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Purpose: As the predominant driver of respiratory motion, the diaphragm represents a key 

surrogate for motion management during the irradiation of thoracic cancers. Existing 

approaches to diaphragm tracking often produce phase-based estimates, suffer from lateral 

side failures or are not executable in real-time.  In this paper, we present an algorithm that 

continuously produces real-time estimates of 3D diaphragm position using kV images 

acquired on a standard linear accelerator. 

 

Methods: Patient-specific 3D diaphragm models were generated via automatic segmentation 

on end-exhale 4D-CT images. The estimated trajectory of diaphragmatic motion, referred to 

as the principal motion vector, was obtained by registering end-exhale to end-inhale 4D-CT 

images. 2D diaphragm masks were generated by forward-projecting 3D models over the 

complement of angles spanned during kV image acquisition. For each kV image, diaphragm 

position was determined by shifting angle-matched 2D masks along the principal motion 

vector and selecting the position of highest contrast on a vertical difference image. 

Retrospective analysis was performed using 22 CBCT image sequences for six lung cancer 

patients across two datasets. Given the current lack of objective ground truth for diaphragm 

position, our algorithm was evaluated by examining its ability to track implanted markers. 

Simple linear regression was used to construct 3D marker motion models and estimation 

errors were computed as the difference between estimated and ground truth marker positions. 

Additionally, Pearson correlation coefficients were used to characterize diaphragm-marker 

correlation. 
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Results: The mean ± standard deviation of the estimation errors across all image sequences 

was -0.1 ± 0.7 mm, -0.1 ± 1.8 mm and 0.2 ± 1.4 mm in the LR, SI and AP directions 

respectively. The 95th percentile of the absolute errors ranged over 0.5 – 3.1 mm, 1.6 – 6.7 

mm and 1.2 – 4.0 mm in the LR, SI and AP directions respectively. The mean ± standard 

deviation of diaphragm-marker correlations over all image sequences was -0.07 ± 0.57, 0.67 

± 0.49 and 0.29 ± 0.52 in the LR, SI and AP directions respectively. Diaphragm-marker 

correlation was observed to be highly dependent on marker position. Mean correlation along 

the SI axis ranged over 0.91 – 0.93 for markers situated in the lower lobes of the lung, while 

correlations ranging over -0.51 – 0.79 were observed for markers situated in the upper and 

middle lobes. 

 

Conclusion: This work advances a new approach to real-time direct diaphragm tracking in 

realistic treatment scenarios. By achieving continuous estimates of diaphragmatic motion, the 

proposed method has applications for both markerless tumor tracking and respiratory binning 

in 4D-CBCT. 

 

1. Introduction 

In cancer radiotherapy, the success of any motion management strategy depends on its 

ability to reliably track tumour position. This becomes particularly important in the treatment 

of thoracic cancers where respiration introduces a constant source of irregular motion
1
. In 

seeking to address this challenge, several approaches to real-time tumor tracking have been 

reported to-date and these can be placed into three main categories. First, tumor position can 

be determined via direct fluoroscopic imaging. This presents the most intuitive and 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

straightforward approach and, encouragingly, several direct imaging technologies are under 

current investigation.
2-5

 However, poor contrast between cancerous and healthy tissue 

remains a recurrent difficulty for these methods and further development is required in order 

to ensure safe clinical implementation.  

Second, tumor localization can be achieved by implanting radiopaque fiducial 

markers
6
 or electromagnetic transponder beacons

7,8
. This presents an alternative to direct 

fluoroscopic imaging which overcomes the issue of low contrast. However, implantation is an 

invasive and costly procedure that introduces the risk of pneumothorax.
9
 Additionally, since 

fiducial markers may migrate away from the intended site
10

 or exhibit surrogacy errors
11-15 

this does not provide a robust strategy for respiratory motion management. 

