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Abstract 

 

Captive breeding programs are an increasingly common tool to prevent extinction and 

provide a source population for reintroductions to the wild. Breeding programs attempt to 

‘halt evolution’ in captivity by ensuring that captive populations are genetically representative 

of the original wild population. However, there will always be differences between captive 

and wild environments. Genetic adaptation to captivity as a result of artificial or unintended 

selection is therefore likely. While the importance of genetic management in captivity is 

widely recognised, minimising adaptation to captivity is often given lower priority than 

strategies to avoid inbreeding and maintain wild genetic diversity. It is unclear how 

widespread adaptation to captivity is across taxa, yet individual breeding programs may not 

have enough data to sufficiently examine changes over time. Additionally, changes may be 

difficult to detect and/or have varied consequences. The increasing need for captive breeding 

and reintroduction programs necessitates investigation of adaptation to captivity, particularly 

as guidelines to minimise consequences may conflict with other program goals. The rise of 

data available, both through improved record-keeping from zoos, and the increased 

accessibility of thousands of genetic markers for conservation purposes presents new 

opportunities to address these challenges. 

In this thesis, I aimed to examine (1) whether there are differences in reproductive success in 

captive environments between wild-born and captive-born animals and how widespread any 

changes are, (2) long-term multi-generational changes in reproductive success in captivity, 

and (3) how changes may occur between generations of captive breeding, including through 

variation in reproductive success and undetected selection. As the consequences of 

adaptation to captivity are of relevance to all captive breeding programs, I used a data-driven 

approach to examine the response of multiple species to captive breeding in Chapters 2 and 

3. In chapters 4 - 7 I then used the Tasmanian devil as a case study to allow a closer 

examination of genetic change in captivity. The Tasmanian devil insurance population was 

established in 2006 in response to the spread of a contagious cancer, devil facial tumour 

disease (DFTD), and is now the largest captive breeding program in Australia. 
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In Chapter 2, I synthesised published literature to discover differences in reproductive success 

between captive-born and wild-born animals across 44 diverse species and in a broad range 

of captive breeding programs, including aquaculture, laboratory studies and conservation. In 

captivity, captive-born animals had lower reproductive success than wild-born animals across 

a variety of measures. The differences were most pronounced for offspring effects such as 

offspring survival. My findings highlight the importance of a meta-analytical approach to 

expand knowledge that is otherwise limited to individual, often low-powered studies. 

However, my results showed that the literature was not comprehensive enough to 

disentangle differences between first-generation captive-born animals and multi-

generational effects. 

Chapter 3 investigates the factors driving reduced offspring survival in captive-born animals 

and disentangles generational effects. I examined studbook data from 15 diverse long-

running conservation breeding programs, totalling over 38,000 individual records, to 

determine whether there were generational effects on survival and if this was a consistent 

trend across taxa. I found that an individual’s level of inbreeding was the strongest predictor 

of its survival. Generational effects were strong in some cases but had varied impacts across 

species. 

I then explored possible genetic mechanisms that may explain the fitness changes I observed 

in captivity, including individual variation in reproductive success and undetected selection. 

This first required the development of methods to reliably process reduced representation 

sequencing data, which I tested in two wildlife species (Chapter 4). I then applied the method 

to resolve the pedigree of 81 Tasmanian devils held in semi-natural free-range enclosures 

(Chapter 5), in order to examine variation in reproductive success and the consequences of 

variation on captive population management. I found high variation in reproductive success 

of both sexes, which may reduce genetic diversity and accelerate adaptation to captivity if 

unmanaged. Additionally, I quantified the management benefits of my molecular pedigree 

reconstruction to justify the utility of applying genetic techniques in conservation. 

Incorporating mate choice into conservation breeding programs is recommended to improve 

reproduction and prevent adaptation to captivity. However, genetic-based mate choice can 

have varied consequences for the management of genetic diversity. To determine the 

possible genetic mechanisms of the high variation in reproductive success detected in Chapter 
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5, I examined three mate choice hypotheses in Tasmanian devil free-range enclosures 

(Chapter 6) at both 1,948 genome-wide SNPs and 12 MHC-linked microsatellite markers. I 

found that non-genetic factors such as age were the best predictors of breeding success and 

found no evidence of genetic mate choice under the tested hypotheses. I demonstrated that 

integrating mate choice into captive management may be more difficult than previously 

considered. 

In Chapter 7, I investigated another possible driver of adaptation to captivity: undetected 

early viability selection. I examined known parent-offspring triads at 123 loci across five 

neutral and functional amplicons to detect deviations from Mendelian inheritance that 

cannot be explained by pre-copulatory mate choice. Deviations varied across a gradient of 

captive management, from intensive monogamous pairings to semi-wild environments, 

suggesting a possible mechanism for genetic changes to occur undetected in captive breeding 

programs. 

My work has provided new information about the consequences and possible mechanisms of 

adaptation to captivity. The curation and analysis of large datasets has allowed me to identify 

patterns across taxa in order to provide useful recommendations to conservation managers 

considering the impact of adaptation to captivity in their species.  
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PRISMA – preferred reporting items for systematic reviews and meta-analyses 

RADseq – restriction-site associated DNA sequencing 

RI – relative importance 

RRS – reduced representation sequencing 

SAM – sequence alignment map 

SD – standard deviation 

SE – standard error 

SNP – single nucleotide polymorphism 
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STDP – Save the Tasmanian Devil Program 

VCF – variant call format 

WGS – whole genome sequencing 

ZIMS – Zoological Information Management Software  
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Chapter 1: Introduction 

 

Worldwide over one million species are threatened with extinction (IPBES, 2019). The rapid 

rate at which species are becoming extinct as a direct and indirect consequence of human 

action has justified claims of a sixth mass extinction (McCallum, 2015). In the most recent 

International Union for the Conservation of Nature (IUCN) Red List update, not a single 

animal, plant, or fungi species exhibited a genuine improvement in its threat status between 

2018 and 2019 (IUCN, 2019).  

The IUCN recognises the role of captive (ex situ) management to reverse species declines and 

prevent extinction (IUCN/SSC, 2014; McGowan et al., 2017). Captive breeding has contributed 

to the recovery of a number of threatened species, including 19 of 64 species where the IUCN 

Red List status was down-listed (improved) between 1980 - 2004 (Hoffmann et al., 2010). 

Captive breeding has prevented extinction for species such as the Arabian oryx (Oryx leucoryx, 

Islam et al., 2011), black-footed ferret (Mustela nigripes, Dobson & Lyles, 2000) and California 

condor (Gymnogyps californianus, Meretsky et al., 2000). The proportion of zoo-bred source 

populations in published North American translocations has increased since 1974 (Brichieri-

Colombi et al., 2019), highlighting the ongoing potential of captive methods to contribute to 

conservation efforts. Captive breeding programs can take various forms, including insurance 

populations that aim to sustain captive populations in the long-term until threats in the wild 

have abated (Conde et al., 2011; Conway, 2011); breed-for-release programs that bring wild 

animals in to captivity, breed them and release their progeny (see for example McCleery et 

al., 2014); and source populations for the reintroduction/translocation of individuals to 

restore wild populations (McGowan et al., 2017). 

Captive management must balance a number of genetic challenges (Conway, 2011). These 

breeding programs aim to halt evolution by ensuring captive populations retain wild genetic 

diversity (Lacy, 2009). However, genetic change can occur in captivity as a result of inbreeding, 

genetic drift, or adaptation to captivity (Lees & Wilken, 2009; Frankham et al., 2010). 

Heritable genetic changes in a population differ from plastic changes that occur within 

individuals’ lifetimes; the latter including learned behaviours (e.g. Shier & Owings, 2007) and 

changes in microbiome composition (e.g. Chong et al., in press). Population-level evolutionary 
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changes from one generation to the next form the focus of this thesis. Generational change 

may occur as a result of neutral change, such as genetic drift. With small population sizes, 

allele frequency changes due to drift can lead to fixation. In conservation breeding programs, 

quantitative goals, such as the retention of over 90% wild gene diversity over 100 years, are 

typically used to establish annual demographic and genetic targets to minimise the effects of 

neutral change for a given population size (Frankham et al., 2010). 

Pedigree-based management is widely implemented in captive management to minimise the 

effects of neutral genetic change and inbreeding (Lacy et al., 1995). By incorporating 

information from studbooks that record the parents of offspring, and pedigree-based 

software such as PMx (Ballou et al., 2010b; Lacy et al., 2012), the relationships among 

individuals can be used to calculate genetic metrics for management. Currently, the method 

of maintaining genetic diversity in captive breeding programs is to equalise founder 

representation. This is achieved by mean kinship minimisation, which uses known 

relationships among individuals to form breeding pairs with low average relatedness to the 

rest of the breeding population, and similar mean kinship values to each other (Montgomery 

et al., 1997; Frankham et al., 2010). Combined with avoidance of mating close relatives, 

simulations have shown that the mean kinship strategy is effective in maximising retained 

genetic diversity and minimising inbreeding (Ivy & Lacy, 2012), and is more efficient in 

retaining genetic diversity than random mating (Montgomery et al., 1997; Fernández & 

Caballero, 2001). Furthermore, by prioritising the least represented lineages for breeding, the 

mean kinship strategy equalises family sizes, which maximises the effective population size 

and the retention of wild genetic diversity (Caballero & Toro, 2000). When relationships 

among wild-caught founders are unknown, the mean kinship strategy is effective in 

minimising the loss of genetic diversity in the long-term, although unidentified variance in 

founder relatedness can cause inbreeding to increase in the short-term (Rudnick & Lacy, 

2008). Pedigree-based management can therefore be very effective for minimising neutral 

change due to genetic drift when pedigrees are known and accurate. Nevertheless, 

differential survival and reproductive success can occur in captivity, despite pedigree-based 

management efforts to minimise this inter-individual variance, potentially resulting in 

adaptive population change. Management strategies to mitigate this adaptive change have 

been given less attention than strategies to retain genetic diversity (Leus et al., 2011), even 
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though adaptation to captivity is recognised as a top priority for genetic management 

(Frankham, 2010b).  

Adaptation to captivity broadly refers to the changes that can occur at an individual or 

population level as a result of the captive environment. Such changes may be behavioural, 

phenotypic, genetic or a combination of these. Genetic adaptation to captivity can occur at a 

population level if alleles that are deleterious in the wild are favoured and become more 

frequent in captivity. If the individuals best suited to the captive environment have higher 

survival and/or reproductive success than those less suited (even despite management efforts 

to equalise contributions), alleles underpinning the corresponding traits will increase in 

frequency and reproductive success in captivity can improve. Increases in fitness over 

generations in captivity have been experimentally demonstrated in the model organisms 

Drosophila melanogaster (Frankham & Loebel, 1992; Gilligan & Frankham, 2003) and white-

footed mouse (Peromyscus leucopus, Lacy et al., 2013). In conservation breeding populations, 

reproductive improvements such as increased offspring survival (delta smelt [Hypomesus 

transpacificus, Finger et al., 2018]), and increased gamete production (Houbara bustard 

[Chlamydotis undulata, Chargé et al., 2014a]) have been found over captive generations. 

Fitness changes do not necessarily take many generations of captive breeding to be of note: 

Fraser et al. (2018) found substantial variation in fitness across brook trout (Salvelinus 

fontinalis) populations after just one generation of captive breeding. Nevertheless, when the 

ultimate aim of reintroduction/translocation to the wild is considered, captive adaptations 

are likely to be inappropriate.  

Reintroduction attempts using captive-born animals are generally less successful than wild-

to-wild translocations (Fischer & Lindenmayer, 2000). A review in carnivores found that wild-

caught animals are more likely to survive translocation than captive-born conspecifics (Jule et 

al., 2008). The loss of predator avoidance behaviours in captive populations may contribute 

to poor survival upon reintroduction. For example, a generational deterioration in 

antipredator response has been observed in the Mallorcan midwife toad (Alytes muletensis, 

Kraajieveld-Smit et al., 2006), the red jungle-fowl (Gallus gallus, Håkansson & Jensen, 2008), 

and the oldfield mouse (Peromyscus polionotus subgriseus, McPhee, 2004). In the Tasmanian 

devil (Sarcophilus harrisii), captive devils released to the wild had a higher probability of death 

by roadkill with increasing generations in captivity (Grueber et al., 2017). Even if captive-born 
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animals survive upon release, they must also reproduce to contribute to successful 

reintroduction efforts. However, numerous studies of fish species have found lower relative 

reproductive success of hatchery-origin fish spawning in the wild compared to wild-origin fish 

(Araki et al., 2007; Milot et al., 2013; Christie et al., 2014; Ford et al., 2016; Janowitz-Koch et 

al., 2019; Skaala et al., 2019). The effects of captive breeding may also have a detrimental 

carry-over effect to the wild-born descendants of hatchery-bred fish (Araki et al., 2009). 

Agent-based models predicted that the release of captive-born animals with even slightly 

lowered heritable fitness in the wild will lower population sizes and reduce genetic diversity 

over time, especially in short-lived species (Willoughby & Christie, 2019). In addition to 

lowered reproductive success, captive-born animals may also demonstrate assortative 

mating upon release due to changes in mate preference (Slade et al., 2014), or shifts in 

phenological traits, such as the timing of migration in Atlantic salmon (Salmo salar, Horreo et 

al. 2017). Assortative mating will limit the genetic contribution of captive-born animals to the 

wild, potentially negating the demographic boost a reintroduction provides. Reduced success 

of reintroduced captive animals is a concern, particularly given that genetic adaptation to 

captivity can occur in just one generation of captive breeding (Christie et al., 2012; Christie et 

al., 2016), and may be difficult to avoid.  

Reduced reproductive success may also occur within captivity. In most settings, adaptation to 

captivity is expected to increase reproductive success in captivity. Yet, in conservation 

breeding programs that are managed using the mean kinship strategy, a counter-intuitive 

consequence of differential selection could be a decrease in the population mean 

reproductive success over time. The mean kinship strategy targets the least represented 

lineages for breeding. If these groups have low representation due to heritably poor 

reproduction in captivity, then over time these underrepresented individuals will become 

increasingly targeted, while family lines better-suited to breeding in captivity, and which 

therefore easily become overrepresented, are given lower priority to breed. For example, in 

the Tasmanian devil, I previously found that the probability of breeding at the first attempt 

declined from 56% in wild-born females to 2.8% in generation five captive-born females 

(Farquharson et al., 2017, Appendix 10). It is therefore critical to the long-term sustainability 

of conservation breeding programs to consider the effect of adaptation to captivity on 

reproductive success in captivity, and not just after reintroduction. Captive management 
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must balance the demand for successful reproduction in captivity with the need to avoid 

adaptation to captivity. 

1.1 MINIMISING ADAPTATION TO CAPTIVITY 

The rate of genetic change as a result of adaptation to captivity is expected to increase with 

increasing generations in captivity, selection intensity, genetic diversity and effective 

population size based on Frankham’s equation: 

!"! 	~	%ℎ"'(1−	 12,#
)!$% 

where S is the coefficient of selection, h2 is heritability, t is the number of generations in 

captivity and Ne is the effective size of the captive population (Frankham et al., 2002).  

Based on this equation, a number of management strategies have been proposed by Williams 

and Hoffman (2009) to minimise genetic adaptation to captivity, including: 

a) Minimising the number of generations in captivity 

b) Population fragmentation 

c) Minimising selection 

A more detailed background to each of these strategies, along with the challenges of applying 

them is outlined below. 

Minimising the number of generations in captivity 

Minimising the number of generations in captivity reduces the potential for genetic 

adaptation to captivity either absolutely (e.g. breed-for-release) or relative to time (e.g. 

extend generation length to reduce number of generations occurring over a specified time-

frame) (Williams & Hoffman, 2009). Breed-for-release programs, also referred to as 

supportive breeding, do not accumulate captive generations because captive-born animals 

are immediately released. This resource-intensive approach is commonly applied for taxa 

producing many offspring, such as fish, amphibians and insects (Fiumera et al., 2004; Fisch et 

al., 2015). The breed-for-release strategy is not feasible for species without an appropriate 

wild source population (such as the extinct-in-the-wild scimitar-horned oryx, Oryx dammah), 

suitable habitat for reintroduction (Hardman et al., 2016) or if there is a risk of disease 

transmission between captive and wild populations (e.g. Tasmanian devil, threatened in the 

wild by the contagious devil facial tumour disease [Hawkins et al., 2006; Pearse & Swift, 
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2006]). Instead, populations held as part of insurance populations are unlikely to be returned 

to the wild until multiple generations of captive breeding have accumulated. Gene flow from 

immigration of wild-born founders will mitigate shifts away from the wild population’s mean 

phenotype (Ford, 2002), but obtaining wild-born animals is not always possible. 

Strategies to extend the generation length so that a population experiences fewer 

generations in captivity over time include delaying the age at breeding and assisted 

reproductive technologies. Age at breeding can be delayed by isolating males and females 

(Asa, 2016), or through contraception (Cope et al., 2018b). However, delaying the age at 

breeding can risk the female never producing offspring (“use it or lose it”; Penfold et al., 

2014), and lead to reproductive and health problems (acyclicity in captive elephants and 

rhinoceroses [Hermes et al., 2004]; endometrial hyperplasia in canids [Asa et al., 2014]). 

Preventing natural behaviours at the appropriate age can also lead to social development 

issues that may result in inexperience and mismothering at later reproductive opportunities 

(Asa, 2016). Allowing animals to breed but culling surplus offspring extends generation 

intervals without fitness consequences (Penfold et al., 2014; Asa, 2016), though this comes 

with numerous ethical considerations. Assisted reproductive technologies such as artificial 

insemination are a more acceptable strategy to extend generation length (Ballou, 1984). In 

the black-footed ferret, artificial insemination using cryopreserved semen from wild-born 

founders 20 generations removed from the captive population successfully enhanced gene 

diversity (Wildt et al., 2016), demonstrating the utility of this strategy. However, developing 

these technologies is technically difficult for use in endangered species, particularly for those 

without a close domestic relative or with under-researched reproductive biology (Herrick, 

2019). In the early stages of captive breeding programs, where population growth is 

prioritised, delaying the age at reproduction or otherwise minimising the number of 

generations in captivity is unlikely to be a focus. 

Population fragmentation 

Larger populations retain higher adaptive potential (Willi et al., 2006; Hoffmann et al., 2017). 

Small effective populations will minimise adaptive change (Williams & Hoffman, 2009), 

however, this overtly conflicts with targets of large effective population sizes in order to 

minimise neutral genetic changes (drift), and inbreeding depression. To balance goals of 

minimising adaptive and neutral change, the fragmentation of large captive populations into 
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small separately managed subpopulations has been proposed (Frankham, 2008). Although 

small populations are at greater risk of genetic drift, because drift is stochastic each 

subpopulation will likely retain different genetic profiles so that the overall population is more 

genetically diverse than one large population. Pooled subpopulations will have less genetic 

adaptation to captivity than one large population of the same size (Margan et al., 1998). 

Global-scale captive breeding programs with an international studbook are essentially already 

managed under this strategy if the different regions are considered as subpopulations (Leus 

et al., 2011). 

Minimising selection in captivity 

Genetic adaptation to captivity will be reduced if both intentional and unintentional selective 

pressures in captivity are minimised. Species are expected to have different responses to the 

captive environment due to their inherent shyness/boldness and behavioural flexibility 

(Mason, 2010), with highly variable heritability of different behavioural traits (Courtney Jones 

& Byrne, 2017). Intentional selection against individuals with perceived negative traits (such 

as stereotypic behaviours as a result of stress [Mason, 2010]), in favour of tame individuals 

(Wielebnowski, 1999; McDougall et al., 2006), should be avoided. Otherwise, detrimental 

adaptation to captivity may be accelerated if negatively perceived traits are beneficial in the 

wild, and captive productivity could decline if such traits are linked to reproduction (Lacy et 

al., 2013). Pedigree-based management using mean kinship successfully reduces intentional 

selection by equalising family sizes and removing bias to choose “good breeders” (Tetley & 

O'Hara, 2012). The mean kinship strategy can in fact halve the rate of genetic adaptation to 

captivity (Allendorf, 1993; Frankham et al., 2000), though equal founder representation is 

rarely achieved in practice (Schulte-Hostedde & Mastromonaco, 2015). However, even under 

best-practice mean kinship pedigree-based management, mechanisms such as selective 

sweeps have been shown to reduce genetic diversity in captive Drosophila (Montgomery et 

al., 2010). Captive management therefore aims to reduce variation among individuals in order 

to prevent selection and maximise the retention of genetic diversity. 
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1.2 MECHANISMS OF CHANGE 

Captivity may drive unintentional “domestication” as a result of differences between the 

captive and wild environments, such as the provision of veterinary care and often high-quality 

resources. Altered selective environments, such as the change to higher-density housing, are 

hypothesised to have resulted in hundreds of differentially expressed genes involved in 

wound-healing, immune and metabolic responses, in one generation of captive breeding of 

the steelhead trout (Oncorhynchus mykiss, Christie et al., 2016). To reduce unintentional 

selection, many zoos/wildlife parks aim for wild-like captive environments that, where 

possible, reflect natural social and environmental conditions. For example, large free-range 

enclosures where animals are housed in groups reflective of wild social structures allow for 

the expression of normal behaviours including mate choice (Swaisgood & Schulte, 2010). 

Providing opportunity for mate choice can also overcome issues of mate incompatibility or 

lack of mating experience that can otherwise hinder captive breeding programs (Asa et al., 

2011; Schulte-Hostedde & Mastromonaco, 2015). Mate choice has been demonstrated to 

improve fitness of various species, including the eastern barred bandicoot (Perameles gunnii, 

Hartnett et al., 2018), stripe-faced dunnart (Sminthopsis macroura, Parrott et al., 2019b), 

koala (Phascolarctos cinereus, Brandies et al., 2018), giant panda (Ailuropoda melanoleuca, 

Martin-Wintle et al., 2015), and others (see Martin-Wintle et al., 2019 for review). 

