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Destratification of thermally stratified open channel flow by surface cooling is investigated
using direct numerical simulation. The initial states are the equilibrium states resulting
from radiative heating. Using these states as initial conditions a series of direct numerical
simulations was run with radiative heating removed and a constant, uniform cooling
flux applied at the upper surface. The flow evolves until the initial stable stratification
is broken down and replaced by unstable stratification driven by surface cooling. The
destratification process is described with reference to the evolution of the internal
structure of the turbulent flow field. Based on these observations we conclude that the
dominant time scales in the flow from the perspective of destratification are the time
scales associated with shear tτ , convection t∗ and stable density stratification tN . Scaling
arguments are then used to derive a scaling relationship for destratification rate as a
function of a friction Richardson number Riτ = (tτ/tN )2 and a convection Richardson
number Ri∗ = (t∗/tN)2. The relationship takes the form DN = C1Ri−1

τ +C2Ri−1
∗

, where
DN is the destratification rate non-dimensionalised with respect to tN . The relationship is
compared with simulation results and is shown to accurately predict the destratification
rate in the simulations across a range of parameters. This relationship is then integrated
to give a formula for the time taken for the flow to destratify.
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1. Introduction

In this study we investigate the time evolution of thermally stratified open-channel
flow in response to the imposition of a cooling flux at the upper free surface. The initial
stratification is gradually broken down by a combination of shear-driven turbulence from
the bottom of the channel and turbulence generated by natural convection from top. As
such the flow evolves from an initial stably stratified state in which turbulent mixing is
strongly damped to an unstably stratified flow in which convective turbulence generated
at the top of the channel interacts with shear-generated turbulence from the channel
bottom, leading to energetic mixing.
A particular motivation of the current study is a need to address ecosystem issues that

result from the occurrence of thermal stratification in turbid, low-land rivers such as
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the Murray and Murrumbidgee Rivers of south-eastern Australia. Here, a combination
of high solar radiation and turbidity and low flow rates often lead to persistent stable
stratification (Bormans et al. 1997; Bormans & Webster 1997). Persistence of strong
stable stratification for more than a few days has been identified as a key risk factor for
algal blooms (Sherman et al. 1998; Webster et al. 2000). On the other hand, the sudden
breakdown of strong persistent stable stratification was found to be the main cause of
two recent mass fish kill events in the Darling River system in south-eastern Australia
(Moritz et al. 2019).
Thermally stratified open channel flow is an appropriate model for these rivers, which

have a moderate to high width to depth ratio (typically between 8:1 to 20:1) with a
relatively flat bed (see Schumm 1968; Bormans et al. 1997). Flow velocities during periods
of strong stratification are low (2 − 6 cm s−1) while channel depth is typically 3− 10 m
(Bormans et al. 1997; Sherman et al. 1998), implying a Froude number less than unity
and subcritical flow. Typical water temperature is in the range 20− 30oC, well above the
temperature of maximum density, so an increase in temperature will always correspond
to a decrease in density.
Williamson et al. (2015) present a direct numerical simulation model for the statisti-

cally steady equilibrium state approached by a river or channel under the influence of day-
time solar heating. Thermal stratification due to progressive absorption of solar radiation
is represented by an internal heat source that decays exponentially with depth following
the Beer-Lambert Law, with the attenuation coefficient relative to channel depth set high
enough to ensure that radiation reaching the channel bottom is negligible. This is typical
of the situation occurring in the target rivers where the attenuation coefficient is usually
between 1.5 and 2.5 m−1 (Bormans & Webster 1998).
In a previous study, (Kirkpatrick et al. 2019, henceforth KWAZ), we investigated the

transient evolution of this flow when the solar heat source is removed and the flow allowed
to evolve in time with no heat flux through the upper or lower boundaries. This model
represents the situation in which solar forcing stops, due for example to an increase in
cloud cover, while atmospheric conditions are such that surface heat fluxes are small. We
found that turbulence generated by shear due to friction at the channel bottom breaks
down the stratification and the flow evolves gradually toward an isothermal turbulent
open channel flow state. The rate at which this destratification proceeds was found to
scale with a friction Richardson number Riτ in which the velocity scale is the friction
velocity uτ at the channel bottom.
In the current study we use a similar approach, but add a surface cooling flux at the

same time as the internal heat source is removed. As such, this study is pertinent to the
situation in which internal solar heating of a thermally stratified river is replaced by a
surface cooling forcing due to sensible, evaporative and long-wave radiative emission, as
typically occurs at night (Bormans et al. 1997) or as the result of the passage of a cold
front (Reinfelds & Williams 2012). Net surface heat fluxes depend on weather conditions,
but summer-time measurements in the target rivers show that they are typically between
200 and 600 W m−2 and hence comparable to the day-time clear sky solar heating flux
averaged over daylight hours of ≈ 400 W m−2 (Bormans et al. 1997; Bormans & Webster
1998). Those authors also show that wind forcing can play a significant role in mixing in
thermally stratified rivers. The effects of wind forcing are left to a future study.
We anticipate that the findings presented here may also be of relevance in a number

of other environmental and geophysical contexts. In KWAZ we demonstrated close
similarities between the stratified turbulence in the central region of our channel flow
with sheared stratified turbulence observed in large scale geophysical and environmental
flows. In particular, our simulations demonstrated excellent agreement with various
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parameterisations for oceanic diapycnal mixing (Osborn & Cox 1972; Osborn 1980; Ivey
et al. 2018), a number of scalings based on Monin-Obukhov theory (Chung & Matheou
2012; Scotti & White 2016; Zhou et al. 2017), and the classic Monin-Obukhov stability
functions determined by Dyer (1974) from atmospheric field data.

Within these contexts there are a number of situations that are similar to the flow
considered here. In the ocean, tidally forced continental shelf seas are subject to bed shear
from below and radiative heating from above (Simpson & Hunter 1974) and may also be
subject to strong surface cooling as the result of the passage of cold fronts (Zikanov et al.

2002). In the atmospheric context, boundary layer stratus clouds such as stratocumulus
typically sit partially within a stable temperature inversion and are subject to evaporative
and long-wave radiative cooling at the cloud-top (see Mellado et al. 2009; Wood 2012;
Mellado 2017, for example). In the case of marine cumulus clouds, in addition to the
capping inversion, the boundary layer itself is often stably stratified (Paluch & Lenschow
1991). Mixing in water clouds is complicated by thermodynamic heat exchanges due to
evaporation and condensation of water droplets. These phase change effects are absent in
smoke clouds however (see Bretherton et al. 1999; de Lozar & Mellado 2013, for example),
which have been shown to have significant impacts on climate (Koren et al. 2004).

With regard to previous work, we are not aware of any previous studies of the transient
evolution of thermally stratified open channel flow in response to surface cooling. Most
closely related are studies of surface-driven free convection penetrating into a stationary
fluid layer with stable background stratification, including experimental (Deardorff et al.

1980; Fernando & Little 1990), numerical (Zikanov et al. 2002; Fedorovich et al. 2004) and
field studies (Bouffard et al. 2019). Also related is an experimental investigation of surface
cooling by Sayler & Breidenthal (1998) aimed at simulating entrainment due to cloud-top
cooling in stratiform clouds. These studies have found that turbulence statistics and bulk
quantities such as entrainment rate scale in terms of a convection velocity w∗ (Deardorff
1970) that is a function of the surface buoyancy flux and mixed layer height. Deardorff
et al. (1980) found that the entrainment rate E scales with a convection Richardson
number Ri∗ according to a simple power law relationship,

E

w∗

= CRi−1
∗

. (1.1)

This and similar scaling relationships based on w∗ have been used extensively to pa-
rameterise thermal convection processes that occur in the atmospheric boundary layer,
as well as in large water bodies such as oceans and lakes (see Marshall & Schott 1999;
Fedorovich et al. 2004; Ihle & Niño 2012; Bouffard & Wüest 2019, for reviews).

The remainder of this paper is structured as follows. § 2 describes the mathematical for-
mulation of the problem including the governing equations and non-dimensionalisations
used. The direct numerical simulation (DNS) code and details of the numerical simula-
tions including the parameter ranges considered and statistical methods used are given in
§ 3. In § 4 we present flow visualisations and vertical profiles of a selection of turbulence
statistics and use this to describe the time-evolution of the flow from its initial stably
stratified equilibrium state to a destratified state in response to surface cooling. Based
on these observations, in § 5 we use scaling analysis to determine a relationship for the
destratification rate in terms of friction and convection Richardson numbers,Riτ and Ri∗.
We then show that this relationship can be integrated to give a formula for the time taken
for destratification as a function of the dominant velocity scales and initial stratification
and discuss possible application of these findings for predicting destratification rates in
thermally stratified riverine flows. § 6 summarises the major findings of the paper.
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Figure 1. Schematic of the flow with surface cooling.

2. Problem formulation

The initial state for the time-evolving flow is the statistically steady heated equilibrium
state described by Williamson et al. (2015). As shown in figure 1, the flow is an open
channel flow with a free-slip impermeable boundary at the upper surface, an adiabatic,
no-slip wall at the lower surface, and periodic boundaries in the streamwise and spanwise
directions. The flow is driven by a constant pressure gradient in the streamwise direction.

In the heated equilibrium flow the upper boundary is adiabatic and a depth-dependent
volumetric heat source q̃r(z̃) following the Beer-Lambert Law is used to represent radia-
tive heating,

q̃r(z̃) = Ĩsα̃e
(z̃−h̃)α̃. (2.1)

Here Ĩs is the radiative heat flux through the upper boundary, h̃ the channel height and
α̃ an attenuation coefficient.

Throughout this paper a tilde ·̃ over a variable indicates a dimensional quantity,
whereas a variable with no tilde is non-dimensional. For clarity, variables in figure 1
are shown in their non-dimensional form.

The time-evolving destratifying flow uses the same domain and boundary conditions,
except that the volumetric radiative heat source q̃r is removed and a constant cooling
flux q̃s is applied at the top boundary, defined as positive for heat flux out of the domain.

