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ABSTRACT: 

 
Lane-changing manoeuvre is one of the risky manoeuvres 
performed by drivers either to reach the planned destination (i.e., 
mandatory lane-changing; MLC) or to achieve better driving 
conditions (i.e., discretionary lane-changing; DLC). Essentially 
both lane-changing types require the driver to acquire 
surrounding traffic information for efficient and safe lane-
changing decisions.  However, this does not discount the fact that 
both these lane-changings are fundamentally different from each 
other as the urgency of lane-changing is much higher during 
MLC compared to DLC. A connected environment promises to 
assist during the lane-changing decision-making process, but the 
differential effectiveness (or usefulness) of a connected 
environment for these two lane-changing types remains 
unexplored due to the novelty of a connected environment and 
the consequent scarcity of data. To fill this research gap, this 
study collected lane-changing data from 78 participants who 
performed MLC and DLC in the CARRS-Q Advanced Driving 
Simulator. Participants were asked to drive in three randomised 
driving conditions: baseline condition (without driving aids), 
connected environment with perfect communication, and 
connected environment with communication delay. While 
surrogate measures of safety are analysed and compared using 
descriptive statistics, a hybrid framework of data mining and 
classical statistical modelling is employed to examine the 
usefulness of the connected environment for two lane-changing 
types. We find that the crash risk associated with MLC is 
significantly reduced in the connected environment driving 
conditions compared to that of DLC. Results also reveal that the 
probability of engaging in a hard-braking event decreases for 
both the lane-changing types during the connected environment 
driving conditions, but a higher decrease in magnitude is found 
for MLC. Age and gender-related differential impact have been 
observed where young and male drivers have a higher possibility 
of engaging in a hard-braking event when driving without 
driving aids, but the connected environment reduces such risk. 
This study concludes that the usefulness (or effectiveness) of the 
connected environment is a function of the urgency of a task, 
which is evidently higher during MLC, thus providing the 
maximum advantage during MLC.  
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1. Introduction 

A connected environment promises to improve some of the major negative road externalities 
such as congestion, hazards, and air pollution (e.g., gas emissions). One possible application 
of a connected environment emerges for the lane-changing decision-making process, which is 
among riskier manoeuvres required of drivers. Connected environment’s impact on lane-
changing, however, is still unexplored due to the novelty of a connected environment and the 
consequent scarcity of data. 
 Lane-changing has a significant impact on traffic flow characteristics and traffic safety. 
For instance, lane-changing is associated with triggering congestion (Arai and Sentinuwo, 
2012), linked to creating bottleneck that causes traffic breakdown (Wall and Hounsell, 2005), 
formation of stop-and-go oscillations (Ahn and Cassidy, 2007), capacity drop with shockwaves 
(Sasoh and Ohara, 2002), and many others. Zheng et al. (2011b) and Zheng et al. (2013) 
showed strong empirical evidence of lane changing’s negative impact on surrounding traffic 
and driver characteristics in particular. Similarly, lane-changing is also one of the reasons for 
collisions (e.g., rear-end and sideswipes) (Sen et al., 2003). During 2018, about 2,530 and 827 
rear-end and sideswipe collisions were reported, respectively, in New South Wales, Australia 
(TfNSW, 2019). These daunting statistics confirm the importance of lane-changing in traffic 
flow efficiency and traffic safety, and thus analysing and modelling lane-changing behaviour 
become critical and have motivated a large body of literature (Ahmed, 1999, Hidas, 2002, 
Toledo et al., 2003, Hidas, 2005, Choudhury et al., 2006, Choudhury et al., 2007, Choudhury 
et al., 2009, Zheng, 2014, Ali et al., 2019b). 
 In traffic flow theory, lane-changing is classified as mandatory lane-changing 
(compulsory, MLC) and discretionary lane-changing (voluntary, DLC). MLC is often carried 
out to reach a specific (or planned) destination, e.g., merging into motorway traffic from the 
acceleration lane, or changing lanes to diverge from the motorway. On the other hand, DLC is 
performed to achieve desired driving conditions, e.g., gaining speed advantage by avoiding a 
slow-moving (or heavy) lead vehicle. This study focusses on both types of lane-changing on 
motorways in a connected environment. 
  Compared with other daily routine driving tasks, lane-changing is more complex, 
requiring lane-changers (or decision-makers) to recognise surrounding traffic conditions (e.g., 
speed of and distance to the head vehicle in the current driving lane, and the gaps of the lead 
and lag vehicles in the target lane), revealing its lane-changing intentions to others, and a lane-
changing execution. A successful lane-changing decision elevates mental workload and stress, 
resulting in increased uncertainty and decision errors during the lane-changing decision-
making process; this also makes driving more error-prone and dangerous. To this end, driving 
aids provided by a connected environment are anticipated to increase safety associated with the 
lane-changing decision-making. However, whether drivers accept these driving aids (and 
consequently take advantage of a connected environment) and change their driving behaviours 
accordingly, are some of the questions that have direct implications on the success of a 
connected environment because the anticipated benefits of a connected environment are a 
function of human factors (Sharma et al., 2017). 
 A sound understanding of different lane-changing decisions and the capability to model 
it under different conditions is the absolute minimum (and the prerequisite) for the success of 
a connected environment, which may revolutionise the current transportation systems. There 
is a large body of literature that has analysed and modelled MLC and DLC separately in a 
traditional environment because of the distinct decision-making mechanisms involved in both 
types of lane-changing (Ahmed et al., 1996, Ahmed, 1999, Hidas, 2002, Toledo et al., 2003, 
Hidas, 2005, Choudhury et al., 2006, Bham and Goswami, 2007, Choudhury et al., 2007, 
Bham, 2009, Choudhury et al., 2009, Marczak et al., 2013, Balal et al., 2014, Balal et al., 2016, 
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Vechione et al., 2018, Ali et al., 2018, Ali et al., 2019a, Ali et al., 2019b, Ali et al., 2020d, Hess 
et al., 2020); however, only a few studies (Ali et al., 2018, Ali et al., 2019a, Ali et al., 2019b, 
Ali et al., 2020c,) have focused on the connected environment primarily because connected 
vehicles (or vehicles operating under a connected environment) are not deployed in the field at 
a large scale, which restricts much of our operational research. Although some prior research 
has documented the impact of a connected environment (or connected vehicles) on 
macroscopic benefits of traffic (Gandhi et al., 2014, Guériau et al., 2016, Guler et al., 2014, 
Rios-Torres and Malikopoulos, 2017), its impact on microscopic behaviour and a comparison 
of both lane-changings are yet to be analysed. Albeit these past studies describe a positive 
impact of connected vehicle technology on lane-changing using numerical simulations, which 
is a reasonable compromise to real data when unavailable, findings from past research are 
oversimplified because a critical component—human factors that play a central role in the lane-
changing decision-making process—is often ignored (or not accounted for). Furthermore, 
MLC has an urgency factor (in terms of remaining distance in the acceleration lane) due to 
which drivers may select a risky gap to avoid a complete halt at the end of the acceleration lane 
and lead to safety-critical events. On the contrary, DLC has endogenous (e.g., unsatisfaction 
with the driving lane conditions) as well as exogenous factors (e.g., speed advantage in the 
adjacent lane causing temptation to change lanes) that are mainly driven by personality traits 
(Ali et al., 2020c). Given these differences, it would be interesting to examine whether a 
connected environment has the same benefits for these distinct decision-making processes or 
whether there exists a differential impact of a connected environment on both types of lane-
changing. In addition, it is also worth investigating how the safety benefits (or margins) vary 
when there is an impairment in the functioning of a connected environment because 
communication can be compromised by a variety of factors similar to impairments in the 
functioning of mobile phone technology.  
 As such, the objective of this study is to compare and quantify the safety impacts of the 
connected environment on MLC and DLC using real trajectory data obtained from the 
Advanced Driving Simulator experiment, which is designed to mimic driving conditions in a 
connected environment. To this end, the remainder of the paper is organised as follows. Section 
2 explains the experimental plan, including driving simulator, scenario design, participant 
details, and data collection procedure. Section 3 describes data processing, surrogate measures 
of safety, and data mining and statistical modelling techniques used. Section 4 presents 
descriptive analysis and modelling results, whereas Section 5 compares the benefits of the 
connected environment for MLC and DLC. Finally, Section 6 concludes the study and provides 
an outlook for future research. 

