buoyancy and stability.
The turbidity parameter α0 changes the vertical distribution of the radiative heat

source. As α0 increases, the absorption of radiation close to the surface increases while
less radiation is absorbed in lower layers leading to a higher temperature gradient and
increased stability close to the surface.
We refer the reader to Williamson et al. (2015) for a detailed discussion of the

turbulence characteristics of the heated equilibrium flow states.
After removal of the heat source the flow evolves over time from an initial stratified

state toward a fully mixed state with a uniform temperature. Figure 5 shows this
destratification process in the form of time series of the friction Richardson number Riτ .
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(a) t̂ = 0

(b) t̂ = 1.5

(c) t̂ = 3

(d) t̂ = 4.5

(e) t̂ = 7

(f) t̂ = 9

(g) t̂ = 13.5

Figure 2. Evolution of the temperature field in the x − z plane during the destratification
process for Case 3: Reτ,0 = 540; λ0 = 2; Pr = 0.71; α0 = 8. The colour scale varies in order to
highlight features. Flow is from left to right.
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(a) t̂ = 0

(b) t̂ = 1.5

(c) t̂ = 3

(d) t̂ = 4.5

(e) t̂ = 7

(f) t̂ = 9

(g) t̂ = 13.5

Figure 3. Evolution of the vorticity field in the x− z plane during the destratification process
for Case 3: Reτ,0 = 540; λ0 = 2; Pr = 0.71; α0 = 8. The colour scale is the same in all images.
Flow is from left to right.
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Figure 4. Equilibrium state buoyancy profiles for Cases 1 – 10.

0 3 6 9 12 15
0

100

200

300

0

100

200

300

λ0 = 0.5

λ0 = 1
λ0 = 2

(a)   Reτ ,0 = 540, α0  = 8, Pr = 0.71

0 3 6 9 12 15
0

100

200

300

0

100

200

300

Reτ,0 = 225

Reτ,0 = 360

Reτ,0 = 540

(b)         λ0 = 2, α0  = 8, Pr = 0.71

0 3 6 9 12 15
0

50

100

150

0

50

100

150

Pr = 0.5
Pr = 0.71
Pr = 1

(c)       Reτ ,0 = 360, λ0 = 1, α0  = 8

0 3 6 9 12 15
0

50

100

150

α0  = 4

α0  = 8

α0  = 16

(d)     Reτ ,0 = 360, λ0 = 1, Pr = 0.71

R
i τ

R
i τ

t̂t̂

Figure 5. Riτ as a function of time for Cases 1 – 10.
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Clearly the initial conditions affect the time required for destratification of the channel to
occur, with the time required increasing as the friction Richardson number in the initial
state Riτ,0 increases. In the following sections we will discuss the effect of the initial
state, determined by Reτ,0, λ0, Pr and α0, as well as the governing flow parameters,
Reτ , Riτ and Pr on the evolution of the flow during the destratification process and the
resultant effects on destratification rate.

5. Vertical profiles

Vertical profiles showing the transient response of selected flow statistics for Case 3
(Reτ,0 = 540; λ0 = 2; Pr = 0.71; α0 = 8) are presented in figure 6. Statistics are shown
for the initial state, and then at five times during the evolution of the flow. The times
chosen correspond approximately to the flow field visualisations shown in figures 2 and
3. The statistics for the initial equilibrium state were calculated over 30 time units with
realisations sampled at 0.5 time unit intervals. This was not possible for the statistics
measured during the transient flow, however, in order to improve convergence of the
statistics the values given in the plots were obtained by averaging over intervals of one
time unit, using flow realisations sampled at intervals of 0.1 time units in addition to
averaging over horizontal planes.
Panels (a) and (b) show 〈û〉 and 〈u〉, the mean streamwise velocity normalised in terms

of the initial friction velocity uτ,0, and time varying friction velocity uτ respectively. The
former is the velocity that is actually generated in the simulation before the results are
renormalised (see § A). Panel (c) shows mean temperature 〈φ〉. Panels (d) and (e) show
profiles of turbulent shear stress 〈u′w′〉 and turbulent heat flux 〈φ′w′〉. Panel (f) shows
the non-dimensional vertical eddy diffusivity,

kh =
−〈φ′w′〉

∂〈φ〉/∂z
, (5.1)

which is related to the dimensional eddy diffusivity,

k̃h =
−〈φ̃′w̃′〉

∂〈φ̃〉/∂z̃
, (5.2)

through

kh =
k̃h

ũτ h̃
. (5.3)

Here fluctuating quantities relative to the horizontal mean 〈 · 〉 are denoted with primes,
(for example w′ and φ′).
As the flow evolves, the initial temperature stratification is broken down by turbulent

mixing and viscous diffusion and the system approaches a state with a uniform mean
temperature of 〈φ〉 = 0, corresponding to zero total potential energy. The downwards
turbulent heat flux has a maximum in the range z = 0.5 − 0.7. This region of low
turbulent heat flux divergence corresponds to the region in which the temperature
remains relatively constant at 〈φ〉 = 0 throughout the flow evolution.
In the initial state, the relatively high degree of stratification in the upper portion

of the channel leads to reduced turbulent mixing in this region. This is apparent in
the profiles of 〈u′w′〉, 〈φ′w′〉 and kh, which show a notable depression in magnitude in
the near-surface region. As a result, the momentum transport required to balance the
streamwise pressure gradient in this region must be provided predominantly by viscous
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Figure 6. Vertical profiles showing the transient response of selected flow statistics at various
times for Case 3. Here the thin dotted line corresponds to kh = σ, while the thin dashed line
corresponds to z = 0.75.

shear, leading to a substantial increase in the mean streamwise velocity close to the
surface relative to the final unstratified flow.
In the early stages of the destratification process the turbulent shear stress 〈u′w′〉

increases substantially, before gradually decreasing to the neutral flow profile. As can
be seen from panel (a), this change in the balance between turbulent and viscous shear
leads to a redistribution of velocity over the height of the channel, with the near-surface
region slowing down, while the velocity close to the bottom surface increases. It is this
change that leads to the increase in the coefficient of friction Cf and friction velocity
uτ . The inflected initial velocity profile implies a surplus of mean flow kinetic energy,
K(z, t̂) = 1/2〈u〉2(z, t̂), in the initial flow relative to the final state.
The turbulent heat flux −〈φ′w′〉 also increases substantially, particularly in the upper

half of the channel before gradually decreasing again as the process proceeds. As will
be discussed in detail below, −〈φ′w′〉 provides a pathway for conversion of mean flow
kinetic energy and energy due to the pressure gradient into potential energy. The eddy
diffusivity kh increases substantially across the channel as the flow destratifies due to the
increase in −〈φ′w′〉 relative to the mean temperature gradient.
Figure 7 show the transient response of the dominant terms in the turbulent kinetic

energy equation. For this flow, which is homogeneous on x − y planes, the turbulent
kinetic energy equation can be written as,

∂k

∂t
=

∂

∂z

[

−
1

2
〈w′u′

iu
′

i〉 − 〈w′p′〉+ 2ν〈si3u
′

i〉

]

− 〈u′w′〉
∂〈u〉

∂z
+ γ〈φ′w′〉 − 2ν〈sijsij〉, (5.4)
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Figure 7. Transient response of dominant terms in the turbulent kinetic energy equation for
Case 3. Legend as for figure 6.

where turbulent kinetic energy k = 1/2〈u′

iu
′

i〉 and sij is the strain rate due to velocity
fluctuations given by,

sij =
1

2

(

∂u′

i

∂xj
+

∂u′

j

∂xi

)

. (5.5)

For this flow the dominant terms are the unsteady term Uk = ∂k/∂t, transport due to
turbulent fluctuations T = −1/2∂〈w′u′

iu
′

i〉/∂z, shear production P = −〈u′w′〉∂〈u〉/∂z,
downwards buoyancy flux (or buoyancy destruction) B = −γ〈φ′w′〉 and dissipation rate
ε = 2ν〈sijsij〉. Panels (a) to (f) show P , ε, B, T , Uk and k, while in panels (g) to (j) the
terms P , B, T and Uk are presented as ratios of B + ε.
As discussed above, conversion of turbulent kinetic energy into potential energy occurs

through the downward buoyancy flux −γ〈φ′w′〉 or equivalently the buoyancy destruction
term B. The remainder of the turbulent kinetic energy is converted into internal energy
through viscous dissipation ε. In a real flow this increase in internal energy can be viewed
as raising the potential energy of the system (see Winters et al. 1995). The Oberbeck-
Boussinesq form of the governing equations used for this study neglects the transfer of
energy from viscous dissipation to internal energy, so there is no increase in temperature
and hence Ep as a result of dissipation.
In the initial state, shear production, buoyancy destruction and viscous dissipation are

in balance across a region from z = 0.2 − 0.8 indicating that this region is in a state
of local energetic equilibrium. This balance can be seen most clearly in the profile of
P/(B + ε) which is approximately equal to one in this region implying P ≈ B + ε.
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Sudden removal of the radiative heat source, or potential energy sink, at the start of
the transient simulation leads to a step change in the energy balance within the channel,
resulting in a rapid increase in turbulent kinetic energy, particularly in the near-surface
region, during the initial stage of the flow evolution (t̂ = 0− 3). Turbulent kinetic energy
then remains relatively constant at this elevated state over the period t̂ = 3− 9.5 before
decreasing again towards neutral conditions in the late stages of the process. The rapid
increase in k during t̂ = 0−3 is reflected in the profile of the unsteady term Uk at t̂ = 1.5
shown in panel (e), which reaches a maximum value of approximately 0.75 at this time
before returning to values close to zero for the remainder of the flow evolution. As seen
from the profile of Uk/(B + ε) in panel (j), in the central region of the channel even this
maximum value is small relative to other terms.
The dominant budget terms, P , ε and B, in the central and upper part of the channel

also increase during the initial period (t̂ = 1.5) as shown in panels (a) to (c). The profile
of P/(B+ ε) in panel (g) shows a distinct increase above the value of 1 for z = 0.75− 0.9
indicating a surplus of shear production in this region, which accounts for the significant
Uk at this time. This shear production can be seen as a distinct band of high vorticity
in the flow field visualisations shown in figure 3. By t̂ = 3, local energetic equilibrium
has been restored and the local equilibrium region P/(B + ε) ≈ 1 has extended up to to
approximately z = 0.9. The region z = 0.2− 0.9 then remains in local equilibrium until
t̂ ≈ 8 (see § 8) after which the extent gradually starts to decrease as turbulent transport
T starts to dominate above z = 0.7.
Thus, when the radiative heat source is removed, the flow “relaxes” rapidly into a new

state in which the laminar surface layer becomes turbulent and the region of energetic
equilibrium extends up close to the surface. This new state is reached very early in the
destratification process (by t̂ = 3 for Case 3). The fact that a large portion of the flow
remains in local equilibrium for most of the flow evolution implies that local turbulent
fluxes should be a function of global gradients in these regions. This is explored further
below.
The normalised buoyancy flux B/(B+ε) shown in panel (h) of figure 7 is equivalent to

the generalised form of the flux Richardson number defined by Ivey & Imberger (1991)
as,

Rf = B/(B + ε). (5.6)

Ivey & Imberger (1991) interpret this as the ratio of the rate of conversion of turbulent
kinetic energy k into background potential energy Eb, to the rate at which net mechanical
energy is being made available for turbulence generation. As such it is often considered
to represent the local mixing efficiency. Venayagamoorthy & Koseff (2016) point out
however that this definition does not correctly account for the effect of counter-gradient
fluxes that occur in strongly stratified flows. An example of this can be seen in panel (h),
which shows that Rf is negative in the strongly stratified region close to the surface in
the early stages of the flow evolution. When the flow is in local equilibrium, Rf is equal
to the standard form of the flux Richardson number, defined as the ratio of buoyancy
destruction to shear production, that is

Rif = B/P. (5.7)

