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ABSTRACT 

ECG or electrocardiogram is a tool used to monitor the electrical activity of a heartbeat. 
However, the detectable signal is incredibly small, and an electrical noise could be relatively 
large. This means it is necessary to design a filter for better attenuating the noise below and 
beyond a certain frequency. Moreover, the abnormal ECG results from abnormal heart rate is 
the best notification for any potential heart diseases and should get notice as soon as possible. 
Therefore, this project focus on designing a system for both solving noise attenuation and 
ECG detection issues. 

1.Introduction

1.1 ECG Signals 

ECG measurements are taken analysing the flow of electricity from every beat of the heart, 
and especially this occurs with an oscillation frequency of 1.3 Hertz, which is equivalent to 
80 beats per minute. In addition, ECG measurements are taken by attaching leads to the skin 
of a patient cause of the physical constraints of monitoring the heart rate through the surface 
of the skin (Deergha Rao & Swamy 2018, pp. 35-57). Before choosing the effect processing 
techniques for the designed filter, it is essential to understand the waveform of the ECG 
waveform. As Figure 1 shows, electrical activity of tracing results from the propagation of 
five events. In a normal heart, each beat starts in the right atrium with an action potential 
signal from the sinoatrial node. The signal spreads across both atria, causing muscles cells to 
depolarise and contract to induce a phase known as atrial systole (P wave), while ventricular 
repolarisation is shown by the T wave (Saritha 2008, pp. 68-77). As a result, the signal 
should go into a linear system that is sinusoidal fidelity to make the output signal shares the 
same frequency as the input signal for better detecting both the P wave and the T wave 
(Saritha 2008, pp. 68-77). Moreover, the transform function bases on the mathematical 
technology of decomposition should be the general consideration for choosing the filters and 
effects within the system. 

In addition, PR-Segment on the ECG, a flat line following the P wave when the signal leaves 
the atria, depicts the period of operation that follows atrial systole and proceeds the 
contraction of the ventricles, while the ST-Segment depicts the period when the ventricles are 
depolarised. Most importantly, as the signal spreads through the ventricles, the QRS Complex 
represents rapid ventricular depolarisation (Saritha 2008, pp. 68-77). The FIR filters or the 
IIR filters bases on the DFT fits the function for detecting specific frequency component 
from each period of the ECG very well. Besides, one of the two filters forms the input signal 
of ECG along with the impulse response from the PR-Segment, P wave, T wave, ST- 
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Segment, and the QRS Complex into the output signal in the frequency domain to describe 
the heart rate (Deergha Rao & Swamy 2018, pp. 35-57). 

Figure 1. The normal ECG waveform (Saritha 2008) 

1.2 ECG Signals and the Filters 

1.2.1 FIR Filter and IIR Filter 

The difference between the FIR filter and the IIR filter is the limitation of the impulse 
response. The FIR filters do not have the past outputs fed forward to the current outputs, 
which means it has no feedback to keep the impulse response duration finite. On the other 
hand, the IIR filters have both the past input signals and the past output signals. 

Compared to the IIR filters, it is hard to use FIR filters to implement the frequency response 
design for the ECG signals. Detecting the specific frequency of the QRS complex according 
to different people and filtering a range of undesired noise requires a band-pass filter or the 
combination of high-pass filters and low-pass filters to achieve the same effect. However, a 
simple band-pass or combinative FIR filter usually needs more coefficients than an IIR filter 
did. For example, the moving average filter is one of the classic FIR filters that hold finite 
past input signals in a buffer and sums them with each new input signals to produce an output 
signal, while a simple IIR filter can replace it with fewer coefficients. Apart from this, the  
filter needs to be less effective to get more precise ECG signals. The FIR filter's roll-off 
sharpness is  significant, and the stopband attenuation is larger than the IIR filter's (Smith 
1999). Therefore, the IIR filter is the choice for the ECG signals with gently fluctuating and 
less attenuation compared to the original input ECG signals. 
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1.2.2 Butterworth Filter and Chebyshev Filters 

Two classic IIR filters from which one of them is the Butterworth filter and the other one is 
the Chebyshev 2 filter. Based on the choice of the IIR filters for less effective on purpose, the 
two filters are especially useful for separating one band frequency from another. The 
Chebyshev filter uses the Chebyshev response for achieving a faster roll-off by allowing 
ripple in the frequency response. As the ripple increases, the roll-off gets sharper, and the 
Chebyshev response means the two parameters share an optimal trade-off relation from 
which type 1 has the ripple in the passband while type 2 has the ripple in the stopband.  