2. Experimental plan and details 
In this study, an innovative driving simulator experiment was designed to collect data related 
to MLC and DLC manoeuvres. Each participant was asked to perform these manoeuvres in 
three randomised driving conditions. These conditions are (a) baseline driving (without driving 
aids), (2) connected environment driving with perfect communication (CE_PC), and (3) 
connected environment driving with communication delay (CE_CD). Whilst the first condition 
serves as the ‘default’ driving condition to which driving performance and the data quality is 
compared, the second condition allows the assessment of the lane-changing decision-making 
in a fully functioning connected environment (i.e., CE_PC) and the third condition enables the 
evaluation of the impact of a poorly functioning connected environment (i.e., CE_CD) on the 
lane-changing decision-making. 

For the data collection purpose, the Centre for Accident Research and Road Safety-
Queensland (CARRS-Q) high fidelity Advanced Driving Simulator was used. More details on 
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the driving simulator can be found in our previous works (Ali et al., 2018, Ali et al., 2019a, Ali 
et al., 2020c). 

In this study, 78 participants were recruited from the general public with a diverse 
background. The mean age of the participant was 30.8 years (standard deviation [SD] 11.7 
years), while the mean age for male and female participants was respectively 34.1 years (SD 
12.6 years) and 24.9 years (SD 6.7 years). 

It is worth mentioning here that the experiment design has been carefully designed, 
resulting in generating high-quality data, which have been used in our previous publications 
addressing various research gaps (Ali et al., 2018, Ali et al., 2019a, Ali et al., 2020b, Ali et al., 
2020c, Ali et al., 2020a). While ensuing subsections briefly summarise the experimental setup 
and design of vehicular interactions, details related to these have been omitted to avoid 
overlapping with our previous works. 

2.1 Experimental setup 

The designed driving route in the experiment consists of a 3.2 km motorway segment with two 
lanes in each direction. The posted speed limit on the motorway was 100 km/h. To minimise 
driving sequence bias (i.e., learning effect), the driving conditions were randomised for each 
participant. Ensuing subsections detail the three conditions. 

Baseline driving condition 
During this condition, each driver drives the simulator car without any driving aids provided 
by a connected environment and performs MLC as well as DLC.  The entire motorway is 
segmented into three sections (Figure 1(a)), namely MLC scenario, stopped vehicle road 
portion after driving in the work zone, and DLC scenario. Ensuing paragraphs detail vehicular 
interactions in each of these sections. 
 In Section 1, participants face a lane closure (either due to work zone or broken vehicle) 
at about 500 m from the start of the scenario where they perform an MLC (Figure 1(b)). 
Participants recognise the lane closure when the programmed leading vehicle (LV1) in current 
lane 2 changes lane to adjacent lane 1. The programmed following vehicles (FVs) in lane 1 are 
scripted to drive at the same speed as the speed of the subject vehicle (SV, driven by the 
participant) to ensure that all participants face similar gap sizes at the same position. During 
the MLC event, each participant has five merging opportunities for lane-changing: 45 m, 15 
m, 30 m, 60 m, and 90 m.  

Assuming that SV selects the first gap (although participants can select any of these 
available gaps) and moves to the adjacent lane and enters into a lane closure (Figure 1(c)), all 
other vehicles will follow SV with predefined speed. After travelling about 200 m from the 
start of lane closure, the lane closure ends and there is a stopped truck and SV is required to 
move to lane 2 where a DLC event may occur. 

Once the participant moves to lane 2, LV1 is scripted to maintain a spacing of 30 m 
from SV on lane 2 while the distance (or available gap) between the minivan (shown by yellow 
vehicle on lane 2) and FV1 in lane 1 is 60 m. Since the spacing on lane 2 is smaller and the 
available gap size on lane 1 is larger, this triggers a DLC opportunity as the participants are 
likely to gain the speed advantage on lane 1 (overtaking in the left lane is allowed in Australia). 
If SV decides to remain in lane 2, minivan moves to SV’s lane (lane 2) and starts moving at 50 
km/h (Figure 1(d)). Meanwhile, FVs in lane 1 are moving fast and creating several DLC 
opportunities in lane 2 for SV. Similar to MLC, five gaps are presented to the participants: 60 
m, 30 m, 45 m, 15 m, and 90 m. Once participants perform a DLC manoeuvre, they continue 
travelling on the motorway and take an exit to the city where the scenario ends. 
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a) Overall schematic of motorway 

 
(b) MLC scenario 

 
(c) Stopped vehicle section after work zone 

 
(d) DLC scenario 

Fig. 1. Design of vehicular interactions in the experiment (not to scale) 
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Connected environment with perfect communication (CE_PC) 
In this scenario, vehicular interactions and roadway design were the same as in the baseline 
driving condition. However, the participants were assisted with an uninterrupted supply of 
driving aids provided by the connected environment, representing vehicle-to-vehicle and 
vehicle-to-infrastructure communications. Driving aids are designed based on a thorough 
literature review on in-vehicle information systems (or advanced driving assistance systems) 
and the latest vehicle models fitted with information assistance systems. As such, two forms of 
driving aids are adopted in this experiment: auditory (beep sound) and imagery messages. This 
dissemination of information closely resembles the heads-up display mimicking the latest 
vehicle design. 
 Figure 2 shows some representative driving aids disseminated during a lane-changing 
scenario. The temporary advisory message appears at the bottom of the windscreen with a beep 
sound, displaying upcoming situations, such as a broken vehicle ahead or congestion ahead, 
which a driver cannot foresee. The lane-changing message is displayed on the left side of the 
windscreen with a beep sound when a lane-changing opportunity is available in the adjacent 
lane. Note that there were several other driving aids during the lane-changing scenario, which 
are not presented here due to brevity (see (Ali et al., 2018, Ali et al., 2020c) for details on these 
driving aids). 

Connected environment with communication delay (CE_CD) 
The vehicular interactions, roadway design, and design of driving aids in this scenario remained 
the same as in the case of perfect communication scenario (CE_PC). The only difference is the 
time delay (i.e., 1.5 s) in providing driving aids. This delay was selected after a series of pilot 
studies where different delays in providing driving aids (0.5, 1, 1.5, and 2 s) were tested, and 
the minimum delay was selected when the participants started to react to the delayed 
information. This delay is also reported to affect traffic safety negatively in a past study 
(Talebpour et al., 2015). 
 All the participants performed a practice drive prior to the start of the actual experiment 
to become familiar with the driving environment, simulator car, and some representative 
designed vehicular interactions. Once they felt confident about their driving, they were allowed 
to participate in the actual experiment. 
 A considerable amount of time and effort was dedicated to designing and implementing 
the experiment to manage the workload of the participants and minimise learning effects caused 
by repeated driving. Each participant took about 10-12 mins on average to complete a scenario, 
and the entire experiment finished in about 50 mins. Furthermore, the order of scenarios (as 
mentioned previously) was randomised except for communication delay, which came once the 
participants have driven in the perfect communication scenario. Moreover, although the scope 
of this paper is limited to lane-changing, the experiment consists of other driving tasks such as 
car-following and city events, which are presented and analysed elsewhere (Ali et al., 2020a). 
By having breaks after each drive, multiple driving tasks, and randomised driving scenario, the 
effects of learning are likely to be minimal across all the driving conditions. 
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Fig. 2. Design of driving aids in the experiment 

3. Data collection and processing 

3.1 Dataset 

Seventy-eight participants performed the driving simulator experiment across three drives and 
two lane-changing types, while two DLCs, which were performed close to the exit ramp, were 
excluded, resulting in 466 trajectories. In addition, four participants were unable to perform the 
third drive due to motion sickness, forming an imbalanced dataset of 4581 observations. Recall 
the simulator software automatically collected vehicle trajectory data in the form of speeds, 
acceleration, and spacings. Driver demographic information including age, gender, driving 
experience, education, and previous experience with the driving assistance system, was 
collected using a pre-driving questionnaire.  

3.1.1 Surrogate measures of safety 
To study and compare the impact of the connected environment on two different types of lane-
changing, two surrogate measures of safety are adopted in this study. As reported previously, 
an improper lane-changing decision and a poorly executed lane-changing manoeuvre are likely 
to result in either a rear-end collision or sideswipe. Thus, surrogate measures related to these 
have been considered and are presented in Table 1. 