The temperature field Θ̃(x̃, t̃) can be decomposed into a time varying domain-averaged
component Θ̃v(t̃) and a fluctuating component θ̃(x̃, t̃),

Θ̃(x̃, t̃) = Θ̃v(t̃) + θ̃(x̃, t̃). (2.2)

For the heated equilibrium state flow the domain-averaged temperature increases with
time according to

dΘ̃v

dt̃
=

Q̃r

ρ̃bc̃p
, (2.3)

where ρ̃b and c̃p are a reference density and the specific heat of the fluid, and Q̃r the
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domain-averaged radiative heat source,

Q̃r =
1

h̃

∫ h̃

0

q̃r(z̃)dz̃. (2.4)

For the destratifying flow, Θ̃v(t̃) decreases with time due to the boundary cooling flux
according to,

dΘ̃v

dt̃
= −

q̃s

ρ̃bc̃ph̃
. (2.5)

Williamson et al. (2015) show that the statistically steady heated equilibrium state can
be defined in terms of a friction Reynolds number Reτ,0, Prandtl number Pr, a stability
parameter λ, and a dimensionless attenuation coefficient α, defined as:

Reτ,0 =
ũτ,0h̃

ν̃
, P r =

ν̃

κ̃
, λ =

β̃g̃Θ̃N h̃

ũ2
τ,0

, α = α̃h̃. (2.6)

Here ũτ,0 is the friction velocity at the channel bottom, ν̃ the kinematic viscosity, κ̃ the

thermal diffusivity, β̃ the coefficient of thermal expansion, g̃ gravitational acceleration,
and Θ̃N a characteristic temperature scale defined as,

Θ̃N =
Q̃N h̃

ρ̃bc̃pũτ,0
, (2.7)

where

Q̃N =
1

h̃2

∫ h̃

0

(Q̃r − q̃r(z̃))(h̃− z̃)dz̃ (2.8)

is a characteristic volumetric heat source associated with the radiative forcing.
A subscript 0 is used here for Reτ,0 and ũτ,0 to indicate that these are associated

with the initial equilibrium state. This distinction is necessary because ũτ and hence
Reτ change due to changes in the turbulence structure of the flow as it destratifies. In
the initial state, the friction coefficient Cf = 2(ũτ/Ũb)

2 (where Ũb is the bulk velocity)
is reduced relative to the neutral or unstably stratified flow at the same Reτ . With our
model, in which the flow is driven by a constant pressure gradient, ũτ increases initially in
response to destratification, before decreasing again in later stages of the flow evolution
as the flow decelerates until ũτ is again in balance with the applied pressure gradient.
The increase in ũτ in the simulations presented here is in the range 20− 30%. The effect
of stratification on Cf in wall bounded flows has been noted by numerous authors (for
example Arya 1975; Armenio & Sarkar 2002; Taylor et al. 2005).
In KWAZ we found the dominant control parameters determining the behaviour and

turbulence properties of the time-evolving flow with no surface cooling to be Reτ , Pr
and a friction Richardson number defined as,

Riτ =
β̃g̃∆θ̃h̃

ũ2
τ

. (2.9)

Here ∆θ̃ = θ̃m − θ̃b, where θ̃m is the maximum horizontally-averaged temperature in the

channel and θ̃b the horizontally-averaged temperature at the channel bottom, as shown
in figure 1. An overbar · will be used throughout this paper to indicate a quantity in
which the average is calculated over horizontal planes only. The temperature difference
∆θ̃ and consequently Riτ decrease progressively as the flow destratifies.
The parameters Reτ and Riτ contain a single velocity scale, ũτ . For the current flow,
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in which destratification is also driven by convection due to surface cooling, an additional
non-dimensional parameter is required. The analogies between the penetrative convection
component of our flow and the penetrative convection model investigated by Deardorff
et al. (1980) suggest that the convective component of our flow may also be expected
to scale in terms of some form of convection velocity w̃∗ and Richardson number Ri∗.
Following Deardorff et al. (1980) we define a convection velocity scale,

w̃∗ =

(

β̃g̃q̃sh̃

ρ̃bc̃p

)1/3

, (2.10)

and convection Richardson number,

Ri∗ =
β̃g̃∆θ̃h̃

w̃2
∗

. (2.11)

The channel height h̃ is used as the length scale here in order to maintain consistency
with the other non-dimensional parameters. This implies that the effect of convection is
felt across the depth of the channel. The validity of this assumption will be discussed
further in § 5.
The flow is governed by the Oberbeck-Boussinesq form of the equations for conservation

of mass, momentum and energy for an incompressible fluid. These are written in non-
dimensional Cartesian tensor form as,

∂uj

∂xj
= 0, (2.12)

∂ui

∂t
+

∂uiuj

∂xj
= −

∂p

∂xi
+ ν

∂2ui

∂x2
j

+ δi1 + γθδi3, (2.13)

∂θ

∂t
+

∂θuj

∂xj
= κ

∂2θ

∂x2
j

+ qe. (2.14)

Here xi are the Cartesian components of the position vector x, ui are the components of
the velocity vector u, t is the time, p the pressure, ν dimensionless kinematic viscosity,
κ dimensionless thermal diffusivity and γ a dimensionless buoyancy coefficient. δij
represents the Kronecker delta. Summation over repeated indices is assumed. The flow
is driven by a constant uniform pressure gradient, δi1, in the streamwise direction. qe
is the internal volumetric heat source. The variables in the above equations are non-
dimensionalised with respect to h̃, ũτ,0 and Θ̃N :

u =
ũ

ũτ,0
, θ =

θ̃

Θ̃N

, p =
p̃

ρ̃0ũ2
τ,0

, x =
x̃

h̃
, t =

ũτ,0

h̃
t̃,

ν =
1

Reτ,0
, κ =

1

Reτ,0Pr
, γ =

β̃g̃Θ̃N h̃

ũ2
τ,0

.

(2.15)

The internal volumetric heat source for both cases is set such that the net heat gain of
the system is zero,

qe(z) =
q̃r(z̃)− Q̃r

Q̃N

equilibrium flow,

qe =
q̃s/h̃

Q̃N

destratifying flow.

(2.16)

This ensures that the domain-averaged temperature, Θv, of the computed solutions
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remains constant. Boundary conditions for the bottom (z = 0) and top (z = 1) boundaries
are:

z = 0 : u = v = w = 0,
∂θ

∂z
= 0,

z = 1 :
∂u

∂z
=

∂v

∂z
= 0, w = 0,

∂θ

∂z
= −qs/κ,

(2.17)

where,

qs =
q̃s

Q̃N h̃
. (2.18)

The variables and parameters defining the flow written in terms of the non-
dimensionalisation scheme above are summarised below:

Reτ =
uτh

ν
, Riτ =

γ∆θh

u2
τ

, Ri∗ =
γ∆θh

w2
∗

, P r =
ν

κ
,

uτ (t) =
ũτ (t̃)

ũτ,0
, h =

h̃

h̃
= 1, w∗ =

w̃∗

ũτ,0
= (γqsh)

1/3
, ∆θ = θm − θb.

(2.19)

For reference, a table of symbols is given in Appendix A.

3. Method

The flow cases analysed in this paper are shown in table 1. Initial conditions are the
heated equilibrium states, generated in the same manner as in KWAZ. Simulations were
performed using the PUFFIN code (Kirkpatrick 2002). The equations are discretised
in space using a finite volume formulation on a non-uniform, staggered, Cartesian grid.
The spatial discretisation uses fourth-order central differences for the advection terms in
the momentum and energy equations. All other terms are discretised using second-order
central differences. The equations are integrated in time using a second-order accurate
fractional step method with mass conservation enforced using a pressure-correction
method. The time step ∆t was adjusted automatically to ensure that the maximum
Courant number (∆tui/∆xi) in the domain remained in the range 0.18− 0.2. Here ∆xi

is the cell width in the direction of the velocity component ui. This limit was determined
from temporal convergence tests. We refer the reader to KWAZ for full details of the
numerical methods used.
The domain and grid dimensions used are shown in table 2. A domain with dimensions

2π×π× 1 in the x, y and z directions respectively was used for all except one simulation
which used a wider domain with dimensions 2π×2π×1. The grid is uniform in the x and
y directions. Here, the grid cell sizes in viscous wall units are ∆x+

0 = ∆y+0 = 2.95. In the
z direction the grid is stretched from ∆z+0 = 0.36 at the bottom boundary, to ∆z+0 = 2.2
for 0.4 6 z 6 0.8, and then down to ∆z+0 = 0.9 at the upper boundary. These values are
based on the initial Reynolds number of the simulation and hence increase during the
simulation proportional to changes in friction velocity. The maximum increase in uτ is
approximately 20% for the λ = 1 cases and 30% for the λ = 2 cases.
Resolution relative to the Kolmogorov scale η can be estimated from the plot of

Kolmogorov scale given in figure 8 for Case 5. For this case the grid size in the x and
y directions is ∆x = ∆y = 5.5 × 10−3 while in the z direction the grid varies from
∆z = 7 × 10−4 at the bottom boundary, to ∆z = 4 × 10−3 for 0.4 6 z 6 0.8, and then
to ∆z = 1.7 × 10−3 at the upper boundary. Vertical profiles of the Kolmogorov scale
(figure 8) show that the minimum values of η range from η ≈ 2.2 × 10−3 close to the
bottom boundary to η ≈ 4×10−3 in the central region of the channel and η ≈ 5.5×10−3
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Case Reτ,0 λ α Riτ,0 q̃s/Ĩs qs w∗ Ri∗,0 [u2

τ ]av Grid
1 540 2 8 284 0 0 0 ∞ 1.28 B
2 540 2 8 284 0.2 0.53 1.02 273 1.22 B
3 540 2 8 284 0.5 1.34 1.39 147 1.21 B
4 540 2 8 284 1 2.67 1.75 93 1.21 B
5 540 1 8 101 1 2.67 1.39 52 1.09 B
6 360 1 8 81 1.0 2.67 1.39 42 1.12 A
7 360 1 16 96 1.16 2.67 1.39 50 1.09 A
8 360 1 8 80 1.0 2.67 1.39 41 1.11 C
9 360 1 8 83 1.0 2.67 1.39 43 1.11 D

Table 1. Simulation parameters defined in terms of initial heated equilibrium state and surface
cooling. Note that λ ≡ γ. Subscript 0 indicates the average values of parameters for the
equilibrium state. [u2

τ ]av is the average value of u2

τ measured in the simulations during the
destratification process.