The final class of strategies uses anatomical landmarks as surrogates for respiratory 

motion. By positing correlations between surrogate motion and anatomic motion, thoracic 

structures such as the abdominal surface, carina or diaphragm can be used to establish tumor 

motion models. Critically, the accuracy of these models depends strongly on the choice of 

surrogate, with the most common choice being anterior-posterior (AP) displacement of the 

abdominal surface.
16,17

 However, relying on external surrogates alone can lead to residual 

tumor motion not contemplated in the original treatment plan.
18 

The ideal anatomical surrogate will exhibit a direct and consistent relationship with 

respiratory motion. Intuitively, internal surrogates will harbor stronger correlations with 

internal anatomy changes than their external counterparts. However, where intrafraction 

images are used for monitoring, it is crucial that the surrogate remains persistently visible. 

Direct diaphragm tracking seeks to address both these challenges. First, the diaphragm serves 

as the most important muscle for respiration. Indeed, it has been demonstrated that the first 

two principal components of longitudinal diaphragm motion are sufficient to describe 3D 
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thoracic organ motion.
19

 Additionally, owing to its high intrinsic contrast with the 

surrounding anatomy, the diaphragm is typically identifiable on kV images of the thorax. 

Therefore, the focus of this study was to develop a robust method for direct diaphragm 

tracking during kV image acquisition. 

Previously reported tracking algorithms typically rely on a thresholding technique or 

impose various optimization constraints during imaging. For instance, in a recent paper, 

diaphragm identification was considered as a constrained linear regression optimization 

problem.
20

 Under this approach, thresholding was achieved using Otsu’s method, the 

geometry was approximated by parabolas and the temporal redundancy of diaphragmatic 

motion was modelled by applying both band and algebraic constraints. Critically, since these 

computations were carried out for each image individually, execution of the algorithm was 

not achievable in real-time. Additionally, as boundary detection was performed by 

thresholding, tracking failures at the lateral side were inevitable on CBCT images due to 

interference from overlapping anatomic structures.  

In contrast, our approach achieves real-time tracking by accounting for the bulk of 

computational complexity prior to kV image acquisition. This is achieved by using 4D-CT 

images to build patient-specific models of the diaphragm, which subsequently serve as 

geometric constraints during imaging. Coupling these constraints with a maximum gradient 

algorithm then ensures that our approach tracks only those structures that exhibit both high 

geometric similarity to the pre-built diaphragm model as well as high intrinsic contrast. 

Evaluating the performance of diaphragm tracking algorithms has typically involved 

manual delineation of the diaphragm by a clinician.
20-23

 This has two important limitations. 

First, such judgments must be made subjectively. Since there is no standard way of 

identifying the diaphragm on fluoroscopic images, interoperator variability is inevitable. 
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Second, the ability to confidently identify the diaphragm is highly dependent on imaging 

angle. Indeed, interference from overlapping structures at the lateral side is a key challenge 

which this work seeks to address. Therefore, since the ultimate goal of this work was to 

enable real-time motion management, the proposed algorithm was evaluated by examining its 

ability to accurately track implanted markers.    

This study centers on achieving three aims: 

 Developing an algorithm which utilizes pre-built, patient-specific models of the 

diaphragm in order to achieve real-time tracking. 

 Evaluating the performance of this method both by using simple linear regression to 

construct 3D motion models and by examining correlations between tracked 

diaphragm positions and implanted marker positions.  

 Demonstrating the feasibility of the proposed method for real-time motion 

management using datasets that represent realistic treatment settings. 

 

2. Materials and methods 

2.1 Workflow 

The workflow for the proposed method (Figure 1) can be divided into steps 1 – 3 

occurring post 4D-CT acquisition and steps 4 – 5 which occur during kV image acquisition: 

1. A 3D model of the diaphragm is constructed by segmenting the end-exhale image of 

the pre-treatment 4D-CT. 

2. The 3D diaphragm model is registered to the end-inhale image of the pre-treatment 

4D-CT to compute a principal motion vector. 
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3. A 2D diaphragm model is generated by projecting the 3D model onto the detector 

space over the complement of angles spanned by full gantry rotation. 

4. A vertical difference image is generated for each kV image in order to highlight the 

intrinsic contrast of the diaphragm. 

