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Abstract 4 

 5 

Gantry-free radiation therapy systems may be simpler and more cost effective, particularly for MRI-6 

guided photon or hadron therapy. This study aims to understand and quantify anatomical 7 

deformations caused by horizontal rotation with scan sequences sufficiently short to facilitate 8 

integration into an MRI-guided workflow. 9 

Rigid and non-rigid pelvic deformations due to horizontal rotation were quantified for a cohort of 8 10 

healthy volunteers using a bespoke patient rotation system and a clinical MRI scanner. For each 11 

volunteer a reference scan was acquired at 0° followed by sequential faster scans in 45° increments 12 

through to 360°. All fast scans were registered to the 0° image via a 3-step process: First, images 13 

were aligned using MR visible couch markers. Second, the scans were pre-processed then rigidly 14 

registered to the 0° image. Third, the rigidly registered scans were non-rigidly registered to the 0° 15 

image to assess soft tissue deformation. The residual differences after rigid and non-rigid 16 

registration were determined from the transformation matrix and the deformation vector field, 17 

respectively. 18 

The rigid registration yielded mean rotations of ≤ 2.5° in all cases. The average 3D translational 19 

magnitudes range was 5.8 ± 2.9 mm - 30.0 ± 11.0 mm. Translations were most significant in the left-20 

right direction. Smaller translations were observed in the anterior-posterior and superior-inferior 21 

directions. The maximum deformation magnitudes range was: 10.0 ± 0.9 mm - 28.0 ± 2.8 mm and 22 

average deformation magnitudes range: 2.3 ± 0.6 mm - 7.5 ± 1.0 mm. Average non-rigid deformation 23 

magnitude was correlated with BMI (correlation coefficient 0.84, p = 0.01). 24 

Rigid pelvic deformations were most significant in the left-right direction but could be accounted for 25 

with on-line adjustments. Non-rigid deformations can be significant and will need to be accounted 26 

for in order to facilitate the delivery of gantry-free therapy with an automated patient rotation 27 

system. 28 

 29 

 30 

 31 

  32 
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Introduction 33 

 34 

Conventional external beam radiation therapy (EBRT) utilises a modulated x-ray beam rotated about 35 

the patient to deliver a highly conformal treatment. An alternative approach involving a fixed radiation 36 

beam (gantry-free) would greatly simplify the engineering and cost barriers1 associated with rotating 37 

gantries2 both in terms of simplified linac design, particularly for hadron therapy3, and reduced 38 

complexity of coupling between the linac and the magnetic field of emerging MRI-Linac systems4-6. 39 

Radiation shielding requirements would also be reduced with gantry-free systems since the primary 40 

beam is only incident on a single wall. A prototype system using a horizontal patient rotation system 41 

coupled to a clinical linac has already been developed and the proof of concept demonstrated7-10. 42 

It’s not clear how well cancer patients would tolerate rotation, particularly patients who are very 43 

unwell or elderly. A recent study by Whelan et al. demonstrated rotation may be well tolerated by 44 

cancer patients11, however the addition of MRI may add further feelings of anxiety12 and 45 

claustrophobia13. Treatments using a gantry-free x-ray source and patient rotation would also require 46 

fundamental changes in how treatment plans are created. The current workflow is typically to acquire 47 

a planning computed tomography (CT) scan with the patient set up in the treatment position, then to 48 

create a treatment plan on this scan using multiple beam angles and modulation of beam weightings 49 

via an optimisation algorithm14. In a gantry-free system, images would be acquired at each couch angle 50 

and a modulated field would be optimised for each angle. The dose optimisation and calculation would 51 

then need to be applied to a summation of each couch position akin to dose calculation with 4D CT 52 

and respiratory binning15.  53 

A further challenge, particularly with horizontal patient rotation, is the introduction of soft tissue 54 

deformation due to gravity16,17 which has been demonstrated to affect organ positioning and 55 

dosimetry in prone vs supine position18. It has been suggested that the impact would be most 56 

significant on the external body contour, particularly for the pelvis during EBRT for prostate and 57 

cervical treatment16. The change in external contour will shift the penetration depth of the x-ray beam 58 