Grid Reτ Nx ×Ny ×Nz Lx × Ly × Lz

A 360 768 × 384 × 200 2π × π × 1
B 540 1152 × 576× 264 2π × π × 1
C 360 1152 × 576× 264 2π × π × 1
D 360 768 × 768 × 200 2π × 2π × 1

Table 2. Grids and domain sizes used for each Reynolds number.

close to the top surface. This is very similar to the values for the flow without surface
cooling presented in KWAZ. The main difference is the region close to the top surface
where the Kolmogorov scale is approximately 30% smaller due to the increased intensity
of the turbulence in this region resulting from the enhancement of turbulence production
by descending plumes.
Thus the grid cell size in the horizontal directions relative to the Kolmogorov scale

ranges from approximately ∆x/η = ∆y/η ≈ 2 close to the bottom boundary, to ∆x/η =
∆y/η ≈ 1.5 in the central region, and then ∆x/η = ∆y/η ≈ 1 close to the upper
surface. In the vertical direction, ∆z/η ≈ 0.3 close to the bottom boundary, ∆z/η ≈ 1
in the central region, and ∆z/η ≈ 0.3 close to the upper surface. Similar ratios apply
to the other cases. With our fourth-order spatial discretisation scheme and this degree
of resolution the simulations are expected to resolve scales of motion of the order of the
Kolmogorov scale for the Prandtl number tested.
Cases 1 – 6 represent the basic test cases that give a sweep of different parameters in

order to test the scalings developed in § 5. The scaling analysis focuses on the effects of
Riτ and Ri∗. Both of these parameters sweep from the initial values given in table 1 to
zero when ∆θ = 0 and the flow is fully destratified. Thus the simulations give a significant
variation in Riτ and Ri∗ allowing us to accurately test the scalings developed in terms
of these parameters.
The range of Reτ is much smaller than the ranges of Riτ and Ri∗ and is included here

in order to check for any substantial Reynolds number effects on the scaling relations.
In KWAZ we also included a range of Prandtl numbers (Pr = 0.5 − 1) and found
the destratification rate for the flow without surface cooling to be a function of Pr.
The small Pr range investigated was however insufficient to determine a quantitative
scaling relationship with respect to this parameter. In the current study we acknowledge
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a probable Pr-dependence for the cases with surface cooling but, to ensure that our mesh
resolution is sufficient, we restrict our investigation to Pr = 0.71. This is a typical value
for air and was chosen so that our results might be directly applicable in relation to low
Reτ and Pr industrial flows or laboratory experiments in which air is the fluid.
The issue of matching Reynolds and Prandtl numbers of numerical or experimental

investigations with those in intended large scale flow applications has been discussed at
length in the literature with respect to both stably stratified shear flows (see Fernando
1991; Strang & Fernando 2001; Williamson et al. 2018, for example,) and penetrative
convection (see Fernando & Little 1990; Sayler & Breidenthal 1998; Bretherton et al.

1999; Jonker & Jiménez 2014, for example). Due to the convenience of using water
for experiments, many laboratory investigations take an approach opposite to that
often taken in numerical simulations, using moderate to high Prandtl (or Schmidt)
number water-based experiments to model low Prandtl number gaseous flows such as the
atmospheric boundary layer. The experiment used by Deardorff et al. (1980) to determine
the entrainment relation (1.1) for example, was done using thermally stratified water
(Pr ≈ 6), while its intended application was the atmospheric boundary layer, where it
has been used extensively to model entrainment (see Betts & Ball 1994; Angevine et al.

1998; Hägeli et al. 2000; Fedorovich et al. 2004, for example). Jonker & Jiménez (2014)
present a recent study of the dependence of this scaling on Pr. They found that the basic
form of the scaling relation, E = CRi−1

∗
, provides a good match with measurements in

experiments performed over a wide range of Prandtl and Schmidt numbers, but that the
coefficient C varies considerably. It is also worth noting here that there is a difference in
the dynamics of scalar transport at small scales when Pr < 1 and Pr > 1. For Pr < 1
scalar variance is transferred to the Obukhov-Corrsin scale by inertial subrange motions,
whereas, for Pr > 1, scalar variance is transferred from the Kolmogorov scale to the
Batchelor scale by straining (Batchelor 1959).
In § 5 we develop scaling relations with a similar form to (1.1) for the rate of

destratification of thermally stratified channel flow as a function of Riτ and Ri∗ and
show that gives a good prediction of our low Pr simulation results. Given that this
relation is developed based on physical arguments related to ratios of time-scales, the
hope here is that any dependence of this relation on Pr may also be restricted to the
magnitude of the coefficients.
In KWAZ we found the effects of initial conditions on the flow with no surface

cooling to be confined to an initial period in which the flow ‘relaxes’ from the heated
equilibrium state in which buoyancy fluxes are balanced by the internal potential energy
sink associated with the radiative heating, to the new time-evolving state in which a
large portion of the channel is in local energetic equilibrium. Case 7, which has twice
the attenuation coefficient α of the other cases is included in the current study to
check for any substantial effect of initial conditions on the flow with surface cooling.
As discussed in KWAZ, higher α results in greater absorption of radiation which leads to
a higher temperature gradient and increased stability close to the surface. Dimensionless
attenuation coefficients in the range 4 − 20 are typical of the thermally stratified rivers
of interest here, so the range α = 8− 16 investigated is representative of this application.
Cases 8 and 9 are additional cases at Reτ,0 = 360 designed to assess the effects of

spatial resolution and domain size. Case 8 uses Grid C which has spatial and temporal
resolution one and a half times higher than that used for the other simulations, while
Case 9 uses Grid D, which has a domain with spanwise dimension Ly = 2π compared
with Ly = π used for the standard cases. The results obtained with these simulations
were found to be very similar to those obtained for Case 6 which has the same parameter
settings and uses the standard grid resolution and domain size (see § 5).
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The turbulence statistics presented in § 4 for the initial equilibrium state were calcu-
lated by averaging over horizontal planes and a period of 30 time units with realisations
sampled at 0.5 time unit intervals. For the destratifying flow, statistics were calculated
by averaging over horizontal planes. To improve convergence, additional averaging over
a period of 0.5 time units was applied using realisations sampled at intervals of 0.1 time
units. This period is small relative to the time scales associated with the large scale flow
evolution, so this averaging is an approximation of horizontal averaging. Comparison
between profiles with and without extra time averaging show the same trends, but the
profiles with time averaging are easier to interpret. We designate this type of averaging
using angled brackets 〈·〉, while fluctuating quantities with respect to this mean are
denoted with primes, (for example θ′). The time rate of change of the temperature
difference d∆θ/dt used to quantify destratification rate in § 5 was calculated using finite
differences between flow realisations at intervals of 0.1 time units starting from t = 0.1.
Here, ∆θ = θm − θb.

4. Transient response of the flow field

In this section we describe the transient response of the thermally stratified equilibrium
state flow to simultaneous removal of the radiative heat source and imposition of surface
cooling. For this purpose we use Case 5 for which Reτ,0 = 540, Riτ,0 = 101, and
Ri∗,0 = 52 (see table 1). The other cases show similar trends. This section is divided into
subsections in which we present and discuss: flow visualisations, first and second order
turbulence statistics, the turbulent kinetic energy and temperature variance budgets,
and local stratification length scales and related non-dimensional parameters. In the
final subsection we discuss large scale structures that were observed to develop after
the destratification process is complete and the flow is evolving toward its new unstably
stratified equilibrium state.

4.1. Overview

Figures 2 and 3 show the time evolution of the temperature and vorticity fields. Key
features discussed below are marked with capital letters in the images. In addition, movies
showing the time evolution of the flow field are contained in the supplementary material.
The initial temperature field in figure 2 (a) shows that the channel is weakly stratified

close to the bottom wall (A) and becomes progressively more strongly stratified towards
the upper boundary (B). The initial state vorticity field shown in figure 3 (a) exhibits
characteristic features of turbulent channel flow such as hairpin-like vortical structures
close to the bottom wall (A). Turbulence is noticeably damped with increasing height
and the flow is essentially laminar in the strongly stratified region close to the upper
boundary (B).
As the flow evolves the stratification breaks down as a result of the combination of

shear from below and cooling from above. In KWAZ, we found that, for the case with
no surface cooling, shear instabilities forming in the thermocline play an important role
in the destratification process. These instabilities are similar to Kelvin-Helmholtz (K-
H) waves, exhibiting the characteristic over-turns in the temperature field and braided
cat’s eyes in the vorticity field. Similar structures (C) are also clearly visible at a similar
location (z ≈ 0.8) in the visualisations of the flow with surface cooling at t = 1. At this
time, thermal plumes (D) can also be seen starting to form close to the upper boundary.
At t = 2 the shear instabilities are still apparent but are less prominent, while the
thermal plumes have developed into larger structures. At t = 3 the thermal plumes are a
dominant flow feature in the upper half of the channel. By t = 4 the stable stratification
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Figure 2. Temperature θ in an x-z plane during the evolution of the flow for Case 5. Slices were
taken through the centre of the domain (y = 0). The colour scale varies in order to highlight the
flow features. Some examples of these features are indicated: A – a weakly stratified turbulent
region near the channel bottom, B – a strongly stratified region near the upper boundary in
which the flow is close to laminar, C – Kelvin-Helmholtz-like instabilities in the stratified shear
layer, D – downwelling thermal plumes, E – near-wall turbulence ejected into the central region
by plumes as they reach the channel bottom. Movies showing the detailed time evolution of the
temperature and vorticity fields for each of these time periods are available in the supplementary
material.
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Figure 3. Vorticity magnitude ω in an x-z plane during the evolution of the flow for Case 5.
Slices were taken through the centre of the domain (y = 0). The colour scale is the same in all
panels, with vorticity range 0 to 300. Some examples of important flow features are indicated: A
– a weakly stratified turbulent region near the channel bottom containing hairpin-like vortical
structures, B – a strongly stratified region near the upper boundary in which the flow is close
to laminar, C – Kelvin-Helmholtz-like instabilities in the stratified shear layer, D – downwelling
thermal plumes, E – near-wall turbulence ejected into the central region by plumes as they
reach the channel bottom. Movies showing the detailed time evolution of the temperature and
vorticity fields for each of these time periods are available in the supplementary material.
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Figure 4. Selected turbulence statistics during evolution of the flow for Case 5. Vertical profiles
of (a) mean temperature 〈θ〉 relative to the mean temperature at the channel bottom 〈θb〉, (b)
mean streamwise velocity 〈u〉, (c) a time series of Riτ , (d) - (f) vertical profiles of turbulent shear

stress 〈u′w′〉, root-mean-squared vertical velocity fluctuation wrms = 〈w′w′〉1/2, and turbulent
heat flux 〈θ′w′〉. Here 〈u′w′〉 and wrms are renormalised in terms of the friction velocity ũτ (t̃)
measured at the time at which the statistic is calculated. 〈θ′w′〉 is normalised in terms of the
surface cooling flux qs.