5. The diaphragm is tracked using a maximum gradient algorithm. 

Algorithmic development was performed in MATLAB (The MathWorks, Inc., Natick, MA) 

and latency testing was performed in C# (Microsoft Corp., Redmond, WA).  

 

2.1.1 Building the 3D diaphragm model 

Patient-specific models of the diaphragm are generated by segmenting the end-exhale 

phase image of a pre-treatment 4D-CT. Candidate segments are identified using transitions in 

the superior-inferior (SI) direction from pixels labelled as lung tissue to pixels labelled as soft 

tissue. Label maps are computed by applying an intensity threshold together with a 

connectivity constraint to exclude small cavities. For each lung, the optimal diaphragm 

segment is selected by searching over each coronal slice according to the following criteria. 

First, the optimal segment should span the largest distance in the left-right (LR) direction. 

Second, the outermost points of the optimal segment will extend the furthest from the image 

centre. Third, the optimal segment will exhibit negative curvature. To account for motion 

artefacts, the segment is regularized by a smoothing spline in both the LR and anterior-

posterior (AP) directions. Finally, the optimal segment is propagated to each coronal slice by 

selecting those candidate segments with maximal overlap. 
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2.1.2 Computing the principal motion vector 

Since the diaphragm moves in the inferior-anterior direction during respiration, 

diaphragmatic motion was parameterized along an artificial axis constructed by taking linear 

combinations of the SI and AP axes. That is, the diaphragm was regarded as shifting over a 

patient-specific principal motion vector       where     is the position of the diaphragm at 

end-exhale and d is the direction of diaphragmatic motion. The direction of diaphragmatic 

motion was estimated by registering the 3D diaphragm model, extracted from the end-exhale 

image, to the diaphragm position in the corresponding end-inhale image, assuming zero LR 

motion and zero rotation. Each candidate position   was then computed by: 

            
 
 
  

                   , 

where s is a scaling factor reflecting the distance from the diaphragm position at end-exhale. 

 

2.1.3 Generating a 2D diaphragm model 

A 2D diaphragm model is built by forward-projecting the 3D model over the complement of 

angles spanned by full gantry rotation. An angular increment of 0.5° was found to yield 

sufficient angular resolution. By identifying the visible pixels at each angular view, this 

approach does not model the diaphragm as a curve but as a collection of angle-specific binary 

maps which are then shifted along the principal motion vector. Therefore, considering      

as the binary map at gantry angle   shifted to position  , each pixel within the field of view 

   can be classified according to the indicator function: 
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This constrains the maximum gradient search to those pixels within each shifted, angle-

matched diaphragm map. Since the imaging geometry is often known beforehand, these maps 

are generated prior to treatment in order to reduce computation time in step 4.  

 

2.1.4 Generating the vertical difference image 

The diaphragm is tracked by selecting the position of highest contrast along the 

principal motion vector. For each kV image, a vertical difference image is generated by 

computing the difference between mean intensity values 2 mm above (superior to) and below 

(inferior to) each pixel. This can be considered as transforming the set of pixel intensities 

        for a kV image with   pixels to a set of gradient values         in the difference 

image. In contrast to traditional approaches, this method only considers vertical intensity 

changes, since the diaphragm is always positioned inferiorly to the lungs (Figure 2). A 2 mm 

window is used to account for the observation that, on kV images, transitions from the lung to 

the diaphragm often span across several pixels.  

  

2.1.5 Applying a maximum gradient algorithm  

During imaging, the logical map which represents the closest angular view to the 

current gantry angle is selected. Candidate positions are then generated by shifting the map 

pixel-wise along a pre-determined search window. For the first image, a search window 

extending 10 mm in the SI direction from the end-exhale position is used. This is reduced to a 

3 mm window centered at the previously tracked diaphragm position for all subsequent 

images. Search windows of 3 and 10 mm were found to adequately capture diaphragm 

motion between frames, given at the acquisition rates of the image sequences used in this 
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study. To improve recovery from tracking failures, a rolling mean of all previous diaphragm 

positions is computed and used to center an additional 3 mm search window. Each candidate 

position is scored by taking the sum of gradients for every pixel delineated by the 2D map. 

