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Abstract

This thesis presents a three-dimensional relativistically correct model of the

electron beam-Langmuir wave interaction in the solar corona, as well as a model

of the radial electron density profile of the ambient solar plasma through which

an electron beam passes. 1D models of the beam/plasma interaction have long

been used, as have empirical fits for the electron density profile. In support

of the overall goal of this thesis, to develop a more realistic understanding of

the plasma physics processes underlying Type III solar radio bursts, we first

present strong evidence for a new and physically significant analytic model

for the radial density profile in the corona. The thesis then demonstrates the

need to develop a 3D picture of the resonance between streaming electrons and

Langmuir waves, and the coupled evolution of this system. A new picture of

quasilinear relaxation of electron beams is described qualitatively and quanti-

tatively. This 3D picture changes the way electron distributions are considered

in terms of their stability or instability to the growth of Langmuir waves. The

thesis also develops a numerical method utilising the analytical development of

the 3D model, with initial tests and examples described in detail.

The first chapter begins with an introduction to the thesis and provides a

review of the solar radio burst and coronal physics literature. This is followed

by three research chapters and a final chapter summarising conclusions from

the previous chapters, and outlining future work.

Chapter 2, the first research chapter, puts forward a new model for the

radial electron density profile in the solar corona. This is an offset power law

model, ne(r) ∝ (r − r0)−α with radial offset r0 from the centre of the Sun and

power law index γ. In stark contrast with several commonly used models, the

model parameters all have a clear physical interpretation in terms of the bulk

flow of the solar wind and the source of coronal plasma. We find that the model

fits very well to many published density data sets obtained by white light and
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Chapter 3 begins to discuss the quasilinear relaxation of electron beams

and their production of Langmuir waves. In this chapter we undertake a de-

tailed study of the 3D quasilinear equations, using Legendre expansion and the

choice of reasonable yet analytically useful distributions. In the 1D picture the

resonance is one-to-one such that waves with wavenumber k are only resonant

with electrons with the particular speed vφ. It is shown that in 3D a wave may

be exited by any electron with v > vφ, which changes significantly the growth

rate of Langmuir waves and therefore the conditions for a particular electron

distribution to be unstable.

Chapter 4 introduces a numerical method which describes the system of elec-

trons and Langmuir waves in a 3D axisymmetric way. The numerical scheme is

discussed in detail before initial tests are presented. These include the stability

of the thermal level of waves for Maxwellian electrons, a thorough exploration

of isotropic gap distributions of electrons, and numerical simulation of P1 dis-

tributions of the type discussed analytically in Chapter 3. Diffusion of particles

is explored analytically and numerically, and it is shown that indeed particles

diffuse significantly in pitch angle as well as in momentum. In order to con-

sider more realistic electron distributions reminiscent of available data, and

also to increase the complexity of the cases considered by the numerical code,

the quasilinear evolution of distributions of the form cos2N+1 α is developed.

It is shown that these higher-order and more anisotropic distributions evolve

in a different way than the standard 1D theory would suggest, due to the 3D

resonance condition and associated pitch angle diffusion.

Chapter 5 summarises the conclusions of this thesis and outlines the sig-

nificant future work for this numerical model and line of investigation. The

numerical code has great potential for further development and application

both to artificial and realistic in-situ electron distribution data.
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Chapter 1

Introduction and Literature re-

view

Not long after Maxwell formulated his equations and predicted the existence

of radio waves, and immediately after Hertz discovered them experimentally in

the late 1880s, scientists expected the Sun to be an active radio source. Thomas

Edison and Oliver Lodge unsuccessfully attempted to find solar radio emission

in the 1890s[McLean and Labrum, 1985], and it was not until the wartime

development of metre-wavelength radar that a solar signal was detected. In

February 1942 a strong, noise-like and highly variable radio source was picked

up, at the same time as the largest ever recorded sunspot group appeared on

the Sun. This result was published after the war [Appleton, 1945; Appleton

and Hey , 1946] and a new research field was born.

Solar storms were observed in 1947 using the flat surface of the sea as

a “Lloyd’s Mirror” interferometer [Wild and McCready , 1950; McLean and

Labrum, 1985], results which cemented the link between intense solar radio

emission and sunspot activity. In the following decade, solar radio emission

was found to be made up of a slowly varying “Quiet Sun” component and a

set of radio bursts which vary in frequency on a much smaller timescale and

were classified by the way their frequency varies with time. These solar bursts

were associated temporally and spatially with solar energetic events like flares

[Benz , 1993] and were seen to be obviously nonthermal in origin. Finally, so-

lar radio sources were observed to travel through the corona at extremely fast

speeds (about 0.3c).

The most common of the family of solar radio phenomena, Type III radio

bursts, are associated with a fast stream of electrons through the corona and

are emitted at a frequency that is related to the number density of electrons
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Ch. 1 INTRODUCTION

in the background plasma (see 2 for more detail). Any study of the underly-

ing physics behind such events must include a model for the density profile in

the corona. As is discussed below, theories about both the electron-Langmuir

wave interaction and subsequent Type III radio emission are sensitive to den-

sity variations. We therefore present evidence for a new, physically significant

and empirically well-supported radial density model for the solar corona as part

of our investigation of the electron-Langmuir wave interaction.

With these observational clues, Ginzburg and Zheleznyakov [1958] formu-

lated a two step theory to describe radio emission from a solar plasma. In

this picture, which still underlies the consensus theory of radio emission, an

electron beam is excited by an impulsive process (e.g. a solar flare) and travels

through the ambient plasma of the corona. The interaction between the beam

and the background plasma leads to excitation of plasma, or Langmuir, waves.

The beam and the waves are resonant with each other in a specific way, such

that growing Langmuir waves have a back-reaction on the electron beam that

excited them. The second step in the process involves the excited Langmuir

waves undergoing nonlinear process (e.g. wave-wave interaction and scattering

by ion acoustic waves) which produce radio waves at the plasma frequency or

its second harmonic. Efforts have been made to improve upon the Ginzburg

and Zhelezniakov model but the underlying two stage process remains the same.

The first stage in the process, the interaction between an electron beam

and the population of Langmuir waves driven by the propagation of the beam

through the background plasma, is described by a set of quasilinear equa-

tions. Consideration of the propagation of very fast, narrow electron beams

directed along open magnetic field lines out from the Sun led to the use of a

one-dimensional approximation to describe the particle evolution. That is, the

electron beam was described as a 1D distribution in the velocity component

parallel to the magnetic field, v‖, with the other components neglected. These

simplifying assumptions were necessary for the field to advance and the evolu-

tion of the coupled electron-Langmuir wave system to be described up to an

asymptotic condition. Namely, the excited Langmuir waves were expected to

draw energy from the electrons, cause them to diffuse in velocity, and form

a quasi-stable plateau distribution whereupon the instability is exhausted. In

this picture, electrons with a given speed v‖ are only resonant with Langmuir

waves with the wavenumber k = ωp/v‖. The 1D analysis also leads to the con-

dition for a given electron distribution f(v = v‖) to be unstable to the growth

2



of Langmuir waves: that ∂f/∂v > 0.

This thesis challenges these long-held and deeply-ingrained results about

electron-Langmuir wave resonance. Attempts at two and three-dimensional

extensions of the analytic theory have hitherto still relied upon parts of this

picture derived from the 1D analytic theory. We show that, in fact, a 3D

axisymmetric consideration of the quasilinear equations challenges both one-

to-one resonance between Langmuir wave and electron beams and plateau for-

mation.

1.1 The Sun and the Solar corona

There are five distinct layers of the solar atmosphere, which are identified pre-

dominantly by the temperature as it varies from the surface of the Sun out

to the interplanetary medium (IPM) [Aschwanden, 2004; Dulk , 1985]. The

photosphere, chromosphere, and transition region are relatively thin layers

(< 0.005RS ≈ 3000 km) where the temperature varies from ≈ 6000 K at

the photosphere up to ≈ 106 K in the solar corona. The magnetic field of

the Sun also changes dramatically over these regions. A twisted, complex and

strong magnetic field network exists in the chromosphere, which fans out from

concentrated bundles into a more uniform distribution in the corona.

The corona is a highly inhomogenous, dynamic environment which sup-

ports a variety of plasma structures. Active regions on the Sun lead to density

inhomogeneities at low heights, which can be probed in soft X-rays as their

brightness is proportional to the electron number density squared (n2
e). There

is a quiet corona component, as well as coronal hole structures [Cranmer , 2009]

from which the fast solar wind originates.

Two longstanding problems concerning the solar corona are, first, how the

corona is heated to > 106K and second, how the bulk outflow is driven to form

the solar wind. Fig 1.1 shows a simulated temperature profile of the lower

corona, implying that there must be strong heating mechanisms acting above

the solar surface. While various heating mechanisms have been proposed in

the century since this problem was identified, a conclusive and settled picture

of the mechanism and site of coronal heating is still elusive. Further detailed

3



Ch. 1 INTRODUCTION

Figure 1.1: Mean temperature and density as a function of height above the

photosphere, based on the VAL model [Vernazza et al., 1973]. Image obtained

from Lang [2001]

discussion of coronal heating can be found in Klimchuk [2006] and De Moortel

and Browning [2015].The other problem, the acceleration of the solar wind, is

discussed in Section 1.1.1.

1.1.1 The Solar Wind

The existence of gas outflows from the Sun with velocities ranging from 500 to

1500 km/s was first suggested by Biermann [1951] to explain observed motions

of comet tails. The term solar wind was introduced by Parker [1958], who

developed the first isothermal hydrodynamic theory for the supersonic solar

wind. Parker also showed that the corona must be constantly streaming radially

outwards with a flow velocity of 500 − 1000 km/s, and solar rotation must,

on a large scale, cause the Sun’s magnetic field to form a spiral structure (the

Parker spiral). Parker’s prediction is shown in Figure 1.2. Deviations from

the Parker solar wind, with acceleration and other mechanisms, have been
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developed [Usmanov et al., 2011; Schulte in den Bäumen et al., 2012; Tasnim

and Cairns , 2016; Tasnim et al., 2018]. The solar wind is made up of two

components: the fast wind, with a velocity around 800 km/s and the slow

wind with a typical velocity of 400 km/s. The fast solar wind arises from

open magnetic field lines, with almost all of it originating from coronal holes

[Cranmer , 2009]. The slow solar wind originates from structures that have

closed magnetic field lines.

Despite the developments in theoretical models of the solar wind (e.g. Tas-

nim et al. [2018] with an accelerating solar wind and nonradial components)

and in observations closer to the Sun or at higher altitudes by the Helios [Schutz

and Karsten, 1973] and Ulysses [Wenzel et al., 1990] spacecraft respectively,

the acceleration and origin of the solar wind remains a disputed question. Cer-

tain theories require acceleration to occur as far as 1RS above the surface, for

example ion-cyclotron heating of the corona [Isenberg , 2001] and acoustic wave

breaking [Stasiewicz , 2006], whereas others occur close to or at the photosphere.

These questions are particular timely as the impending first data and analysis

of the NASA Parker Solar Probe [Fox et al., 2016] promise to shed new light

on the solar wind at low helioaltitudes, with ESA’s Solar Orbiter [Müller et al.,

2013] to follow.

1.1.2 Density profiles

We have previously described a collection of complex structure in the low corona

which leads to rapidly varying density fluctuations; however, observations of

specific emission lines demonstrate that the structure fans out and becomes

more indistinct with height. This corresponds to the spreading of the magnetic

field out from concentrated bundles in the chromospheric network, and implies

a more uniform distribution in the corona. It therefore makes sense to talk

about a radial electron density profile ne(r), where ne is the electron number

density and r is the radial distance measured from the centre of the Sun.

Several density profile models have been proposed. A simple gas hydro-

dynamic argument leads to an exponential model ne(r) ∝ exp(B/r) with B a

positive constant [Newkirk , 1961], conservation of electron number (assuming

no acceleration) leads to a model with ne(r) ∝ r−2, and there are also empiri-

cal models based on Taylor expansions of the Parker model (these models are

discussed further in Chapter 2). Often, a density profile is a first order approx-

imation used to advance theoretical or computational analysis, For example,

the speed of the shock that excites Type II solar radio bursts can be calculated

5



Ch. 1 INTRODUCTION

Figure 1.2: The Parker spiral: solar magnetic field lines in the equatorial plane,

with the radial motion of the slow solar wind (arrows) shown as being constant

at 300 km/s. [Parker , 1963]
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using the Type II frequency drift rate and the coronal density profile. J.P. Wild

in [McLean and Labrum, 1985] describes how a more accurate density profile

revised the calculated speed by a factor of 2. Density profiles are also inter-

esting in their own right. Coronal heating and acceleration leave signatures in

the density profile, which will be discussed in greater depth in Chapter 2.

1.2 Plasmas and Langmuir waves

A plasma is characterised by a large degree of ionisation in its constituent

atoms, which leads to collective effects over large distances and as such plasma

can support a rich variety of wave phenomena. Plasmas are quasineutral, mean-

ing for sufficiently large spatial scales there is no net separation of charge.

This spatial scale is called the Debye wavelength λD, from which the Debye

wavenumber kD = 2π/λD is defined. The Debye length is given by

λD =

√
ε0kBTe
nee2

, (1.1)

where Te is the electron temperature, ne the number density, and e is the charge

on the electron.

The electrons and ions oscillate at frequencies given by the number density

in unmagnetised plasmas. These plasma oscillations occur as electrons are

displaced from the ions, and the resulting charge imbalance sets up electric fields

that pull them back and re-establish quasineutrality. The electrons overshoot

the ions, and an oscillation is maintained Electrons, being much lighter, can be

considered to oscillate around fixed ions. The electron plasma frequency ωp is

ωp =

√
nee2

ε0me

. (1.2)

Propagating versions (Tonks and Langmuir, 1929) of such oscillations are

called Langmuir waves, and can travel through the plasma due to thermal

effects. The dispersion relation for Langmuir waves is

ω2
L(k) = ω2

p +
3

2
v2
ek

2 = ω2
p

(
1 +

3

2

k2

k2
D

)
, (1.3)

where ve is the thermal speed of electrons, related to the electron temperature

Te by ve =
√
kBTe/me
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Figure 1.3: The dispersion relation for Langmuir waves. For most of the rele-

vant parameter space, ωL ≈ ωp; however, the difference is discussed in Chapter

4

Langmuir waves are most physically significant at k < kD as v2
ek

2 � ω2
p.

Therefore, Langmuir waves can in most cases be considered to have ω ≈ ωp.

The full dispersion relation is shown in Figure 1.3.

In the IPM, Langmuir waves have been observed to be very bursty and to

be generated at large distances from the Sun - further than thought possible

from electron beams, as will be made clear in section 1.5. Such Langmuir

waves indicate the plasma environment between the Sun and Earth is highly

inhomogeneous. Figure 1.4 shows bursty Langmuir waves measured at 31.1

kHz by the ISEE 3 spacecraft. Strong density fluctuations in the plasma can

explain how a particle distribution that is unstable to Langmuir waves can

persist and why the wave growth is bursty [Robinson et al., 1992].

1.3 Plasma emission

A hot plasma may emit radiation coherently or incoherently. Incoherent emis-

sion is the result of individual particles shedding energy in an unorganised

way, for example by bremsstrahlung. When radio signals were first detected

8



Figure 1.4: Bursty Langmuir waves seen in the 31.1 kHz channel of the In-

ternational Sun-Earth Explorer-3 (ISEE-3) instrument, at the L-1 Lagrangian

point [Cairns and Robinson, 1995].

from the Sun, the natural explanation was that they were produced by inco-

herent processes. However, as summarised by Melrose [1970], various features

of transient solar radio bursts could not be explained by incoherent emission.

Rather, a coherent process had to be involved. This means that electrons con-

vert kinetic energy to electromagnetic energy via a more efficient and organised

process, such as through plasma instabilities that drive the growth of specific

wave modes. The main way to observationally distinguish coherent emission

from incoherent emission is via a suitably high brightness temperature (Tb) -

incoherent emission processes have upper limits on Tb. Tb is the theoretical

temperature a black body would have to emit radio waves at the measured

frequency and intensity.

In this thesis we are concerned primarily with the particular coherent emis-

sion mechanism called “plasma emission”. Plasma emission results in radio

waves near ωp or 2ωp. It is the mechanism that is most widely accepted for
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Ch. 1 INTRODUCTION

Type III solar radio bursts and for some other types of bursts.

Figure 1.5 gives an overview of the stages of the plasma emission process. It

assumes the existence of an electron beam, and we note that, as D.J. McLean

puts it, the theory of Type IIIs is insensitive to the mechanism of electron beam

acceleration [McLean and Labrum, 1985]. However, the characteristics of the

beam are important, so electron beams will be discussed in further detail in

Section 1.5. For the purposes of discussing the emission process however, it is

sufficient to say that we have a stream of faster electrons moving through a

background thermal plasma.

This fast population of electrons then loses energy and drives Langmuir

waves via a streaming instability. The fast electrons are in resonance with

Langmuir waves, the nature of which is a major topic of this thesis, partic-

ularly Chapters 3 and 4. The Langmuir waves driven by the electron beam

(described as ‘Langmuir turbulence’ in Figure 1.5) then undergo nonlinear pro-

cesses; scattering by ion acoustic waves can directly produce radio waves at the

fundamental frequency fp, while coalescence of two Langmuir waves produces

radio waves at the second harmonic 2fp.

1.4 Solar Radio bursts

As we introduced earlier, a set of solar radio phenomena with short time scales

and with brightness temperatures above the solar background level is supported

by different mechanisms in the Sun-Earth system. Fig 1.6 is a schematic of a

dynamic radio spectrum with common solar radio bursts and other emission.

Types I, II, and III were discovered first and classified according to their fre-

quency drift rate, df/dt [Wild and McCready , 1950]. As shown in Fig 1.6, Type

I has the slowest drift and Type III the fastest (a steep, almost straight line

on the spectrum). Types I, II, III and IV emission are expected to be caused

by plasma emission, although the excitation process of Type I bursts is still

an unsettled question. Type IV emission has been attributed to both plasma

emission and to gyrosynchotron emission [Dulk , 1985].

While we do not discuss radio emission directly in this thesis, Type III solar

radio bursts are both a major motivation and observational tool for striving

to understand both electron density profiles and the electron-Langmuir wave

interaction.
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Figure 1.5: From Melrose [2009], the primary processes considered relevant in

the theory of plasma emission.

1.4.1 Type III solar radio bursts

Type III radio bursts are frequent and intense transient radio phenomena, and

as such are one of the most closely studied. Their tell-tale frequency drift was

the first clue to their exciting mechanism: its curvature ruled out a theory

by Jaeger and Westfold [1949] that the bursts’ source was at a fixed height

in the corona. Wild [1950] concluded that, like Type IIs, Type III bursts are

excited by a travelling disturbance moving out though the corona, emitting

radiation at the plasma frequency which decreases according to f(p) ∝ √ne.
This interpretation implies very high speeds for the Type III exciter - on the

order of 0.1c, which was a speed unobserved and unexpected at that time in

the solar corona. Example Type III dynamic spectra are shown in Figure 1.7.

With this interpretation, which as we have said in section 1.3, is up to

this point not dependent on the acceleration mechanism of the ‘disturbance’,

the plasma emission hypothesis for Type III solar radio bursts is an interest-

ing theoretical problem because, as first outlined in Sturrock [1964], using the

standard accepted theoretical framework, the two-stream instability should sat-
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Figure 1.6: Schematic of a dynamic spectrum featuring idealised examples of

solar radio burst types, showing the frequency domains, frequency drift rates

and harmonic structure (for Type IIs specifically). From Dulk [1985]

urate extremely quickly, and electron beams should not propagate out of the

lower corona. We will explore this issue more in Section 1.5

Type IIIs are not only a common unexplained radio phenomenon but are

also useful tool in understanding the solar corona. As Type IIIs are released

at the plasma frequency or its second harmonic, they can act as probes of the

density and temperature [McCauley et al., 2018], and their signature of electron

beams leaves clues about energetic solar events [Wild et al., 1963].

Reviews of Type III radio burst observations and theory can be found in

Reid and Ratcliffe [2014], Goldman [1983], as well as plasma emission-focused

reviews by Robinson and Cairns [2000] and Melrose [1990]. Numerical sim-

ulations of Type III dynamic spectra have been developed [Li et al., 2008;

Li and Cairns , 2013; Li and Cairns , 2014], using a pseudo-1D model of the

streaming instability and electron beam-Langmuir wave resonance. As electron

beams and Langmuir wave distributions are difficult to observe in situ, such

simulations are useful to test theories of the underlying emission mechanism

for Type IIIs, as well as models of the radio wave propagation out through the

solar corona and into the IPM. Representative interplanetary Type III data is

shown in Figure 1.8.
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Figure 1.7: Type III radio bursts imaged with the Murchison Widefield Array

(MWA) in Western Australia. Image produced by McCauley et al. [2018]
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Figure 1.8: Multiple interplanetary type III bursts drifting from 1GHz down

to < 1 MHz, observed using different instruments covering different frequency

ranges[Reid and Ratcliffe, 2014].
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1.5 Electron beams in theory and observation

Electron beams are excited by energetic events on the Sun such as flares [Benz ,

1993], and much theoretical work has been devoted to explaining how this is

possible, since as Alfvén [1939] pointed out, beams can be considered electric

currents, which need a closed path in order to propagate. Melrose [1990] lays

out the argument that either a return current must be set up or the external

magnetic field strength is large enough to overcome the self-field of the beam.

These arguments give a limit on the current leaving the Sun, I . 1012 A, which

is important in considering solar flare models. The formation of return currents

is an open research field - for example, a comparison between observations and

theory in solar flare loops was done by [Battaglia, M. and Benz, A. O., 2008].