Furthermore, the Butterworth filter also depends on the two parameters of ripple and roll-off, 
but the ripple of it is set to 0% (Smith 1999, pp. 333-342). The low pass Chebyshev filters of  
type 2 are part of the designed filters for moving the unwanted noise of the ECG signals. As 
illustrated in figure 2, the low-pass Chebyshev filter achieves a faster roll-off than the  

Butterworth filter with the 0% ripper. To move the noise from the ECG signals and maintain 
the precision of it at the same time, I choose to use the low-pass Chebyshev filter of type 2. It 
can achieve a slower roll-off than the type 1 low-pass Chebyshev filter but faster roll-off than 
the Butterworth filter by allowing ripper in the stopband. To centre the shape of the output 
signals from the type 2 Chebyshev filter, I choose to use the high-pass Butterworth filter 
with slower roll-off. The combination of them as a designed filter is in figure 3. 

Figure 2. The low-pass Chebyshev filter and Butterworth filter (Smith 1999, p. 334) 
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Figure 3. The designed filter 

1.3 Combining the system 

1.3.1 Time-variant Effect Processing 

Two main types of abnormal ECG signals are detectable for the system. One of them is 
Ventricular Tachyarrhythmias, and the other is Arrhythmia. Ventricular Tachyarrhythmias 
appear in people who have structural heart problems (Ramli & Ahmad 2003, p. 232). If the  
delay of the original ECG signals continuously varied with a low frequency such as 1 Hz, the 
low-frequency oscillator (depth) of the vibrato effect triggered to reflect the original ECG 
signal is too low that the individual is under risk of the Ventricular Tachyarrhythmias (Zölzer 
2011, p. 76). Moreover, Arrhythmia is a change in the rhythm of the heart rate. The 
tachycardia happens when the heart beats too fast, and the bradycardia happens when the 
heart beats too slow (Thakor & Zhu 1991). If the pitch variation of the frequency of the 
original ECG signals is significant, the delay-line (width) of the vibrato effect will reflect 
into the delayed signals.  

1.3.2 Settings of Effect Processing Techniques 

Vibrato effect use modulation of a simple delay on the ECG signal basing on rate and depth. 
The pitch effect of vibrato applied to one-channel with the delay line. According to the 
standard ECG signal from table 2, the QRS duration of all abnormal ECG signals is below 
0.01 seconds. Nevertheless, the QRS duration of normal ECG signals is over 0.01 seconds. 
Besides, the Ventricular Tachyarrhythmias happen when the frequency of the QRS is lower 
than the 0.2V (Islam et al., 2012, p. 9770). Therefore, the vibrato effect would be triggered 
when the low-frequency (depth) is lower than 0.2V, or when the delay-line (width) is less 
than 0.01s. 
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Table 1. data of the normal and abnormal ECG signals 

2. Lab Report

2.1 Analysing ECG signal 

In table 2, there is a summary of four types of ECG signals that got from the PhysioNet. The 
database includes three half-hour recordings of noise, especially in ambulatory ECG 
recorders and 12 half-hour ECG recordings（Goldberge et al., 2000). After finding and 
selecting, four types of ECG signals are chosen as the samples of the designed filter. 
According to different characteristics, the best sampling frequency for each signal depends on 
their size for maintaining the signal structure. The sampling results in Figure 4 include a 
normal ECG signal with noise, the Arrhythmia signal that the heartbeat is very slow 
(bradycardia), one of the Ventricular Tachyarrhythmias signals that the heartbeat drops 
instantly (type 1), and the other that the heartbeat increases instantly (type 2). The sampling 
process is skipped in the Matlab for keeping simple of the script file. 

Table 2. the summary of four types of ECG signal 

Types of ECG 
Signals (Filename) 

Sampling 
Frequency 

Size Detail 

Normal (ECG1) 1000 Hz 1 x 10000 double Noise is within 
the signal 

Arrhythmia-
bradycardia (ECG2) 

200 Hz 1 x 2000 double The heart beats 
very slow 

Ventricular 
Tachyarrhythmias 
Type1 (ECG3) 

50 Hz 1 x 500 double The heart attack 
makes the 
heartbeat drops 
instantly 

Ventricular 
Tachyarrhythmias 
Type2 (ECG4) 

10 Hz 1 x 100 double The heart attack 
makes the 
heartbeat 
increases 
instantly 
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Figure 4. the normal ECG signal and abnormal ECG signals 

After using the FFT function to find the specific frequency component within the 
normal ECG signal, it can be seen in figure 5 that the noise is around 50 Hz. 