The candidate with the highest gradient-sum is selected as the current diaphragm position. In 

other words, the diaphragm is tracked by computing: 

     
      

 
    

 

   

        

Critically, while the maximal gradient search is performed over the 2D projection space, by 

shifting each map along the principal motion vector, the algorithm produces estimates of 3D 

diaphragm position.  

 

2.2 Patient data 

Retrospective analysis was performed on a total of 22 image sequences for six 

patients across two datasets. This included images from both the 4D-Lung dataset24 in The 

Cancer Imaging Archive as well as the LIGHTSABR trial8. In this study, patient selection 

was based solely on whether the diaphragm remained persistently visible during image 

acquisition. This restricted our analyses to 3 of the available 7 patients in the 4D-Lung dataset 

and 3 of the available 15 patients in the LIGHTSABR trial. 4D-CT scans for the 

LIGHTSABR trial and the 4D-Lung dataset had 1- and 3-mm slice thickness, respectively. 

Patient characteristics are summarized in Table 1. 
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2.2.1 Ground truth marker positions 

Patients in the 4D-Lung study were implanted with 2 or 3 radiopaque fiducial markers 

and a robust template-based segmentation technique was used to estimate tumor position. For 

patients in the LIGHTSABR trial, tumor position was estimated by implanting 3 

electromagnetic transponder beacons. The positions of these implanted markers were 

considered as ground truth in computing estimation errors. 

 

2.2.2 Image sequences 

CBCT images from both the 4D-Lung dataset and the LIGHTSABR trial were used in 

this study. This included 14 image sequences from the 4D-Lung dataset each consisting of 

1200 half-fan projections acquired with an on-board Varian kV imaging device (Varian 

Medical Systems, Palo Alto, CA) at 5 Hz over 360°. Similarly, the LIGHTSABR data 

consisted of 8 image sequences consisting of approximately 600 half-fan projections acquired 

at 10 Hz over 360° also using a Varian device. The size of each image was 1024 × 768 pixels 

with a pixel spacing of 0.388 mm. Audiovisual biofeedback was implemented for breathing 

guidance during every scan in the 4D-Lung dataset.  

  

2.3 Evaluating tracking performance 

Since the ultimate goal of this work is to inform real-time motion management, our 

algorithm was evaluated by examining its ability to accurately track implanted marker 

motion. Critically, since principal components analysis can be used to parameterize 3D 

thoracic organ motion using longitudinal motion of the diaphragm as a surrogate19, there is a 

strong mathematical basis for using linear regression similarly to predict 3D marker motion. 
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Therefore, in this study, 3D motion models were built by constructing lines of best-fit, in the 

least-squares sense, using the first 10 percent of images in each sequence. Errors were 

computed as the difference between estimated and ground truth marker positions across the 

remaining 90 percent of images. Additionally, diaphragm-marker correlation was examined 

by computing Pearson correlation coefficients between tracked diaphragm positions and 

ground truth marker positions for each imaging sequence in its entirety.  

Each 3D motion model was built by individually considering marker position in the 

LR, SI and AP directions as a function of diaphragm position. Critically, since the diaphragm 

was modelled as shifting along a 1D motion vector, this translates as a simple linear 

regression problem of the form: 

          ,  

where                           is set of estimated marker positions for i images in the j
th 

direction,                   is the set of tracked diaphragm positions along the principal 

motion vector,   is the regression coefficient and   is the bias term. Defining    

                   as the corresponding set of ground truth marker positions, estimation 

error in the j
th

 direction is then defined as: 

           ,  

where j = 1, 2 or 3 for the LR, SI and AP directions, respectively. Each model was evaluated 

using the mean and standard deviation of the estimation error along each axis as well as 

diaphragm-marker correlations. Additionally, the mean 95
th

 percentile of absolute error is 

also reported, where absolute error in the j
th

 direction is defined as     . 
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3. Results 

3.1 3D motion models 

The mean ± standard deviation of the estimation errors across all image sequences 

was -0.1 ± 0.7 mm, -0.1 ± 1.8 mm and 0.2 ± 1.4 mm in the LR, SI and AP directions 

respectively. Additionally, the mean 95th percentile of the absolute errors ranged over 0.5 – 

3.1 mm, 1.6 – 6.7 mm and 1.2 – 4.0 mm in the LR, SI and AP directions respectively. These 

data are summarized in Tables 2 and 3. 