and compromise treatment if not accounted for19.  Lagomorph studies using horizontal rotation and 59 

kilo-voltage Cone Beam CT (kV CBCT) imaging system have assessed thoracic motion due to 60 

rotation20,21 and found the most significant motion was rigid shifts in the anterior-posterior direction, 61 

however it would be expected that external soft tissue deformation would be more significant for 62 

humans. Whelan et al assessed changes in the prostate, rectum and bladder contours of a single 63 

volunteer17 and found up to 4 mm variation in the mean average surface distance which could be 64 

largely mitigated by a prostate-guided rigid shift. The global rigid and non—rigid soft tissue 65 

deformation of human anatomy due to horizontal rotation have not yet been quantified and must be 66 

understood if horizontal rotation is to be used for treatment for reasons described above.  67 

The aim of this study is to quantify rigid and non-rigid deformation of the pelvis due to horizontal 68 

rotation in a cohort of healthy volunteers using a bespoke patient rotation system on a commercial 69 

MRI scanner. 70 

  71 
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Methods 72 

 73 

An ethics-approved study (ACTRN12618000676213) was undertaken with 8 healthy volunteers whose 74 

volunteer demographic information is summarised in Table 1. As there is little published data on the 75 

magnitude of anatomic deformation during rotation the sample size was pragmatically chosen to 76 

obtain sufficient information but not expose human subjects to unnecessary scans. Eligibility criteria 77 

included no contraindication to MRI, weight not exceeding 100 Kg, height not exceeding 190 cm, a 78 

total anterior-posterior width not exceeding 32 cm and a total lateral width not exceeding 46 cm 79 

where the PRS canopy covers the volunteer. 80 

Table 1: Healthy volunteer demographics 

Volunteer ID Age Gender Height (cm) Weight (Kg) Body mass 

index 

1 26 F 154 52 21.9 

2 26 F 160 56 21.8 

3 26 F 158 57 22.8 

4 27 F 155 41 17.1 

5 40 F 162 59 22.4 

6 30 M 175 70 22.9 

7 35 F 178 75 23.7 

8 46 F 167 76 27.3 

 81 

Volunteers were imaged on a 64-channel, closed, wide-bore 3 Tesla (MAGNETOM Skyra, Siemens, 82 

Erlangen, Germany) dedicated radiation therapy MRI scanner (Siemens Medical Systems, Erlangen, 83 

Germany) in a previously described bespoke patient rotation system (PRS)17.  84 

Volunteers were secured within the PRS using polyester straps and three airbags. Once secure, the 85 

volunteers were rotated outside of the MRI scanner to ensure clearance during the rotation and to 86 

familiarise the volunteer with the rotation prior to imaging. The volunteers were then moved into the 87 

MRI scanner and underwent the imaging procedure summarised in Figure 1 . 88 

 

Figure 1: Workflow of the PAROT study. The volunteer was first loaded into the patient rotation system and 

secured. An isotropic scan was then acquired in the supine (0° rotation) position before being manually 

adjusted in 45° increments. A faster scan was acquired in the supine (0° rotation) position before being 

manually adjusted in 45° increments. A faster scan was acquired at each position. 
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All sequences acquired in this study used the integrated body coil to both transmit and receive 89 

radiofrequency (RF) signal.  Initially, a single high-quality isotropic T2-weighed turbo spin echo (TSE) 90 

isotropic SPACE (Sampling Perfection with Application optimised Contrasts using different flip angle 91 

Evolution) scan with a voxel size of 1.7×1.7×1.7 mm3, TE/TR of 103/1470 ms, 500 mm2 field of view 92 

(FOV), 780 Hz/Px receiver bandwidth and an approximate scan time of 6 minutes.  This scan was 93 

acquired in the supine position (defined here as 0° rotation) and used as the target image to which 94 

subsequent images were registered. 95 

The PRS was then manually rolled to the volunteers right in 45° increments from 45° - 360° with the 96 

volunteer re-scanned at each position using a faster T2-weighted TSE scan with a voxel size of 97 

