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Abstract

We consider the problem of detecting defective items amongst a large collection, by conducting
tests of individual or groups of items. Group testing offers improvements over the näıve individual
testing scheme by potentially certifying multiple individual items as non-defective with a single
test. The group testing problem aims to design a group testing plan to detect the defective items
using as few tests as possible. We propose novel two-stage stochastic and robust optimization
formulations for the design of group testing plans in the noiseless non-adaptive setting. Our
formulations enable us to certify optimality for existing group testing schemes, as well as model
complex grouping constraints, a feature that is not discussed in the existing literature.

1 Introduction
In this paper, we consider the goal of detecting defective items amongst a large collection, by con-
ducting tests of individual or groups of items. A test of a group of items will detect the presence of a
defective item within that group, but will not indicate which item is defective, thus further testing is
required. On the other hand, if no defective item is detected, all items in the group can be certified
non-defective. Thus, group testing offers improvements over the näıve individual testing scheme by
potentially certifying multiple individuals with a single test. The group testing problem aims to design
a group testing plan to detect the defective items using as few tests as possible.

Originally introduced by Dorfman [16] in the context of medical diagnosis, group testing has proven
useful in numerous other applications, including quality control in manufacturing [34], experimental
design [25], high-speed communication networks [7], multi-access communication protocals [39], image
compression [21] and drug discovery [23]. Amidst the SARS-CoV-2 pandemic, group testing is a
promising algorithmic tool to alleviate test shortages and significantly speed up testing rates [32].

There are several dichotomies in group testing: deterministic versus stochastic; adaptive versus
non-adaptive; and noisy versus noiseless.

Deterministic group testing [4, 15, 18, 37] considers the case when a fixed number of defective items
are known to be present in the population. On the other hand, stochastic group testing is when each
item is randomly defective with some known probability [3, 15, 24, 26, 34, 39]. The main difference
between deterministic and stochastic group testing are the type of guarantees one obtains for a given
plan. In the deterministic problem, guarantees are on the worst-case number of tests needed when
a certain number of items are defective, whereas in the stochastic problem, the guarantee is on the
expected number of items. However, testing plans designed for the deterministic problem can easily
be used for the stochastic problem, and vice versa. For example, De Bonis et al. [15] provide a scheme
for the deterministic problem, but then show expectation bounds for the stochastic problem.

Adaptive group testing algorithms [17, 33, 37, 38] allow testing to occur over multiple rounds,
thus allowing the possbility to exploit current test results to design more efficient tests for later
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stages. On the other hand, non-adaptive testing [14, 29] requires that testing be complete in one or
two rounds. Ungar [36] showed that grouping is suboptimal for adaptive tests when the proportion
of defective items is ≥ (3 −

√
5)/2, whereas Aldridge [2] showed that in the one-round regime, if

the proportion of defective items remains constant as the number of items grows, then grouping is
suboptimal. Adaptive testing is more efficient that non-adaptive testing in terms of the number of
tests. However, non-adaptive testing can be parallelized, thus remains relevant in many applications.

Noiseless testing, the most common regime, is when test results are accurate, so if a group contains
a defective item, the test will certainly indicate this. Noisy testing [11, 12, 33] relaxes this assumption:
when a group contains a defective item, there is a non-zero probability that the test will not detect
its presence. This is, expectedly, much more involved than the noiseless counterpart.

In this paper, we will consider the non-adaptive noiseless group testing problem. Aldridge et al. [5]
provides a comprehensive survey of non-adaptive testing (in both noiseless and noisy regimes). The
majority of the existing work approaches group testing from the perspective of information or coding
theory and combinatorics. For example, groups may be formed by randomly placing an item in a group
with some probability (Bernoulli designs), or draw upon binary codes with special properties (e.g.,
superimposed codes or generalizations thereof). Then, the properties of these designs are exploited
to prove performance guarantees under certain parameter regimes (e.g., under different prevalence
rates for defective items). To the best of our knowledge, we have not seen ideas from mathematical
optimization applied to the problem of designing a group testing plan. Having said that, Aldridge
[1], Aldridge et al. [4], Chan et al. [13], Malioutov and Malyutov [28] propose linear programming
models to select the defective items from test results of a given group test design (e.g., a Bernoulli
design). However, this is different to using mathematical optimization to design the group test plan.

1.1 Contributions and Outline

We propose a novel two-stage optimization formulation for the design of group testing plans in the
noiseless non-adaptive setting. We consider both deterministic and stochastic problems, and design the
objective appropriately for each case. For the deterministic problem, our objective aims to minimize
the worst-case number of tests required over all possible true defective states in a given set. Thus,
this formulation is exactly a robust optimization model [8, 20, 31].

For the stochastic problem, the objective is the expected number of tests. However, the distribution
of the true states, while possessing finite support, can be exponentially large, so enumerating scenarios
to describe the expected number of tests is intractable. Instead, we propose two alternatives. First,
following Bertsimas et al. [9], we construct a confidence set of scenarios based on the distribution, and
formulate a robust objective, for which the solutions enjoy confidence bounds on the performance.
Second, following Subramanyam et al. [35], we propose a distributionally robust objective: we take a
tractable number of samples from the true distribution, then aim to minimize the worst-case expected
number of tests over all distributions within a certain Wasserstein distance of the empirical distribution
To our knowledge, this was first used by Subramanyam et al. [35] for two-stage problems with a
similar combinatorial uncertainty structure to the group testing problem. Due to existing results on
confidence bounds for the Wasserstein distance [19, 30], this approach also admits confidence bounds
for the solution.

We present a unified Benders’ decomposition approach for solving our formulation with both robust
and distributionally robust objectives. We show that both master and subproblems in this approach
can tractably be solved. To do this, we show that the second stage cost, originally formulated as
an integer program, can actually be solved as a linear program, which enables an easier derivation
of feasibility cuts. Bansal et al. [6] also examine Benders’ decomposition in the context of two-stage
distributionally robust integer programs, for both linear and integer second stages. Our analysis of
the second stage costs allows us to use the simpler version of their algorithms.