In terms of the predominant axis of motion, the image sequence with lowest mean SI 

error corresponds to the last scan of Patient 6 (Figure 2) at 0.0 ± 0.6 mm. One striking 

observation of these data is that the model performed well in spite of capturing very little of 

the dynamics in the LR direction. In this case, these semi-periodic fluctuations were likely 

due to cardiac motion. However, it is hypothesized that this lack of nuance produced little 

overall effect as motion in the LR direction was restricted to a range of approximately 1 mm. 

Indeed, marker motion for this patient was confined to the narrowest range observed in this 

study 

Conversely, the highest mean SI error was observed for the last scan of Patient 5 

(Figure 3) at 1.7 ± 3.4 mm. For this sequence, a persistent shift in estimation accuracy seems 

to have occurred approximately midway through the scan. It is hypothesized that this reflects 

an apparent shift in diaphragm position as the dominant hemisphere in the field-of-view 

shifted from left to right. Indeed, subtle anatomic differences over certain imaging angles 

appear to yield corresponding differences in the visibility of the surrounding structures. 

Additionally, the breathing traces for Patient 5 were characterised by their large amplitude. 
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As shown in Table 1, Patient 5 exhibited the widest range in terms of tumor motion. This was 

due, in part, to a rapid spike resembling a cough during the first scan for Patient 5. As a 

consequence, Patient 5 also exhibited the largest 95th percentile error along the SI axis at 6.7 

mm. 

 

3.2 Diaphragm-marker correlation 

The mean ± standard deviation of diaphragm-marker correlations over all image 

sequences was -0.07 ± 0.57, 0.67 ± 0.49 and 0.29 ± 0.52 in the LR, SI and AP directions 

respectively. Critically, the SI axis represented the predominant direction of marker motion 

for every patient, except Patient 4 who presented with an upper lobe tumor and exhibited the 

lowest correlation along this axis. Conversely, correlations along the SI axis ranged over 0.91 

– 0.93 for Patients 3, 5 and 6 who presented with lower lobe tumors and over 0.76 – 0 .79 for 

Patients 1 and 2 who presented with middle lobe tumors. These data are summarized in Table 

4. 

 

4. Discussion 

 The proposed methodology has two important clinical implications for respiratory 

motion management. First, strong correlations between the diaphragm and the lung
21

 as well 

as the liver,
25

 open up the possibility of using the proposed method to achieve markerless 

tumor tracking for both cancer sites. Indeed, one could envisage extending the benefits of 

direct diaphragm tracking to lesions in additional thoracic and abdominal organs such as the 

pancreas. Second, direct extraction of diaphragmatic motion from CBCT scans provides more 

accurate respiratory signals for 4D-CBCT projection binning. Indeed, as an anatomic 
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surrogate, the diaphragm offers more realistic representations of internal thoracic motion than 

its external counterparts.
26,27

 Moreover, in contrast with projection-based techniques,
28,29

 the 

proposed method extracts an absolute rather than relative respiratory signal, entirely de-

coupled from gantry angle.  

A key contribution of the present work consists in shifting the bulk of computational 

complexity prior to kV image acquisition. Indeed, the construction of pre-built models has 

three major advantages. First, pre-projection onto the detector space allows for two-

dimensional mappings which reflect the three-dimensional nature of the underlying anatomy.  

Second, confining the maximal gradient search to a pre-determined window ensures 

robustness against extraneous and overlapping structures. Third, generating patient-specific 

maps prior to imaging drastically reduces computation time. When implemented in C# and 

run on an Intel® Core™ i7-6700HQ CPU @ 2.60GHz with 16 GB RAM, the proposed 

workflow was successfully executed at 80 – 120 ms per frame. This demonstrates the 

feasibility of the proposed method for real-time implementation. 