3.1.2 Data processing 

In order to make proper inferences about the connected environment’s impact and comparing 
the usefulness of the connected environment between two lane-changing types, it is of the 
utmost importance that data related to both these sections (i.e., MLC and DLC) should be the 
same. Thus, a proper methodology is adopted in this study to extract the relevant data.  

 
1 78 (participants) × 3 (driving conditions) × 2 (two lane-changing types) – 4 × 2 (missing data for third drive) – 
2 (obscure DLC) 

Advisory messages

Lane-changing 
information
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Table 1. Surrogate measures of traffic safety2 
Variable Description 

PICUD Possibility index for collision with urgent deceleration is used to analyse the possibility of 
rear-end collisions assuming that the lead vehicle on the target lane applies sudden (or hard) 
braking. It is defined as the distance between the lead vehicle on the target lane and the 
lane-changing vehicle on the current lane when the lead vehicle suddenly braked, and the 
lane-changer has to decelerate with reaction delay to avoid a collision (Uno et al., 2002). 
PICUD is calculated during the LC execution period. 

SSCR Sideswipe collision risk is the sum of two sideswipes risks, namely sideswipe red and 
sideswipe yellow. Red and yellow risks are a function of time-to-collision and post-
encroachment time, respectively (Behbahani and Nadimi, 2015). SSCR is calculated during 
the LC execution period. 

Longitudinal 
acceleration 

It is defined as the rate of change of speed measured during the lane-changing event (Wu 
and Jovanis, 2013) 

Speed variation The standard deviation of speed measured during the lane-changing event (Boonsiripant, 
2009) 

 
 
During a lane-changing event (as mentioned in Table 1), a driver notices the type of 

lane-changing (either MLC or DLC), finds a suitable gap in the adjacent lane, and prepares for 
lane-changing execution. Note that the lane-changing event does not include lane-changing 
execution (often called as lane-changing duration). 
 The start of the lane-changing event (either MLC or DLC) in the connected 
environment scenarios is obtained as the time when the first advisory driving aid (that is, 
‘Broken vehicle ahead’ in case of MLC and ‘Congestion ahead’ in case of DLC) was 
disseminated to participants. Similarly, the spatial location where the first gap was created in 
the adjacent lane during the baseline condition (that is, 45 m in case of MLC and 60 m in case 
of DLC) was taken as the start of a lane-changing event. As a matter of fact, the creation of the 
first gap was considered as the criterion for providing the messages in the connected 
environment scenarios. 
 The start of lane-changing execution (or manoeuvre) is obtained by an algorithm 
developed in Ali et al. (2018). This algorithm is based on vehicle lane lateral shift profile, 
providing information on how far SV is from the lane centre. In general, lane lateral shift values 
remain fairly constant during car-following while they change drastically during lane-changing 
execution. The proposed algorithm initially finds the maximum point of the lane lateral shift 
profile and tends to move in a backward direction until the minimum point is located on the 
profile. The lowest point is called the lane-changing execution point because after this point, 
lane lateral shift values change significantly. The lane-changing duration is obtained as the time 
difference between the start of lane-changing execution (obtained from the adopted algorithm) 
and the time when the lane-changing vehicle was in the adjacent lane (obtained through lane 
numbering from the trajectory data source). It is worth mentioning here that the efficacy of the 
adopted algorithm is also tested and confirmed herein as well as in the past studies (Ali et al., 
2018, Ali et al., 2020d). 

 
2 Note that longitudinal acceleration and speed variation are frequently used driving indicators and fairly simple 
to calculate while PICUD and SSCR measures require basic calculations, which are not presented herein for 
brevity. We refer the interested readers to the original sources mentioned in Table 1. 
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3.2 Statistical modelling 

To compare the usefulness (or effectiveness) of the connected environment during two types 
of lane-changing and how an impairment in the provision of driving aids affects the lane-
changing decision-making, two statistical models are developed and described below.  
 First, a deterministic model is developed for analysing speed variations during the lane-
changing event. Speed variation, a measure important for reducing congestion and improving 
traffic safety (i.e., to avoid rear-end collisions) (FHWA, 2014), is the dependant variable in the 
first model measured as the standard deviation of the speed during the lane-changing event. 
Generalised estimation equations (GEE) approach is adopted to model speed variations, which 
can account for the panel nature of our data, i.e., we have multiple observations of the same 
participant over time. GEEs, an extended form of generalised linear models, are frequently 
employed to capture correlation arising from panel data because of its flexibility in 
accommodating non-normal and non-linear relationships within the modelling framework 
(Haque et al., 2016). 
 Second, a probabilistic model is developed for evaluating the probability of engaging 
in a hard-braking event when a driver’s deceleration exceeds a certain threshold. The maximum 
longitudinal deceleration greater or lower than 0.4g (where g is the acceleration due to gravity) 
during the entire lane-changing event is considered as the binary dependent variable in this 
model. Wu and Jovanis (2013) concluded that vehicle longitudinal deceleration rate has a direct 
relationship with safety-critical events, which they found using naturalistic data, therefore we 
consider this deceleration rate as a surrogate measure of safety. A repeated measure logistic 
GEE model is applied to determine the probability of engaging in a hard-braking event. Let 

njtY  be an indicator that is 1 if driver n has a deceleration rate above 0.4g in scenario j at time 
t, and is 0 otherwise. Applying a logit model, the probability of a deceleration rate higher than 
0.4g can be obtained as 

( )
exp( )

Pr( 1) ,
1 exp

njt
njt

njt

Y


= =
+

X β
X β

  (1)  

where, 1[ , , ]njt njt njtKx x =X  is a vector of K explanatory variables, and β  is a vector of K 
estimable parameters. Following Haque et al. (2016), we assume a constant correlation among 
multiple observations of the same participant. More details about the repeated measure logistic 
GEE model and estimation procedure can be found in Haque et al. (2016) and Liang and Zeger 
(1986). Furthermore, robust variance estimates are considered as they do not impose any 
restriction on the nature of correlation (either positive or negative) and can provide better 
parameter estimates (Zorn, 2006, Haque et al., 2016). 
 It is often challenging in nature to specify the best subset of explanatory variables that 
not only include main effects, but capture potential interactions among them, which may have 
a prominent impact on the response variable because of little prior knowledge of the underlying 
relationships. In general, the modeller provides a priori second- and higher-order interaction 
effects and non-linearities associated with main effects in conventional approaches before the 
model estimation. As reported in Haque et al. (2016), the possible combination of main effects 
and potential higher-order interaction effects grows geometrically and exponentially, 
respectively, with the number of ordinal and nominal variables. Therefore, it becomes difficult 
to judiciously decide the inclusion and omission of a variable from the model.  
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Table 2. Summary statistics of explanatory variables considered in this study 
Variable Description of variables Count Percentage Mean (SD) 
Driving condition  
Baseline Driving without driving aids (reference) 78 100 — 
CE_PC Driving with driving aids (dummy) 78 100 — 
CD_CD Driving with delayed driving aids (dummy) 74 95 — 
Type of lane-changing 
MLC Performing MLC (reference) 230 100 — 
DLC Performing DLC (dummy) 228 99 — 

Operational variables  

Spacing Spacing between the subject vehicle and lead vehicle in 
m — — 24.64 

(16.61) 

Lag gap 
Distance between the rear bumper of the subject vehicle 
to front bumper of the following vehicle on the adjacent 
lane in m 

— — 30.45 
(20.74) 

Demographic variables  

Age groups  

Young  Participant is 18 – 26 years old (dummy) 38 48.72 — 
Middle-aged  Participant is 27 – 50 years old (reference) 32 41.02 — 
Older  Participant is 51+ years old (dummy)  8 10.26 — 

Gender     

Male Participant is male (reference) 50 64.10 — 
Female Participant is female (dummy) 28 35.90 — 

 To circumvent this problem, this study employed a hybrid framework of data mining 
(i.e., decision tree) and statistical modelling (i.e., logistic GEE model) in an iterative process. 
At the first level, a decision tree classification is used. This is a non-parametric method to 
obtain possible interactions by classifying the observations in the predictor space in an iterative 
process. During this classification, various potential predictors exist, and each predictor 
receives various cut-off values (Choudhary and Velaga, 2019). However, decision trees are 
associated with type I error due to this multiplicity and are hard to make inferences about the 
underlying relationship. Despite these shortcomings, the decision tree can be employed to 
obtain a priori knowledge obtained from tree branches and can be used for determining which 
interaction effects to include in the logistic regression model. At the second level, the logistic 
model is estimated by considering the interactions from the decision tree. This combined 
approach allows the consideration of higher-order interaction effects (using decision tree) and 
makes inferences about model output (using the logistic regression model) (Washington et al., 
2011, Haque et al., 2016). 