The profiles of Rf show a number of distinct regions. In the initial equilibrium state
Rf is approximately constant over the range z = 0.4 − 0.75, with a value Rf ≈ 0.17.
This value of Rf persists until the late stages of the flow evolution and is similar to the
critical value Rf,c ≈ 0.18 − 0.2 estimated from experimental measurements by Britter
(1974) and the theoretically derived value of Rf,c ∼ 0.15 determined by Ellison (1957).
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Thus we consider Rf,c = 0.17 to represent the critical value for our flow. In this central
region, vertical turbulent motions are constrained predominantly by the buoyancy length
scale, lb, so that turbulent fluxes are unaffected by height z. This corresponds to the “z-
less” scaling regime in Monin-Obukhov theory.
In the region close to the bottom wall, proximity to the solid boundary places an

additional spatial constraint on turbulent motions, so that turbulent fluxes become a
function of both lb and z. This can be seen in the profiles. In the equilibrium state and
for times up to t̂ = 6, Rf decreases approximately linearly with z for z < 0.4. For later
times the region affected by z expands upwards. As the flow destratifies, lb increases and
its constraining effect on turbulent motions decreases accordingly. As a result, the region
in which z is the dominant length scale expands. (Please note that in the discussion
above we have used lb to denote a generic buoyancy length scale. We will provide more
precise definitions of a number of buoyancy length scales below.)
In the equilibrium state, in the region z = 0.75 − 0.85, Rf increases to a peak of

Rf ≈ 0.2. As can be seen from figure 6, this is the region where both velocity shear and
temperature gradient are highest. Visualisations of the equilibrium state flow fields in
panel (a) of figures 2 and 3 shows that this region contains isolated incursions by shear
instabilities resembling Kelvin-Helmholtz billows. A similar peak of Rf ≈ 0.21 is seen in
the profile at t̂ = 1.5. In this case it is slightly higher at z = 0.9. At this time figures 2
and 3 show the presence of an intense layer of shear instabilities for z = 0.75− 0.85 with
incursions up to z = 0.9. By t̂ = 3 the peak in Rf is very small and the visualisations
show vorticity extending to the upper surface of the channel, and for all later times the
peak has disappeared. Winters et al. (1995) found that pure Kelvin-Helmholtz (K-H)
instabilities lead to a significant increase in Rf . Thus the peak in Rf seen in the early
stages of our flow can be attributed to incursions by Kelvin-Helmholtz-like instabilities
occurring at the intermittency boundary between the turbulent flow in the body of the
channel and laminar surface layer.
Figure 8 shows the transient response of dominant terms in the temperature variance

equation for Case 3. For our flow the temperature variance equation can be written as,

∂〈φ′2〉

∂t
=

∂

∂z

[

−〈w′φ′2〉+ σ
∂〈φ′2〉

∂z

]

− 2〈φ′w′〉
∂〈φ〉

∂z
− 2σ〈

∂φ′

∂xj

∂φ′

∂xj
〉. (5.8)

Similar to the turbulent kinetic energy equation, for this flow the dominant terms are
the unsteady term Uφ = ∂〈φ′2〉/∂t, turbulent transport Tφ = −∂〈w′φ′2〉/∂z, production
Pφ = −2〈φ′w′〉∂〈φ〉/∂z and dissipation rate χ = 2σ〈(∂φ′/∂xj)

2〉. Panels (a) to (e) show
Pφ, χ, Tφ, Uφ and 〈φ′2〉, while in panels (f) to (h) the terms Pφ, Tφ and Uφ are presented
as ratios of χ.
As with the turbulent kinetic energy, a rapid increase in temperature variance 〈φ′2〉 is

seen during the initial stage (t̂ = 0 − 3) particularly in the near-surface region as this
region transitions from a laminar to a turbulent state. This is reflected in a region of
positive Uφ in the upper half of the channel at t̂ = 1.5. This burst of activity is short-
lived, however, with the peak 〈φ′2〉 decreasing substantially by t̂ = 3 and a corresponding
negative Uφ at this time. After t̂ = 3 the temperature variance decreases progressively
until it is essentially zero at the end of the destratification process. Unlike turbulent
kinetic energy, with adiabatic boundaries and no internal heat source, the only source
of production of temperature variance is the internal temperature gradient. As the flow
destratifies this temperature gradient decays leading to a decay in the production term
Pφ. Throughout the process there is turbulent transport Tφ out of the central region of
the channel and into the near wall and near-surface regions.
During the period up to t̂ = 9.5 the production and dissipation terms remain in balance
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Figure 8. Transient response of dominant terms in the temperature variance equation for
Case 3. Legend as for figure 6.

so that Pφ/χ ≈ 1 over the region z = 0.25 − 0.9, similar to that seen for the turbulent
kinetic energy budget terms. This is somewhat surprising considering the decay in 〈φ′2〉,
however Pφ and χ remain large in comparison with Tφ and Uφ during this period so the
decay in 〈φ′2〉 is due to a relatively small difference in two large terms. In the late stages
of the process this local equilibrium is lost as dissipation exceeds production, χ > Pφ.
Figure 9 shows profiles of turbulence length scales and some non-dimensional param-

eters that can be written in terms of these length scales. Panels (a) to (c) show: the
Kolmogorov scale η, the Corrsin scale lC , and the Ozimdov scale lO, which are defined
as,

η =

(

ν3

ε

)1/4

, lC =
( ε

S3

)1/2

, lO =
( ε

N3

)1/2

. (5.9)

The Kolmogorov scale characterises the smallest scales of turbulence, while the Corrsin
scale is indicative of the scale above which turbulence is affected by background shear,
and the Ozimodov scale, the scale above which turbulence is affected by buoyancy.
Panel (d) shows the gradient Richardson number

Ri = N2/S2, (5.10)

where the buoyancy frequency N is given by N2 = γ ∂〈φ〉/∂z, and mean vertical shear,
S = ∂〈u〉/∂z. Panel (e) shows the shear Reynolds number (see Chung & Matheou 2012),

ReS =
ε

νS2
, (5.11)
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Figure 9. Transient response of turbulent length scales and related parameters for Case 3.
Legend as for figure 6. In panel (d) the thin dashed lines correspond to Ri = 0.18 and Ri = 1/4.
In panel (e) the thin dashed line corresponds to ReS = 1. In panel (f) the thin dashed line
corresponds to Reb = 5, while the two thin dotted lines correspond to Reb = 7 and Reb = 100.
The thin dot-dashed lines in panels (d), (e) and (f) correspond to z = 0.76 and z = 0.86.

and panel (f) the local buoyancy Reynolds number (see Gargett et al. 1984; Smyth &
Moum 2000),

Reb =
ε

νN2
. (5.12)

As discussed by Chung & Matheou (2012) and Brethouwer et al. (2007), it is useful to
interpret these three non-dimensional parameters as ratios of turbulence length scales,
that is,

Ri =

(

lC
lO

)4/3

, ReS =

(

lC
η

)4/3

, Reb =

(

lO
η

)4/3

. (5.13)

Typically lO > lC > η, thus Ri represents the degree of separation between the smallest
scales affected by background shear and the smallest scales affected by buoyancy, while
ReS represents the degree of separation between the smallest scales affected by shear
and the smallest scales of motion, and Reb the separation between the smallest scales
affected by buoyancy and the smallest scales of motion.

Shih et al. (2005) define three regimes for Reb in stably stratified turbulent shear flows:
a diffusive regime for Reb < 7 in which turbulence is strongly damped and kh/ν < 1,
an intermediate regime 7 < Reb < 100 in which kh/ν is related linearly to Reb, that is
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kh/ν = 0.2Reb, and an energetic regime Reb > 100 in which the effects of stratification
become progressively weaker as Reb increases and kh/ν approaches its neutral flow value.
Profiles of Reb in figure 9 show that Reb decreases with increasing z. This is seen

to be due primarily to a decrease in lO as a result of increasing buoyancy frequency
with height. In the initial state, Reb covers all three regions described above, with the
energetic regime seen for z = 0 − 0.35, the intermediate regime for z ≈ 0.35− 0.75, and
the diffusive regime for z > 0.75. As can be seen from the profile of kh in figure 6, the
region above z = 0.75 also corresponds to the region in which kh < σ in our flow.
The initial state profile for Ri also shows three distinct regimes spanning three regions

across the channel in a manner similar to that seen for the flux Richardson number, Rf .
For z = 0 − 0.5, Ri increases from Ri = 0 at the wall to a value of Ri ≈ 0.18. For
z = 0.5 − 0.76, Ri is approximately constant at what appears to be a critical value of
Ric ≈ 0.18. Above z = 0.76, Ri increases significantly.
Comparable values of Ric for flows similar to the central region of our channel are

reported by other authors. Based on simulations of stratified channel flow with the
stratification maintained by constant density boundary conditions at the top and bottom
surfaces, Garcia-Villalba & del Alamo (2011) estimated Ric ≈ 0.2. For stationary
homogeneous stratified sheared turbulence, Shih et al. (2000) estimated Ric ≈ 0.2 while
Chung & Matheou (2012) give Ric ≈ 0.17. For stratified plane Couette flow, Zhou et al.

(2017) found the critical value of Ric to be 0.21, which is approached as the ratio of the
channel height to Monin-Obukhov length scale approaches zero.
While the central region of our flow is similar to the flows listed above, the near-

surface region is quite different. Here we have a strongly stratified layer that is essentially
laminar and separated from the solid lower wall by a turbulent boundary layer. In the
near-surface region the mean velocity and temperature profiles (see figure 6) contain
an inflection and hence are similar to the canonical conditions under which Kelvin-
Helmholtz (K-H) and Holmboe instabilities form. Howland et al. (2018) investigated
marginal stability associated with the formation of K-H waves from laminar initial
conditions and showed the marginal stability limit to be Rim = 1/4. In fact Kaminski
et al. (2017) have shown that Kelvin-Helmoltz-like billows can form for Ri up to 0.4
in the presence of perturbations that are sufficiently large and that have the optimal
structure for amplification.
Figure 9 panel (e) shows that, in the equilibrium state, ReS < 1 for z > 0.76, which

also corresponds to the height for which Ri > 0.18. ReS < 1 implies lC < η, so this is a
reasonable criterion by which to define what we will refer to as “laminar flow”. As seen in
the profile of kh in figure 6, this is also very close to the point at which kh = σ. Given that
we have laminar flow above z = 0.76, we would expect the critical Richardson number
to be close to the marginal stability limit, Rim = 1/4, however, as seen in panels (d) and
(e) of figure 9, we have a region of laminar flow (ReS < 1) for 0.76 < z < 0.86, in which
0.18 < Ri < 1/4.
This apparent inconsistency between our results and the theoretical analysis of How-

land et al. (2018) gives a clue to the mechanism underlying the “relaxation” process that
we have suggested occurs in the initial stages of the evolution of our flow. An important
point of difference between conditions in the near-surface region of our equilibrium state
flow and those in the analysis of Howland et al. (2018) is that our flow is subject to a
volumetric heat source that decays exponentially with distance from the upper surface
and so acts as a potential energy sink. As a result, small temperature perturbations that
are linearly unstable and would grow into non-linear instabilities in the unheated flow,
are absorbed by the potential energy sink before they are able to do so. This has the
effect of depressing the Richardson number stability limit so that a region of the flow
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that would be unstable with no heat source is in fact stable. When the heat source is
removed however, conditions in the region z = 0.76 − 0.86 suddenly become conducive
to the formation and growth of shear instabilities.
Evidence for this can be clearly seen in the visualisations of temperature and vorticity

fields at t̂ = 1.5 in panel (b) of figures 2 and 3, which show a proliferation of the distinctive
temperature overturns and braided cat’s eye vorticity structures characteristic of K-H
waves. These Kelvin-Helmholtz-like structures can be seen (albeit with weaker intensity)
in the images up to t̂ = 7. The burst of activity during the initial relaxation period is also
evident in the sudden increase in the production of kinetic energy P and temperature
variance Pφ at t̂ = 1.5 seen in this region in figures 7 and 8. The result is a rapid transition
of this region to turbulent flow with P > B+ ε and Pφ > χ at this time as was discussed
above.
The intense activity also results in rapid mixing as is evident from the sudden increase

in B at t̂ = 1.5. This mixing expands the region in which Ri < Rim so that, by t̂ = 3,
Ri < Rim for z < 0.95. The region of turbulent flow expands in line with this with ReS
reaching a minimum of ReS = 1 at z = 0.95 at t̂ = 3. For t̂ > 3, ReS > 1 up to the
top of the channel and we consider the initial relaxation period and transition of the
near-surface region to turbulent flow to be complete.
Kelvin-Helmholtz instabilities are a classic example of energy transfers in sheared

stratified flows and have been used extensively as a canonical flow to study the energetics
of mixing processes in this context (see Winters et al. 1995; Caulfield & Peltier 2000;
Salehipour & Peltier 2015; Howland et al. 2018; Kaminski et al. 2017, for example).
These studies typically use mathematically prescribed initial mean vertical velocity and
temperature profiles, and apply artificial perturbations in order to catalyse the formation
of the K-H instability. The time evolution of the resulting flow is then studied using
stability analysis or numerical simulation.
Our flow is an example of a real flow in which an analogous situation occurs. The

equilibrium state is stabilised by the internal heat source, generating a laminar near-
surface region with velocity and temperature profiles determined by the mathematical
form of heat source. A wide spectrum of “natural” perturbations are supplied by the
turbulence in the lower regions of the channel. Sudden removal of the heat source then
allows these perturbations to grow and become unstable where conditions for instability
exist.
The energy transfers from mean flow kinetic energy to available potential energy and

then to background potential energy described in studies such as those of Winters et al.
(1995) and Caulfield & Peltier (2000) also occur in the near-surface region of our flow.
Our flow is more complicated however, because the initial conditions in the central and
lower regions of the channel are turbulent, so that turbulent kinetic energy generated at
the lower boundary also takes part in the energy transfer process. This will be discussed
further in § 6.
Figure 10 shows evolution of the turbulent Prandtl number,