2.0×2.0×4 mm3, TE/TR of 96/12170 ms, 500x500 mm2 FOV, 405 Hz/px receiver bandwidth and an 98 

approximate scan time of 55 seconds. Fast scans were used for the rotated images to reduce the time 99 

a volunteer was positioned in the angled positions. Vendor supplied 3D geometric distortion 100 

corrections and an anatomical site specific B1 shim (Trueform) were applied to all images. The scans 101 

were then exported from the MRI scanner and an external contour generated on each image using 102 

tools from MiM picture archiving and communication system (version 6.8, MIM Software Inc., 103 

Cleveland, OH, USA). 104 

The images and their respective external contours were then exported from MiM and manually re-105 

orientated to the 0° coordinate space using MR visible markers placed on the PRS in 3DSlicer22. The 106 

images were then resampled to the isotropic 0° scan for registration. Image information outside of 107 

the external contours, i.e. noise and motion artefact, were removed by masking each image with the 108 

respective body contour. Images then underwent a bias field correction23 to remove variations in 109 

signal intensity and a histogram normalisation to the 0° image to aid registration. Pre-processing was 110 

performed using tools from the Insight Toolkit (https://itk.org).  111 

 

Rigid Motion Assessment 112 

Rigid motion was quantified through the registration of each volunteer’s couch marker aligned image 113 

to their respective 0° image using mirorr24, an open source rigid/affine registration algorithm 114 

developed for MR-CT registration. The algorithm has the benefit of inverse consistency using a block 115 

matching registration approach and mid-space image resampling. The resulting transform were 116 

analysed in MATLAB (MathWorks Inc., Natick, MA) to assess pitch, yaw and roll rotations and 117 

translation in left-right (LR), anterior-posterior (AP) and superior-inferior (SI) axis as shown in Figure 118 

2. 119 

 120 

Figure 2:  Rigid translation and rotations within the patient rotation system. Right and left orientations are 

relative to the volunteer physical supine orientation. 
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The rigid registration workflow was validated using a CIRS Model 048 male pelvis multi-modality 121 

phantom (Imaging Solutions©). The phantom includes pelvic bones, 177cc anechoic bladder, prostate, 122 

urethra, seminal vesicles and rectum. Manual offsets of ± 5 mm, 10 mm, 30 mm and 50 mm were 123 

introduced in the LR and SI planes and compared to translations from the transformation matrix 124 

following registration to the centred phantom image. LR offsets were achieved by alignment with in-125 

room lasers with corresponding shifts applied and SI offsets by adjustment of the patient table on the 126 

console. AP motion was not assessed as the MRI couch could not be incrementally adjusted, and it 127 

was concluded that any discrepancy between the measured and registration translations would be 128 

apparent using the LR and SI directions. 129 

 130 

Non-Rigid Deformation Assessment  131 

Residual soft tissue deformation was assessed by non-rigidly registering each rigidly registered image 132 

to the corresponding 0° image using deformable registration. The algorithm used is based on a cubic 133 

B-spline free-deformation model using a normalised mutual information metric from the non-134 

commercial open source software NiftyReg (NiftyReg version 1.3.9)25. A displacement vector field was 135 

generated from the registration and analysed in MATLAB. Due to SI variations in the anatomy captured 136 

by the FOV between the 0° and angled scans, a SI mask was created on each of the 2D scans following 137 

pre-processing using the itk interface package ITK-SNAP26 (http://www.itksnap.org). Each SI mask was 138 

then resampled to the rigidly registered image using the transform from the rigid registration. The 139 

rigidly resampled SI mask was then applied to the rigidly registered image and the 0° image to create 140 

a pair of anatomically equivalent images for the non-rigid registration. The entire process is 141 

summarised in Figure 3. 142 

 

Figure 3: Image registration workflow. Step 1:  An external contour was generated for each image using the 

MiM external body contour tool. Step 2: couch marker alignment to the respective 0° scan. Step 3: Images were 

masked with their respective external contour to remove image artefacts outside the body before pre-

processing then rigidly registered to the 0° image. Step 4: SI masking was applied to the rigidly registered 

image and the 0° scan before non-rigid registration of the rigidly registered image to the 0° image. Transform 

files and deformation vector fields were exported to analyse the rigid and non-rigid motion respectively. 