Nonetheless, it is important to consider that if mate choice is underpinned by genetic 

variation among individuals (which it typically is [Andersson & Simmons, 2006]), it could in 

fact accelerate adaptation to captivity (Chargé et al., 2014b). For example, under the ‘good 

genes’ hypothesis, mate choice that favours individuals with certain characteristics over 

others will drive variation in individual reproductive success, increasing reproductive skew 

(proportion of individuals that fail to breed) and decreasing population-level genetic diversity 

and effective population size (Andersson, 1994; Chargé et al., 2014b). Furthermore, it is 

plausible that mate choice preferences vary to suit the expected environmental conditions of 

the offspring (Tregenza & Wedell, 2000): if mate choice preferences differ in captivity from 

the wild, mate choice could drive adaptation to captivity. This mechanism of adaptive change 

relies on variation in reproductive success and/or mate choice being heritable — fitness traits 

typically have low heritability, so would require strong selection to respond (Hansen et al., 

2011; Hoffmann et al., 2016). 



15 
 

In addition to pre-copulatory mate choice, post-copulatory selection may occur. Neither pre-

copulatory nor post-copulatory selection can be detected using traditional pedigrees alone, 

necessitating molecular genetic approaches. Genetic management in captivity is underpinned 

by neutral theory and Mendelian inheritance: the offspring in a pedigree are assumed to be 

representative of the Mendelian proportions expected given the combination of parental 

genotypes. However, early offspring losses can occur on a non-random genetic basis if certain 

genotypes are incompatible with survival, receive differential parental investment, are 

immunogenetically incompatible with maternal genotypes, or are outcompeted by siblings 

with different genotypes (Grueber et al., 2015a). The stage at which selection occurs may be 

difficult to pinpoint. Mammalian species with reproductive delays such as delayed 

implantation may exhibit post-copulatory sexual selection that could bias offspring genotypes 

(Orr & Zuk, 2014). Selection could alternatively, or additionally, operate at later stages. For 

example, the Tasmanian devil gives birth to over 20 embryos, yet only a maximum of four can 

attach to teats to survive (Guiler, 1970), generating competition between siblings that may 

result in offspring being a non-genetically representative sample of the original litter (Grueber 

et al., 2015a). If genotypes favoured in captivity differ from those favoured in the wild, early 

viability selection may provide a mechanism for adaptive genetic change.  

Strategies to minimise selection in captivity are theoretically sound but may be difficult to 

implement in practice, and the trade-offs of allowing mate choice in group-housing demands 

further exploration. As unintentional evolutionary change cannot be detected from 

pedigrees, molecular genetic tools are needed. 

1.3 DETECTING ADAPTIVE CHANGE 

Decreased costs of sequencing and the development of new techniques has enabled a variety 

of genetic approaches to be more widely used in conservation settings (Puckett, 2017; 

Norman et al., 2019). Microsatellites, the most popular application in the 2000s, typically 

provide low marker density (Witzenberger & Hochkirch, 2011), limiting the ability to detect 

pre- or post-copulatory selection. Single nucleotide polymorphism (SNP) arrays generate 

many more markers, yet often require genomic resources for development. SNP arrays are 

therefore usually restricted to species with close domestic relative such as the addax (Addax 

nasomasculatus, Ivy et al., 2016) or species with a reference genome (e.g. Tasmanian devil; 

Wright et al., 2015). With the dawn of the genomics era, new approaches that do not require 
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a reference genome, such as reduced-representation sequencing (RRS) (Peterson et al., 2012) 

have enabled conservation researchers to cost-effectively obtain the thousands of SNP 

markers needed to investigate adaptive change. However, analysing RRS data presents new 

challenges for conservation managers accustomed to working with tens of loci. Analytical 

choices can influence results (Shafer et al., 2017), so methods to assess markers for their 

reliability are needed, particularly in applications such as pedigree reconstruction. Molecular 

resolution of pedigrees not only assists in genetic management of captive populations but can 

also be used as the basis of investigating mechanisms of adaptive change, including individual 

variation in reproductive success and early-viability selection. 

1.4 DATA-DRIVEN APPROACHES 

Adaptation to captivity is likely to occur in diverse taxa, yet is rarely investigated in 

conservation settings: most experimental hypothesis testing has used model organisms and 

fish. Generational changes in captivity may occur as a result of shifts in population genetic 

parameters from one generation to the next, or via transgenerational mechanisms (e.g. 

maternal effects, epigenetics, behavioural transmission), or an interaction of the two. 

Disentangling genetic and non-genetic effects can be difficult and requires large multi-

generational datasets. A major challenge to previous investigation in conservation contexts 

has been the limited data available. Data from captive contexts is restricted by small 

population sizes and low number of generations in captivity for recent programs or long-lived 

species. In addition, species may vary in their response to captive breeding, so an 

investigation in one species might not apply more broadly. To overcome these challenges in 

a conservation setting, this thesis uses two main approaches: combining datasets from 

multiple species and applying recently developed molecular genetic approaches to a large, 

diverse study system, the Tasmanian devil. 

The first approach overcomes sample size limitations by combining data from multiple 

species. This can be achieved by synthesising available primary literature (i.e. systematic 

review and meta-analysis) or by analysing large studbooks from diverse species. The collation 

of huge databases such as studbooks and husbandry records by zoos and regional zoo 

associations provides an opportunity to retrospectively investigate generational fitness 

changes without the need for interventional experiments that could disrupt best-practice 

management. By incorporating phylogenetic comparative methods, new inferences can be 
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gained on patterns across taxa in order to make broad conclusions that will inform future 

research directions and conservation management. 

The second approach uses RRS markers to explore pre- and post-copulatory selection that 

would otherwise go undetected by pedigree-based management, in the largest managed 

captive breeding program in Australasia. The Tasmanian devil is endangered due to the 

emergence of devil facial tumour disease (DFTD) in 1996, a transmissible cancer that is nearly 

always fatal (Hawkins et al., 2006). In response to large-scale population declines, an 

insurance population was established in 2006 and has since grown to over 700 individuals 

(Hogg et al., 2017b). Although this is a relatively recent captive breeding program, devils have 

a short lifespan of 5 to 7 years (in captivity and disease-free populations) and a rapid 

generation time, reaching sexual maturity at 1 to 2 years (Keeley et al., 2012). As a result, the 

number of captive generations has accumulated quickly, enabling an investigation of 

generational change. The captive population is housed across a gradient of management 

intensity, including small zoo enclosures with one-on-one pairings and large free-range 

enclosures with approximately 20 adults (Hogg et al., 2017b). The range of housing types 

makes the devil program ideal for investigating pre- and post-copulatory selection as selective 

pressures may vary across contexts (Grueber et al., 2018b). In addition to the large captive 

breeding program, the devil’s reproductive biology allows for an investigation of mechanisms 

of adaptive change. As introduced above, female devils produce an excess of embryos (Guiler, 

1970), providing an ideal opportunity to examine early-viability selection. Furthermore, mate 

competition that may drive variation in reproductive success is likely, as devils are 

polygamous, polyoestrous seasonal breeders and can have mixed-paternity litters (Russell et 

al., 2019). Due to the success of the insurance population, captive devils are now being 

released to support wild populations (Grueber et al., 2018b), so it is timely to investigate 

adaptive change in captivity. 

  



18 
 

1.5 RESEARCH AIMS 

This thesis aims to investigate adaptation to captivity and possible mechanisms of 

generational fitness changes using a data-driven approach. This is achieved as follows: 

- In Chapter 2, I used a systematic review and meta-analytic approach to quantify 

differences in reproductive success between wild-born and captive-born animals in 

captivity, and to establish whether specific or diverse taxa are affected. I observed 

lower reproductive success of captive-born animals across taxa, especially when 

offspring survival was measured. These findings informed the questions and 

approaches for Chapter 3. 

- Chapter 3 uses global and regional studbooks of 15 taxonomically diverse species, to 

examine long-term multi-generational changes in offspring survival in captivity. The 

results showed that generational fitness changes are occurring, yet are highly variable, 

in managed captive populations. These findings inform recommendations around 

adaptation to captivity in diverse, global conservation contexts. 

- To be able to test the general patterns seen in Chapters 2 and 3 in more detail using 

my model species, the Tasmanian devil, Chapter 4 presents a method to process high-

throughput reduced-representation sequencing data. This method was then applied 

in Chapters 5, 6 and 7. 

- Group housing is often suggested as a strategy to reduce unintentional selection in 

captivity and promote mate choice by housing individuals in ‘wild-like’ settings. In 

Chapter 5, I applied the method developed in Chapter 4 to a real-world setting to 

resolve the pedigree of group-housed Tasmanian devils and compare the molecular 

pedigree reconstruction to traditional pedigree methods. I uncovered high variation 

in reproductive success between individuals and identified non-breeding wild-born 

founders. 

- Chapter 5 uncovered high inter-individual variation in devil reproductive success, so 

in Chapter 6, I investigated a variety of possible genetic and non-genetic drivers of 

reproductive success that may explain this variation. I examined various mate choice 

hypotheses in a non-experimental captive setting as a possible mechanism of genetic 

change in captivity. None of the mate choice hypotheses that I tested predicted 
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reproductive success, although non-genetic factors such as age and weight did 

contribute to variation. 

- Chapter 7 investigates a further mechanism for adaptive change in the devil breeding 

program: undetected early viability selection. I performed a triads (sire-dam-offspring) 

analysis by comparing offspring genotypes to the ratio of genotypes expected under 

Mendelian inheritance given known parents, the basis of traditional pedigree 

management. I identified deviations from expected ratios across a gradient of 

management intensity in captivity. 

Together, the results of this thesis provide new insights into adaptation to captivity in 

conservation settings and possible mechanisms of adaptive genetic change.  
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Chapter 2: A meta-analysis of birth origin effects on reproduction in 

diverse captive environments 

 

2.1 BACKGROUND 

Chapter 2 comprises the published manuscript: 

Farquharson, K.A., Hogg, C.J., & Grueber, C.E. (2018) A meta-analysis of birth origin effects on 

reproduction in diverse captive environments. Nature Communications, 9, 1055. 

This chapter investigates differences in reproductive success in captivity between captive-

born and wild-born animals. In order to understand broad patterns in birth origin effects, a 

systematic review and meta-analysis covering diverse literature including aquaculture, 

laboratory research and conservation contexts was performed (up to June 2016). The meta-

analysis revealed substantially lower reproductive success in captive-born animals in captivity 

compared to their wild-born counterparts. Supplementary Material is available in Appendix 

1. The Supplementary Dataset is available in Appendix 2 and the R code written to perform 

the meta-analysis is provided in Appendix 3. 

I undertook the research in this chapter and drafted the manuscript. Carolyn Hogg and 

Catherine Grueber oversaw the project, provided technical and conceptual guidance, and 

critically revised the manuscript. Note that while this chapter has been formatted for the 

thesis for consistency, it still follows the format of Nature Communications which is 

Introduction, Results, Discussion and then Methods in line with the published version.   
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2.2 MAIN ARTICLE 

A meta-analysis of birth origin effects on reproduction in diverse captive 

environments 

Katherine A. Farquharsona, Carolyn J. Hogga & Catherine E. Gruebera,b* 

a) The University of Sydney, School of Life and Environmental Sciences, Faculty 

of Science, Sydney NSW 2006, Australia 

b) San Diego Zoo Global, PO Box 120551 San Diego, CA 92112, USA 

* Corresponding author 

Abstract 

Successfully establishing captive breeding programs is a priority across diverse industries to 

address food security, demand for ethical laboratory research animals, and prevent 

extinction. Differences in reproductive success due to birth origin may threaten the long-term 

sustainability of captive breeding. Our meta-analysis examining 115 effect sizes from 44 

species of invertebrates, fish, birds, and mammals shows that, overall, captive-born animals 

have a 42% decreased odds of reproductive success in captivity compared to their wild-born 

counterparts. The largest effects are seen in commercial aquaculture, relative to conservation 

or laboratory settings, and offspring survival and offspring quality were the most sensitive 

traits. Although a somewhat weaker trend, reproductive success in conservation and 

laboratory research breeding programs is also in a negative direction for captive-born 

animals. Our study provides the foundation for future investigation of non-genetic and 

genetic drivers of change in captivity, and reveals areas for the urgent improvement of captive 

breeding. 
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Introduction 

Animals have been kept by humans since the change from a hunter-gatherer lifestyle to 

farming approximately 8,500 years ago (Diamond, 2002). Successful reproduction is the most 

fundamental requirement of captive breeding programs across a range of industries including 

commercial production, conservation, and research. The domestication of wild animals 

involves increasingly diverse species to address global food security (Subasinghe et al., 2009). 

In particular, the growth of the aquaculture industry from less than one million tonnes of 

aquatic food (including fish, crustaceans, molluscs, echinoderms, and amphibians) in the 

1950s, to an expected 85 million tonnes by 2030, has driven the diversification of species used 

(Subasinghe et al., 2009). The establishment of closed-cycle breeding programs is essential 

for the growth and sustainability of aquaculture as wild fishstocks continue to be depleted 

(FAO, 2016). In conservation, captive breeding has been recommended by International 

Union for the Conservation of Nature (IUCN) Red List assessors for 2,199 species as a tool to 

reduce the threat of extinction (CBSG, 2017). For research populations, some countries have 

banned the use of wild-caught non-human primates in modern laboratory research and 

insufficient captive-born animals are produced to meet demand (Carlsson et al., 2004). 

Successful captive breeding, as opposed to continual supplementation of captive populations 

with wild animals, can also help avoid additional welfare concerns arising from wild-born 

animals adjusting to a captive environment (Mason et al., 2013). Thus, identifying limitations 

and opportunities for captive breeding across all industries is an urgent priority. 

Considerable research has explored differences between captive and wild populations in 

terms of their health, genetics, nutrition, behaviour, physiology, and reproduction (for 

examples see Clauss et al., 2008; Knibb et al., 2014; Bailey et al., 2015; Edwards et al., 2015; 

Work et al., 2015; Scheun et al., 2016; Van der Weyde et al., 2016). However, far less attention 

has been given to differences that may exist between wild-born and captive-born animals 

when both are considered in a captive environment. Although many breeding programs aim 

to replicate some wild conditions in the captive environment in order to promote successful 

reproduction, it is inevitable that differences in nutrition, social structures, and breeding 

strategies will occur. Genetic change in captive populations is likely, and potentially 

unavoidable, as a result of founder effects, inbreeding, drift and adaptation to captivity, 

among other processes (Frankham, 2008). If these processes combine to result in captive-



23 
 

born animals that are less successful than their wild-born counterparts (Farquharson et al., 

2017, Appendix 10), closed-cycle aquaculture may not be economically viable and the long-

term sustainability of conservation breeding and laboratory research is threatened. 

Conversely, genetic adaptation to captivity may increase the reproductive success of captive-

born animals, however this comes at the cost of a potential reduction in fitness if animals are 

released to the wild (Araki et al., 2007; Frankham, 2008). 

Genetic change in captivity may be beneficial or deleterious depending on a program’s goals. 

Aquaculture systems aim to domesticate species through selecting highly productive 

individuals over generations of captive breeding (Mignon-Grasteau et al., 2005), while 

conservation breeding programs aim to avoid selection (Williams & Hoffman, 2009) in order 

to retain wild traits and genetic diversity in the eventual prospect of reintroduction to the 

wild (Frankham et al., 2010). The role of selection in research breeding programs is less clear 

and depends on the species involved and the purpose of the research. Nevertheless, all three 

of these captive breeding industries share a reliance on successful reproduction among 

captive-born animals. Differences in reproductive success as a result of birth origin may arise 

as a result of genetic effects such as inbreeding depression (Boakes et al., 2007) and 

adaptation to captivity (Christie et al., 2012); non-genetic effects, such as inappropriate social 

development, stress (Kiik et al., 2013), and nutrition (Levallois & de Marigny, 2015); and 

complex interactions, such as the early rearing environment and maternal effects (Matos, 

2012). Due to this complexity, assessing the success of captive breeding programs by 

examining only one metric, such as breeding success (i.e., producing an offspring), fails to 

account for life-history trade-offs that may occur, and/or differential impacts of captivity 

throughout a species’ life history. For example, if captive-born animals produce more 

offspring per breeding event than their wild-born counterparts but have higher juvenile 

mortality, life-time reproductive success (i.e., total genetic contribution to the next 

generation), may be similar to, or perhaps even lower, than wild-born individuals. 

Birth-origin effects have been examined in a number of species with mixed results (Schwitzer 

& Kaumanns, 2009; Kiik et al., 2013). As the majority of studies in this area focus on single 

species, it has not previously been possible to quantitatively ascertain whether differences in 

reproductive success follow general trends across taxa and captive environments or whether 

they are specific to the study species, the captive environment of interest, or the type of 
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reproductive trait examined. Here we provide a systematic review and meta-analysis to 

examine the influence of birth origin on reproductive success across multiple species, a 

variety of life-history traits and in various captive environments. We take a broad definition 

of ‘reproductive success’ to refer to diverse measures of reproductive traits, encompassing 

production of gametes/offspring at multiple stages throughout the life history of breeders. 

Specifically, our objective was to quantify differences in reproductive success between 

captive-born and wild-born animals, in captivity, across diverse animal species to determine 

whether birth-origin effects are specific to taxa or follow a general trend regardless of 

phylogeny. As all captive breeding programs (aquaculture, conservation, and laboratory 

research) require successful reproduction for their management objectives, all are included 

in this review. Diverse literature (115 effect sizes from 44 species) shows that, overall, captive-

born animals have a 42% decreased odds of reproductive success in captivity compared to 

their wild-born counterparts. The strongest trends are seen in commercial aquaculture 

settings, with weaker effects (but in the same direction), in conservation and laboratory 

settings. The choice of traits measured also impacts the reported effect of birth origin on 

reproductive success, with offspring survival and quality being the most sensitive traits. 

Examining varied measures of reproductive success in this study gives insight into the possible 

drivers of birth-origin effects that have important implications for the establishment, efficacy 

and long-term viability of captive breeding programs. 

Results 

Wild-born animals are more productive in captivity 

A total of 39 papers published between 1967 and 2015 contributed 115 comparisons of 

reproductive traits between captive-born and wild-born animals in captive environments for 

analysis (some papers compared more than one reproductive measure, or more than one 

species) (Supplementary Dataset A2). The final dataset included 44 species from 

phylogenetically diverse taxa including invertebrates, fish, birds, marsupials, and eutherian 

mammals (Figure 2.1).  
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Figure 2.1: Phylogenetic tree of 44 species included in the meta-analyses.  

The tree was created using the ‘rotl’ package (Michonneau et al., 2016) in R. The total number 
of comparisons between captive-born and wild-born animals included for each species is 
given as (N). 
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We used the log odds ratio (lnOR) to quantify the standardised effect size of differences in 

reproductive success, where negative log odds ratios represent higher reproductive success 

of wild-born animals compared to their captive-born counterparts. Overall, wild-born animals 

have a 74.2% (lnOR = −0.56, 95% HPD CI:[−1.01, −0.10], Table 2.1) increased odds of 

reproductive success in captive environments compared to captive-born animals, equivalent 

to a small-medium effect size. Accounting for phylogenetic non-independence occurring as a 

result of shared evolutionary history did not greatly alter the point estimate but broadened 

the CI resulting in it crossing zero (Figure 2.2). Phylogeny accounted for only 0.29% of 

heterogeneity (see Table A1.4.1 for full extended heterogeneity statistics for both models), 

and phylogenetic heritability was low (H2 = 0.0026), therefore our result is generalisable 

across species. As the non-phylogenetic model had a lower DIC than the phylogenetic model 

(DIC = 317.4 vs. 317.5) all subsequent analysis (meta-regression) proceeded without 

phylogeny. The high heterogeneity (I2 total = 94%) observed within our dataset is not 

surprising given the diverse species, captive environments and reproductive traits included, 

and is consistent with other ecological and evolutionary meta-analyses (Senior et al., 2016). 

We next examined the source of this heterogeneity by fitting moderator variables to our 

analysis, and determined the contribution of environment and trait type on the effect of birth 

origin. 

Birth-origin effects vary with captive environment 

Our dataset included data collected from four study environments: aquaculture (N = 9 

publications, 23 comparisons), conservation (N = 14 publications, 51 comparisons), research 

(N = 15 publications, 40 comparisons) and other (N = 1 publication, 1 comparison). Effect sizes 

varied according to the captive environment of the study (Figure 2.2). In aquaculture systems, 

wild-born animals had a 328.7% increased odds of reproductive success relative to captive-

born animals (lnOR = −1.45, 95% HPD CI: [−2.46, −0.56]; a large, statistically significant effect). 

In conservation and research environments, the estimated effect was in the same direction 

(negative, i.e., wild-born animals more reproductively successful), but not statistically 

significant at α = 0.05 (Table 2.1). The one study that we categorized as ‘other’ examined 

studbook data from Burmese timber elephants (Mar, 2002), which are bred as working 

elephants and do not fit any of our other categories. The estimated effect was positive 

(captive-born animals were more successful), though this had poor precision (Figure 2.2).
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Table 2.1: Meta-analytic effect size estimates of differences in reproductive success between wild-born and captive-born animals in captive 
environments. 
Posterior mode gives the meta-analytic log odds ratio (lnOR) estimate from the MCMCglmm models, with lower and upper 95% higher posterior 
density credible intervals given. Estimates with the 95% HPD CI excluding zero are marked with *. Percentage odds refers to the % increase (+) 
or decrease (-) in the odds of reproductive success of captive-born or wild-born animals, relative to the other group. 