Prt =
km
kh

(5.14)

where the vertical eddy viscosity km is calculated as

km = −
〈u′w′〉

∂〈u〉/∂z
(5.15)

Garcia-Villalba & del Alamo (2011) found that Rif ≈ Ri in the regions of their stably
stratified channel flow for which Ri < Ric. This implies that the turbulent Prandtl
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Figure 10. Transient response of turbulent Prandtl number for Case 3. Legend as for figure 6.

number Prt = Ri/Rif ≈ 1. Our simulations give similar behaviour, with Prt ≈ 1 in the
region from z = 0.1 to 0.8 in the initial equilibrium state, with the range extending up to
z = 0.95 as the flow in the near-surface layer becomes turbulent in response to removal
of the heat source. As the flow approaches the neutral state, Prt decreases towards a
neutral value of Prt ≈ 0.8, which is similar to the value Prt ≈ 0.74 estimated by Chung
& Matheou (2012).

6. Bulk flow energetics

This section presents results for bulk energy transfers within the flow. In the following,
all parameters are plotted at time intervals of ∆t̂ = 0.1 with the values of parameters
calculated by averaging over horizontal planes only (not time). Here, and throughout this
paper, an overline · will be used to indicate this type of averaging. When used in this
context, primes indicate fluctuations relative to this type of mean.
While non-dimensionalising in terms of the time varying friction velocity uτ is useful

when discussing scalings between non-dimensional parameters, in the context of a discus-
sion of the actual time-evolution of the flow it is more useful to present results in terms
of dependent variables non-dimensionalised in terms of the initial friction velocity uτ,0.
In this form, the results can be related directly to the changes in a physical flow subject
to the same boundary conditions. As described in § A, variables non-dimensionalised in
terms of uτ,0 are denoted with a hat ·̂ .
As discussed above, the destratification process can be viewed as a transfer of energy

from mean flow kinetic energy to potential energy via buoyancy fluxes. The evolution
equation for total potential energy Ep is

dEp

dt̂
= B(t̂) + M (t̂), (6.1)

where the domain-averaged total potential energy is calculated as,

Ep(t̂) = −
1

V

∫

V

γ̂φ̂(x, t̂)zdV. (6.2)

and domain-averaged turbulent and molecular buoyancy fluxes are,

B(t̂) = −
1

h

∫ h

0

γ̂φ̂′ŵ′dz and M (t̂) =
1

h

∫ h

0

γ̂
∂φ̂

∂z
dz. (6.3)
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Figure 11. Domain averaged components of the turbulent energy transfer system for Case 3
as functions of time. Panel (a) shows: ∆Ep (blue solid line), B

∗ (green dashed line), M
∗ (red
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∗ + M

∗ (violet dotted line). Panel (b) shows: P (blue solid line), B

(green dashed line) and E (red dot-dashed line). Panel (c) shows: Ek (blue solid line) and Ea

(green dashed line). Please note the alternate axis for Ea in this plot.

Here V is the domain volume. For consistency with the previous definition of B these
fluxes are positive downwards, so that a positive flux is associated with an increase in
potential energy. The total potential energy that has been transferred by each of these
fluxes by a particular time is then given by

B
∗(t̂) =

∫ t̂

0

B(t̂∗)dt̂∗ and M
∗(t̂) =

∫ t̂

0

M (t̂∗)dt̂∗. (6.4)

Figure 11 panel (a) shows the change in total potential energy ∆Ep over time relative
to the initial conditions, plotted alongside B∗ and M ∗. Also shown is the sum of these
two fluxes, B∗ +M ∗. Potential energy Ep increases over the duration of the simulation,
with the most rapid change occurring early in the simulation and very little change after
t̂ = 9. It is balanced by the sum of the buoyancy fluxes B∗ + M ∗. While turbulent
buoyancy flux B dominates this energy transfer, the molecular buoyancy flux M also
plays a significant role, contributing approximately 15% of the total flux for this case.
Shear production provides the pathway for transfer of energy from the mean flow

field into the turbulent flow field. Within the turbulent flow field, turbulent kinetic
energy is transferred to potential energy via buoyancy fluxes and to internal energy
via turbulent dissipation. Panel (b) of figure 11 shows domain-averaged production, P,
turbulent buoyancy flux B, and viscous dissipation E , where,

P = −
1

h

∫ h

0

û′ŵ′
∂û

∂z
dz and E (t̂) =

1

h

∫ h

0

2ν̂ŝij ŝijdz. (6.5)

The energy transfer rates shown reflect the activity of shear instabilities discussed in § 5.
Shear production P increases rapidly over the initial relaxation period, t̂ = 0 − 3, in
which there is rapid formation of shear instabilities in the near-surface region. It then
continues to increase gradually until t̂ = 9, after which it decreases back to a level
similar to its initial value. The time t̂ = 9 corresponds approximately to the time when
shear instabilities become noticeably less prevalent in the visualisations. These trends
are mirrored by the buoyancy flux B and dissipation E . In the final state B is close to
zero and P ≈ E .
Available potential energy, Ea, is the potential energy change due to adiabatic or

reversible mixing and, as such, is the component of potential energy that could be
transferred back into kinetic energy (Lorenz 1955). This is in contrast to background
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potential energy Eb, which is generated as the result of irreversible diabatic mixing.
Winters et al. (1995) define Eb as the minimum potential energy that can be achieved
as the result of an adiabatic redistribution of the density or, in our case, temperature
field. For a redistributed temperature field φ̂(z∗), where z∗(x, t̂) is the height in the
redistributed state of the fluid parcel at (x, t̂), the domain-averaged background potential
energy is given by,

Eb = −
1

V

∫

V

γ̂φ̂z∗(x, t̂)dV. (6.6)

Ea is then determined from the identity

Ea = Ep − Eb. (6.7)

Available potential energy Ea is shown in panel (c). In the initial state Ea is small but
positive due to turbulent fluctuations of the temperature field as well as mild over-turns
in the shear layer at z ≈ 0.8 as can be seen in figures 2 and 3. In the early stages of
the flow, Ea increases rapidly to a peak at t̂ ≈ 2 and then remains relatively constant
until t̂ ≈ 6 after which it decreases over the remainder of the process to a final value
of approximately zero. Thus the peak in Ea coincides with the initial relaxation period
(t̂ = 0 − 3), which, as discussed above, is characterised by destabilisation of the near-
surface region through the formation of K-H-like instabilities, while the sudden increase
in the rate of decay at t̂ = 9 corresponds to the time at which these instabilities disappear
from the visualisations.
Studies of Kelvin-Helmholtz instabilities (see Winters et al. 1995, for example) have

shown that they lead to a similar time response for Ea as the initial over-turn lifts
heavier fluid adiabatically, before the subsequent break-down of this structure generates
smaller scale motions that drive irreversible mixing. In our flow Ea remains relatively
small compared with the overall change in Ep. This indicates that most of the reversible
buoyancy flux is rapidly transferred to Eb via irreversible mixing due to interaction with
turbulent eddies from the turbulent region of the channel below. Similar small values of
Ea relative to ∆Ep have been observed by Brucker & Sarkar (2007) and Kaminski &
Smyth (2019) in studies of shear instabilities in initially turbulent flows.
Domain-averaged turbulent kinetic energy Ek, also shown in panel (c), shows a rapid

increase during t̂ = 0− 5 after which it remains relatively constant. The higher levels of
turbulent kinetic energy, Ek and available potential energy Ea during the early periods
of the flow evolution provide an intermediate stage in the transfer of energy from mean
flow kinetic energy, EK , to background potential energy Eb.

7. Relationships between local flow parameters in the central region

In this section we return to the relationships between local flow parameters, with a
focus on the central region of the channel (z = 0.3− 0.7). As with the previous section,
all parameters are plotted at time intervals of ∆t̂ = 0.1 with the values of parameters
calculated by averaging over horizontal planes only.
As discussed above, in this paper the eddy diffusivity kh was calculated as the ratio

of turbulent temperature flux to the vertical gradient of mean temperature (5.2). A
number of alternative models for eddy diffusivity are commonly used. These include the
models of Osborn (1980) and Osborn & Cox (1972), which were derived in the context
of oceanographic studies as a means of estimating kh from measurements of dissipation
rates of turbulent kinetic energy and temperature variance respectively, and allow kh
to be estimated when the turbulent flux is not known. Ivey et al. (2008) refer to the
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formulation for kh given in (5.2) as the “direct” approach, and those of Osborn (1980)
and Osborn & Cox (1972) as “indirect” approaches. We give a brief outline of these two
models below.
The model of Osborn (1980) is derived by assuming local energetic equilibrium, P =

B+ ε, and approximating the buoyancy flux as B = Rf/(1−Rf )ε. Combining this with
(5.12) gives

kh/ν =
Rf

1−Rf
Reb = ΓReb, (7.1)

where Γ = Rf/(1−Rf ). Using a critical value for the flux Richardson number of Rf,c =
0.17, this gives an upper limit for Γ of Γ = 0.2. Thus an upper limit for kh can be
estimated based on measurements of ε and N . We will follow the common practice of
referring to the “Osborn model” as (7.1) with Γ = 0.2.
The model of Osborn & Cox (1972) is derived from the temperature variance equation.

Assuming local equilibrium in temperature variance, that is, Pφ = χ, leads to

kh/ν =
χ

2ν(∂φ/∂z)2
. (7.2)

Winters et al. (1995) note that none of these models differentiate between reversible
and irreversible mixing. To address this, Winters & D’Asaro (1996) proposed a new
model using an isoscalar coordinate system that calculates the diffusivity associated only
with irreversible mixing. This concept was extended by Caulfield & Peltier (2000), who
defined a related irreversible mixing efficiency. Salehipour & Peltier (2015) recast the
diascalar diffusivity of Winters & D’Asaro (1996) into what they refer to as an “Osborn-
like” expression that is equivalent but easier to compute. They then compared the eddy
diffusivity calculated according to the direct model (5.2), as well as the Osborn (7.1)
and Osborn–Cox (7.2) models, to their diascalar diffusivity for data generated by DNS
of inhomogeneously stratified sheared turbulence. Amongst these models, they found
the eddy-diffusivity calculated by the Osborn–Cox model to be closest to the diascalar
diffusivity.
Recently Ivey et al. (2018) combined the Osborn and Osborn–Cox models to derive a

model to estmate the flux Richardson number,

Rf =
1

1 +D
, (7.3)

where the dimensionless “length-scale ratio” parameter D is given by,

D =
2(∂φ/∂z)2ε

N2χ
. (7.4)

This model assumes that Pφ = χ, the flow is unaffected by the presence of boundaries
and Ri < 0.25.
Figure 12 shows a comparison of the various mixing models discussed above with our

DNS data for Case 3 measured at a height of z = 0.6 over the duration of the transient
simulation. Panel (a) compares kh/ν as a function of Reb calculated using the direct
model with the Osborn and Osborn–Cox models. For Reb < 100 all three models give
approximately the same value of kh/ν. This is consistent with the results of Shih et al.