Our setup, described fully in Section 2, is most similar to the so-called conservative two-stage group
testing introduced by Aldridge [3]. However, Aldridge [3] does not use mathematical programming to
design group testing plans, but instead takes existing designs and prove lower bounds on their per-
formance for the conservative group testing setting. Note that an optimization-based approach will
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obviously be less scalable than specific designs, and current discrete optimization technology, while
having progressed greatly over the last few decades, limits the application to medium-sized collections
of items. However, medium-sized collections appear in many applications, for example SARS-CoV-2
testing, thus we believe such an approach still maintains relevance. From a more theoretical perspec-
tive, we believe an optimization-based formulation for group testing is of interest to the community
for two additional reasons:

� The current ad hoc design of testing plans cannot incorporate more complex constraints be-
yond limits on the number of items in a group, and the number of tests per items. However,
an optimization-based framework can easily incorporate such constraints. For example, an op-
timization model can prevent two items being tested in the same group if needed, or it can
ensure that groups correspond to connected components in a graph (where vertices correspond
to items).

� In existing literature, when a design is claimed ‘optimal’ this means that the asymptotic rate
of testing matches the information-theoretic lower bound for particular parameter regimes. For
example, for the stochastic problem, De Bonis et al. [15, Section 4] show that their design based
on (k,m, n)-selectors achieves the asymptotically optimal rate, assuming that the probability of
an item being defective depends on the number of items in some specific way. Furthermore, in
the existing literature, optimality is only guaranteed ‘up to a constant’.

In contrast, group testing plans computed from optimization models are certified optimal under
whichever parameter regime that the objective was built around. Furthermore, it can also find
optimal designs for non-traditional parameter regimes not analysed in existing literature, for
example, a distribution over all collections with at most k defective items, a distribution where
each item has a different defective probability, or a distribution over connected components in
a graph (where vertices correspond to items). Relatedly, an optimization-based approach can
also be used to certify that existing designs are indeed optimal.

Thus, we believe that an optimization-based framework provides a valuable new perspective for the
group testing problem.

In Section 2 we formally describe our problem and present our new two-stage optimization for-
mulation. In Section 3 we describe the algorithmic framework, then show that the second stage cost
can be computed via a linear program, and use this to show that the master and subproblems can
be tractably solved. In Section 4 we construct uncertainty sets based on different parameter regimes,
and provide their corresponding performance guarantees for the stochastic problem.

2 Two-Stage Formulations
In this section, we present our new two-stage formulation for group testing. The ultimate goal is to
identify defective items in as few tests as possible. We first define what a group test is.

Definition 2.1. Given a set of items [n], a group test takes a subset S ⊆ [n] and tests for the presence
of a defective item in S. The outcome of the test is +1 if there exists at least one defective item in S,
and 0 if there are no items in S. Note that when the outcome is +1, the test provides no information
on which specific items in S are defective, or on how many items are defective.

We assume tests are noiseless, that is, the outcome of a group test on S is provided to us accurately.
We assume the following testing procedure.

� In the first stage, groups S1, . . . , ST ⊆ [n] will be formed and tested, and outcomes y1, . . . , yT ∈
{0, 1} will be observed.

� In the second stage, individual tests are conducted on items which are not certified defective or
non-defective by the first-stage tests.
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Thus, the problem is how to formulate the optimal first-stage groups. We introduce some parameters:

n := the total number of items

T := a limit on the number of group tests (can set to n)

G := a limit on the group size

r := a limit on the number of group tests that each item can be part of

D := the set of possible defective states for each item, a subset of {0, 1}n.

d := a binary vector in D ⊆ {0, 1}n that denotes the true defective state of each item.

(If di = 1, then item i ∈ [n] is defective.)

We introduce the notation D explicitly because we will later consider restrictions on the possible
states of the form

Dm :=

d ∈ {0, 1}n :
∑
i∈[n]

di ≤ m

 . (1)

We define decision variables

X = a binary matrix in {0, 1}T×n describing which items are part of which tests. (2)

Each row t ∈ [T ] of X denotes a group, and each xti ∈ {0, 1} indicates whether item i will be part of
test t or not. Given X and the true states d, the outcomes of the tests yt are

yt(X, d) := max
i∈[n]

dixti, y(X, d) := {yt(X, d)}t∈[T ] ∈ {0, 1}
T . (3)

In order to choose the optimal first-stage groups, we next characterize how many tests are needed in
the second stage.

2.1 An integer program to certify items

The second-stage cost of X is defined to be the number of uncertified items after observing the
outcomes y(X, d) of the group tests X on the true state d. This is because each uncertified item must
be tested individually in the second stage. Throughout this section, for convenience we will simply
write y and yt in place of y(X, d) and yt(X, d), since we are taking X and d as given. We first define
what we mean by certifying an item defective or non-defective.

Definition 2.2. Suppose that outcome vector y ∈ {0, 1}T has been observed from group tests X ∈
{0, 1}T×n. Let [T ]0(y) := {t ∈ [T ] : yt = 0} and [T ]1(y) := {t ∈ [T ] : yt = 1}. We define the set of
consistent states with group tests X and outcomes y as

D(X, y) :=

d ∈ D :

∑
i∈[n]

dixti = 0 ∀t ∈ [T ]0(y)

∑
i∈[n]

dixti ≥ 1 ∀t ∈ [T ]1(y)

 .

An item i ∈ [n] is certified defective if there exists no d ∈ D(X, y) such that di = 0. Similarly, i ∈ [n]
is certified non-defective if there exists no d ∈ D(X, y) such that di = 1.

Given Definition 2.2, a näıve way to test whether an item i is certified is to solve two feasibility
problems:

find d ∈ D(X, y) s.t. di = 0 (or 1).

We now show that there is a much more efficient way to do this.
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Proposition 2.1. Let D = {0, 1}n. Define

[n]0(X, y) := {i ∈ [n] : ∃t ∈ [T ] s.t. xti = 1, yt = 0}
[n]1(X, y) := {i ∈ [n] : ∃t ∈ [T ] s.t. xti = 1, yt = 1, xtj = 0 ∀j ∈ [n] \ ([n]0(X, y) ∪ {i})} .

Then the certified defective items are [n]1(X, y), and the certified non-defective items are [n]0(X, y).

Proof. If di = 1, then for any t ∈ [T ] with xti = 1, we will have
∑
i′∈[n] di′xti′ ≥ 1, so i 6∈ [n]0(X, d).