Table 2 provides a summary of explanatory variables considered as input for the 
decision tree and the logistic GEE model. First, the model is developed by considering the main 
effects (from Table 2) and significant interaction effects from the decision tree and 
subsequently pruning the tree to identify the possible interactions again. The model is again 
estimated based on new interactions from the pruned tree, and this process is iterated until a 
logically sound and theoretically justified parsimonious model is obtained. 
 For easy interpretation of coefficient estimates, odds ratios (OR) are calculated as 
exp ( )k  and provide the magnitude of the relationship of the considered explanatory variable 
and the probability of the deceleration rate exceeding 0.4g (i.e., engaging in a hard-braking 
event). For continuous explanatory variables, an OR greater (lower) than one reveals an 
increased (decreased) probability of engaging in a hard-braking event. For categorical 
variables, the OR represents the change in the categorical variable from zero to one. 
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4. Results 
This section presents descriptive analysis as well as modelling results. Ensuing subsections 
detail each of these. 

4.1 Descriptive analysis of surrogate measures of safety 

4.1.1 PICUD 

PICUD—potential index for collision with urgent deceleration—is calculated for both MLC 
and DLC during the lane-changing duration (or execution period), and the minimum PICUD 
is selected during this period. If PICUD is less than zero, then there is a possibility of a rear-
end collision between the lead vehicle in the target lane and the lane-changer (Uno et al., 2002). 
The frequency of participants (expressed as a percentage of the total number of participants 
driving in each scenario) having PICUD less than zero is calculated and presented in Table 3. 
For MLC, about 64%, 26%, and 46% of drivers have PICUD lower than zero during the 
baseline, CE_PC, and CE_CD driving conditions, respectively. This suggests a 38% and 18% 
decrease in PICUD in a connected environment with perfect communication (CE_PC) and 
communication delay (CE_CD), respectively, compared to no driving aids. The corresponding 
percentages of PICUD for DLC are respectively 47%, 29% and 41%, implying that the CE_PC 
and CE_CD driving conditions decrease PICUD by 18% and 6%, respectively, compared to 
the baseline condition. The differences between these frequencies are found to be significantly 
different as tested by chi-square tests at a 5% significance level. 
 Figure 3 reveals a change in PICUD frequency for different scenario comparisons (e.g., 
baseline versus CE_PC, baseline versus CE_CD, and CE_PC versus CE_CD). It can be 
observed that change in PICUD frequency between baseline and CE_PC is higher for MLC 
compared to DLC, suggesting that the usefulness of perfect communication is significantly 
higher for MLC (see the red arrow in Figure 3) compared to DLC (𝜒2 = 5.11, p-value = 0.023). 
 

Table 3. Summary of PICUD results 
Lane-changing Scenario Frequency Comparison Significance by a chi-square test 

MLC 
Baseline 64.1% Baseline versus CE_PC 𝜒2 = 23.23 (p-value < 0.001) 
CE_PC 25.6% Baseline versus CE_CD 𝜒2 = 6.60 (p-value = 0.010) 
CE_CD 45.9% CE_PC versus CE_CD 𝜒2 = 5.55 (p-value = 0.019) 

DLC 
Baseline 47.4% Baseline versus CE_PC 𝜒2 = 5.96 (p-value = 0.014) 
CE_PC 29.4% Baseline versus CE_CD 𝜒2 = 1.63 (p-value = 0.20) 
CE_CD 40.5% CE_PC versus CE_CD 𝜒2 = 1.40 (p-value = 0.23) 

 
The change in PICUD frequencies between CE_CD and baseline during MLC and DLC 

are respectively 18.2% and 6.9% (see the purple arrow in Figure 3). A chi-square test indicates 
that the communication delay has a prominent impact on MLC compared to DLC (𝜒2 = 4.08, 
p-value = 0.04), implying that communication impairment impacts MLC more compared to 
DLC. By comparing the differential impact of the connected environment on driving conditions 
(CE_PC versus CE_CD), we find that a delay in the supply of driving aids tends to increase 
the frequency of PICUD for MLC compared to DLC. We elaborate on this finding further in 
the next section. 

Similar results have been found when comparing the differential effects of connected 
environment scenarios on PICUD frequency as indicated by the blue arrow in Figure 3 (𝜒2 = 
2.51, p-value = 0.11). 
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Fig. 3. Comparison of PICUD frequency percentage for different types of lane changing 

 

4.1.2 SSCR 

SSCR—sideswipe collision risk—is computed for MLC as well as DLC during the entire lane-
changing duration period, and the maximum value of collision risk is selected and presented in 
Figure 4(a), where drivers are sorted in ascending order with respect to SSCR in the baseline 
condition. A series of linear mixed models reveal statistically significant difference in SSCR 
across driving conditions during MLC (F2, 150 = 172; p-value < 0.001) and DLC (F2, 150 = 112; 
p-value < 0.001). Paired t-tests also indicate that SSCRs are significantly different between a 
pair of drives during each lane-changing type. 

Figure 4(b) shows the difference in SSCR (i.e., SSCR in CE_PC – SSCR in the baseline 
condition for MLC or DLC), and it can be observed that difference in SSCR is consistently 
lower during MLC compared to that of DLC. A paired t-test indicates that the average 
differences in SSCR for MLC and DLC are respectively 36.34% and 15.64%, suggesting that 
CE_PC reduces sideswipe risk more during MLC compared to DLC; this change is also 
statistically significant as measured by a paired t-test (t = -5.59; p-value < 0.001).  

However, contrasting results have been found when comparing the impact of 
communication delay on the two lane-changing types. More specifically, SSCR risk increases 
during MLC (compared to perfect communication) relative to DLC (Figure 4(b)). By 
comparing SSCR across other drivers such as baseline versus CE_PC, etc. similar results like 
PICUD are found.  
 To summarise, the connected environment appears to reduce the SSCR risk during both 
MLC and DLC. However, the amount of reduction in SSCR is higher during MLC compared 
to that of DLC. 

4.1.3 Speed variation 
Speed variation (or fluctuation) has been frequently reported as one of the causes of traffic 
crashes (Pande and Abdel-Aty, 2006) and creating  disturbance in a traffic stream (FHWA, 
2014). The standard deviation of speed is measured for each participant during the lane-
changing event for each driving condition and lane-changing type, and cumulative distribution 
curves are displayed in Figure 5. Using a Kolmogorov-Smirnov test for examining whether the 
speed variations during MLC follow the same distribution or not, we find significant 
differences between baseline and CE_PC (p < 0.05), and baseline and CE_CD (p < 0.05), but 
not between CE_PC and CE_CD (p > 0.05). Unlike MLC, no significant difference is found 
for speed variation during DLC (p > 0.05). 
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(a) 

 

  

 
(b) 

Fig. 4. Summary of SSCR results; (a) SSCR for each driving condition in each lane-changing 
type; (b) Comparison of SSCR between MLC and DLC 

From the same cumulative probability curves (Figure 5), the speed variation during 
MLC for the baseline condition is clearly larger than that for the connected environment 
scenarios. This indicates that the connected environment driving conditions can make traffic 
flow smoother, which leads to lower risk. Although the same phenomenon is observed for 
DLC, it is to a less degree. 
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(a) 

 
(b) 

Fig. 5. Cumulative distribution function of speed variations  

 Alike PICUD and SSCR, the difference in speed variation is calculated to compare the 
effects of the connected environment on each type of lane-changing. The average difference in 
speed variations for baseline and CE_PC during MLC and DLC is 3 m/s and 1.34 m/s, 
respectively, suggesting that speed fluctuations are decreased considerably in the perfect 
communication driving condition during MLC compared to that during DLC. Again, similar 
and consistent results, as in the case of PICUD and SSCR, are observed for comparing 
differences between other driving conditions. 