is essentially removed. Large plumes of cooler fluid are seen descending from the surface
towards the channel bottom where they interact with the turbulence generated by shear
at the channel bottom, ejecting it up into the central region of the channel (E). By this
time the flow field is significantly more turbulent than the initial flow. By t = 5 the
downwelling plumes (D) and ejections of wall turbulence (E) have expanded further as
the flow approaches a new unstably stratified equilibrium state.

4.2. First and second order turbulence statistics

The time-evolution of selected first and second order turbulence statistics for Case 5
are presented in figure 4. Statistics are shown for the initial equilibrium state, t = 0, and
then at five subsequent times, 1 6 t 6 5, during the flow evolution.
As discussed in § 2, the friction velocity ũτ varies during the destratification process.

For many statistics it is useful to renormalise in terms of the friction velocity measured at
the time at which the statistic is calculated. Thus, in figure 4 for example, 〈u′w′〉, which is
normalised in terms of ũτ,0, is presented in the form 〈u′w′〉/u2

τ . Since uτ (t) = ũτ (t̃)/ũτ,0,
this has the effect of renormalising 〈u′w′〉 in terms of ũτ (t̃). In some cases, such as 〈u〉
and 〈θ′w′〉, we chose not to renormalise in this way because the arguments we wish to
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Figure 5. Temperature and vorticity on a transverse section (y-z plane) at t = 5 for Case 5.
Slices were taken through the centre of the domain (x = 0) looking upstream. Key flow features
are marked: D – downwelling thermal plumes, E – near-wall turbulence ejected into the central
region by plumes as they reach the channel bottom.

make are made more clearly without renormalising. We refer the reader to KWAZ for a
more detailed discussion of this approach.
The destratification of the channel is clearly apparent in the profiles of mean tempera-

ture in figure 4 (a). Surface cooling reduces the temperature close to the upper boundary
leading to a region of unstable stratification that gradually increases in depth over time.
Shear driven mixing from below acts to reduce the temperature gradient in the stably
stratified lower part of the channel. By t ≈ 4 the initial stable stratification has been
removed. This can also be seen from the time series of Riτ in figure 4 (c), which reaches
a value of Riτ = 0 at approximately t ≈ 4. At this time the destratification process
is considered complete. At t = 5 the flow is unstably stratified over the entire channel
height and is evolving toward a new unstably stratified equilibrium state.
The reduction in turbulent mixing in the initial state due to strong stratification

close to the upper boundary is apparent in the profile of 〈u′w′〉 in figure 4 (d), which
shows a reduction in magnitude in the near-surface region at t = 0. As a result the
shear stress required to balance the streamwise pressure gradient in this region must be
provided predominantly by viscous shear. This leads to the inflected velocity profile seen
in figure 4 (b), which shows a substantial increase in the mean streamwise velocity close
to the upper boundary relative to the final unstably stratified flow.
As the flow evolves there are significant changes to the shear stress profile. At t = 1

there is an enhancement in 〈u′w′〉 from the upper boundary down to z ≈ 0.6 with a
peak at z ≈ 0.82. By t = 2 the enhancement has increased substantially. The peak has
descended to z ≈ 0.6 and there is a noticeable increase in 〈u′w′〉 all the way down to
z ≈ 0.05, close to the channel bottom. This enhancement is much greater than that seen
for the flow with no surface cooling (see KWAZ, figure 6 (d)). From figure 4 (e) it can
be seen that the enhancement in turbulent shear stress for t = 1 and t = 2 corresponds
to similar enhancements in the vertical velocity fluctuations. As plumes of cooled fluid
descend they increase the vertical velocity fluctuation. Interaction of the downwelling
plumes with the streamwise velocity fluctuations leads to augmentation of the turbulent
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shear stress. This enhancement extends downward as surface plumes penetrate deeper
into the channel. The profiles for 3 6 t 6 5 show a region of near constant 〈u′w′〉 for
0.05 < z < 0.4 where the plumes interact with the near wall shear-generated turbulence.
In particular, as the plumes approach the bottom of the channel they displace the locally
generated turbulence and eject it up into the flow, increasing the turbulent shear stress
in the region above the channel bottom. This is seen in the flow visualisations in figure 3
(regions marked E) and more clearly in the flow visualisations showing transverse sections
through the flow field in figure 5. Interestingly, at t = 4 the magnitude of the turbulent
shear stress in the region 0.05 < z < 0.4 exceeds the wall shear stress. This imbalance
is due to the transient nature of the flow as it is evolving in response to the change in
conditions. By t = 5 the flow is evolving toward its new equilibrium state and the balance
between wall stress and shear stresses in the near-wall region is restored.
The turbulent heat flux 〈θ′w′〉 shown in figure 4 (f) also undergoes substantial changes.

In the initial heated equilibrium state the net downwards turbulent heat flux (negative
〈θ′w′〉) balances the radiative heat source. When the flow switches from internal heating
to surface cooling at t = 0 this balance is disturbed. As the flow destratifies a downwards
heat flux continues in the lower, stably stratified region of the channel. Here, as with the
turbulent shear stress, descending thermal plumes interact with temperature fluctuations,
generating a descending region of strongly enhanced downwards turbulent heat flux at
t = 1 and t = 2. The heat flux profile differs from the shear stress profile however,
because this region of downwards heat flux is located below a region of upwards heat
flux (positive 〈θ′w′〉) imposed by the cooling flux applied at the upper boundary. The
region of upwards heat flux gradually extends into the channel until by t = 5 there is an
approximately linear profile from 〈θ′w′〉 ≈ qs close to the upper boundary to 〈θ′w′〉 = 0
at the adiabatic channel bottom. This is similar to the heat flux profiles seen in other
asymmetric free convection flows (for example, Zikanov et al. 2002; D’Asaro et al. 2002).

4.3. Turbulent kinetic energy and temperature variance budgets

Figure 6 shows the time evolution for Case 5 of the dominant terms in the turbulent
kinetic energy budget along with turbulent kinetic energy itself. For this flow, which is
homogeneous on x-y planes, the turbulent kinetic energy equation can be written as,

∂k

∂t
=

∂

∂z

[

−
1

2
〈w′u′

iu
′

i〉 − 〈w′p′〉+ 2ν〈si3u
′

i〉

]

− 〈u′w′〉
∂〈u〉

∂z
+ γ〈θ′w′〉 − 2ν〈sijsij〉, (4.1)

where turbulent kinetic energy k = 1/2〈u′

iu
′

i〉 and sij is the strain rate due to velocity
fluctuations given by,

sij =
1

2

(

∂u′

i

∂xj
+

∂u′

j

∂xi

)

. (4.2)

The dominant terms in our flow are: shear production P = −〈u′w′〉∂〈u〉/∂z, downwards
buoyancy flux B = −γ〈θ′w′〉, dissipation rate ε = 2ν〈sijsij〉 and transport due to
turbulent fluctuations T = −1/2∂〈w′u′

iu
′

i〉/∂z.
During the first half of the destratification process (up to t = 2) there is substantial

enhancement of P , B and ε in the upper two thirds of the channel, with peaks at z ≈ 0.82
at t = 1 that descend to z ≈ 0.6 to 0.7 at t = 2. The peaks for B are at a slightly lower
height than those for P and ε due to the region of negative B (upwards buoyancy flux)
above. In the initial equilibrium state, as can be seen in the mean velocity profile in
figure 4 (b), there is significant shear present between z = 0.5 and 0.9. As described
in KWAZ, removal of the heat source allows this region to destabilise, leading to the
formation of Kelvin-Helmholtz-like instabilities. For the case without surface cooling,
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Figure 6. Vertical profiles of turbulent kinetic energy budget terms for Case 5: (a) shear
production, (b) dissipation rate, (c) downwards buoyancy flux, (d) turbulent transport and
(e) turbulent kinetic energy. All terms are renormalised with respect to the friction velocity
ũτ (t̃) measured at the time at which the statistic is calculated.