Thus [n]0(X, y) consists of only certified non-defective items. Furthermore, if i 6∈ [n]0(X, y), then
xti = 1 only when yt = 1. Thus, we can set di = 1 without violating the constraints

∑
i′∈[n] dixti ≥ 1

on D(X, y). Thus, i consists exactly of the certified non-defective items.
Similarly, if di = 0, then for any t ∈ [T ] with xti = 1 and yt = 1, there must be at least one j 6= i

such that djxtj = 1, so dj = xtj = 1. In particular, j 6∈ [n]0(X, y) by the previous argument. But this
means that maxj∈[n]\([n]0(X,y)∪{i}) xtj = 1, so i 6∈ [n]1(X, y). Thus, [n]1(X, y) consists of only certified
non-defective items.

We now show that no item outside of [n]1(X, y) can be certified defective. Consider i ∈ [n] that is
not in [n]0(X, y) or [n]1(X, y). For each t where xti = 1, we know that

dixti +
∑

j∈[n]\([n]0(X,y)∪{i})

djxtj ≥ 1.

The sum is non-empty because i 6∈ [n]1(X, y), so setting di = 0 and every other dj = 1 for j 6∈
[n]0(X, y) ∪ {i} creates a state vector that satisfies the inequalities.

Remark 2.1. When D ( {0, 1}n, then the sets of certified defective and non-defective items may be
larger than [n]1(X, y), [n]0(X, y). For example, if D = Dm with m < n, and we have found that
|[n]1(X, y)| = m, then the certified non-defective items are [n] \ [n]1(X, y) ⊇ [n]0(X, y). However, if
|[n]1(X, y)| < m, describing exactly the set of certified items is much more difficult than Proposition 2.1
for D = {0, 1}n. In any case, if D ( {0, 1}n, then [n]0(X, y)∪ [n]1(X, y) can still be used as proxies for
the set of certified items, but we must recognise that our resulting formulation is an approximation.

Characterizing which items are in [n]0(X, y) ∪ [n]1(X, y) can be done via an integer program. To
this end, we define the following variables:

z0
i := indicates whether i ∈ [n]0(X, y) or not

z1
i := indicates whether i ∈ [n]1(X, y) or not

uti := indicates whether test t ∈ [T ] can be used to certify i ∈ [n]0(X, y) or not

vti := indicates whether test t ∈ [T ] can be used to certify i ∈ [n]1(X, y) or not.

Theorem 2.2. When D = {0, 1}n, the number of certified items can be computed via the following
0-1 program:

Q(X, d) := max
z0,z1,u,v

∑
i∈[n]

(z0
i + z1

i ) (4a)

s.t. z0, z1 ∈ {0, 1}n, u, v ∈ {0, 1}T×n, (4b)

uti ≤ xti, uti ≤ 1− djxtj , ∀t ∈ [T ], i, j ∈ [n] (4c)

z0
i ≤

∑
t∈[T ]

uti, ∀i ∈ [n] (4d)

vti ≤ xti, vti ≤
∑
i′∈[n]

di′xti′ , vti ≤ 1− xtj + z0
j , ∀t ∈ [T ], i, j ∈ [n] (4e)
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z1
i ≤

∑
t∈[T ]

vti, ∀i ∈ [n]. (4f)

Furthermore, for an optimal solution (z0, z1, u, v) of Q(X, d), z0 and z1 are characteristic vectors for
the sets [n]0(X, y) and [n]1(X, y) respectively.

Proof. There are two situations to consider:

� Our aim is to enforce that when item i 6∈ [n]0(X, y), then z0
i = 0. The maximizing objective will

then ensure that when i ∈ [n]0(X, y), we have z0
i = 1 at optimality. Recall that uti indicates

whether test t can be used to certify that i ∈ [n]0(X, y) or not. This means that if xti = 0 or
yt = 1, then uti = 0 must be enforced. We need the constraints uti ≤ xti, uti ≤ 1−yt. Recalling
the definition of yt, we can equvalently write this as

uti ≤ xti, uti ≤ 1− djxtj ∀t ∈ [T ], i, j ∈ [n].

The constraint on z0
i will be

z0
i ≤

∑
t∈[T ]

uti, ∀i ∈ [n].

This means that if for all t ∈ [T ], we have uti = 0 (i.e., we cannot certify that i ∈ [n]0(X, y)),
then we enforce z0

i = 0. This justifies constraints (4c)–(4d).

� Our aim is to enforce that whenever i 6∈ [n]1(X, y), then z1
i = 0. The maximization objective

will then ensure that when i ∈ [n]1(X, y), we have z1
i = 1 at optimality. Recall that vti indicates

whether test t can be used to certify that i ∈ [n]1(X, y). This means that if xti = 0 or yt = 0
or
∑
j∈[n]\{i} xtj(1 − z0

j ) ≥ 1, then vti = 1 must be enforced. We do this via the following
constraints

vti ≤ xti, vti ≤
∑
i′∈[n]

di′xti′ , wti ≤ 1− xtj + z0
j , ∀t ∈ [T ], j ∈ [n] \ {i}, i ∈ [n].

The rationale for the second set of constraints is because vti ≤ yt and the definition of yt =
maxi′∈[n] di′xti′ . The rationale for the third set of constraints is the following. We want the
constraints

∑
j∈[n]\{i} xtj(1− z0

j ) ≥ 1 =⇒ vti = 0, which is equivalent to vti ≤ 1− xtj(1− z0
j )

for all j ∈ [n] \ {i}. It is now easy to check that vti ≤ 1− xtj(1− z0
j ) ⇐⇒ vti ≤ 1− xtj + z0

j .
Finally we enforce constraints

z1
i ≤

∑
t∈[T ]

wti, ∀i ∈ [n].

This justifies constraints (4e)–(4f).

Remark 2.2. Observe that Q(X, d) depends on knowledge of the true state d rather than the outcome
vector y. In some sense, this is unavoidable since y itself depends on both X and d, thus changing
X will change how the random outcomes y are distributed. Thus, in any optimization model for X,
knowledge of d must be used to describe the outcome vector y. Despite not knowing the true d,
the fact that (4) requires knowledge of d does not create issues when we try to solve for the optimal
grouping X, which we provide algorithms for in Section 3. These algorithms (in a rough sense) use
‘guesses’ of what the true d is, then refines X based on these guesses. Thus, it is reasonable to have
Q(X, d) depending on d for the purposes of optimizing X.