 

The accuracy of the non-rigid registration was evaluated on the two volunteers with the highest and 143 

lowest BMI scores (volunteer 8 and volunteer 4) by comparing external body contours, where 144 
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maximum non-rigid deformation was expected to occur, and bladder contours as shown in Figure 4. 145 

The contours were generated on the original rotated images using the contouring toolkit in MiM then 146 

propagated to the non-rigidly registered images using transform files and DVF’s from the rigid and 147 

non-rigid image registrations, respectively. Finally, the propagated contours were compared to those 148 

generated on the 0° reference image with dice similarity coefficient (DSC) and the maximum average 149 

Hausdorff distance between contour surfaces, as suggested by the AAPM TG132 report27. Metrics  150 

were calculated using Plastimatch28.  151 

 152 

 153 

Figure 4: External contour and bladder generation and propagation workflow.  

 154 

The impact of image distortion and RF non-uniformity on the external body contour due to B0 and B1 155 

magnetic field inhomogeneities, respectively, as the volunteer was rotated off axis during imaging was 156 

quantified by imaging a 20-litre plastic phantom filled with cooking oil (30×30×15 cm3) on the PRS. The 157 

imaging sequences and registration workflow used for the volunteers was applied to the phantom 158 

images, with an added step of applying a binary filter to the images prior to the registration to remove 159 

the impact of air bubbles and fluid flow within the phantom impacting the registration. Images were 160 

acquired with the phantom rotated to 0, 90, 180 and 270 degrees.  161 

ΔB0 was evaluated using a gradient field mapping sequence acquired with TE’s of 10 ms and 12.46 ms 162 

echo (ΔTE = 2.46 ms), TR 1000 ms, 2.5 mm in-plane resolution, 200 x 200 matrix. A period of 10 minutes 163 

between repositioning the phantom at each angle and imaging was applied to ensure the oil had 164 

settled within the phantom. Both magnitude and phase images were obtained with the latter used to 165 

provide phase difference maps (in radians) within the phantom and converted to frequency. Images 166 

were displayed with a colour threshold of > 100 Hz of frequency difference. 167 

RF uniformity was assessed in the first magnitude image by comparing the mean signal within a 168 

cylindrical ROI in the centre of the phantom to pixel intensities within the phantom following the 169 

method described by Liney et al.29. Images were displayed using a three-colour scale to indicate 170 

whether pixels were > ± 5% ± 5%-10% or < ± 10% of the mean ROI signal intensity.  171 

Correlation between average non-rigid deformation across all couch angles and body max index (BMI) 172 

was assessed using a Pearson’s correlation coefficient. The quality of the linear fit was quantified using 173 

R-squared and adjusted R-squared metrics.  174 

  175 

 176 

177 
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Results 178 

 179 

Rigid Motion 180 

Average rigid motion is summarised in Table 2. Rigid left-right (LR), anterior-posterior (AP) and 181 

superior-inferior (SI) translations from the rigid registration are shown in Figure 5 (a)-(c). The rigid 182 

registration yielded mean rotations of ≤ 2.5° in all cases. Translations were most significant in the LR 183 

direction (average magnitude range: 4.9 ± 6.1 mm (volunteer 6) - 29.0 ± 32.0 mm (volunteer 3)). 184 

Smaller translations were observed in the AP (range: 2.2 ± 1.4 mm (volunteer 6) - 8.6 ± 5.0 mm 185 

(volunteer 8)) and SI directions (range: 0.9 ± 1.2 mm (volunteer 6) - 5.7 ± 3.6 mm (volunteer 4)). 186 

 187 

Table 2: Rotations, translations and 3D displacement magnitudes averaged over the 8 rotations following rigid 

registration. 