Both radio evidence and direct in-situ observation has led to significant ad-

vances in electron acceleration theory. Some of this radio evidence involves the

solar radio bursts discussed in Section 1.4, and given the focus of this thesis we

will focus on the beams associated with Type III bursts. A brief overview of

the theory and observation of solar flares is nevertheless desirable.

1.5.1 Solar flares

Solar flares vary widely, and even in a particular flare there are many complex

processes happening simultaneously. Smerd et al. [1975] identifies 6 different

acceleration mechanisms, and the question of which mechanism excites parti-

cles for a given type of radiation is generally still disputed. Nevertheless it is

accepted that the first phase of a solar flare, where there is bulk energisation of

particles, is the phase that excites beams that produce Type IIIs. Such beams

are made up of energetic electrons with E > 10 keV, [Ramaty et al., 1980].

Melrose and Dulk [1987] summarises radio evidence for this conclusion, and

[Lin et al., 1981] provides in-situ evidence. Even more energetic and relativis-

tic electrons with energies from 20 keV - 20 MeV have been found [Lin et al.,

1982] and have been associated with a secondary stage in the flare. In such

a stage, electrons which have already gone through bulk energisation undergo

rapid Fermi acceleration [Bai et al., 1983; Melrose, 1983].

Magnetic reonnection is widely believed to be the driver of solar flares, and

indeed most solar impulsive events. Alternate theories exist but are beyond

the scope of this review. The CSHKP flare model [Carmichael , 1964; Stur-
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rock , 1966; Hirayama, 1974; Kopp and Pneuman, 1976] is also known as tge

’standard model’ of solar flare excitation. A simplified schematic from Lang

[2006] is shown in Figure 1.9; in short, magnetic reconnection occurs high in

the corona above a cusp loop magnetic structure. Electrons are excited both

toward the Sun and outward - the particles that hit the chromosphere produce

hard X-rays and gamma rays, as well as heating the chromospheric material.

This material expands into the loop and releases intense EUV, soft X-rays and

microwave radiation. Most importantly for the work of this thesis, electron

beams are excited above the reconnection point, and plasma above the cusp

can also be accelerated away from the Sun in Coronal Mass Ejections (CMEs).

Figure 1.9: CSHKP flare model schematic, from Lang [2006]

This model explains several observed features of solar flares - energy coming

from two distinct heights above the solar surface and hard X-ray production in

more intense flares, for example. The most significant recent observing mission

that gathered data on these effects was the Reuven Ramaty High Energy Solar

Spectroscopic Imager (RHESSI) [Lin et al., 2002]. In its 16 years of operation

from 2002-2018 RHESSI provided fundamental insight into solar flares by ob-

serving the Sun in hard X-ray and gamma-ray wavelengths. The many flare
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observations have and continue to support investigations into particle acceler-

ations in solar flares - some of which are discussed in Zharkova et al. [2011]

- including the fact that a significant proportion of the flare energy goes into

particle acceleration.

1.5.2 Electron beam stability

From interplanetary Type III bursts and direct measurement of beams at 1AU,

it is well known that electron beams can be stable enough to persist out of the

low corona and out into interplanetary space. Figure 1.10 shows 2-dimensional

electron beam data as well as reduced 1D distributions done in Ergun et al.

[1998] - emphasising the reliance on the 1D ∂f/∂v analysis. As explained in

more detail in Section 1.6, this presented a theoretical problem called Sturrock’s

Dilemma [Sturrock , 1964], because fast electron beams should be unstable to

the growth of Langmuir waves, drawing energy from the beam and leaving it

as a plateau distribution. Up to the present, competing explanations for the

seemingly mutually exclusive existence of Type III bursts and stable electron

beams have been developed. Muschietti [1990], Robinson [1993], Robinson and

Cairns [2000], Melrose [2009] and Reid and Ratcliffe [2014] review these the-

ories and note that, drawing from them, Sturrock’s Dilemma can be resolved.

However, due to plasma emission being ‘insensitive’ to the beam mechanics,

it is difficult to identify with confidence which mechanism is operating in a

given radio event. In Section 1.6, several theories that explain the stability of

interplanetary beams are outlined.
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Figure 1.10: a,b) Reduced 1D distributions made from data in c), showing

the reliance on 1D ∂f/∂v analysis for stability of electron distribution c) two

dimensional electron distribution from Ergun et al. [1998]

1.6 Electron-Langmuir wave interaction

1.6.1 Quasilinear equations

The quasilinear (QL) equations describe the interaction between the Langmuir

waves and the electron beam in the weak field approximation. Let NL(k)

be the Langmuir wave occupation number, defined as the number of wave

quanta per unit volume in k−space, and the classical electron distribution

function by f(p), normalised such that
∫
d3p f(p) = ne, where ne is the

number density of electrons. The ratio of electric energy to total energy for

18



Langmuir waves is denoted by RL(k) and the polarisation vector for Langmuir

waves by eL(k). Using these quantities, the probability per unit time that

a particle with momentum p emits a Langmuir wave quantum in the range

d3k/(2π)3 is

wL(k,p) =
2πe2RL(k)

ε0~|ωL(k)|
|eL(k) · v|2δ

(
ωL(k)− k · v

)
. (1.4)

Einstein showed that emission can be stimulated by the presence of existing

emitted waves, and the rate of stimulated emission is given by wL(k,p)NL(k).

The total emission probability is therefore wL(k,p)
(
1 + NL(k)

)
. Continuing

with the single particle consideration, if the particle emits a Langmuir wave

then the momentum of the particle decreases from p to p−~k. The absorption

probability is given by wL(k,p)NL(k). Conversely, when an electron absorbs a

Langmuir wave quantum its momentum changes from p− ~k to p.

Now consider the full particle distribution f(p). The rate of emission by

particles undergoing the transition p → p − ~k is given by wL(k,p)
(
1 +

NL(k)
)
f(p). The total rate of emission per unit volume is then given by

integrating over p:

wem =

∫
d3p wL(k,p)

(
1 +NL(k)

)
f(p). (1.5)

Similarly, the rate of absorption by particles undergoing the transition p−~k→
p is given by

wL(k,p)NL(k)f(p− ~k), and the total rate of absorption per unit volume is

ωabs =

∫
d3p wL(k,p)NL(k)f(p− ~k). (1.6)

Finally, this allows us to write down the equation governing the changes to

NL(k):

dNL(k)

dt
=

∫
d3p wL(k,p)

[{
1 +NL(k)

}
f(p)−NL(k)f(p− ~k)

]
(1.7)

Here, we take the first order expansion f(p− ~k) = f(p)− ~k · ∂f(p)/∂p.

With this approximation (1.7) becomes

dNL(k)

dt
= αL(k)− γL(k)NL(k), (1.8)
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where

αL(k) =

∫
d3p wL(k,p)f(p), (1.9)

γL(k) = −
∫
d3p wL(k,p)~k · ∂f

∂p
. (1.10)

Here αL and γL describe spontaneous emission and damping of Langmuir waves

respectively.

The second QL equation describes the back reaction of the Langmuir waves

on the particle distribution. The rate of change of f(p) increases by the emis-

sion of waves associated with the transition p+~k→ p and absorption, where

p − ~k → p. The rate of change decreases by the corresponding reverse pro-

cesses. The particle distribution f(p±~k) is Taylor expanded to second order,

whereupon the particle equation is found to evolve according to

df(p)

dt
=

∂

∂pi
[A(p)if(p)] +

∂

∂pi

[
Dij(p)

∂f(p)

∂pj

]
, (1.11)

where

A(p)i =

∫
dk

(2π)3
wM(k,p)~ki, (1.12)

Dij(p) =

∫
dk

(2π)3
wM(k,p)~2kikjNM(k). (1.13)

Here, Ai(p) describes the effect of spontaneous emission on electrons and

Dij(p) desribes diffusion in momentum space.

1.6.2 1D theory

Assuming a 1D model and non-relativistic speeds, using the notation from

Melrose [1986] and the plasma frequence definition Eq 1.2

∂N(k)

∂t
+ vg

∂N(k)

∂x
= α(k)− γ(k)N(k), (1.14)

∂f(v)

∂t
+ v

∂f(v)

∂x
=

∂

∂v

[
A(v)f(v)

]
+

∂

∂v

[
D(v)

∂f(v)

∂v

]
, (1.15)
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where

vg = 3
v2
e

v
, (1.16)

α(k) =
e2

4ε0~
v3

ω2
p

(k2
D − k2)f(v)

∣∣∣∣
v=ω/k

, (1.17)

γ(k) = − πe2

meε0

kv3

ω2
p

∂f(v)

∂v

∣∣∣∣
v=ω/k

, (1.18)

A(v) =
e2

8πmeε0

(kv)2

ω2
p

(k2
D − k2)

∣∣∣∣
k=ω/v

, (1.19)

D(v) =
e2~

2m2ε0

k3v2

ω2
p

N(k)

∣∣∣∣
k=ω/v

. (1.20)

Features of the 1D theory evident in these equations include the condition

for wave growth, which can be seen in the term given by Eq 1.18. Whether

waves grow or are damped at a given wavenumber k depends on the sign of

∂f/∂v, at and only at the resonant velocity v = ω/k. Diffusion of the waves

is, by hypothesis, only in one dimension.

Solutions to the 1D quasilinear equation have been found. The electron

distribution function evolve towards a plateau distribution, e.g Grognard [1975,

1982]; Li et al. [2008]. The effect of the coupled interaction is shown in Fig 1.11.

The formation of the plateau distribution and the exhaustion of the instability

lead to a major contradiction early in the development of the quasilinear theory

of the electron-Langmuir wave interaction. Sturrock [1964] showed that if the

instability occurs unimpeded in plasma conditions such as are found in the lower

corona, the beam should lose energy almost immediately. And yet, Type III

exciter beams persist out to the interplanetary medium and are still unstable to

Langmuir wave growth. Sturrock’s dilemma led to the development of a number

of theoretical explanations, one of which is Stochastic Growth Theory [Robinson

et al., 1993a; Cairns and Robinson, 1998] in which density fluctuations suppress

the instability. Other theories involved waves emitted by the electrons at the

front of the beam spatially could be reabsorbed by those behind [Ryutov and

Sagdeev , 1970; Zaitsev et al., 1972; Mel’Nik et al., 1999]. We outline the most

important of these theories below.
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Figure 1.11: Plateau formation in the 1D quasinilear relaxation theory, with the

numbers indicating timesteps. With increasing time, the particle distribution

(left) forms a plateau distribution and the waves (right) grow with the peak

shifting to lower phase speed. The left, from Grognard [1975]; right, from

Grognard [1985].
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1.6.3 Time-of-flight and re-absorption models

The Sturrock Dilemma [Sturrock , 1964] does not take into account a very sim-

ple idea that is important in beam dynamics: as a distribution of particles

moves through space, the faster particles arrive at a given position earlier than

slower ones. Even if one has a plateau distribution at one point in space, at a

greater distance the fast particles arrive first meaning that the beam has essen-

tially re-formed. This advection affect was explored with a numerical model by

Grognard [1982, 1984] who found that the quasilinear relaxation and advection

effects could balance each other and the beam persists.

Utilising this advection effect, a mechanism that has been proposed is that

the beam distribution function propagates in a form that allows the Lang-

muir waves generated by electrons at the front of the beam are re-absorbed

by electrons at the back. This means that the energy going into the Lang-

muir waves is recirculated amongst the electrons rather than being lost entirely

to the beam. Ryutov and Sagdeev [1970] put forward an idealised model of

this effect which was then employed by Zaitsev et al. [1972] in their treatment

of the Type III problem. Numerical modelling based on this mechanism was

developed [Takakura and Shibahashi , 1976; Magelssen and Smith, 1977] and

extended by Kontar et al. [1998]; Mel’Nik et al. [1999], who showed the beam

propagating as a “beam plasma structure”

However, as described in Melrose [1990] and Mel’Nik et al. [1999], while

this theory allows inhomogenous distributions on a global scale, it relies on the

wave distribution being locally homogenous. Observations indicate that the

Langmuir waves involved in Type III events are in fact highly inhomogeneous

(Figure 1.4). These are described further in Section 1.6.4. The

1.6.4 Stochastic Growth Theory

Observed Langmuir waves are strongly inhomogeneous, being observed to ap-

pear in intense isolated clumps [Gurnett and Anderson, 1976, 1977; Gurnett ,

1978; Lin et al., 1981]. Earlier quasilinear theory relied on the wave distribution

being locally homogeneous; however, Melrose and Cramer [1989] showed that

this condition could be relaxed. Clumpy distributions of Langmuir waves can

undergo quasilinear relaxation under plausible conditions, and the energy den-

sity equal to the average energy density of the clumps. Stochastic growth theory
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(SGT) argues that the beams driving interplanetary Type IIIs are marginally

stable [Robinson et al., 1992, 1993b], which relies on a similar argument to

Grognard [1984], where the beam is re-formed due to time-of-flight effects.

There is a balance between QL relaxation and advection, with a small positive

growth rate for Langmuir waves that balances wave losses to damping and EM

emission. Density fluctuations then perturb the marginally stable beam such

that Langmuir waves grow randomly, and when local wave levels reach the

threshhold for electrostatic decay there is a burst of product waves via the 3

wave interaction [Robinson et al., 1993b, 1994]. Robinson and Cairns [1993]

elaborates on the predicted emissivities of the radio wave products of this the-

ory and compares them favourably with spacecraft data. Cairns and Robinson

[1998] examines the constraints on modulational instabilities compared to SGT

and shows that Langmuir waves driven by beams with realistic coronal param-

eters have wavenumbers too high for modulational instability, whereas SGT is

reasonable at all heliocentric distances under almost all circumstances.

1.6.5 Modulational instabilities

Modulational instabilities apply in the context of strong Langmuir turbulence;

if the energy density due to the Langmuir waves is WL then the generally

accepted condition for weak turbulence theory to apply is [Melrose, 1986]

WL

neTe
. 10−4, (1.21)

otherwise strong turbulence effects must be taken into account.

Strong turbulence theory is based on the Zakharov equations [Zakharov

and Shabat , 1972] which describe the envelope of the Langmuir waves and

the density fluctuations of the electrons. Modulational instabilities involve

the ponderomotive force driving Langmuir turbulence to higher wavenumbers

Nishikawa [1968]. The instability proceeds as follows [Muschietti , 1990; Mel-

rose, 1986]:

The ponderomotive force at the spatial position of the wave packet causes a

local reduction in electron density, which focuses the Langmuir waves by refrac-

tion. In this way, an initially uniform envelope of Langmuir wave turbulence

breaks up into envelopes with smaller natural lengths. These sites of enhanced

turbulence have an even stronger associated ponderomotive force, and so the

process is unstable. In Langmuir wave collapse, this process proceeds until
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the envelopes are only a few Debye lengths across and then the energy can be

extracted by the background electrons [Pelletier , 1982].

This has been applied to the Type III problem [Papadopoulos et al., 1974;

Zakharov et al., 1985], most significantly as a way to limit the growth of resonant

Langmuir waves and preserve the beam. The theory also includes direct emis-

sion of harmonic (2fp) radiation by nonlinear currents produced by Langmuir

wave collapse. Certain modern observations, such as intense and short-lived

Langmuir wave peaks observed in-situ, have been interpreted as evidence of

modulational instability and collapse [Thejappa et al., 1993, 2013]. However,

Cairns and Robinson [1998]; Graham et al. [2012a,b] and others have laid down

a set of serious obstacles to modulational instabilities proceeding in any Type

III context which have yet to be answered convincingly.

1.6.6 3D Axisymmetric models

A 3D distribution that is expressed in spherical polar coordinates can be ex-

panded in spherical harmonics Y`m. If we write the electron and Langmuir wave

distributions in spherical polar coordinates, i.e. f(p,x, t) = f(p, α, φp,x, t) and

N(k,x, t) = N(k, θ, φk,x, t) then axisymmetry implies

f(p) = f(p, α),

N(k) = N(k, θ), (1.22)

In this case, the spherical harmonics reduce to a simpler form - the Legen-

dre polynomials P`. Legendre polynomials are a complete set of orthogonal

polynomials and the wave and particle distributions can therefore be formally

expanded such that

f(p, α) =
∞∑
`=0

f`(p)P`(cosα),

N(k, θ) =
∞∑
`=0

N`(k)P`(cos θ). (1.23)

The Legendre polynomials are given explicitly by the Rodrigues formula

Pl(x) =
1

2``!

d`

dx`
[
(x2 − 1)`

]
. (1.24)

This expansion separates the magnitude (p, k) and angular (α, θ) depen-

dencies of the particle/wave distributions, and so will transform the quasilinear
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equations with two degrees of freedom into a set of partial differential equations

with one degree of freedom. This complete expansion was performed explicitly

by Melrose and Stenhouse [1977] and in matrix form by Hoyng and Melrose

[1977],

NL =

N0(k)

N1(k)
...

 , f =

f0(p)

f1(p)
...

 . (1.25)

The complete form of the quasilinear equations expanded in Legendre poly-

nomials is quoted below. In this project we truncate the Legendre expansion at

` = `max, which modifies the expressions found in Hoyng and Melrose [1977].

Vector forms are now presented.

The wave equation is[
∂

∂t
+ ωpH

(
3k

k2
D

∂

∂z

)]
NL = σ − ΓNL, (1.26)

or, equivalently,

∂N`

∂t
+

3ωpk

k2
D

∂

∂z

(
`

2`− 1
N`−1 +

`+ 1

2`+ 3
N`+1

)
= σ` −

`max∑
m=0

Γ`mNm, (1.27)

where

σn =
2π2e2ωp
ε0~k3

∫ ∞
pφ

dp
p2

v
Pn

(ωp
kv

)
fn(p), (1.28)

Hnl =
n

2n− 1
δn,l+1 +

n+ 1

2n+ 3
δn,l−1, (1.29)

Γnl =
2π2e2ω2

p

ε0k3

min{|n−l|,`max}∑
s=|n−l|

2n+ 1

2
Ansl

×

{
p2
φ

v2
φ

fs(pφ) +

∫ ∞
pφ

dp
2p

c2
Ps

(ωp
kv

)
fs(p)

+

[(ωp
kc

)2

− 1

] ∫ ∞
pφ

dp
p

vvφ
P
′

s

(ωp
kv

)
fs(p)

}
. (1.30)

In (1.26) the total derivative with respect to time is on the left hand side;

the matrix H is part of the spatial derivative term vg · ∂/∂z and appears

from the orthogonality relations and the assumption that the group velocity of
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the waves vg is in the direction of the magnetic field, ẑ. The term P
′
s (x) =

d/dx (Ps(x)) can be rewritten in terms of the associated Legendre polynomials

Pm
` . An important note about (1.30) is that the gradient of the distribution

function ∂f/∂p present in (1.10) is removed from (1.30) by partial integration.

A full physical understanding of the three terms that make up (1.30) can be

found in Melrose and Stenhouse [1977], a brief summary is that the first term

corresponds to the contribution of the isotropic part of the distribution, the

final term is due to anisotropy and the middle term is an explicitly relativistic

contribution. Specifically, the term
∫∞
pφ
dp 2p/c2Ps(ωp/kv)fs(p) vanishes under

a nonrelativistic assumption and emerges only after carefully considering the

relationship between momentum and velocity, namely p = mγ(v)v, where γ is

the Lorentz factor.

The particle equation (1.11) is treated in the same way. Before writing

it down in Legendre expanded form, it is useful to see it in spherical polar

coordinates under the axisymmetric assumption. Then (1.11) becomes:

df

dt
=

1

p2

∂

∂p
p2

{
Dpp

∂

∂p
− 1

p
Dpαw(µp)

∂

∂µp
+ Ap

}
f

− 1

p

∂

∂µp
w(µp)

{
Dαp

∂

∂p
− 1

p
Dααw(µp)

∂

∂µp

}
f, (1.31)

using the convenient variables w(µp) = (1− µ2
p)

1/2 and µp = cosα.

Expanding f(p) in Legendre polynomials P`(cosα) and using the matrix

form above, the derivatives in angle are performed and the resulting complete

expansion is(
∂

∂t
+ vH

∂

∂z

)
f =

1

p2

{
∂

∂p
P
∂

∂p
+

∂

∂p
Q+R

∂

∂p
+ S

}
f , (1.32)

where P, Q, R and S are matrices that are given by the Legendre orthogonality

relations. Equivalently the component form of (1.32) is

∂fl
∂t

+ v
∂

∂z

(
l

2l − 1
fl−1 +

l + 1

2l + 3
fl+1

)
=

1

p2

`max∑
m=0

{
∂

∂p
Plm

∂fm
∂p

+
∂

∂p
Qlmfm +Rlm

∂fm
∂p

+ Slmfm

}
, (1.33)

where `max is the index at which the expansion is truncated. Formally, one

takes `max = ∞. Explicitly, the matrix elements of the terms in (1.32) and

(1.33) are [Hoyng and Melrose, 1977]
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e2~ω3
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Q`m =
e2ω2

p

4πε0

p2

v2
log(v/Ve)δ`l −

e2~ω3
p

4πε0

p

v3

`+1∑
s=|`−m|

2`+ 1

2s(s+ 1)
λ

(1)
`sm

×
∫ ∞
ωp/v

dk

k

[(
kv

ωp

)2

− 1

]1/2

Ns(k)P 1
s

(ωp
kv

)
,

(1.35)
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S`m = −
e2~ω3

p

4πε0v3

min{`max,`+m}∑
s=|`−m|

2`+ 1

2
A`sm

∫ ∞
ωp/v

dk

k

1

2

[(
kv

ωp

)2

− 1

]
Ns(k)

×
[
λ

(1)
s`mPs

(ωp
kv

)
+

(s− 2)!