these instabilities were found to be associated with an increase in turbulent mixing,
leading to increased P , B and ε in this region. For the current case of flow with surface
cooling similar K-H-like instabilities are also present, as is evident from the flow field
visualisations (regions marked C in figures 2 and 3). In this case however, the increases
in P , B and ε are much more substantial. This difference can be explained by the fact
that, as seen above, when surface cooling is present the thermal plumes generate vertical
velocity fluctuations that cause substantial enhancements in the turbulent shear stress
and heat flux, which in turn contribute to the shear production and downwards buoyancy
flux. Thus, for the flow with surface cooling, enhanced mixing is due to a combination of
K-H-like shear instabilities and downwelling thermal plumes. The interactions between
these flow features is most clearly seen in the movies made available in the supplementary
material.
Enhancement of shear production by thermal plumes through enhancement of the

turbulent shear stress occurs only while the vertical mean velocity gradient is maintained.
The reduction in P for z > 0.8 at t = 2 relative to t = 1 is due to a reduction in the mean
velocity gradient in this region (see figure 4 (b)) as a result of turbulent mixing by the
evolving convective instabilities. As the plumes penetrate deeper the region over which
shear production is attenuated extends downwards. In the near-wall region (z < 0.1),
however, (see inset in figure 6 (a)) shear production increases in the later stages of the
flow evolution (t > 3) as the plumes interact strongly with wall turbulence and shear.
The imposition of surface cooling to a system that is initially stably stratified leads to

a profile for the buoyancy flux, B, that changes sign within the channel. In the upper part
of the channel the buoyancy flux is upwards (B < 0) indicating net transfer of energy
from potential energy to turbulent kinetic energy. In the lower part of the channel the
buoyancy flux is downwards (B > 0), indicating net transfer of energy from turbulent
kinetic energy to potential energy.
Profiles of dissipation ε and k follow similar trends to shear production. Globally, there

is an imbalance between P , B and ε so that by the end of the flow evolution there is an
increase in turbulent kinetic energy k in the channel.
The profiles of turbulent transport T are quite noisy, however the profiles at t = 1

and t = 2 indicate regions of negative T around z ≈ 0.8 and z ≈ 0.7 respectively at
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Figure 7. Vertical profiles of temperature variance budget terms for Case 5: (a) production,
(b) dissipation rate, (c) turbulent transport and (d) temperature variance. All terms are
renormalised with respect to the friction velocity ũτ (t̃) measured at the time at which the
statistic is calculated.

these times, which may represent downwards transport of turbulent kinetic energy by
descending thermal plumes. At t = 2 there is also a region of positive T around z ≈ 0.9
which indicates transport of turbulence from the more energetic central region of the
channel up into the now unstably stratified region close to the top of the channel.
Figure 7 shows the transient response of dominant terms in the transport equation

for temperature variance 〈θ′2〉. For our flow the temperature variance equation can be
written as,

∂〈θ′2〉

∂t
=

∂

∂z

[

−〈w′θ′2〉+ κ
∂〈θ′2〉

∂z

]

− 2〈θ′w′〉
∂〈θ〉

∂z
− 2κ〈

∂θ′

∂xj

∂θ′

∂xj
〉. (4.3)

The dominant terms are production Pθ = −2〈θ′w′〉∂〈θ〉/∂z, turbulent transport Tθ =
−∂〈w′θ′2〉/∂z and dissipation rate χ = 2κ〈(∂θ′/∂xj)

2〉.
In the initial flow, temperature variance is produced predominantly in a region centred

around the thermocline at z ≈ 0.8, where both the vertical temperature gradient and
turbulent heat flux are high (see figure 4). As a result, Pθ, χ and 〈θ′2〉 have a similar
distribution.
Imposition of surface cooling adds a new source of temperature variance at the upper

boundary, leading to a rapid increase in Pθ just below the surface. This, combined with
transition of the near-surface region to turbulent flow, leads to a substantial increase in
〈θ′2〉 close to the upper boundary at t = 1. The increased intensity of turbulence around
z = 0.8 also leads to an increase in Pθ in this region at t = 1, however this is balanced
by an increase in χ and transport Tθ out of this region (0.7 < z < 0.85) into the region
above (0.85 < z < 0.95), so that 〈θ′2〉 remains relatively constant for z < 0.8 at this time,
while it increases for z > 0.9. In the region 0.9 < z < 0.95 the temperature gradient is
close to zero so Pθ becomes very small, and in fact becomes negative, indicating a small
region of counter-gradient turbulent heat flux at t = 1.
Similar dynamics are in play at t = 2, however the thermal plumes have now penetrated

deeper into the channel. For t > 3 the mean temperature gradient in regions below z = 0.9
is very small and production of temperature variance Pθ is confined predominantly to
the region close to the upper boundary. The profiles of Tθ show that downwelling plumes
transport temperature fluctuations out of this region into the lower regions leading to a
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Figure 8. Selected non-dimensional parameters and length scales characterising stratified

turbulence for Case 5: (a) the gradient Richardson number Ri = (lC/lO)4/3, (b) the shear

Reynolds number ReS = (lC/η)
4/3, (c) the local buoyancy Reynolds number Reb = (lO/η)

4/3,

(d) the Kolmogorov scale η =
(

ν3/ε
)1/4

, (e) the Corrsin scale lC =
(

ε/S3
)1/2

and (f) the

Ozmidov scale lO =
(

ε/N3
)1/2

.

temperature variance profile that gradually decreases with increasing depth in the late
stages of the flow evolution.

4.4. Local flow parameters and length scales

In this section we present vertical profiles of gradient Richardson number Ri, shear
Reynolds number ReS , buoyancy Reynolds number Reb and related turbulence length
scales, the Kolmogorov η, Corrsin lC , and Ozmidov scale lO. These parameters and
length scales can be used to characterise local flow conditions in stratified turbulence
(see for example, Chung & Matheou 2012). All parameters and length scales are non-
dimensionalised in terms of h̃, ũτ,0 and Θ̃N (see (2.15)).
Figure 8 (a) shows the time evolution of vertical profiles of the gradient Richardson

number. The gradient Richardson number Ri = N2/S2 gives an indication of the stability
of the flow with respect to density stratification characterised by buoyancy frequency
N = (γ ∂〈θ〉/∂z)1/2, and velocity shear, S = ∂〈u〉/∂z. Alternatively, Ri can be written in

terms of the ratio between the Corrsin lC and Ozmidov lO length scales, Ri ≡ (lC/lO)
4/3

,
and hence can be interpreted as the degree of separation between scales above which
turbulence is strongly affected by shear and buoyancy (Chung & Matheou 2012).
The profile for Ri in the initial equilibrium state (figure 8 (a)) shows three distinct
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regimes spanning three regions across the channel. For 0 < z < 0.5, Ri increases from
Ri ≈ 0 at the channel bottom to a value of Ri ≈ 0.18. In this region lC (figure 8 (e))
is relatively constant except in the region very close to the channel bottom, while lO
(figure 8 (f)) decreases with height due to increasing stratification. For 0.5 < z < 0.75, lC
and lO both decrease at approximately the same rate with increasing height, so that Ri is
approximately constant at what appears to be a critical value of Ric ≈ 0.18. Comparable
values of Ric have been reported for a range of stratified shear flows including: stratified
channel flow (Garcia-Villalba & del Alamo 2011), stationary homogeneous stratified
sheared turbulence (Shih et al. 2000; Chung & Matheou 2012), stratified plane Couette
flow (Zhou et al. 2017) and the stably stratified atmospheric boundary (Basu & Porté-
Agel 2006). For 0.75 < z < 1, lO decreases more rapidly than lC , so that Ri increases
significantly. As discussed above with respect to the flow visualisations in figures 2 (a)
and 3 (a), above this height turbulence is intermittent and the flow becomes essentially
laminar close to the upper boundary.

As the flow evolves, the profiles of Ri show an expanding region of negative Ri close to
the upper boundary, which represents unstable stratification resulting from the formation
of convective plumes due to the surface cooling. At any time, the point at which Ri
changes sign delineates the boundary between the unstably and stably stratified regions
of the flow. When no surface cooling is present, KWAZ found that the value of Ri in the
central region of the flow remains constant at Ri ≈ 0.18 until the late stages of the flow
evolution. In contrast, the profiles shown here for the case with surface cooling show a
progressive reduction in Ri in the central region of the channel, which can be attributed
to the effect of thermal plumes penetrating into this region. The extra turbulent mixing
reduces both temperature and velocity gradient, however the fact that Ri decreases
indicates that the temperature gradient is reduced more rapidly.

Figure 8 (b) shows the time evolution of vertical profiles of the shear Reynolds number
ReS = ε/νS2, which can also be written as a function of the ratio of Corrsin and

Kolmogorov length scales, ReS = (lC/η)
4/3

, and hence gives an indication of the extent
of the inertial subrange (Chung & Matheou 2012).

In the initial equilibrium state, ReS also shows multiple flow regimes across the height
of the channel resulting from changes in lC and η. For 0 < z < 0.1, shear at the channel
bottom drives lC and ReS toward zero and viscous effects dominate. In the weakly
stratified turbulent boundary layer, 0.1 < z < 0.5, ReS is in the range 10−20, indicating
approximately an order of magnitude separation between η and lC , both of which are
approximately constant in this region. For 0.5 < z < 0.8, η remains approximately
constant while both lC andReS decrease as a result of increasing shear (see velocity profile
in figure 4 (a) and (b)). In the region 0.8 < z < 0.95, η increases as significant damping
of turbulence by stratification decreases viscous turbulence dissipation ε. Meanwhile lC
continues to decrease, so that ReS drops below 1. Very close to the upper boundary,
0.95 < z < 1, shear decreases again leading to an increase in lC and ReS .

As the flow evolves, the main change seen is a significant increase in ReS due to a
reduction in shear and hence an increase in lC . This process starts in the region close
to the upper surface as thermal plumes break down the stably stratified shear layer,
replacing it with a strongly mixed, convectively unstable region in which shear is close to
zero. The region of increased lC and ReS expands downwards over time as the thermal
plumes penetrate further into the channel.