Volunteer ID Pitch (°) Yaw (°) Roll (°) 
LR Translations 

(mm) 

AP 

Translations 

(mm) 

SI Translations 

(mm) 

3D Displacement 

Magnitudes (mm) 

1 0.45 1.2 0.61 13.0 6.7 2.7 17.0 

2 1.3 1.4 1.4 12.0 5.2 1.2 13.0 

3 1.0 1.8 2.4 29.0 8.2 1.3 30.0 

4 1.0 2.5 2.0 22.0 6.5 5.7 25.0 

5 0.63 0.70 0.55 15.0 5.0 2.7 17.0 

6 0.31 0.42 0.84 4.9 2.2 0.91 5.8 

7 0.44 1.2 0.85 20.0 3.6 1.0 21.0 

8 0.79 1.1 1.6 19.0 8.6 2.1 21.0 

 188 

The magnitude of the rigid shifts varied between the volunteers with average 3D displacement range: 189 

5.8 ± 2.9 mm (volunteer 6) - 30.0 ± 11.0 mm (volunteer 3). No correlation was present between 3D 190 

displacement magnitude and volunteer BMI.  191 

 192 

 193 

 194 
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Figure 5: (a) Left-Right (b) Anterior-Posterior and (c) Superior-Inferior translations of each volunteer during 

rotation. Motion was most significant for the left-right axis and varied sinusoidally with couch angle.  

 

(a) 

(b) 

(c) 
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Rigid Registration Validation  195 

A comparison of measured and expected offsets of the CIRS pelvis phantom are shown in Figure 6. 196 

Mean differences of -2.0 mm and -2.3 mm between measured and expected values for LR and SI 197 

offsets were observed, respectively.  198 

 199 

  

Figure 6: Applied shifts of the CIRS pelvis phantom and values from the rigid registration transform file following 

registration to the centred phantom position in the (a) left-right and (b) superior-inferior directions. A gradient = 

1 line is overlaid indicating 100% agreement. A small systematic offset in the left and superior direction was 

observed due to shifts in the flat-top on the MRI couch during re-positioning and variation in the laser position 

relative to the markings on the phantom. 

 

Non-Rigid Deformation 200 

Maximum and average non-rigid deformation magnitudes are summarised in Figure 7 and varied 201 

greatly depending on the volunteer (average maximum deformation magnitudes range: 10.0 ± 0.9 mm 202 

(volunteer 4) - 28.0 ± 2.8 mm (volunteer 8), average deformation magnitudes range: 2.3 ± 0.6 mm 203 

(volunteer 4) - 7.5 ± 1.0 mm (volunteer 8)). Deformation were concentrated on the external surface 204 

due to compression or sagging during rotation as seen in the overlay of the volunteer eight 135° image 205 

with the 0° image (Figure 8) following each step of the registration. Changes in the external surface 206 

following the rigid registration are seen on the anterior and the right sides.  Axial, coronal and sagittal 207 

views of the highest deformation scan, healthy volunteer 8 90°, with overlaid displacement fields are 208 

shown in Figure 9. 209 

Deformation magnitude histograms for the 8 volunteers are shown in Figure 10. The variation in 210 

deformation magnitude across the volunteers is again demonstrated, with the 50% deformation 211 

magnitude varying between 3 mm for volunteers 1 and 7 mm for volunteer 8 and the 20% deformation 212 

magnitudes of 4 mm and 10 mm for the same volunteers as indicated by red and blue lines. 213 

 214 

 215 
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 216 

Figure 7: Boxplots of (a) maximum and (b) average deformation magnitudes following the non-rigid registration 

to the 0° isotropic image. Maximum deformation depended greatly on volunteer. Mean deformation were less 

than 9 mm for all volunteers. 

 

 

 

Figure 8: Overlay of volunteer eight 0° image with the 180° image following (a) couch marker alignment (b) rigid 

registration and (c) non-rigid registration. The rigid registration aligns the rigid anatomy while the variation in 

the external contour is still clearly visible prior to non-rigid registration.  

(a) (b) (c) 
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Figure 9: Volunteer eight 90° non-rigidly registered image overlaid with the deformation vector field for (a) 

axial, (b) coronal and (c) sagittal slices. Non-rigid deformation up to 21 mm were present on the anterior and 

right external surfaces due to compression under rotation with much smaller deformation internally. Images 

were generated using the sMilx biomedical image analysis framework30.  