(s+ 2)!
λ

(2)
s`mP

2
s

(ωp
kv

)]
, (1.37)

where

λ
(1)
`sm =

1

2
[s(s+ 1) +m(m+ 1)− `(`+ 1)], (1.38)

λ
(2)
s`m =

1

2

{
s(s+ 1)

[
`(`+ 1) +m(m+ 1)

]
−
[
`(`+ 1)−m(m+ 1)

]2}
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(1.39)

A`sm ≡
∫ +1

−1

P`(x)Ps(x)Pm(x)dx

= 2
(`+ s−m)!(`+m− s)!(s+m− `)!

(`+ s+m+ 1)!

[
Σ!

(Σ− `)!(Σ− s)!(Σ−m)!

]2

,

(1.40)

2Σ = `+ s+m. (1.41)

The equations (1.26 - 1.30) and (1.32 - 1.41) are the complete expansion of

the 3D axisymmetric electron-Langmuir wave interaction in Legendre polyno-

mials.
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1.7 Two and Three-Dimensional studies

Axisymmetric numerical models for wave growth and electron evolution as

a result of the backreaction have been developed before, notably by Appert

et al. [1976] and Ziebell et al. [2008a,b, 2011]. These models emphasise effects

for the resonant speed v = vφ, and the effects discussed in this thesis due to

resonances with v > vφ do not appear to have been considered before. However,

we summarise the development of higher-dimensional work below.

In Ziebell et al. [2008a] a 3D analogue of the 1D equations is employed,

with the 1D resonance and wave growth condition. A beam speed of vb =

5ve is considered, which is small enough such that modulational effects need

not be considered. However, such a small beam speed is generally considered

inadequate to explain the source motion in Type III solar radio bursts. In

Ziebell et al. [2008b] three-wave decay and scattering processes are included.

These analyses find that Langmuir waves form a circular ring in k− space, with

1D-like quasilinear relaxation. However, the electrons remain primarily 1D-like

in Figure 1.12, with diffusion in 1D parallel to B that appears very similar to

the quasilinear relaxation in Figure 1.11 [Grognard , 1975, 1985]. Examples of

these results for quasilinear relaxation only are shown in Figure 1.12.Similarly,

in Ziebell et al. [2014] and Ziebell et al. [2015] a 2D assumption is used - with

this restriction there is no pitch angle diffusion operator.
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Figure 1.12: Wave (top) and particle (bottom) distributions from Ziebell et al.

[2008b]. The waves form a circular ring with a peak that has a significant

angular dimension, but the particles predominantly relax in u‖.

These previously conducted 3D axisymmetric models emphasize the effects

for the resonant speed, v = vφ, rather than the resonances with v > vφ which
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are developed in this thesis.
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Chapter 2

Offset Power-Law Dependence of

the Sun’s Radial Electron Den-

sity Profile: Evidence and Impli-

cations

[Published as J.C. Harding, Iver H. Cairns and Vasily Lobzin Ap.

J. 877 (2019)]

2.1 Abstract

The radial electron density profile ne(r) of the Sun’s corona and solar wind

contain information on the sources, heating, and acceleration of the coronal

and solar wind plasma. Currently several empirically-derived density models

are used to describe the corona, with varying degrees of success and little

physical justification or predictive power. The offset power-law (OPL) profile

ne(r) = A(r − r0)α, with radial offset r0 and power-law index α, models radial

outflow from r0 that conserves total electron number and may be accelerated

and heated (affecting α), thus having physical significance and predictive power.

We fit the OPL model to multiple sets of published radial density profiles

obtained from spectroscopic, white light, and radio data from different regions

on the Sun and during different periods of solar activity. We demonstrate

that this model fits these data very well, in every case better than the other

commonly-used density models considered. The spectroscopic and white light

data yield r0 very close to one solar radius RS (in detail r0 = (1.02± 0.06)RS,

where the the uncertainties are taken using a standard error of the mean) and
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Ch. 2 OPL DENSITY MODEL

< α >= 2.4 ± 0.2, consistent with plasma originating near the chromosphere

and acceleration similar to the nominal Parker solar wind model. Radio burst

data yield flatter profiles α < 2, suggesting that pre-flare activity alters the

density profile by increasing the coronal density at large heights. We discuss

the possible interpretations and implications for coronal physics and solar radio

bursts.

2.2 Introduction

The heating of the solar corona and the acceleration of the solar wind are two

of the most important and longstanding unsolved problems for space physics

and astrophysics. Eclipse photographs and images from X-rays to the radio

show that the number density of electrons ne(r) varies as a function of posi-

tion r and reveal the existence of multiple time-varying structures that link the

photosphere, chromosphere, and corona. These structures include sunspots,

magnetic loops, active regions, and coronal holes. The radial profile of the den-

sity ne(r) is a fundamental quantity for understanding the domains between the

photosphere and the corona and solar wind, often varying with heliolongitude

and heliolatitude as a result of the foregoing structures. This radial density

profile contain signatures of both heating and acceleration: heating because

a heated plasma tends to expand, thereby altering the density profile, while

acceleration leads to changes in the density profile because mass conservation

requires that the electron number density and radial speed are coupled. Two

components of the solar wind can be identified at solar minimum - the fast

( > 750 kms−1) and slow (< 500 km s−1) solar wind. Cranmer [2009] Section

5 outlines the major theoretical paradigms for the acceleration of the solar wind

as a whle, as well as a closer focus on the fast solar wind. It is well accepted

that the fast wind originiates in coronal holes and the slow wind is related to

streamer belt regions. Abbo et al. [2016] provides a review of the slow solar wind

observations and modelling, which we refer to directly in Section 4. Unfortu-

nately it is not easy to obtain accurate observations and models for the Sun’s

density profile, or to interpret them. The recent and impending launches of

NASA’s Parker Solar Probe [Fox et al., 2016] and ESA’s Solar Orbiter [Müller

et al., 2013], respectively, make it particularly timely to obtain better models

and interpretations for the Sun’s density profile and the associated acceleration

and heating of the coronal and solar wind plasma.

Several techniques are currently used to measure coronal and solar wind
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density profiles: spectroscopic observations, inversion of Thomson-scattered

“white light” data, and the heights of the source regions of type II and III

solar radio bursts. These are now described briefly in turn, together with their

issues.

Spectroscopic techniques can yield the plasma flow speed via Doppler shifts

of individual spectral lines and the electron density and temperature by com-

paring pairs of spectral lines [Withbroe, 1988; Ko et al., 2002; Strachan et al.,

2002], sometimes in conjunction with Thomson scattering analyses and some-

times without. These typically involve line-of-sight effects, via projection of

multiple possible source regions along the line-of-sight, although emission from

one height may dominate. This is expected to be the case for lines-of-sight

beyond the Sun’s limb.

Thermal, white-light, solar radiation undergoes Thomson scattering by

thermal electrons. With more scattering expected where ne is larger and/or the

radiation flux is larger, the radiation intensity across the Sun should depend on

both ne(r) and intrinsic variations in the radiation flux at the photosphere (and

above). Typically the intensity of Thomson-scattered light in a given direction

θ is written as a path integral [Billings , 1966; Manchester et al., 2008; Schmidt

and Cairns , 2016]

I(θ, lo) = A

∫ lo

li

dl nsw(r)F (r), (2.1)

where F is a function that describes the geometry and source function of the

radiation and dl is an increment along the path between the observer at lo and

the initial point li. Tomographic inversion, with or without approximations

like localised radial fall-offs, is then used to extract the radial profile n(r)

along lines of specified, constant, heliolongitude and heliolatitude [Munro and

Jackson, 1977; Saito et al., 1977; Kohl et al., 1998; Guhathakurta et al., 1999;

Esser et al., 1999; Hayes et al., 2001; Strachan et al., 2002; Gopalswamy et al.,

2018].

Type II and III solar radio bursts contain information on ne(r) since they are

produced at time-varying frequencies f(t) near the electron plasma frequency

fp(r) and near 2fp(r) in the source region, as well as likely suffering scattering

between the source and observer [Melrose, 1986]. The connection to the density

is via

fp(r) = 8.98 ne(r)
1/2 Hz = f/k , (2.2)

for ne measured in m−3 and k = 1 for fundamental and k = 2 for harmonic

radiation, respectively. One approach to finding ne(r) is to use the radiation’s
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frequency drift rate, via

df

dt
=
vexf

ne

dne
dr

, (2.3)

where the speed vex of the source exciting the radiation is coupled to the density

profile and frequency drift rate [Ginzburg and Zheleznyakov , 1958; Wild and

McCready , 1950; Suzuki and Dulk , 1985; Reiner et al., 2001]. However, neither

vex or ne(r) is known a priori. An alternative is to combine the source motion

r(t) = rs0 +vex(t− t0) for constant vex and r(t0) = rs0 with an offset power-law

(OPL) model [Lobzin et al., 2008]

ne(r) = C(r − r0)−α , (2.4)

where r0 is a radial offset and α is the power-law index: then [Cairns et al.,

2009]

f(t) = a(t− b)−α/2 (2.5)

with

a = mC1/2v−α/2ex , b = t0 + (r0 − rs0)/vex . (2.6)

Thus α, a, and b can be obtained directly by fitting f(t) to Eq. 2.5. Crucially,

the power-law exponent α for the density profile can be obtained without need-

ing to know vex, r0, rs0, m, or C, a significant advance over most previous work

on coronal density models which required either vex or r(t) to be assumed

[Lobzin et al., 2008; Cairns et al., 2009; Lobzin et al., 2010].

A major problem with the radio approach is that both fundamental (espe-

cially) and harmonic radiation are subject to refraction towards low density re-

gions and to scattering by high density regions. These density inhomogeneities

can be on large scales (e.g., structures visible in eclipse and other images) and

small scales (turbulence). Differences between the density profiles in radio data

and both white-light and spectroscopic data are routinely interpreted in terms

of scattering and/or ducting moving the radio waves from their true source

height to larger heights at which radiation is released [Duncan, 1979; Robinson

and Cairns , 1998; Thejappa and MacDowall , 2008; Zucca et al., 2014; Mc-

Cauley et al., 2017; Kontar et al., 2017; McCauley et al., 2018; Mann et al.,

2018; Zucca et al., 2018]. While current radio emission theories rely on den-

sity fluctuations to explain fundamental-to-harmonic frequency ratios and to

restrict the intensity of fundamental radiation [Robinson and Cairns , 1998; Li
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et al., 2008], it remains controversial how much scattering and ducting affect

the apparent source heights and inferred density.

Longstanding issues exist concerning the applicability and physical interpre-

tation of many published density models for the corona and solar wind. Table

2.1 summarises the functional forms of the Baumbach-Allen model [Baumbach,

1937; Allen, 1947] and those of Parker [1958], Newkirk [1961], Saito et al.

[1977], Leblanc et al. [1998] and Cairns et al. [2009]. The functional forms of

these models are evidently quite different. One major reason for the prolif-

eration of models is simple: often their functional forms do not fit observed

density profiles well, therefore motivating searches for replacements. Quantita-

tive scaling of models up and down in magnitude, for instance using a 2× Saito

et al. [1977] model, is also common and is interpreted reasonably in terms of

the entire density profile shifting up or down in magnitude due to variations in

the plasma sources with solar activity and the local photospheric and chromo-

spheric environment.

Another major reason for the proliferation is that for some models the

physics is not obvious and is instead empirical. For instance, the Newkirk

[1961] model is a fluid gravitational-settling model for constant temperature,

with a Boltzmann factor involving the ratio of the gravitational potential energy

and the thermal energy kBT . In contrast, the Baumbach-Allen and Saito et al.

models are strictly empirical fits to white-light data, while the Parker [1958]

model and similar r−2 terms embody conservation of electrons for constant

radial flow speed, and the Leblanc et al. [1998] model extends the r−2 [Parker ,

1958] model by empirically adding the obvious Taylor series expansion terms

involving r−4 and r−6. The interpretations of the r−6 and r−16 terms in the

Baumbach-Allen and Saito et al. models and the missing Taylor terms r−2N

terms (for integer N) are entirely unclear. In contrast, the physics of the Cairns

et al. [2009] model is relatively simple: it corresponds to locally conical and

radial outflow from a source on a sphere of radius r0 (section III of Parker

[1958]), for which electron conservation requires

ne(r)vp(r)(r − r0)2 = constant. (2.7)

Accordingly, the index α in Eq. (2.4) contains information on the plasma

outflow speed vp(r) and electron conservation while r0 locates the source of the

outflowing plasma. However, what should r0 and α be and how well does this

model fit data?

In this paper we address all the foregoing issues by quantitatively analysing

published density profile data from multiple authors and testing all the above
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models in an even-handed way. The focus is primarily on white-light and spec-

troscopic data, since these have less serious interpretative issues. The primary

result found is that in all cases analysed the offset power law (OPL) form (2.4)

[Lobzin et al., 2008; Cairns et al., 2009] works very well and is a much better

fit than the other models. Sometimes a dual OPL form - that is, two separate

fits to (2.4) over different ranges of r - is an improvement over the single OPL

model. The range of α found for the corona and solar wind is 1.3 − 3.2, with

the chromospheric model of Avrett and Loeser [2008] having α = 0.74 ± 0.02.

The average for the coronal and solar wind datasets is 〈α〉 = 2.4±0.2. Finding

that 〈α〉 is larger than 2 is direct physical evidence for outwards accelera-

tion of the wind and the associated acceleration profile from Eq. (2.7) agrees

well with published speed data. Both the 2 and 3−parameter fits show that

r0 = (1.02± 0.06)RS; the obvious physical interpretation is that the outwards

acceleration of the coronal and solar wind plasma starts very close to the chro-

mosphere and photosphere. Finally, comparisons with density profiles obtained

from type II and III solar radio bursts provide strong evidence that these pro-

files are flatter, with smaller values of α. This is interpreted in terms of extra

plasma being moved to larger heights before flares and radio bursts occur, not

unreasonable for pre-heating scenarios. Although confirmation is needed, this

suggests that the plasma density is higher at larger heights in these source

regions, thereby directly reducing the need for scattering and ducting to be

important and providing an argument that type II and III bursts are likely to

occur preferentially in regions that are denser than the ambient corona and

solar wind. This complements other analyses [McCauley et al., 2018].

The paper proceeds as follows. Section 2 briefly describes the provenance

of the data sets analysed. The results are presented in Section 3 and then dis-

cussed and interpreted in Section 4. The final section contains the conclusions.

Model Baumbach-Allen Parker Newkirk

ne(r) = Ar−6 +Br−16 Ar−2 AeB/r

Model Saito et al. Leblanc et al. Cairns et al. (OPL)

ne(r) = Ar−2.14 +Br−6.13 Ar−2 +Br−4 + Cr−6 C(r − r0)−α

Table 2.1: Published density models for ne(r) in m−3, with A, B, C, r0, and α

arbitrary constants.
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2.3 Data provenance

Table 2.2 lists the references for the 12 coronal spectroscopic and/or white

light datasets analysed in this paper in one column, together with the Avrett

and Loeser [2008] chromospheric model and the Magdalenić et al. [2010] radio

datasets. The coronal datasets are chosen since they are all well regarded by the

solar community and were developed and published by multiple independent

sets of authors using different instruments in different years and at multiple

phases of several solar cycles. For instance, the density profiles obtained from

white-light data are for multiple polar coronal holes in 1973 [Munro and Jack-

son, 1977] and 1996-97 [Kohl et al., 1998; Esser et al., 1999], an equatorial

(solar minimum) and a polar coronal hole (solar maximum) [Withbroe, 1988],

a polar coronal hole and plumes in 1996 [Guhathakurta et al., 1999], an equa-

torial region in 1998 [Hayes et al., 2001], and an equatorial streamer in 1997

[Strachan et al., 2002]. Similarly, the profiles derived from spectroscopic data

without white light data are above a mid-latitude active region in 1998 [Ko

et al., 2002]. The data of Withbroe [1988] come both from spectroscopic and

white-light observations, which yield consistent results, for an equatorial and

a polar coronal hole. Together, these datasets constitute a relatively unbiased

set of data for this paper’s analyses. The data cover the range r/RS ≈ 1.1− 6.

The data for these datasets were obtained by applying the freeware program

DataThief to pdf files of the published figures. The uncertainties estimated

from this procedure are much less than 5% of the plotted values.

2.4 Analyses and Results

Figure 2.1 plots 9 of the 14 datasets for ne(r) referenced in Table 1, using

a standard linear - linear format, together with the corresponding fits to Eq.

(2.4) for r0 = 1. Very good agreement with Eq. (2.4) is apparent. Table 2.2

quantifies the values of α and C for each fit, as well as the goodness-of-fit via

the reduced Chi-squared parameter, χ2
r. The uncertainties σ corresponding to

each point in each dataset are either taken from the original references using

DataThief or are assumed to be 5% of the particular sample’s value. As usual,

statistically significant fits have χ2
r ≈ 1. Evidently the OPL fits to the datasets

are statistically very good.

Figure 2.2 compares fits to the Baumbach-Allen and Saito et al. models,

where the fitting variable is a multiplicative constant to the functional form in
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Figure 2.1: Density profiles ne(r) versus r/RS on linear scales for 9 of the 12

spectroscopic and white-light datasets in Table 2.2, as indicated in the Key.

Symbols identify data points and solid lines the corresponding OPL best-fits

to Eq. (2.4) for r0 = RS.
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Figure 2.2: OPL fits compared to the Baumbach [1937] − Allen [1947] (black)

and Saito et al. [1977] (dashed red) fits for selected datasets. The data and fits

were multiplied by a factor for visibility: 1×, 20×, 15×, 100×, and 50× for the

Esser et al. [1999], Hayes et al. [2001] “equatorial”, Munro and Jackson [1977],

Strachan et al. [2002] “outer”, and Kohl et al. [1998] datasets, respectively.

Table 2.1, with the OPL model for several datasets. Clearly the former models

do not have the right slopes in general to match the observations well, although

the OPL does. The values of χ2
r in Table 2.2 show that the OPL model provides

a much better statistical fit to the datasets than the Baumbach-Allen model,

with similar results (not shown) for the Saito et al. model.

A much more striking and direct argument for the OPL model is obtained by

plotting all 12 datasets in a log-log format. The reason is that Eq. (2.4) predicts

that power-laws in (r − r0) become straight lines. Figure 2.3 demonstrates

directly that all 14 datasets (including the Avrett and Loeser [2008] model and

Magdalenić et al. [2010] radio dataset) are very well represented as straight

lines in this log ne(r) − log(r − RS) space, corresponding to r0 = RS. This

provides very strong and immediate evidence for Eq. (2.4)’s offset power-law

model with r0 ≈ RS.

It is apparent from Table 2.2 that the fits to Eq. (2.4) are strongly statisti-

cally significant for all the datasets considered. In contradistinction, the fits to

the other models are statistically poor for all except 2 of the 12 spectroscopic or

white-light datasets (the Guhathakurta et al. “inner” and Ko et al. datasets)

and are much worse than for the OPL model in 13 of the 14 datasets analyzed.

Indeed only for the Magdalenić et al. [2010] dataset is χ2
r larger for the OPL
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model than the scaled Baumback-Allen model, and even then the OPL provides

an excellent statistical fit since χ2
r = 0.08.

Wide ranges of normalisation constants and power-law indices are apparent

from the range of intercepts and slopes of the lines in Figure 2.3, as well as

from the range of heights for a given ne in Figures 2.1 - 2.3. Note that C =

ne(r = 2RS) for r0 = 1.0RS by rewriting Eq. (2.4) as

ne(r) = ne(r = 2RS)

(
1RS

r − 1.0RS

)α
. (2.8)

From Table 1 the fitted values of α for the spectroscopic and white-light datasets

lie in the range 1.3− 3.2 with typical uncertainties of ±0.2, while C = ne(r =

2RS) lies in the range 1.1 × 105 − 3.4 × 106 cm−3. In contrast the Avrett and

Loeser [2008] chromospheric model has α = 0.74 ± 0.02 and ne(r = 2RS) =

(1.3 ± 0.1) × 107 cm−3, thereby having a much shallower slope and denser

normalisation than the coronal datasets. A similar conclusion follows for the

radio dataset of Magdalenić et al. [2010], which has α = 1.34±0.15 and ne(r =

2RS) = (3.0± 1.0)× 107 cm−3.

Figure 2.3 and Table 2.2 include the results of fitting the Guhathakurta et al.

[1999] and Kohl et al. [1998] datasets with Eq. (2.4) in two separate ranges of

r, whereas other data sets are fitted with Eq. (2.4) over the whole range. It is

not shown here that fitting a single OPL model to these “inner” and “outer”

domains leads to reasonable fits; however, the figure and table show that the

two-region models provide superior fits, with clear evidence for different slopes

in the two domains. Thus the coronal datasets sometimes support more com-

plicated OPL models, providing evidence of additional density structures and

associated physics.

Quantifying the observed value of the radial offset r0 proceeds as follows.

A first approach is to calculate the best fits to Eq. (2.4) for varying α and

C but specific assumed values of r0 for the coronal datasets and to seek the

minimum value of χ2 for these fits as a function of r0. Figure 2.4 presents the

results of this approach for several datasets, demonstrating that clear minima

exist in the curves of χ2(r0) near r0 = (1.02± 0.06)RS. These minima provide

good justifications for the value r0 = 1.0RS assumed in the analyses presented

earlier.

The second approach is to fit the data to Eq. (2.4) for r0, α and C all free

parameters. Table 2.3 provides the resulting fit parameters and χ2
r. Comparing

the results in Tables 2.2 and 2.3 it is clear that the 3-parameter fits are even

better than the 2-parameter fits, that in terms of the average and standard
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Figure 2.3: Density profiles ne(r) versus (r − RS)/RS on log-log scales for all

14 of the datasets in Table 2.2, as indicated in the Key. Symbols identify data

points and solid lines the corresponding OPL best-fits to Eq. (2.4) for r0 = RS.
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Figure 2.4: Solutions for χ2
r as a function of r0/RS obtained by fitting Eq.