Figure 8 (c) shows the time evolution of vertical profiles of the local buoyancy Reynolds
number Reb = ε/νN2, which can also be written as a function of the ratio of Ozmidov

and Kolmogorov scales Reb = (lO/η)
4/3

, giving a measure of the degree of separation
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between the scale above which fluid motion is influenced by stable buoyancy stratification
and the smallest scales of motion (Brethouwer et al. 2007).
The buoyancy Reynolds number has received considerable attention in the literature

due to its importance in geophysical measurements and modelling, where it is used in
parameterisations for eddy viscosity (for example, Osborn 1980; Shih et al. 2005), and
mixing efficiency (for example, Walter et al. 2014; Mater & Venayagamoorthy 2014; Scotti
& White 2016; Ivey et al. 2018). In KWAZ we give an in-depth discussion and comparison
of a number of these parameterisations with results obtained in our stratified channel
flow simulations, and show that parameterisations developed for the ocean and stably
stratified atmospheric boundary layer also accurately predict turbulence properties in the
central region of stably stratified open channel flow. In the following we focus primarily
on features resulting from the introduction of surface cooling.
Shih et al. (2005) define three regimes for Reb in stably stratified turbulent shear flows:

a diffusive regime for Reb < 7 in which turbulence is strongly damped and viscous effects
dominate, an intermediate regime 7 < Reb < 100 in which turbulence is energetic but
significantly affected by stratification, and an energetic regime, Reb > 100, in which
the effects of stratification become progressively weaker as Reb increases. In the initial
equilibrium state for our simulations Reb covers all three regions described above, with
the energetic regime seen for 0 < z < 0.4, the intermediate regime for 0.4 < z < 0.8, and
the diffusive regime for 0.8 < z < 1. Comparison with lO in panel (f) shows that this
sweep of regimes is due primarily to the three orders of magnitude decrease in lO, which
in turn is due primarily to the fact that stratification in our case is driven by progressive
absorption of radiation from above and hence is strongest close to the upper boundary.
Dissipation decreases with height but this decrease is relatively small for z > 0.15.
After the application of surface cooling, the profiles of Reb show three distinct regions:

an upper region in which Reb becomes very large and is then undefined, a central region
in which Reb is approximately constant with height, and a lower region in which Reb
remains close to its initial equilibrium state profile. The upper region corresponds to the
unstably stratified convective region where lO and Reb are undefined. The central region
is stably stratified in a horizontally-averaged sense, but convective plumes penetrate
into this region providing extra mixing and leading to relatively uniform stratification
conditions across this region. The lower region represents the region that is only weakly
affected by surface convection.
Interestingly, at t = 5 there is a region close to the bottom boundary (0 < z < 0.3) in

which lO > 1. Since lO has been non-dimensionalised in terms of h̃, this indicates that
the distance a parcel of fluid must travel in order to be significantly affected by stable
stratification in this region is greater than the channel height. Since this is not possible,
lO > 1 indicates that, while the background stratification is still stable in this region, it
is so weak that flow conditions are effectively neutral. By t = 6 this region has become
unstable and lO is undefined throughout the channel.

4.5. Large scale flow structures in the destratified flow

In this section we describe large scale flow structures that are observed to form after
all of the background stratification has been removed and the flow is evolving toward a
new unstably stratified equilibrium state.
The time at which the flow becomes fully destratified, in the sense that all background

stratification is removed, corresponds to a fundamental regime change. At this time
the difference between the maximum horizontally-averaged temperature in the channel
and the horizontally-averaged temperature at the channel bottom reaches zero, that is
∆θ = θm − θb = 0, and remains at this value since θm = θb. As a result, the two
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Figure 9. Temperature at t = 4 and 5 for Case 5 on a horizontal plane at the channel mid-depth
(z = 0.5). (a) At t = 4, isolated cooler downwelling thermal plumes (D) are visible penetrating
this layer. (b) At t = 5, large coherent regions of upwelling warmer fluid (U) and downwelling
cooler fluid (D) are apparent.

Richardson numbers, Riτ and Ri∗ also become fixed equal to 0, and hence no longer act
as governing parameters. The flow is now evolving toward a new equilibrium flow state,
namely, unstably stratified turbulent open channel flow. For Case 5 this occurs at a time
of t ≈ 4 as seen in figure 4 (c).
This new equilibrium state has been studied by Walker et al. (2014), who suggest that

it is governed by the parameters Reτ , Pr and a Rayleigh number Raτ which they define
as,

Raτ =
β̃g̃h̃2q̃s
ρ̃bc̃pκ̃ũ2

τ

. (4.4)

For Case 5, at t = 5, uτ ≈ 1.2 so Raτ ≈ 700. This is somewhat lower than the value used
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Figure 10. Temperature and stream function at t = 10 for Case 9. (a) shows temperature on a
horizontal x-y plane at z = 0.5. (b) and (c) are transverse sections at x = 0 looking upstream.
Temperature range: −30 to 5. Stream function range: −0.6 to 0.5. U indicates upwelling flow,
while D indicates downwelling flow.
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by Walker et al. (2014) (Raτ ≈ 5000). Walker et al. (2014) give a detailed discussion of
the turbulent structure of the flow field for statistically steady open channel flow subject
to surface cooling. This material will not be repeated here. Instead we focus on the
formation of large scale flow structures.
For our flow, large scale structures were observed to start forming after the regime

change noted above, that is, between t = 4 and t = 5 for Case 5. Figure 9 shows
visualisations of the temperature field at these times on a horizontal section at the channel
mid-depth (z = 0.5). At t = 4 isolated intense downwelling thermal plumes (marked D)
can be seen penetrating the central plane, however the remainder of the temperature
field is relatively homogeneous. By t = 5, large scale structures, elongated primarily
in the streamwise direction, are apparent. The low temperature regions correspond to
downwelling (D) of cooler fluid from the upper boundary, while the higher temperature
regions correspond to upwelling (U) of warmer fluid from below. This can be seen clearly
by comparison with the transverse sections in figure 5. Each structure (an upwelling /
downwelling pair) has a lateral dimension of approximately half the domain width.
Inspection of flow visualisations at later times showed that these structures grow and

become more coherent and elongated until, by approximately t = 6, they eventually reach
a width approximately equal to the domain width, after which they were restricted from
further growth by the domain. Thus it appears that, as the flow starts evolving towards
its final unstably stratified equilibrium state, the domain size also starts having an effect
on the lateral dimension of these large scale structures.
This was confirmed through observation of the results for Case 9, which used the

wider domain of Ly = 2πh. On the larger domain, the structures eventually reach a
size approximately equal to the domain width. This can be seen in the visualisations of
horizontal and transverse sections through the temperature field for Case 9 at t = 10
shown in figure 10 (a) and (b). The flow is clearly divided in the lateral dimension into a
single pair of upwelling and downwelling zones. This is made more clear by the transverse
section of the streamwise-averaged stream function in figure 10 (c), which shows clear
clockwise and anticlockwise circulations centred on the vertical boundaries between these
two zones.
Similar large scale structures were observed by Walker et al. (2014), who refer to them

as ‘convective supercells’. They found that the supercells in their simulations have a
width four times the channel depth. Given that their domain width was Ly = 4πh/3,
this is also approximately equal to their domain width.
Thus it appears that, for the steady-state unstably stratified channel flow, domain

widths up to 2πh may be placing a constraint on the size of these supercells.
This effect of domain size is confined to the stages of the flow evolution that occur after

the flow has fully destratified – that is, after the time period for which ∆θ > 0, which is
the subject of the discussions presented in the previous subsections, and in the scaling
analysis presented below. For the time period over which ∆θ > 0, the results for Case
9, which uses the larger domain, were found to be very similar to the results for Case 6,
which has the identical parameter settings on the standard size domain, indicating that
domain size has negligible effect on these earlier stages of the flow evolution.

5. Scaling analysis

5.1. Time scales

As shown above, the destratification process involves an interplay between three
dominant characteristics of the flow: turbulent fluid motion generated by bottom friction,
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turbulent fluid motion generated by surface cooling, and damping of these motions by
the stable background stratification. As such, it is useful to define characteristic time
scales associated with these three dominant processes, namely a friction time scale t̃τ ,
convection time scale t̃∗ and buoyancy time scale t̃N ,

t̃τ (t̃) =
h̃

ũτ (t̃)
, t̃∗ =

h̃

w̃∗

, t̃N (t̃) =

(

β̃g̃∆θ̃(t̃)

h̃

)

−1/2

. (5.1)

Written in terms of our non-dimensionalisation scheme (where t = t̃/t̃τ,0 with t̃τ,0 =

h̃/ũτ,0), the equivalent dimensionless time scales are,

tτ (t) =
h

uτ (t)
, t∗ =

h

w∗

, tN (t) =

(

γ∆θ(t)

h

)

−1/2

. (5.2)

In our flow the friction time scale tτ varies with time due to the time variation of uτ ,
while the buoyancy time scale tN varies due to the change in the mean temperature
gradient. On the other hand, the surface cooling flux remains constant, so the convection
time scale t∗ is constant.
The two Richardson numbers defined in (2.19) can be reformulated as ratios of these

three time scales,

Riτ(t) =

(

t̃τ

t̃N

)2

=

(

tτ
tN

)2

and Ri∗(t) =

(

t̃∗

t̃N

)2

=

(

t∗
tN

)2

, (5.3)

and hence can be interpreted as representing ratios between the time scales of shear and
convection generated fluid motions to the time scale associated with the deceleration of
fluid parcels by the background stratification.
The convection velocity w∗ and time scale t∗ given above use the channel height h as

their length scale. This approach has the advantage that it allows the development of
the relatively simple scaling formulas presented below, and, in particular the formula for
destratification time presented in § 5.3. The assumption implicit here is that the effect
of the plumes is felt throughout the depth of the channel. This assumption is reasonable
during later stages of the destratification process, but over-estimates w∗ during the initial
stages when plumes are confined to the region close to the surface.
An alternative approach is to use a length scale based on some measure of the

penetration depth of the plumes in a manner analogous to the original scaling of Deardorff
(1970). In this case, w∗ and t∗ vary with time as the plumes penetrate progressively
further into the channel. An approach similar to this was adopted by Ulloa et al. (2019) in
their recent analysis of penetrative convection in ice-covered lakes. The resultant scaling
is however significantly more complex because it requires knowledge or prediction of the
time evolution of the penetration depth of the plumes. The development of an alternative
scaling based on this more complex approach is the subject of ongoing work by the
authors.