We now verify that if we certify i ∈ [n]0(X, y) then we cannot certify i ∈ [n]1(X, y), and vice versa.
That is, the constraints z0

i + z1
i ≤ 1 are implied by these constraints.
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Lemma 2.3. Let (z0, z1, u, v) satisfy constraints (4c)–(4f). If z0
i > 0, then vti ≤ 0 for any t ∈ [T ].

If z1
i > 0, then uti ≤ 0 for any t ∈ [T ]. Consequently, when we additionally have 0 ≤ z0, z1 ≤ 1, then

we deduce that z0
i + z1

i ≤ 1 for all i ∈ [n].

Proof. Suppose that z0
i > 0. Then we necessarily have

∑
t′∈[T ] ut′i > 0, and hence there exists

at least one t′ ∈ [T ] such that ut′i > 0. Consequently, for this t′, we must have xt′i = 1 and∑
i′∈[n] di′xt′i′ = 0, thus di = 0. Now suppose for contradiction that vti > 0. This is only possible if

xti = 1,
∑
i′∈[n]\{i} di′xti′ ≥ 1 (we exclude i since we know di = 0), and 1−xtj+z0

j > 0 for all J 6= {i}.
Since

∑
i′∈[n]\{i} di′xti′ ≥ 1 there must exist some j 6= i such that xtj = 1 = dj . However, if dj = 1,

then for any constraint t′ with xt′j = 1, we have ut′j ≤ 1 − djxt′j = 0, hence z0
j ≤

∑
t′∈[T ] ut′j ≤ 0.

This contradicts 1− xtj + z0
j > 0, therefore vti = 0.

Suppose that z1
i > 0. Then there will exist some t′ such that vt′i > 0, so xt′i = 1,

∑
i′∈[n] di′xt′i′ ≥ 1

and 1−xt′j +z0
j > 0 for all j 6= i. Now for j 6= i, if xt′j = 1, then z0

j > 0, thus by the above arguments
we have dj = 0. We deduce that

∑
i′∈[n] di′xt′i′ ≥ dixt′i = di ≥ 1. But then this means that for any

t ∈ [T ], if xti = 1, then
∑
i′∈[n] di′xti′ ≥ dixti ≥ 1, hence uti = 1− dixti ≤ 0.

2.2 Choosing optimal groups via two-stage integer programming

Now we turn our attention to the problem of choosing an optimal grouping X. Our objective is to
choose X so that we minimize the total number of tests, which is the sum of the number of group
tests performed in the grouping X, plus the number of subsequent individual tests performed on
items not in [n]0(X, y)∪ [n]1(X, y), which is n−Q(X, d). Note that Q(X, y) depends on X and d (see
also Remark 2.2). However, the true state d is unknown to us, thus we have an optimization under
uncertainty problem. This motivates us to consider stochastic and robust objectives for optimizing
X, based on knowledge of d and D.

Before addressing the objective, we describe the constraints on X. The group size limit G and the
group test limit r for each item imposes the following constraints on the matrix X:∑

i∈[n]

xti ≤ G, ∀t ∈ [T ],

∑
t∈[T ]

xti ≤ r, ∀i ∈ [n].

Other operational constraints can be imposed on X if needed.
We now describe how to build the objective. If there exists a group t ∈ [T ] for which

∑
i∈[n] xti = 0,

then since there will not be any individuals in group t, no test will be expended for group t. To capture
this, we introduce binary variables bt ∈ {0, 1} and replace the group size limit constraints with∑

i∈[n]

xti ≤ Gbt, ∀t ∈ [T ].

Thus, variables bt indicates whether there are any items assigned to test t or not, and hence these can
be used in the objective to minimize the number of tests. Henceforth, we will denote the domain of
our decision variables as

X :=

(X, b) ∈ {0, 1}T×n × {0, 1}T :

∑
i∈[n]

xti ≤ Gbt, ∀t ∈ [T ],

∑
t∈[T ]

xti ≤ r, ∀i ∈ [n]

 . (5)

As previously mentioned, the number of subsequent individual tests needed after group tests X, given
that the true state is d, is n−Q(X, d). Without loss of generality, we ignore the constant n. For the
rest of the paper, we will use the following notation.
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Definition 2.3. Write D =
{
dk : k ∈ [K]

}
⊆ {0, 1}n and let {pk}k∈[K] ∈ ∆K be weights from the

K-simplex. Let P be a distribution over D such that

Pd∼P
[
d = dk

]
= pk, k ∈ [K].

Since we do not know d in advance, we look at three alternate objectives which optimize X based
only on knowledge of D and P .

� If the true state vector d is randomly drawn from distribution P , then we wish to minimize the
expected number of tests. We thus solve the two-stage stochastic optimization problem

min
b,X

∑
t∈[T ]

bt − Ed∼P [Q(X, d)] : (X, b) ∈ X

 . (6)

� If we only know that d ∈ D, then we wish to optimize the worst-case cost over any d ∈ D. We
thus solve the two-stage robust optimization problem

min
b,X

∑
t∈[T ]

bt −min
d∈D

Q(X, d) : (X, b) ∈ X

 . (7)

� To interpolate between the stochastic and robust objectives, we can solve the two-stage distri-
butionally robust optimization problem

min
b,X

∑
t∈[T ]

bt − min
P̃∈Fε(P )

Ed∼P̃ [Q(X, d)] : (X, b) ∈ X

 , (8)

where Fε(P ) is an ambiguity set of distributions (supported on D) built around some nominal
distribution P , with size governed by ε. For reasons that we explain later (see Section 4.2), in
this paper we consider Wasserstein-based ambiguity sets (although others are possible):

Fε(P ) :=


P̃ : ∃y ≥ 0 s.t.

∑
k,k′∈[K]

‖dk − dk
′
‖ykk′ ≤ ε

∑
k′∈[K]

ykk′ = pk, k ∈ [K]

∑
k∈[K]

ykk′ = p̃k
′
, k′ ∈ [K]


. (9)

Since Q(X, d) is itself the result of an optimization problem, both (6) and (7) are two-stage op-
timization problems, with fixed recourse with random technology matrices. In the next section, we
conduct a closer analysis of Q(X, d), and use this to describe some algorithms to solve (6) and (7).