(2.4) with α and C as free parameters for specified r0 for the three datasets

indicated. Clear minima in χ2
r are evident near r0 = 1.02RS.
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deviation r0 = (1.02 ± 0.06)RS discounting the outlier Strachan et al. [2002]

values and the non-spectroscopic and non-white-light datasets, and that the

values of α and C differ little between the 2- and 3-parameter fits. It is thus

a very robust conclusion that r0 corresponds closely to the very low corona,

chromosphere, and photosphere.

2.5 Interpretation and Discussion

Tables 2.2-2.3 and Figures 2.1-2.4 show that the OPL model is a very good fit

statistically and that r0 = (1.02±0.06)RS on average. In comparison, the chro-

mosphere’s height of 10,000 - 40,000 km corresponds to about (0.01− 0.05)RS.

We interpret this to mean that that the effective source surface for the out-

flowing coronal plasma and solar wind is within 0.21RS of the chromosphere,

thereby including the photosphere, chromosphere, and lowest portion of the

corona, all being consistent within the error bars. The funnels of Tu et al.

[2005] remain consistent with the values of r0 found and the foregoing inter-

pretation. The density profile results strongly imply that the effective source

surface of the solar wind is much lower than the Alfven surface near 5− 15RS

considered by DeForest et al. [2013] and Tasnim and Cairns [2016].

The Cairns et al. [2009] OPL model is justified physically in terms of conical

outflow from a point on a sphere and mass conservation: specifically conserva-

tion of number flux via ∇.(n(r)v(r)) = 0 yields Eq. (2.7), which for constant

wind speed vsw = vp implies α = 2 and

ne(r) = A (r − r0)−2 . (2.9)

If the solar wind is accelerating at small r, then we expect larger ne(r) at

smaller r and smaller ne(r) at larger r to compensate. In terms of Eqs (2.4)

and (2.7) we have

ne(r) = Bvw(r)−1(r − r0)−2 = C(r − r0)−α . (2.10)

Thus α should be larger than 2 if the wind accelerates from small to large r.

The mean and standard deviation of the spectroscopic and white-light datasets

in Table 2.2 is 2.4 ± 0.2. Accordingly, the combination of the very good OPL

fits in Figures 2.1-2.3 with < α >= 2.4± 0.2 > 2.0 in Table 2.2 is prima facie

evidence for solar wind acceleration at small r,assuming locally spherical out-

flow in a conical region. This assumption does not contradict the fact that the
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solar corona is highly inhomogeneous and asymmetric.

Rearranging Eq. (2.10) yields

v(r) =
B

C
(r − r0)α−2. (2.11)

Thus, with < α >= 2.4 ± 0.2 from Table 2.2 Eq. (2.11) predicts that vr(r) ∝
(r−r0)0.4±0.2, while the median value α = 2.52 yields vr(r) ∝ (r−r0)0.5. Figure

2.5 compares these predictions with the Parker [1958] model and the observa-

tional constraints for v(r) from Strachan et al. [2002]. The figure demonstrates

that the OPL prediction is consistent with the available constraints and is not

too different from the Parker model. Put another way, the density profiles an-

alyzed and velocity constraints considered are consistent with the OPL model

and provide clear evidence for acceleration of the wind at low coronal heights.

Future analyses of other density and velocity datasets will provide better con-

straints and better test the OPL model.

The expectation that the solar wind has its source in the low corona is

straightforward for the fast wind which is accelerated along open field lines in

coronal holes. The prediction for the slow solar wind is more complicated, as

there are several competing (and possibly complementary) theories concerning

its origin [Abbo et al., 2016]. Sheeley et al. [1997] suggested that the slow wind

originates at heights near streamer cusps ( 2.5RS), with material ejected by

interchange reconnection. Our velocity prediction in Figure 2.5 is not consistent

with this result - neither in the magnitude of the radial speed nor in the source

of the outflow. However, alternative models, such as the “S-Web” and the

expansion factor models, have the slow wind’s origin inside the classical source

surface. Jones and Davila [2009] observed streamer blob structures lower in the

corona, pointing out the fact that the Sheeley et al. [1997] investigation used

a larger occulting disk (the LASCO C2 coronograph). Their results suggested

a different ejection mechanism for the blobs, perhaps footpoint exchange or

streamer detachment, which would occur at lower altitudes. The distribution

of streamer blob speeds is also significantly faster than that of Sheeley et al.

[1997]. Both papers fit their data to a model given below in Equation 2.12 and

these fits have been represented in Figure 2.5.

v2 = 2a(r − r1). (2.12)

The Jones and Davila [2009] fit agrees extremely well with the OPL predic-

tion in Fig 2.5. We include the velocity range we extracted from the Strachan
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Figure 2.5: Comparisons of the OPL predictions for v(r), given by Eq. (2.11)

for various α and B/C is such that v(r = 2r0) = 150km/s, with the constraints

of Strachan et al. [2002] for the data of Kohl et al. [1998] and predictions from

Parker [1958]. The velocity fit to Equation 2.12 from Jones and Davila [2009]

is shown in purple. The Sheeley et al. [1997] streamer blob fit to the same and

the Strachan et al. [2002] O5+ velocity profile are shown for contrast.
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et al. [2012] global outflow velocity maps. These measurements were taken

across the whole Sun at r = 2.3RS. This suggests that velocity profiles in

equatorial regions will be significantly lower than the OPL fits in Figure 2.5.

As the factor B/C is a free parameter and expected to vary with time and

position on the Sun this is not inconsistent with the OPL model, and is a rich

direction for future analysis. Our final comment on the implication of our OPL

results for the source of the solar wind outlflow is that the OPL model is not

expected to strictly hold over the whole low corona at all times. We acknowl-

edge the highly complex and asymmetric structure of the corona and this is

not in conflict with our model. The O5+ measurement in a streamer core from

Strachan et al. [2002] is an example of small-scale structure that may defy a

strict application of the OPL model with r0 ≈ 1RS.

Figure 2.6 compares the histograms of the indices α obtained from density

profiles in this paper and from the frequency drift rates of type III solar radio

bursts [Cairns et al., 2009; Lobzin et al., 2010]. (As explained near Eq. (2.5)

the approach of these authors does not require knowledge of the exciter speed

vex to predict α.) It is clear that the two histograms are different and that the

values of α obtained from the radio bursts are much smaller (corresponding to

flatter density profiles) than for the density profiles obtained from spectroscopic

and white-light data. In detail, to two significant figures, the median, average,

and standard deviation for α are 2.5, 2.4, and 0.2 versus 1.0, 1.3, and 1.1 for

the spectroscopic and white-light density profiles in Table 2.2 and the radio

studies (ignoring the outlier near 13.5), respectively.

The interpretation adopted for Figure 2.6’s two different histograms for α

is that the type II and III bursts occur in coronal regions which are no longer

undisturbed but instead have a flatter density profile and have higher density

plasma at larger heights. One model for this is that the higher density plasma

was released previously from the active region as it evolved towards release of

a CME / shock (for type II bursts) or else energetic electrons (for type III

bursts), both involving magnetic reconnection. Put another way, evolution of

the active region leads to plasma being ejected upward from the chromosphere

or lower corona before the flare / CME, causing the corona’s typically higher

value of α > 2 to become smaller. It is particularly attractive to consider a

chromospheric source since α ≈ 0.7 in the chromospheric model of Avrett and

Loeser [2008], so addition of chromospheric plasma to the corona will naturally

reduce α.

The interpretation adopted above is not inconsistent with finding α ≈
1.34± 0.15 < 2 for the dataset of Magdalenić et al. [2010], which results from
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Figure 2.6: Histograms of α obtained for this paper’s spectroscopic and white-

light density profiles (red) and from analyses of type II solar radio bursts by

Cairns et al. [2009] and Lobzin et al. [2010] (blue).

analysis of the source locations of radio bursts. The time for plasma moving at

an average speed of 100 km s−1 (cf. Figure 2.5) to travel 0.5RS is then 1.0 hr,

so it would take a few hours for a steady enhanced density profile to be set up

above an active region. If this new plasma is not heated as effectively, then

one might expect that type II and III bursts pass through lower temperature

plasma than for the standard corona. This should lead to more intense Lang-

muir waves and so radio emission, since the ratio of the electron beam speed

to the background electron thermal speed will be larger.

Having a much flatter density profile during type IIs and IIIs than at other

times provides an immediate explanation of the “ducting problem” for solar

radio emission. Specifically the radio emission at a given frequency is actually

generated further out (at larger r − r0) than for the standard density model

and so can be generated where (or at least closer to where) it is observed to

originate, thus removing (or reducing) the need for ducting of the radiation

from a lower height (where predicted by the standard density model) to the

higher altitude where it is observed to come from.

Another consequence of having a much flatter density profile during the

radio bursts than at other times is that the exciter speed of these sources is
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underestimated: starting from Eq. (2.3) one can write

vex =
1

f

df

dt
×−(r − r0)

α
(2.13)

Thus for the same f , df/dt, and (r−r0), if α is smaller then vex is larger. In

our case α is smaller and (r− r0) larger so vex is larger because of both factors.

Using the median values above for the two sets of samples in Figure 2.6 yields

a factor of 2.4 increase for vex via Eq. (2.13). This suggests exciter speeds a

factor of 2.4 larger for the density profiles believed appropriate when the radio

bursts are produced, making the standard estimate of 0.3c for the exciter speed

become 0.7c− 0.8c and so relativistic.

Future analyses that image the locations of burst sources as functions of

frequency and time [McCauley et al., 2017; Mann et al., 2018; McCauley et al.,

2018], in conjunction with spectroscopic or white-light observations of density

profiles [Zucca et al., 2014; Mann et al., 2018; Zucca et al., 2018] and this

paper’s theory should permit separation of the roles of α, vex, and ducting in

determining the observed source locations, motion, and physics.

2.6 Conclusions

We presented strong evidence that the Offset Power Law (OPL) model applies

very well to the radial electron density profile ne(r) of the Sun’s corona and

solar wind. This model, ne(r) = C(r− r0)−α, represents radial outflow from r0

that conserves electron number and that may be accelerated or heated (thus

changing the power law index α). Unlike commonly used empirical models

it has physical significance and support, and the parameters r0 and α may

be used to predict measurable properties of the solar wind, namely its origin

and velocity profile. The OPL model specifically fits very well multiple sets

of published white light, spectroscopic, and radio-derived density profiles, in

all but one case much better than the Saito et al. [1977] and Baumbach-Allen

models. The non-radio fits yield a r0 = (1.02 ± 0.06)RS and 〈α〉 = 2.4 ± 0.2.

As discussed, r0 close to 1RS and α > 2 are consistent with plasma originating

at low altitudes near the chromosphere and an accelerating solar wind whose

speed profile is comparable to the nominal Parker solar wind model. We note

that electron density profiles derived from radio bursts are on average flatter,

best fitted with α < 2. We interpret this in terms of many radio bursts not

travelling through the steeper density profile of the relatively quiescent corona;

instead prior to flares or CMEs enhanced ejection of plasma from the host
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active region increases the coronal density at larger heights and flattens the

density profile. These changes lead to larger source heights for the same radio

frequency, reducing the need to appeal to ducting and implying underestimation

of the exciter speeds of type III bursts.
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Offset power law

fit

Baumbach-Allen Fit

Data α C χ2 a6 a16 χ2
r

Guhathakurta et

al.(inner)

3.2 1.15× 105 0.24 8.66× 106 2.32× 108 0.55

Guhathakurta et

al. (Outer)

2.18 1.63× 105 0.04 9.62× 106 0 43

Esser et al. 2.72 2.17× 105 0.23 2.11× 106 3.09× 108 20.7.

Hayes et al. (equa-

torial)

2.56 3.11× 106 0.01 2.51× 108 3.45× 103 46.8

Withbroe (equato-

rial)

2.25 6.52× 105 0.17 3.49× 107 6.00× 108 20.7

Withbroe (polar

max)

2.39 9.64× 105 0.44 5.87× 107 6.63× 108 24.5

Avrett & Loeser 0.74 1.30× 107 0.41

Munro & Jackson 2.57 2.21× 105 0.34 1.48× 107 9.25× 107 27.5

Kohl et al. (Inner) 3.13 4.07× 105 0.08 2.56× 107 1.14× 109 0.375

Kohl et al. (Outer) 1.94 2.35× 105 0.02 4.19× 107 3.81× 103 30.4

Strachan et al. (In-

ner)

1.82 2.61× 106 0.24 2.64× 108 4.49× 103 29.5

Strachan et al.

(Outer)

2.46 3.37× 106 0.07 8.16× 108 2.23× 106 13.4

Magdalenic et al. 1.34 3.00× 107 0.08 5.32× 109 1.17× 1010 0.01

Ko et al. 1.83 2.44× 106 0.06 8.90× 107 2.89× 108 0.39

Table 2.2: Comparisons of the 2-parameter OPL (α and C, with r0 = 1.0RS)

and Baumbach-Allen models for the 14 datasets considered.
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Data A α r0 χ2
r

Guhathakurta et al. (inner) 1.43× 105 3.96 0.90 0.21

Guhathakurta (outer) 1.67× 105 2.19 0.99 0.04

Esser et al. 1.93× 105 2.53 1.03 0.29

Hayes et al. (equatorial) 3.89× 106 2.67 0.89 0

Withbroe (equatorial) 9.90× 105 2.51 0.83 0.07

Withbroe (polar max) 1.20× 106 2.55 0.93 0.27

Munro & Jackson 2.29× 105 2.59 0.99 0.34

Kohl et al. (inner) 9.92× 104 1.63 1.59 0.01

Kohl et al. (outer) 1.73× 105 1.78 1.21 0.02

Strachan et al. (inner) 1.67× 107 2.82 0 0.12

Strachan et al. (outer) 3.41× 105 1.25 2.58 0

Magdalenic et al. 1.82× 108 2.33 0.87 0.01

Ko 2.44× 106 1.88 0.99 0.06

Table 2.3: Details of the 3-parameter OPL fits to the datasets.
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Chapter 3

Electron-Langmuir wave resonance

in three dimensions

[Published as J.C. Harding, Iver H. Cairns and Donald B. Melrose

Physics of Plasmas 27 (2) (2020]

3.1 Abstract

In the one-dimensional (1D) treatment of Langmuir wave generation by a parti-

cle distribution via the kinetic beam instability, there is a one-to-one resonance

between the electron speed v and the phase speed vφ of the wave. The 1D

condition for wave growth is ∂f/∂v > 0 with v = vφ, and f(v) evolves due

to quasilinear relaxation towards a plateau distribution ∂f/∂v = 0. We show

here that none of these results apply in a 3D treatment of the problem. For a

wave with wavevector k and phase speed vφ, there is a many-to-one resonance

with all electrons with v > vφ moving obliquely to k. Although growth re-

quires a region with ∂f/∂v > 0 below a peak in f(v) the growth can be driven

primarily by particles above the peak where ∂f/∂v < 0, and growth can even

occur at phase velocities vφ where ∂f/∂v|v=vφ < 0. Resonance at v � vφ favors

diffusion of the particle distribution in angle, rather than plateau formation.

These properties imply that intuition based on the 1D model can be seriously

misleading, with far-reaching implications for modelling phenomena such as

Type III solar radio bursts.
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3.2 Introduction

The linear, quasilinear, and nonlinear interactions of electrons and Langmuir

waves constitute one of the most basic and fundamental areas of plasma physics,

with multiple applications in laboratory, space, and astrophysical plasmas. In

general the first step is the excitation of Langmuir waves by an unstable electron

distribution [Ginzburg and Zheleznyakov , 1958; O’Neil and Malmberg , 1968;

Malmberg and Wharton, 1969; Vedenov et al., 1961; Drummond and Pines ,

1962; Melrose, 1986; Cairns , 1989]. The enhanced, nonthermal, population of

Langmuir waves can then cause the electrons to diffuse, to lower energies due to

the back-reaction to the wave growth and also in angle due to resonant wave-

particle interactions, usually called “quasilinear relaxation” [Vedenov et al.,

1961; Drummond and Pines , 1962; Grognard , 1982; Melrose, 1986]. We assume

the “weak beam” limit in which the background plasma determines the Lang-

muir wave dispersion. In this paper we are interested in the anisotropic part

of the distribution and so we neglect damping due to the background isotropic

population. This effect may be significant in the interplanetary medium for

some regions of phase space, especially since solar wind electrons are well de-

scribed by a kappa distribution [Cairns et al., 2017; Maksimovic et al., 1997],but

not for the cases we investigate here. If the Langmuir waves achieve sufficient

electric fields for their distributions in wavevector phase space, then nonlin-

ear wave-wave processes can occur. Examples include the electrostatic decay

process, other 3-wave processes that produce radio emission just above the elec-

tron plasma frequency fp and near 2fp, often termed the “plasma emission”,

and modulational and other nonlinear self-focusing instabilities like the strong

turbulence process of wave collapse [Zakharov and Shabat , 1972; Papadopoulos

et al., 1974; Melrose, 1982; Grognard , 1984; Zakharov et al., 1985; Melrose,

1986; Cairns and Fung , 1988; Papadopoulos et al., 1974; Cairns and Robinson,

1998; Graham and Cairns , 2013].

Starting in the late 1950s but extending to the present day, much of this

theory was developed and applied to highly nonthermal solar radio bursts, par-

ticularly type III solar radio bursts. The basic model for type IIIs involves

radiation produced near fp and 2fp by energetic electron beams and their cou-

pled Langmuir waves [Wild and McCready , 1950; Ginzburg and Zheleznyakov ,

1958; Gurnett and Anderson, 1976; Lin et al., 1981; Melrose, 1982; Goldman,

1983; Cairns , 1984; Cairns and Robinson, 1998; Robinson and Cairns , 1998;

Reid and Ratcliffe, 2014]. A picture of relatively narrow electron beams di-

rected out from the Sun along magnetic field lines is suggested by an early
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reconstruction of the electron distribution function near the Sun [Grognard ,

1984]. Thus, a 1D model where electrons stream only along the magnetic field

direction became widely accepted[Sturrock , 1964; Grognard , 1982]. However,

subsequent observations of unstable electron beams have shown that the as-

sumptions that justify a 1D approach do not always hold. For example, Type

III electrons in the interplanetary medium (IPM) have a broad pitch-angle dis-

tribution, rather than being highly collimated [Lin et al., 1981; Ergun et al.,

1998].

One of the major features of the 1D theory is a one-to-one resonance be-

tween electrons at speed v and waves with corresponding phase speed vφ. In

general Langmuir waves with a given wavevector k and frequency ωL are reso-

nant with electrons with velocities v such that ωL(k) = k · v. This resonance

condition, which may be written as vφ = v cos Ψ, where Ψ is the angle between

k and v, allows resonance with vφ � v at sufficiently large Ψ. We argue that

such resonant interactions can dominate those with v ≈ vφ, and lead to quite

different results from those implied by the 1D model. In discussing the 3D case

we assume axisymmetric distributions of waves and particles, and then expand

both distributions and the quasilinear equations in Legendre polynomials [Mel-

rose and Stenhouse, 1977; Hoyng and Melrose, 1977]. In exploring beam-driven

wave growth, we consider several specific forms of the beam distribution f(p)

and based on these draw some general conclusions about the effects of resonant

interactions between waves and particles in the 3D case. Although axisymmet-

ric numerical models for the wave growth and the backreaction on the particles

have been developed [Appert et al., 1976; Ziebell et al., 2008b,a, 2011], these

models emphasize the effects for the resonant speed, v ≈ vφ, rather than the

resonances with v � vφ of specific interest here.

In this paper we argue that long-held assumptions, based on the 1D model,

regarding the nature of the beam instability are misleading, with potentially

far-reaching implications. We use the simple model of a P1 electron distri-

bution, with specific analytical forms. Despite its simplicity, this model is

instructive in that it clearly shows cases where electrons with velocities greater

than the peak can excite Lanmguir waves with low vφ. It allows us to exam-

ine in detail the conditions where this behaviour, completely at odds with the

1D theory, can occur. In the 1D picture, a plateau distribution forms in the

asymptotic limit as the instability is exhausted [Grognard , 1982, 1984]. The

short timescale on which plateau formation occurs implies that the beam is

stopped almost immediately - the so-called Sturrock [Sturrock , 1964] dilemma

- whereas type III beams are known to escape the corona and propagate through
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the IPM. Several explanations have been offered for the observed perseverance

of unstable electron beams through the solar corona and into IPM. Nonlin-

ear processes could suppress the instability, for instance by re-distributing the

Langmuir wave energy in phase space and other waves via 3-wave decay and

coalescence processes or 4-wave modulational processes [Papadopoulos et al.,

1974; Cairns and Robinson, 1998; Graham and Cairns , 2013]. In addition,

the corona is observed to be highly inhomogenous, with density clumps corre-

sponding to bursty Langmuir waves [Robinson et al., 1992]. Stochastic Growth

Theory describes how this allows for a weak electron beam to persist even out

to 1AU [Cairns and Robinson, 1998; Robinson, 1993]. Finally, the assumed

fast saturation of the beam instability relies on the one-to-one resonance result

from a 1D consideration. We argue that the 3D case allows an entirely different

asymptotic state from plateau formation.

3.3 Theory

3.3.1 The quasilinear equations expanded in Legendre

polynomials

The occupation number N(k) of Langmuir waves evolves according to

dN(k)

dt
= αL(k) + γL(k)N(k), (3.1)

where αL is the rate of spontaneous emission of waves and γL is the growth

rate. Both JL and γL are functions of the distribution f(p) of electrons with

momentum p, normalised such that
∫
dp f(p) = ne is the number density

of electrons, which obeys a quasilinear diffusion equation with the diffusion

coefficients depending on N(k).