Figure 5. the unfiltered normal ECG signal in frequency domain 
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Moreover, I designed a DTFT function to analyse both the magnitude and phase response of 
the 50 Hz noise. As Smith (1999) said, the phase is not important in most frequency domain 
applications because it is relatively easy to design filters with a perfect phase response. As 
a result, we only look at the frequency response in figure 6, and we can find both the noise 
frequency of 0.1∏ (50 Hz) and sampling frequency of 2∏  (1000 Hz) in it as a natural 
frequency between 0 and 2∏. 

Figure 6. the DTFT magnitude and phase response of the normal ECG signal 

2.2 Designing the filter 

The designed filter is a combination of a low pass Chebyshev filter, and a high pass 
Butterworth filter with the relative transfer function as figure 8 showed. Because the designed 
filter consists of two IIR filters, so the denominator (poles) of the transfer function is zero. At 
the same time, the a1, a2 and b1, b2 are the feedback coefficients and feedforward coefficients 
for the numerator (zeros), and the Cheby2 function and Butter function would calculate the 
result automatically.  Moreover, the details of filter order, low and high cut frequency is in 
the practical component of the project. 
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Figure 7. z-plane of the magnitude and phase response      Figure 8. poles and zeros before final filtering before 
final filtering 

In the simple pole-zero model, figure 7 and figure 8 represent the magnitude response and 
pole-zero location of the x2 signal, which is the output signal of the low-pass Chebyshev 
filter. Besides, figure 9 and figure 10 represent the magnitude response and pole-zero 
location of the x3 signal, which is the output signal of the high-pass Butterworth filter. As 
we can see from them, the ripple of the magnitude response changes from the range of pi to 
the range below 0.1 pi, while the pole-zero location changes from the right side to 0. 
Furthermore, the comparison among the normal signal in figure 4, the x2 output signal in 
figure 11, and the x3 output signal in figure 12 show the graduate attenuation of the noise by 
the designed filter. Finally, the comparison of figure 5 and figure 13 also demonstrates the 
efficiency of the designed filter that the 50 Hz noise disappeared. 

Figure 9. z-plane of magnitude response and phase response    Figure 10. poles and zeros before final filtering 
after final filtering.        
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Figure 11. The frequency of the normal ECG before final filtering 

Figure 12. The frequency of the normal ECG after final filtering 
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Figure 13. The filtered ECG signal in frequency domain 

Figure 14. The final adaptive filter for the ECG signals 
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3. Discussion

The residuals of the violin or the viola will be filtered with the cross-synthesis LPC 
coefficients of the two types of abnormal ECG signals with the vibrato function. The two 
settings of the low-frequency oscillator (depth) and the delay-line (width) are supposed to 
connect with the designed filter with 0.01s and 100 Hz respectively as their critical points. 
However, two types of abnormal ECG signals in figure 4 as Arrhythmia of bradycardia and 
type 1 and type 2 of Ventricular Tachyarrhythmias are beyond the range of the detecting 
system. The 100 Hz seems too over for the recommended range of 1 to 8 Hz, and the vibrato 
effect cannot apply to the ECG signal very well that the cross-synthesis between the residuals 
and the vibrato effect does not successfully create an audio file. 

As a result, the detection system manually imitates the process of judging whether an ECG 
signal is abnormal or not, and mainly focus on cancellation of the noise. The ECG signal 
filtered firstly, and then is classified as the bradycardia or Ventricular Tachyarrhythmias by 
the residuals of violin, or the residuals of viola respectively. Moreover, vibrato A and vibrato 
B are in favor to judge the type1 and type2 of the Ventricular Tachyarrhythmias. The vibrato 
A refers to the type 1 of Ventricular Tachyarrhythmias when the width is less than 0.1s and 
the depth is more than 90 Hz , while the vibrato B refers to the type 2 of Ventricular 
Tachyarrhythmias when width is less than 0.1s and depth is less than or equal to 90Hz 
(figure 14). In the future, the alternative effects and the corresponding parameters to the 
relevant frequency and time interval of the abnormal ECG should fits the detecting system 
for giving a better performance.   
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