3 Algorithms

In this section, we discuss algorithms for solving (6)–(8). Since D ⊆ {0, 1}n is a finite set, a determin-
istic equivalent for (6)–(7) exists, as well as for (8) for the Wasserstein ambiguity sets Fε(P ). Then
(6)–(8) can respectively be reformulated as

min
(X,b)∈X

∑
t∈[T ]

bt −
∑
k∈[K]

pkQ(X, dk)

 (10a)
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min
(X,b)∈X

∑
t∈[T ]

bt − min
k∈[K]

Q(X, dk)

 (10b)

min
(X,b)∈X ,α≥0

∑
t∈[T ]

bt + αε−
∑
k∈[K]

pk min
d∈D

{
Q(X, d) + α‖d− dk‖

} . (10c)

Note that (10a)–(10b) follow trivially from (6)–(7) and the notation in Definition 2.3, and (10c) follows
from applying linear programming duality to the worst-case expectation over the Wasserstein ball (9).
For completeness, we provide the proof of (10c) below, but we note that a more general result was
proven by Blanchet and Murthy [10, Theorem 1, Remark 1] when the support of P is possibly infinite.

Lemma 3.1. For Fε(P ) defined in (9), we have

min
P̃∈Fε(P )

Ed∼P̃ [Q(X, d)] = −min
α≥0

αε− ∑
k∈[K]

pk min
d∈D

{
Q(X, d) + α‖d− dk‖

}
Proof. Note that

min
P̃∈Fε(P )

Ed∼P̃ [Q(X, d)] = min
p̃,y


∑
k∈[K]

p̃kQ(X, dk) :

p̃ ≥ 0, y ≥ 0∑
k,k′∈[K]

‖dk − dk
′
‖ykk′ ≤ ε

∑
k′∈[K]

ykk′ = pk, k ∈ [K]

∑
k∈[K]

ykk′ = p̃k
′
, k′ ∈ [K]


.

A standard computation shows that the dual of this is

max
α≥0,γ,η

 ∑
k∈[K]

pkγk − αε :
γk + ηk

′
− α‖dk − dk

′
‖ ≤ 0, ∀k, k′ ∈ [K]

− ηk
′
≤ Q(X, dk

′
), ∀k ∈ [K]


= max
α≥0,γ

 ∑
k∈[K]

pkγk − αε : γk ≤ Q(X, dk
′
) + α‖dk − dk

′
‖, ∀k, k′ ∈ [K]


= −min

α≥0

αε− ∑
k∈[K]

pk min
k′∈[K]

{
Q(X, dk

′
) + α‖dk − dk

′
‖
} .

Deterministic equivalents for (10a)–(10b) can be built by replicating the variables used to define
Q(X, d) in (4) for each k ∈ [K], adding in an epigraphical variable βk ≤ Q(X, dk) and lifting appropri-
ately. A deterministic equivalent for (10c) can be built in a similar manner, except now K2 replications
of variables defining Q must be built. When K, T or n are large, this is highly inefficient. Instead
of solving the deterministic equivalents, we use a Benders’ decomposition approach from large-scale
optimization.

Note that if ε = 0, then Fε(P ) = {P}, and (8) is equivalent to (6). This is also seen in the
reformulation, since we can make the variable α arbitrarily large in (10c). On the other hand, if ε is
large, then α should be set small, so that the inner minimization in (10c) essentially just ignores the

9
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norm term, so (10c) becomes equivalent to (10b), i.e., (8) is equivalent to (7) when ε is large. Due to
these relationships, all three problems in (10) are instances of a more general problem:

min
x∈X

f(x)−
∑
k∈[K]

pkgk(x)

 , (11)

where f(x) is a convex function and each gk(x) is a concave function. In (10), f is
∑
t∈[T ] bt and gk

is mind∈D
{
Q(X, d) + α‖d− dk‖

}
. (It is not yet clear that this is concave in X; this will be shown in

Section 3.2.) We now describe a general Benders’ decomposition approach for (11).

3.1 Benders’ decomposition

The idea is to replace the ‘hard’ part of the objective with piecewise linear approximations, and
then iteratively refine these. For the general problem (11), the ‘hard’ part that we will build an
approximation for is

∑
k∈[K] p

kgk(x). The basic template of the Benders’ decomposition algorithm is
described in Algorithm 1.

Algorithm 1: Benders’ decomposition for (11).

Data: Initial concave approximations ĝsk(x) of gk(x), k ∈ [K]. Iteration limit S, tolerance
threshold δ ≥ 0.

Result: Final point x̄ ∈ X , approximation quality δ̄.
for s ∈ S do

Solve the master problem

min
x∈X

f(x)−
∑
k∈[K]

pkĝs−1
k (x)

 . (12)

Let xs be the solution to (12);
for k ∈ [K] do

Solve the subproblem:

compute ∇gk(xs), a supergradient of gk at xs. (13)

Update ĝs−1
k with a first-order approximation of gk at xs:

ĝsk(x) := min
{
ĝs−1
k (x), gk(xs−1) + 〈∇gk(xs−1), x− xs−1〉

}
∀x ∈ X . (14)

Compute δsk := ĝs−1
k (xs)− ĝsk(xs);

end
if
∑
k∈[K] δ

s
k ≤ δ then

return x̄ = xs ∈ X , δ̄ =
∑
k∈[K] p

kδsk;

end

end

return x̄ = xS ∈ X , δ̄ =
∑
k∈[K] p

kδSk ;

Remark 3.1. Note that

ĝsk = min

{
ĝ0
k(x), min

τ∈[s]

{
gk(xτ−1) + 〈∇gk(xτ−1), x− xτ−1〉

}}
,

10
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so if ĝ0
k is piecewise linear concave (i.e., a minimum over finitely many linear functions), then so is ĝsk.

Finite convergence of Algorithm 1 is guaranteed when gk is itself a piecewise linear concave function.
In fact, convergence can be guaranteed in more general settings, but for the purposes of this paper,
we shall show in the next section that the gk functions of interest to us are indeed piecewise linear
concave.