We focus in this paper on the growth rate γL, defined such that waves

grow for positive γL > 0 and waves damp for negative γL < 0. Assuming

axisymmetry about the magnetic field (which is otherwise neglected), we write

f(p) = f(p, α) and N(k) = N(k, θ), and expand in Legendre polynomials

Pl(cosα) and Pl(cos θ), respectively. We also explicitly separate the thermal

electron distribution fth(p) from the beam component (with number densities

nth and nb respectively), and assume that the thermal background is isotropic,

with thermal speed Ve much less than the typical speed of the beam electrons.
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The expansions give

f(p, α) = fth(p) +
∞∑
l=0

fl(p)Pl(cosα), (3.2)

NL(k, θ) =
∞∑
l=0

Nl(k)Pl(cos θ). (3.3)

The electron distribution must satisfy f(p, α) > 0 everywhere. The normalisa-

tion condition becomes∫
dp f(p) = 4π

∫
dp p2 [f0(p) + fth(p)] = nb + nth = ne, (3.4)

such that the l = 0 term determines ne, nth and nb.

We also expand αL(k, θ) and γL(k, θ) in Legendre polynomials. The quasi-

linear equations then lead to a set of coupled equations for Nl(k) and fl(p).

Following Melrose and Stenhouse [1977] and Hoyng and Melrose [1977], the

evolution of the waves is described by

dNl(k)

dt
= αl(k) +

2l + 1

2

∑
m,n

almnγm(k)Nn(k), (3.5)

where almn is the x-integral of the product of Pl(x)Pm(x)Pn(x) and is nonzero

only when the triangle inequality (i.e, |l − n| ≤ m ≤ l + n) is satisfied. The

spontaneous emission αl and growth term γl components are given by

αl(k) =
2π2e2ω2

p

ε0k3

∫ ∞
pφ

dp
p2

v
fl(p)Pl(cosχ0), (3.6)

γl(k) = −
2π2e2ω2

p

ε0k3

{
m2γ2

φfl(pφ) +

∫ ∞
pφ

dp
2p

c2
fl(p)Pl(cosχ0) +

−m
2

p2
φ

∫ ∞
pφ

dp pfl(p) cosχ0P
′

l (cosχ0)

}
, (3.7)

respectively, with pφ = mγφvφ, γφ = (1 − v2
φ/c

2)−1/2, and cosχ0 = vφ/v. We

are primarily interested in waves with vφ � Ve, which allows us to ignore the

background contribution to the isotropic (l = 0) terms as fth(p)� f0(p).

The second term in (3.7) includes relativistic factors, and in the nonrela-

tivistic limit (3.7) becomes

γl(k) =
2π2e2pφ
ε0k

{
− pφfl(pφ) +

∫ ∞
pφ

dp fl(p)P
′

l (cosχ0)

}
. (3.8)
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The 3D resonance condition can be seen qualitatively in (3.8) in the integral

term inside the brackets - each γl(k) depends on the values of fl at p ≥ pφ,

not simply at p = pφ. The full effect of this difference requires a detailed

consideration of more specific forms of fl(p).

3.3.2 P1 distributions

Let us consider a P1 electron distribution - that is, f(p, α) = f0(p)+f1(p) cosα.

This is a weakly anisotropic distribution which is a possible first approximation

to observed type III beams in the IPM [Ergun et al., 1998].

The distribution function f(p, α) cannot be negative, which requires f1(p) ≤
f0(p) for a P1 distribution. The simplest form, which can easily be generalised,

is

f(p, α) = f0(p)(1 + cosα), (3.9)

corresponding to f1 = f0. We use this simple model, with specific choices of

f0(p) to infer some general features of the 3D case. For such a P1 particle

distribution, one has

γ0(k) = −
2π2e2p2

φ

ε0k
f0(pφ), (3.10)

γ1(k) =
2π2e2pφ
ε0k

{
−pφ f1(pφ) +

∫ ∞
pφ

dp f1(p)

}
. (3.11)

The isotropic term in the expansion of f(p, α), f0(p), contains the number of

particles, and must be positive. Therefore, γ0(k) is negative everywhere and

cannot contribute to the growth of waves. This means that if the Langmuir

waves grow, then γ1 must be sufficiently positive to satisfy

γ0(k) + γ1(k) cos θ > 0. (3.12)

An essential requirement for wave growth is thus γ1 > 0. Consider the part of

(3.11) in the brackets - the sign of the following term determines the sign of

γ1,

−pφf1(pφ) +

∫ ∞
pφ

dp f1(p). (3.13)

The second part of Eq (3.11), involving the integral, depends on electrons with

p ≥ pφ. This is clearly different from the 1D case which is driven only by

electrons with p = pφ.
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Double power law

We assume a P1 particle distribution, as in Eq (3.9), with a peaked double

power law form

f0(p) =

{
C1p

b p < p1,

C2p
−a p > p1,

(3.14)

where C1 and C2 are such that f1 is continuous at p1 (Figures 3.1 and 3.2).

pp
1

f 1
(p

)

Double power law f
1
(p)

f
1
(p) ∝ p

b f
1
(p)∝ p

-a

Figure 3.1: The peaked double power law form of f0(p) in Eq (3.14)

.
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Figure 3.2: Countour plot of f(p‖, p⊥) normalised to the maximum at (p1, 0) in

the case of a P1 distribution described in Eq (3.9) with f0 given by the peaked

double power law of Eq (3.14).

From Eqs (3.9) - (3.14), one finds that γ0 + γ1 = γL(k, θ = 0) > 0 when

(
pφ
p1

)b+1

<
a+ b

(a− 1)(2b+ 1)
. (3.15)

However, this constraint does not directly show us which electrons are con-

tributing to the wave growth. We identify the electrons that contribute to

growth as follows.

First we expand γ1 for the double power law model (3.14) and separate it

into the two components, as in Figure 3.3a. We also introduce a width ∆p1

in order to separate electrons with momenta close to the peak in the double
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power law. For pφ < p1, one has

γ1(k) =
2π2e2pφ
ε0k

{
−C1p

b+1
φ + C1

∫ p1

pφ

dp pb − C2

∫ ∞
p1

dp p−a

}

∝ pφ
k

{
− C1p

b+1
φ + C1

∫ p1−∆p1

pφ

dp pb + C1

∫ p1

p1−∆p1

dp pb

+ C2

∫ p1+∆p1

p1

dp p−a + C2

∫ ∞
p1+∆p1

dp p−a

}
, (3.16)

where the terms proportional to C1 and C2 are separated into contributions

from below (pφ < p1) and above (pφ > p1) the peak in f(p) at p1. The five

terms in Eq (3.16) are denoted respectively

γ1(k) =
2π2e2pφ
ε0k

{−γiso + γa1 + γa2 + γa3 + γa4} . (3.17)

The relative contributions of each range of the electron distribution to the

overall growth rate γ1 define the corresponding terms γiso and γa1 − γa4: γa1 is

the component due to electrons with pφ < p < p1 − ∆p1 (red in Figure 3.3),

γa2 the electrons near the low-velocity side of the peak (green), γa3 the high-

velocity side (black), and γa4 the high velocity tail of the electron distribution

(yellow).

A 1D consideration of this problem would predict that the terms γa2, γa3

and γa4 would all only damp the waves at pφ < p1. However, we clearly

show in Figure 3.3b and 3.3c that they contribute to wave growth and that,

depending on the power-law indices a and b, the high velocity tail of the electron

distribution where ∂f/∂v < 0 can even dominate the growth term. We next

quantify the relative contributions of each of these regions to growth.

One finds analytically that γa2 > γa1 for all pφ when

a >
ln 1

2

ln (1−∆p1/p1)
− 1. (3.18)

That is, electrons with v > vφ near the peak contribute more towards wave

growth than electrons with v closer to the 1D resonance, vφ. To make this

discussion more concrete, we consider ∆p1/p1 = 0.1. Then (3.18) gives a >

5.58.

Similarly, γa3 > γa4 for all pφ when

b > 1−
ln 1

2

ln (1 + ∆p1/p1)
(3.19)
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This implies that high velocity electrons near the peak contribute to the growth

of the waves more than those with higher speeds. For ∆p1/p1 = 0.1, Eq (3.19)

becomes b > 8.27. We need b > 3 in order for the distribution function to be

integrable.

In Figure 3.3 we see that for an intermediate high-velocity power law slope,

i.e. 3 < b < 8.27, the contribution to a positive γ1 from the high-velocity

electrons actually dominates. That is, in the region pφ < p1 (below the peak),

γa4 is the dominant contributor to γ1. Below, we present an even more dramatic

example of this region being important to wave growth, contrary to previous

thinking based on the 1D model.

Figure 3.4 shows γ1 and its components for a similar case to Figure 3.3 but

with dominant contributions to the wave growth from the electrons near the

peak of the distribution, both on the lower and higher speed sides. The growth

occurs at pφ < p‖ but is not primarily due to the locally resonant electrons, in-

stead having significant contributions from the γa2, γa3, and γa4 terms. Indeed,

where γL > 0 the γa1 term for electrons with p‖ < p1 −∆p1 is always smaller

than the γa3 amd γa4 terms for higher p‖ electrons. Further, the primary reason

the instability turns off is that γiso increases rapidly for pφ > p1−∆p1, i.e. near

the peak. It is not, as previously thought, just due to ∂f/∂v decreasing.

A 1D quasilinear-like model was used in Voshchepynets et al. [2015], where

random density fluctuations in the background plasma induced a resonant

broadening effect. This effect is interesting and no doubt enhances the ef-

fect found here, which occurred with for a homogeneous 3Dplasma with a P1

distribution rather than in a 1D inhomogeneous plasma
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Figure 3.3: (a) Double power law f1(p), (b) the contributions γiso and γa1−γa4

to γ1, and (c) γ1(pφ) for a = 4 and b = 6. It is clear that the high speed

electrons and terms γa2 − γa4 contribute most to the wave growth.
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Figure 3.4: As for Figure 3.3 but with a = 9 and b = 6. Now the electrons

near the peak on both the low and high velocity sides contribute significantly

to the wave growth.

Shifted Maxwellian

In order to clearly establish that the results in the previous section are a result of

the many-to-one resonance of the 3D axisymmetric system, and to exclude the
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influence of the sharp non-differentiable point at p1 and the artificial double

power law distribution, we now consider a shifted Maxwellian for f1(p). If

f0 = f1 is Maxwellian peaked at p = pb, i.e. f0 = f1 ∝ exp [−(p− pb)2/p2
e] as

in Figure 3.5, then the factor γ1(k) is given by

γ1(k) ∝ pφ
k

{
− pφ exp

[
−(pφ − pb)2

p2
e

]

+

√
π

2

[
1 + erf

(
pb − p
pe

)]}
(3.20)

The resulting growth rate shows similar features to the previous example. Elec-

trons on both sides of the peak contribute significantly to the positive wave

growth, as demonstrated by the large and equal contributions from γa2 and

γa3. The high velocity electrons which contribute to both γa3 and γa4 are im-

portant in the growth of waves. The wave growth term becomes negative closer

to the peak (in this case around pφ = 8.8meVe).
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Figure 3.5: The growth rate and its components for a Maxwellian distribution

centred at pb = 10meVe, with ∆p1 = 0.1pb as for Figure 3.

More general choices of distribution function

The specific choice of a P1 distribution with f1(p) = f0(p) corresponds to a

broad angular distribution ∝ (1 + cosα) that is the same for all p. Actual

distributions observed in the IPM are more beamed, and this can be modeled

by replacing cosα by cosα2N+1, with N = 2 for example. It is straightforward
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to repeat the foregoing analysis, which corresponds to N = 0, to show that the

qualitative features identified for the P1-case also apply for N > 0. One may

include the p-dependence of the beaming in a P1 distribution by assuming that

r(p) = f1(p)/f0(p) ≤ 1 is an increasing function of p. These generalizations of

the model leads to a form ∝ f0(p)[1 + r(p) cosα2N+1α]. In principle, choosing

best fits of f0(p), r(p) and N to observed distributions will allow discussion of

wave growth for more realistic distributions. However, we do not discuss this

further in the present paper.

3.3.3 Growth in a region of negative slope

So far we have demonstrated that in 3D high velocity electrons in regions of

phase space where ∂f/∂v‖ < 0 can contribute to the growth of waves. However,

wave growth still occurs at lower speeds where ∂f/∂p‖ > 0. Even this long-

held result from the 1D consideration of the plasma emission problem does

not hold in 3D. To demonstrate this, consider a different P1 model that allows

for a flatter power law in a finite region, before tailing off in accordance with

normalisability conditions. Specifically, consider

f1(p) =


Apa p < p1

Bp−b p1 < p < p2

Cp−c p > p2

(3.21)

with a > 1, c > 3 and continuity at p1 and p2.
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Figure 3.6: Triple power law with a flatter section in the central region 10 =

p1 < p < p2 = 40, compared with γ1 for the triple power law given by Eq

(3.21), with a = 2, b = 0.5 and c = 4 and γ0 + γ1.

In this case, γ0 + γ1 is positive in the region p1 < pφ < p2 when

pφ < p2

(
c− b

(3− 2b)(c− 1)

) 1
1−b

. (3.22)

If we choose b = 1/2 and c = 4, then (3.22) becomes pφ < 0.34p2. Figure 3.6

confirms this for p2 = 40, showing positive γ1 in the region with negative slope

∂f/∂v‖, where p1 = 10 ≤ pφ ≤ 13.61. Figure 3.6 shows that γ1 is sufficiently

positive to give positive γL, at least for angles where cos θ ≈ 1.

The modest but real region in this example, where γL > 0 but ∂f/∂v < 0,

further shows that the conventions of Langmuir wave growth based on the 1D

model must be re-evaluated.

3.4 Discussion and Summary

The one-dimensional (1D) model of the kinetic beam instability driving Lang-

muir waves and radio emission, particularly in Type III radio bursts, is still

commonly used and relied upon for numerical and theoretical development of

the plasma emission problem [Li et al., 2008; Li and Cairns , 2014; Ratcliffe

et al., 2014]. Figures 3.3-3.6 and the associated theory show that the growth

of Langmuir waves in three dimensions from an unstable electron distribution
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occurs in a substantially different way than in the 1D model. The resonance be-

tween the velocity of the electrons and the wavenumber of the waves is no longer

one-to-one, and the simple consideration of the gradient of the distribution is

no longer enough to determine whether the waves will grow or be damped. The

cases we describe here require a re-think of the electron-Langmuir wave reso-

nance in 3D. The effects we demonstrate for a P1 case are expected to apply

to more anisotropic particle distributions, such as the electron beams respon-

sible for Type III radio bursts [Lin et al., 1981] with additional higher order

variations of γL in pφ and cos θ.

We have shown that resonant interactions of waves at vφ can be dominated

by particles with v � vφ, and it can be shown due to the symmetry of the

electron-Langmuir wave interaction in the resonance condition that the same

result applies to the diffusion of particles due to the waves. That is, a particle

with speed v interacts with and diffuses due to waves with vφ � v over a

wide range of wavevector directions. One interpretation of this is that this

interaction occurs at large Ψ (recall the resonance condition vφ = v cos Ψ).

This would imply that diffusion at v � vφ primarily changes the pitch angle

α rather than the momentum p. That is, we should see electrons significantly

diffusing in angle near and above the peak of the unstable distribution, rather

than the plateau formation implied by the 1D picture. A preliminary look

at two-dimensional electron distributions in the IPM, e.g. from Ergun et al.

[1998], shows distributions broad in angle. Future work will explore these and

more general “beam” distributions in terms of their instability to Langmuir

wave growth and their evolution and relaxation due to the wave growth.
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Chapter 4

A numerical method for modelling

the 3D axisymmetric Electron -

Langmuir wave interactions

4.1 Abstract

The kinetic beam instability that drives plasma emission is modelled in a

3D, relativistically correct, axisymmetric way using Legendre polynomials and

calculated numerically, using implicit finite difference schemes and a block-

tridiagonal solving algorithm for higher order Legendre expansions. We de-

scribe the numerical model and the initial tests in detail, and apply the model

to distributions discussed in the previous chapter. The numerical model re-

produces known analytic results such as the stability of the thermal level of

waves for a Maxwellian electron distribution and shows new results such as the

evolution in time of waves for an isotropic gap distribution. This chapter’s new

numerical model is then used to probe the electron-Langmuir wave interaction

and quasilinear relaxation in a new light. We consider electron distributions

that were discussed analytically in Chapter 3 here, modelling electron diffusion

in the presence of a fixed Langmuir wave population and demonstrating elec-

tron diffusion in both angle and speed for the first time. As an extension to

the work done in Chapter 3, we also consider electron distributions of the form

f(p, α) = f0(p)
[
1 + r(p) cos2N+1 α

]
, in terms of the relative contributions of

electrons in different parts of the distribution, to show that the 3D resonance

effects persist to higher-order and more realistic particle distributions.
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4.2 Introduction

Electron beams coming from the Sun often produce radio emission, most no-

tably Type III solar radio bursts. The underlying instability involves energy

transfer from the electron beam to Langmuir waves in the background plasma,

which can be converted to radio waves via nonlinear processes. This process

has long been modelled, both analytically and numerically, in a 1D or pseudo-

1D way [Melrose, 1986; Grognard , 1982, 1984; Li et al., 2002, 2008; Mel’Nik

et al., 1999; Ratcliffe et al., 2014]. While the electron beam is directed along

open magnetic field lines from the photosphere, beams which have been mea-

sured to date [Lin et al., 1982; Ergun et al., 1998] have a significant angular

breadth about the magnetic field direction. 3D effects from oblique waves

should therefore be expected, and analytically it can be shown that several of

the foundational conditions for Langmuir wave growth found in the 1D for-

malisms do not strictly hold in three dimensions, as in Chapter 3 and Harding

et al. [2020].

Using the axisymmetry of the system of the electron beam travelling along

a magnetic field line, the quasilinear equations can be expanded in Legendre

polynomials [Hoyng and Melrose, 1977; Melrose and Stenhouse, 1977], as shown

in Chapter 1. This technique leads to a new consideration of the resonance be-

tween the fast electrons and Langmuir waves, such as that conducted in Chap-

ter 3. For a full exploration of the 3D implications of the electron-Langmuir

wave interaction a numerical scheme must be developed. This chapter presents

a numerical scheme for solving these quasilinear equations, with tests of this

scheme against known analytical results and some early results exploring the

uniquely 3D effects we expect from the theory. Extensions and further develop-

ment of the analytical analysis in Chapter 3 are also presented, supplemented

with numerical calculations using the new code.

4.3 Numerical scheme and code

4.3.1 Dimensionless scheme

To efficiently describe the quasilinear system, the following dimensionless sys-

tem is used. This is a three-dimensional extension of that used in, for example,

Grognard [1982] and Li et al. [2002]. The 0 subscript below indicates the value

of the variable at the first grid-point in phase space - i.e. at (r0,v0).
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p = meγ(v)v V 2
e =

kBTe
me

pφ = meγ(vφ)vφ vφ =
ωp
k

kD =
ωp
Ve

ω2
p =

ne2

ε0me

p′ =
p

pD0

pD = meVe

t′ =
t

tD0

tD =
ne

πωpk3
D

z′ =
z

zD0

zD =
ne
πk4

D

N ′l =
Nl

ND0

ND =
kBTe
~ωp

f ′ =
f

fD0

fD =
1

2πm3
eω

3
p

k6
D

T ′e =
Te
Te0

n′e =
ne
ne0

ω′L =
ωL
ωp0

p′ = γv. (4.1)

Hereafter, the primes are dropped in dimensionless equations.

The dimensionless scheme (4.1) is used to express the Legendre expansion

of the two coupled quasilinear equations first introduced in Chapter 1 as (1.26

- 1.30) and (1.32 - 1.41). The dimensionless equations are written below in

matrix form, recalling the notation used in (1.25).

The Langmuir wave equation in dimensionless form was given in Chapter

1 in Equation 1.26. This assumed ωL = ωp. Including the full number density

and electron temperature dependence of ωL, the dimensionless Langmuir wave

equation is

{
∂

∂t
+

1

ωL(k)
H

[
3v2

e

∂

∂z
−
(

1

2

∂n0

∂z
+

3

2

∂Te
∂z

)
∂

∂k

]
+

1

kωL(k)

(
1

2

∂n0

∂z
+

3

2

∂Te
∂z

)
J

}
N = σ − ΓN , (4.2)

where
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σn =
1

ne

ωL(k)3

k3

∫ ∞
pφ(k)

dp
p2

v
Pn

(
ωL(k)

kv

)
fn(p), (4.3)

Γnl =
1

ne

ωL(k)4

k3

min{|n−l|,M}∑
s=|n−l|

2n+ 1

2
Ansl

{
pφ(k)2

vφ(k)2
fs(pφ)

+

∫ ∞
pφ

dp
2p

c2
Ps

(
ωL(k)

kv

)
fs(p)

+

[(
ωL(k)

kc

)2

− 1

]∫ ∞
pφ(k)

dp
p

vvφ
Ps

(ωp
kv

)
fs(p)

}
. (4.4)

The term ∂N/∂z is the advection term, and the term ∂N/∂k is the re-

fraction term. The terms H and J come from the orthogonality relation of

Legendre polynomials and are given by

Hnl =
n

2n− 1
δn,l+1 +

n+ 1

2n+ 3
δn,l−1 (4.5)

Jnl =
l(l + 1)

2l + 1

(
δn,l+1 − δn,l−1

)
(4.6)

The particle equation (Equation 1.32) in dimensionless form is(
∂

∂t
+ vH

∂

∂z

)
f =

1

4π2p2

{
∂

∂p
P
∂

∂p
+

∂

∂p
Q+R

∂

∂p
+ S

}
f , (4.7)

where

Pnl =
1

ne

p2

v3

min{M,n+l}∑
s=|n−l|

2n+ 1

2
Ansl

∫ ∞
ωL/v

dk

k
ωL(k)5Ns(k)Ps(ωL/kv), (4.8)

Qnl = p2Apδnl

− 1

n′e

p

v3

n+1∑
s=|n−l|

2n+ 1

2s(s+ 1)
λ

(1)
nsl

∫ ∞
ωL(k)/v

ωL(k)5dk

k

[(
kv

ωL(k)

)2

− 1

]1/2

×Ns(k)P 1
s

(
ωL(k)

kv

)
, (4.9)

Rnl =
1

ne

p

v3

min{M,n+l}∑
s=|n−l|

2n+ 1

2s(s+ 1)
λ

(1)
lsnAnsl

∫ ∞
ωL(k)/v

ωL(k)5dk

k

[(
kv

ωL(k)

)2

− 1

]1/2

×Ns(k)P 1
s

(
ωL(k)

kv

)
, (4.10)
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Snl = − 1

ne

min{M,n+l}∑
s=|n−l|

2n+ 1

2
Ansl

∫ ∞
ωL(k)/v

dk

k

1

2
ωL(k)5

[(
kv

ωL(k)

)2

− 1

]

×Ns(k)

[
λ

(1)
snlPs

(
ωL(k)

kv

)
+

(s− 2)!