(2005) who found that, for homogeneous sheared stratified turbulence, the Osborn model
holds well only in their intermediate regime 7 < Reb < 100. The direct and Osborn–Cox
models remain in good agreement up to Reb ≈ 1500 after which they start to diverge.
Panel (b) shows that this corresponds to the point in the simulation when the assumption
of Pφ/χ ≈ 1 implicit in the Osborn–Cox model begins to break down. Panel (c) shows
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Figure 12. A comparison of various mixing models for Case 3 at z = 0.6. Panel (a) shows kh/ν
calculated by the direct (5.2), Osborn (7.1) and Osborn–Cox (7.2) models plotted against Reb.
Panel (b) shows Pφ/χ plotted against Reb. Panel (c) shows Rf as a function of D compared
with the model of Ivey et al. (2018) (7.3). Panel (d) shows D as a function of Reb.

Rf as a function of D compared with the model of Ivey et al. (2018). There is good
agreement between the DNS data and the model up to D ≈ 20. As can be seen from
panel (d), D = 20 corresponds to Reb ≈ 1500, and hence, again, the point where the
assumptions underlying this model begin to break down.
Another model for eddy diffusivity based on the Osborn model has recently been

suggested by Zhou et al. (2017). This model was developed in the context of stratified
plane Couette flow, which is characterised by a central region in which turbulent fluxes are
approximately constant. Noting that in this regionRi ≈ PrtRf and Prt ≈ 1, substituting
Ri ≈ Rf into (7.1) they proposed modelling kh/ν as

kh/ν = Reb
Ri

1−Ri
. (7.5)

Figure 13 (a) compares our measured values of kh/ν with values calculated using (7.5)
at different heights across the channel. The model gives a good prediction of kh/ν across
the central region of the channel and remains accurate down to z = 0.1, close to the
lower solid wall. Prediction close to the upper surface at z = 0.9 is poor. This is expected
since assumptions underpinning this model are not satisfied in this region.
The model of Zhou et al. (2017) diverges from the data somewhat for high RebRi/(1−

Ri), which may be due to the fact that it assumes Prt = 1, whereas in our flow we have
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Figure 13. Comparison of data with models given in (7.5), and (7.6) at different heights
across the channel for Case 3.
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Figure 14. Relationships between P/(B + ε), Reb and t̂ for Case 3 at z = 0.3, 0.5 and 0.7.

shown that Prt decreases to Prt ≈ 0.8 once stratification becomes weak. The model can
be modified to include Prt explicitly by approximating Rf as Rf ≈ Ri/Prt in (7.1). This
gives an alternative model,

kh/ν = Reb
Ri

Prt −Ri
. (7.6)

Panel (b) of figure 13 compares our measured values of kh/ν with values calculated
using our modified model (7.6). This model offers an improvement over that of Zhou
et al. (2017), particularly in the weakly stratified regime. This improvement comes at
the expense of having to measure or estimate Prt.

In § 5 we defined the central region of the channel as comprising z = 0.3− 0.7 on the
basis that, in this region, the balance P ≈ (B + ε) holds until late in the destratification
process. Figure 14 shows relationships between P/(B + ε), Reb and time t̂ for Case 3
measured over the duration of the transient simulation at heights z = 0.3, 0.5 and 0.7.
Panel (a) shows that, at z = 0.3 and z = 0.5, P/(B + ε) ≈ 1 for the entire simulation,
while at z = 0.7, P/(B+ ε) starts to drop below 1 for Reb ' 1000. In panel (b) it can be
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Figure 15. Relationships between kh/ν, Reb, Rf and Ri for Case 3 at z = 0.3, 0.5 and 0.7.

seen that at z = 0.7 the flow passes Reb = 1000 at t̂ = 13. Thus the region z = 0.3− 0.7
remains in energetic equilibrium until the very late stages of the flow evolution.
Figure 15 shows relationships between kh/ν, Reb, Ri and Rf for Case 3 at heights

z = 0.3, 0.5 and 0.7. The parameter relationships at different heights overlap, indicating
the dynamic balances within the flow are similar across the central region of the channel.
Most of the deviations seen are for data from the early stages of the flow evolution when
the flow is relaxing as described above.
The plot of kh/ν against Reb in panel (a) shows that our data adheres closely to the

Osborn (1980) relationship kh/ν = ΓReb with Γ = 0.2 for Reb < 100 (the intermediate
and diffusive regimes of Shih et al. (2005)) at all heights. For Reb > 100 (the energetic
regime of Shih et al. (2005)) kh/ν approaches an asymptotic value of kh/ν ≈ 60. Again,
this asymptotic value is independent of z.
Panels (b) and (c) show Rf plotted against Reb on log-linear and log-log scales, with

the former emphasising trends in the data for low to intermediate Reb, while the latter
allowing easier interpretation of data at high Reb. For Reb < 100, Rf remains constant at
Rf,c ≈ 0.17, while for Reb > 100, Rf decreases with increasing Reb. Thus the transition
from constant to Reb-dependent Rf corresponds to the transition from the intermediate
to the energetic regime.
The relationship between Rf and Reb has received considerable attention in the

literature (see Walter et al. 2014; Mater & Venayagamoorthy 2014a,b, for example) due
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to its importance in geophysical measurements and modelling. Scotti & White (2016)
discuss the relationship between Reb and Rif (≈ Rf ) and note that the two parameters
approach a power law relationship of the form Rif = CRenb at high Reb for a data from
a wide range of geophysical and small scale flows. They argue that, while n has generally
been found to lie in the range −1/2 to −2/3 (see Bluteau et al. 2013; Walter et al.

2014, for example), there is no justification for a universal exponent. The existence of
a universal exponent implies that Rif depends on a single non-dimensional parameter,
whereas Mater & Venayagamoorthy (2014a,b) show that Rif must depend on more than
one parameter. Scotti & White (2016) present scaling arguments that demonstrate that
Rif is also a function of a “hidden” scale that depends on the nature of the flow. For
Monin-Obukhov (M-O) layers in a semi-bounded flow, this scale is the ratio of the height
z above the bottom solid boundary to the Obukhov length scale L (that is the M-O
stability parameter ζ = z/L), whereas, in bounded flows such as channel flow, the scale
is an externally-imposed confinement scale that is related to the domain height h. For
stratified plane Couette flow they show that Rif is expected to approach an inverse linear
relationship Rif ∼ Re−1

b for large Reb.
Our data support these arguments. For moderate Reb in the range 200 < Reb < 3000,

the data fit well to a −2/3 power law with Rf = 4.2Re
−2/3
b , while for Reb > 3000 the

data approach a −1 power law with Rf = 60Re−1
b . For Reb < 3000, buoyancy length

scales such as the Ozimidov scale lO are small in comparison to the confinement scale
lc associated with the channel height h, so the confinement due to the finite height of
the channel has a negligible effect on the turbulence dynamics. For Reb > 3000, as the
buoyancy length scale becomes comparable with and then greater than lc, the effects of
confinement influence the turbulence dynamics and mixing efficiency. These effects are
reflected in the scaling of Rf with Reb. This can be seen from the profiles of lO in figure 9.
Noting from figure 14 that, for z = 0.5, Reb = 3000 corresponds to t̂ ≈ 13.5, the profile
of lO in figure 9 shows that, at this stage, lO = O(1), implying lO ≈ lc. (Note that all of
our length scales are non-dimensionalised by channel height.)
Panel (d) shows Ri plotted against Reb. The data for Ri shows very similar trends to

those seen for Rf . This is expected given that, for equilibrium conditions, Ri ≈ PrtRf

and Prt remains relatively constant. In the strongly stratified regime for Reb < 100,

Ri ≈ Ric = 0.18. For 200 < Reb < 3000, Ri scales according to Ri = 3.5Re
−2/3
b while

for large Reb it approaches Ri = 50Re−1
b . The ratio of the coefficients in the asymptotic

relations for Rf and Ri is approximately 0.8, which is consistent with our finding above
(see figure 10) that Prt approaches a neutral flow value of Prt,n ≈ 0.8.
A power law relationship of the form Ri = CRe−1

b for large Reb was also derived by
Chung & Matheou (2012), who use scaling arguments to show that

Ri ∼ (κlc/η)
4/3

Re−1
b . (7.7)

Here κ is the von Kármán constant and lc an externally-imposed vertical confinement
length scale which, similar to above, is non-dimensionalised in terms of the vertical
dimension of their computational domain Lz. Using the fact that Rf ≡ Pr−1

t Ri, they
show that kh/ν is expected to approach an asymptotic value of

kh/ν ≈ (κlc/η)
4/3 Pr−1

t,n, (7.8)

where Prt,n is the turbulent Prandtl number in neutral conditions.
Within this framework, the asymptotic relation for our data, Ri = 50Re−1

b , compared

with (7.7), gives (κlc/η)
4/3

≈ 50. For our flow case the non-dimensional Kolmogorov
scale η varies, however figure 9 shows that, within the central region of the channel, it is
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Figure 16. Eddy diffusivity normalised by viscosity kh/ν and flux Richardson number Rf

plotted against buoyancy Reynolds number Reb at z = 0.5 for Cases 3, 4 and 5.

of order η ≈ 5.5×10−3 as the flow approaches neutral conditions. Using a value κ = 0.41
for the von Kármán constant, this gives an estimate of the equivalent confinement scale
in our flow of lc ≈ 0.25, which is the same as the value Chung & Matheou (2012) found
for homogeneous sheared stratified turbulence. Substituting this into (7.8) and using our
value Prt,n = 0.8 gives kh/ν ≈ 60, which is the asymptotic value seen in our data for
Case 3.
In unstratified channel flow the Kolmogorov scale non-dimensionalised by channel

height varies with Reτ according to

η ∼ Re−3/4
τ , (7.9)

so we expect this dependence to be reflected in the asymptotic value of kh/ν. This is
confirmed in figure 16 panel (a), which shows kh/ν plotted against Reb for the Reτ,0 =
225, 360 and 540 cases at a height of z = 0.5. The asymptotic value of kh/ν increases with
Reτ , consistent with a decreasing Kolmogorov scale. The value of Reb at which the flow
transitions away from the linear Osborn relationship kh/ν = ΓReb is also not constant,
but increases with increasing Reτ . Panel (b) demonstrates that the relationship between
Rf and Reb is also Reτ -dependent. Although not shown, a similar Reτ -dependence was
also observed for Ri.
Dividing (7.8) by Reτ gives,

(kh/ν)

Reτ
∼

1

Reτ

(

κlc
η

)4/3

Pr−1
t,n. (7.10)

Rearranging and noting that, in our non-dimensionalisation scheme, (kh/ν)/Reτ ≡
k̃h/(ũτ h̃) ≡ kh gives,

kh ∼

(

κlc

η/Re
−3/4
τ

)4/3

Pr−1
t,n. (7.11)

Equation (7.9) implies that the RHS of (7.11) is a constant. To determine this constant we
consider the Reτ,0 = 540 case shown in figure 15, for which the asymptotic value of kh/ν
was found to be kh/ν ≈ 60. The actual Reynolds number during the later stages of the
simulation is Reτ ≈ 660, which implies an asymptotic value for the non-dimensional eddy
diffusivity kh,c ≈ 0.1. From the analysis above this value should be independent of Reτ .
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Case Reτ,0 Reτ,max λ0 Riτ,0 Pr α0

3 540 660 2 284 0.71 8
4 225 285 2 175 0.71 8
7 360 410 1 64 0.5 8
9 360 410 1 74 0.71 4

Table 3. Simulation parameters for the reduced case set.