5.2. Destratification rate

In order to determine a scaling for the destratification rate, we first define a destratifica-
tion rate, Dτ , non-dimensionalised in terms of the friction time scale and the temperature
difference at that time,

Dτ = −
d∆θ̃

dt̃

t̃τ

∆θ̃
= −

d∆θ

dt

tτ
∆θ

. (5.4)
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Figure 11. Dτ as a function of Riτ for Cases 1 – 4. The solid line is the model for destratification
rate attributed to shear, Ds,mod

τ = C1Ri
−1/2
τ , with C1 = 2.1. The dashed line indicates the lower

limit of validity of this model, Riτ = 15.

This is equivalent to the destratification rate D defined in KWAZ for the case without
surface cooling. In the current paper we will non-dimensionalise the destratification rate
in terms of the three time scales tτ , t∗ and tN defined above and distinguish between these
by using subscripts τ , ∗ and N appended to D. We will also divide destratification rate
into components attributed to the two main forcings – bottom shear and surface cooling.
These will be indicated by superscripts s and c respectively. No superscript indicates
total destratification rate. These symbols are defined explicitly in the table of symbols
contained in Appendix A.
Figure 11 shows Dτ plotted as a function of Riτ for Cases 1 – 4, for which the surface

cooling flux qs varies from 0 to 2.67 and w∗ from 0 to 1.75. Riτ decreases as the flow
evolves, so flow evolution proceeds from left to right. As Riτ decreases, the stability of
the flow decreases, and the destratification rate increases. As expected, destratification
rate also increases with increasing qs.
In KWAZ we found that, for the flow without surface cooling, the destratification rate

can be modelled using the power law relationship,

Ds,mod
τ = C1Ri−1/2

τ for Riτ > 15, (5.5)

where C1 = 2.1. In Case 1 (no surface cooling) destratification is driven only by
turbulence generated by shear, so this case isolates the effect of bottom shear on
destratification rate and Dτ = Ds

τ .
The relationship (5.5) is shown in figure 11. For Case 1 (qs = 0) the data follow (5.5)

for Riτ > 15. For weak stratification, where Riτ < 15, the exponent decreases and Ds
τ

approaches an asymptotic value of Ds
τ ≈ 1.1 for neutral conditions.

In riverine flows in which thermal stratification is an issue, the friction Richardson
number of the thermally stratified state is typically of order Riτ = O(1000) (see field
measurement data in Sherman et al. (1998); Bormans & Webster (1998); Mitrovic et al.

(2003)). In this context the weakly stratified flow regime, Riτ < 15, corresponds to a
degree of stratification that is less than O(1%) of its initial value and hence is negligible
when determining quantities such as the time taken for effective destratification of the
flow. In the following analysis we focus on the flow regime in which Riτ > 15 and (5.5)
is valid.
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Figure 12. Dc
∗ as a function of Ri∗. The solid line is Dc,mod

∗ = C2Ri
−1/2
∗ , with C2 = 1.2. (a)

Cases 1 – 3 for which qs increases from 0.53 to 2.67 and w∗ from 1.02 to 1.75. (b) Case 3 only,
highlighting the response during the initial relaxation period.

When qs > 0, surface cooling provides a second driver for destratification. In order to
isolate this second process we subtract the destratification due to bottom shear modelled
by (5.5) from the total destratification rate,

Dc
τ = Dτ −Ds,mod

τ = −
d∆θ

dt

tτ
∆θ

− C1Ri−1/2
τ . (5.6)

Here Dc
τ denotes destratification rate due to surface cooling non-dimensionalised in

terms of the friction time scale tτ . Implied here is an assumption that coupling between
processes associated with destratification by shear and convection is linear.
Since destratification due to surface cooling is expected to scale with the convection

time scale t∗ rather than the friction time scale, we re-scale Dc
τ in terms of t∗, to give

the destratification rate due to cooling non-dimensionalised in terms of convection time
scale,

Dc
∗
= (Dτ −Ds,mod

τ )
t∗
tτ

= −
d∆θ

dt

t∗
∆θ

− C1
t∗
tτ
Ri−1/2

τ . (5.7)

This can be written more concisely as,

Dc
∗
= D∗ −Ds,mod

∗
, (5.8)

where D∗ is the total destratification rate non-dimensionalised in terms of the convection
time scale,

D∗ = −
d∆θ

dt

t∗
∆θ

, (5.9)

and Ds,mod
∗ is the modelled destratification rate due to bottom shear rescaled in terms

of the convection time scale,

Ds,mod
∗

= C1
t∗
tτ
Ri−1/2

τ . (5.10)

By analogy with Dτ = f(Riτ ) and the scaling relation (1.1) of Deardorff et al. (1980),
we expect the destratification rate associated with surface cooling Dc

∗
to be a function of

the convection Richardson number Ri∗. Figure 12 (a) shows Dc
∗
plotted as a function of
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Ri∗ for Cases 2 – 4, for which qs increases from 0.53 to 2.67 and w∗ from 1.02 to 1.75.
The data for different surface heat fluxes collapse to a relationship,

Dc,mod
∗

= C2Ri
−1/2
∗ , (5.11)

where C2 = 1.2. There is some scatter in the data especially at high Ri∗. Inspection of
the data for individual cases shows an initial oscillatory variation in Dc

∗
around (5.11).

This occurs during the early relaxation period as the flow responds to the sudden change
in conditions from radiative heating to surface cooling and the region close to the upper
boundary undergoes a transition from laminar to turbulent flow. This can be clearly seen
in figure 12 (b) which shows the data for Case 3 only, and is also apparent in the data for
the total destratification rate shown in figure 11. This deviation is also due to the fact
that, in our scaling, we have used the channel height as the length scale for all processes,
including convection, whereas, as discussed above, early in the process the influence of
thermal plumes on turbulence within the channel extends to a smaller depth. We would
expect a smoother transition to occur in environmental analogues of this flow such as
riverine applications, where there are typically additional physical processes such as day-
time surface cooling due to evaporation and long-wave radiative emission and a gradual
decrease in solar heating (see Bormans et al. 1997, for example), which act to destabilise
the region close to the upper surface before the night-time cooling period begins.
In order to combine these two components of destratification into a single model we

combine (5.11) with (5.7) to give,

D∗ = −
d∆θ

dt

t∗
∆θ

= Ds,mod
∗

+Dc,mod
∗

= C1
t∗
tτ
Ri−1/2

τ + C2Ri
−1/2
∗ , (5.12)

and then rescale in terms of the time scale that is common to both processes, namely
the buoyancy time scale, tN , to give,

DN = −
d∆θ

dt

tN
∆θ

= C1
tN
tτ

Ri−1/2
τ + C2

tN
t∗

Ri
−1/2
∗ . (5.13)

Rewriting Riτ and Ri∗ in terms of time scale ratios given in (5.3) leads to,

DN = C1
tN
tτ

tN
tτ

+ C2
tN
t∗

tN
t∗

, (5.14)

and finally,

DN = C1Ri−1
τ + C2Ri−1

∗
. (5.15)

Thus, total destratification rate non-dimensionalised in terms of the buoyancy scale tN
can be modelled as a simple linear combination of power-law functions of Riτ and Ri∗
with exponent n = −1. This model is valid for Riτ > 15.
Figure 13 shows measured values of DN determined from the DNS data plotted against

the model (5.15) for various subsets of simulation cases. Figure 13 (a) shows data for
Cases 1 – 4 for which qs varies from 0 to 2.67 and w∗ from 0 to 1.75. This data spans a large
range of Riτ and Ri∗ and collapse convincingly to the model relationship. Figure 13 (b)
shows data for cases in which the convection velocity is kept constant at w∗ = 1.39
and the parameters Riτ,0, Reτ , λ and α vary. Again, the data is well predicted by the
model. Figure 13 (c) shows data for the three cases using the same flow parameters on
different grids and domains. The data for all three cases is very similar, indicating that
the standard grid resolution and domain size used are sufficient to capture the scales of
motion that contribute to the destratification process.
Finally, figure 13 (d) shows the data for all DNS cases. The collapse of the data across

all cases provides strong evidence for the validity of the model (5.15) over the range of
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Figure 13. DN plotted against the model (5.15). The solid line is DN = C1Ri−1

τ + C2Ri−1

∗ ,
with C1 = 2.1 and C2 = 1.2. (a) Data for Cases 1 – 4 for which qs varies from 0 to 2.67 and
w∗ from 0 to 1.75, while other parameters are constant. (b) Data for cases in which w∗ = 1.39
while Riτ,0, Reτ,0, λ and α vary. (c) Data for cases using the same flow parameters on different
grids and domains. (d) Data for all cases.

parameters included in this study. The main deviations seen are due to the response of
the system to the sudden initial change in conditions as discussed above.

5.3. Destratification time

As a further step, the model for destratification rate (5.15) can be integrated to give
a model for destratification time. Expanding all the terms in (5.15) gives

−
1

∆θ

d∆θ

dt

(

γ∆θ

h

)

−1/2

= C1

(

γ∆θh

u2
τ

)

−1

+ C2

(

γ∆θh

w2
∗

)

−1

, (5.16)

which simplifies to

−∆θ−1/2 d∆θ

dt
= γ−1/2h−3/2(C1u

2
τ + C2w

2
∗
). (5.17)
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Separating and integrating from an initial state i to final state f ,

−

∫ ∆θf

∆θi

∆θ−1/2d∆θ = γ−1/2h−3/2

∫ tf

ti

(

C1u
2
τ + C2w

2
∗

)

dt, (5.18)

leads to,

td =
2γ1/2h3/2

(

∆θ
1/2
i −∆θ

1/2
f

)

C1[u2
τ ]av + C2[w2

∗
]av

, (5.19)

where [.]av indicates the average taken over the time period ti− tf (for example [u2
τ ]av =

1/(tf − ti)
∫ tf
ti

u2
τdt). This can be recast in terms of dimensional variables as

t̃d =
2
(

β̃g̃
)1/2

h̃3/2
(

∆θ̃
1/2

i −∆θ̃
1/2

f

)

C1[ũ2
τ ]av + C2[w̃2

∗
]av

. (5.20)

In our simulations, w∗ is constant, however uτ varies during the destratification process.
The values of [u2

τ ]av for each of the simulations are shown in table 1. Figure 14 (a) shows
a comparison of the temperature difference ∆θ plotted against time t for all cases, while
figure 14 (b) shows ∆θ scaled in terms of the difference between the initial and final
values ∆θi − ∆θf , and t scaled by the destratification time td determined from (5.19).
Here we set ∆θf = 0 so that td represents time taken to destratify completely. (The
formula can also be used to determine the time required to reach a certain degree of
destratification relative to the initial stratification.)
Scaling t in this manner gives a good collapse across the various cases with respect to

the time at which ∆θ reaches a value of zero, which is what td predicts. In this regard,
all cases reach zero at approximately t/td = 1, indicating that the value of td given
by (5.19) gives an accurate prediction of the destratification time. There is, however,
variation in the trajectories taken in different cases. This is due to the fact that the time-
evolution of transfers between kinetic and potential energy within the channel varies
across the different cases due to differences in the initial stratification and the rate of
surface cooling.