(s+ 2)!
λ

(2)
snlP

2
s

(
ωL(k)

kv

)]
,

(4.11)

Ap =
ne
v2

ln

(
v

ωL(v)

)
+

3ne(r)

v2

[
1−

(
ωL(v)

v

)2
]

+
9ne(r)

4v2

[
1−

(
ωL(v)

v

)4
]
.

(4.12)

In Equation 4.7, the term ∂/∂z determines advection of particles, P is a

classic diffusion term in momentum, and Ap is the result of the backreaction

on the particles from spontaneously emitted Langmuir waves.

These dimensionless quasilinear equations use the full expression for the

Langmuir wave frequency, ωL(k), which is a generalisation. Most often, the

approximation ωL ≈ ωp is used; however this approximation simplifies the

expression for Ap (Equation 4.12) and does not include the derivative of the

temperature profile, ∂Te/∂z, in the wave equation, simplifying the refraction

term to just∝ (∂n0/∂z)(∂/∂k). Furthermore, factors of ω5
L(k) in the integrands

in several places in Equations (4.8-4.12) could well be significantly different

from ω5
p unless k is very small.

4.3.2 Finite differences

To numerically approximate Equations (4.2) and (4.7) the following finite dif-

ferencing scheme is employed. The system uses explicit first order forward finite

difference in time, backwards explicit discretization is implemented for the v-

advection term and an implicit second-order central finite difference scheme is

used for the diffusion. We take discrete values of time (t), position (z), mo-

mentum (p), and wavenumber (k) with time index n, position index i and a

joint momentum and wavenumber index j. The grids in these dimensions are

t = [1, tmax], i = [1, imax], j = [1, jmax], with constant grid spacing ∆t, ∆z, ∆p

and ∆k. The boundary conditions are implemented according to the numerical

scheme used. Neumann boundary conditions are imposed for waves and parti-

cles such that electrons and waves do not leak out of the simulation domain.

In writing down the finite difference relations we use the following notation

f`(zi, pj, tn) = fn`,ij, N`(zi, kj, tn) = Nn
`,ij, (4.13)
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where ` is the Legendre index.

The wave equation is discretized in the numerical code using a monotonic

scheme [Kontar , 2001] for the z advection, which is written below in Equation

(4.28). However, an earlier version of the code used, as in Li et al. [2002], an

explicit backwards difference operator for the z− advection. This is included

in this chapter in order to see more clearly how the wave equation is solved

numerically, as the monotonic scheme is very complicated when compiled into

a single equation. The code uses this scheme for its stability advantages on the

advice of Dr. Bo Li.

The particle and wave equations are first written down in explicit form,

rather than in matrix notation. This is due to the fact that the explicit form is

useful and convenient for a small number of Legendre polynomials, and prob-

lems are easier to diagnose that way. Matrix notation is shown later for the

particle equation, as its implicit tridiagonal structure lends itself for implemen-

tation when `max > 1.

4.3.3 Wave equation

The discrete finite differenced form of the wave equation, using the numerical

schemes named above, is

1

∆t
(Nn+1

`,ij −N
n
`,ij)

+
1

ωL(kj)

[
3kj(ve)

2
j

∆z

(
`

2`− 1
(Nn

`−1,ij −Nn
`−1,i−1,j) +

`+ 1

2`+ 3
(N`+1,ij −N`+1,i−1,j)

)

− Di

∆k

(
`

2`− 1
(Nn

`−1,i,j+1 −Nn
`−1,i,j+1) +

`+ 1

2`+ 3
(Nn

`,i,j+1 −Nn
`,i,j−1)

)]

+
Di

kjωL(kj)

`(`+ 1)

(2`+ 1)

(
Nn
`+1,ij −Nn

`−1,ij

)
= σn`,ij +

`max∑
m=0

Γn`m,ijN
n
m,ij, (4.14)

where
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Di =
1

2

(
∂n0

∂z

)
i

+
3

2

(
∂Te
∂z

)
i

(4.15)

σn`,ij =

(
1

ne

)
i

ωL(kj)
3

k3
j

∫ pmax

pφ(kj)

dp
p2

v2
Pn

(
ωL(kj)

kjv

)
fn(p) (4.16)

Γn`m,ij =

(
1

ne

)
i

ωL(kj)
4

k3
j

min{|n−`|,m}∑
s=|n−`|

2n+ 1

2
Ansl

{
pφ(kj)

2

vφ(kj)2
fs(pφ)

+

∫ pmax

pφ(kj)

dp
2p

c2
Ps

(
ωL(kj)

kjv

)
fs(p)

+

[(
ωL(kj)

kjc

)2

− 1

]∫ pmax

pφ(kj)

dp
p

vvφ
Ps

(
ωL(kj)

kjv

)
fs(p)

}
(4.17)

4.3.4 Particle equation

The discrete form of the dimensionless particle equation is

1

∆t

(
fn+1
l,ij − f

n
l,ij

)
+

v

∆z

{
l

2l − 1

(
fnl−1,ij − fnl−1,i−1,j

)
+

l + 1

2l + 3

(
fnl+1,ij − fnl+1,i−1,j

)}
=

1

p2
j

`max∑
m=0

{
1

∆p2

[
P n
lm,ij+1(fn+1

m,ij+1 − fn+1
m,ij )− Plm,ij−1(fn+1

m,ij − fn+1
m,ij−1)

+ P n
lm,ij(f

n+1
m,ij+1 − 2fn+1

m,ij + fn+1
m,ij−1)

]
+

1

2∆p

(
Qn
lm,ij +Qn

lm,ij+1

) (
fnm,ij+1 − fnm,ij

)
+

1

∆p
Rn
lm,ij

(
fnm,ij+1 − fnm,ij

)
+ Snlm,ijf

n
m,ij

}
. (4.18)

Or, using the notation,

fnij =


fn0,ij

...

fn`,ij
...

fn`max,ij

 , Qn
ij =


Qn

00,ij Qn
01,ij . . .

Qn
10,ij

. . .
...

...
. . .

Qn
`max0,ij . . . Qn

`max`max,ij
,

 (4.19)

the matrix form of the finite difference equation for the particle equation (4.18)

is
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1

∆t

(
fn+1
ij − fnij

)
+

1

∆z
vjH(fnij − fni−1,j) =

1

p2
j

{
1

∆p2

[
Pn
i,j+1(fn+1

i,j+1 − fn+1
ij )

−Pn
ij−1(fn+1

ij − fn+1
i,j−1) + Pn

ij(f
n+1
ij+1 − 2fn+1

ij + fn+1
ij−1)

]
+

1

2∆p
(Qn

ij + Qn
ij+1)(fnij+1 − fnij) +

1

∆p
Rn
ij(f

n
ij+1 − fnij−1) + Snijf

n
ij

}
.

(4.20)

Here the matrix elements of P, Q, R, and S, which are used in both Equa-

tion (4.20) and (4.18) are

P n
`m,ij =

ωL(kj)
5

ne

p2
j

v3
j

min{`max,`+m}∑
s=|`−m|

2`+ 1

2
A`sm

∫ kD

ωL(kj)/vj

dk

k
Nn
s,ij(k)Ps

(
ωL(k)

kvj

)
,

(4.21)

Qn
`m,ij = p2

jAp,ijδ`l −
ωL(kj)

5

ne

pj
v3
j

`+1∑
s=|`−m|

2`+ 1

2s(s+ 1)
λ

(1)
`sm

∫ kD

ωL(kj)/vj

dk

k

×

[(
kvj
ωL(k)

)2

− 1

]1/2

Nn
s,ij∗(k)P 1

s

(
ωL(k)

kvj

)
,

(4.22)

R`m =
ωL(kj)

5

ne

pj
v3
j

min{`max,`+m}∑
s=|`−m|

2`+ 1

2s(s+ 1)
λ

(1)
ms`A`sm

∫ kD

ωL(kj)/vj

dk

k

×

[(
ωL(k)

kvj

)2

− 1

]1/2

Ns,ij∗(k)nP 1
s

(
ωL(k)

kvj

)
(4.23)

S`m = −ωL(kj)
5

ne

1

v3
j

min{`max,`+m}∑
s=|`−m|

2`+ 1

2
A`sm

∫ kD

ωL(kj)/vj

dk

k

1

2

[(
kvj
ωL(k)

)2

− 1

]
Nn
s,ij∗(k)

[
λ

(1)
s`mPs

(
ωL(k)

kvj

]
+

(s− 2)!

(s+ 2)!
λ

(2)
s`mP

2
s

(
ωL(k)

kvj

)]
. (4.24)

Absorbing the constants ∆p, ∆t, ∆z and the factor p−2
j so that
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ΛN
ij = ∆t(4π∆pp2

j)
−1Pn

ij, Ω = ∆t(4π∆pp2
j)
−1Q,

Π = ∆t(4π∆pp2
j)
−1R Θ = ∆t(4πp2

j)
−1S,

νj = vj/∆z, (4.25)

(4.20) becomes

[1 + Λn
ij−1 + 2Λn

ij + Λn
ij+1]fn+1

ij − [Λn
ij−1 + Λn

ij]f
n+1
ij−1 − [Λn

ij+1 + Λn
ij]f

n+1
ij+1

= −νjH(fnij − fni−1,j) +
1

2
(Ωn

ij + Ωn
ij+1)(fnij+1 − fnij) + Πn

ij(f
n
ij+1 − fnij−1) + Θn

ijf
n
ij.

(4.26)

4.3.5 Wave equation with the monotonic scheme

Having written down the wave and particle equation with an explicit backward

difference operator for advection in space, the monotonic scheme described by

Kontar [2001] is now shown using the wave equation.

Let

βj =
3v2

e

ωL(k)

∆t

∆z
,

D1,j = D
∆t

∆k
, (4.27)

then
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Nn+1
`ij = Nn

`ij

+
`

2`− 1

{
−βj(Nn

`−1,ij −Nn
`−1,i−1,j)− βj(1− βj)(∆Nn

`−1,ij −∆Nn
`−1,i−1,j), βj > 0

−βj(Nn
`−1,i+1,j −Nn

`−1,ij) + βj(1 + βj)(∆N
n
`−1,i+1,j −∆Nn

`−1,ij), βj < 0

}

− `+ 1

2`+ 3
×{

−βj(Nn
`+1,ij −Nn

`+1,i−1,j)− βj(1− βj)(∆Nn
`+1,ij −∆Nn

`+1,i−1,j), βj > 0

−βj(Nn
`+1,i+1,j −Nn

`+1,ij) + βj(1 + βj)(∆N
n
`+1,i+1,j −∆Nn

`+1,ij), βj < 0

}

+
`

2`− 1
×{

−D1,j(N
n
`−1,ij −Nn

`−1,i,j−1)−D1,j(1−D1,j)(∆N
n
`−1,ij −∆Nn

`−1,i,j−1), D1,j > 0

−D1,j(N
n
`−1,i,j+1 −Nn

`−1,ij) +D1,j(1 +D1,j)(∆N
n
`−1,i,j+1 −∆Nn

`−1,ij), D1,j < 0

}

− `+ 1

2`+ 3
×{

−D1,j(N
n
`+1,ij −Nn

`+1,i,j−1)−D1,j(1−D1,j)(∆N
n
`+1,ij −∆Nn

`+1,i,j−1), D1,j > 0

−D1,j(N
n
`+1,i,j+1 −Nn

`+1,ij) +D1,j(1 +D1,j)(∆N
n
`+1,i,j+1 −∆Nn

`+1,ij), D1,j < 0

}

− ∆tDj

kjωL(kj)

`(`+ 1)

2`+ 1
(Nn

`+1,ij −Nn
`−1,ij) + σn`,ij +

`max∑
m=0

Γn`m,ijN
n
m,ij, (4.28)

(4.29)

where

∆Nn
i =


(Nn

i −Nn
i−1)(Nn

i+1−Nn
i )

(Nn
i+1−Nn

i−1)
, (Nn

i −Nn
i−1)(Nn

i+1 −Nn
i ) > 0,

0, otherwise.
(4.30)

The code is relativistically correct, so the relationship between the momen-

tum p and the resonant wavenumber k is obtained by the following argument.

First, from the definition, momentum and speed are related by

p =
v√

1− v2

c2

. (4.31)

The Landau resonance condition is v = ωL(k)/k, which combined with the

Langmur wave dispersion relation gives the following expression for the Landau

(or 1D) resonant wavenumber at the spatial coordinate z:

kφ(z) = ωp(z)

√√√√ 1 + p2

c2

p2
(

1− 3v2e(z)
c2

)
− 3v2

e(z)
. (4.32)
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From Equations (4.31) and (4.32), the relationship between respective grid

spacings are

∆p = −1/2(v−2 − c−2)−3/2(−2v−3∆v) = p3(p−2 + c−2)3/2∆v,

∆v = p−3(p−2 + c−2)−3/2∆p,

∆k = −ω−2
p k3p−3(p−2 + c−2)−2∆p. (4.33)

If a regular grid spacing in p is used and these resonance conditions used

directly between the wave and particle equations, an irregular k-grid would

need to be employed. This would further complicate the numerical scheme

required to solve the Langmuir wave equation, so in this thesis a regular grid

in k is defined, with the resonance given in Equation 4.32 imposed in each of

the resonant terms in the wave and particle equations by interpolating to the

resonant gridpoint. If one wishes to plot wave distributions on the same axes as

the waves, i.e. as functions of pφ, it is straightforward to transform the output

data, and the cost of this extra step is outweighed by the numerical benefits of

a regular k grid.

4.3.6 Block tridiagonal implicit scheme for the particles

The structure of the matrix form of the particle equation 4.26 is block-tridiagonal.

That is, the only nonzero elements of the matrix are in “blocks” along the main

diagonal and on the upper and lower diagonals, as can be seen in the leftmost

matrix in Equation (4.35). The block tridiagonal structure of the particle equa-

tion can be seen by using the the vector ηni,j to represent the right hand side of

the equation, i.e.

ηnij = −νjH(fnij − fni−1,j) +
1

2
(Ωn

ij + Ωn
ij+1)(fnij+1 − fnij)

+ Πn
ij(f

n
ij+1 − fnij−1) + Θn

ijf
n
ij. (4.34)

Thus ηnij collects all the terms dependent on the particle distribution at

the n−th timestep. Using this, and noting the Neumann boundary condition

for diffusion requires fnij to be determined separately for j = 1, 2, 3 and j =

jmax, jmax − 1, jmax − 2, the particle equation becomes
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An
i4 Cn

i4

Bn
i5 An

i5 Cn
i5

Bn
i6 An

i6 Cn
i6

. . . . . . . . .

Bn
ijmax−3 An

ijmax−3




fn+1
i4

fn+1
i5

fn+1
i6
...

fn+1
ijmax−3

 =


ηni4
ηni5
ηni6
...

ηnijmax−3

 ,

(4.35)

where

An
ij = 1 + Λn

ij−1 + 2Λn
ij + Λn

ij+1,

Bn
ij = −[Λn

ij−1 + Λn
ij],

Cn
ij = −[Λn

ij + Λn
ij+1]. (4.36)

The matrices An
ij, Bn

ij and Cn
ij are square matrices of size `max, the maxi-

mum Legendre expansion index, and as seen in (4.19) the vectors fnij are of size

`max. Later, simulation runs are conducted with jmax = 400 and `max = 40,

which would produce a matrix on the left hand size of Equation (4.35) of size

16000× 16000. However, this matrix is quite sparse and has a block tridiago-

nal form. Following the method outlined in Varah [1972], the code uses an LU

decomposition technique to solve the particle equation. Further details on the

application of this technique can be found in Appendix A.

4.3.7 Code structure

The code written to implement the numerical scheme was written in Fortran 90,

and its structure is outlined in Figure 4.1. The most important subroutines are

‘fe solver’ and ‘NL solver’, which solve for the electron and wave distributions

respectively.

4.4 Test cases

4.4.1 Thermal level

A thermal plasma can be described by an isotropic Maxwellian distribution, so

that

f(p) =

(
n2
e

2πmp3
e

) 1
2

exp− p2

2p2
e

. (4.37)
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global_data_QL	

INPUT	
Main	program	

Legendre_consts	 INI	

lambda_lsm	

omL_set	

Ansl	

Ansl_elem	

fe_solver	

NL_solver	Thermal_distns	
P_weights	

Helem	

numerical_tests	

ludcmp	

lubksb	 p_polynomial_value	

pm_polynomial_value	
	Pmat	

Omat	

PImat	

Tmat	
mono_x	

sum1d	

sigma_lij	

Gamma_mat	

p_polynomial_prime	

Figure 4.1: Schematic of the modular elements of the simulation code. Black

boxed items indicate a subroutine, red boxed items are functions. Blue arrows

from box A to box B indicates that box A calls the subroutine in box B, and red

arrows indicate calling the function. global data QL sets the global variables

used in all parts of the code.
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This distribution has ∂f/∂p < 0 everywhere, so under the 1D picture of

electron-Langmuir wave resonance does not drive wave growth via an insta-

bility. Since it is isotropic, f(p, α) = f0(p), so the 3D resonance condition

discussed in Chapter 3 agrees with the 1D case. However, there is a stable,

thermal population of Langmuir waves, which is insufficient to explain the

brightness temperatures in Type III radio bursts [Melrose, 1970]. It is reached

by the wave occupation number NL(k) evolving to a state where the sponta-

neous emission rate balances the growth rate (which, for a thermal Maxwellian,

is negative for all p). The thermal level of waves is an important feature and

initial test of the plasma physics and numerical code, as it serves as a reason-

able initial condition and it should be stable in any numerical model. In the full

3D demonstration of the problem, the thermal level of waves for a Maxwellian

population of electrons is given by the Rayleigh-Jeans distribution,

Nth(k) =
kBTe
~ωL(k)

= −αL
γL

(4.38)

In the dimensionless scheme (4.1), Nth(k) = 1/ωL(k). Note that Nth is di-

mensionless, as any occupation number should be. A particular problem with

taking a 1D approximation is that, depending on the approach taken in moving

to a 1D system, the thermal level of waves acquires an inconsistent dimension.

For example, in taking a ‘1D Universe approach’, a thermal level with incon-

sistent units is derived. A motivation to conduct a full 3D simulation of the

electron beam-Langmuir wave interaction was initially to investigate the ther-

mal level of waves in light of these theoretical inconsistencies, so a code in which

specific thermal populations of electrons can be assumed and the thermal level

of waves numerically calculated is especially necessary.

A thermal level of waves is indeed stable in the numerical scheme described

in Section 4.3, demonstrated by considering the spontaneous emission term

σL(k) and the growth rate ΓL(k) and by allowing a thermal level of waves to

evolve for a long timescale. Note that quasilinear effects are expected to de-

velop on the order of ω−1
p and the timestep must be less than Γ−1

L [Li et al.,

2002] in order to resolve the growth of waves. This test demonstrates that the

spontaneous emission and growth rates are calculated correctly in this case and

the system is well-resolved numerically in phase space.

An additional test of the code using the thermal level uses the fact that

a suprathermal distribution of waves should evolve towards a thermal level,
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Figure 4.2: Evolution of suprathermal wave population down to the thermal

level. As theoretically predicted, the asymptotic state for the wave distribution

is the thermal level Nth, but the growth rate γL is extremely small for k < 0.2,

so the evolution there proceeds slowly. The timesteps increase in increments of

103ω−1
p , such that the leftmost curve is at t = 104ω−1

p .

given a thermal distribution of particles. If the initial level of waves is small,

then it is expected that the wave distribution evolves to the thermal level with

minimal impact on the electrons. This was tested by beginning with a wave

distribution N(k) = 2Nth. The waves evolved quickly towards the thermal level

for k > 0.2, as shown in Figure 4.2.

The behaviour of the waves for k < 0.2 is consistent with theoretical predic-

tions for the thermal level of an isotropic Maxwellian distribution. Considering

an initial level of waves that does not significantly change the particles, the

quasilinear wave equation for isotropic waves (NL(k, θ) = N0(k)) can be easily

solved,

N0(k, t) = −αL(k)

γL(k)
+

(
N0(t = 0)− αL(k)

γL(k)

)
eγL(k)t

= Nth(k) + [N0(t = 0)−Nth(k)]eγL(k)t, (4.39)
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Figure 4.3: Evolution of waves from an initially empty distribution in the

presence of a thermal Maxwellian population of electrons. Langmuir waves

develop towards the expected thermal level of waves, but this evolution is

prohibitively slow for small k.

using the thermal level Nth = −αL/γL. Now, the thermal Maxwellian has

f0(p) ≈ 0 for p � pe, and the isotropic growth rate has γL(k) ∝ k−3f0(pφ).