 

 

Figure 10: Cumulative histograms of volunteer 3D deformation magnitudes as a fraction of the total 

deformation vector field. For volunteers 1, 2, 4, and 6 deformation were mostly below 5 mm while for volunteer 

8 deformation up to 15 mm are still visible. The 50% and 20% deformation lines for volunteers 1 (solid line) and 

volunteer 8 (dashed line) with values of 3 mm, 7 mm, 4 mm and 10 mm are overlaid in red and blue, 

respectively.  
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(a) (b) (c) 
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Non-Rigid Registration Validation  218 

The mean ± 1 standard deviation DSC and maximum average Hausdorff distance values for the bladder 219 

and external contours of the non-rigidly registered images and the respective reference 0-degree 220 

images for volunteers 4 and 8 are shown in Table 3:  221 

 222 

Table 3: Comparison of average bladder and external body contours for volunteers with the highest and lowest 

BMI scores (volunteer 8 and volunteer 4), with respect to the 0° reference image contours. Values are quoted 

with one standard deviation. 

Volunteer Bladder  External Body Contour  

 DSC 

Maximum Average 

Hausdorff Distance 

(mm) 

DSC 

Maximum Average 

Hausdorff Distance 

(mm) 

HV04 0.78 ± 0.04 2.7 ± 0.4 0.98 ± 0.01 1.0 ± 0.2 

HV08 0.50 ± 0.07 6.8 ± 1.6  0.99 ± 0.00 0.7 ± 0.1 

 223 

Image Quality Phantom Measurements 224 

The average external deformation magnitude on the oil filled plastic phantom for all angles was 0.2 ± 225 

0.1 mm and average maximum value 3.8 ± 0.9 mm with the highest results at couch positions 90° 226 

(maximum 4.9 mm) and 315° (maximum 4.8 mm). No significant distortion in the shape of the 227 

phantom was visually apparent as shown in Figure 11. The regions where the deformation magnitude 228 

was greatest corresponded to the points on the phantom which were furthest from the imaging 229 

isocentre. 230 

 

 231 

 232 

Figure 11: Deformation images of the oil filled phantom at (a) the 90°, (b) 180° and (c) 270° positions following 

alignment back to the 0-degree position using MR visible markers. No significant distortion of the image was 

present for any of the scans with maximum deformation below 5 mm in all cases. 

 

233 

(b) (c) (a) 
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Frequency difference maps for angles 0, 90, 180 and 270 degrees are shown in Figure 12: 234 

 235 

Figure 12: Frequency difference map images of the phantom at 0, 90, 180 and 270 degrees. Red indicates 

regions with greater than 100 Hz frequency difference. The largest difference on any image (184 Hz) 

corresponds to a distortion of 0.47 of pixels (for a nominal bandwidth = 395 Hz/pixel). 

The majority of frequency differences for each phantom angle were below 100 Hz. The largest phase 236 

difference observed on any image was 184 Hz which corresponded to less than half a pixel of 237 

distortion. 238 

B1 field uniformity maps for the same angles are shown in Figure 13: 239 

 240 

Figure 13: uniformity (B1) maps for phantom images at 0, 90, 180 and 270 degrees. Red, orange and white 

indicates signal < ± 90%, ± 90%-95% and > ± 95% of the mean ROI signal, respectively. 

RF signal was within ± 10% of the mean signal within an ROI in the centre of the phantom for each 241 

phantom position with the greater signal loss at the edges of the phantom. The majority of the signal 242 

was within ± 5% of the centre ROI.    243 

 244 

  245 
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BMI and Non-Rigid Deformation 246 

A correlation between volunteer BMI and average non-rigid deformation was observed (Figure 14) 247 

(correlation coefficient 0.85 p = 0.01).  248 

 249 

 250 

Figure 14: Correlation between body mass index (BMI) and mean deformation. A correlation was observed 

(0.85 p = 0.01), however is limited by the small data set (adjusted R2 = 0.67) and small variability in BMI values 

(σ = 2.8). 