 

 Posterior mode (lnOR) [95% HPD CI] % odds of captive-born 
reproductive success 

% odds of wild-born 
reproductive success 

N 

Overall model* -0.56 [-1.01, -0.10] -42.3% +74.2% 115 
Overall model + phylogeny -0.65 [-1.45, 0.04] -47.7% +91.3% 115 
Captive environment 
       Aquaculture* 
       Conservation 
       Research 
       Other 

 
-1.45 [-2.46, -0.56] 
-0.38 [-1.06, 0.30] 
-0.34 [-1.08, 0.35] 
1.84 [-0.98, 4.49] 

 
-76.7% 
-31.8% 
-29.0% 

+527.6% 

 
+328.7% 
+46.6% 
+40.8% 
-84.1% 

 
23 
51 
40 
1 

Trait type 
       Fertility & hatchability 
       Reproductive yield 
       Offspring quality* 
       Offspring survival* 
       Reproductive phenology 

 
-0.38 [-0.94, 0.15] 
-0.52 [-1.06, 0.05] 
-1.22 [-2.01, -0.46] 
-1.26 [-1.85, -0.65] 
-0.04 [-0.69, 0.57] 

 
-31.5% 
-40.6% 
-70.5% 
-71.5% 
-3.5% 

 
+45.9% 
+68.4% 

+238.8% 
+250.9% 

+3.6% 

 
30 
28 
8 

33 
16 
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Captive-born animals are less productive across life stages 

Our dataset included comparisons from five, broad, trait type categories: fertility/hatchability 

(e.g., probability of breeding; N = 30 comparisons), reproductive yield (e.g. litter size; N = 28), 

offspring quality (e.g., birth weight; N = 8), offspring survival (N = 33) and reproductive 

phenology (e.g., interbirth interval; N = 16). For a full list of the specific reproductive traits 

included in each category see Table A1.4.2. Birth-origin effects were negative across all trait 

type categories (Figure 2.2). Wild-born animals had a statistically significant 238.8% greater 

odds of reproductive success relative to captive-born breeders when measured as offspring 

quality traits, and a 250.9% greater odds of offspring survival (both considered large effects, 

Table 2.1). No statistically significant effects of birth origin were observed when reproductive 

success was measured as fertility/hatchability, reproductive yield or reproductive phenology 

(Table 2.1). 

 
Figure 2.2: Forest plot of overall meta-analytic results (diamonds), and meta-regression 
models of captive environment and trait type (squares).  
A negative log odds ratio (lnOR) indicates wild-born animals have higher reproductive success 
than their captive-born counterparts, with a positive log odds ratio referring to increased 
reproductive success of captive-born animals compared to wild-born. Squares represent the 
posterior mode (or parameter estimate) with error bars showing the 95% highest posterior 
density credible intervals (95% HPD CIs). (N) refers to the number of effect sizes. See Methods 
section for definition of study environments, and Table A1.4.2 for the comparisons included 
in each trait type category. 
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Drivers of birth-origin effects 

As the difference between wild-born and captive-born reproductive success was detectable 

with some trait types and not with others, we examined whether the dataset was evenly 

distributed across study environments and trait types (Table 2.2). The two trait type 

categories showing a strong, significant influence of birth origin, offspring quality and 

offspring survival, were dominated by conservation and research comparisons (N = 7/8, N = 

29/33, respectively). Data from aquaculture studies contributed to all trait type categories; 

but data from conservation environments largely contributed to fertility/hatchability (60%), 

offspring quality (62.5%) and offspring survival (51.5%) (Table 2.2). Comparisons made in 

research environments comprised the largest proportion of the reproductive yield trait 

category (57.1%), with correspondingly high contributions to data in the fertility/hatchability 

and offspring survival categories. 

 
Table 2.2: Number of effect sizes in analysis, grouped by captive environment and trait type. 

 
 
While we were primarily interested in comparing the effect of birth origin on reproductive 

success, we also recorded whether each study specified the number of generations of captive 

breeding of the captive-born population. The majority of the studies included did not specify 

the generation, nor range of generations, of the captive-born population (26/39 studies, 

66.7%; 80/115 comparisons, 69.6%, Table A1.4.3), so we could not statistically analyse the 

effect of generations in captivity on reproductive success. Of the studies that did report 

generation, the most common comparison was to an F1 (first generation) captive-born 

population (5/13 studies, 38.5%; 17/35 comparisons, 48.6%), and this comparison was found 

exclusively in aquaculture and research study environments. 

We found no strong evidence that our results are influenced by publication bias 

(Supplementary Note A1.1, Figure A1.3.1). A total of 74 comparisons of interest were 

 
Fertility & 

hatchability 
Reproductive 

yield 
Offspring 

quality 
Offspring 
survival 

Reproductive 
phenology Total 

Aquaculture 4 7 1 4 7 23 
Conservation 18 5 5 17 6 51 
Research 8 16 2 12 2 40 
Other 0 0 0 0 1 1 
Total 30 28 8 33 16 115 
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excluded from our analysis because they did not report all the data required for inclusion; 

values for 17–41 of these comparisons could be recovered using multiple imputation 

(Supplementary Note A1.2). Although multiple imputation increased uncertainty in our 

results, the main effects were in the same direction and of similar magnitude to those 

obtained by our main analysis. We therefore do not believe that our overall conclusions are 

biased by missing data (Supplementary Note A1.2, Table A1.4.4). 

Discussion 

We synthesised the results of studies across different species, captive environments, and 

measures of reproductive success to provide an overall estimate of the effect of birth origin 

on reproductive success in captivity. Our analysis included 44 species across diverse animal 

taxa, including vertebrates and invertebrates. Surprisingly, across all species and captive 

environments, it was wild-born animals that had higher odds of productivity in captivity, 

relative to their captive-born counterparts (74.2%). As phylogenetic signal was low (<1%), it 

is likely that our overall result is generalisable across species, indicating a general trend 

toward declines in the reproductive success of captive-born animals relative to wild-born 

animals, in captive environments. Our meta-analysis enables us to examine the available data 

on this topic in more detail, and draw inferences about the possible causes of this unexpected 

pattern. 

When our data were stratified by captive environment, aquaculture was the only 

environment to show a large, statistically significant mean difference between wild- and 

captive-born animals (Figure 2.2). Again, it was the wild-born animals that showed higher 

odds of reproductive success (328.7%), relative to their captive-born counterparts. This result 

is unexpected given that aquaculture aims to improve reproduction among captive-born stock 

in the process of domestication. This strong, significant effect has important implications for 

the sustainability of closed-cycle commercial production systems, suggesting that wild-stock 

supplementation, or other solutions, may be required. Effects in conservation and laboratory 

breeding contexts were in the same direction as seen for aquaculture, but weaker (Figure 

2.2). There are several possible explanations for this variation among contexts, which is 

consistent with the differing goals of various captive breeding programs. For example, 

conservation breeding programs aim to minimise adaptation to captivity (Williams & 

Hoffman, 2009), while phenotypic and/or marker-assisted selection for favoured traits is 
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often an important goal of agricultural breeding programs (Dekkers & Hospital, 2002). These 

different goals predict decreased genetic change in conservation programs, compared to 

agricultural programs. 

A further possible source of the variation among environments is differences in the length of 

the captive breeding programs included in publications. Captive-born animals in different 

environments varied in the number of generations of captive breeding, data that were often 

not reported (Table A1.4.3). For aquaculture data, 12 of the 23 comparisons originated from 

studies comparing the reproductive success of wild-born (F0) to first generation (F1) captive-

born animals (Table A1.4.3). It is therefore likely that much of the difference in reproductive 

success we observe in aquaculture is related to changes occurring within the first generation 

of captive breeding, rather than across multiple generations. In contrast, none of the 51 

comparisons made in conservation studies specified a wild versus F1 comparison. In our 

conservation dataset, four comparisons were from studies comparing wild-born to a captive-

born population ranging from F1–F3 or to F4, while the other 47 comparisons did not report 

the captive generation of comparison used in the study (Table A1.4.3). Given the long-running 

nature of many conservation breeding programs, it is probable that many of the captive-born 

populations in those studies that did not specify the generation depth comprised a range of 

generations. Similarly, for research studies, captive-born animals were F1 for only 5/40 of the 

comparisons made, 25 of the remainder were from studies that did not report generation 

depth (Table A1.4.3). As a result, we are unable to conclude whether the differences in birth-

origin effects on reproductive success are influenced by general factors associated with 

captivity (such as purely environmental factors), or by characteristics of the captive-born 

population (such as genetic factors correlating with generation depth, including neutral or 

adaptive change). Conservation and research breeding programs could still be experiencing a 

reduction in reproductive success in the first generation of captive breeding. It is imperative 

that potential declines in the early stages of conservation breeding programs are reported 

and prevented, otherwise founder genetic diversity and the evolutionary potential of the 

captive population may be lost (Lacy, 1989). 

Understanding possible causes of differences in reproductive success in the first generation 

of captive breeding is useful for the successful establishment of breeding programs. We 

suggest comparing changes within the first generation of captive breeding to long-term 
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changes over multiple generations in order to disentangle possible causative factors, such as 

environmental effects versus long-term genetic change. For example, one possible 

explanation of increased fitness of wild-born animals, relative to F1 captive-born animals, is 

that animals caught in the wild have survived early and ongoing natural selection pressures, 

and are therefore ‘fit’. Relaxed selective pressures in captivity mean that even F1 animals that 

would be ‘unfit’ in the wild may survive to reproductive age. If these unfit animals are also 

unproductive, the captive-bred population would exhibit a reduction in reproductive success 

in the first generation, relative to wild-born animals. In an aquaculture setting this is not 

necessarily a cause for concern—artificial selection can act to increase population 

productivity where there is variation in heritable reproductive success over generations of 

captive breeding. This is most simply demonstrated by the breeder’s equation: R = h2S, where 

R is the response to selection, h2 is the narrow-sense heritability and S is the selection 

differential (Falconer, 1960; Hill & Caballero, 1992). However, as traits linked with broad 

evolutionary fitness (such as reproductive success) tend to have low heritability (Merila & 

Sheldon, 1999), selection cannot be relied upon to improve them. Furthermore, processes 

such as antagonistic pleiotropy can complicate the response to selection on life-history traits 

in captivity (Bryant & Reed, 1999). In the establishment phase of an agricultural program, the 

potential benefits of long-term selection and domestication must be weighed against short-

term productivity losses. In a conservation setting, unintentional selection may be disastrous. 

For example, offspring survival in utero that differs from Mendelian expectations provides an 

opportunity for early viability selection that is difficult to prevent and may impact on the 

effectiveness of pedigree management (Grueber et al., 2015a; Chapter 7). Instead, efforts to 

address variation among breeders during the first generation of captive breeding, such as 

improved nutrition, should be prioritised (Izquierdo et al., 2001). 

The magnitude of birth-origin effects on reproductive success was influenced by the type of 

reproductive trait measured. Offspring quality and offspring survival showed the most 

pronounced decrease of captive-born relative to wild-born reproductive success (Figure 2.2). 

This result indicates the crucial importance of measuring fitness outcomes at multiple life-

history stages. Our observation is consistent with a recent meta-analysis (Ronget et al., 2017) 

that found a close link between offspring quality traits and offspring survival, estimating that 

a one standard deviation increase of offspring body weight increased survival odds by 71% in 
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mammals and 44% in birds. We observed that fertility/hatchability, reproductive yield and 

reproductive phenology trait types did not significantly differ between captive-born and wild-

born animals, suggesting no evidence that captive-born animals compensate for reduced 

offspring survival (all lnOR estimates were negative) in a life-history trade-off framework 

(Table 2.1). Unnatural social environments or disrupted maternal contact during the early life-

stages of captive-born animals may lead to maladaptive development and changes in 

behaviour (Mason et al., 2013) such as mismothering and offspring abandonment. The 

mechanisms leading to maladaptive development may explain why we observed a significant 

decrease in offspring survival without significant differences in other traits that may be less 

influenced by behavioural changes (e.g., reproductive phenology). Taken together, our results 

indicate that, if the overall reproductive success of captive breeding programs is to be 

improved, population managers would be best placed to focus efforts on improving offspring 

quality and survival outcomes, as effects on other traits are likely to be weaker. For example, 

the effect of offspring body weight on juvenile survival in mammals is stronger in captive 

environments than in wild environments, and offspring mass is positively correlated with 

maternal mass (Ronget et al., 2017). Thus, improving maternal nutrition in captive 

environments may increase offspring quality and survival through increased offspring birth 

weight. 

Reduced offspring survival among captive-bred animals may also result from inbreeding 

depression—the reduction in fitness as a result of increased homozygosity of inbred animals, 

and accumulation of deleterious recessive mutations that may be lethal in early life 

(Charlesworth & Willis, 2009). Captive populations managed for conservation breeding 

purposes already implement strategies to avoid inbreeding, such as the use of pedigree-based 

management, and the incorporation of molecular techniques to assist in determining 

parentage (Ivy et al., 2009; Chapter 5). Likewise, for laboratory research, genomic information 

is required for long-term management of non-human primate populations (Kanthaswamy et 

al., 2009), and is particularly important not only for preventing inbreeding, but can also reveal 

genetic variance as a result of mixed ancestry that may influence treatment effects in 

biomedical research (Kanthaswamy et al., 2013). The avoidance of inbreeding may not be as 

carefully managed in aquaculture settings, with short-term inbreeding even encouraged to 

some extent to develop homogenous stock that have uniform body sizes for easier 
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management, and to protect the intellectual property and commercial interests of breeders 

that supply stock to other fisheries by decreasing genetic variance available for further 

improvement by selection (Janhunen et al., 2013; Doyle, 2016). Aquaculture species are not 

immune to the effects of inbreeding depression (Gallardo et al., 2004), so applying 

management strategies at a population-level to prevent the effects of inbreeding depression 

remains a priority for captive breeding programs across all industries. 

In this analysis, various measures of reproductive success were included within the offspring 

survival category, such as juvenile mortality rate, stillbirth/abortion rate and cannibalism, or 

abandonment of young (Table A1.4.2). As we have discussed, both genetic (e.g., inbreeding) 

and non-genetic (e.g., management practices, stress) factors could be responsible for 

decreased offspring survival in captive-born animals (Wielebnowski, 1996; Terio et al., 2004; 

Yordy & Mossotti, 2016). Our dataset precludes determining the cause of this effect; without 

experimental data it is difficult to disentangle genetic and non-genetic effects. In aquaculture 

and research environments, we recommend designing experiments to separate these effects, 

as experimental crosses are more feasible than in conservation programs. For example, 

Christie et al. (2016) identified changes in gene expression between offspring of first-

generation hatchery stock of steelhead trout (Onchorhynchus mykiss) and offspring of wild 

stock in captivity, and through a series of crosses were able to rule out maternal effects or 

chance events. Identifying causative factors will allow captive managers to address these 

changes, and may inform conservation breeding management. Conservation breeding 

programs can also benefit from the retrospective analysis of their large detailed datasets in 

the form of studbooks that are available for many species (see Mason (2010) for sources of 

data; Chapter 3). The incorporation of husbandry and behavioural data in regression analyses, 

possible through the release of the Zoological Information Management System (ZIMS) 

(Species 360, 2018), will assist in determining the factors affecting reproductive success and 

juvenile mortality. 

Our systematic review has identified key areas where the reporting of additional data for 

captive-breeding studies could be improved, to increase the suitability of these observations 

for analysis of the effects of captivity in future meta-analysis. In total, 74 comparisons we 

identified in our systematic review were excluded from the main analysis solely on the 

criterion of missing data that precluded calculation of effect sizes. Most commonly, reports 
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of variance (such as the standard deviation or the standard error of the mean), and sample 

size were missing and unable to be inferred from the text. Together the 12 excluded 

publications made comparisons involving all four study environments (aquaculture, research, 

conservation and other), and all five trait type categories. The excluded data covered 10 

additional species not otherwise included in our meta-analysis (Table A1.4.5), which were not 

taxonomically distinct from other species included in our analysis. Our results did not change 

greatly with the inclusion of 17 of these comparisons using multiple imputation (Table A1.4.4). 

The call for careful reporting of all relevant statistics required for meta-analysis in primary 

studies has been made often; recently Gerstner et al. (2017) provided a useful guide to 

authors as to what to include. 

In conclusion, our meta-analysis shows that wild-born animals generally have higher 

reproductive success than their captive-born counterparts in captive environments, across 

multiple industries and irrespective of taxonomy. The increased reproductive success of wild-

born relative to captive-born animals was particularly evident in aquaculture environments, 

which were more likely to report wild versus first-generation comparisons than studies from 

other environments. We urge greater reporting of the general characteristics of captive 

population studies, in particular generations of captive breeding, to enable a greater 

understanding of effects at the first and subsequent generations. Our literature search 

uncovered a large body of literature on other types of captive to wild comparisons that were 

not the target of our search criteria (Figure A1.3.2) and which therefore cannot be considered 

a systematic survey. Nevertheless, future systematic searches into these areas, especially 

captive-born to wild-born animals in the wild (e.g., reintroductions) may reveal long-term 

effects of captive breeding. Now that we have found strong evidence of birth-origin effects 

on reproductive success within captive environments, future research should experimentally 

investigate the factors driving these changes, to inform management decisions, such as 

preventing adaptation to captivity, avoiding inbreeding, reducing juvenile mortality, and 

establishing successful closed-cycle breeding programs. 
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Methods 

Data collection 

Following the PRISMA guidelines for systematic reviews and meta-analyses (Liberati et al., 

2009; Nakagawa & Poulin, 2012), we searched the ‘Web of Science’ database on 26 April 2016 

and the ‘Scopus’ database on 7 June 2016, with no language or time restrictions, using the 

following terms related to reproductive traits and birth origin: (reproduct* OR product* OR 

hatch* OR fecund* OR “breeding success” OR “litter size” OR “juvenile mortality” OR “infant 

mortality”) AND (captiv* OR “zoo-born”) AND (“wild-born” OR “wild-caught” OR “wild-laid” 

OR “wild-bred” OR “free-ranging”). We also screened reference lists in relevant papers to 

obtain the broadest possible coverage. We obtained 1,065 results from our search of the 

‘Web of Science’, and 600 results from our ‘Scopus’ search. 

See Figure A1.3.2 for the overview and outcomes of our search strategy. We first removed 

duplicates between and within the two databases, leaving 1,160 unique works. We next 

examined the abstract and title of all works to identify potentially relevant primary sources, 

and downloaded full texts of sources that appeared to meet our inclusion criteria (see below). 

We considered only published papers that were the primary source of data (i.e., excluded 

reviews, books, conference proceedings and syntheses) to avoid the duplication of reporting. 

In order to isolate papers on our research topic of interest (the effects of birth origin in 

captivity), we classified all papers by the study populations they compared: 

a) wild-born vs. captive-born in captivity (comparison of interest), 

b) wild-born vs. captive-born in the wild (such as in reintroductions), 

c) wild-born in captivity compared to the wild, 

d) wild populations compared to captive populations, 

e) other comparisons (such as those made at the level of the ancestors), and 

f) two or more of the above. 

Of 1,160 papers examined, 126 (10.9% of unique results) were screened by two people to 

ensure agreement and minimise the risk of researcher bias. After grouping papers by study 

population (i.e., a—f, above), papers that compared wild-born to captive-born animals in 

captivity (category a, and 12 papers from category f, total N = 125) were further screened to 

identify studies that reported data for at least one reproductive trait (‘comparison’, used for 
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calculating the effect sizes used in our meta-analysis). A total of 56 papers comparing 

reproductive traits in wild-born and captive-born animals in captivity were identified, 

encompassing 242 wild-born/captive-born comparisons considered for inclusion in the study. 

Data extraction 

We developed a data coding strategy to classify the comparisons by recording the first author, 

year of publication, journal of publication, species of study (common name and scientific 

name), study environment (see below), whether the captive generation of comparison was 

specified (e.g., F1, F2), comparison (reproductive trait) for each study, trait type (see below), 

measurement/statistic, error, and sample size. 

Study environment was determined from the reported purpose for keeping the captive 

population, as described by the authors of each publication, and categorised as either: 

a) Aquaculture—may occur in the laboratory, but the primary purpose is for 

commercial production/domestication of animals for consumption or trade. 

b) Conservation—a captive breeding program with the purpose of propagating 

the species to reinforce the wild population, to provide an insurance 

population against extinction in the wild, or to educate members of the public. 

c) Research—the purpose of the captive program is to provide animals for 

research under controlled conditions, for reasons other than developing a 

closed life-cycle production system, unless this is for a laboratory research 

species. The results of the study may inform conservation outcomes, but the 

animals are not propagated for conservation purposes. 

d) Other—does not fall into any of the above categories. 

Studies were included in the review and meta-analysis if they fulfilled the following inclusion 

criteria: (i) studies must have made at least one comparison of a reproductive trait between 

captive-born and wild-born animals of any species in a captive environment. Some studies 

hold animals in ‘semi-natural’ enclosures—we considered a study to take place in a captive 

environment if there were human barriers to movement for the purpose of holding animals 

and if some form of provisioning of resources (such as shelter, food and/or water) occurred. 

We did not require that the animals in a study were housed in the same physical location to 

be included in the meta-analysis, as long as the enclosure types were similar. For example, 
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captive-born and wild-born animals of the same species across multiple zoos were included. 

We considered animals to be ‘wild-born’ if they were brought into captivity from the wild 

either as eggs, young or mature individuals. (ii) Studies did not duplicate other included 

studies. In cases where duplicates were identified (by species studied, population reported, 

years of analysis and sample size), we selected the study that was most recent, or which had 

the greatest sample size (N = 1 study comprising 1 comparison was excluded for this reason). 

(iii) Papers (including any supplementary material) must contain extractable data (for 

example means, standard deviations and sample sizes, or other statistics or raw data that 

could be used to calculate effect sizes), this criterion resulted in the exclusion of N = 74 

comparisons. (iv) The study must not have experimentally manipulated reproductive success, 

for example through the restriction of diet (N = 4 comparisons excluded). (v) Reproductive 

success was not systematically influenced by bias in opportunity to breed (N = 22 comparisons 

excluded). For example, many comparisons such as lifetime reproductive output can be 

influenced by captive management if wild-born animals are prioritised for breeding over 

captive-born animals as is the case in conservation breeding programs that aim to maximise 

the genetic contribution of founder animals (Ballou, 1984). (vi) Data were not duplicated 

within the study (N = 5 comparisons). For example, if male reproductive success, female 

reproductive success, and overall reproductive success were reported, only overall 

reproductive success was included. The excluded studies and the reasons for their exclusion 

are given in Table A1.4.5, with a flowchart of data filtering provided in Figure A1.3.3. 