So γL(k) ≈ 0 for pφ � pe, which means that N0(k, t) will evolve very slowly

where pφ is large, i.e. small k. This implies that if there is a Langmuir wave

population at small k, a thermal Maxwellian population of electrons will not

rapidly damp it away. It also implies that a subthermal population of Lang-

muir waves will grow to a thermal population, but extremely slowly when pφ is

large. This behaviour is simulated with an initial wave distribution of NL = 0,

as shown in Figure 4.3. At very large timescales (106ω−1
p ) there are still no

waves at k < 0.1kD.

In summary, the simulation code is behaving correctly with respect to the

thermal level of waves and has demonstrated an effect that has been neglected

in previous investigations but is consistent with the theory. It is therefore

appropriate to move to a higher-order case to further test and develop the

code.
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4.4.2 Isotropic gap

Thus far in this thesis we have focussed on applications of the bump-on-tail ki-

netic instability when discussing plasma emission, as Type III radio bursts

are generated via this process. It is possible however to have measurable

metre-wave emission via certain electron distributions that are not unstable

to the growth of Langmuir waves. Isotropic distributions always have a nega-

tive growth rate γL, but have a stable thermal population of Langmuir waves

[Melrose, 1975]. This latter effect is possible because a wave distribution evolves

such that the spontaneous emission rate is balanced by the damping, i.e.

γL = αLNL, (4.40)

so if γL is smaller than the thermal Maxwellian damping

The questions, then, become a) is an electron distribution can produce a

stable Langmuir wave population NL large enough to lead to measurable radio

emission? and b) can such an electron distribution form in the solar corona

and IPM?

Melrose [1975] and Robinson [1975] suggest that some isotropic distribu-

tions, specifically “isotropic gap distributions”, can indeed produce sufficient

Langmuir turbulence for observable radio emission, and that such distributions

could form naturally. Some mechanisms for gap formation are faster particles

filling a flux loop before slower particles are able to, resonant scattering by

Whistler waves (a process which has a cutoff speed and thereby can only affect

fast particles) and collisional efects. Due to the strict limits on levels of waves

induced by isotropic electron distributions, Melrose [1975] argued that it is not

possible for them to be involved in Type III burst production, but they may

play a role in Types I, II, stationary Type IV, and V bursts.

An isotropic gap distribution is defined by three properties. First, it is an

isotropic distribution of particles, i.e. f(p, α) = f0(p). Second, it contains

a region of phase space 0 < |p − ∆p| < p0 where there are effectively no

particles, that is, f0(p) is less than 1 particle/Debye volume. And finally at

some p > p0 there exists some electron population, most often modelled as an

offset Maxwellian centred at pb. This combination can be modelled by

f = fth(p) + nb exp(−(p− pb)2/2p2
e), (4.41)

with the thermal distribution such that fth(p) ≈ 0 well before p → pb − 2pe.

Such a model is shown in Figure 4.4.
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Figure 4.4: Initial isotropic gap distribution, with a thermal population centred

at p = 0 and a gap in the region 5 . p/pe . 11. The peak is centred at p = 15pe
and has the same spread in velocity as the thermal population, pe.

Despite the fact isotropic distributions cannot produce brightness tempera-

tures sufficient to explain most Type III bursts, they are nevertheless interesting

plasma physics phenomena, and they are useful in testing the numerical method

and simulation code. This is because the associated Langmuir wave distribu-

tions are stable and well-defined, and because the assumption of isotropy in

the particles greatly reduces the complexity of the equations and the resulting

numerical scheme. Also, despite the fact the asymptotic state of isotropic gap

distributions has been studied [Robinson, 1975; Melrose, 1975; Robinson, 1978]

the intermediate evolution has mostly been passed over. Therefore, isotropic

gap distributions provide a good opportunity to both test the numerical code

and to examine the time-dependent development of the wave distribution.

Below, we consider the isotropic gap distribution (4.41) with pb = 15pe.

This satisfies the conditions for the gap distribution, which can be seen by

inspection in Figure 4.4.

Figure 4.5 shows the spontaneous emission rate αL(k) and the growth rate

γL(k). We can see that αL peaks in the gap, whereas the growth rate peaks in

magnitude at a higher pφ, closer to the peak of the particle distribution. This

allows for growth of waves initially at the high pφ side of the gap. The shapes

of αL and γL indicate where in phase space the waves will grow fastest. As
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Figure 4.5: Emission and growth terms, with the initial development of waves

shown by the difference between timesteps 1 and 2, where ∆t = 0.005ω−1
p . The

positive spontaneous emission peaks at a lower pφ than the negative growth

rate, this causing the waves to evolve to a stable level at a range of pφ in the

gap.

Figure 4.5 and 4.7 show, the waves reach their asymptotic level at higher pφ
first, due to αL being larger there. This is demonstrated by the waves at an

early timestep in the simulation, shown in Figure 4.6.

Figure 4.7 shows the time evolution of the waves associated with the isotropic

gap distribution. Waves approach the asymptotic predicted level αL/γL with

very good agreement. The timescale over which this happens is quite fast, on

the order of 200ω−1
p . The rapid development of the saturated level of waves

provides support for the approximation that isotropic gap distributions are

accompanied by the asymptotic wave distribution.

It is important to note that waves growing in the gap as shown in Figure 4.7

are not a direct example of the resonance effects described in the examples in

Chapter 3. Instead their growth is due to in part to the spontaneous emission

term, but also to the relativistic part of the growth rate (described in greater

detail in Melrose and Stenhouse [1977] and for the isotropic gap in particular

by Robinson [1975] and Cairns and Melrose [1985]). Specifically, in the gap

γL = γiso + γR + γaniso ≈ γR to a very good approximation, since γaniso = 0 by

construction and γiso ∝ k−3f(pφ), so in the gap γiso � γR. The highly nonther-

mal wave level in the gap is due to intrinsically relativistic effects. Thus, the
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Figure 4.6: A comparison between the growing waves at an early timestep and

the isotropic gap.

Figure 4.7: NL evolving with time, up to the asymptotic level where dN/dt = 0.

The asymptotic level is −αL/γL which is shown in the figure as the red dashed

line. In terms of phase space, the stable asymptotic wave distribution sits in

the gap between the thermal population and the nonthermal peak at p = 15pe.

It is interesting that a) the wave distribution evolves quite rapidly in time and

b) evolves faster at larger pφ in the higher speed part of the gap than the lower.
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Figure 4.8: The growth rate γL can be expressed as γ = γI+γR for the isotropic

gap case. γI corresponds to the isotropic component and γR is a relativistic

contribution.

isotropic gap distribution is clear evidence that, even for semirelativistic speeds

where the Lorentz factor is ≈ 1, the full relativistic version of the quasilinear

equations should be employed and Figure 4.7 shows that the code is work-

ing correctly, and verifying that the asymptotic state predicted analytically is

dynamically achievable.

4.5 P1 simulation: set up and wave growth

Supported by the theoretical considerations in Chapter 3, the simulation code

is now applied to P1 distributions of electrons. The code is initialised with a

P1 electron distribution identical to that in Equation (3.9). The electron dis-

tribution is then expected to diffuse in momentum and angle, and the wave

distribution should undergo an initial exponential growth phase, before this

growth is modulated down by the waves’ back reaction on the particles. The

initial conditions for the coupled particle/wave distributions are shown in Fig-

ure 4.9.

During a period of wave growth, which we call here the nominal wave growth

phase, the distributions appear to be behaving in a manner consistent with the-

ory. The wave and particle distributions at the latest timestep (t = 1200ω−1
p )

are shown in Figure 4.10.
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Figure 4.9: The initial conditions for the (a) electrons and (b) waves. Both
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N1(p) both double power law distributions.90



Taking the maximum of the growing wave distribution to be at k = kpeak,

i.e. NL(kpeak, t) = maxNL(k, t), one would expect to see this evolve like

NL(kpeak, t) = NL(kpeak, t = 0)eγpeakt, (4.42)

during the exponential growth phase.

Indeed, such exponential behaviour is seen in Figure 4.11. Furthermore,

Figure 4.12 shows that, at later times, the rate of growth of the waves (blue)

starts to decrease slightly. This is expected, as the electron population loses

energy to the waves and becomes less unstable to wave growth.

Also, the expected coupling between Legendre modes of the wave distribu-

tion is working. The growth rate for a particular Legendre mode N` expressed

in Equation (4.17) indicates that a given N` is coupled to neighbouring ` values.

Accordingly, given time and an initial P1 distribution higher order ` terms than

` = 0 and ` = 1 should become populated, which is consistent with the idea

that a wave distribution that is driven by particles becomes more anisotropic

with time. This behaviour is seen in the plots of selected Legendre weights

shown in Figure 4.13. It is possible that a subsequent late phase of evolution

would smooth out the wave and particle distributions, but this has not yet been

found in the simulations.

In an attempt to quantify the amount of diffusion in angle compared to

diffusion in parallel momentum for these results, the following value is defined

n(α, t) =

∫
dp p2f(p, α), (4.43)

which corresponds to the number of particles along a particular angle. Figure

4.14 shows this quantity for several different angles. Importantly, as t increases

n(α, t) increases at small α but increases at α > 90◦. This behaviour demon-

strates angular diffusion of electrons.

The total electron number and momentum is conserved and the wave energy

grows as expected. The initial wave energy is very small compared to the

particle energy (on the order of 10−6 times) and even at the final timestep

before the singularity emerges the EL ≈ 10−4Ef , so that the increase in wave

energy is too small to noticeably change the total energy of the particles yet.

These quantities are plotted in Figure 4.15.

However, once the waves have grown substantially, the code runs into a

problem as yet unresolved. Figure 4.16 shows when this happens for the P1
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Figure 4.10: Electron and wave distributions at timestep 340, at the end of the

nominal wave growth phase of this simulation run. The particles have diffused

appreciably and the waves have narrowed significantly.
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Figure 4.11: Growth of the peak of the wave distribution during the nominal

wave growth phase of the simulation. Each timestep corresponds to 2.3× 10−8

s = 3.5ω−1
p . The evolution is consistent with the expected exponential growth,

demonstrated by NL(t) being very close to a straight line in logN - linear t

space.
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Figure 4.12: Growth of the peak of the wave distribution fitted with an ex-

ponential growth model. The peak is well-fitted by exponential growth but

begins to deviate at the end of the simulation run. This is consistent with the

beginning of the second phase of wave evolution where diffusion of the particles

modulates the wave growth.
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order ` terms are populated as expected as the wave distribution evolves, with
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Figure 4.14: n(α, t) for different angles. n(α, t) decreases for larger angles. This

is evidence of particles diffusing around in angle.
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Figure 4.15: Electron number (a), momentum (b), particle energy (c), Lang-

muir wave energy (d) and total energy (e), each divided by the initial value,

for the P1 growth phase. Electron number, momentum and total energy are

conserved with Langmuir wave energy increasing as the waves grow.

distribution run. The maximum wave level shoots up rapidly after timestep

340.

Figure 4.17 shows the full picture of sudden onset instability problem. The

problem begins in the particles; the electron distribution develops a positive

and negative spike, with very steep gradients. This then propagates to the

waves, and the following interaction is unstable and blows up. The numerical

method conserves electron number, so a positive spike in the particle distribu-

tion (i.e. a positive change in the particle energy and a positive addition to

the total electron number) is compensated by a decrease in particles elsewhere

(a negative spike) and the conservation of energy means flow on effects to the

waves such that the total energy is constant. It is, of course, unphysical for

either the wave distribution f(p, α) or the particle distribution NL(p, α) to be

negative anywhere (although particular Legendre components may be). The

spikes in the wave distribution cause similar effects to appear at the resonant

momenta. This issue is currently in the process of being diagnosed and resolved.
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Figure 4.16: The sudden unstable behaviour in the development of the wave

distribution, evidenced by the peak of the waves in the last few timesteps
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Figure 4.17: Electron and Langmuir wave distributions as the instability prob-

lem first emerges. Large paired positive and negative peaks develop which are

unphysical and unstable. This singularity has not yet been resolved.
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4.6 Diffusion of electron distributions in the

presence of fixed Langmuir wave popula-

tions

Chapters 3 and Harding et al. [2020] demonstrate that the uniquely 3D res-

onance properties of the electron-Langmuir wave interaction should result in

significantly different evolution of the particle distribution than the widely used

1D picture. Specifically, rather than a plateau distribution forming in the p‖
direction, the 3D many-to-one resonance suggests electrons also diffuse in pitch

angle, broadening any beam structure. We now use the numerical scheme dis-

cussed above to test this analytical prediction and explore quasilinear relaxation

in 3D. We will consider different forms of the initial electron distribution, as

well as isotropic and anisotropic wave distributions. This is done in order to

test and develop the numerical code, so as to increase the complexity and the

order of Legendre expansion needed for subsequent cases. However, due to the

numerical singularity described in Section 4.5 the wave distribution was fixed

in time, both in order to diagnose the development of the singularity shown in

4.17 and to look closer at the particle diffusion on its own.

4.6.1 P1 particle distributions

Here the initial condition of the electrons is a P1 distribution with double power

law form, as in Eq. (3.14), and the waves are fixed at an isotropic, flat dis-

tribution NL(k, θ) = N0. This is designed as a test, since a flat distribution

will point towards problematic regions of k − p space, as well as to check the

coupling between Legendre modes. It is found that diffusion proceeds in a reli-

able way, and shows interesting physical results which support the predictions

in Chapter 3, as descrbed in detail next.

Figure 4.18 shows the particle distribution at the first and final timestep in

the simulation run, on the same colour bar. Clearly, the distribution has dif-

fused significantly in the p‖ direction and in angle. This is demonstrated more

clearly in Figure 4.19, which shows slices along 4 different angles at multiple

times: as time advances f(p, 180◦) increases monotonically with time for all

p, while at α = 0 and 90◦ f(p, α) decreases monotonically near the peak but

increases monotonically at suitably smaller and larger p. At α = 135◦, f(p, α)
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Figure 4.18: Diffusion of the P1 double power law distribution in the presence

of fixed, flat distribution of Langmuir waves. The contours show that the dis-

tribution has diffused significantly in parallel momentum but most importantly

particles have moved to larger angle.

increases on both sides of the initial peak, with the peak in timeshifting to

lower p. In general, the trends are diffusion in angle and to both smaller and

larger p than the peak. It is clear that the strict analogue of 1D quasilinear

relaxation, which is monotonic diffusion to smaller p (and not in angle), is not

occuring. Instead diffusion in angle is strong, accompanied by some diffusion

to smaller and larger p, demonstrating the importance of 3D diffusion.

4.6.2 Diffusion terms

In order to test and quantify the diffusion quantitatively, it is useful to consider

the equation determining the evolution of the particle equation in spherical

polar coordinates, described by

df(p, α)

dt
=

1

p2

∂

∂p

[
p2

(
Dpp

∂

∂p
+Dpα

∂

∂α
+ Ap

)
f(p, α)

]
+

1

sinα

∂

∂α

[
sinα

(
Dαp

∂

∂p
+Dαα

∂

∂α

)
f(p, α)

]
,

(4.44)

with the coefficients implicit functions of p, α:
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Figure 4.19: Evolution of the P1 distribution with fixed isotropic waves.

Dpp(p, α) =
e2ω2

p

πε0v3

∞∑
m=0

∫ kD

ωp/v

dk

k
Nm(k)Pm(cosχ0)Pm(cosα),

Dαp(p, α) =
e2ω2

p

πε0v3p sinα

∞∑
m=0

∫ kD

ωp/v

dk

k
tanχ0Nl(k)

P 1
m(cosχ0)P 1

m(cosα)

m(m+ 1)
,

Dαα(p, α) =
e2ω2

p

4πε0v3p2 sin2 α

∞∑
m=0

∫ kD

ωp/v

dk

k

1

2
tan2 χ0Nm(k)

[
Pm(cosχ0)Pm(cosα)

+
(m− 2)!

(m+ 2)!
P 2
m(cosχ0)P 2

m(cosα)

]
,

(4.45)

and Dpα(p, α) = Dαp(p, α).

The coefficient Dpp determines the rate of diffusion in momentum p, and

the factor Dαα determines the diffusing in pitch angle α. By comparing the

ratio Dpp/p
2 sin2Dαα, we can see the relative influence of these effects.

For flat waves, with NL(k, θ) = N0, the integrands in Equation (4.45) can

be integrated analytically to show that

Dpp

p2 sin2 αDαα

=
2 ln

(
kD
kφ

)
1
2

(
k2D
k2φ

)
− ln

(
kD
kφ

)
− 1

. (4.46)
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Figure 4.20: Ratio of the diffusion coefficients Dpp and p2 sin2 αDαα.

The ratio is is plotted in Figure 4.20. The ratio is < 1 for p > 2.98pe, a result

which holds for any pe and particle distribution. This implies that diffusion

in pitch angle is more important over that range, at least when considering

isotropic wave distributions.

Writing Dpp ≈ (∆p)2/∆t and Dαα ≈ (∆α)2/∆t, the ratio

Dpp

p2 sin2 αDαα

≈
(

∆p

p⊥∆α

)2

, (4.47)

with p⊥ = p sinα. Then, for isotropic flat waves (4.47) implies

∆p ≤ p⊥∆α, (4.48)

for p > 2.98pe, based on Figure 4.20.

For constant ∆α, (4.48) implies that ∆p is smaller when p⊥ is smaller.

Thus, for p such that Dpp/ sin2 αDαα < 1, the particle diffusion behaves less

like 1D quasilinear relaxation near α = 0 than at larger angles near 90◦. This

runs counter to the standard 1D picture and strongly suggests that quasilinear

relaxation behaves fundamentally differently in three dimensions. Put another

way, for p > 2.98pe and constant ∆p, ∆α is larger with respect to ∆p as p⊥
decreases.
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4.6.3 Maxwellian beam distributions

A conventional model for a type III beam is a shifted Maxwellian distribution

f(p) ∝ exp[−(v − vb)2/2V 2
b ], or specificially

fb(p, α) =
nb

[(2π)1/2mVb]3
exp

[
−v

2 + v2
b − 2vvb cosα

2V 2
b

]
, (4.49)

where nb is the number density, vb is the streaming speed, Vb describes the

spread in the beam’s “thermal” speed and vb is assumed to be parallel to B.

Usually, one also assumes a thermal Maxwellian centred at v = 0 with a density

n0 � nb, such that near vb the dominant influence is the electrons described

by (4.49). The total distribution is the sum of these two distributions.

A necessary condition for wave growth to be possible is that the 1D dis-

tribution, F (v‖), obtained by integrating the total distribution over the com-

ponents of velocity perpendicular to the beam (cosα = 1), have a minimum,

with dF (v‖)/dv‖ > 0 between this minimum and a maximum at v‖ ≈ vb, as

assumed in early numerical models (e.g., Grognard [1982]; Grognard [1984]).

It is straightforward to expand (4.49) in Legendre polynomials, as in (3.3),

with the coefficient of the lth term given by

fl(p) =
nb

[(2π)1/2mVb]3
exp

(
−v

2 + v2
b

2V 2
b

)
gl(p),

gl(p) =
2l + 1

2

∫ 1

−1

d cosαPl(cosα) exp

(
vvb

V 2
b

cosα

)
. (4.50)

The first two terms are

g0(p) =
sinh(vvb/V

2
b )

vvb/V 2
b

, g1(p) =
sinh(vvb/V

2
b )

(vvb/V 2
b )2

− cosh(vvb/V
2

b )

vvb/V 2
b

.

(4.51)

The expansion in Legendre polynomials is most useful when it converges rapidly,

which is only for vvb/V
2

b � 1 based on (4.50). Then the two terms (4.51) may

be approximated by g0(p) = 1 and g1(p) = 3vvb/V
2

b . However, this approxima-

tion requires v2
b � V 2

b , and such a distribution has no range where the gradient

in p is positive. It follows that the distribution (4.49) is not a useful starting

point when discussing the use of the Legendre expansion.

However, it is important for a numerical code to be able to describe an offset

Maxwellian well. In Figure 4.21, we show that for a Maxwellian with vb = 20Ve
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Figure 4.21: Demonstration that for vb = 10ve, a Legendre expansion with

`max ≈ 40 is required to describe an offset Maxwellian of the form 4.49

and Vb = Ve one requires lmax ≈ 40 in order to sufficiently approximate the

distribution. This suggests that most numerical calculations probably only

need to calculate up to `max ≈ 100. Further work is required to test this

suggestion.

4.7 cos2N+1 α distributions

Available data [Lin et al., 1981; Ergun et al., 1998] suggest electrons beams in

the IPM are broad in angle and weakly anisotropic. In order to approximate

conditions in the IPM better, we consider distributions of the form

f(p, α) = f0(p)
[
1 + r(p) cos2N+1 α

]
, (4.52)

Data from Ergun et al. [1998], reproduced in Chapter 1 (Figure 1.10) indi-

cates an interplanetary electron beam approximately 60◦ across. Such a beam

is fitted appropriately by a distribution ∝ cos5 α, motivating a choice of N = 2

in (4.52) for investigation of these distributions. Figure 4.22 shows two exam-

ples of such distributions, one with f0 a double power law and the other an

offset Maxwellian.Narrower beams can be modelled with higher values of N .

An advantage of particle distributions of the form in (4.52) is that they

have well-known and relatively simple expansions in Legendre polynomials.