The two key steps of Algorithm 1 are solving the master problem (12) and solving the subproblem
(13) (i.e., computing the supergradient). As mentioned in Remark 3.1, since ĝsk can be made to be
piecewise linear concave, when f(x) is linear, solving (12) can be solved as a linear optimization
problem. In the group testing problem, X is an integer linear set, so (12) can be solved via integer
programming. In Section 3.2 we show that when gk(X,α) = mind∈D

{
Q(X, d) + α‖d− dk‖

}
, it is

indeed concave in (X,α), and computing the supergradient ∇gk(X,α) can also be done via integer
programming. The key step is to show that (4) can actually be solved without the integer constraints,
i.e., it can be solved as a linear program. Strong duality then holds, so we can write Q(X, d) as a
minimum of bilinear functions in X and d, and we can linearize any bilinear terms involving X and d.

3.2 Second stage analysis

If we remove the 0-1 constraints on z0, z1, u, v in (4) and replace them with 0 ≤ z0, z1 ≤ 1 and u, v ≥ 0,
it becomes a linear program, for which the dual is

min
λ,γ,ξ,η,δ,κ,ζ,µ0,µ1

∑
t∈[T ],i∈[n]

xti(λti + ηti) +

∑
i′∈[n]

di′xti′

 δti


+

∑
t∈[T ],i,i′∈[n]

(1− di′xti′)γtii′

+
∑

t∈[T ],j∈[n]\{i},i∈[n]

(1− xtj)κtij +
∑
i∈[n]

(
µ0
i + µ1

i

)
(15a)

s.t. λ, γ, ξ, η, δ, κ, ζ, µ0, µ1 ≥ 0 (15b)

1 ≤ µ0
i −

∑
t∈[T ],j∈[n]\{i}

κtji + ξi, ∀i ∈ [n] (z0
i ) (15c)

1 ≤ µ1
i + ζi, ∀i ∈ [n] (z1

i ) (15d)

0 ≤ λti +
∑
i′∈[n]

γtii′ − ξi, ∀t ∈ [T ], i ∈ [n] (uti) (15e)

0 ≤ ηti + δti +
∑

j∈[n]\{i}

κtij − ζi, ∀t ∈ [T ], i ∈ [n] (vti) (15f)

We now show that the optimal solution of the linear relaxation is integral by exhibiting a primal-dual
pair with the same objective value.

Theorem 3.2. The value of the dual linear program (15) is exactly Q(X, d).

Proof. The primal solution will be (note that by construction it satisfies all constraints of (4)):

� For each t ∈ [T ], i ∈ [n], uti = 1 if xti = 1 and
∑
i′∈[n] di′xti′ = 0, otherwise uti = 0.

� For each i ∈ [n], z0
i = maxt∈[T ] uti.

� For each t ∈ [T ], i ∈ [n], vti = 1 if xti = 1,
∑
i′∈[n] di′xti′ ≥ 1 and

∑
j∈[n]\{i} xtj(1 − z0

j ) = 0.

(Note that if xtj(1−z0
j ) = 0 for all j ∈ [n]\{i}, then 1 ≤ 1−xtj +z0

j hence vti ≤ 1 ≤ 1−xtj +z0
j

is satisfied.)

� For each i ∈ [n], z1
i = maxt∈[T ] vti.

11
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We construct the dual solution as follows. For each i ∈ [n], we set µ0
i = z0

i , µ1
i = z1

i , ζi = 1− (z0
i + z1

i )

(this is non-negative by Lemma 2.3), ξi = mint∈[T ]

{
λti +

∑
i′∈[n] γtii′

}
. Fixing i ∈ [n], the system of

constraints (15c)–(15f) now becomes

1− z0
i ≤ λti +

∑
i′∈[n]

γtii′ −
∑

t′∈[T ],j∈[n]\{i}

κt′ji, ∀t ∈ [T ] (z0
i ) (16a)

1− z1
i ≤ ηti + δti +

∑
j∈[n]\{i}

κtij , ∀t ∈ [T ]. (z1
i ) (16b)

We now pick λ, γ, η, δ, κ so that these are satisfied. Fix an arbitrary t ∈ [T ].

� For i, j ∈ [n], i 6= j, we set κtij = 1 if xtj = 1 and vti = 1− xtj + z0
j , and κtii = 0. This ensures

that
∑
t∈[T ],j∈[n]\{i},i∈[n](1− xtj)κtij = 0.

� If xti = 0 or there exists some i′ such that 1− di′xti′ = 0, then we can make the corresponding
λti or γtii′ as large as we want without affecting the objective, so we can always guarantee that
(16a) is satisfied. Now consider the case when xti = 1 and 1− di′xti′ = 1 for all i′ ∈ [n]. Then
by construction of the primal solution we will have uti = z0

i = 1. Now considering κt′ji, by
Lemma 2.3 we have vt′j = 0 < z0

i = 1. Thus, according to our choice above, we have κt′ji = 0
for all t′ ∈ [T ], j 6= i. In this case we set λti = γtii′ = 0, so (16a)will be satisfied.

� We now check (16b). If z1
i = 1, then we can pick ηti = δti = 0, and (16b) will be satisfied

because the left hand side is 0. Now consider the case when z1
i = 0. We know that vti = 0

since otherwise by construction of the primal solution z1
i = 1. Thus, at least one of xti = 0,∑

i′∈[n] di′xti′ = 0 or there exists some j 6= i such that 1−xtj +z0
j = 0. In the first two cases, we

can set ηti = 1 or δti = 1 without changing the objective to satisfy the constraints. Now consider
the case when xti = 1 and

∑
i′∈[n] di′xti′ ≥ 1; we set ηti = δti = 0. We show that there is at

least one j 6= i such that we have κtij = 1 (according to our choice above). By construction, this
will be true if there exists some j 6= i with xtj = 1 and z0

j = 0 (thus 1− xtj + z0
j = 0). If this is

not the case, i.e., for every j 6= i, we have xtj = 0 or z0
j = 1, then since xti = 1 ≤

∑
i′∈[n] di′xti′ ,

by definition of the primal solution we must have vti = 1 and hence z1
i = 1. This contradicts

our initial assumption.

Now, the concavity of gk(X,α) = mind∈D
{
Q(X, d) + α‖d− dk‖

}
in (X,α) is now readily apparent,

since it is a minimum of linear functions of (X,α), and X only appears in the objective (15a) of (15),
thus Q(X, d) is a minimum of linear functions of X.