The value of kh,c deduced from our results is very similar to the values of approximately
0.09 – 0.1 given by Kim & Moin (1989) for the outer layer of turbulent channel flow at
Reτ ≈ 180 with a passive scalar at Pr between 0.71 and 2.
The analysis above suggests a relationship between kh, Reb and Reτ of the form kh =

f(Reb/Reτ). Hence, we define a parameter

Q =
Reb
Reτ

. (7.12)

In the weakly stratified regime, where k̃h/ν̃ becomes independent of Reb but scales as
k̃h/ν̃ ∼ Reτ , using kh ≡ k̃h/(ν̃Reτ) removes this Reτ -dependence. (For clarity, we have
written k̃h/ν̃ in terms of dimensional variables here. Please note that, within our non-
dimensionalisation scheme, kh/ν ≡ k̃h/ν̃.) In the strongly stratified regime where k̃h/ν̃
scales linearly with Reb and is independent of Reτ , the effect of Reτ within the parameter
Q is removed via cancellation, and the relation is equivalent to the linear Osborn model,

kh ≡
k̃h
ν̃

1

Reτ
= Γ

Reb
Reτ

→
k̃h
ν̃

= ΓReb. (7.13)

Thus, this parameter combines the effect of an externally-imposed vertical confinement
scale h, which constrains turbulent motions in the weakly stratified regime – the “hidden
scale” for bounded flows of Scotti & White (2016) – with the local turbulence parame-
terisation provided by Reb in the strongly stratified regime where the buoyancy scale lO
provides the dominant constraint.
Figure 17 shows relationships between kh, Q, Rf and P/(B + ε) at z = 0.5. Data is

plotted for Cases 3, 4, 7 and 9. As shown in table 3, these cases give a range of each
parameter (Reτ,0 ranging from 225 to 540, λ0 from 1 to 2, Pr from 0.5 to 0.71, α0 from 4
to 8). This reduced set of cases will be used in many of the following figures because it can
be shown more compactly than the full data set while still highlighting any parameter
dependencies. Figure 17 is similar to figures 15 and 14, however here we have plotted
flow parameters against Q rather than Reb and compare results across all parameters.
The data for kh as a function of Q shown in panel (a) collapse convincingly for the

high and low Reynolds number cases (Cases 3 and 4) with this scaling. Given that kh ≡
(kh/ν)/Reτ and the Osborn relationship (7.1) is linear, this relationship is maintained
for low Q, that is,

kh = ΓQ, (7.14)

with Γ = 0.2. The point at which the flow transitions away from the linear regime is
independent of Reτ , with a value of Qtr ≈ 0.15. For Q ' Qtr, kh approaches a single
asymptotic value of kh,c ≈ 0.1, as suggested by the analysis above. This is in contrast
to the scaling of kh/ν with Reb (figure 16) for which the asymptotic value has a strong
dependence on Reτ .
The data for Case 9, in which λ0 = 1 and α0 = 4, compared with λ0 = 2 and α0 = 8
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Figure 17. Relationships between kh, Q, Rf and P/(B + ε) at z = 0.5 for Cases 3, 4, 7 and 9.
The dotted line is Q = Qtr = 0.15.

for Cases 3 and 4, also collapses. λ0 and α0 affect the flow only through their influence
on initial conditions such as vertical gradients of mean velocity and temperature. We
expect this to be accounted for by a local turbulence parameter such as Reb.
While there is quite a lot of scatter in the data, it appears that, for the low Prandtl

number case (Case 7), kh is somewhat higher than the other cases in the very weakly
stratified regime Q ' 5. There also appears to be a Pr-dependence in the relationship
between Rf and Q shown in panel (b) for Q ' 5. Due to its effect on molecular diffusivity,
Pr affects the balance between turbulent and molecular heat fluxes in the flow, which
in turn affects the mean temperature gradient. As a result it is expected to have an
influence on flux and gradient-based parameters.
The dotted lines in each panel show the value Qtr = 0.15 at which kh transitions from

the linear regime governed by the Osborn relation to the non-linear energetic regime. As
with the Reb scaling, Qtr also corresponds to the point at which Rf transitions away
from its critical value of 0.17. At moderate Q in the range 0.2 < Q < 3.5, Rf follows
a −2/3 power law with Rf = 0.07Q−2/3. For Q > 3.5, Rf approaches an inverse linear
relationship of the form Rf = 0.1Q−1. These are analogous to the relationships between
Reb, and Rf discussed above.
Although not shown, similar trends and collapse of the data were observed when Ri
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Figure 18. Normalised total flux F plotted against Q at z = 0.5 for for Cases 1 – 10. The solid
line is F = 0.17Q. The dashed line represents the asymptotic value F = 0.14. The dotted line
is Q = Qtr = 0.15.

is plotted as a function of Q, with Ri = Ric = 0.18 for Qtr / 0.15, and approaching an
inverse linear relationship of the form Ri = 0.08Q−1 for high Q, as expected based on
Ri ≈ PrtRf .
In panel (c) it can be seen that, for Case 3 at the mid-channel height, the flow passes

the transitional value Qtr = 0.15 at time t̂ = 6 which is relatively early in the flow
evolution. Panel (d) shows that local energetic equilibrium is maintained for the entire
destratification process at this height for all cases. These two panels are included primarily
for the purpose of comparison with the near-surface region that will be discussed in § 8.
While kh is important in the context of turbulence modelling, a more relevant param-

eter in our case is the total vertical heat flux, since this flux ultimately determines the
rate at which the channel destratifies. This was demonstrated in § 6 where it was shown
that the rate of change of domain-averaged potential energy Ep is equal to the sum of
the domain-averaged turbulent and molecular buoyancy fluxes, B and M . At a local
level, the heat flux also determines local time evolution of the flow. The total heat flux
through a horizontal layer at height z and time t̂ is given by

F = −σ
∂φ

∂z
+ φ′w′ ≡ −(σ + kh)

∂φ

∂z
. (7.15)



Evolution of thermally stratified turbulent open channel flow 35

0.001 0.01 0.1 1 10 100
0.001

0.01

0.1
k h

z = 0.1
z = 0.3
z = 0.5
z = 0.7
z = 0.9

                                                                (a)

0.001 0.01 0.1 1 10 100

0.001

0.01

0.1

R
f

                                                               (b)

QQ

Figure 19. kh and Rf plotted against Q at various heights for Case 3. In panel (a) the dashed
line is kh = 0.1 and the solid line kh = ΓQ. In panel (b) the dashed line is Rf = 0.17 and the
solid line Rf = 0.1Q−1.

As will be discussed in § 11, it is useful to normalise this flux by the temperature difference
across the channel, ∆φ, to give a normalised total heat flux,

F =
1

∆φ

(

−σ
∂φ

∂z
+ φ′w′

)

, (7.16)

where ∆φ is defined as ∆φ = φ(h)− φ(0).

Figure 18 shows the normalised total flux F plotted against Q for Cases 1 – 10.
Changing the stability parameter of the initial state λ0 results in different initial points in
(Q,F ) space for the initial flow conditions. This indicates that, in the initial equilibrium
flow, F depends on both Q and λ0. After an initial relaxation period, however, the
trajectories converge, so that, in the subsequent stages of the destratifying flow, F

depends only on Q. This is consistent with our argument that λ0 is not a governing
parameter for the destratifying flow. Its effect is confined to the initial conditions and
the relaxation period at the start of the flow evolution (see § 5).

The data in panels (b) and (d) show that F scales with Q, independent of Reτ and
α0. There is however a clear dependence on Pr seen in panel (c). This is consistent with
the Pr-dependence seen in kh and Rf .

Thus it appears that local turbulent mixing in the central region of the channel is a
function of Q and Pr. The fact that the flux parameters F and Rf depend on both Q

and Pr makes intuitive sense, since Q incorporates the effects of turbulent fluctuations,
buoyancy and the large scale mean shear in the channel, while Pr represents the effects
molecular viscosity and thermal diffusivity.

The effect of vertical location within the channel is shown in figure 19, which shows
kh and Rf as functions of Q at various heights across the channel for Case 3. Both kh
and Rf are independent of height in the central region but attenuated in the near wall
and near-surface regions, due to the constraining effects on the turbulent motions of the
nearby boundaries as discussed in § 5. This deviation does not occur for low Q where
the buoyancy length scale is small relative to the distance from the boundary and hence
acts as the dominant constraint.
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8. Relationships between local flow parameters in the near-surface

region

We now consider the near-surface region which, for consistency with our previous
definition of the central region, we define as z = 0.7 − 1. For neutral flow, Hunt &
Graham (1978) and Calmet & Magnaudet (2003) have shown that the depth of the
region affected by the free surface is related to the integral length scale l∞, which they
found to be approximately l∞ ≈ 0.2h. Hunt & Graham (1978) suggest that turbulence
in this region is dissipated by a viscous sublayer at the surface characterised by a length

scale lν that scales according to lν/l∞ ∼ Re
−1/2
∞ , where Re∞ = Ublν/ν. This implies a

Reynolds number dependence for z ' 0.8. Williamson et al. (2015) report a significant
Reynolds number dependence in horizontal turbulence intensity components for both
neutral and stratified cases. In our simulations, the radiative thermal forcing applied to
the initial state flow means that the near-surface region is also the region most strongly
affected by stratification, and, for λ0 > 1, the region above z = 0.8 is essentially laminar
in the initial state at the relatively low values of Reτ investigated in this paper.

Figure 20 shows the same relationships for Cases 3, 4, 7 and 9 as figure 17 except, in
this case, the relationships are plotted at a height of z = 0.9, which is well within the
near-surface region, rather than at z = 0.5.

The relationship between kh and Q in panel (a) shows similar trends to that seen
at z = 0.5, with the Osborn relationship kh = ΓQ maintained for low Q, and kh
approaching kh,c = 0.1 at high Q. The transition value, Qtr,s, is however significantly
lower, with a value of Qtr,s = 0.05 compared to the value, Qtr,c = 0.15, observed across
the central region. (Here we use subscripts ‘s’ and ‘c’ to distinguish between the near-
surface and central regions.) To aid interpretation, these two points are represented on
the graphs as dotted lines. Consistent with the discussion above, there is also a Reynolds
number dependence, with kh for the Reτ,0 = 225 case (Case 4) significantly lower than
for the Reτ,0 = 540 case (Case 3).

The molecular diffusivity σ for the three Reynolds numbers is shown as dot-dashed
lines with the same colour coding as the data points. In all cases the initial state of the
flow has kh << σ at this height, indicating that initially the flow is laminar at this height
according to our definition of laminar in § 5. This is consistent with the discussion above,
and with the flow field visualisations shown in panel (a) of figures 2 and 3. We will refer
to this as the laminar-turbulent transition point, Qlt. The Reτ,0 = 540 case crosses this
laminar-turbulent transition point at Qlt = 0.012, which is also shown on all plots as a
dotted line.

As can be seen in panel (d), the laminar-turbulent transition corresponds to the flow
reaching a state of local energetic equilibrium, which is maintained until Q = Qtr,s = 0.05
after which P/(B + ε) decays. Thus it appears that, in contrast to the situation in the
central region, the transition away from the Osborn linear relation, kh = ΓQ, in the
near-surface region is associated with a transition away from local equilibrium, rather
than a transition to the energetic turbulence regime.

The relationship between Rf and Q shown in panel (b) shows similar trends to that
seen at z = 0.5. The lines of best fit for the data at z = 0.5 are shown as thin lines
on the figure. For low Q, Rf is maintained at the same critical value of Rf,c = 0.17
seen at z = 0.5, before transitioning at Q = Qtr,s to a power law relationship, Rf =
0.035Q−2/3. The coefficient C = 0.035 here is half the coefficient C = 0.07 seen at
z = 0.5, indicating a significant reduction in mixing efficiency. Interestingly, there is no
indication of a transition from the −2/3 power law to a −1 power law as seen in the
central region. Instead the data follow Rf = 0.035Q−2/3 for their entire range. It may
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Figure 20. Relationships between kh, Q, Rf and P/(B + ε) at z = 0.9 for Cases 3, 4, 7
and 9. The dotted lines are Qlt = 0.012 (the laminar-turbulent transition point for Case 3),
Qtr,s = 0.05 for z = 0.9 and Qtr,c = 0.15 for z = 0.5. The dot-dashed lines in panel (a) show
kh = σ. The thin lines in panel (b) show the lines of best fit for the data at z = 0.5.

be that our simulations do not reach high enough Q for this transition to occur. Also in
contrast to the data at z = 0.5, at z = 0.9 a Reynolds number dependence is apparent,
with Rf lower for the Reτ,0 = 225 case (Case 4).
As can be seen from panel (c), for Case 3 the turbulent transition point, Qlt = 0.012,

corresponds to a time t̂ ≈ 2.5, while Qtr,s and Qt,c correspond to t̂ = 8 and t̂ =
10.5 respectively. Referring to the flow field visualisations in figures 2 and 3, at t̂ =
1.5 the region of intense shear production associated with the initial flow relaxation is
approaching z = 0.9. By t̂ = 3 the flow in the region surrounding z = 0.9 contains the
distinctive Kelvin-Helmholtz-like shear instabilities that persist through to the images at
t̂ = 7. From panel (d) it is seen that the period t̂ = 2.5−8 is the period in which the flow
at z = 0.9 is in local equilibrium. After t̂ = 8 local equilibrium conditions break down in
the near-surface region. The visualisations at t̂ = 9 show that the K-H-like instabilities
have almost disappeared by this time.
As with the central region, a Prandtl number dependence is seen in the weakly stratified

regime for both kh and Rf at this height.
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Figure 21. Normalised total flux F plotted against Q at z = 0.9 for Cases 3, 4, 7 and 9. The
solid line is F = 0.1Q1/2. The dashed line represents the asymptotic value F = 0.05. The
dotted line is Q = Qtr = 0.15.