For N = 2, it may be shown that
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f(p, α) = f0(p)
[
1 + r(p) cos5 α

]
= f0(p)

[
1 +

3

7
r(p)P1(cosα) +

4

9
r(p)P3(cosα) +

8

63
r(p)P5(cosα)

]
,

(4.53)

with

f1(p) =
3

7
r(p)f0(p), (4.54)

f3(p) =
4

9
r(p)f0(p), (4.55)

f5(p) =
8

63
r(p)f0(p). (4.56)

The 3D resonance of such a cos5 α distribution is now investigated using

the technique of separating the relative contributions of electrons introduced

in Chapter 3. Beginning with the expressions for γ` from Equation (3.7),

γ1(k) =
2π2e2ω2

pm
2

k3

{
f1(pφ)− 1

pφ

∫ ∞
pφ

dp f1(p)

}
,

γ3(k) =
2πe2ω2

pm
2

k3

{
f3(pφ) +

3

pφ

∫ ∞
pφ

dp f3(p)− 15pφ
2

∫ ∞
pφ

dp
f3(p)

p2

}
,

γ5(k) =
2πe2ω2

pm
2

k3

{
f5(pφ) +

105pφ
4

∫ ∞
pφ

dp
f5(p)

p2
−

315p3
φ

8

∫ ∞
pφ

dp
f5(p)

p4

− 15

8pφ

∫ ∞
pφ

dp f5(p)

}
. (4.57)

If f0 is a double power law of the form (3.14), viz

f0(p) =

{
Apa p < pb

Bp−b p > pb
(4.58)

with Apab = Bp−bb , then for p < pb the factors in (4.57) become
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γ1(k) ∝ A

k3

3

7

{
− paφ +

1

a+ 1

1

pφ

(
pa+1
b − pa+1

φ

)
+

1

b− 1

1

pφ
pa+1
b

}
(4.59)

γ3(k) ∝ A

k3

4

9

{
− paφ −

3

a+ 1

1

pφ

(
pa+1
b − pa+1

φ

)
− 3

b− 1

1

pφ
pa+1
b

+
15pφ

2

[
1

a− 1

(
pa−1
b + pa−1

φ

)
− 1

b+ 1
pa−1
b

]}
(4.60)

γ5(k) ∝ A

k3

8

63

{
− paφ −

105pφ
4

[
1

a− 1

(
pa−1
b − pa−1

φ

)
− 1

b+ 1
pa−1
b

]
+

315

8
p3
φ

[
1

a− 3

(
pa−3
b − pa−3

φ

)
− 1

b+ 3
pa−3
b

]
+

15

8pφ

[
1

a+ 1

(
pa+1
b − pa+1

φ

)
− 1

b− 1
pa+1
b

]}
. (4.61)

Then, in a similar manner to the P1 analysis in Chapter 3, (4.59-4.61) can

be written as

γ1(k) ∝ 1

k3

(
− γ1,iso + γ1,a1 + γ1,a2 + γ1,a3 + γ1,a4

)
(4.62)

γ3(k) ∝ 1

k3

(
− γ3,iso − γ3,pos + γ3,a1 + γ3,a2 + γ3,a3 + γ3,a4

)
(4.63)

γ5(k) ∝ 1

k3

(
− γ5,iso − γ3,pos + γ5,a1 + γ5,a2 + γ5,a3 + γ5,a4

)
(4.64)

(4.65)

where γ`,iso and γ`,pos contribute to damping and γ`a1−a4 are defined in the same

way as in Chapter 3, and have the interpretation given in Table 4.1

For f0(p) a double power law distribution centred at pb = 10pe, the relative

contributions to γ` are plotted in Figure 4.23. Again, one can see that electrons

from the higher speed tail of the electron distribution contribute significantly to

Langmuir wave growth; in particular γn,a3 is relatively large for p < pb. Figure

4.24 shows the sum of the positive and negative factors of each γ` separately.

The regions of p where the positive (red) factors are larger than the negative

(blue) factors are markedly different than would be expected in a 1D consid-

eration of wave growth; interestingly, the 3D resonance effect here means that

some parts of γ3 and γ5 are negative.

The sum γ1 + γ3 + γ5 is shown in Figure 4.25. It is bounded from above

and below in pφ, which is different behaviour than the 1D resonance condition
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Component Represents contribution to wave growth from electrons

in the region:

γ`,a1 from pφ to pb −∆pb, i.e. particles on the lower speed

side of the beam, away from the peak

γ`,a2 from pb −∆pb to pb, i.e. close to the peak on the lower

speed side

γ`,a3 from pb to pb + ∆pb, i.e. particles close to the peak on the

higher speed side

γ`,a4 from pb + ∆pb to ∞, i.e. particles in the high speed tail

of the distribution

Table 4.1: Definitions and interpretation of the γ`a1−a4 factors

would suggest. The distribution has a 1D derivative ∂f/∂v > 0 and so γ > 0

for p < 10pe, but the growth rate is negative for p < 6.7pe in this case. for the

fully 3D calculation.

The cos5α distribution is also investigated using the numerical code for a

Langmuir wave distribution that is flat and fixed in time. Again, significant

diffusion in angle occurs with comparably little diffusion in p‖, which can be

seen in Figure 4.26. This demonstrates that an electron beam distribution that

is a realistic approximation of data taken in the interplanetary medium should

undergo the 3D resonance and diffusion effects that are described in Chapter

3 and this chapter.
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4.8 Discussion and conclusions

The numerical method and code described in this chapter have great poten-

tial to understand electron-Langmuir wave interactions, especially to explore

fully 3D aspects numerically and demonstrate the importance of 3D effects. A

major step towards such a treatment was demonstrated in this chapter, with

significant progress in testing isotropic cases and some higher order distribu-

tions. The numerical results available demonstrate that the relaxation of a fast

electron stream is qualitatively and quantitatively different to the 1D picture

of plateau formation. Instead, major broadening in pitch angle occurs, in ad-

dition to diffusion in speed ‖ to B, with some particles diffused to the opposite

direction. Furthermore, the diffusion in p‖ occurs, to a smaller degree, on the

higher velocity side of the peak as well as on the lower.

The 3D resonance results explored in this chapter may contribute to the

theoretical resolution of Sturrock’s Dilemma discussed in Chapter 1. Diffusion

to higher speeds as well as lower will contribute to the time-of-flight advection

effect, where faster particles outrun slower particles so that as the beam re-

forms as it moves through the corona. When this advection effect is considered

in addition to stochastic growth effects, a qualitative argument can be made

that the beam should survive out to interplanetary distances. Furthermore,

the diffusion in pitch angle may help explain the broad features seen in Type

III bursts. The pitch angle broadening will be balanced by magnetic focusing,

which has been invoked to justify a 1D approximation for the electron beam.

Also, more diffusion in angle means that the 1D quasilinear relaxation asymp-

totic state, which is the plateau distribution that is stable to the growth of

Langmuir waves, does not form in the same way.

Comparison between these results and those of Lee et al. [2019] is instruc-

tive. Those authors conducted a Particle in Cell simulation using 2 spatial

dimensions and a 3D velocity space and compared to a 2D weak turbulence

simulation (Figure 4.27). Whereas the 2D quasilinear results showed a narrow

plateau forming, the PiC 3D electron velocity distribution function evolves in

a similar way to that described in this chapter - pitch angle diffusion appears

to occur and broaden the beam perpendicular to the magnetic field with in-

creasing time. These results are not directly comparable, since they use a PiC

method and 2D wavenumber space, versus a homogeneous 3D quasilinear the-

ory. However, the existence of pitch angle diffusion-like evolution in 3D velocity
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space of the electron distribution supports the results of Chapters 3 and 4 of

this thesis.
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Figure 4.27: Results from [Lee et al., 2019] - 2D quasilinear theory simulation

above, with 2.5D PiC below. Both figures depict the electron velocity distribu-

tion function (VDF) Fe(v) vs. v⊥/ve and v///ve, for four different time steps

corresponding to ωpt = 500, 1000, 1500, and 2000.

Further development of the code and application to a moving electron
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stream will determine whether 3D effects and pitch angle diffusion play a major

role in the real corona, as we expect they will. With the monotonic advection

scheme [Kontar , 2001; Li et al., 2002] combined with the solid physical foun-

dation of the OPL electron density model described in Chapter 2 it should be

possible to quantitatively consider the time of flight effects. A fully developed

code should be able to handle arbitrary initial electron distributions close to

the solar corona, decompose them into their Legendre components, and follow

their evolution with their excited Langmuir wave populations. Such results will

be very timely given the opportunity to compare them against newly released

and future data from the Parker Solar Probe and Solar Orbiter.
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Figure 4.22: An electron distribution (4.52), a) with f0 in the form of a peaked

double power law and N = 2, and b) with f0 as an offset Maxwellian centred

at p = 10pe. The contour levels are evenly spaced at 0.1fD apart.
112



2 4 6 8 10 12

γ
1

0

5000

10000

2 4 6 8 10 12

γ
3

×10
4

0

1

2

γ
n,iso

γ
n,pos

γ
n,a1

γ
n,a2

γ
n,a3

γ
n,a4

2 4 6 8 10 12

γ
5

×10
4

0

5

10
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case of f(p, α) = f0(p)(1 + cos5 α), with f0(p) a double power law of the form

(3.14), with p0 = 10, a = 4 and b = 8. γ` contributes to positive growth in the

p‖ direction when the positive parts are greater than the negative.
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rate in Figure 4.24. The growth rate in the p‖ direction is positive for a region
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Figure 4.26: Evolution of the cos5 α distribution as described in Equation 4.52

with N = 2 with r(p) = 1 and f0(p) a double power law with a = 4 and b = 8.

The particles diffuse most significantly in angle, with some broadening in p‖.
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Chapter 5

Conclusions and future work

This thesis put forward new foundations for modelling the 3D interactions

of electrons and Langmuir waves, both in general and in Type III solar radio

bursts, and for reconsidering the spatial evolution and origin of the solar corona

in general. A physically significant and empirically well-supported model for

the electron density profile was described in Chapter 2, and in Chapters 3 and

4 the need for a fully 3D consideration of the electron beam-Langmuir wave

interaction (the basis for the kinetic beam instability and the underlying mech-

anism for plasma emission) is demonstrated.

In Chapter 2 the advantages of the offset power law model for the elec-

tron density profile of the solar corona were explained. It was found by fitting

published data sets that this model works remarkably well, despite its simplic-

ity, and the fits can be interpreted in the following way. Overwhelmingly, the

radial offset r0 was found to be very close to 1.0RS, which implies that the

bulk outflow of plasma in the solar corona originates close to the photosphere.

Furthermore, the result that the average power law index 〈α〉 = 2.4 implies

acceleration of the solar wind. Using conservation of total electron number,

this model fit implies a velocity profile like v ∝ (r − r0)0.4, which is consistent

with several sets of observational data as well as existing models, including the

widely used Parker model.

Chapter 3 is a detailed study of the quasilinear wave equation expanded

in Legendre polynomials, demonstrating that resonance between electrons and

Langmuir waves is fundamentally different in the 3D picture compared to the

1D picture. Whereas in 1D the resonance is one-to-one between particles with

velocity vφ and waves with wavenumber k, in 3D waves with wavenumber k

may be resonant with electrons moving with v > vφ. One of the implications

of this is that the commonly used, straightforward, consideration of the sign of
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gradient of the 1D electron distribution, ∂f(v)/∂v, cannot be relied upon to

determine stability of electron distributions. In fact, distributions may be un-

stable in 3D that would be considered stable in 1D, and conventional unstable

distributions induce Langmuir wave growth in different regions of phase space

than the 1D picture predicts.

Chapter 4 developed a numerical scheme for solving the 3D axisymmetric

equations and in so doing further explored the problem of the electron beam-

Langmuir wave interaction. The numerical scheme was tested first using an

isotropic thermal Maxwellian electron distribution and testing the development

of waves. The waves, as expected, evolved from a suprathermal to a thermal

level, with the thermal level being very stable. An isotropic gap distribution

for the particles was then introduced, and waves evolved towards the long-

predicted theoretical asymptotic state. This case proved useful both as a test

of the code and to observe the evolution of the waves in time, and it was seen

that the waves grew very quickly, achieving the asymptoptic level at around

225ω−1
p . A P1 particle distribution was then allowed to evolve along with the

wave distribution. Diffusion of the particles and growth of the waves was seen,

with diffusion in pitch angle supporting results from Chapter 3. However, just

as the backreaction on the particles begins to modulate the wave growth, a

numerical instability is encountered in the code which is yet unresolved. In

attempts to resolve this problem, further runs were made that fix the level

of waves in time. These provide further support for the idea put forward in

Chapter 3 that 3D resonance should imply more diffusion in putch angle than

previously expected.

5.1 Future work

5.1.1 Electron density profiles

In Chapter 2 it was found that some data sets were best fit with two power

laws in different regions. This was interpreted as the line of sight measurement

projecting through two different plasma environments. Further data, especially

in-situ data, could be used to test this interpretation.

The analysis in Chapter 2 showed that fits to the OPL density model to

white light and spectroscopic data yielded higher values of the power law index

α (i.e. steeper density profiles) than those data derived from radio burst obser-
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vations. This was explained as pre-flare activity enhancing the plasma ahead

of the radio burst exciter beam, which has strong implications for determining

properties of the burst. Further work can be done using density profiles derived

from Type III bursts, for example using the technique described by McCauley

et al. [2018] with data from the Murchison Widefield Array. If the interpre-

tation that pre-flare activity increases the electron density ahead of Type III

bursts holds true, calculations should be carried out in order to estimate the

error in previous calculations of Type III source heights, and to what degree

this effect may reduce the need to appeal to ducting. A reference is made

in Chapter 2 to the possible underestimation of the speed of Type III exciter

beams due to such enhancement; a more thorough calculation of this effect is

possible using the OPL model and radio burst data. Further electron density

data at low helioaltitudes will be in abundance due to the Parker Solar Probe

and Solar Orbiter data releases.

5.1.2 Advection and density inhomogeneity

The code developed in Chapter 4 includes a useful and numerically tested

scheme known to describe electron transport well [Kontar , 2001]. Advection

was included in the numerical design (such that it may be included once the

quasilinear interaction was working reliably for all cases) but was outside the

scope of this thesis. In previous (albeit 1D) numerical explorations of this

problem, advection effects are expected to be very important in resolving Stur-

rock’s Dilemma and determining the shape of the electron beam later in its

life. Further, since the 3D resonance condition implies more diffusion in pitch

angle than previously considered, a reconsideration is needed of the balance

between spatial spreading of the beam from this effect and magnetic focusing

to smaller α. Pitch angle diffusion due to the 3D wave-particle interactions

may potentially explain why, despite the magnetic focusing effect tending to

drive electron beams towards a 1D structure, Type III beams often have a wide

angular profile in the data.

Density inhomogeneities should also be introduced, as was done in quasi 1D

simulations e.g. Li et al. [2002, 2008]. The right balance of Stochastic Growth

Theory effects from density variations, time of flight restructuring of the beam,

and Langmuir waves lost to nonlinear processes can then be tested against in

situ electron distribution data.
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5.1.3 Numerical code

We have shown promising tests and interesting cases that the numerical code

can handle. However in its current form a full, long duration solution of the

coupled electron-Langmuir wave situation with time-varying waves is not pos-

sible because of a singularity developing, causing the code to crash. Fixing

this numerical bug is the immediate next step in this work - to explore the

full evolution of waves with 3D and relativistic growth conditions and their

back-reaction on the electrons.

In its present form, the numerical model is able to handle the early growth

of waves, but more work and attention needs to be paid to the period where

the waves begin to significantly back-react on particles. In 3D as in 1D, the

growth of waves should start to be modulated by the diffusing electron beam.

This part of the simulation is not yet working reliably, but with this element

in place, it is expected that novel 3D effects develop.

5.1.4 Extrapolated wave distribution

An investigation into the diffusion of particles could be conducted with the

current version of the code by using a more anisotropic (therefore, with a

higher order Legendre expansion) Langmuir wave distribution fixed in time.

Beginning with an initial particle distribution of the form (3.14), i.e. a P1 elec-

tron distribution with a double power law form, one can calculate the initial

growth rate γL(k, α). By making some simplifying assumptions, namely that

the growth rate dominates the spontaneous emission (αL � γL) and that ini-

tially the waves grow without effecting the particle distribution significantly,

then we arrive at a first order approximation for the initial growth of waves

with time,

NL(k, α, t) = N0(k, α)eγ(k,α)t. (5.1)

With (5.1) as a basic guide to the early stage of wave growth, we can

use the foregoing fixed-wave investigations to estimate a level of growth where

particle diffusion will proceed at a significant rate. I.e., for this choice of initial

particle distribution and with the plasma parameters used in this chapter,

where NL ≈ 2000ND.

Figure 5.1 is a contour plot of γ(k, α) for the DPL distribution. Figure 5.2 shows

NL(t = 1000ω−1
p ), such the level of waves reaches 2000ND. The distribution is

clearly quite narrow and anisotropic.
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Now, we could seek to replicate the distribution in Figure 5.2 by eye with

a Maxwellian distribution of waves, expand that Maxwellian in Legendre poly-

nomials and fix the Langmuir wave distribution at those values, and evolve

f(p, t). This would test whether the numerical problem comes from one of

the higher order Langmuir wave components, and if it proceeds without en-

countering the singularity problem, will be interesting to see the resonance and

diffusion effects on the particles.

5.1.5 Radio emission

The next logical step for a numerical simulation code which successfully de-

scribes 3D axisymmetric evolution of electrons and Langmuir waves is to in-

clude the nonlinear processes that result in radio emission. In 1D, such studies

have been carried out successfully, e.g. in Li and Cairns [2014] which used

a population of hot electrons in the low corona and followed their evolution

out to higher heliolatitudes. In addition to predicting Type III burst dynamic

spectra, this step would be interesting from an electron beam stability perspec-

tive, since radio emission reduces the Langmuir wave population, which must

influence the development of the beam-plasma-wave structure.

The ultimate goal for this research, which this thesis has provided a motiva-

tion and a major foundation for, is a fully 3D, relativistically correct simulation

of the dynamic spectrum of Type III radio bursts and the properties of the as-

sociated electron beams and Langmuir waves from the Sun to the Earth’s orbit.

For the first stage of plasma emission, this would include incorporation of fully

3D electron beam-Langmuir wave physics, stability considerations of beams,

time of flight beam reformation effects, density inhomogeneities and stochas-

tic growth theory, and nonlinear effects such as scattering and coalescence.

In terms of the radio wave propagation, effects such as refraction in the so-

lar corona and polarisation of the resulting radio emission should be explored

further.
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Appendix A

Block tridiagonal decomposition

The quasilinear electron equation can be written in the following matrix form,

as shown in Chapter 4 Equation 4.35.
An
i2 Cn

i2

Bn
i3 An

i3 Cn
i3

Bn
i4 An

i4 Cn
i4

. . . . . . . . .

Bn
ijmax−1 An

ijmax−1




fn+1
i2

fn+1
i3

fn+1
i4
...

fn+1
ijmax−1

 =


ηni2
ηni3
ηni4
...

ηnijmax−1

 ,

(A.1)

where

An
ij = 1 + Λn

ij−1 + 2Λn
ij + Λn

ij+1,

Bn
ij = −[Λn

ij−1 + Λn
ij],

Cn
ij = −[Λn

ij + Λn
ij+1]. (A.2)

The block-tridiagonal inversion procedure for this system, adapted from

Varah [1972], is an efficient way of solving this system. Instead of naively

inverting the large matrix, in (A.1), we use the property that block tridiagonal

matrices can be factored into a product of lower L and upper U triangular

matrices, a process called LU decomposition. The steps in this process are as

follows:

Firstly the matrix on the left of (A.1) is LU factorised as follows. This

matrix can be written as Varah [1972]
An
i2 Cn

i2

Bn
i3 An

i3 Cn
i3

. . . . . . . . .

Bn
ijmax−1 An

ijmax−1

 = Ln
i U

n
i , (A.3)
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where

Ln
i =


Dn
i2

Bn
i3 Dn

i3
. . . . . .

Bn
ijmax−1 Djmax−1

 , (A.4)

Un
i =


I2 βni2

I3 βni3
. . . . . .

Ijmax−1

 (A.5)

and

Dn
i2 = An

i2, β2 =
(
An
i2

)−1
Cn
i 2, (A.6)

Dn
ik = An

ik −Bn
ikβi−1, for k = 2, ..., jmax − 1, (A.7)

βnik =
(
An
ik

)−1
Cn
ik, for k = 2, ..., jmax − 2. (A.8)

Now introducing the dummy variable Y, and writing the column vector of the

fn+1
ij components we are solving for as Fn+1

i and the column vector of the ηnij
terms representing the right hand side of (4.35) as Zn

i , so that

F n+1
i =

 fn+1
i2
...

fn+1
ijmax−1

 Zn
i =

 ηni2
...

ηnijmax−1

 , (A.9)

and the system can now be split into

Ln
i Y

n
i = Z, Un

i F
n
i = Yn

i , where Yn
i =

 yni2
...

ynijmax−1

 (A.10)

The first step here is to invert the Ln
i matrix to solve for Yn

i . As Ln
i is a

lower triangular matrix by construction, there is an efficient algorithm to solve

the leftmost equation in (A.10), namely

yni2 =
(
Dn
i2

)−1
ηni2 (A.11)

ynij =
(
Dn
ij

)−1
(ηnij −Bn

ijyj−1), j = 2, ..., jmax − 1. (A.12)

Since we now have the vector Yn
i , the upper triangular matrix Un

i is inverted

to solve the middle equation in (A.10) for the particle distribution Fn
i . In this
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project we chose the backwards-inversion algorithm for efficiency, i.e. we first

find fn+1
ijmax−1 and then the terms fn+1

ij for decreasing j. Explicitly, the particle

equation terms are given by

fn+1
ijmax−1 = yjmax−1 (A.13)

fn+1
ij = yj − βjyj+1, j = jmax − 2, jmax − 3, ..., 2. (A.14)
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