As our studies included diverse species and breeding strategies, we obtained many different 

comparisons related to reproductive success or failure. These were broadly categorized into 

‘trait types’ as comparisons relating to the following: fertility/hatchability, reproductive yield, 

offspring quality, offspring survival, and reproductive phenology (Table A1.4.2). For each 

comparison, we determined whether it had a positive or negative relationship with overall 

reproductive success (Table A1.4.2). An increase in a comparison with a positive relationship 

would result in increased reproductive success. For example, an increase in probability of 

breeding, fertility rate, hatching rate, juvenile survival rate, and litter/clutch/spawn size are 

expected to be typically positively correlated with reproductive success. Increased interbirth 

intervals, juvenile mortality and age at first parturition are expected to be typically negatively 

correlated with productivity. For other comparisons, the directionality of a relationship with 
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reproductive success was unclear, for example date of parturition, gestation length and 

offspring sex ratio. As such, comparisons for which the direction of the effect on overall 

reproductive success could not be characterised were excluded from the meta-analysis (N = 

20 comparisons). 

After filtering on our inclusion criteria, 39 papers contributed 115 reproductive comparisons 

between captive-born and wild-born animals in captive environments for analysis. All 39 

papers were coded by the same person, with 18 of these (46%) coded by an additional person 

to ensure agreement with the coding strategy. 

Effect size extraction and calculation 

For each comparison that satisfied our inclusion criteria, we extracted raw data for both the 

captive-born and the wild-born population reported in the text or in tables/figures (including 

supplementary material) to calculate an effect size, a measure of the magnitude and direction 

of the difference between the two populations (detailed below). Data that were reported only 

graphically were extracted using GetData Graph Digitizer 2.26 (Fedorov, 2002). For 

continuous comparisons (such as number of offspring), we obtained the mean, standard 

deviation and sample size for each group. Where the standard error was the only variance 

measure reported, we calculated the standard deviation as !" = !$ ×	√(.  

If only 95% confidence intervals were presented, we calculated the standard deviation as 

!" = 	√(	× 	 ("##$%	'(%	*+,-./$%	'(%	*+)1.'3 . For proportional comparisons (such as hatching 

rate), we recorded the number of events out of the total sample size (n/N). Some studies 

reported the frequency of singletons, twins, triplets, and quadruplets between wild-born and 

captive-born animals in captivity. Where possible, overall litter size was calculated from this 

data and used as the comparison instead. 

Stochastic dependency can occur when multiple comparisons are made of the same data, 

resulting in biased wild-born to captive-born comparisons (Gleser & Olkin, 2009; Noble et al., 

2017). In our dataset, this non-independence occurs in studies that reported productivity for 

the population of wild-born individuals, compared multiply to each generation of captive 

breeding. In such cases, we obtained the overall mean for the captive-born animals for effect 

size calculation, where possible. If overall values were not calculable, we used only the data 

from the first generation of captive breeding (F1) to compare to the wild-born generation (F0). 
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Likewise, for studies that compared more than two populations (e.g., wild-born animals 

compared to two groups of captive-born animals), we included the effect size associated with 

only one comparison, chosen as the pair of populations most comparable to one-another in 

all other respects (e.g., housed at the same location under the same conditions, comparison 

reported for the same year), or by pooling data from the multiple captive-born populations if 

they were identical treatments (e.g., tanks of fish). 

We chose the log odds ratio (lnOR) as our measure of effect size, as it could be calculated for 

both the continuous and proportional data present in our analysis. Log odds ratios between 

the wild-born population and captive-born population and their unbiased estimates of 

sampling variances were computed for each comparison using the ‘metafor’ package in R 

(Viechtbauer, 2010; R Core Team, 2016). The log odds ratio is a symmetric measure centered 

around zero; data were input such that a positive log odds ratio refers to increased 

reproductive success of captive-born animals relative to wild-born counterparts and a 

negative log odds ratio refers to the converse. A small constant (0.5) was added to zero values 

in proportional data to allow for estimation of the effect size; this applied to 3/48 (6%) of 

effect sizes calculated from proportional data. 

Meta-analytic procedures 

To account for the non-independence of effect sizes as a result of the shared evolutionary 

history of closely related species, we obtained the phylogenetic correlation between the 

species in our meta-analysis using the ‘rotl’ package (Michonneau et al., 2016) in R, based on 

published phylogenies available through the Open Tree of Life (Hinchliff et al., 2015). Taxon 

names were matched to records in the Open Tree Taxonomy, to obtain relationships between 

species. Chironex fleckeri was used as the outgroup to obtain the full variance-covariance 

matrix of phylogenetic relationships. Due to the diverse species in our meta-analysis, 

accurately estimating branch lengths was not plausible, so we computed branch lengths 

based on topology (Figure 2.1) using the ‘ape’ package (Paradis et al., 2004) in R. 

We fitted multi-level hierarchical models in the ‘MCMCglmm’ package (Hadfield, 2010) in R. 

Each model was run for 5 × 106 iterations, with a burn-in of 1.5 × 105 and a thinning interval 

of 3,000, with an inverse-gamma prior (V = 1, nu = 0.002). We report the posterior mode and 

the 95% highest posterior density credible intervals (95% HPD CIs) for each model set. Model 
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diagnostics were checked so that autocorrelation <0.1. Chain convergence was confirmed 

visually by passing the Heidelberg stationarity test and by a Gelman-Rubin statistic <1.1 based 

on three runs of each model. 

We performed sensitivity analyses by comparing the overall model (with study ID as a random 

effect) to one with both study ID and phylogeny as random effects. We considered the model 

with the lowest Deviance Information Criterion (DIC) value the best model. Cohen’s 

established recommendations for the interpretation of small (Pearson’s correlation 

coefficient ϕ = 0.1), medium (ϕ = 0.3) and large (ϕ = 0.5) effects are equivalent to odds ratios 

of 1.22, 1.86, and 3.00 with equal treatment-control sample sizes (Cohen, 1992; Olivier & Bell, 

2013). These correspond to estimates of log odds ratios from our models of ± 0.20, 0.62, and 

1.10 as small, medium, and large, respectively. Estimates with a 95% HPD CI excluding zero 

were taken as statistically significant at α = 0.05. We note that these benchmarks do not 

establish biological importance (Nakagawa & Cuthill, 2007), so we discuss our results in terms 

of their practical implications for captive breeding programs. 

Traditional calculations of heterogeneity such as I2 assume that effect sizes are independent, 

however this is not the case for multi-level models so the extended heterogeneity statistic 

was instead calculated following Nakagawa and Santos (2012). Doing so enabled us to 

partition total heterogeneity (I2total) into phylogenetic variance (I2phylogeny), study ID variance 

(I2study) and residual variance (I2residual). Heterogeneity well above the I2total >75% benchmark 

for high heterogeneity (Higgins et al., 2003) is common across ecological and evolutionary 

meta-analyses (Senior et al., 2016). For the phylogenetic model, we obtained lambda, a 

measure of phylogenetic signal or phylogenetic heritability (H2), where H2 = 0 indicates no 

phylogenetic relatedness among effect sizes (Lynch, 1991). As both our models had high 

heterogeneity, but phylogenetic signal was low, we proceeded with non-phylogenetic meta-

regression models to fit moderators including ‘captive environment’ and ‘trait type’. 

Publication bias 

We assessed publication bias in our meta-analysis using three methods. First, we fitted a non-

phylogenetic meta-regression model with year of publication as a moderator. Evidence of 

time-lag bias is indicated if the 95% HPD CI of the slope estimate excludes zero. Second, we 

used funnel plots to visualize possible publication bias (evident by funnel plot asymmetry), by 
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plotting the effect sizes and the meta-analytic residuals against their precision () 4
56%7689$). 

Funnel plot asymmetry can also result from high heterogeneity, so applying these publication 

bias tests to the meta-analytic residuals instead of the raw effect sizes minimises the effect 

of heterogeneity on funnel plot asymmetry (Nakagawa & Santos, 2012). Third, we performed 

Egger’s regression (Egger et al., 1997) on the meta-analytic residuals obtained from the 

overall model to formally test for evidence of funnel plot asymmetry, by fitting a linear model 

of the meta-analytic residuals against their precision. If the intercept of the Egger’s regression 

is significantly different from 0 (at α = 0.05), publication bias may be present. We then 

performed a trim-and-fill analysis using the ‘trimfill’ function in ‘metafor’ to estimate the 

number of effect sizes potentially missing from our dataset. Finally, all models were rerun on 

a subset of the dataset after outliers identified in the funnel plot were removed, to examine 

whether any model results changed substantially. Publication bias results are presented in 

Supplementary Note A1.1 and Figure A1.3.1a–c. 

Multiple imputation 

We performed multiple imputation to recover missing data. Of the 74 comparisons excluded 

for missing data, 17 of these were continuous traits with the mean reported but not the 

standard deviation, and which could be estimated. We performed 20 imputations using the 

‘mice’ function in the R package ‘mice’ (van Buuren & Groothuis-Oudshoorn, 2011) and re-

ran all models with each imputation. The posterior mode of the pooled posterior distributions 

from each imputed meta-analysis was used for inference and qualitatively compared to the 

main dataset results to check support for our conclusions. We also considered the effect of 

imputing missing sample sizes for a further 24 comparisons. Full multiple imputation details 

and results are presented in Supplementary Note A1.2 and Figure A1.3.4. R code for all 

analyses reported herein is included in Supplementary Code A3.  
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Chapter 3: Changes in fitness over generations in captivity in 

conservation breeding programs 

 

3.1 BACKGROUND 

In Chapter 2, I identified reduced reproductive success of captive-born animals in captivity 

compared to their wild-born counterparts. The largest birth-origin effects occurred in 

offspring traits, including offspring survival. Due to under-reporting of statistics, such as the 

number of captive generations, in the literature reviewed it was not possible to disentangle 

first-generation effects from multi-generational trends using existing literature. In this 

Chapter, I obtained studbook data from long-running conservation breeding programs to 

examine multi-generational changes in offspring survival. This manuscript has been prepared 

for submission to a broad-interest journal. Supplementary Material is provided in Appendix 

4. 

For this study, I obtained studbook data, performed data cleaning and analysis, prepared 

figures and tables and drafted the manuscript. Carolyn Hogg assisted in obtaining and 

converting studbook data, provided conceptual guidance on the analysis, critically revised the 

manuscript and oversaw the project. Catherine Grueber provided technical advice on data 

analysis, critically revised the manuscript and oversaw the project.  
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3.2 MANUSCRIPT 

Changes in fitness over generations in captivity in conservation breeding 

programs 

Katherine A. Farquharsona, Carolyn J. Hogga & Catherine E. Gruebera 

a) The University of Sydney, School of Life and Environmental Sciences, Faculty 

of Science, Sydney NSW 2006, Australia 

Abstract 

Saving global biodiversity relies on many strategies, and successfully breeding animals in 

controlled conditions (such as zoos) has been credited with preventing extinction of many 

species. However, the long-term sustainability of conservation breeding programs is 

challenged by genetic changes that occur in the captive population, such as might occur via 

neutral (e.g. genetic drift) or selective (e.g. adaptation to captivity) processes. We analysed 

studbook (pedigree) data from 15 animal conservation breeding programs – comprising over 

30,000 individuals – to identify changes in offspring survival over generations of captive 

breeding. Generational effects were highly variable, with some species demonstrating 

substantial increases or decreases in offspring survival over generations in captivity, 

independent of time. Disentangling first-generation from multi-generational effects revealed 

further complexity, as dam and sire effects differed at this scale. We also investigated effects 

of inbreeding and parental age. Offspring inbreeding (equivalent to kinship of the parents) 

strongly and consistently decreased offspring survival across taxa. Parental age effects, such 

as decreased reproduction in older animals, were generally consistent with species’ 

reproductive biology and mating systems. Across our 15 taxa, species’ responses to captivity 

could not be predicted by their evolutionary relationships, demonstrating the importance of 

quantifying generational changes within individual breeding programs. Our data shows that, 

even in captive populations under best-practice management, generational fitness changes 

that cannot be explained by known processes such as inbreeding depression, are occurring. 
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Introduction 

Captive breeding is increasingly relied upon to prevent extinction (McGowan et al., 2017). 

Conservation programs aim to halt evolution over time so that captive populations remain 

representative of wild sources (Lacy, 2009). However, even the best efforts cannot fully 

replicate the wild in captivity. Different selective pressures experienced in captivity than in 

the wild can drive captive adaptations. Adaptation to captivity may improve population-level 

fitness in the captive environment if the individuals best suited to captivity are more 

successful (Frankham, 2008). Yet, when animals are returned to the wild, captive adaptations 

may be maladaptive (e.g. selection for tameness), and contribute to the low success of 

reintroduction programs (Jule et al., 2008). Adaptation to captivity has been investigated in 

multiple fish species and non-model organisms (see for examples Gilligan & Frankham, 2003; 

Araki et al., 2007; Lacy et al., 2013; Milot et al., 2013; Janowitz-Koch et al., 2019), but is 

underexplored in conservation settings (Frankham, 2010b). Although conservation breeding 

programs employ strategies to minimise the effects of adaptation to captivity (such as 

avoiding intentional selection, attempting to replicate natural environments, and fragmenting 

populations) (Williams & Hoffman, 2009), the extent and consequences of adaptation to 

captivity are largely unknown. Genetic changes as a result of captive breeding have been 

demonstrated to occur in as little as a single generation in steelhead trout (Christie et al., 

2016), so conservation breeding programs are unlikely to be immune to the effects of 

adaptation to captivity. 

A recent systematic review and meta-analysis investigating birth origin effects on 

reproductive success revealed captive-born animals have substantially lower reproductive 

success in captivity than their wild-born counterparts, particularly for offspring survival traits 

(Farquharson et al., 2018b, Chapter 2). This result seems to conflict with the expectation of 

improved fitness in captivity (e.g. Christie et al., 2012), however many of the studies reviewed 

considered only the first generation (F1) of captive breeding. The response of species to 

captive breeding may differ in the first generation relative to later generations, as different 

pressures may apply. For example, first generation changes may occur as a consequence of 

non-genetic effects such as husbandry or maternal effects (Matos, 2012). Longer-term, multi-

generational changes may instead reflect heritable genetic changes. Therefore, it is essential 
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to disentangle first generation and multi-generational changes when investigating adaptation 

to captivity.  

Other genetic factors such as inbreeding can also contribute to fitness changes over time. 

Inbreeding depression can act upon various life-history traits, such as fertilisation, embryo 

survival, offspring survival and total lifetime reproductive success (Van Oosterhout et al., 

2007; Xu et al., 2007; Grueber et al., 2010; Harrisson et al., 2019). In conservation contexts, 

inbreeding has been demonstrated to reduce offspring survival with no detectable purging to 

reverse negative fitness effects (Boakes et al., 2007; Kennedy et al., 2014). As a result, 

strategies to minimise inbreeding are widely applied in conservation contexts (Frankham et 

al., 2010). However, few studies of inbreeding consider generations in captivity: as inbreeding 

is often positively correlated with time in captivity, any effects of inbreeding and other 

mechanisms of genetic change over time may be confounded. Typically small sample sizes in 

conservation settings have limited the power available to detect inbreeding depression or 

other population genetic processes (Hedrick & Kalinowski, 2000).  

As the biodiversity crisis continues to threaten species worldwide, the diversity of species 

bred in captivity will need to increase if extinctions are to be prevented (Fa et al., 2014; Martin 

et al., 2014). The species that are currently managed in captivity are not just phylogenetically 

diverse, but also differ in their life-histories, reproductive biology and social structures. 

Phylogenetic comparative methods can be useful to observe trends and patterns across 

multiple species, so that the results can be extended to related taxa (Fisher & Owens, 2004), 

overcoming small sample size limitations. Captive breeding programs routinely use pedigrees 

to measure and manage genetic diversity and inbreeding (Frankham et al., 2010). Studbooks 

recording births, deaths and parentage information can be analysed to retrospectively 

investigate aspects of reproduction without the need for experimental manipulation of often 

threatened species. With the increasing accessibility of standardised studbook data through 

large curated online databases, such as the Zoological Information Management Software 

(ZIMS) (Species 360, 2018), there are now opportunities to examine important traits such as 

offspring survival at a much larger scale.   

In this study, we used data from 15 diverse and long-running conservation breeding programs 

to investigate the drivers of change in offspring survival to reproductive maturity. We 

specifically aimed to examine generational trends, by comparing main effects estimated from 
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all 15 species to species-level responses. We also aimed to disentangle first-generation and 

multi-generational changes in offspring survival. In addition to generational effects, we 

examined offspring inbreeding (kinship of parents), dam and sire inbreeding, and the effects 

of dam and sire age at breeding on offspring survival. 

Methods 

Studbook data 

We obtained the international or regional studbooks of 15 species from the relevant regional 

zoo associations and studbook keepers, totalling 58,611 individuals, including 11 eutherian 

mammals, 1 marsupial and 3 reptiles (Table 3.1). These studbooks were selected on the basis 

of availability, size, taxonomic diversity, generations of captive breeding, and limited 

unknown ancestry. The pedigree management software PMx (Ballou et al., 2010b; Lacy et al., 

2012) was used to generate a dataset with one datapoint per offspring, containing 

information on the sire, dam, birth date, birth location, death date (if dead) and pedigree 

inbreeding coefficient (f). Pedigree-based inbreeding is calculated using known relationships 

and by assuming that wild-born founders are unrelated, so founders are assigned an 

inbreeding coefficient of 0, even though this assumption is not always met (Ballou, 1983; Hogg 

et al., 2019b). Therefore, individuals with unknown parents could not be included in the 

analysis. However, individuals with unknown ancestry further back in the pedigree could be 

included (using the PMx option “set unknown parents to wild”). We conducted further data 

cleaning in R (version 3.5.1, R Core Team, 2018), whereby for each offspring we used the 

known parents to calculate age at birth, generations in captivity (FX), and inbreeding 

coefficient (f) of the sire and dam. Wild-born animals are assigned generation F0. For captive-

born animals, generation is calculated as the average generation of the parents plus 1, 

meaning that it can be a non-integer e.g. (F0 + F1)/2 + 1 = F1.5. We also calculated the age at 

death of the individual, or current age if still alive. We truncated the last 364 days of data 

from the studbook to minimise the possibility that recent deaths had not yet been updated 

in the studbook. 
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Table 3.1: Summary statistics for the fifteen studbooks included in the main analysis (N = 37,484 individuals).  
Species 

(Scope of studbook)1 
N2 Ne

3 First 
record 
(year) 

Age (days) 
at maturity 

female; 
male 

Pedigree f 
(mean, sd, max) 
Dam (D); sire (S); 

offspring (O) 

Generation 
(mean, sd, max) 
Dam (D); sire (S) 

Age at breeding (days) 
(min, mean, max, sd) 

Dam (D); sire (S) 

Prehensile-tailed skink 
Corucia zebrata (AZA) 

534 40.1 1969 45024; 
57024 

D: 0, 0, 0; 
S: 0, 0, 0; 

O: 0.012, 0.049, 0.250 

D: 0.208, 0.431, 1.750; 
S: 0.301, 0.527, 1.750 

D: 636, 3696, 9114, 1808; 
S: 576, 3897, 13000, 1979 

Western swamp tortoise 
Pseudemydura umbrina 
(ZAA) 

581 28.9 1949 29104; 

21004 
D: 0, 0, 0;  
S: 0, 0, 0;  
O: 0, 0, 0 

D: 0.184, 0.388, 1; 
S: 0.201, 0.401, 1 

D: 3261, 11686, 22388, 5062; 
S: 2156, 11652, 25243, 5999 

Radiated tortoise 
Astrochelys radiata (AZA) 

757 58.0 1900 37204; 
30004 

D: 0, 0, 0;  
S: 0, 0, 0; 
O: 0, 0, 0 

D: 0.178, 0.404, 1.5; 
S: 0.135, 0.342, 1 

D: 3907, 12951, 22795, 5018; 
S: 3043, 12716, 23835, 5474 

Tasmanian devil 
Sarcophilus harrisii (ZAA) 

1111 163.4 1982 730; 730 D: 0.012, 0.052, 0.375;  
S: 0.007, 0.033, 0.250; 
O: 0.016, 0.049, 0.375 

D: 1.348, 1.204, 5.408; 
S: 1.084, 1.152, 4.500 

D: 231, 944, 2470, 295; 
S: 231, 1177, 2466, 414 

Cheetah 
Acinonyx jubatus (INTL) 

4932 222.5 1850 456; 456 D: 0.010, 0.034, 0.250;  
S: 0.011, 0.042, 0.250; 
O: 0.022, 0.055, 0.268 

D: 1.567, 1.387, 5.353; 
S: 1.339, 1.290, 5.156 

D: 651, 2313, 6084, 770; 
S: 590, 2535, 6329, 981 

Meerkat 
Suricata suricatta (AZA) 

1659 17.0 1908 365; 365 D: 0.078, 0.132, 0.406;  
S: 0.073, 0.146, 0.434; 
O: 0.115, 0.156, 0.516 

D: 1.828, 1.244, 5.391; 
S: 1.594, 1.348, 5.250 

D: 217, 1793, 4918, 925; 
S: 89, 1836, 4798, 863 

Red wolf 
Canis rufus (AZA) 

958 108.0 1966 3304; 3304 D: 0.036, 0.035, 0.125;  
S: 0.032, 0.034, 0.250; 
O: 0.055, 0.039, 0.250 

D: 2.985, 1.624, 6.059; 
S: 2.935, 1.601, 6.133 

D: 345, 2056, 4033, 818; 
S: 722, 2288, 5499, 1037 
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African wild dog 
Lycaon pictus (INTL) 