  251 
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Discussion 253 

 254 

Rigid motion caused by rotation was predominantly in the left-right direction, likely due to shifts of 255 

the entire volunteer within the airbag supports. This finding was supported by Barber et al. who 256 

observed the same trends on a smaller scale in a lagomorph study20. The motion could be reduced by 257 

increasing airbag pressure10 however, since our system has no method to quantify air pressure, the 258 

inflation is controlled based on the subjective tolerability of the volunteer. The motion could be 259 

accounted for using rigid shifts of the PRS or the beam aperture analogous to current standard practice 260 

in image guided radiation therapy. An additional benefit of MR-guidance over CBCT for gantry-free 261 

systems is that no rotation of the imaging system with respect to the patient is required. Rigid shifts 262 

induced by rotation of the subject during CBCT imaging have been shown to cause blurring and require 263 

correction methods21.  264 

No correlation was present between 3D displacement magnitude and volunteer BMI however it was 265 

observed that the magnitudes of the displacement for the only male volunteer (volunteer 6) were 266 

noticeably smaller compared with the female volunteers. This variation may be due to the anatomical 267 

differences of the male pelvis compared with the female – however more male volunteers would be 268 

required to validate this hypothesis. A correlation was observed between volunteer BMI and average 269 

non-rigid deformation. This result is intuitive as a higher BMI likely indicates a higher volume of 270 

deformable adipose tissue around the pelvis but is limited however by the small number of volunteers 271 

and variation in BMI’s (standard deviation 2.8). 272 

Mean differences of -2.0 mm and -2.3 mm were observed between the measured and expected values 273 

for LR and SI shifts of the CIRS pelvic phantom, respectively. These shifts occurred in the same direction 274 

and were of comparable magnitude for each position, which were attributed to variations in the laser 275 

position relative to the cross-hair markings on the phantom and small lateral shifts of the flat-top 276 

couch on the MRI scanner, which occurred during phantom positioning. 277 

Residual non-rigid tissue deformation were dominated by variations in external contours caused by 278 

rotation which presents a challenge for EBRT as the depth dose will be subsequently affected16. 279 

Additionally, non-rigid shifts cannot be readily accounted for with a rigid shift of the patient or the 280 

beam aperture. The impact of non-rigid deformation could be mitigated by optimising a treatment 281 

plan for each couch angle, however external deformation will likely change day to day – so a daily re-282 

optimisation may be necessary with associated time and computation costs. An alternative approach 283 

could be strategic beam and couch angle placements to avoid regions of high external contour 284 

deformation, however deformation magnitude for each angle would need to be assessed on a daily 285 

basis to adapt to daily changes in deformations, and beam weightings updated to favour angles with 286 

lower deformation magnitudes. Internal motion was less pronounced and of the same magnitude as 287 

intra-fraction motion observed during a course of treatment. For instance, reported mean inter-288 

fraction motion of the cervix can vary between 1.0 - 16.0 mm AP, 1.5 - 8.0 mm SI and 0.3 - 10.0 mm 289 

LR31-33 with individual AP motion up to 63 mm34. Cree et al. note the use of adaptive radiation therapy 290 

is often targeted to patients with substantial motion during planning. It logically follows that the same 291 

approach with MRI-guidance may be applied to patients with intra-fraction motion introduced by 292 

rotation35 with MRI-guided EBRT for cervical cancer having already been demonstrated on a Co60 293 

system36, however the rotation induced motions will further contribute to motion uncertainties which 294 

would need to be considered during treatment. 295 

One limitation of this study was the inability of the non-rigid registration to fully match the internal 296 

anatomy, in particular when the external contour deformation was large (Table 3). This is due to a 297 
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combination of reduced image quality in the fast acquisition (55 s) images, reduced image contrast in 298 

the central anatomy, and the high variability in soft tissue anatomy i.e. bladder filling and movement 299 

of the internal organs such as uterus and bowels27 which cause variations in the shape and volume of 300 

organs being registered. The inability of the image registration to account for significant volume 301 

changes will have caused an underestimation of the mean deformation values. The maximum 302 

deformation results are unlikely to be affected since the registration performed well on the external 303 

contour where image contrast was high (Table 3).  Future work will be required to adequately address 304 

the internal registration challenges, possibly incorporating a surface coil to improve the image quality, 305 

as it could result in variations in planned vs delivered dose. Given the high dose gradients that exist 306 