Figure 21 shows the normalised total flux F as a function of Q for Cases 3, 4, 7 and 9
at a height of z = 0.9. With regard to parameter dependence, the dependence on Pr seen
at z = 0.5 is not apparent at z = 0.9. Similarly the dependence on λ0 in the initial state
and early relaxation period is less distinct. There may be a dependence on Reτ in the late
stages of the flow evolution with a slight reduction in F with Reτ apparent, although
the large scatter in the Reτ,0 = 225 data makes this impossible to state with certainty.
This would be consistent with the trends seen in kh in figure 20, although varying Reτ
could also result in a change in the mean temperature gradient ∂φ/∂z that could offset
a variation in kh.
We conclude that at z = 0.9 the heat flux is primarily dependent on Q with a possible

dependence on Reτ due to a reduction in kh due to the effect of proximity to the surface.
At higher Reynolds numbers this effect would diminish as the viscous length scale lν in
the near-surface region decreases.

9. Monin-Obukhov similarity scaling

Given that we have shown that the turbulence dynamics in our flow can be described in
terms of Q, and that this parameter is functionally similar to the inverse of an Obuhkov
stability parameter, it is interesting to compare our results with classical Monin-Obukhov
theory. Monin-Obukhov (M-O) similarity scaling (Monin 1970) was originally developed
to describe exchange processes in the surface layer of the atmospheric boundary layer
and has been widely used to describe both stable and unstable atmospheric boundary
layers Foken (2006). The theory proposes a universal length scale,

L =
u3
τ

κbs
, (9.1)

where bs is the surface buoyancy flux. The Monin-Obukhov length scale, L, is the scale
above which buoyancy is strongly felt, and is hence related to the Ozimidov scale. Velocity
and temperature profiles within the surface layer are then written as universal functions
of a stability parameter ζ = z/L where z is the height above the bottom solid surface.
Here z acts as a confinement scale that places a limit on the maximum size of turbulent
eddies. Turbulence is significantly affected by buoyancy effects for ζ > 1.
Recently, Monin-Obukhov theory has also been extended to characterise turbulence in

homogeneous stratified shear flows (Chung & Matheou 2012) and stratified plane Couette
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flows (Deusebio et al. 2015; Zhou et al. 2017). As described in § 2, a modified Obukhov
length scale L forms the basis of the parameter λ = h/L used in Williamson et al.

(2015) and the current work to characterise buoyancy effects in the equilibrium state of
stably stratified channel flow with an internal heat source.
The original Monin-Obukhov theory was developed for the situation in which turbulent

fluxes of momentum and heat are constant, as occurs in the atmospheric surface layer.
As described by Zhou et al. (2017), these fluxes are also approximately constant in the
central region of stratified plane Couette flow. Based on this, they developed a number of
scalings for turbulence parameters as functions of L. As seen from the vertical profiles of
turbulent fluxes shown in figure 6 panels (d) and (e), our flow does not have a constant
flux region, however, in the region z = 0.5 − 0.7 the vertical gradient of 〈φ′w′〉 is small
due to the turning point in this profile, while the vertical gradient of 〈u′w′〉 is modest.
Flores & Riley (2011) showed that the Obukhov length scale normalised by the viscous

length scale,

L+ =
L

δν
, (9.2)

defines the intermittency boundary for stably stratified boundary layers. Here δν = ν/uτ .
For L+ / 100, turbulence becomes laminar with turbulent patches. Deusebio et al. (2015)
found the intermittency boundary to be L+ ≈ 200 for stratified plane Couette flow.
Using scaling analysis, Zhou et al. (2017) show that

Reb ∼ κ
lh
lm

uτL

ν
= κ

lh
lm

L+. (9.3)

Here lm and lh are mixing lengths for momentum and temperature respectively and their
ratio is equal to the turbulent Prandt number, lm/lh = Prt, giving

Reb ∼ κPr−1
t L+. (9.4)

Scotti & White (2016) use similar arguments to derive

Reb ∼ κ(1−Rif)L
+. (9.5)

Given κ, Prt and 1−Rif are close to unity, these scalings imply

Reb
L+

≈ O(1). (9.6)

Arguing that Prt ≈ 1, Zhou et al. (2017) compare Reb with L+ for their DNS data and
demonstrate that the data collapses reasonably well to the linear relationship Reb = κL+

over a wide range for Reynolds, Richardson and Prandtl numbers.
In our flow both boundaries are adiabatic and there is no internal heat source. In

order to define an Obukhov length scale we use the maximum of the layer averaged total
downwards buoyancy flux at a given time, that is,

bmax(t̂) = Max

(

γ

[

σ
∂〈φ〉

∂z
− 〈φ′w′〉

])

, (9.7)

so that

L =
u3
τ

κbmax
, (9.8)

and

L+ =
Luτ

ν
=

L

h
Reτ . (9.9)
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Figure 22. Monin-Obukhov scalings for Reb and Q for Cases 3, 4, 7, 9 at a height of z = 0.6. The
solid line in panel (a) is Reb = 0.25κPr−1

t L+. The solid line in panel (b) is Q = 0.25κPr−1
t ζ−1

h .

Figure 22 panel (a) shows Reb plotted against κPr−1
t L+ at a height of z = 0.6,

comparing our DNS results with the scaling (9.4) of Zhou et al. (2017). (The scaling
of Scotti & White (2016) in (9.5) gives similar trends.) Data is plotted for our reduced
parameter set: Cases 3, 4, 7 and 9.
The height z = 0.6 was chosen because it is in the middle of the region z = 0.5− 0.7

in which our flow approximates a constant flux layer. In contrast to Zhou et al. (2017),
we have included the factor Pr−1

t because, in our flow, Prt changes over time. After
the initial relaxation period the data collapse to a linear relationship of the form Reb =
0.25κPr−1

t L+.
An equivalent scaling for Q is derived by dividing (9.4) by Reτ and combining with

(9.9) to give,

Q =
Reb
Reτ

∼ κPr−1
t

L

h
. (9.10)

The ratio of the channel height to the Obukhov length h/L is equivalent to the Obukhov
stability parameter calculated with respect to the height of the channel, so we will refer
to it as ζh = h/L, giving,

Q = κPr−1
t ζ−1

h . (9.11)

The stability parameter ζh represents the ratio of the large scale motions in the channel
relative to the Obukhov length scale and hence characterises the stability of the channel
as a whole. It is analogous to λ for the heated equilibrium flow. The relation in (9.11)
highlights the nature of Q, as representing a ratio of buoyancy and inertial length scales.
Figure 22 panel (b) shows our DNS data for Q plotted against κPr−1

t ζ−1
h at a height of

z = 0.6. The solid line is Q = 0.25κPr−1
t ζ−1

h which represents the scaling (9.11). Again,
the data collapse well to this scaling.
Monin-Obukhov theory gives a functional form for Ri in terms of ζ as,

Ri = ζΦh/Φ
2
m, (9.12)

where Φh(ζ) and Φm(ζ) are the M-O stability functions, which must be determined
empirically. A number of different fits to atmospheric field data have been proposed. We
adopt the commonly-used relations of Dyer (1974), which, for stable stratification are,

Φm = Φh = 1 + 5ζ. (9.13)
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Figure 23. Monin-Obukhov scaling for Ri and Frh for Cases 3, 4, 7, 9 at a height of z = 0.6.
The solid line in panel (a) is (9.12) with stability functions given in (9.13). The solid line in

panel (b) is Frh = 0.5Ri−1/2.

Figure 23 panel (a) shows Ri plotted against ζ for Cases 3, 4, 7 and 9 at a height of
z = 0.6. The solid line is (9.12) with stability functions given in (9.13). Our data fit the
Monin-Obukhov scaling remarkably well, especially for the high Reynolds number case
(Case 3).
Another parameter commonly used to describe stably stratified turbulence is the

horizontal turbulent Froude number, Frh = ε/(Nu2
h) where uh is a turbulent horizontal

velocity scale (see Brethouwer et al. 2007, for example). Zhou et al. (2017) show that for
stratified plane Couette flow,

Frh ∼
ε

Nu2
τ

, (9.14)

and then use Monin-Obukhov scalings to derive

Fr2h ∼ κ
lh
l2m

L = Ri. (9.15)

Figure 23 panel (b) shows Frh calculated using (9.14) as a function of Ri for Cases 3,
4, 7, 9 at a height of z = 0.6. The solid line is Frh = 0.5Ri−1/2. Our data fit the scaling
well for Ri < Ric = 0.18.
As discussed above, our channel flow does not have a constant flux layer, so relation-

ships in terms of bulk Obukhov scales are not expected to be independent of height across
a substantial portion of the channel. An alternative is to use a local Obukhov scaling.
Based on analysis of the budgets of turbulent kinetic energy and temperature variance,
Nieuwstadt (1984) derived a local Obukhov length scale,

Λ(z) =
1

κ

u′w′
3/2

b′w′
, (9.16)

where b′w′ is the buoyancy flux through a horizontal layer, and showed that this length
scale can be used to characterise atmospheric turbulence outside the surface layer. This
length scale can be used to form a Reynolds number,

ReΛ(z) = Λ
u′w′

1/2

ν
, (9.17)

which is the local equivalent of L+. Using an assumption of local energetic equilibrium,
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Figure 24. Local Monin-Obukhov scaling for Reb in terms of ReΛ. Panel (a) shows data for
Cases 3, 4, 7 and 9 at a height of z = 0.6. Panel (b) shows data for Case 3 at various heights.
The solid lines are Reb = κPr−1

t (1−Rf )ReΛ.

Williamson et al. (2015) show that

Reb ≈ κPr−1
t (1−Rf )ReΛ. (9.18)

Figure 24 shows Reb as a function of κPr−1
t (1−Rf)ReΛ. Panel (a) shows data for Cases

3, 4, 7 and 9 at a height of z = 0.6, while panel (b) shows data for Case 3 at various
heights. The data for all cases collapse convincingly with this scaling. The results are
also independent of z for z = 0.3 − 0.7. At z = 0.9 the data follow the scaling up to
Reb ≈ 100 but then diverge. As seen in § 8, Reb ≈ 100 corresponds to the point in the
flow evolution where the flow moves away from local equilibrium at this height, so that
the assumptions underlying the derivation of (9.18) no longer hold.

10. Relationships between local flow parameters and friction

Richardson number

For channel flow it is useful to find relationships between local flow parameters and
bulk flow parameters since bulk parameters are often what is measured in field studies or
predicted by large scale models. By analogy to the gradient Richardson number Ri, the
friction Richardson number Riτ can be interpreted as the ratio of the mean buoyancy
gradient in the channel to the mean shear at the wall, that is,

Riτ =
γ∆φ

h
/
(uτ

h

)2

. (10.1)

As such, it is a bulk measure of the strength of stratification within the channel relative
to the shear.
Figure 25 shows Q, Rf , kh and F plotted against Riτ at z = 0.5 for Cases 3, 4, 7

and 9. The short initial “ramps” seen in the trajectories where the data do not collapse
correspond to the early stage in which the flow relaxes in response to sudden removal
of the heat source. As discussed above, during this early period the flow is also affected
by the value of the stability parameter λ0 for the initial state. Excluding the ramps, the
data for each of the parameters collapses convincingly when plotted against Riτ .
In panel (a) it can be seen that Q follows relationships of the form

Q = CRinτ (10.2)
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Figure 25. Q, Rf , kh and F plotted against Riτ at z = 0.5 for Cases 3, 4, 7 and 9. In panel (a)

the dashed line is Q = 3Ri
−2/3
τ and the solid line Q = 3.3Ri−1

τ . In panel (b) the dashed line is
Rf = Rf,c = 0.17 and the solid line Rf = 0.04Riτ . In panel (c) the dashed line is kh = kh,c = 0.1

and the solid line kh = 0.65Ri
−2/3
τ . In panel (d) the dashed line is F = 0.14, the dot-dashed

line F = 0.1Ri
−1/8
τ and the solid line F = 0.28Ri

−1/2
τ . The dotted lines in panels (a) and (c)

correspond to Riτ = 100 and Q = Qtr = 0.15. The dotted lines in panel (d) represent Riτ = 15
and Riτ = 0.06. Note that the values of Riτ are plotted from highest to lowest.

where the exponent n = −2/3 for Riτ > 2 and −1 for Riτ < 2. Thus there is clearly
a close relationship between the local parameter Q, which has been found above be a
dominant parameter governing local turbulence dynamics, and the bulk parameter Riτ .
At this height in the channel the dotted line representing Qtr = 0.15 intersects the data at
approximately Riτ = 100. Thus the transition away from the linear Osborn relationship,
kh = ΓQ, occurs for Riτ > 100 at this height.