 One limitation of the present work is that ground truth positions were determined 

using implanted markers. While these methods typically provide an excellent surrogate for 

tumor motion, surrogacy errors can occur. For instance, errors ranging over 0 – 3 mm were 

reported in [21] for electromagnetic transponder beacons. Similarly, tumor localization errors 

ranging over 0.6 – 4.3 mm were observed in [20] for fiducial markers. However, 3D motion 

models were built only to demonstrate the feasibility of real-time tracking for targets 

influenced by respiratory motion and their precision should be read within this context.  

 In terms of tracking accuracy, we believe that there are three main reasons for 

differences between the tracked and actual diaphragm edges (Videos S1 – S6). First, the 

appearance of the diaphragm varies across imaging angles. Indeed, in this study, the largest 
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errors were observed for an imaging sequence in which the apparent position of the 

diaphragm differed as the left hemisphere became occluded from view and the algorithm 

began to track the right hemisphere. This yielded lower estimates of diaphragm position 

which, in turn, lead to mispredictions in tumor positon. It is hypothesized that these apparent 

changes in diaphragm position arise due to subtle differences in attenuation as the 

surrounding anatomic structures enter the field-of-view. However, it is envisaged that this 

may be overcome by tracking the left and right hemispheres of the diaphragm independently. 

Therefore, extending the workflow to account for this apparent independence will form the 

basis of future study. 

Second, tracking errors were consistently more frequent when a smaller proportion of 

the diaphragm was visible within the field-of-view. As mentioned earlier, this arises because 

a reduction in the total number of visible pixels in the 2D model diminishes the differences 

between candidate positions in terms of their gradient-sums. Consequently, tracking 

performance may decrease in instances where markers are positioned distal to the diaphragm 

and the imaging isocenter is adjusted accordingly. Coupling this observation with the 

reported diaphragm-marker correlations it is anticipated that, given the current status quo, the 

proposed algorithm would impart the greatest benefit to those patients with lower- and 

middle-lobe tumors. However, it should be noted that the geometries of the image sequences 

studied in the present work, reflect an intent to track the tumor rather than the diaphragm. 

Therefore, these results can be taken to reflect a lower-bound for direct diaphragm tracking. 

Indeed, were the field-of-view expanded to encompass both the diaphragm and the tumor 

simultaneously, the benefits of this technology could be extended to a greater number of 

patients. 
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Finally, sudden changes in respiration may yield motion patterns which lie outside the 

narrowly-defined search windows. As mentioned in the Methods section, our algorithm uses 

a restricted search window based on previous diaphragm positions in order to ensure real-

time implementation. However, in instances of coughing or deep inspiration, the algorithm 

may produce less accurate estimates of diaphragm position. Therefore, investigating the 

precise tuning of these windows to reflect both patient-specific respiration patterns and image 

acquisition rates should form the basis of future study. 

In terms of 3D tumor motion estimation, the accuracy of the linear regression models 

strongly depended on marker location relative to the thoracic anatomy. On the one hand, 

close proximity of the marker to the heart can introduce nuance not captured by diaphragm 

tracking alone. On the other hand, close proximity of the marker to the diaphragm will induce 

larger overall motion ranges as well as more sudden changes in marker position. Therefore, 

there is great scope both for extending the proposed workflow to account for additional 

thoracic structures such as the heart and for exploring more sophisticated motion models.  

 

 

5. Conclusion 

The methods advanced in this paper achieve real-time direct diaphragm tracking on 

kV images acquired using a standard linear accelerator. A key contribution of this work 

consists in the ability to directly track diaphragm position as opposed to producing phase-

based estimates. Simple linear regression between tracked diaphragm positions and ground 

truth marker positions yielded 3D motion models with mean errors of -0.1 ± 0.7 mm, -0.1 ± 

1.8 mm and 0.2 ± 1.4 mm in the LR, SI and AP directions respectively. These results 
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demonstrate the feasibility of using the proposed method for real-time motion management 

during thoracic cancer irradiation. Extending tracking to additional thoracic structures as well 

as building more intricate models of internal anatomic motion will form the basis of future 

study. 
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Figure 1. A pictographic representation of the workflow for the proposed diaphragm 

tracking method. 