The supergradient of gk(X,α) can be computed from the linear function that gives the minimum
at the point (X,α). Notice that (15a) is bilinear in d ∈ D and the dual variables. Since d ∈ {0, 1}n,
the standard linearization technique can be used on the bilinear terms, so we can jointly minimize
over d ∈ D and the dual variables, provided we have bounds on the relevant dual variables. These
bounds come from proof of Theorem 3.2, where a specific solution was constructed. Next, to facilitate
the easy minimization of the norm term ‖d − dk‖, it makes sense to choose a polyhedral norm, such
as the `1-norm. In this case, we have

α‖d− dk‖1 = α
∑
i∈[n]

(
(1− dki )di + dki (1− di)

)
.

Thus, mind∈D
{
Q(X, d) + α‖d− dk‖1

}
can be modelled as the following integer program (variables

12
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ξ, ζ can be eliminated from (15)):

min
λ,γ,η,δ,κ,µ0,µ1,γ̄,δ̄,d

∑
t∈[T ],i∈[n]

xti(λti + ηti) +
∑
i′∈[n]

xti′ δ̄tii′


+

∑
t∈[T ],i,i′∈[n]

(γtii′ − xti′ γ̄tii′)

+
∑

t∈[T ],j∈[n]\{i},i∈[n]

(1− xtj)κtij +
∑
i∈[n]

(
µ0
i + µ1

i

)
+ α

∑
i∈[n]

(
(1− dki )di + dki (1− di)

)
(17a)

s.t. λ, γ, η, δ, κ, µ0, µ1 ≥ 0, γ̄, δ̄ ≥ 0, d ∈ D ⊆ {0, 1}n (17b)

1 ≤ µ0
i −

∑
t∈[T ],j∈[n]\{i}

κtji + λti +
∑
i′∈[n]

γtii′ , ∀t ∈ [T ], i ∈ [n]

(17c)

1 ≤ µ1
i + ηti + δti +

∑
j∈[n]\{i}

κtij , ∀t ∈ [T ], i ∈ [n].

(17d)

0 ≤ δ̄tii′ ≤ di′ , −(1− di′) ≤ δ̄tii′ − δti ≤ 1− di′ , ∀t ∈ [T ], i, i′ ∈ [n]
(17e)

0 ≤ γ̄tii′ ≤ di′ , −nT (1− di′) ≤ γ̄tii′ − γtii′ ≤ nT (1− di′), ∀t ∈ [T ], i, i′ ∈ [n].
(17f)

Given X̄, ᾱ, let λ, γ, η, δ, κ, µ0, µ1, γ̄, δ̄, d be an optimal solution to (17). Then the linear approximation
gk(X̄, ᾱ) + 〈∇gk(X̄, ᾱ), (X,α) − (X̄, ᾱ)〉 of gk(X,α) = mind∈D

{
Q(X, d) + α‖d− dk‖

}
is simply the

objective:

∑
t∈[T ],i∈[n]

xti(λti + ηti) +
∑
i′∈[n]

xti′ δ̄tii′

+
∑

t∈[T ],i,i′∈[n]

(γtii′ − xti′ γ̄tii′)

+
∑

t∈[T ],j∈[n]\{i},i∈[n]

(1− xtj)κtij +
∑
i∈[n]

(
µ0
i + µ1

i

)
+ α

∑
i∈[n]

(
(1− dki )di + dki (1− di)

)
.

(18)

4 Construction of Uncertainty Sets
In Section 2 we have described out two-stage optimization formulation for non-adaptive group testing,
and in Section 3 we have described a general Benders’ decomposition algorithmic framework for
optimizing any objective of the form (10). However, we have not yet specified two key components:
the support set D ⊆ {0, 1}n and which exact objective in (10) we wish to optimize. Choosing these
depends very much on the known prior information we have on the true defective state d. Existing
literature mostly considers two types of regimes:

� In a so-called combinatorial prior, we know that d contains m defectives, but we do not know

which ones. Thus D :=
{
d ∈ {0, 1}n :

∑
i∈[n] di = m

}
.

� In a so-called independent and identically distributed (i.i.d.) prior, each item i ∈ [n] is defective
with probability ρ, where ρ is known. That is, d is a random vector where each entry di ∼
Bernoulli(ρ).

13
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Besides these regimes, it is not difficult to imagine others. We provide three reasonable ones:

� The non-i.i.d. prior is when d is a random vector where each entry di ∼ Bernoulli(ρi), and
ρ1, . . . , ρn are known. This was also studied by Kealy et al. [24], Li et al. [26].

� The deterministic graph prior is when we are given a graph G = (V = [n], E), and we know that
d is the characteristic vector of a neighbourhood of some vertex i ∈ [n], i.e., di = 1 and dj = 1
if and only if {i, j} ∈ E .

� The probabilistic graph prior is similar to the deterministic graph prior, but now we have a prob-
ability distribution over which vertex is selected, i.e., vertex i ∈ [n] is selected with probability
pi and when it is selected, d is the characteristic vector of the neighbourhood of i in G.

In these regimes, the prior information that we know is one of two types: (1) we know that d belongs
to some set D but we have no information on which point in D it will be; or (2) we know that d ∼ P ∗
where P ∗ is a distribution with support D∗. In the former case, it is most natural to minimize the
robust objective (10b). In the latter case, it is most natural to minimize the stochastic objective (10a),
unless the size of D∗ is too large to do so tractably.

For the rest of this section, we address the setting when d ∼ P ∗ but the support D∗ is indeed too
large to solve (10a) (which is the case for the i.i.d. and non-i.i.d. priors). We propose two options:
(1) construct a set D for which Pd∼P∗ [d ∈ D] is sufficiently high, then solve (10b); and (2) estimate
P ∗ with a tractable distribution P , and estimate the Wasserstein distance ε between P ∗ and P , then
solve the distributionally robust problem (10c).

4.1 Robust approach

If d ∼ P ∗ and we have some confidence set D, then we have the following out-of-sample disappointment
guarantee.

Lemma 4.1. Suppose we solve the robust problem (7). Let XD, bD be the optimal solution. Then

Pd∼P∗

∑
t∈[T ]

bDt −Q(XD, d) ≤
∑
t∈[T ]

bDt − min
d′∈D

Q(XD, d′)

 ≥ Pd∼P∗ [d ∈ D].