The Q = Ri−1
τ power law for the very weakly stratified regime (Riτ < 2) can be

explained with the following scaling argument. Expanding Q gives,

Q =
Reb
Reτ

=
ε

νN2

ν

uτh
=

ε

uτN2h
. (10.3)

Buoyancy frequency scales with the average buoyancy gradient across the channel N2 ∼
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Figure 26. Q and F plotted against Riτ at various heights for Case 3. The lines are the same
as those given in figure 25 and represent the best fit to the data at z = 0.5.

γ∆φ/h, and for weakly stratified flow ε ∼ u3
τ/h, which gives,

Q ∼
u2
τ

γ∆φh
= Ri−1

τ . (10.4)

The relationship between Rf and Riτ shown in panel (b) is qualitatively similar to
the relationship between Rf and Q shown in figure 17 and approaches a power law
relationship Rf = 0.035Riτ for small Riτ . This is consistent with the fact that Rf was
found to approach an asymptotic relationship of the form and Rf ∼ Q−1 for large Q,
while from panel (a), Q ∼ Ri−1

τ for small Riτ . The transition towards this relationship

is gentler in the case of Rf and Riτ due to the fact that Q ∼ Ri
−2/3
τ for Riτ > 2. The

linear relationship between Rf and Riτ implies that local fluxes and large scale gradients
approach a linear relationship as the stratification becomes very weak.
The relationship between kh and Riτ shown in panel (c) is similar to the relationship

between kh and Q shown in figure 17. For Riτ > 100 (that is the linear Osborn region,

Q < Qtr = 0.15) it follows a power law relationship, kh = 0.65Ri
−2/3
τ , which is consistent

with the combination of kh ∼ Q and Q ∼ Ri
−2/3
τ .

The data for F shown in panel (d) follow similar trends to that of kh. Here we have
delineated two regions. For Riτ > 15, data for F fits well to the relationship F =

0.28Ri
−1/2
τ . For Riτ < 15, F follows the relationship F = 0.1Ri

−1/8
τ as it approaches

its asymptotic value of F = 0.14. These two functions intersect at Riτ = 0.06.
Consistent with the results presented in § 7, the relationships between the local

parameters kh, Rf , F and Q and the bulk parameter Riτ appear to be independent of
Reτ , λ0 and α0, while there is a dependence of kh, Rf and F on Pr in the very weakly
stratified regime (Riτ < 2). The relationship between Q and Riτ , however, appears to
be independent of Pr. This is consistent with the scaling argument presented in (10.3)
to (10.4) above.
Since Riτ is a bulk parameter, the relationships between local parameters and Riτ

are not independent of height within the channel. This can be seen in figure 26, which
shows Q and F plotted against Riτ at various heights across the channel for Case 3. The
curves of Q shown in panel (a) show a monotonic decrease in Q with height from z = 0.3
to z = 0.9. In the central region of the channel (0.3 < z < 0.7) the curves of Q follow
similar gradients, indicating that the exponent remains unchanged in this region. In the



Evolution of thermally stratified turbulent open channel flow 45

near-surface region at z = 0.9 the exponents in the power law relationship are somewhat
higher. The curves for F shown in panel (b) are of particular interest in the context of
the destratification of the flow. The rate of change of temperature in a horizontal layer
is equal to the flux divergence, or ∂F/∂z. Thus the difference between the F (z,Riτ )
curves for two different heights gives an indication of the rate of change of temperature
in the layer between those two heights relative to the bulk temperature difference across
the channel at that time.

11. Destratification rate

The finding in the previous section that the vertical heat flux F scales with Riτ
suggests that the bulk destratification rate in the channel should also be related to Riτ .
Noting that the flow is horizontally homogeneous, the energy equation, (2.25), can be
averaged in x − y planes to give an equation for the rate of change of the horizontally-
averaged temperature,

∂φ

∂t
= σ

∂2φ

∂z2
−

∂(φ′w′)

∂z
. (11.1)

As with the full set of governing equations, (2.23) to (2.25), due to the fact that
dependent variables here are non-dimensionalised in terms of the time-varying friction
velocity uτ , this equation cannot be integrated in time. It does however give a function for
the time rate of change, ∂φ/∂t, relative to a characteristic friction time-scale, t̃τ = h̃/ũτ ,
determined from flow conditions at a particular instant in “measured time”, t̂. Thus, t
is used only within differentials ∂t and dt, while t̂ refers to the point in time within the
process at which the particular set of flow conditions occur.

The first term on the right hand side of (11.1) represents molecular diffusion, while the
second term is the turbulent heat flux, which, as noted above, can be modelled in terms
of the turbulent diffusivity kh and the temperature gradient to give

∂φ

∂t
=

∂

∂z

(

[

σ + kh(z, t̂)
] ∂φ

∂z

)

. (11.2)

Defining the total diffusivity as kt(z, t̂) = σ + kh(z, t̂) gives,

∂φ

∂t
=

∂

∂z

(

kt(z, t̂)
∂φ

∂z

)

. (11.3)

This is a one dimensional heat diffusion equation for which we require a solution subject
to adiabatic boundary conditions, ∂φ/∂z = 0 at z = 0 and 1, and the temperature
profile at a particular time t̂ (see figure 6). Dimensional analysis indicates that the rate
of change of the temperature difference across the channel ∆φ at time t̂ is characterised
by a diffusion time scale of the form,

td(t̂) =
k∗(t̂)

h2
, (11.4)

where k∗(t̂) is a representative diffusivity across the channel at time t̂. This gives an
equation for the destratification rate,

d(∆φ)

dt
= −k∗(t̂)

∆φ

h2
. (11.5)
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We define a normalised destratification rate as,

D(t̂) = −
1

∆φ(t̂)

d(∆φ(t̂))

dt
. (11.6)

Combining this with (11.5), gives

D(t̂) = k∗(t̂)/h
2. (11.7)

Clearly the representative diffusivity k∗(t̂) must be a function of kt(z, t̂), however, because
kt(z, t̂) varies with z, and sits within the outer differentiation operator ∂/∂z(·) in (11.3),
it will also be a function of the temperature gradient profile ∂φ(z, t̂)/∂z.
In order to investigate this relationship more closely we recast the horizontally-averaged

energy equation (11.1) in terms of the total heat flux through a horizontal layer at height
z, defined in § 7 as

F = −σ
∂φ

∂z
+ φ′w′ ≡ −kt

∂φ

∂z
. (11.8)

Substituting into (11.1) gives,

∂φ(z, t̂)

∂t
= −

∂F (z, t̂)

∂z
, (11.9)

and then differentiating both sides with respect to z gives,

∂2φ(z, t̂)

∂z∂t
= −

∂2F (z, t̂)

∂z2
. (11.10)

Integrating this expression across the channel,

d

dt

∫ h

0

∂φ(z, t̂)

∂z
dz = −

∫ h

0

∂2F (z, t̂)

∂z2
dz, (11.11)

gives

d(∆φ)

dt
(t̂) = −

1

h

∫ h

0

∂2F (z, t̂)

∂z2
dz, (11.12)

which can be recast in terms of D and F as,

D(t̂) =
1

h

∫ h

0

∂2F (z, t̂)

∂z2
dz. (11.13)

Figure 27 shows vertical profiles of 〈φ〉, F , ∂F/∂z and ∂2F/∂z2 for Case 3. Here, like
〈φ〉, the fluxes were averaged over one time unit as well as horizontal planes in order to
improve convergence of statistics, as was done for the vertical profiles presented in § 5.
For convenience the angled brackets are not shown. These profiles give an overview of
the mechanics of the destratification process from the prespective of horizontal layers.
Panel (a) shows that the height z ≈ 0.65 represents a nodal plane for the process.

Above this height the temperature 〈φ〉 decreases with time, while below this height the
temperature increases. The temperature at z ≈ 0.65 remains constant.
The total heat flux F shown in panel (b) is downwards across the entire channel, with

heat being transferred down the temperature gradient.
As noted above, the flux divergence, ∂F/∂z, shown in panel (c) is equal to the time

rate of change of temperature at a given horizontal layer, ∂φ/∂t. This panel shows that
the layers close to the surface generally have the highest rate of temperature change and
that this rate of change decreases with time.
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Figure 27. Destratification profiles for Case 3. Legend as for figure 6.

The profile at t̂ = 0 also represents the flux divergence profile for the heated equilibrium
state. Here the heated equilibrium flow is statistically stationary so ∂φ(z, t̂)/∂t = 0 and
the flux divergence balances the radiative heat source. As a result, the profile of ∂F/∂z
is exponential matching the Beer-Lambert law.
The profile of ∂2F/∂z2 is shown in panel (d). As this is a second derivative and there

is limited scope for averaging in the time evolving flow, the raw profile is very noisy. We
have filtered this noise by applying a thirty point running average so that the trends can
be seen. Consequently, data is truncated close to the top and bottom of the channel.
As discussed above, the representative diffusivity k∗(t̂) and destratification rate D(t̂) at

time t̂ are equal to the integral of ∂2F/∂z2 across the channel divided by ∆φ(t̂). Thus the
profile of ∂2F/∂z2 gives an indication of the regions of the channel that make the most
significant contributions to k∗(t̂) and D(t̂). The profiles indicate that, for most of the
destratification process, the region above z = 0.3 makes the most significant contribution,
while the region close to the lower wall boundary makes only a very small contribution.
The dominant contribution comes from the region z = 0.6− 0.9.
In previous sections we have shown that in the central region, z = 0.3 − 0.7, F is a

function of Riτ and Pr, while in the near-surface region (at least up to z = 0.9) it is a
function of Riτ only. From (11.13) it is clear that the normalised destratification rate D

is a function of F . Thus we expect D also to be a function of Riτ and Pr.
Figure 28 shows the normalised destratification rate D as a function of Riτ for all

simulation cases. Apart from the initial ramps that correspond to the early relaxation
period, the data collapse well for all cases. The Prandtl number dependence seen in F

is reflected in D , with higher destratification rates at lower Pr in the weakly stratified
regime.
Based on this we suggest the following empirical power-law approximations to the data

over three ranges:

D = 1.1; Riτ < 0.06, (11.14)

D = 0.78Ri−1/8
τ ; 0.06 6 Riτ 6 15, (11.15)

D = 2.1Ri−1/2
τ ; Riτ > 15. (11.16)

As expected, there are clear similarities in the relationship between D and Riτ and that
between F (z, t̂) and Riτ shown in figure 25. The exponents in the power law relations
and the values of the transitional values of Riτ are the same. Clearly the range of data for
Riτ < 0.06 is very limited. The value of D = 1.1 given for this range was determined using
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Figure 28. Normalised destratification rate D plotted against Riτ for Cases 1 – 10. The solid

line is D = 1.1, the dot-dashed line D = 0.78Ri
−1/8
τ , and the dashed line D = 2.1Ri

−1/2
τ .

Case 11 in which λ0 = 0 and hence Riτ = 0. For this case the average destratification
rate was found to be 1.1. These relations do not include any dependence on Prandtl
number. Accurate determination of such a dependence would require simulations over a
larger Pr range and is left to a future study.