 

Figure 2. Tracking performance for the image sequence with the lowest mean SI error, 

including (a) individual projections overlaid with tracked diaphragm models, in blue 

and (b) motion traces for the ground truth marker position, in green, and the 

retrospective correlation model, in blue, along each axis (below). The shaded region 

corresponds to the data used for training. The panels in Figure 2a indicate instances 

where the algorithm has accurately registered the diaphragm. This results in 3D 

marker position estimates with low error as shown in Figure 2b. 

 

Figure 3. Tracking performance for the image sequence with the highest mean SI error, 

including (a) individual projections overlaid with tracked diaphragm models, in blue 

and (b) motion traces for the ground truth marker position, in green, and the 

retrospective correlation model, in blue, along each axis (below). The shaded region 

corresponds to the data used for training. In the third panel of Figure 3a, the algorithm 

misregisters the diaphragm due to an apparent difference in hemisphere position. This 

yields persistent mispredictions in tumor position as seen for the remainder of the scan 

in Figure 3b. 
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Table 1          Patient characteristics. RML means right middle lobe; RLL means right lower 

lobe; LML means left middle lobe; LLL means left lower lobe; LUL means left upper lobe; 

SABR means stereotactic ablative body radiotherapy; LR means left-right direction; SI means 

superior-inferior direction; AP means anterior-posterior direction 

Patient Dataset Number of image 

sequences 

Tumor 

location 

Motion range (mm)
a 

LR             SI               AP 

1 4D-Lung 4 RML/RLL 2.3 

[0.7]  

7.1 

[1.0]  

2.0 

[0.3]  

2 4D-Lung 5 LML 2.3 

[0.6]  

8.6 

[2.2]  

4.4 

[0.9]  

3 4D-Lung 5 LLL 0.9 

[0.2]  

13.0 

[4.5]  

4.0 

[0.7] 

4 LIGHTSABR 3 LUL 6.5 

[0.2]  

5.4 

[0.9]  

7.5 

[0.4]  

5 LIGHTSABR 2 RLL 3.2 

[1.5]  

17.9 

[0.2]  

6.1 

[1.5]  

6 LIGHTSABR 3 LLL 1.2 

[0.2]  

3.9 

[0.5] 

2.5 

[0.4]  

Overall - 22 - 2.5 

[1.9] 

9.1 

[4.8] 

4.2 

[1.9] 

a 
 Motion range is reported as the mean [standard deviation] of the 5

th
 to 95

th
 percentile 

difference in marker position for all image sequences 
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Table 2   Mean and standard deviation of the estimation errors across all image sequences. 

LR means left-right direction; SI means superior-inferior direction; AP means anterior-

posterior direction. 

Patient                                          Mean error 

                                      [standard deviation] (mm) 

 LR SI AP 

1 0.0 

[0.6] 

0.1 

[1.2] 

0.2  

[0.7]  

2 -0.3 

[0.8] 

-0.3 

[1.9] 

0.3 

[1.6]  

3 0.0 

[0.2] 

-0.5 

[1.9] 

0.3 

[1.5]  

4 -0.5 

[1.5] 

0.2 

[1.8] 

0.0 

[2.0]  

5 -0.1 

[0.9] 

0.7 

[3.3] 

0.5 

[2.3]  

6 -0.2 

[0.5] 

0.2 

[0.7] 

-0.3 

[0.5] 

Overall -0.1 

[0.7] 

-0.1 

[1.8] 

0.2 

[1.4] 
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Table 3   Mean 95
th

 percentile of the absolute errors across all image sequences. LR means 

left-right direction; SI means superior-inferior direction; AP means anterior-posterior 

direction. 

Patient                                 95
th

 percentile error (mm) 

 LR SI AP 

1 1.3 2.3 1.5 

2 1.9 3.9 3.2 

3 0.5 4.2 2.8 

4 3.1 3.4 4.0 

5 1.9 6.7 3.1 

6 1.1 1.6 1.2 

 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

 

 

 