5391 81.1 1887 639; 639 D: 0.058, 0.117, 0.503;  
S: 0.065, 0.122, 0.503; 
O: 0.107, 0.137, 0.594 

D: 2.211, 1.462, 6.594; 
S: 2.037, 1.477, 6.594 

D: 361, 1698, 6880, 710; 
S: 361, 2070, 6721, 982 

Red panda 
Ailurus fulgens (INTL) 

2926 382.2 1868 550; 550 D: 0.020, 0.035, 0.274;  
S: 0.020, 0.035, 0.298; 
O: 0.036, 0.048, 0.375 

D: 2.828, 1.723, 6.969; 
S: 2.714, 1.767, 7.098 

D: 357, 2005, 5157, 905; 
S: 361, 2329, 6945, 1120 

European mink 
Mustela lutreola (EAZA) 

1480 74.5 1932 323; 323 D: 0.084, 0.111, 0.504;  
S: 0.083, 0.108, 0.481; 
O: 0.117, 0.119, 0.504 

D: 4.218, 2.758, 10.397; 
S: 4.195, 2.955, 10.514 

D: 282, 919, 3309, 567; 
S: 295, 998, 3645, 647 

Scimitar-horned oryx 
Oryx dammah (INTL) 

6435 216.0 1872 639; 2104 D: 0.086, 0.124, 0.646;  
S: 0.087, 0.126, 0.601; 
O: 0.112, 0.137, 0.675 

D: 2.938, 1.848, 7.870; 
S: 2.962, 1.879, 8.027 

D: 564, 2552, 10429, 1408; 
S: 518, 2478, 8359, 1334 

Eastern bongo 
Tragelaphus eurycerus 
isaaci (INTL) 

2443 174.9 1931 806; 914 D: 0.066, 0.100, 0.614;  
S: 0.066, 0.106, 0.614; 
O: 0.086, 0.110, 0.614; 

D: 2.966, 1.538, 6.812; 
S: 2.933, 1.512, 6.166 

D: 396, 2471, 7004, 1250; 
S: 582, 2607, 7054, 1153 

Red-ruffed lemur 
Varecia rubra (INTL) 

1737 171.4 1959 609; 650 D: 0.085, 0.084, 0.375;  
S: 0.097, 0.086, 0.445; 
O: 0.138, 0.102, 0.445 

D: 2.576, 1.217, 5.484; 
S: 2.651, 1.261, 5.672 

D: 707, 3105, 10925, 1487; 
S: 719, 3414, 10990, 1761 

Black-and-white ruffed 
lemur 
Varecia variegata (INTL) 

3516 275.6 1959 605; 649 D: 0.046, 0.077, 0.375;  
S: 0.053, 0.081, 0.344; 
O: 0.085, 0.101, 0.438 

D: 2.353, 1.295, 5.969; 
S: 2.175, 1.358, 5.805 

D: 292, 3017, 9911, 1598; 
S: 568, 3270, 14335, 1777 

Goeldi’s monkey 
Callimico goeldii (INTL) 

3024 187.5 1913 365; 395 D: 0.019, 0.049, 0.375;  
S: 0.019, 0.049, 0.375; 
O: 0.034, 0.069, 0.500 

D: 2.648, 1.475, 6.326; 
S: 2.621, 1.496, 6.336 

D: 441, 2304, 7763, 1144; 
S: 184, 2471, 7518, 1221 

1INTL = international (WAZA studbook), AZA = Association of Zoos & Aquariums, EAZA = European Association of Zoos and Aquaria, ZAA = Zoo and Aquarium Association. 
2With complete data (both parents known, no missing values), 9 outliers removed as per methods. 
3Ne obtained from PMx using whole studbook prior to data filtering. 
4No AnAge record available, so age obtained from PMx.  
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For each species, we defined the age at reproductive maturity for each sex in days using the 

AnAge (Animal Ageing and Longevity) database (Tacutu et al., 2017), or PMx for the species 

without data in AnAge (all three reptile species, red wolf, and male scimitar-horned oryx). We 

excluded all individuals born within the timeframe of the reproductive maturity age from the 

364 days before the current date of the studbook, as these animals would not yet have had 

the opportunity to reach reproductive maturity. We removed individuals that had been 

identified as hybrids in the red wolf studbook, and those that were born in the wild or released 

to the wild before the age of reproductive maturity (affected the red wolf and Tasmanian 

devil studbooks). A further 13,089 individuals did not have a known sire or dam or both, 

meaning that predictors of interest were unknown, and these individuals were excluded from 

the above analysis. Multiple imputation could not be attempted as for 8,530 individuals all 

values of interest were missing. Of the remaining 37,493 individuals with complete data, we 

established whether they had survived to the defined age of reproductive maturity (1) or not 

(0). For individuals with unknown sex, we defined age at reproductive maturity as the shortest 

of the two sexes. Data appeared to be missing at random with respect to time. 

There was high variation in our predictors of interest between species (Table 3.1), due to 

historic captive management and variation in species biology. We therefore standardised 

numeric variables of interest (dam/sire f, dam/sire generation, dam/sire age at breeding and 

offspring f) within each species by centring on the mean and dividing by 1 standard deviation 

with the ‘standardize’ package (Eager, 2017) to avoid species with extreme values unduly 

influencing the results and to assist interpretation of model parameter estimates. This 

method of standardising does not affect the relative variances around predictors. 

Phylogenetic correlations 

We assessed phylogenetic correlations in our dataset by creating a tree in the ‘rotl’ package 

(Michonneau et al., 2016) based on phylogenies available through the Open Tree of Life 

(Hinchliff et al., 2015). The topology of the tree was used to calculate lambda, an estimate of 

phylogenetic signal ranging from 0 (no signal) to 1. Phylogenetic signal would indicate that 

closely related species are more similar in their offspring survival rates than distantly related 

species. As species varied in their mean offspring survival but phylogenetic signal was very 

weak, we proceeded to model offspring survival controlling for variation among species, but 

not phylogenetic relationships among species. 
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Random factors and model fitting 

Generalised linear mixed models (GLMMs) were fit in ‘lme4’ (Bates et al., 2015) with a 

binomial response and a nested random factor design. The random factors we controlled for 

were Species, Birth Program and Year. Birth Program refers to the region where an individual 

was born as defined by ZIMS (Africa, Australasia, East Asia, Europe, Latin America, Middle 

East, North America, South East Asia, South Asia, Unknown and Other). Birth Program was 

nested within Species to account for regional specialisation. For example, while a region may 

have particularly high offspring survival of one species, it may have below-average offspring 

survival of a different species. This can be due to a range of factors including taxonomic 

expertise, population management practices and varied husbandry. The year of birth controls 

for improvements in offspring survival made over time with improved husbandry, and was 

also nested within Species as the studbooks covered very different time-frames (the year of 

first captive-born offspring ranged from 1881 [scimitar-horned oryx] to 1991 [Western swamp 

tortoise]). Our global model therefore consisted of: 

Survival ~ Dam generation + Sire generation + Dam age at breeding + Sire age at breeding + 

Dam f + Sire f + Offspring f + (1|Species/Birth Program) + (1|Species:Year) 

We examined model fit using the ‘DHARMa’ package (Hartig, 2019). Nine data points with 

high leverage were identified in residual plots, removed and models refitted (N = 37,484 

individuals). We calculated Variance Inflation Factors (VIFs) to ensure multi-collinearity of 

predictors was < 2 (Harrison et al., 2018). Our model satisfied the Kolmogorov-Smirnov test 

of uniformity, outlier test, non-parametric dispersion test and zero-inflation test.  

Model selection 

We proceeded with model inference under an information theoretic approach following 

Grueber et al. (2011). All possible sub-models were fitted using the ‘dredge’ function from 

the ‘MuMIn’ package (Barton, 2018), and models within the top 2 AICC of the top model were 

retained and model averaged (conditional average method). We interpreted predictors based 

on the size, direction and precision of the model estimate and its relative importance (sum of 

Akaike weights for top models containing the predictor). 
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First-generation vs. multi-generational changes 

We may expect differences between the survival rates of offspring of wild-born parents and 

the offspring of captive-born animals. Therefore, we ran a second analysis as above but 

excluding all offspring with either one or both wild-born parents (i.e. F2+ offspring, N = 27,734).  

Non-independent litter-mates 

Animals born as part of the same litter or clutch share the same dam (and often the same 

sire). We identified litters as animals born to the same dam on the same day for mammalian 

species, and as animals born to the same dam in the same year for the tortoises and skink. 

One offspring from each litter was randomly selected and models were re-run as above (N = 

21,282 independent individuals). Random selection was repeated a total of five times and 

analyses pooled to obtain model estimates. We repeated the F2+ analysis using these five 

subsets (N = 16,514 - 16,516 offspring, varies because litter-mates identified by the same dam 

may have a different sire, and the generations in captivity of the sire may vary). 

Random slope models for between-species differences 

We selected one of the independent litter-mate subsets that was representative of the five 

sets of results to further investigate trends across species (Figure A4.2.1). We fitted separate 

random-slope models for each predictor to estimate species-level effects, where the main 

effect is interpreted as the mean across all species, and the random component quantifies 

the amount of variation in that slope among species. For example, while the main effect may 

suggest a negative relationship between dam age at breeding and offspring survival, the effect 

of dam age may vary between species. Random-slope models were fitted from the global 

model, as model averaging cannot provide random slope estimates. No parameters were 

dropped from the top model set with model averaging (Table A4.1.2), so we do not expect 

the random slopes models to differ substantially if estimation after model selection was 

possible. We also fitted random slopes model from the F2+ random litter-mate subset for the 

dam and sire generation parameters, as we may expect species responses to differ after 

removing the offspring of wild-born animals from the analysis. 

  



54 
 

Results 

Phylogenetic correlations 

While the species varied in their mean offspring survival (due to life-history traits e.g. R- vs. 

K-selected species, single-offspring vs. multiple offspring, differential maternal investment; 

and management, e.g. date of accession to studbook), there was no evidence of phylogenetic 

signal (lambda = 7 x 10-5) (Figure 3.1A). We therefore excluded phylogeny from our 

subsequent modelling (although we did include “Species” random effects, see Methods). 

Offspring survival 

Table 3.2 presents the pooled model estimates of the five models run with one offspring 

randomly selected per litter/clutch to overcome non-independence of litter-mates to 

offspring survival (N = 21,282). Offspring f had the strongest negative relationship with 

offspring survival, while sire and dam f effects were estimated close to zero (Figure 3.2). Dam 

age at breeding had a negative effect on offspring survival, while sire age at breeding had a 

similar-sized positive effect. Dam and sire generation showed no clear overall effect on 

offspring survival (Table 3.2). 

When examining random slope models, generation effects were highly variable among 

species, with some showing steep positive slopes (e.g. red wolf, African wild dog, western 

swamp tortoise), and others having steep negative slopes (black-and-white ruffed lemur, 

Tasmanian devil) (Figure 3.1B). Sire f also showed variation among species, with the Eastern 

bongo, red panda and red wolf displaying a positive slope and the Tasmanian devil, red-ruffed 

lemur and black-and-white ruffed lemur having a negative slope (Figure 3.1B). Dam f had less 

variation among species, with none showing particularly strong effects. Offspring survival was 

negatively associated with dam age for most species, although the prehensile-tailed skink had 

a steep positive slope (Figure 3.1B). A random slope could not be fitted for sire age at breeding 

due to model convergence issues, possibly due to a lack of variation in between-species 

responses. All species had a negative slope for offspring f, with the three primate species and 

the European mink experiencing the strongest effects of inbreeding (Figure 3.1B). 
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Figure 3.1: Phylogeny and random slope results. 

A) Phylogenetic relationships of the 15 species included in this study, shaded by the mean 
offspring survival. No evidence of phylogenetic signal was detected using the topology of this 
tree. B) Heatmap of random slope estimates for each parameter across the 15 species. Note 
that no random slopes could be estimated for sire age at breeding. The vertical black line 
separates the model with all offspring from the model with F2+ offspring (no wild-born 
parents) only. C) Dendrogram of species clustered based on similar random slope values, not 
phylogenetic relationships.  

B) C) 

A) 
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Table 3.2: Model estimates when one offspring is selected from each litter/clutch. 

A) Standardised parameter estimates of pooled (N = 5) analyses after randomly selecting one 
offspring from each litter and model averaging (N = 21,282 individuals). B) Standardised 
parameter estimates of pooled (N = 5) random litter-mate F2+ analyses (N = 16,514 - 16,516 
individuals, see Methods). 

Predictor Mean estimate Mean SE 95% CI 
A) All offspring    

Intercept 0.4610 0.1853 0.0977, 0.8242 
Dam generation 0.0048 0.0203 -0.0350, 0.0446 
Sire generation 0.0216 0.0188 -0.0152, 0.0584 
Dam age at breeding -0.0624 0.0156 -0.0931, -0.0318 
Sire age at breeding 0.0583 0.0159 0.0271, 0.0895 
Dam f 0.0020 0.0164 -0.0300, 0.0341 
Sire f 0.0086 0.0165 -0.0237, 0.0409 
Offspring f -0.1632 0.0157 -0.1940, -0.1323 

B) F2+    
Intercept 0.4226 0.1554 0.1181, 0.7272 
Dam generation -0.0322 0.0281 -0.0872, 0.0228 
Sire generation 0.0441 0.0278 -0.0103, 0.0985 
Dam age at breeding -0.0893 0.0191 -0.1267, -0.0518 
Sire age at breeding 0.0787 0.0188 0.0418, 0.1156 
Dam f -0.0064 0.0189 -0.0435, 0.0307 
Sire f 0.0177 0.0189 -0.0194, 0.0548 
Offspring f -0.1831 0.0186 -0.2196, -0.1465 

 

F2+ effects on offspring survival 

After removing offspring of wild-born parents from the dataset (F2+ offspring remaining) 

model estimates for most parameters were similar to those obtained from the model 

containing all offspring, but with slightly less precision as expected given the smaller sample 

size (Table 3.2B, Figure 3.2). However, the overall estimate for dam generation became 

negative. When we fitted the random slopes for the generation effects to the F2+ data subset, 

sire generation reflected a similar pattern to the model with all offspring (Figure 3.1B), with 

high variation between species. However, the random slopes for dam generation all became 

slightly negative, including the red wolf and African wild dog that had positive slopes in the 

model with all offspring (Figure 3.1B). Detailed illustrations of species-level random slopes are 

presented in Figures A4.2.3 - A4.2.17, with raw data points included to demonstrate the range 

of statistical power across species and parameters.  
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Figure 3.2: Model estimates for offspring survival analyses (+/- 95% CI).  

Black circle is the pooled results (N = 5) from random selection of one offspring per 
litter/clutch (N = 21,282 individuals), black triangle is pooled results (N = 5) from F2+ subset of 
this model (N = 16,514 - 16,516 individuals), grey circle is the complete-cases model (N = 
37,484) after model averaging, grey triangle is the F2+ subset of this model (N = 27,734) after 
model averaging.  

 

Extended dataset 

Our main analysis included random litter-mate selections, so we compared these results to 

an extended dataset model that incorporates all data points regardless of their shared litters. 

It was not possible to fit litter/clutch-level random effects. Some of the species in our dataset 

usually give birth to only one offspring and would be unlikely to drive any differences between 

the extended dataset relative to our main analysis. The amount of data contributed to each 

model by each species is shown in Figure A4.2.2. 

In the extended dataset model, most estimates were similar in their direction and magnitude, 

relative to our main analysis, with offspring f, and dam and sire age at breeding remaining the 

most important effects on offspring survival (Table A4.1.1A, Figure 3.2). Estimated effects 

were also similar for the extended dataset F2+ model, with the estimate of dam generation 

negative and sire generation positive (Table A4.1.1B, Figure 3.2).  
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Discussion 

Here, we used multi-species mixed-effects models to investigate the effect of generations in 

captivity, inbreeding, and parental age, on offspring survival to reproductive maturity in 15 

vertebrate species encompassing over 30,000 datapoints whilst controlling for mean 

differences between years, regions and species. Overall, we found effects of inbreeding and 

age that were largely consistent with conventional predictions. However, changes in survival 

over generations in captivity were more complicated, as trends varied among species, 

between sexes within species, and between first and subsequent generations in captivity. 

Alongside a lack of phylogenetic signal, our analysis implies that intensive human 

management can drive complex patterns of ongoing change in conservation breeding 

programs and that these changes will be difficult to predict for any given taxon. 

Generational changes 

We found a high degree of inter-species variation in the effect of dam and sire generations in 

captivity on offspring survival from our random-slopes models, and no consistent overall 

effect from our multi-species model (Figure 3.1B, Figure 3.2). Generational changes in survival 

were observed despite controlling for other processes that may result in changes over time 

such as changes in husbandry/population management or the accumulation of inbreeding.  

It is plausible that generational effects of captivity primarily occur in the first generation, 

when wild animals are brought into captivity, with little subsequent change. This first 

generation change has been observed in some fish species (Christie et al., 2016). 

Differentiating this process from ongoing, accumulating change is important for management 

planning. We addressed this issue by comparing our models fitted across all generations, with 

subset models that included only generation F2+ animals (i.e. animals with two captive-born 

parents). Our results showed that despite the potential for major changes in the first 

generation, continual captive breeding still impacted many species, although there was 

substantial among-species variation in the effects, as well as important differences between 

sire and dam effects. For breeding males (sires), the pattern of inter-species variation in the 

effect of generation on offspring survival was consistent regardless of whether all offspring, 

or only F2+ offspring, were examined (compare sire generation to sire generation F2+, Figure 

3.1B). This result indicates that for a given species, whatever effect captivity has on the 
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survival of a male’s offspring, this effect is maintained from the moment animals are brought 

in from the wild and continues through subsequent generations. For example, red wolves and 

African wild dogs showed strong positive effects of sire generation on offspring survival in 

both the full model and the F2+ only model. Conversely, Tasmanian devils, European minks, 

black-and-white ruffed lemurs and red-ruffed lemurs showed negative effects of sire 

generation on offspring survival in the full model, which were also maintained in the F2+ only 

model. For breeding females (dams), the results were more complicated. In the full model 

(incorporating all generations) the patterns of inter-species variation in the effect of 

generation were remarkably similar to the effects seen for sires (compare dam generation to 

sire generation, Figure 3.1B). However, the effects of dam generation on F2+ offspring were 

uniform and slightly negative across all the taxa we studied, even for those species that had 

strong positive responses when offspring of wild-born parents were included (Figure 3.1B). 

This result suggests that regardless of whether captivity negatively impacts female breeders 

in the first generation or not, generations F2+ are likely to see slight declines in offspring 

survival. 

Fitness changes over captive generations may occur as a result of genetic processes (both 

neutral e.g. drift, and non-neutral e.g. adaptive changes in allele frequencies), non-genetic 

processes (e.g. behavioural changes), and/or epigenetic effects (e.g. maternal effects, 

transgenerational changes). These processes may act on the first generation, and/or across 

multiple generations and could have different effects on males and females. In aquaculture 

settings, other processes influencing survival such as maternal effects can be ruled out by 

performing experimental crosses of wild and captive parents (Matos, 2012; Christie et al., 

2016; Finger et al., 2018). In a conservation context involving highly threatened species, it is 

not practical to implement experimental breeding pairs. As described above for many of the 

species we attempted to separate the first generational effects from the subsequent 

generation effects. Our use of a long-term measure of offspring survival, age at reproductive 

maturity (ranging from < 1 year to > 15 years across our dataset, Table 3.1), provides ample 

opportunity for parental effects to influence survival beyond the influence of inherent factors 

such as genetic disorders. The differences we observed between the sexes when removing 

first-generation effects may be a result of the strength of maternal effects relative to paternal 

effects. Generally in mammals (12 of the 15 species in our dataset), reproduction is a greater 
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investment for females than males (Wells, 2014), so maternal care may provide a greater 

opportunity to influence offspring survival than paternal effects. The birth origin of the dam 

(wild or captive) appears to have a greater influence on offspring survival than that of the sire, 

where generational effects are consistent between the inclusion and exclusion of offspring of 

wild-born parents (Figure 3.1B). Although different species had different effects and different 

magnitude of the effect, we conclude that time in captivity impacts species’ biology. 

Inbreeding depression 

The strongest driver of an offspring’s survival to reproductive maturity was that individual’s 

inbreeding coefficient (equivalent to the kinship of the parents), a trend that was consistent 

across all species in our study. Inbreeding depression is widely recognised in the literature, 

including in captive settings where inbreeding has been shown to negatively affect offspring 

survival in multiple species (Boakes et al., 2007). Our study is the first, that we are aware of, 

in a conservation setting to disentangle inbreeding effects from generations in captivity and 

time. Notably, our dataset includes genetically depauperate species that have undergone 

substantial historic and/or recent bottlenecks such as the cheetah (Menotti-Raymond & 

O'Brien, 1993), the Tasmanian devil (Brüniche-Olsen et al., 2014), and the red wolf (captive 

population founded with only 14 wild-caught animals; Hedrick & Fredrickson, 2008). Even 

these historically inbred species experienced inbreeding depression in captivity (Figure 3.1B), 

suggesting that any purging to reduce the frequency of deleterious alleles is weak or ongoing. 

We reiterate the recommendations of Leberg and Firmin (2008) to avoid inbreeding in captive 

breeding programs, as purging is unpredictable and any benefits are unlikely to outweigh the 

costs of inbreeding depression (Boakes et al., 2007). 

The strongest inbreeding effects were observed at the offspring level (i.e. vital-stage 

inbreeding depression), rather than parental inbreeding (i.e. reproductive-stage inbreeding 

depression). Captive management should therefore continue to prioritise the avoidance of 

breeding related individuals (i.e. minimising kinship). Previous studies examining pedigree-

based inbreeding have suggested that inbred females should not be bred from, even to 

unrelated individuals (i.e. pairings that are not inbred) (Boakes et al., 2007). However, in our 

study (also using pedigree-based inbreeding estimates) there was no general effect of dam f 

and our species-level random slopes models suggest that dam f is far less likely to substantially 

impact offspring survival to reproductive maturity than offspring f. Similar results were 
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obtained for sire inbreeding. Nonetheless, parental inbreeding should still be minimised, with 

some species demonstrating negative effects for both dam and sire f, including the two lemur 

species (Figure 3.1B). Avoidance of inbreeding is standard practice for captive management 

programs (Frankham et al., 2010) including the ones analysed here. A growing interest in 

group housing of animals to promote more natural social settings and minimise adaptation 

to captivity (Williams & Hoffman, 2009) means that it may become harder to avoid 

inbreeding. Additional considerations such as the use of contraceptives (Cope et al., 2018b) 

or molecular pedigree reconstruction (Farquharson et al., 2019; Chapter 5) or relatedness 

estimation (Ivy et al., 2016) will be required for managing inbreeding in these settings. 