4.1.4 Rate of deceleration 
Sudden braking (in the form of hard deceleration) is reported to cause rear-end crashes (Ali et 
al., 2019a, Haque et al., 2016). As such, the frequency of deceleration rate exceeding a certain 
threshold is calculated for each participant during the lane-changing event for each driving 
condition and each lane-changing type, and the results are presented in Table 4. The threshold 
considered in this study is 0.4g, which has been found as a contributory factor in crashes using 
naturalistic data, and a detailed discussion on this can be found in Wu and Jovanis (2013). 
 Table 4 indicates that the difference in frequencies (expressed as a percentage of the 
total number of participants in each scenario) of exceeding deceleration rate above the 
threshold for the baseline and CE_PC during MLC and DLC is respectively 24% and 12%; this 
difference in frequencies is statistically significant as measured by the chi-square test (𝜒2 = 
4.33; p-value = 0.037). This suggests that CE_PC is more effective in decreasing the instances 
of exceeding deceleration rate during MLC compared to DLC, and similar results are found for 
comparisons between other driving conditions. 

Table 5 also implies that the number of instances exceeding the threshold during MLC 
for the baseline condition are clearly higher than that for the connected environment. This 
reveals a positive impact of the connected environment leading to a lower propensity of 
engaging in safety-critical events. Although the same reduction is observed for DLC, the 
magnitude of reduction is much lower than that of MLC. 

4.1.5 Comparing effectiveness of a connected environment between MLC and DLC 

To compare usefulness (or effectiveness) of a connected environment for the two types of lane-
changing, an effectiveness ratio (ER) is calculated as follows: 

MLC MLC

DLC DLC , , {Base, CE_PC, CE_CD}, ,j i
ij

j i

I I
ER i j i j

I I
−

=  
−

  (2) 
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Table 4. Frequency of deceleration rate exceeding the threshold 
LC type Scenario Frequency Comparison Significance by a chi-square test 

MLC 
Baseline 45% Baseline versus CE_PC 𝜒2 = 13.75 (p-value < 0.001) 
CE_PC 21% Baseline versus CE_CD 𝜒2 = 3.82 (p-value = 0.050) 
CE_CD 36% CE_PC versus CE_CD 𝜒2 = 3.88 (p-value = 0.040) 

DLC 
Baseline 38% Baseline versus CE_PC 𝜒2 = 2.94 (p-value = 0.080) 
CE_PC 26% Baseline versus CE_CD 𝜒2 = 0.44 (p-value = 0.50) 
CE_CD 35% CE_PC versus CE_CD 𝜒2 = 1.11 (p-value = 0.29) 

 

where ijER  expresses the relative level of improvement in MLC versus DLC of a given 
surrogate safety measure I listed in Table 1 in (connected environment) scenario j compared to 
(connected environment or baseline) scenario i. If 1ijER   ( 1 ) then scenario j has a higher 
(lower) usefulness for MLC compared to DLC than scenario i. 

ERs for PICUD are calculated for a different combination of scenarios, and the results 
are displayed in Figure 6. An ER of 2.11 suggests that the CE_PC driving condition (relative 
to baseline condition) is more effective in lowering PICUD frequency during MLC compared 
to DLC. Results also reveal that the differential impact of communication impairment is also 
higher during MLC compared to DLC (Figure 6).  

Alike PICUD, ERs are also calculated for SSCR for different possible pairs of 
scenarios, and the results are depicted in Figure 6. It can be observed that sideswipe risk 
(denoted by SSCR) during MLC is reduced in the CE_PC driving condition (relative to the 
baseline condition) compared to DLC. An impairment in the communication is likely to impact 
MLC more relative to DLC (see Figure 6). 

ERs for differences in speed variation are also presented in Figure 6. Results reveal that 
speed variations during MLC when using driving aids (compared to no driving aids) are 
significantly reduced relative to DLC. When driving aids are delayed, its impact is more 
pronounced during MLC compared to DLC. 
 ER values for the rate of deceleration are respectively 2, 3, and 1.67 for baseline vs. 
CE_PC, baseline vs. CE_CD, and CE_CD vs. CE_PC, implying that the effectiveness of 
connected environment is higher (greater than one) during MLC compared to DLC in reducing 
the frequency of deceleration rate exceeding the threshold. The findings also suggest that the 
safety benefit of communication delay is not as great as perfect communication during MLC 
compared to DLC, which complements our previous finding. 

 

 

Fig. 6. Effectiveness ratio for comparing the effectiveness of a connected environment 
between MLC and DLC; red dotted line shows ER = 1; Base = Baseline; SV = speed 

variation; Dec = deceleration rate 
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4.2 Modelling results 

4.2.1 GEE model for speed variations 

The GEE model for speed variations is estimated using the ‘statsmodel’ library in Python 
(Seabold and Perktold, 2010) and reveals potential factors that affect speed variations. The 
developed model is a function of main effects variables including indicator variables for the 
connected environment with perfect communication and communication delay, an indicator 
for MLC, indicators for age group, and gender, and interaction effects including MLC during 
the connected environment with perfect communication, spacings and lag gaps during MLC in 
the connected environment with perfect communication. Table 5 presents the model estimates. 
Note that the model presented in Table 5 is the parsimonious model selected from a series of 
models based on goodness-of-fit measures reported in the literature such as marginal R2, QIC, 
and Quasi-likelihood (Zheng, 2000, Pan, 2001). 

The indicator for driving condition (i.e., connected environment with perfect 
communication, CE_PC) is significant at a 95% confidence level and found to be negatively 
associated with speed variations, suggesting that the speed variations in perfect communication 
driving condition are lower with approximately 2.33 m/s less speed variation compared to when 
driving without driving aids. Similarly, when the communication is impaired (i.e., with 
communication delay), the speed variations decrease by about 1.55 m/s compared to the 
baseline condition (i.e., no driving aids). Although speed variations reduce in both driving 
conditions of the connected environment, implying a more stable and smoother driving, the 
speed variations in the perfect communication scenario are about 1.5 times lower than those 
with communication delay, suggesting the detrimental impact of communication delay 
compared to the connected environment with perfect communication. 

To compare the differential effect of lane-changing on speed variations, the indicator 
for mandatory lane-changing (i.e., MLC) is found to be positive and significant. Compared to 
DLC, the speed variations are approximately 2.37 m/s higher during MLC. This suggests that 
drivers fluctuate their speeds more in the acceleration lane to look for available gaps compared 
to DLC whereby drivers reduce their speeds for achieving better driving conditions. 

 
Table 5. Summary statistics of the GEE model for speed variations 

Parameter Coefficient s.e Wald statistics p-value 
Constant 9.61 0.79 147.81 <0.001 
Main effects     
CE_PC -2.33 0.46 22.12 <0.001 
CE_CD -1.55 0.63 6.09 0.013 
MLC 2.37 0.77 19.12 <0.001 
Young drivers 1.33 0.65 4.41 0.039 
Older drivers -1.75 0.74 5.55 0.018 
Male 1.03 0.51 4.13 0.042 
Interaction effects     
MLC × CE_PC  -4.51 0.89 25.45 <0.001 
MLC × CE_PC × Spacing -0.035 0.009 12.69 <0.001 
MLC × CE_PC × Lag gaps -0.028 0.012 4.83 0.028 
Estimated correlation parameter (alpha) 26.5 2.2 

  

Marginal R2 = 0.31; QIC = 1147; Quasi-likelihood = -572; Number of observations = 458;  
Number of clusters = 156; Max: cluster size = 3 

Baseline is the reference category 
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Driver age is classified into three classes, as mentioned in Table 2. Compared to middle-
aged drivers, young drivers are associated with higher speed variations, with about 1.3 m/s 
higher speed variation than that of middle-aged drivers. Furthermore, the model reveals a more 
stable speed variation for older drivers with a reduction in speed variations of approximately 
1.75 m/s compared to that of middle-aged drivers. 
 The variable for male drivers is found to be significant and has a positive impact on the 
speed variations. More specifically, male drivers’ speed variations are about 1 m/s higher than 
that of female drivers. 
 The interaction effect for the connected environment with perfect communication and 
MLC has a significant impact on speed variations. The model suggests that the speed variations 
are reduced when MLC is performed with a fully functioning connected environment (i.e., 
CE_PC) with a lower speed variation of approximately 4.5 m/s. 
 The interaction effects for spacing and lag gaps (separately) during MLC in the 
connected environment with perfect communication is significant and negatively associated 
with speed variation in the GEE model. These interaction effects imply that when spacing and 
lag gaps increase and drivers are assisted with surrounding traffic information during MLC, 
the speed variations decrease by about 0.4 m/s and 0.3 m/s, respectively.  