Let us now construct confidence sets for the non-i.i.d. prior, which can also be applied to the i.i.d.
prior. Henceforth we denote a = (a1, . . . , an) and % = (ρ1, . . . , ρn). We consider concentration bounds
on the random quantity 〈a, d〉, for which Ed∼P∗ [〈a, d〉] = 〈a, %〉. Lu and Chung [27, Theorems 2.8,
2.9] show that

Pd∼P∗ [〈a, %〉 − λ ≤ 〈a, d〉 ≤ 〈a, %〉+ λ] ≥ 1− 2 exp

− λ2

2
(∑

i∈[n] a
2
i ρi + λmaxi∈[n] |ai|/3

)
 . (19)

Observe that by Cauchy-Schwarz, we have∑
i∈[n]

ai

2

=

∑
i∈[n]

ai
√
ρi

1
√
ρi

2

≤

∑
i∈[n]

a2
i ρi

∑
i∈[n]

1

ρi

 =⇒
∑
i∈[n]

a2
i ρi ≥

∑
i∈[n]

1

ρi

−1∑
i∈[n]

ai

2

.

To make this equality, for c > 0 we choose

ai =
c

ρi
, ∀i ∈ [n] =⇒

∑
i∈[n]

a2
i ρi = c2

∑
i∈[n]

1

ρi
.

14
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Now we choose λ = δ〈a, %〉 = δcn so that we have

Pd∼P∗

1− δ ≤ 1

n

∑
i∈[n]

di
ρi
≤ 1 + δ

 ≥ 1− 2 exp

− δ2c2n2

2
(
c2
∑
i∈[n]

1
ρi

+ (δ/3)cnmaxi∈[n]
1
ρi

)


= 1− 2 exp

− δ2n

2
(

1
n

∑
i∈[n]

1
ρi

+ (δ/3) maxi∈[n]
1
cρi

)


=⇒ Pd∼P∗

1− δ ≤ 1

n

∑
i∈[n]

di
ρi
≤ 1 + δ

 ≥ 1− 2 exp

(
− δ2n

2
n

∑
i∈[n]

1
ρi

)
,

where the last implication follows since we can take c arbitrarily large. This suggests the following
uncertainty set for the non-i.i.d. prior:

Dδ :=

d ∈ {0, 1}n : 1− δ ≤ 1

n

∑
i∈[n]

di
ρi
≤ 1 + δ

 .

4.2 Distributionally robust approach

Suppose that P ∗ is supported on {0, 1}n, which we enumerate as
{
d1, . . . , dN

}
, where Pd∼P∗ [d =

di] = pi∗. We also assume that P is supported on {d1, . . . , dK} ⊆ {0, 1}n, where Pd∼P [d = dk] = pk.
In this section, we will denote the Wasserstein distance as

W (P, P ∗) := min
z


∑
k∈[K]

∑
i∈[N ]

‖di − dk‖zik :

z ≥ 0∑
k∈[K]

zik = pi∗, ∀i ∈ [N ]

∑
i∈[N ]

zik = pk, ∀k ∈ [K]


.

Suppose that P approximates the true distribution P ∗ well, in the sense that the Wasserstein distance
between P and P ∗ is small, say ε > 0. Then solving (8) to get solution XP,ε, bP,ε gives the following
out-of-sample disappointment guarantee:∑

t∈[T ]

bP,εt − Ed∼P∗
[
Q(XP,ε, d)

]
≤
∑
t∈[T ]

bP,εt − min
P̄∈Fε(P )

Ed∼P̄
[
Q(XP,ε, d)

]
.

In general, it is not possible to compute the Wasserstein distance exactly, since we do not know
P ∗. Even for the probabilistic priors outlined above where we do know the true P ∗, it is difficult
to compute the Wasserstein distance to a generic P . This is because P ∗ is supported on {0, 1}n, so
computing the Wasserstein distance involves solving a linear program with K · 2n variables.

The work-around to computing ε exactly (suggested by Mohajerin Esfahani and Kuhn [30]) is to
sample K i.i.d. points d1, . . . , dK from P ∗ to build PK := 1

K

∑
k∈[K] δdK , then use concentration

results that provide an upper bound on ε. The concentration result is typically of the form

Pd1,...,dK∼P∗
[
W (PK , P ∗) ≤ εK(β)

]
≥ 1− β.

Then, if we set ε := εK(β) in (8), we have the following out-of-sample disappointment guarantee:

Lemma 4.2 (Mohajerin Esfahani and Kuhn [30, Theorem 3.5]). Suppose we solve the DRO problem
(8) with P := PK , an empirical distribution on samples d1, . . . , dK drawn from P ∗, and ε := εK(β).
Let XK,ε, bK,ε be the optimal solution. Then

Pd1,...,dK∼P∗

∑
t∈[T ]

bK,εt − Ed∼P∗
[
Q(XK,ε, d)

]
≤
∑
t∈[T ]

bK,εt − min
P̄∈Fε(P )

Ed∼P̄
[
Q(XK,ε, d)

] ≥ 1− β.
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A general form of εK(β) is O

((
1
K log

(
1
β

))1/n
)

[30, Theorem 3.4]. This has an unfavourable

dependence on the dimension n. However, since P ∗ is supported on {0, 1}n, which is a compact set,
we appeal to an improved result of Ji and Lejeune [22, Theorem 2], which states that we have

εK(β) =

(
n+

3

4

)(
1

K
log

(
1

β

)
+ 2

√
1

K
log

(
1

β

))
.

Use of this choice of radius in the context of two-stage DRO with 0-1 uncertainty was first suggested
by Subramanyam et al. [35] in the context of rare-event decision-making.

We also suggest an alternative to the so-called ‘data-driven’ approach of sampling to build PK ,
which has potential to work well when Ed∼P∗ [‖d‖] � 1. In this case, we suggest simply taking P
to be the distribution with singleton support on the zero vector: Pd∼P [d = 0] = 1. It is then easy
to verify that W (P, P ∗) = Ed∼P∗ [‖d‖], thus we can take this to be our radius. Intuitively, this can
work well because when Ed∼P∗ [‖d‖] � 1, we expect Pd∼P∗ [d = 0] to be quite high, so P is a good
approximation for P ∗.
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