Parental age 

Parental age at breeding had large effects on offspring survival: negative for dam age and 

positive for sire age. These results likely reflect the biology of the species chosen in this 

analysis, with 12 mammal and three reptile species modelled. Older males may be expected 

to improve offspring survival through social factors and male experience. For example, in herd 

species, older males are more likely to be dominant and to time mating better than younger 

males to maximise reproductive success (L'Italien et al., 2012; Tennenhouse et al., 2012). 

Overall, we found that younger mothers had higher offspring survival across the taxa studied, 

noting that some species showed exceptions when random slopes were fitted (e.g. black-and-

white ruffed lemur, red-ruffed lemur, meerkat, prehensile-tailed skink, Tasmanian devil). This 

may seem unexpected given that younger mothers may experience lower offspring survival 

due to inexperience or subordinate status (Henry et al., 2013; Lukas & Huchard, 2019). 

However, in line with our findings, older females may have reduced offspring survival as 

senescence reduces viability (Descamps et al., 2008). Our study did not investigate the causes 

of offspring mortality, nor did we investigate the effect of parity on offspring survival, so 

testing of such biological hypotheses and interactions will require a more detailed species-

level investigation. 

Conclusions 

This study makes use of studbook records collected as part of routine management, such as 

to record parentage, avoid inbreeding and retain wild genetic diversity. With the availability 

of pedigree-based management software such as PMx, we have been able to investigate 
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generational change in conservation breeding programs without any additional imposition on 

studbook keepers to collect data, nor without conducting experimental studies. The 

phylogenetic relationships of the species in our dataset (Figure 3.1A) were not reflected in 

the species’ responses to captivity (clustered dendrogram of Figure 3.1C shows no apparent 

trends). Although phylogenetic comparative methods may be useful for other fields of 

enquiry, such as assessing extinction risk (Ripple et al., 2017), responses to climate change 

(Kellermann et al., 2018), and investigating captive welfare and stereotypic behaviours 

(Kroshko et al., 2016; Mellor et al., 2018); our data show that they are unlikely to be useful 

for predicting species’ responses to generations of captive breeding. Instead, species-level 

investigations are necessary.  

We have identified generational changes in fitness within captivity in diverse conservation 

breeding programs that are managed to avoid such change. Further research is needed to 

investigate the possible underlying mechanisms, such as genetic processes, of this change at 

a species level. Understanding the effect, and potential drivers, will go a long way to assisting 

conservation breeding programs to minimise this generational effect into the future as 

captive breeding programs remain a vital tool to prevent extinction. We acknowledge that 

population-level genetic change in captivity is not intrinsically detrimental for individual 

animals being held in zoos, but note that other studies have identified potential negative 

consequences upon reintroduction programs (Araki et al., 2009; Christie et al., 2014). Will 

fitness changes in captivity reduce survival and reproduction in the wild? Taken together, the 

results of this study demonstrate that generational changes in fitness are difficult to predict, 

but are occurring in some long-running conservation breeding programs even with best-

practice management under the minimising mean kinship strategy. Here we advocate that 

conservation managers investigate their particular species to understand the generational 

effects occurring in their managed program and adjust management practice accordingly to 

account for changes in fitness over captive generations. 
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Chapter 4: From reference genomes to population genomics: 

comparing three reference-aligned reduced representation 

sequencing pipelines in two wildlife species 

 

4.1 BACKGROUND 

Chapter 4 comprises the published manuscript: 

Wright, B*, Farquharson, K.A.*, McLennan, E.A., Belov, K., Hogg, C.J. & Grueber C.E. (2019) 

From reference genomes to population genomics: comparing three reference-aligned 

reduced-representation sequencing pipelines in two wildlife species, BMC Genomics, 

20, 453. 

*contributed equally 

In Chapters 2 & 3 I identified a diverse range of species exhibiting fitness changes in captivity. 

Investigating mechanisms of adaptive change requires molecular genetic approaches. 

Reduced costs of sequencing and improved methodologies for molecular sequencing of non-

model organisms has meant that conservation genetic approaches now generate hundreds 

to thousands more SNP markers than the tens of microsatellites historically used in 

conservation genetics. High-density molecular markers present new opportunities to 

investigate mechanisms of change but can be challenging to analyse. The bioinformatic 

choices made in processing SNPs can influence results, so a method is needed to ensure SNPs 

are reliable across several different SNP calling software. This chapter compares three 

pipelines used for SNP calling, SAMtools, GATK and Stacks. In this chapter, the ability of the 

three pipelines to detect population structure in the Tasmanian devil is compared to a non-

threatened species, the pink-footed goose. The goose data was publicly available and sourced 

from another peer-reviewed publication which is appropriately cited in-text. Of particular 

relevance to this thesis, this chapter reports a new method to improve the reliability of SNP 

calls and process data in a format for downstream applications such as pedigree analysis. The 

pipeline was applied to Chapters 5, 6 & 7 to perform accurate parentage assignment in order 

to investigate mechanisms of genetic change in captivity. Supplementary Material is provided 

in Appendix 5, and Supplementary Code in Appendix 6. 
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4.2 MAIN ARTICLE 

From reference genomes to population genomics: comparing three reference-

aligned reduced representation sequencing pipelines in two wildlife species 

Belinda Wright*,a, Katherine A. Farquharson*,a, Elspeth A. McLennana, Katherine Belova, 

 Carolyn J. Hogga & Catherine E. Grueber^,a,b 

*Contributed equally to this work 

^Corresponding author 

a) The University of Sydney, School of Life and Environmental Sciences, Faculty 

of Science, Sydney NSW 2006, Australia 

b) San Diego Zoo Global, PO Box 120551 San Diego, CA 92112, USA 

Abstract 

Background: Recent advances in genomics have greatly increased research opportunities for 

non-model species. For wildlife, a growing availability of reference genomes means that 

population genetics is no longer restricted to a small set of anonymous loci. When used in 

conjunction with a reference genome, reduced-representation sequencing (RRS) provides a 

cost-effective method for obtaining reliable diversity information for population genetics. 

Many software tools have been developed to process RRS data, though few studies of non-

model species incorporate genome alignment in calling loci. A commonly-used RRS analysis 

pipeline, Stacks, has this capacity and so it is timely to compare its utility with existing 

software originally designed for alignment and analysis of whole genome sequencing data. 

Here we examine population genetic inferences from two species for which reference-aligned 

reduced-representation data have been collected. Our two study species are a threatened 

Australian marsupial (Tasmanian devil Sarcophilus harrisii; declining population) and an 

Arctic-circle migrant bird (pink-footed goose Anser brachyrhynchus; expanding population). 

Analyses of these data are compared using Stacks versus two widely-used genomics packages, 

SAMtools and GATK. We also introduce a custom R script to improve the reliability of single 

nucleotide polymorphism (SNP) calls in all pipelines and conduct population genetic 

inferences for non-model species with reference genomes. 

Results: Although we identified orders of magnitude fewer SNPs in our devil dataset than for 

goose, we found remarkable symmetry between the two species in our assessment of 
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software performance. For both datasets, all three methods were able to delineate 

population structure, even with varying numbers of loci. For both species, population 

structure inferences were influenced by the percent of missing data. 

Conclusions: For studies of non-model species with a reference genome, we recommend 

combining Stacks output with further filtering (as included in our R pipeline) for population 

genetic studies, paying particular attention to potential impact of missing data thresholds. 

We recognise SAMtools as a viable alternative for researchers more familiar with this 

software. We caution against the use of GATK in studies with limited computational resources 

or time. 

Background 

Decreasing sequencing costs and increasing availability of genomic resources mean that 

population genetic studies are more often utilising genomic data. Whereas in the past tens of 

microsatellites may have been used to infer population structure and answer fundamental 

and applied questions, now thousands of single nucleotide polymorphisms (SNPs) can be 

generated and aligned to reference genomes (Andrews et al., 2016; Maroso et al., 2018). 

Reduced-representation sequencing (RRS), also referred to as genotyping-by-sequencing 

(GBS), or restriction-site associated DNA sequencing (RADseq, also ddRAD), is an approach to 

generate genome-wide high-throughput sequencing data (Baird et al., 2008; Peterson et al., 

2012). This is achieved by reducing the genomic data to be sequenced using restriction 

enzyme digestion and next-generation sequencing (NGS) of the resultant fragments (Peterson 

et al., 2012). While RRS provides a cost-effective method of sequencing a large number of 

genome-wide loci across many individuals, coupling this approach with an assembled 

reference genome improves the reliability of genotype calls (Torkamaneh et al., 2016) and 

subsequently improves any downstream inferences (Shafer et al., 2017). 

One of the initial benefits of RRS approaches was the lack of a need for a reference genome 

(Peterson et al., 2012). However, now that the costs of generating reference genomes are 

declining, genetics researchers may take a top-down approach, whereby the genome 

sequencing project is undertaken first to provide the scaffold for later population genetic 

studies using RRS (e.g. Pujolar et al., 2017b; Ekblom et al., 2018; Johnson et al., 2018). In this 

context, biologists who start with a reference assembly may develop familiarity with, and in-
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house pipelines for, bioinformatic software designed for whole genome sequencing (WGS), 

such as SAMtools (Li et al., 2009) and the Genome Analysis Toolkit (GATK) (McKenna et al., 

2010). While these software can be used for analysing RRS data, specialist tools such as Stacks 

(Catchen et al., 2013) are purpose-built for RRS, and designed for use with or without a 

reference genome (Catchen et al., 2011; Catchen et al., 2013; Rochette & Catchen, 2017). In 

practice, the algorithms underlying software tools for analysing WGS versus RRS data can 

differ considerably, which in turn may influence conclusions drawn. For example, calibration 

of GATK SNP calling parameters is highly dependent on known variant datasets (Van der 

Auwera et al., 2013), making parameterisation problematic for non-model species. 

Many studies have found major differences in resultant datasets produced using various WGS 

(O'Rawe et al., 2013; Yu & Sun, 2013) or RRS (Torkamaneh et al., 2016) software tools, but 

none have specifically compared the analysis of reference-aligned RRS data in Stacks versus 

two widely used genome software packages, SAMtools and GATK. This knowledge gap has 

been noted by the software developers themselves (Rochette & Catchen, 2017) and so our 

study serves to fill this gap. Furthermore, comparisons between analysis tools have focused 

largely on computational efficiency and the total number of SNPs obtained (Torkamaneh et 

al., 2016; Wickland et al., 2017) and few have examined the critical problem of whether 

biological interpretations of real data are affected by alternate pipelines (Shafer et al., 2017). 

This application is important, because fundamental genomic differences between threatened 

and non-threatened species (such as variation in levels of diversity, inbreeding and linkage 

disequilibrium) have the potential to impact our analytical choices, inference, and the 

transferability of population genetic findings (Grueber et al., 2008). As concerns over the 

current biodiversity crisis deepen, there has been a call for the greater use of genetic and 

genomic data in the management of species both in captivity and the wild (Shafer et al., 2015; 

Taylor et al., 2017). 

In this study, we employed three widely-used programs, Stacks, SAMtools and GATK, to call 

variants from reference-aligned RRS data collected from two species with very different 

demographic histories, and determine how differences between these analysis pipelines 

impact population interpretations across contexts. Our first study species is a threatened 

Australian marsupial, the Tasmanian devil (Sarcophilus harrisii, hereafter “devil”). The devil 

has exhibited a severe population crash due to the emergence of a contagious cancer, devil 



69 
 

facial tumour disease (DFTD) in the 1990s (Grueber et al., 2015b; Lazenby et al., 2018). To aid 

conservation of the species, the devil genome was sequenced in 2012 (Murchison et al., 

2012). We generated RRS data from devil samples and anticipated moderate population 

structure between wild devils of western and eastern Tasmania origin, based on previous 

analyses using microsatellites (Jones et al., 2004; Grueber et al., 2019) and genomics (Miller 

et al., 2011; Hendricks et al., 2017). Our second study species is the pink-footed goose Anser 

brachyrhynchus (hereafter “goose”), which breeds in the Arctic and overwinters in Northern 

Europe and has a reference genome available (Pujolar et al., 2018). For the goose, we re-

analysed a subset of the data made available by Pujolar et al. (2017b). Their study used 

population genetic analyses to examine connectivity between two putatively separate 

populations and infer the effects of climate and human activities on demography of this 

migrant species. The purpose of our analysis here was not to specifically recapitulate the 

population genetic investigations for these two species. Rather, we aimed to discover how 

inferences in two very different species, both with known population structure, are impacted 

by variation in analysis tools. 

Results 

Within-population diversity 

We applied our three analysis pipelines (Stacks, SAMtools, GATK; all further processed with 

the custom R script [Appendix 6]; Figure 4.1) to a total of 131 devil samples and 40 goose 

samples. Our main results focus on two major study populations of each species, which were 

expected to show genetic differentiation (devil [Jones et al., 2004; Miller et al., 2011; 

Hendricks et al., 2017; Grueber et al., 2019]; goose [Pujolar et al., 2017b]). The devil dataset 

also contains a third population of captive individuals which are mixed provenance between 

east and west (Hogg et al., 2015). We used this latter population to test how well each analysis 

pipeline discriminates among populations with mixed lineages. 
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Figure 4.1: Methodology flowchart. 

Overview of methods used in this study to process reduced representation sequencing data 
with reference genomes, with some alternatives to software used indicated where 
appropriate. *Reproducibility filtering only possible if replicates or technical replicates are 
performed. **Possible sex-linked SNP filter requires knowledge of sex of samples and is based 
on XX/XY system, but could be reversed for ZZ/ZW systems. 
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Table 4.1: Summary statistics for the resultant SNP loci datasets of three pipelines. 
Data filtered at a 70% call rate (see Table A5.2.1 for data filtered on 30% call rate), for Tasmanian devil (N = 131) and pink-footed goose (N = 40), 
including total number of loci (total loci), average number of loci sequenced across individuals (mean loci), amount of missing data (%), calculated 
error rates (%), mean observed heterozygosity across loci (HO), mean expected heterozygosity across loci (HE), and average multilocus 
heterozygosity of individuals (MLH). 

a CPU hours represent total computational time for each pipeline excluding alignment and the further filtering in R. Note that while some steps can be parallelised for quicker computation, 
not all steps allow for this. 
b Error rates could not be calculated for the pink-footed goose dataset as no replicates were included in the current analysis. Error rate is calculated after filtering on SNPs with > 85% 
reproducibility, so is lower than initial error rates. 
 

Dataset Pipeline CPU 
hours1 

Total loci Mean loci  
(min; max) 

% 
missing 

Error rate 
(%)2 

HO 

(± SD) 
HE  

(± SD) 
MLH 

(± SD) 

Devil Stacks 16 1,359 1,177.3 (500; 1,326) 13.4 2.9 0.207 (0.149) 0.248 (0.163) 0.205 (0.043) 

 SAMtools 55 251 205.8 (96; 236) 18.0 6.6 0.308 (0.160) 0.327 (0.115) 0.298 (0.092) 
 GATK 325 1,464 1297.2 (604; 1442) 11.4 5.3 0.185 (0.139) 0.256 (0.161) 0.184 (0.040) 

Goose Stacks 11 52,053 44,914.4 (954; 50517) 13.7 NA 0.132 (0.127) 0.156 (0.136) 0.127 (0.026) 

 SAMtools 14 26,437 22,035.0 (732; 23,732) 16.7 NA 0.256 (0.160) 0.307 (0.142) 0.563 (0.158) 

 GATK 65 277,362 245,412.2 (6787; 270,008.4) 11.5 NA 0.137 (0.121) 0.187 (0.149) 0.132 (0.034) 
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Mean sequencing coverage was similar for both species, although more variable for geese. 

Mean coverage for devils was 12.8× (S.D. = 3.5, range = 7.8–32.0). For geese mean cover was 

13.3× (S.D = 6.7, range = 1.4–26.4). Unsurprisingly, considering the demographic histories of 

the two species, the number of SNPs returned for each differed substantially (Table 4.1), 

although we acknowledge that the laboratory methods for the two datasets were also 

different (see Pujolar et al., 2017b; Supplementary Methods A5.1). After all filtering steps 

(including a 70% call rate), the GATK pipeline obtained the highest number of SNPs for both 

species: 1,464 for devil and 277,362 for goose. Stacks returned a similar number of SNPs as 

GATK for devils, while Stacks and SAMtools approaches returned a substantially smaller 

number of SNPs than GATK for goose (Table 4.1); we note we used the same stringency cut-

offs for all three data processing pipelines, as far as the user-definable parameters of each 

software permitted (Figure 4.1). 

For both species, mean multilocus heterozygosity estimates obtained using Stacks and GATK 

were noticeably lower than for SAMtools (Table 4.1). Genotype ratios (ratios of genotypes 

called as either of the two homozygotes or as heterozygotes) were similar between species 

but varied across pipelines (Figure A5.3.1). SAMtools was more likely to call heterozygous 

genotypes than either Stacks or GATK, explaining the higher heterozygosity estimates for 

SAMtools (Table 4.1). Stacks was more likely to call the most common homozygote (Figure 

A5.3.1). 

By aligning our datasets to reference genomes we were able to unambiguously identify each 

SNP based on its genomic position and determine the degree of consistency among the three 

analysis methods. For devil, across all three pipelines, a total of 2,060 unique SNPs were 

identified; 155 (7.5%) of these were identified by all three methods (Figure A5.3.2a). For 

goose, this pattern was similar: 78,235 unique SNPs were identified, of which 3,283 (4.2%) 

were common to all three methods (Figure A5.3.2b). Concordance rates between genotype 

calls across pipelines, calculated according to shared loci, were high (Table 4.2). Concordance 

rates were slightly higher for devils (for which SNPs were filtered on their reproducibility; see 

below) than goose (where no replicates were performed so the error rate could not be 

reduced). Concordance was also higher between both Stacks and GATK and Stacks and 

SAMtools than for GATK and SAMtools for both species (Table 4.2). Comparing the genotypes 

that differed between samples across the different pipelines, Stacks was more likely to call a 
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genotype heterozygous that was called homozygous in either SAMtools or GATK. There were 

very few homozygous to alternate homozygous discordant genotype calls between all 

pipelines (Table 4.2). 

 
Table 4.2: Genotypic differences between loci common to the three pipelines for devils (155 
loci) and geese (3,283 loci).  
Concordance rates (identical genotype calls between samples) between pipelines are in 
parentheses. Discordant genotype calls are presented as the percent of total genotypes. 
Homozygous à Homozygous refers to those loci where an AA is called a TT in the other 
pipeline for example. Homozygous à Heterozygous are any genotype calls that are 
homozygous in the first pipeline but called heterozygous in the other for that sample at the 
same locus. Heterozygous à Homozygous are those calls that are heterozygous in one 
pipeline but called homozygous in the other for that sample at the same locus. 

 
For devil only, a subset of 35 individuals were sequenced twice, allowing us to compare the 

reproducibility of genotype calls from our three pipelines. The Stacks pipeline had the highest 

reproducibility, with an error rate prior to filtering on reproducibility of 5.9%, which reduced 

to 2.9% after filtering out loci with poorest reproducibility. The error rate between technical 

repeats was 12.3% for both SAMtools and GATK. Error rates improved to 6.6 and 5.3% 

respectively after filtering on reproducibility. 

Between-population divergence 

All three pipelines recovered the expected population structuring of both study species, with 

some variation among analysis methods. For both species, differentiation visualised using a 

principal coordinates analysis (PCoA) was clearest with the GATK pipeline, relative to the 

Stacks and SAMtools pipelines (Figure 4.2). For devils, we also reanalysed our dataset with 

the addition of N = 66 captive animals (with a mixture of genetic heritage) and found that 

these fell intermediate to the two major populations, as expected (Figure A5.3.3). 

 Stacks:SAMtools Stacks:GATK GATK:SAMtools 
Devil (97.77) (98.15) (98.92) 
     Homozygous à Homozygous 0.00005 0.00010 0.00005 
     Homozygous à Heterozygous 0.00039 0.00227 0.00197 
     Heterozygous à Homozygous 0.01719 0.01369 0.00670 

Goose (97.06) (97.64) (97.85) 
     Homozygous à Homozygous 0.00019 0.00018 0.00043 
     Homozygous à Heterozygous 0.00395 0.00628 0.00394 
     Heterozygous à Homozygous 0.01920 0.01355 0.01327 
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Figure 4.2: PCoAs of the two datasets after processing through three pipelines. 
Data processed with a call rate of 70% and the custom R script (Appendix 6) as outlined in 
Figure 4.1. For devils, red is the “west” (N = 47) and blue is the “east” (N = 18) population. For 
goose, red is the “Iceland” (N = 20) and blue is the “Denmark” (N = 20) population. Inertia 
ellipses illustrate groupings and do not necessarily indicate confidence. 

 
When analysed utilising pairwise FST, we saw higher differentiation between our two major 

populations for devil than for goose (Table 4.3). Nevertheless, patterns across the three 

analysis methods were similar for both species: data processed by all three pipelines provided 

FST values that were similar (Table 4.3). These findings are consistent with our PCoA results, 

described above. Both species showed evidence of statistically significant population 

differentiation (Table 4.3). 