4.2.2 Logistic GEE model for exceeding decelerating rate 

(a) Decision tree 

Recall that it is important to determine higher-order interaction effects for the model 
development, as mentioned in Section 4.2. To this end, a decision tree is constructed using the 
Chi-Squared Automatic Interaction Detection (CHAID) algorithm by using the ‘CHAID’ 
library of Python (Ramotowski and Fitzgerald, 2020). As the name suggests, this tree is 
constructed from various possible combinations and divisions using a Chi-square test 
(Choudhary and Velaga, 2019). The dependent variable is a binary variable (i.e., a driver 
exceeding the deceleration threshold or not), whereas the input variables are driving conditions, 
type of lane-changing, and driver demographics, as shown in Table 2. A k-fold cross-validation 
is conducted to construct the tree, where k is considered as 10. This process classifies the data 
into 10 unique portions, and each one of them is used to assess the tree structure. As such, nine-
tenths of the data on each cycle is used to train the tree. The developed tree correctly classified 
75% of cases using 30 leaves for a total tree of the size of 57 nodes.  Driving conditions reveal 
the highest information gain and thus is located at the top of the tree (Figure 7). 

Each terminal node, indicated by a number in square brackets after the node in Figure 
6, represents a possible interaction term. Table 6 presents all potential interaction terms 
obtained from the decision tree. Note that each classification is tested using a chi-square value 
and the corresponding p-value less than 0.05. 

The decision tree divides the deceleration rates above/below the threshold by 
classifying the data into 30 smaller and homogeneous groups, and the corresponding statistics 
are presented below in the parenthesis (see Figure 7). The two numbers in the parenthesis 
represent how many cases reach the node with deceleration rate above and below the threshold, 
respectively. For instance, the statistics of terminal node 1 indicate that 100% of drivers (i.e., 
2 out of 2) in the baseline condition with lag gaps less than or equal to 24.6 m have a higher 
deceleration rate. Similarly, terminal node 12 suggests that about 19% of middle-aged male 
drivers (i.e., 10 out of 52) in the CE_PC driving condition have higher deceleration rates while 
the rest have lower deceleration rates. Terminal node 16 implies that about 14% of older drivers 
(i.e., 1 out of 7) in the CE_PC driving condition performing DLC with spacing < 27.5 m have 
higher deceleration rates. 
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Table 6. Interaction effects obtained from the decision tree 
No Description 
1 Drivers in baseline condition with lag gaps ≤ 24.6 m 
2 Middle-aged female drivers in baseline condition with lag gaps > 24.6m and spacing ≤ 27.5 m 
3 Middle-aged female drivers in baseline condition with lag gaps >24.6m and spacing > 27.5 m 
4 Middle-aged male drivers in baseline condition with lag gaps > 24.6m and spacing > 27.5 m 
5 Middle-aged male drivers in baseline condition performing DLC with lag gaps > 24.6m and spacing ≤ 27.5 m 
6 Middle-aged male drivers in baseline condition performing MLC with lag gaps > 24.6m and spacing ≤ 27.5 m 
7 Young (or older) drivers in baseline condition performing DLC with lag gaps > 24.6m and spacing ≤ 27.5 m 
8 Young (or older) drivers in baseline condition performing MLC with lag gaps > 24.6m and spacing ≤ 27.5 m 
9 Older drivers in baseline condition performing DLC with lag gaps > 24.6m and spacing > 27.5 m 
10 Older drivers in baseline condition performing MLC with lag gaps > 24.6m and spacing > 27.5 m 
11 Young drivers in baseline condition with lag gaps > 24.6m and spacing > 27.5 m 
12 Middle-aged female drivers in CE_PC 
13 Middle-aged male drivers in CE_PC performing DLC 
14 Middle-aged male drivers in CE_PC performing MLC 
15 Older drivers in CE_PC with spacing ≤ 27.5 m 
16 Older drivers in CE_PC performing DLC with spacing > 27.5 m 
17 Older drivers in CE_PC performing MLC with spacing > 27.5 m 
18 Young drivers in CE_PC performing DLC with spacing ≤ 27.5 m 
19 Young drivers in CE_PC performing DLC with spacing > 27.5 m 
20 Young drivers in CE_PC performing MLC with spacing ≤ 27.5 m 
21 Young drivers in CE_PC performing MLC with spacing > 27.5 m 
22 Older drivers in CE_CD performing DLC 
23 Older drivers in CE_CD performing MLC with spacing ≤ 27.5 m 
24 Older drivers in CE_CD performing MLC with spacing > 27.5 m 
25 Young (or older) drivers in CE_CD performing DLC with spacing ≤ 27.5 m 
26 Young (or older) drivers in CE_CD performing MLC with spacing ≤ 27.5 m 
27 Middle-aged female drives in CE_CD with spacing > 27.5 m 
28 Young female drivers in CE_CD with performing DLC with spacing > 27.5 m 
29 Young female drivers in CE_CD with performing MLC with spacing > 27.5 m 
30 Young (or older) male drivers in CE_CD with spacing > 27.5 m 

 (b) Model interpretation 

The significant variables estimated by the repeated measure GEE logistic model along with the 
probabilities of drivers’ engaging in a hard-braking event during the lane-changing event are 
presented in Table 7. The parsimonious model (presented in Table 7) is compared to a model 
without interaction terms. The Wald 𝜒2 statistics for the model with and without interaction 
variables are respectively 66.4 and 43.2, implying that both models possess a reasonable 
explanatory power. However, goodness-of-fit measures (e.g., AIC, Wald 𝜒2, QIC, and Quasi-
likelihood) suggest that the model with interaction terms outperforms the model without 
interaction terms. Thus, the model with interaction terms is selected in this study. 
 The selected model has an exchangeable correlation coefficient, 𝜌, of 0.38, suggesting 
that there exists a significant correlation among repeated observations of each driver, which is 
accounted for in our repeated measures GEE logistic model. 

The parsimonious model contains eight main effects parameters: spacing, lag gaps, 
dummy variables for CE_PC, CE_CD, MLC, young and older drivers, male, and four higher-
order interaction effects obtained from the decision tree: interaction terms 13, 15, 18, and 28. 
Note that these variables are explained in Table 6. The odds ratio as mentioned in Section 4.2 
is calculated for each parameter estimate that suggests the influence of a particular variable on 
the odds of engaging in a hard-braking event while keeping all other effects constant in the 
model. It is important to mention here that the probability of engaging in a hard-braking event 
is also a function of other factors, which are explained in the next section. 
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Fig. 7. Decision tree schematic for the deceleration exceeding the threshold
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Table 7. Repeated measure logistic GEE model predicting the likelihood of engaging in a 
hard-braking event 

Parameter Coefficient s.e Wald 
statistics 

p-value OR 95% CI of OR 

      Lower Upper 
Constant -1.211 0.314 14.83 <0.001    
Main effects        
Perfect communication -1.690 0.227 37.17 <0.001 0.185 0.260 0.629 
Communication delay -0.506 0.252 4.02 0.044 0.603 0.109 1.097 
DLC  0.566 0.258 4.79 0.008 1.761 1.256 2.267 
Young drivers  0.647 0.272 5.59 0.018 1.911 1.378 2.444 
Older drivers -0.789 0.373 4.47 0.034 0.454 0.277 1.185 
Male  0.476 0.234 4.11 0.042 1.610 1.151 2.068 
Spacing -0.014 0.003 3.91 0.048 0.986 0.980 0.992 
Lag gap -0.012 0.004 5.45 0.019 0.988 0.980 0.996 
Interaction effects        
Interaction 13 -2.180 0.649 11.26 <0.001 0.113 1.159 1.385 
Interaction 15 -1.661 0.741 5.03 0.024 0.189 1.263 1.641 
Interaction 18 -1.068 0.506 4.45 0.034 0.343 0.648 1.334 
Interaction 28 -1.733 0.810 4.57 0.032 0.177 1.411 1.764 
Wald Chi-square = 66.4; DF = 12; p-value < 0.001; QIC = 529; Quasi-likelihood = -253; Number of 
observations = 458; Number of clusters = 156; Max: cluster size = 3; Exchangeable correlation (𝜌) = 0.38 