between tumour volumes and organs at risk, image registration uncertainties may have deleterious 307 

consequences during treatment if not corrected. Improved image quality would nonetheless need to 308 

be weighed up with a likely increase in required scan time, since maintaining short scan times would 309 

be desirable for an MRI-guided treatment scenario given the added time which will be required for 310 

patient set-up, position verification/adaption and treatment delivery. The internal registration 311 

accuracy may also be improved by including contour-based alignment prior to global registration at 312 

the expense of added time for contouring structures. Whelan et al. investigated prostate, rectum, and 313 

bladder contour motion during rotation on this system and found variations were within inter-contour 314 

variability following a prostate-guided rigid registration17.  315 

Image quality is a significant issue for radiation therapy due to the high geometric precision required37 316 

and is further complicated by patient rotation for several reasons. Firstly, the introduction of the PRS 317 

and the patient may create inhomogeneity and subsequent distortions in the main B0 field. Perhaps 318 

more significantly, during the rotation the patient’s position within the magnet shifts off-centre. While 319 

the B0 and gradient uniformity within the centre of the magnet is well controlled, this is not the case 320 

further from the magnet centre at the edge of the patient. Rotation may also cause differences in B1 321 

transmission with subsequent signal variation across an image which may compromise the quality of 322 

image registrations.  323 

In this study we have shown that both distortion (Figure 12) and signal non uniformity (Figure 13) were 324 

minimal with no deleterious or additive effects observed. However, this should be evaluated for any 325 

MRI utilising patient rotation. The extent of image distortion as a function of distance from the 326 

isocentre has been previously investigated for the MRI scanner used in this study with distortions 327 

approaching 5 mm at radial distances of 450 mm and 175 mm SI from the imaging iso centre38.  These 328 

magnitudes are consistent with the measurements taken with the oil filled phantom in this study and, 329 

though no geometric distortion was visible in the images, would need to be considered for planning 330 

due to the tight geometric restrictions in radiotherapy.  Due to the binary thresholding process, any 331 

internal deformation within the oil volume were not detected. However, Walker et al. demonstrated 332 

deformation magnitudes on this system were most significant at the greatest distance from isocentre, 333 

as measured relative to a ground truth CT image38.  334 

Another limitation of the study relates to the volunteer cohort itself. The geometric restrictions of the 335 

MRI, and consequently the PRS, greatly restricts the size of volunteers that were eligible to participate. 336 

These restrictions resulted in a large representation of females given they are generally smaller than 337 

males. A more representative cohort would include a better comparison of male and female rigid and 338 

non-rigid motion and quantification of deformation for volunteers with larger BMI scores. To utilise 339 

MRI, this may only be possible with an open magnet system to facilitate the necessary space for a 340 

larger PRS. Additionally, the deformation results presented here were acquired in a single imaging 341 

session. It is anticipated that anatomical deformation will vary day-to-day, which are as yet 342 

unquantified.  343 
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A future aim of this work will be to assess and quantify to what extent the described deformation 344 

impact treatment planning, particularly given the observed variability across the volunteers. Optimal 345 

treatment angles and beams could then be devised for treatments incorporating patient rotation. In 346 

instances where deformation is minimal, i.e. patients with a BMI < 20, creating a treatment plan on 347 

the 0° image may be sufficient, while in patients with significant deformation, multiple plans 348 

generated on the angled images would be necessary. If angle specific plans were used, questions 349 

relating to dose summation and optimisation would need to be addressed.  350 

 351 

  352 
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Conclusion 353 

354 

Rigid and non-rigid deformation due to horizontal patient rotation have been quantified for a cohort 355 

of healthy volunteers. Left-right translations were the most significant rigid motion and were caused 356 

by lateral shifts within the airbag supports. This motion could be accounted for with rigid adjustments 357 

to the couch and/or beam aperture prior to treatment. Significant non-rigid deformation of the 358 

external surface were observed for some volunteers which were correlated with BMI, and if 359 

unaccounted for would likely compromise treatment. Future work is required to assess the dosimetric 360 

impact of these deformation in order to develop methods to facilitate the delivery of radiotherapy 361 

with patient rotation under MRI guidance. 362 
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