Each analysis method produced a varying amount of missing data (Table 4.1), but filtering less 

stringently (30% vs 70% call rate) to allow more missing data (and thus a greater number of 

loci) did not generally change the qualitative interpretation of our results by PCoA nor FST for 

either species. The exception is the Stacks analysis for goose, where the inclusion of many 

thousands more SNPs with low call rate obscured population inference (Figure A5.3.4). 
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Table 4.3: Population pairwise FST values for each analysis with 95% confidence intervals 
generated over 2,000 bootstraps.  
In devils, Pop1 refers to the Western population (N = 47), Pop2 refers to the Eastern 
population (N = 18), and Pop3 refers to the insurance population (N = 66). In geese, Pop1 
refers to the Iceland population (N = 20) and Pop2 refers to the Denmark population (N = 20). 

 

Discussion 

We examined population genetic inferences drawn from RRS data for two very different 

species with reference genomes using three analytical pipelines. Reference-aligned RRS 

analyses are poised to become much more common as a greater number of reference 

genomes become available. Genomes are no longer restricted to model species, and global 

initiatives such as the Earth BioGenome Project (Lewin et al., 2018) aim to sequence all 

eukaryotic life, whilst targeted initiatives focus either on regionally important species (such 

as the Oz Mammals Genome Project [Oz Mammals Genomics Framework Data Initiative, 

2018]) or on particular taxa (such as the Birds 10K Project [Zhang, 2015]). With an increasing 

proliferation of reference genomes, researchers skilled in the use of WGS alignment and 

assembly software (such as SAMtools [Li et al., 2009] and GATK [McKenna et al., 2010]) may 

prefer to use these tools when expanding their studies to include population-level RRS data. 

However, our results demonstrate the utility of purpose-built RRS pipelines with reasonable 

computational demands (such as combining Stacks with our custom R script [Appendix 6]) 

intended for use in non-model organisms. 

Dataset Pipeline Pop 1:Pop 2 Pop 1:Pop 3 Pop 2:Pop 3 
Devil (70% call 
rate) 

Stacks 0.100 (0.090, 0.110) 0.030 (0.027, 0.034) 0.025 (0.021, 0.029) 
SAMtools 0.071 (0.056, 0.088) 0.019 (0.014, 0.025) 0.025 (0.017, 0.033) 
GATK 0.094 (0.084, 0.103) 0.029 (0.026, 0.033) 0.025 (0.021, 0.029) 

Devil (30% call 
rate) 

Stacks 0.091 (0.084, 0.100) 0.026 (0.023, 0.029) 0.025 (0.021, 0.029) 
SAMtools 0.067 (0.057, 0.078) 0.026 (0.022, 0.030) 0.015 (0.011, 0.021) 
GATK 0.091 (0.083, 0.099) 0.028 (0.025, 0.031) 0.026 (0.022, 0.030) 

Goose (70% 
call rate) 

Stacks 0.034 (0.032, 0.035)   
SAMtools 0.038 (0.036, 0.039)   
GATK 0.033 (0.032, 0.033)   

Goose (30% 
call rate) 

Stacks 0.017 (0.016, 0.019)   
SAMtools 0.092 (0.091, 0.093)   
GATK 0.046 (0.045, 0.047)   



76 
 

Although all of the analytical pipelines we examined were able to detect genetic structure 

between the two populations of both species, there were differences in the resultant 

datasets. Due to the greater number of SNPs obtained, GATK may perform better for 

conducting analyses such as genome-wide associations that require a high marker density, 

however we note that computational resources required may be a limiting factor for use of 

GATK when studying non-model organisms (Table 4.1). Both SAMtools and GATK had higher 

initial error rates than Stacks, which could impact reliability for individual-level analyses, 

although our custom R script allows SNPs to be filtered out based on reproducibility to 

improve error rates, if replicates are performed. Stacks produced a comparable number of 

SNPs to GATK for devils, but far fewer for geese, and yet performed similarly well in detection 

of population structure in both species, with far less computational investment (Table 4.1, 

Figure 4.2). 

For both species, we observed a low percentage of shared loci across pipelines, which may 

introduce a source of ascertainment bias if extending a study to include more samples and 

using a prior set of defined loci. This observation may raise a potential red flag for many types 

of analyses (such as estimating allele frequencies or calculating linkage disequilibrium 

[Lachance & Tishkoff, 2013]), although it did not impact the population structure analyses we 

conducted here. Nevertheless, we note that genotype concordance across the shared loci was 

high. The tighter clustering of the two devil populations demonstrated by the SAMtools PCoA 

and the lower estimations of pairwise FST relative to Stacks and GATK, is likely influenced by 

the greater proportion of heterozygous genotype calls in that dataset. The apparent over-

representation of heterozygous genotype calls in SAMtools can of course be addressed with 

additional data filtering which would be specific to each study so should be parameterised at 

the outset in future population genetic studies. Considering compute time and downstream 

population inferences, Stacks combined with the custom R script was the best performer of 

the three software packages we tested, and provided results that were independent of 

number of loci or percentage missing data for devils, but was influenced by missing data for 

geese. 

In this study, we compared analysis pipelines using real datasets for two very different study 

species. Tasmanian devils are known to have low genetic diversity (Miller et al., 2011) and 

their numbers are declining due to DFTD (Lazenby et al., 2018). The pink-footed goose, on the 
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other hand, has higher genetic diversity and an expanding population (Pujolar et al., 2017b). 

As shown here, there are differences between the three pipelines observed in the PCoAs and 

pairwise FST comparisons. These may result in different recommendations, which may impact 

the genetic outcomes of the populations in question. We used the same parameters for each 

species for the purpose of comparison and note that our MAF thresholds may not be suitable 

for both populations given expected levels of diversity and sample sizes. The sample sizes 

were quite different and may have resulted in more alleles being sampled in the devil dataset, 

which has likely influenced population-level results (Linck & Battey, 2019). We recommend 

MAF thresholds are parameterised at the outset of studies using RRS approaches. 

Here we provide researchers with a customisable R pipeline (Appendix 6) that can be used for 

downstream analysis with data outputs in VCF format from any of these, or similar, software 

packages. The R pipeline works with VCF outputs from either initial alignment to a reference 

genome or de novo assembly and SNP calling. Our script allows for flexibility in choosing 

filtering thresholds by visual assessment of SNP data, as appropriate thresholds will differ 

between species, genotyping methods and downstream applications (Paris et al., 2017). 

Filtering options include minimum read depth of both alleles (a feature that can be controlled 

in de novo alignment in Stacks with the -m parameter, but which is not implemented within 

Stacks for reference alignment), coverage difference, call rate, minor allele frequency (MAF), 

heterozygosity and potentially sex-linked SNPs (based on XX/XY sex determination, though 

this could easily be reversed for ZZ/ZW organisms). An additional feature designed specifically 

to make use of the technical replicates performed by DArT PL is the reproducibility filter and 

error rate calculation, which can be extended to any RRS project where replicates have been 

used. The dartR package (Gruber et al., 2018) contains functions for many of these filtering 

steps, however requires the proprietary DArT PL results spreadsheet as input for full 

functionality. Our custom R script can reproduce metrics provided by DArT PL from user-

processed data, including SNP data from other RRS methods, allowing researchers to fully 

customise their analytical pipelines. The R script can be run on a standard personal computer 

in most scenarios, or on high performance computers, as is required with the thousands of 

SNPs output from GATK. We have specifically designed this pipeline so that researchers who 

work closely with conservation managers (Hogg et al., 2017a) can use genomic data to assist 

in making informed management decisions for species of conservation concern. 
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Conclusion 

While all pipelines performed well, they each have pros and cons which differ depending on 

the diversity present in the population and the amount of missing data. Stacks was less than 

optimal when missing data levels were high for goose as the populations could no longer be 

discriminated. SAMtools did not perform as well when the number of SNPs were low for devils 

so the diversity present was not great enough to discriminate between the populations as 

well as Stacks and GATK. GATK performed well but computational burden may exclude its use 

in some species of conservation concern where access to high performing compute resources 

may be limited and management decisions need to be made quickly following data collection. 

For our datasets, the Stacks pipeline combined with our custom R script is a robust and 

computationally efficient method for analysis of RRS data for both conservation-dependent 

and widespread species. 

Methods 

Datasets 

Devil RRS data were obtained using DArTseq following McLennan et al. (2019), with full details 

provided at Supplementary Methods A5.1 (see Figure A5.3.5 for sample quality). The 

restriction enzyme combination used was PstI-SphI, with fragments sequenced on an Illumina 

HiSeq 2500 as 77-bp single-end reads. Our devil dataset included animals originating from 

Western Tasmania (“Population 1”, N = 47) and Eastern Tasmania (“Population 2”, N = 18). In 

a further analysis we also considered data from N = 66 captive animals, which collectively 

comprised a mix of these two source populations and offspring thereof (“Population 3”). 

Methods for the goose RRS are reported at Pujolar et al. (2017b). In brief, a ddRAD protocol 

was used with restriction enzymes Pst-HF and MSp1, and libraries sequenced on an Illumina 

HiSeq 2500 as 79-bp paired-end reads. We used data (Pujolar et al., 2017a) for the Iceland 

(“Population 1”, N = 20) and Denmark (“Population 2”, N = 20) sites, as reported in Pujolar et 

al. (2017b). 

Data cleaning 

Stacks ‘process_radtags’ was used on both devil and goose datasets to clean reads, removing 

those with any uncalled bases or low quality scores prior to aligning, and remove barcodes if 
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necessary (devil data only, goose data already de-barcoded; see Supplementary Methods 

A5.1). 

Alignment to reference genomes 

Stacks pipeline 

For both species, we used the Burrows-Wheeler aligner (BWA) v0.7.15 ‘aln’ function (Li & 

Durbin, 2009) to align single-end reads (devil) or paired-end reads (goose) following Rochette 

and Catchen (2017) to the respective reference genome (Murchison et al., 2012; Pujolar et 

al., 2018). For our devil data, bias in per base sequence content was detected in the first 5 

bases of reads (adaptor region) with FastQC so these were trimmed during the genome 

alignment step (−B 5) to remove the restriction enzyme cut site (PstI-HpaII). The BWA ‘samse’ 

function (devil, single-end reads) or ‘sampe’ function (goose, paired-end reads) was used to 

generate alignments in SAM format, which were converted to BAM format and ordered and 

indexed using SAMtools v1.6. Cleaned, trimmed, aligned data were then used as input for 

further analyses. 

SAMtools and GATK pipelines 

For our devil data, the first 5 bases were trimmed prior to alignment using bbDUK (Bushnell, 

2014). The ‘mem’ function in BWA was used to align reads following best practise guidelines 

(Van der Auwera et al., 2013), to the devil reference genome (Murchison et al., 2012) followed 

by the SAMtools ‘sort’ function (Li et al., 2009) to sort by genomic coordinate. Local 

realignment around indels was conducted using GATK IndelRealigner (McKenna et al., 2010). 

For our goose data, cleaned reads were aligned to the pink-footed goose genome (Pujolar et 

al., 2018) with BWA ‘mem’ followed by SAMtools sort and local realignment with GATK as per 

the devil data. 

Calling loci 

Our three bioinformatic pipelines use slightly different methods to identify SNPs. To 

summarise, Stacks builds a catalogue of loci grouped across individuals (Catchen et al., 2013), 

and applies a Bayesian maximum-likelihood approach developed by Maruki and Lynch (2017) 

that incorporates population genotype frequency information. GATK and SAMtools 

implement Bayesian approaches to call genotypes. GATK considers all reads covering a locus, 
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as well as expected heterozygosity, to compute the posterior probability of a genotype 

(McKenna et al., 2010). SAMtools additionally includes Hidden Markov models to calibrate 

SNP calls using base alignment quality (BAQ) scores (Li, 2011a; Li, 2011b). 

Stacks pipeline 

We used the Stacks v2.0b pipeline to process the sorted BAM files. The ‘gstacks’ module was 

run with default parameters (--model marukilow and --var-alpha 0.05) to create a catalogue 

of SNPs across our sample set as a single population. We ran the ‘populations’ module with 

the following parameters: a minimum call rate of 70% (−r 0.70), a maximum observed 

heterozygosity of 70% for devils (--max_obs_het 0.70) or 80% for goose (a higher threshold 

was chosen due to the much lower sample size), a minimum minor allele frequency (MAF) of 

0.01 (--min_maf 0.01), and the --write_random_snp flag to randomly select only one SNP per 

locus. 

SAMtools pipeline 

SNPs were called from the realigned, sorted BAM files using SAMtools mpileup (Li et al., 2009) 

with minimum base and mapping quality scores of 30. The coefficient for down-grading 

mapping quality of reads with excessive mismatches was set to 50 and bcftools call -m 6 was 

used to set a minimum depth of six reads to call a locus. This value was chosen to most closely 

simulate the Stacks parameter m = 3, which is minimum depth to call an allele, hence this was 

doubled to equate to minimum depth to call a locus. BCFtools merge (Li et al., 2009) was used 

to merge single sample VCFs into a multi-sample VCF and filter on genotyping rate (min 70%, 

similar to Stacks -r) and MAF of 1% with VCFtools (Danecek et al., 2011), to reflect the values 

used in the Stacks pipeline. 

GATK pipeline 

The realigned, sorted BAM files were used as input into GATK’s HaplotypeCaller (McKenna et 

al., 2010) to produce individual gvcf files that were input into GATK’s GenotypeGVCFs to 

create a multi-sample gvcf file. VCFtools was again used to conduct preliminary data filtering 

using the same parameters as the SAMtools pipeline. 
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Custom R script 

Within our custom R script (Appendix 6), we converted the VCF files from each of the three 

pipelines for the two species using the vcfR package (Knaus & Grünwald, 2017) in order to 

extract the genotypes and associated metadata such as read depth. We further filtered the 

SNP set on average allelic depth, coverage difference, reproducibility and sex-linked SNPs. For 

SAMtools and GATK datasets, we also filtered on maximum observed heterozygosity as per 

the parameters used in Stacks. We set a minimum average read depth for both the reference 

and SNP allele as 2.5×. We calculated coverage difference as the percentage difference at 

each SNP between the read depth of the reference allele and SNP allele, and used a coverage 

difference of ≤ 80% as our cut-off. DArT PL performs technical replicates during the 

sequencing process, so for our devil dataset we calculated a measure of reproducibility as the 

genotype call error rate at each SNP between technical replicates once missing data is 

removed and filtered at > 85% reproducibility. We then recalculated error rate post-filtering. 

The goose dataset did not have replicates available for calculation of error rates or filtering 

on reproducibility. 

In mammals, females are the homogametic sex with two X chromosomes, and males are 

heterogametic XY, whilst in birds females are heterogametic ZW and males are homogametic 

ZZ. We had accurate sex data for all devil samples and could therefore identify and filter out 

SNPs that may be sex-linked if no heterozygotes were present in the heterogametic sex but 

at least one heterozygote was present in the homogametic sex. We note however that this is 

a stringent filter and could be adjusted for sequencing errors. We did not have this 

information for goose and so did not apply any further filtering in this respect. 

Within-population diversity 

The three resulting SNP datasets (Stacks, SAMtools and GATK) for each species were assessed 

for their ability to examine our study populations using a set of markers mapped to the 

genome. Data filtering and transformations were conducted using the custom R script for all 

datasets. For each of the datasets, summary statistics of observed (HO) and expected 

heterozygosity (HE) across loci were calculated using the ‘adegenet’ package for R (Jombart, 

2008; Jombart & Ahmed, 2011). The multilocus observed heterozygosity of individual devils 

(MLH) was calculated as a proportion of heterozygous loci across each individual. We 
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extracted the shared loci between each pipeline for both species and used the ‘merge’ 

function in PLINK (Purcell et al., 2007) to identify concordance rates between genotype calls 

across pipelines and output differing genotype calls for comparison. 

Between-population divergence 

We performed principal coordinates analyses (PCoA) to discriminate population structuring 

and genetic clustering in the ‘adegenet’ and ‘ade4’ (Dray & Dufour, 2007) packages. This 

method calculates squared pairwise Euclidean distances between individuals allowing 

visualisation of population differentiation. PCoAs were run using population information to 

examine the structuring between “west”, “east”, or “IP” (insurance population, captive-born) 

samples for devil, and Iceland and Denmark for goose. For devils, two different analyses were 

performed for each of the three pipelines, the first including all individuals sequenced (N = 

131), and the second only the founding wild-born individuals (N = 65). For devil samples with 

a technical replicate (N = 35), the sample with the least missing data from the SAMtools 

pipeline was selected (same sample selected across all pipelines). Pairwise fixation indices 

(FST) were calculated using the ‘StAMPP’ package for R (Pembleton et al., 2013), with 95% 

confidence intervals calculated via 2,000 bootstraps across loci. 

Impact of missing data 

For both species, we refiltered all three pipelines less stringently (genotyping rate of 30% 

rather than 70%) to examine the impacts of missing data on population inference. Calculation 

of summary statistics and FST, and visualisation with PCoA were performed as above on the 

less stringently filtered SNP datasets. 
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Chapter 5: A case for genetic parentage assignment in captive group 

housing 

 

5.1 BACKGROUND 

Chapter 5 comprises the published manuscript: 

Farquharson, K.A., Hogg, C.J.* & Grueber, C.E.* (2019) A case for genetic parentage 

assignment in captive group housing, Conservation Genetics, 20, 1187-1193. 

*contributed equally to this work. 

Group housing is often suggested as a strategy to minimise adaptation to captivity by 

providing more natural social structures. One of the challenges of group housing for pedigree-

based management is that parentage is difficult to assign. Molecular methods can be used to 

assign parentage in group-housed populations. In this chapter, I apply the genotyping method 

I developed in Chapter 4 to obtain reliable high-density marker data in order to perform 

parentage assignment and examine between-individual variation in reproductive success in 

group-housed Tasmanian devils. Accurate pedigrees are needed to investigate possible 

mechanisms of adaptive change, so the pedigree reconstruction performed in this chapter 

also informs the methods applied in Chapters 6 and 7. 

I undertook the research in this chapter and drafted the manuscript (including table and 

figures). I also extended the custom R script of Chapter 4 to convert data to the required 

format and perform parentage analysis. The extended R script is provided in Appendix 7. 

Carolyn Hogg and Catherine Grueber oversaw the project, provided technical and conceptual 

assistance and provided funding. Note that this chapter is presented in the order 

Introduction, Materials & Methods, Results and Discussion, in line with the Conservation 

Genetics format and published version. 
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5.2 MAIN ARTICLE 

A case for genetic parentage assignment in captive group housing 

Katherine A. Farquharsona, Carolyn J. Hogga* & Catherine E. Gruebera,b* 

*contributed equally to this work 

a) The University of Sydney, Faculty of Science, School of Life and Environmental 

Sciences, NSW 2006, Australia 

b) San Diego Zoo Global, PO Box 120551, San Diego, CA 92112, USA 

Abstract 

Captive animals are commonly housed in groups to make efficient use of limited resources 

and allow for natural social behaviour. Captive management relies on accurate pedigrees to 

estimate various population genetic parameters, such as genetic contributions of breeders, 

but pedigrees of group-housed offspring can be uncertain. Pedigree analysis software 

incorporates genetic information from multiple putative parents (“MULT”). Molecular 

pedigree reconstruction to resolve pedigree uncertainties can be costly. We quantify the need 

for molecular parentage assignment by comparing predicted offspring contributions (based 

on uncertain “MULT” pedigrees) to contributions obtained from a molecular genetic pedigree 

reconstruction. Parentage of 81 insurance population Tasmanian devils (Sarcophilus harrisii) 

born in free-range enclosures from 2011 to 2017 was resolved using 891 single nucleotide 

polymorphisms. We observed large discrepancies between the MULT pedigree and molecular 

pedigree data, revealing both overestimates and underestimates of genetic contributions of 

individuals, and different pedigree-based effective population sizes (102 vs. 158 respectively). 

The molecular data revealed that reproductive skew (proportion of adults that failed to 

breed) was high for both sexes. Over half of the wild-born individuals in our dataset were 

found to have not bred. If undetected, variation in breeding success undermines the utility of 

pedigree management and may threaten the success of captive breeding. Molecular 

techniques are increasingly cost-effective, and our data demonstrate that they are critical to 

devil management. Where feasible, we recommend molecular management of group-housed 

species in captivity to avoid inaccurate estimates of genetic diversity and to identify non-

breeding individuals, in particular founders, for targeted breeding. 
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Introduction 

Conservation breeding programs often house captive animals in groups rather than pairs to 

promote natural behaviours, lower management costs, and enable mate choice (Wedekind, 

2002; Wang, 2004). To maximise genetic diversity retention, breeding in managed 

populations follows a mean kinship strategy, whereby individuals with the lowest relatedness 

to the rest of the captive population are prioritised for breeding (Frankham et al., 2010; 

Chapter 1). This approach requires accurate pedigrees to calculate relatedness. Group 

housing, however, can complicate parentage assignment, particularly for species with 

polygamous mating structures, low parental care, or secretive, or cooperative, breeding 

behaviour. 

From a conservation management perspective, uncertainty in a pedigree differs from wholly 

unknown parentage. Group housing may result in uncertain pedigrees, where true parents of 

offspring are amongst a limited set of known males and females. In contrast, ancestry of wild-

born (founder) animals is unknown. This is an important distinction, because “unknown” 

founder animals are considered unrelated to all other animals in the population, while 

individuals with uncertain pedigree are known to be related to some (uncertain) degree. 

Current population management software, such as PMx (Lacy et al., 2012), a widely used 

captive population management program, allows for this distinction. In PMx, offspring with 

uncertain parents are attributed multiple sires and/or dams, selected using knowledge of the 

adults in the enclosure, termed “MULT”. MULT animals are apportioned fractions of 

parentage (Lacy, 2012). For example, a diploid offspring with two equally likely possible sires 

and a known dam will have half its genome allocated to the dam, and a quarter attributed to 

each sire. Incorporating probabilistic parents improves upon other methods, such as 

excluding unknown parents or using behavioural data alone, e.g. assuming the dominant male 

is the sire (Lacy, 2012). In reality, only one sire and one dam can truly contribute to an 

offspring’s genome. In theory, if animals breed at random, incorporating MULT parentage will 

provide population-level parameters that closely match true values. In practice, many factors 

influence which animals will breed in a group (e.g. Gooley et al., 2018; Martin-Wintle et al., 

2019), which may lead to deviations between expected and observed values that affect 

individual-level management, such as identifying individuals to translocate or breed. Here, we 

quantify this challenge in Tasmanian devils (Sarcophilus harrisii) by measuring deviations 
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between MULT pedigree-based expectations and true breeding success as determined by 

molecular pedigree reconstruction. 