Interaction term 13: Middle-aged male drivers in CE_PC performing DLC 
Interaction term 15: Older drivers in CE_PC with spacing ≤ 27.5 m 
Interaction term 18: Young drivers in CE_PC performing DLC with spacing ≤ 27.5 m 
Interaction term 28: Young female drivers in CE_CD with performing DLC with spacing > 27.5 m 
 
 The dummy variable for CE_PC is significant at a 95% confidence level in explaining 
the possibility of drivers engaging in a hard-braking event during a lane-changing manoeuvre. 
The model suggests that drivers are less likely to engage in a hard-braking event when they are 
assisted by continuous and on-time driving aids. More specifically, the probability of engaging 
in a hard-braking event decreased by about 81.5% (i.e., exp( 1.69) 0.185− = ). 
 The dummy variable for CE_CD is also significant and negatively associated with the 
likelihood of drivers engaging in a hard-braking event during the lane-changing event. 
Compared to no driving aids, drivers are less likely to engage in a hard-braking event when 
driving aids are delayed, as the probability is decreased by 39.7. This suggests that the risk is 
reduced, but at a lower magnitude, when the delayed information is offered to drivers. 
 The indicator for MLC suggests that overall, the odds of engaging in a hard-braking 
event is increased by 76.1% when performing an MLC manoeuvre compared to a DLC 
manoeuvre. It is worth mentioning here that this odds ratio estimate does not include 
interactions related to the connected environment driving conditions such as interaction term 
13 and interaction term 18. As we have incorporated several interaction effects in this study, 
the full spectrum of connectivity’s impact on the type of lane-changing (i.e., MLC or DLC) 
would be identifiable along with driver demographics. 
 The GEE model suggests that young drivers are more likely to engage in a hard-braking 
event than middle-aged drivers, namely 1.91 times according to the odds ratio. On the other 
hand, older drivers have a lower propensity of engaging in a hard-braking event compared to 
middle-aged drivers with an odds ratio of 0.454. We elaborate these findings further in the next 
section. Furthermore, the model shows that male drivers are 1.61 times more likely to engage 
in a hard-braking event compared to female drivers. 
 Looking at spacing, which is the distance between the lead vehicle and the subject 
vehicle in the current driving lane, we find that a one metre increase in spacing is associated 
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with a 1.4% decrease in the possibility of a hard-braking event during lane-changing, keeping 
all other variables constant. With respect to lag gap, which is the distance between the subject 
vehicle and the immediate follower on the adjacent lane, we find that a one metre increase in 
lag gap decreases the probability of drivers engaging in a hard-braking event by 1.2% by 
keeping all other variables constant. 
 Apart from the main effects, the developed GEE model contains four interaction terms. 
Interaction term 13 shows that a middle-aged male driver, when performing DLC, is less likely 
to engage in a hard-braking event with the corresponding odds about 88% lower. Similarly, 
Interaction term 15 indicate that older drivers in the fully functioning connected environment 
are about 81% less likely to engage in a hard-braking event during the lane-changing event 
when the spacing between the lead vehicle and subject vehicle is less than 27.5 m. Interaction 
terms 18 and 28 can be interpreted in a similar manner. 

5. Discussion 

5.1 Speed variations and lane-changing 

Speed variation is one of the factors associated with crash risk (Aarts and Van Schagen, 2006, 
Zheng et al., 2010, Roshandel et al., 2015) and affects traffic flow characteristics (Svenson, 
2009). For instance, speed variations during lane-changing are associated with a bottleneck 
(Bertini and Cassidy, 2002) and traffic oscillations (Zheng et al., 2011a). To this end, driving 
aids provided by the connected environment can assist in a lane-changing driving task and 
thereby minimise speed variations. For this purpose, speed variations during different lane-
changing types are analysed using the developed model. More specifically, using the model 
estimates presented in Table 5, and the mean values presented in Table 4, the effectiveness of 
the connected environment during MLC and DLC can be determined and computed as follows: 

(

)

mean speed variation exp 9.61
2.33 CE _ PC
1.55 CE _ CD
2.37 MLC
1.33 YoungDriver
1.75 OlderDriver
1.03 MaleDriver
4.51 CE_PC MLC
0.028 MLC CE _ PC lagGap
0.035 CE_PC MLC Spacing .

=

− 
− 
+ 
+ 
− 
+ 
−  
−   

−   

    (3) 

 Keeping all other variables constant (i.e., mean), the speed variations in the CE_PC and 
baseline driving conditions during MLC are respectively 3.43 m/s and 11.98 m/s, while the 
corresponding the speed variations for DLC are 7.28 m/s and 9.61 m/s, respectively, implying 
that the relative speed variation (baseline – CE_PC during MLC vs  baseline – CE_PC during 
DLC) reduces by 3.67 times in case of MLC compared to DLC. In the literature, due to forceful 
nature of MLC (often performed at merging or weaving sections) and when performed without 
a driving assistance system, it disrupts traffic more (Ali et al., 2019b) and results in stop-and-
go oscillations (Ahn and Cassidy, 2007), traffic breakdown, and capacity drops (Cassidy and 
Rudjanakanoknad, 2005). Nevertheless, although the connected environment appears to reduce 
the speed variations during both MLC and DLC, its impact is more prominent and higher 
during MLC. This finding suggests that the connected environment provides the highest benefit 
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when drivers require assistance the most (during MLC). This is because a driver’s workload 
and stress are likely to increase during an MLC manoeuvre as they continuously need to find a 
gap in the target lane and monitor the remaining distance in the acceleration lane 
simultaneously. Most drivers would want to merge before reaching the end of the acceleration 
lane to avoid coming to a complete halt, which leads to increased impatience and elevates risky 
gap selection and crash risk (Ahmed, 1999, Ali et al., 2019a). However, when they are assisted 
by the connected environment, their speed variations drastically decrease because drivers can 
select a proper gap size (as subsequent gap sizes are provided by the connected environment) 
and receive surrounding traffic information that can assist in minimising speed variations. On 
the other hand, the urgency factor associated with DLC is minimum as it depends on the 
driver’s discretion to change lanes or persist with the prevailing conditions in the current 
driving lane. Nevertheless, the connected environment seems to be assisting during DLC as 
well as speed variations are reduced, but not as much as during MLC. 
 Keeping all other variables constant, the differences in the speed variations (CE_CD vs 
CE_PC) predicted by the model for MLC and DLC are respectively 7.01 m/s and 2.33 m/s, 
suggesting that delayed information supply during MLC increases speed variations threefold 
compared to that of DLC.  

5.2 Hard-braking probabilities during lane-changing 

To examine whether the connected environment has any differential impact on MLC and DLC 
manoeuvres, a complex model that accounts for such interactions is needed. As such, we have 
estimated a repeated measure logistic GEE model for determining the possibility of drivers 
engaging in a hard-braking event, which has a significant impact on traffic flow efficiency and 
safety as indicated in several studies (Simons-Morton et al., 2009, Van Driel and Van Arem, 
2010, Wu et al., 2010, Haque and Washington, 2015). The developed model can provide 
probabilities of engaging in a hard-braking event for each lane-changing type, gender, age 
group, and varying spacing and lag gap values. The probabilities can be calculated using the 
parameter estimates reported in Table 7 together with mean values of the explanatory variables 
(except for lane-changing type and driving condition). Using Equation 1, the predicted 
probabilities for drivers’ engaging in a hard-braking event during MLC and DLC in the 
baseline (without driving aids) and CE_PC condition can be computed as 

Base,MLC
exp[ 1.211 0.566 1 0.014 24.64 0.012 30.45] 0.20,

1 exp[ 1.211 0.566 1 0.014 24.64 0.012 30.45]
P − +  −  − 

= =
+ − +  −  − 

  (4) 

Base,DLC
exp[ 1.211 0.566 0 0.014 24.64 0.012 30.45] 0.13,

1 exp[ 1.211 0.566 0 0.014 24.64 0.012 30.45]
P − +  −  − 

= =
+ − +  −  − 

  (5) 

CE_PC,MLC
exp[ 1.211 1.69 1 0.566 1 0.014 24.64 0.012 30.45] 0.04,

1 exp[ 1.211 1.69 1 0.566 1 0.014 24.64 0.012 30.45]
P − −  +  −  − 

= =
+ − −  +  −  − 

  (6) 

CE_PC,DLC
exp[ 1.211 1.69 1 0.566 0 0.014 24.64 0.012 30.45] 0.02.