5.4. Application to predicting destratification in rivers

In principle our equations for destratification rate (5.15) and destratification time
(5.20) could form the basis for methods to predict destratification in rivers. (5.15) could
be incorporated into a one-dimensional river model and integrated in time alongside
other equations in order to predict changes in stratification over time. Alternatively,
(5.20) could be used directly to predict destratification time from a given initial state for
a given surface cooling flux. In either approach w̃∗ can be estimated based on an estimate
of heat fluxes determined from predicted or recorded weather conditions, while ũτ can be
estimated from river flow rate using formulas such as the Manning or Chézy equations
(Bjerklie et al. 2005). These formulas do not account for the effect of stratification on the
friction coefficient Cf and hence ũτ . In order to include this effect, a correlation for Cf at
values of Reτ and λ typical of stratification conditions in rivers of interest (Reτ ≈ 25, 000
and λ ≈ 5) would be required.
The scaling relations above are based on simulations at values of Reτ and Pr that are

significantly lower than those seen in real rivers. As discussed in § 3, results from KWAZ
and other authors indicate that destratification rate is likely to show some dependence on
Pr. Given that our relations have been developed based on physical arguments, the hope
here is that, as with similar scaling relations such as (1.1) of Deardorff et al. (1980), the
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Figure 14. Temperature difference ∆θ plotted against time t. (a) shows ∆θ and t as measured
in the simulations. (b) shows ∆θ scaled in terms of the difference between the initial and final
values ∆θi −∆θf , and t scaled by the destratification time td determined using (5.19). Here we
have used ∆θf = 0.

dependence of our scaling relationships on Pr may also be restricted to the magnitude of
the coefficients. While a dependence on Reynolds number is not apparent in our results,
only a small range of Reτ has been tested here. Given that Reτ of typical stratified
river flows is significantly higher, even a small Reτ dependence would have an effect.
Thus, before using the relationships proposed here for predicting destratification rates
and times in rivers, it is necessary to test these relationships through comparison with
field or experimental measurements.

6. Concluding remarks

We have presented a study of destratification of thermally stratified turbulent open
channel flow after the imposition of surface cooling. This study builds on our previous
studies of the equilibrium state due to radiative heating (Williamson et al. 2015) and the
response of this system to removal of the heat source (Kirkpatrick et al. 2019).
The flow evolves until the initial stable stratification is broken down and replaced by

unstable stratification driven by the cooling flux at the upper boundary. Flow visualisa-
tions and vertical profiles of various turbulence statistics show the time evolution of the
vertical structure of the flow. We found that significant flow features of the flow without
surface cooling, such as Kelvin-Helmholtz-like shear instabilities, are also present in the
flow with surface cooling. The most significant additional feature in this flow with regard
to the flow structure is the presence of thermal plumes that form due to cooling at the
upper boundary. The plumes penetrate progressively deeper as the temperature gradient,
due to radiative heating in the initial state, is mixed out. After all of the initial stable
stratification is removed the flow continues to evolve toward a new unstably stratified
equilibrium state. A characteristic feature of the unstably stratified flow is the formation
of large scale structures, ‘convective supercells’, that have also been observed by other
authors such as Walker et al. (2014).
During the destratification process the thermal plumes have a substantial effect on

the dynamics of turbulence in the channel, causing significant enhancement of vertical
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turbulent momentum and heat fluxes. The enhanced turbulent momentum flux drives
an increase in shear production of turbulence, and the resulting increase in turbulent
kinetic energy leads to an increase in the buoyancy flux and hence contributes to the
destratification process.

Based on these observations we concluded that the dominant time scales in the flow
from the perspective of destratification are the time scales associated with shear tτ ,
convection t∗ and the stable density stratification tN . We showed that, for our flow, the
friction and convection Richardson number can be interpreted as ratios of these time
scales, that is Riτ = (tτ/tN)2 and Ri∗ = (t∗/tN )2, and then derived a relationship for
destratification rate DN of the form,

DN = C1Ri−1
τ + C2Ri−1

∗
,

where C1 = 2.1, C2 = 1.2. This relationship assumes that the mixing processes due to
surface cooling and bed shear can be modelled as being linearly independent. The model
is valid for Riτ > 15. Here, the destratification rate, DN , is non-dimensionalised in terms
of the stratification time scale and the difference between the maximum horizontally-
averaged temperature in the domain and the horizontally-averaged temperature at the
channel bottom, that is,

DN = −
d∆θ̃

dt̃

t̃N

∆θ̃
,

where,

t̃N (t̃) =

(

β̃g̃∆θ̃

h̃

)

−1/2

and ∆θ̃(t̃) = θ̃m − θ̃b.

We then showed that this relationship can be integrated to give a formula for the time
required for the flow to destratify from an initial temperature difference ∆θ̃i to a final
temperature difference ∆θ̃f . This formula is

t̃d =
2
(

β̃g̃
)1/2

h̃3/2
(

∆θ̃
1/2

i −∆θ̃
1/2

f

)

C1[ũ2
τ ]av + C2[w̃2

∗
]av

,

where [ũ2
τ ]av and [w̃2

∗
]av are the squared friction and convection velocities averaged over

the duration of the destratification process.

Comparison of these relations with data from our simulations shows that they
accurately predict the destratification rate and destratification time recorded in the
simulations across a wide range of Riτ and Ri∗. Further investigations are required to
determine the dependence of these scaling relations on Reynolds and Prandtl number.
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Appendix A

Symbol

B Downwards turbulent buoyancy flux (4.1)
cp Specific heat of fluid
Cf Coefficient of friction
DN Total destratification rate normalised in terms of tN (5.13)
D∗ Total destratification rate normalised in terms of t∗ (5.12)
Dτ Total destratification rate normalised in terms of tτ (5.4)
Dc

∗ Destratification rate due to surface cooling normalised in terms of t∗ (5.7)
Dc

τ Destratification rate due to surface cooling normalised in terms of tτ (5.6

Ds,mod
∗ Modelled destratification rate due to shear normalised in terms of t∗ (5.10)

Ds,mod
τ Modelled destratification rate due to shear normalised in terms of tτ (5.5)

E Entrainment rate (general) (1.1)
g Gravitational acceleration
h Channel height
Is Incoming radiative heat flux in equilibrium state (2.1)
k Turbulent kinetic energy (4.1)
lC Corrsin length scale Figure 8
lO Ozmidov length scale Figure 8
Lx, Ly, Lz Domain dimensions Figure 1
N Buoyancy frequency associated with horizontally-averaged stratification
p Pressure
P Shear production of turbulent kinetic energy (4.1)
Pθ Production of temperature variance (4.3)
Pr Prandtl number (2.6)
qe Internal heat source (2.16)
qs Surface cooling heat flux
qr Volumetric heat source due to radiative heat flux in equilibrium state (2.1)
QN Scale associated with radiative heat source in equilibrium state (2.8)
Raτ Rayleigh number based on friction velocity (4.4)
Reb Local buoyancy Reynolds number Figure 8
ReS Shear Reynolds number Figure 8
Reτ Friction Reynolds number (2.19)
Reτ,0 Friction Reynolds number of initial equilibrium state (2.6)
Ri Gradient Richardson number Figure 8
Riτ Friction Richardson number (2.9)
Ri∗ Convection Richardson number (2.11)
t Time
td Time taken to destratify flow from ∆θi to ∆θf (5.19)
tN Time scale associated with stable stratification (5.1, 5.2)
tτ Time scale associated with shear at the channel bottom (5.1, 5.2)
t∗ Time scale associated with convection due to surface cooling (5.1, 5.2)
T Turbulent transport of turbulent kinetic energy (4.1)
Tθ Turbulent transport of temperature variance (4.3)
Ub Bulk flow velocity
ui Cartesian components of velocity
uτ Friction velocity associated with shear at channel bottom
uτ,0 Friction velocity of initial equilibrium state
w∗ Convection velocity scale associated with surface cooling (2.10)
x, y, z Cartesian coordinates in streamwise, spanwise and vertical directions

Table 3. Table of symbols.
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Symbol

α Radiative attenuation coefficient (2.1)
β Coefficient of volumetric expansion
γ Non-dimensional buoyancy coefficient (2.15)
δij Kronecker delta
ε Rate of viscous dissipation of turbulent kinetic energy (4.1)
η Kolmogorov length scale Figure 8
θ Fluctuating component of temperature (2.2)
θm Maximum horizontally-averaged temperature in channel Figure 1
θb Horizontally-averaged temperature at channel bottom Figure 1
∆θ Maximum temperature difference, (θm − θb) (2.19)
Θv Domain-averaged component of temperature (2.2)
ΘN Temperature scale associated with heat source in equilibrium state (2.7)
κ Thermal diffusivity of fluid
λ Stability parameter of initial equilibrium state (2.6)
ν Kinematic viscosity of fluid
ρb Reference density of fluid
χ Rate of viscous dissipation of temperature variance (4.3)
ω Magnitude of fluid vorticity
·̃ Dimensional variable (No tilde indicates a dimensionless variable)
· Horizontal averaging operator
〈·〉 Combined horizontal and time averaging operator

Table 4. Table of symbols, continued.
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