12. Concluding remarks

This paper has presented a study of destratification of thermally stratified open channel
flow after removal of the heat source. The radiative heat source in the initial heated
equilibrium state acts as a sink for potential energy and is in balance with turbulent
kinetic energy generated by shear within the channel. This leads to a flow in which
turbulence in the central region of the channel is in a state of energetic equilibrium, with
shear production balanced by viscous dissipation and buoyancy flux.
Stable stratification due to the heat source reduces turbulent momentum fluxes. Due

to the exponential nature of the heat source, this effect is most pronounced close to the
upper surface. As a result, a laminar surface layer forms close to the top of the channel
leading to a strongly inflected mean velocity profile and associated shear layer in this
region. Due to the inflected velocity profile, the stratified flow contains a surplus of mean
flow kinetic energy relative to a neutral flow with the same streamwise pressure gradient.
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Sudden removal of the heat source leads to a change in the energy balance within
the channel. As a result, energy transfers must readjust to the new conditions. The
flow undergoes an initial relaxation period during which the laminar layer close to the
surface destabilises driving a rapid transition to turbulence. The resultant increase in
shear production opens up a pathway by which energy is transferred from mean flow
kinetic energy to the turbulent kinetic energy field, and from there via reversible and
irreversible buoyancy fluxes into background potential energy. For the remainder of the
destratification process energy transfers along this pathway are approximately in balance
and the region of energetic equilibrium seen in the initial state extends up close to the
surface before gradually contracting again as the process proceeds.

We proposed the following explanation for the rapid destabilisation of the laminar
surface layer seen during the initial relaxation period. In the initial state the potential
energy sink provides an extra stabilising influence on the laminar surface layer by
absorbing small perturbations before they are able to grow and become unstable. As
a result, the lower section of this layer has a gradient Richardson number that is well
below the critical gradient Richardson number Rim = 1/4 determined by Howland et al.

(2018) for marginal stability of an unheated fluid layer with respect to Kelvin-Helmholtz
instabilities. Removal of the heat source results in the lower section of the laminar surface
layer suddenly becoming unstable to small perturbations, leading to the rapid formation
of K-H-like instabilities.

This proposed mechanism is supported by visualisations of the flow, which show that a
layer of intense Kelvin-Helmholtz-like shear instabilities forms within this region during
the initial stages of the flow evolution. Quantitative evidence is seen in a localised increase
in flux Richardson number in this layer and as well as an increase in available potential
energy, both of which are have been found by authors such as Winters et al. (1995) to
be associated with Kelvin-Helmholtz instabilities. The enhanced mixing efficiency due
to the K-H-like instabilities causes vigorous entrainment of the overlying laminar layers
leading to a rapid transition to turbulence up to the top of the channel.

The central region of the channel, 0.3 / z / 0.7, remains in energetic equilibrium until
late in the destratification process. In this region the flow exhibits behaviour similar
to that seen in homogeneous stratified shear flow. For low Reb, the normalised eddy
diffusivity kh/ν ≡ k̃h/ν̃ scales linearly with Reb, kh/ν = ΓReb where Γ = 0.2, in
accordance with the model of Osborn (1980). For high Reb, kh/ν approaches asymptotic

values that are consistent with the scaling relationship kh/ν ≈ (κlc/η)
4/3 Pr−1

t,n derived
by Chung & Matheou (2012) for homogeneous stratified shear flow. These relationships
are, however, dependent on Reτ .

For channel flow, since η scales with Reτ , this asymptotic value varies with Reτ .
From the scaling relationship of Chung & Matheou (2012) above, we show that this
effect can be accounted for by reformulating the relations in terms of a non-dimensional
eddy diffusivity kh ≡ k̃h/(ũτ h̃) and a non-dimensional parameter, Q ≡ Reb/Reτ . This
scaling gives the correct dependence of kh/ν on Reτ in the weakly stratified regime
(Q >> Qtr = 0.15), approaching a single asymptotic value kh,c ≈ 0.1, while reverting
to the Reτ -independent linear Osborn model, kh = ΓQ, in strongly stratified conditions
(Q / Qtr = 0.15).

Using Q also accounts for Reτ effects on other local parameters such as the flux
Richardson number Rf and gradient Richardson number Ri. For strongly stratified
conditions, Q < 0.15, Rf remains constant at a critical value of Rf,c ≈ 0.17, while for
very weakly stratified conditions it approaches an inverse linear relation, Rf = 0.1Q−1.
The exponent here differs from the exponent n = −1/2 to −2/3 commonly reported
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for geophysical flows, however it is consistent with the theoretical analysis of Scotti &
White (2016), who demonstrate that there is no justification for a universal relationship
between Rf and Reb. In the context of bounded flows, Rf must also be affected by the
externally-imposed confinement scale, with this effect becoming more dominant as the
ratio of buoyancy length scale to confinement scale increases.
Within the central region of the channel all these relationships are shown to be

independent of height as well as the parameters Reτ , λ0, and α0. The data do however
indicate a dependence on Pr in the weakly stratified regime. We suggest that this is due
to the effect of Pr on the ratio between turbulent and viscous heat fluxes and the mean
vertical temperature gradient within the channel.
We also investigated these parameter relationships in upper region of the channel,

0.7 / z / 1. At a height, z = 0.9, qualitatively similar relationships are observed to
those seen in the central region, however kh and Rf are reduced as a result of constraints
imposed on turbulent motions due to the proximity to the surface. Nevertheless, kh and
Rf are found to scale with Q independent of λ0, and α0. As expected there is however
some dependence on Reτ and Pr in this region as viscous effects become important.
Given that the overarching aim of this paper is to determine the destratification rate,

we defined a normalised total heat flux, F = F/∆φ, where ∆φ is the temperature
difference across the channel and F the sum of the turbulent and molecular heat fluxes.
This flux also scales with Q and exhibits a Prandtl number dependence in a manner
similar to kh.
As described by Williamson et al. (2015), the stability of the heated equilibrium flow

is governed by a parameter λ0 formed as the ratio of the channel height h to an Obukhov
length scale L based on the radiative heat source. In the destratifying flow there is no
heat source and the flow is evolving in time. We found, however, that an Obukhov length
scale formed using the friction velocity uτ and the maximum total buoyancy flux in the
channel at a given time is useful in describing local turbulence. We compared our data
to a variety of scalings based on Monin-Obukhov theory and found good agreement with
these scalings.
Williamson et al. (2015) show that the equilibrium flow is governed by four parameters,

Reτ,0, λ0, Pr and α0. For the destratifying flow in which the heat source is removed, λ0

no longer determines the stability of the flow. Given the similarity in form between λ0

and a friction Richardson number Riτ , we proposed that Riτ can be used to describe the
stability of the destratifying flow. Analysis of our DNS data shows that this is indeed the
case, with local turbulence quantities Q, kh, Rf and F scaling with Riτ , independent
of Reτ , λ0 and α0. Again, there is a small dependence on Pr in the weakly stratified
regime. Noting that, within the context of our non-dimensionalisation scheme, Q and kh
have an implicit dependence on Reτ , we conclude that the destratifying flow is governed
by bulk parameters Riτ , Reτ and Pr, with λ0 and α0 having an effect only through the
initial conditions and during the brief initial relaxation period.
Finally, based on these relationships we used scaling analysis to show that the bulk

destratification rate D in the channel is expected to be a function of Riτ and Pr. Our
DNS data indicate that this is indeed the case. Based on this data we have determined
approximations to this function in the form of power law relationships, D ≈ CRi−n

τ .
Given the small range of Prandtl numbers used in this study we have not been able

to determine a scaling relationship for this parameter. We can, however, state that
destratification rate decreases with increasing Pr. A quantitative scaling relationship
might be determined through a future study in which simulations or experiments are
performed over a larger range of Pr.
Similarly, whilst a dependence of destratification rate on Reynolds number is not
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apparent in our results, again, these results are for a small range of relatively low Reynolds
numbers. The Reynolds number of typical stratified river flows is significantly higher
(Reτ = O(10, 000)), so even a small Reynolds number dependence would have an effect.
Thus, before using the destratification scaling relationship proposed here for predicting

destratification in rivers, it is necessary to first assess its validity against field or experi-
mental measurements taken at values of Reτ and Pr comparable with actual thermally
stratified river flows.
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Appendix A

This appendix discusses our approach for dealing with a time varying coefficient of
friction.
As the flow destratifies, changes in the balance between turbulent and laminar shear

stresses within the channel result in the mean velocity profile evolving from an initial
inflected profile towards a non-inflected neutral boundary layer profile. This leads to an
increase in the coefficient of friction, Cf = 2(ũτ/Ũb)

2.
Because our simulations are driven by a constant pressure gradient, this change in Cf

leads to an increase in the actual friction velocity ûτ (t̂) measured at the bottom boundary
in the simulations. Here ·̂ is used to refer to the actual value of a variable measured in
the simulation. The increased wall shear stress then decelerates the flow leading to a
decrease in the bulk velocity. Eventually ûτ decreases again towards a value of unity that
is in balance with the applied pressure gradient. The increase in ûτ depends primarily
on λ0, reaching peak values of approximately 1.06, 1.11 and 1.23 for the λ0 = 0.5, 1 and
2 cases respectively.
Whilst in our simulations the channel height ĥ remains constant at ĥ = h0, in a physical

channel flow the height of the fluid in the channel will typically also vary in response to
a change in Cf , so we have included the possiblity of time-varying ĥ(t̂) explicitly in our
formulation to allow comparison with physical flows.
The governing equations given in § 2.2 are non-dimensionalised in terms of the time

varying length scale h̃(t̃) and velocity scale ũτ (t̃), and the temperature scale associated
with the initial equilibrium state Φ̃N,0. Due to the time varying scales, these equations
cannot actually be solved directly. Instead we solve the set of equations with length and
velocity scales frozen at their initial values, that is,

∂ûj

∂x̂j
= 0, (A 1)

∂ûi

∂t̂
+

∂ûiûj

∂x̂j
= −

∂p̂

∂x̂i
+ ν̂

∂2ûi

∂x̂2
j

+ δi1 + γ̂φ̂δi3, (A 2)

∂φ̂

∂t̂
+

∂φ̂ûj

∂x̂j
= σ̂

∂2φ̂

∂x̂2
j

. (A 3)
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The variables in the above equations are normalised with respect to the friction velocity
ũτ,0, characteristic temperature Φ̃N,0, and channel height h̃0 of the initial state, that is:

û =
ũ

ũτ,0
, φ̂ =

φ̃

Φ̃N,0

, p̂ =
p̃

ρ̃0ũ2
τ,0

x̂ =
x̃

h̃0

, t̂ =
ũτ,0

h̃0

t̃, (A 4)

ν̂ =
ν̃

ũτ,0h̃0

≡
1

Reτ,0
, σ̂ =

σ̃

ũτ,0h̃0

≡
1

Reτ,0Pr
, γ̂ =

β̃g̃Φ̃N,0h̃0

ũ2
τ,0

.

In order to recover the solution to equations (2.23) to (2.25) formulated in terms of
time varying h̃(t̃) and velocity scale ũτ (t̃), we renormalise the solution according to the
following scheme:

u =
û

ûτ (t̂)
, φ = φ̂, p =

p̂

û2
τ (t̂)

, x =
x̂

ĥ(t̂)
, ∂t =

ûτ (t̂)∂t̂

ĥ(t̂)
, t̂ = t̂, (A 5)

ν =
ν̂

ûτ (t̂)ĥ(t̂)
, σ =

σ̂

ûτ (t̂)ĥ(t̂)
, γ =

ĥ(t̂)γ̂

û2
τ (t̂)

.

This renormalisation scheme is derived by redimensionalising equations (A 1) – (A 3)
and then non-dimensionalising them again in terms of the time varying scales h̃(t̃) and
ũτ (t̃). For (A 1) and (A3) this is equivalent to multiplying through by a factor

ũτ,0

h̃0

h̃(t̃)

ũτ (t̃)
≡

ĥ(t̂)

ûτ (t̂)
, (A 6)

while for (A 2) the transformation requires multiplication by

ũ2
τ,0

h̃0

h̃(t̃)

ũ2
τ (t̃)

≡
ĥ(t̂)

û2
τ (t̂)

. (A 7)

This results in the governing equations formulated in terms of the time varying h̃(t̃) and
velocity scale ũτ (t̃) given in (2.23) to (2.25).
Note that multiplication of the equations in this fashion implies a renormalisation of

the time differential ∂t only, as shown in (A 5), since,

∂t =
ûτ (t̂)

ĥ(t̂)
∂t̂ 6= ∂

(

ûτ (t̂)

ĥ(t̂)
t̂

)

. (A 8)

As a result, we can interpret our renormalised solutions as a series of “snapshots” of the
flow that have been normalised in terms of a characteristic friction time scale t̃τ = h̃/ũτ

based on the flow conditions in that particular instant in “measured time”, t̂. For this
reason, when results are presented we give them in terms of measured time t̂ rather than
a renormalised time.
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