1 exp[ 1.211 1.69 1 0.566 0 0.014 24.64 0.012 30.45]
P − −  +  −  − 

= =
+ − −  +  −  − 

  (7) 

 The probabilities of engaging in a hard-braking event during MLC and DLC when 
drivers are not assisted by driving aids are respectively 20% and 13% (Eqs. 4 and 5) while the 
corresponding probabilities in the CE_PC driving condition are 4% and 2% (Equations 6 and 
7), respectively. This suggests that, although probabilities decrease for both types of lane-
changing, a 5% higher decrease is observed during MLC in the CE_PC driving condition, 
further highlighting the superior benefits of driving aids during MLC.  
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 To examine the effects of the connected environment driving conditions on MLC and 
DLC by varying spacing and lag gaps along with driver demographic, probabilities are 
calculated and presented in Figure 8. Clearly, the probabilities of engaging in a hard-braking 
event decrease with an increase in spacing for both types of lane-changing and driving 
conditions (Figure 8(a)). This finding is intuitive and can be explained by the fact that when 
the distance between the lane-changer and its leader is large, there is a minimal chance for 
drivers to exhibit higher deceleration and subsequently engage in a hard-braking event. 
Notably, a higher decrease in the probability is observed during MLC compared to its 
counterpart. A similar trend but with different magnitude of impact has been observed when 
the lag gap is varied (see Figure 8(b)). 
 A differential comparison of the connected environment driving conditions reveals that 
drivers in CE_PC have the lowest probability of engaging in hard-braking events compared to 
CE_CD. However, the communication delay is still performing better than the baseline 
condition. This also confirms that the safety benefits of CE_CD are not as much as CE_PC. 
 Figure 9 displays how the probabilities of engaging in a hard-braking event vary with 
driver age and gender. It is evident that probabilities of engaging in a hard-braking event are 
higher for young drivers compared to that of middle-aged and older drivers. For instance, the 
probabilities of engaging in a hard-braking event for young, middle-aged, and older male 
drivers performing DLC at a 5 m spacing in the CE_PC (baseline) are respectively 16% (51%), 
1% (12%), and 4% (19%) while the corresponding probabilities for MLC are 9% (37%), 0.6% 
(3%), and 2% (12%), respectively. Two noteworthy observations are: (a) young drivers, 
although their probabilities decrease in the connected environment compared to the baseline 
condition, tend to decelerate more sharply and thus are more likely to be involved in safety-
critical events compared to other groups of drivers. This finding aligns with Andersen et al. 
(2000) who reported age-related differences in deceleration rates and found that young drivers 
have a higher propensity of engaging in a collision due to their novice driving skills compared 
to other drivers; (b) the benefit of the connected environment is higher for DLC compared to 
its counterpart in the same driving condition. This contrasting finding may be explained by the 
fact that drivers during DLC appear to take the maximum advantage of advanced information 
about congestion and adjust their speeds accordingly and thereby decelerate more gradually 
and exhibit stable driving. These findings also advocate further in-depth analysis of the 
microscopic (or individual level) assessment of the usefulness of the connected environment. 

 
 

 
(a) 

 
(b) 

Fig. 8. Effects of spacing and lag gap on the probability of engaging in a hard-braking event 
during the connected environment with perfect communication 

0

0.2

0.4

0.6

0.8

1

5 25 45

Pr
ob

ab
ili

ty

Spacing (m)

MLC in CE
DLC in CE
MLC in baseline
DLC in baseline

0

0.2

0.4

0.6

0.8

1

5 25 45

Pr
ob

ab
ili

ty

Lag gap (m)

MLC in CE_PC
DLC in CE_PC
MLC in baseline
DLC in baseline



23 
 

 
(a) Young male 

 
(b) Young female 

 
(c) Middle-aged male 

 
(d) Middle-aged female 

 
(e) Older male 

 
(f) Older female 

Fig. 9. Probability of engaging in a hard-braking event for different driver demographics 
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Compared to male drivers, female drivers have a lower probability of engaging in a 
hard-braking event (Figure 9). On average, a 10% decrease in the probability of engaging in a 
hard-braking event is observed for female drivers compared to male drivers. Similar findings 
are reported by some other studies (Li et al., 2015, Li et al., 2016), where female drivers’ 
deceleration rates were lower than male drivers as these (male) drivers tend to be more 
aggressive and exhibit risky driving behaviour. 
 
6. Conclusions and future research 

This study examined the usefulness of the connected environment on two types of lane-
changing, namely mandatory lane-changing (MLC) and discretionary lane-changing (DLC). 
Because of the distinct nature of these two lane-changing types and different mechanisms 
involved in performing these lane-changings, it is expected that there could be a differential 
impact of the connected environment. To address this research gap, this study performed 
descriptive analyses as well as developed Generalised Estimation Equations (GEE) models to 
examine the differential benefits of the connected environment. Seventy-eight participants 
performed MLC and DLC on a simulated motorway in the CARRS-Q Advanced Driving 
Simulator, where they received surrounding traffic information in a fully functioning as well 
as impaired communication systems.  
 Two surrogate measures of safety were adopted for evaluating the possibility of rear-
end collisions and sideswipes during a lane-changing manoeuvre. Descriptive analyses 
revealed that the safety margin in the connected environment driving conditions during MLC 
is higher compared to its counterpart. Similarly, the reduction of speed variations in MLC, 
thanks to the connected environment, is larger than that in DLC. Moreover, impairment in 
driving aids is likely to reduce safety margin more during MLC compared to DLC. 
 To develop further insights on speed variations during lane-changing, a GEE model is 
developed that suggests that although speed variations were higher during MLC when driving 
aids are not available, the amount of reduction was considerably lower considerably when 
drivers performed MLC in the presence of driving aids. Furthermore, the degree of reduction 
in speed variation was higher during MLC than that of DLC. 
 To study whether the connected environment lowers the probability of engaging in a 
hard-braking event for the two lane-changing types, a hybrid framework of data mining and 
classical statistical modelling has been employed. Using a decision tree analysis, all possible 
interaction effects were obtained, which were used as input into a repeated measure logistic 
GEE model. The developed model reveals that although the possibility of engaging in a hard-
braking event was much higher during MLC in a traditional driving environment (without 
driving aids) compared to its counterpart, these events drastically decreased when drivers were 
assisted with driving aids to perform MLC. The model also suggests that young and male 
drivers have a higher probability of engaging in hard-braking events. While examining the 
interaction effect of gender with age group on lane-changing type, we find that the connected 
environment was more effective during DLC compared to its counterpart, which needs further 
investigation. 

Overall, this study concludes that where the urgency of lane-changing is higher, the 
connected environment is expected to benefit more. Because these situations (e.g., merging, 
weaving, etc.) are prone to high crash risk and drivers, in general, tend to avoid these crash 
risks, they take the maximum advantage of the available information. On the contrary, drivers 
during DLC, although utilising driving aids, have lower safety benefits compared to MLC 
because of less urgency of lane-changing. This aligns with a recent study where the authors 
found that the usefulness of information is higher when the headway is small, which is an 
indicator of crash risk (Sharma et al., 2019). 
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 This study provides a better understanding of the impact of the connected environment 
on the two lane-changing types and uncovers that although the connected environment provides 
similar surrounding traffic information in both these situations, their impact is different and 
thus warrants separate model formulation for each lane-changing type in a connected 
environment. Furthermore, our findings can also assist in improving the design of driving aids 
related to DLC to increase its effectiveness in the decision-making process.  
 This study was conducted in a simulated environment using a single high-fidelity 
driving simulator, and lane-changing behaviour was compared in a relative manner. In this 
study, we programmed all surrounding vehicles in such a way as to mimic real driving 
conditions. However, it would be interesting to use multiple connected driving simulators with 
human drivers (as lane-changer as well as an immediate follower) or replicate the same study 
in field driving conditions where drivers’ decisions are more volatile and can provide more 
insights into the differential impact of a connected environment. Lastly, this study tested only 
one design of driving aids in a connected environment; different designs may lead to different 
conclusions, and it would be worthwhile to explore the impact of different types of driving 
aids.  
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