Devils are an endangered marsupial with a large (> 700 living individuals) captive breeding 

program established in 2006, housed across a number of institutions including 10–22 ha free-

range enclosures (FREs) with ~ 20 adults per enclosure (Hogg et al., 2017b). Females are 

polyovular, polyoestrus seasonal breeders, producing up to four offspring per litter each year 

(Keeley et al., 2012). Although the frequency of mixed-paternity litters is unknown, they have 

been observed in intensive captive housing (Russell, 2017), group housing (Gooley et al., 

2017; this study), an island population (McLennan et al., 2018) and in the wild (McLennan, 

unpublished data). Altricial offspring remain in the female’s pouch for ~ 105 days (Guiler, 

1970) before being denned. As offspring are not trapped until they are partially independent 

(~ 6 months, Guiler, 1970), determining parentage in FREs is not possible by observation 

alone, so population management relies on field observations of pouch young and MULT 

assumptions. We used molecular genetics to resolve parentage of 85 devil offspring born in 

FREs from 2011 to 2017 and provide recommendations for group-housed species 

management. 

Materials and Methods 

Records provided by the Save the Tasmanian Devil Program and the studbook (Srb, 2018) 

were used to establish males, females and resulting offspring housed in two FREs (Table 5.1). 

Extracted DNA from ear biopsies, or whole blood, of 155 devils (79 males, 76 females), was 

sent to Diversity Arrays Technology Pty Ltd (DArT) for reduced representation sequencing 

(RRS) with the PstI-SphI enzyme combination and HiSeq 2500 sequencing. Raw reads were 

processed in Stacks v2.0b (Catchen et al., 2013) and aligned to the reference genome 

(Murchison et al., 2012) with BWA aln (Li & Durbin, 2009) and SAMtools (Li et al., 2009). The 

‘gstacks’ module was used to build a catalogue of SNPs across these samples alongside an 

additional 430 unique devil samples sequenced for other purposes. The ‘populations’ module 

was run to obtain an initial set of 9,894 SNPs in linkage equilibrium (using the  

--write_random_snp flag) with a minimum call rate (proportion of samples genotyped) of 

20%, maximum observed heterozygosity of 70% and minimum minor allele frequency (MAF) 

of 1%. We used our custom R script (R Core Team, 2018, version 3.4.4; Appendix 7) based on 

Chapter 4 (Wright et al., 2019; Appendix 6) for further downstream filtering on average allelic 
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depth (average number of reads for an allele) > 2.5, MAF ≥ 5%, reproducibility (proportion of 

mismatching calls between technical replicates) ≥ 90%, coverage difference (% difference in 

average read depth of the reference and alternate allele) ≤ 60%, and potentially sex-linked 

SNPs (heterozygous in at least one female and homozygous in all males). Our script also 

combined data from technical replicates by adding genotype information from the sample 

with the lower call rate to the sample with the higher call rate only at loci with missing data. 

 
Table 5.1: Summary statistics for the free-range enclosures. 
Number of adults in each enclosure from 2011 - 2017, and number of offspring produced with 
the associated reproductive skew (% that failed to reproduce in that enclosure year), 
calculated using the number of sequenced offspring with parentage resolved. May be 
overestimated in males in years where some offspring are unsequenced or unassigned. 

a An additional 4 adult females were housed in the enclosure but were contracepted as part of another study (Cope et al., 
2018a). 

 
  

FRE Year No. in enclosure (plus no. not sequenced) Reproductive skew (%) 

Adult males Adult females Offspring Males Females 

Bridport  

 2011 9 8 (1) 17 44.4 44.4 

 2012 8 10 (1) 2 75.0 81.8 

 2013 7 11 (1) 20 28.6 41.7 

 2014 10 11 14 (2) 60.0 54.5 

 2015 6 (1) 3a 4 85.7 33.3 

 2016 9 7 (2) 2 88.9 88.9 

 2017 2 (1) 4 (3) 12 (1) 0 28.6 

Freycinet  

 2011 7 (1) 6 (4) 5 (1) 75.0 70.0 

 2012 8 (1) 7 (1) 3 77.8 75.0 

 2013 11 (1) 7 (1) 6 (1) 75.0 62.5 

Total/Average    85 (5) 61.0 58.1 
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Parentage assignment with SNP data is optimised with fewer SNPs in low linkage 

disequilibrium, with low missing data and a high MAF, so SNPs are more informative and more 

computationally efficient (Huisman, 2017). We selected the samples relevant to our analysis 

and further filtered on call rate > 80% and MAF > 1%, resulting in 891 SNPs. Genotype data, 

sex and birth year were used to determine parentage with the ‘sequoia’ package for R 

(Huisman, 2017), with the error term set to either 0.05 or 0.01. ‘sequoia’ is ideal for zoo 

populations, because it is capable of dealing with multi-generational, overlapping, inbred 

pedigrees and assigning half-siblings and grandparental relationships with unsampled parents 

and has a low error rate < 0.1% (Huisman, 2017). Parentage could not be determined with the 

891 SNPs for six individuals; a more stringently filtered set of 661 SNPs (MAF > 10%) enabled 

resolution for two of these. 

We calculated expected pedigree contributions (i.e. without molecular data) for each adult in 

the FREs separately for each sex as ∑ !".		"%%&'()!*!,#
!".		+,-.&/%.+,-.&	)!	.!0-"&1(.!,#		

	.,3 , where e was FRE and 

y was year. This is equivalent to the use of the “MULT” option in PMx given that all individuals 

in an enclosure have equal probability of being the parent of an offspring. MULT pedigree 

contributions may be non-integers and vary with the years the devil was in an enclosure, how 

many other same-sex adults were in the enclosure, and how many offspring were produced 

in that enclosure and year. For each adult, we compared the MULT pedigree contributions to 

the total number of offspring allocated from the molecular pedigree across all enclosure 

years. Additionally, for females, we compared these to the number of offspring estimated by 

pouch observations, as a check for our molecular pedigree reconstruction. We calculated 

reproductive skew as the percentage of males/females that failed to reproduce in a given 

enclosure and year, and also averaged across the dataset. High reproductive skew indicates 

that only a small number of individuals successfully bred; low reproductive skew would be 

more consistent with MULT pedigree assumptions of equal contributions. We calculated the 

Ne (effective population size) to N (census size) ratio of the entire captive breeding program 

(N = 446 living devils; excluding Maria Island), current to 31/12/2017 in PMx as a comparison 

of the MULT pedigree and molecular pedigree and its cumulative impact on the captive 

population as a whole. 
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Results 

We successfully assigned both sire and dam to 81 of 85 offspring using a combination of 

genetic and biological data (pouch status). Dam only was assigned to a further three offspring. 

The relationship between expected MULT pedigree contribution and number of offspring 

genetically assigned from the molecular pedigree for each adult was highly variable (Figures 

5.1 and 5.2). For some, expected MULT pedigree contributions very closely matched the 

observed number of offspring, while for others the MULT pedigree contribution greatly 

overestimated, or underestimated, the number of offspring actually produced. For example, 

28/53 (52.8%) males did not sire any offspring across up to 3 years, even though some had 

very high MULT pedigree-based expected contributions (up to 3.81 across all years for this 

group). Reproductive skew was high for both males and females across enclosures and years 

(Table 5.1), averaging 61.0% and 58.1% respectively. Of the 36 wild-born devils in our dataset, 

9/17 males (Figure 5.1) and 10/19 females (Figure 5.2) did not produce any offspring. The 

Ne/N ratio was 0.2719 for the MULT pedigree (current Ne = 102.19) and increased to 0.3978 

for the molecular pedigree (current Ne = 158.41), a 46% increase over the MULT pedigree 

Ne/N. 
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Figure 5.1: Traditional and molecular pedigree discrepancies for males. 
Differences between MULT pedigree offspring contributions (squares) and true number of 
offspring (circles) as determined by molecular pedigree reconstruction for males (represented 
with studbook number). Wild-born (*). 
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Figure 5.2: Traditional, molecular and observational pedigree discrepancies for females. 
Differences between MULT pedigree offspring contributions (squares), true number of 
offspring determined by molecular pedigree reconstruction (circles) and number of offspring 
allocated from pouch observations (triangles, dashed line) for females (represented with 
studbook number). Wild-born (*). 
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Discussion 

The high levels of reproductive skew (failure to breed) we observed are slightly higher than 

those reported by Gooley et al. (2018), where male and female devils housed in smaller 

groups (maximum ten individuals, versus maximum 21 herein) had an average reproductive 

skew of 58.1% and 53.2% respectively. Reproductive skews were also higher than devils 

housed in pairs (43.9% and 36.3% respectively) (Gooley et al., 2018). Reproductive skew is 

concerning if non-molecular pedigree analysis fails to identify the lowered founder genome 

equivalents and unequal family sizes that lead to genetic diversity losses (Frankham, 2010b). 

If individuals that consistently fail to breed are identified, they can be targeted for intensive 

management, and overrepresented individuals can be temporarily (e.g. contracepted [Cope 

et al., 2018b]), or permanently prevented from breeding. 

Although methods exist for genetic management of animal groups (such as the use of MULT), 

individual-level management is more effective at retaining genetic diversity and avoiding 

inbreeding (Wang, 2004; Jiménez-Mena et al., 2016). Group-based pedigree methods (such 

as MULT) will not be as informative if assumptions such as random mating are not met, 

however are still preferable to no management, or using behavioural data alone (Wang, 

2004). For devils, further research is needed to determine whether non-random mating (e.g. 

mate choice) explains the apparent increase in reproductive skew as group size increases. For 

other group-housed species, managers should consider the mating system, number of 

animals group-housed, natural reproductive skews (e.g. dominance structures), cost of 

acquisition or translocation of animals, costs of analysis versus cost of management, and the 

impact of accumulative effects of MULTs across multiple generations when deciding whether 

to apply molecular genetic management to a group-housed species, and if so how many 

animals should be sampled. Molecular genetic management of groups may even be useful for 

presumed monogamous species where behavioural data alone is used, as extra-pair paternity 

may be overlooked (Lee et al., 2018). At face value, group housing may appear to be a cheaper 

management option than housing in pairs ($2,100 AUD per devil [Parrott et al., 2019a] versus 

$10,000 per devil housed in pairs), however group housing comes at a genetic diversity cost. 

That is, group housing using MULT parentage provided an inferred effective population size 

of 102 whilst the molecular pedigree showed that the true effective population size was closer 

to 158 (we note that the pedigree was not fully resolved). We calculate that the cost of our 
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analysis is $125 per devil (including reagents, sequencing, labour costs), an investment that 

reduces the need to hold 206 more devils to achieve the same Ne (158.41) under the MULT 

pedigree Ne/N ratio of 0.2719. 

Group housing is an important component of many conservation breeding programs. Genetic 

management is important when key animals, such as potential founders, are group-housed 

and so are included in calculations of genetic diversity. If these wild-born animals do not 

breed, and this goes undetected, conservation breeding programs will lose important wild 

genetic diversity. Molecular genetic approaches continue to decrease in cost (Puckett, 2017), 

so are becoming more accessible for use in conservation (Norman et al., 2019; Chapter 4). 

Our results show that molecular genetic information, alongside biological knowledge, should 

be routinely used to refine pedigree information in group housing contexts. 

Acknowledgements 

All the Save the Tasmanian Devil Program keeping staff who have worked with the devils in 

FREs, in particular Karen Fagg and Olivia Barnard. Thanks also to Carla Srb for her ongoing 

management of the Tasmanian devil studbook, and the Zoo and Aquarium Association 

Australasia, and its member zoos, who contribute to the insurance population. We thank two 

anonymous reviewers for comments that improved the manuscript. This work was funded by 

ARC LP140100508 and DP170101253. 

Data availability 

The custom R script used to process SNP data and perform pedigree analysis is available in 

Appendix 7. 

Animal Ethics Note 

All DNA samples were collected under the STDP Standard Operating Procedures for handling 

Tasmanian devils as part of their management of the FREs and shared with us. 

  



95 
 

Chapter 6: Deciphering genetic mate choice: not so simple in group-

housed conservation breeding programs 

6.1 BACKGROUND 

Chapter 6 comprises the following manuscript, which has been reviewed and invited for 

resubmission: 

Farquharson, K.A., Hogg, C.J., Belov, K. & Grueber, C.E. (to be resubmitted) Deciphering 

genetic mate choice: not so simple in group-housed conservation breeding programs, 

Evolutionary Applications. 

In Chapter 5, I identified high variation in reproductive success in a captive population of 

Tasmanian devils housed in free-range enclosures by reconstructing the pedigree using SNPs 

processed from the method developed in Chapter 4. In this chapter, I investigated non-

genetic and genetic factors that may contribute to this inter-individual reproductive variation. 

Non-genetic factors including age and weight were investigated and found to be most 

important to reproductive success. Genetic factors, including SNP-based genome-wide 

heterozygosity and heterozygosity at MHC-linked microsatellites did not predict reproductive 

success. I found no clear evidence for the three genetic mate choice hypotheses that were 

tested: advantage of heterozygous individuals; advantage of dissimilar mates; and optimum 

genetic distance. 

In this Chapter, I performed polymerase chain reactions, analysed the data, prepared figures 

and tables and drafted the manuscript. Carolyn Hogg provided guidance on the analysis, 

critically revised the manuscript and provided funding. Katherine Belov critically revised the 

manuscript and provided funding. Catherine Grueber provided guidance on the analysis, 

critically revised the manuscript and provided funding. Funding for this work was provided by 

the Australian Research Council LP140100508 and DP170101253. 
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6.2 MANUSCRIPT 

Deciphering genetic mate choice: not so simple in group-housed conservation 

breeding programs 

Katherine A. Farquharsona, Carolyn J. Hogga, Katherine Belova & Catherine E. Gruebera,b 

a) The University of Sydney, School of Life and Environmental Sciences, Faculty 

of Science, Sydney NSW 2006, Australia 

b) San Diego Zoo Global, PO Box 120551 San Diego, CA 92112, USA 

Abstract 

Incorporating mate choice into conservation breeding programs can improve reproduction 

and the retention of natural behaviours. However, different types of genetic-based mate 

choice can have varied consequences for genetic diversity management. As a result, it is 

important to examine mechanisms of mate choice in captivity to assess its costs and benefits. 

Most research in this area has focused on experimental pairing trials, however this resource-

intensive approach is not always feasible in captive settings and can interfere with other 

management constraints. We investigated overall breeding success and three non-mutually 

exclusive mate choice hypotheses (advantage of heterozygous individuals, advantage of 

dissimilar mates, and optimum genetic distance) using both genome-wide SNPs and MHC-

linked microsatellites in group-housed Tasmanian devils. The managed devil insurance 

population is the largest such breeding program in Australia and is known to have high 

variance in reproductive success. We found that non-genetic factors such as age were the 

best predictors of breeding success in a competitive breeding scenario, with younger females 

and older males being more successful. We found no evidence of mate choice under the 

hypotheses tested. Mate choice varies among species and across environments, so there is a 

need to investigate hypotheses on a case-by-case basis. Our study shows that examining and 

integrating mate choice into the captive management of species housed in realistic, semi-

natural group-based contexts may be more difficult than previously considered.  
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Introduction 

Allowing for mate choice has long been suggested to improve the success of conservation 

breeding programs (Wedekind, 2002; Quader, 2005; Asa et al., 2011; Schulte-Hostedde & 

Mastromonaco, 2015; Martin-Wintle et al., 2019). Any examination of the costs and benefits 

of allowing mate choice in a captive environment must reflect the long-term demographic 

and genetic sustainability of the captive population (Chargé et al., 2014b). For example, 

allowing mate choice may result in greater reproductive success overall and confer fitness 

benefits such as improved offspring health (see Martin-Wintle et al. (2019) for a review in ex 

situ populations). Yet populations may also experience high reproductive skew if preferred 

individuals breed well, while the non-preferred fail to breed. Reproductive skew can then 

result in loss of genetic diversity and a lower effective population size (Frankham et al., 2010). 

In their review of mate choice in captive management, Chargé et al. (2014b) recognised that 

“there is currently too little theoretical and empirical evidence to provide any clear guidelines 

that would guarantee positive fitness outcomes and avoid conflicts with other genetic goals” 

(p1120). Therefore, an understanding of the mechanisms of mate choice in captivity is needed 

to ensure that overall genetic goals are not impeded. These goals often include benchmarks 

such as the maintenance of 95% genetic diversity over 100 years (Ballou et al., 2010a) by 

equalising genetic representation of wild-born animals (founders) through preferentially 

breeding individuals with the lowest mean kinship (a measure of relatedness) in the 

population. 

Much of the current literature on mate choice in conservation contexts focuses on 

experimental pairing trials. In pairing trials, an animal is housed with a test individual of the 

opposite sex, with behavioural indicators and/or reproductive outcomes used to determine 

whether the pairing is preferred or non-preferred (see Martin-Wintle et al., 2015; Hartnett et 

al., 2018; Parrott et al., 2019b for examples). Other studies compare the breeding success of 

pairings with varying genetic characteristics (Parrott et al., 2006; Parrott et al., 2015; Brandies 

et al., 2018; Russell et al., 2018). While experimental trials are useful, they are labour-

intensive and require resources that may not be available in many conservation breeding 

programs, for example the space required to house animals in pairs. Conservation breeding 

programs of threatened species may not be able to risk drops in productivity that could occur 

during experimental trials and forced monogamous pairings. Furthermore, for social species, 
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housing individuals in pairs may not be conducive to normal behavioural expression (Lutz & 

Novak, 2005). As a result, there is a need to investigate mate choice hypotheses in 

observational studies using populations housed as they would be realistically managed in 

captivity, such as in group-housed species.  

The use of molecular markers in conservation breeding programs is increasingly common for 

a variety of management purposes, including resolving pedigrees (Chapter 5), inferring 

population structure (Chapter 4) and investigating hereditary diseases (Norman et al., 2019). 

Molecular data gathered for these purposes can be extended to investigate mate choice. 

Evidence of mate choice may be found at the genomic level, which can be investigated using 

genome-wide single nucleotide polymorphisms (SNPs) such as those generated with reduced 

representation sequencing (RRS) at a low-cost. Mate choice may also occur in association with 

specific gene regions. For example, the involvement of the major-histocompatibility complex 

(MHC) in disease resistance means that mate choice with relation to variation at this region 

may confer direct fitness benefits to offspring (Consuegra & Garcia de Leaniz, 2008). The MHC 

region has been widely linked to mate choice in a number of species, for a review of evidence 

see Kamiya et al. (2014). 

A number of non-mutually exclusive genetic-based mate choice hypotheses, with varying 

consequences for genetic goals of captive populations, have been proposed. These include: 

1. Advantage of heterozygous individuals, where individuals with the greatest 

heterozygosity show the greatest fitness (e.g. through disease resistance, also 

known as quantity of alleles hypothesis; Doherty & Zinkernagel, 1975). If this 

occurs in a small population in captivity, individuals with lower heterozygosity 

will be less successful leading to reproductive skew, lower effective population 

size and poorer founder representation at the population-level over time. 

2. Advantage of dissimilar mates, where individuals that breed with mates most 

dissimilar to themselves will maximise heterozygosity and therefore fitness of 

their offspring (Landry et al., 2001), for example by reducing inbreeding load 

(Kempenaers, 2007). As individuals will vary in their choice of mates, no 

individual should be disadvantaged assuming there is enough genetic diversity 

in the population to allow dissimilar pairings (Tregenza & Wedell, 2000). 
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3. Optimum genetic distance, where individuals that breed with partners of an 

optimum level of genetic dissimilarity experience the greatest fitness, 

balancing the potential effects of outbreeding depression due to breeding with 

too-dissimilar mates, with inbreeding depression due to breeding with too-

similar mates (also related to the compatible genes hypothesis) (Penn & Potts, 

1999; Tregenza & Wedell, 2000). In a small population, genetic diversity will be 

depleted if the majority of successful pairings have high pairwise similarities 

(leading to inbreeding), or will increase with dissimilar pairings as per the 

advantage of dissimilar mates hypothesis (although outbreeding depression 

may be a potential risk [Chargé et al., 2014b]). 

Here we use both genome-wide SNPs and MHC-linked microsatellites to investigate the above 

three mate choice hypotheses in Tasmanian devils (Sarcophilus harrisii) housed in large free-

range enclosures. We use seven years of data from the largest managed captive breeding 

program in Australia (Hogg et al., 2017b), representing the best opportunity to detect mate 

choice without management intervention. As with many captive programs, the population is 

managed to meet conservation goals and so was not experimentally manipulated. Free-range 

enclosures are 22 ha in size and hold up to 21 adult devils in a roughly even sex ratio. Trapping 

within the free-range enclosures occurs four times per year to monitor the health of devils 

and record breeding. Relative to one-to-one pairings on one extreme, and free-roaming wild 

populations on the other extreme, the devil free-range enclosures represent an intermediate 

level of management: offering a high potential for mate choice, while still under conservation 

management (health checks and supplementary feeding) (Grueber et al., 2018b). Group-

housed devils exhibit high reproductive skew (approximately 60% of individuals fail to breed 

each season, Farquharson et al., 2019; Chapter 5), so an investigation of potential mate choice 

mechanisms driving this skew will inform ongoing management. By investigating mate choice 

hypotheses in a non-manipulated captive setting, we aim to inform management options for 

other conservation breeding programs that house or plan to house species in groups with the 

opportunity for mate choice. 
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Materials and Methods 

Sampling 

This study included 93 unique adult devils housed in two free-range enclosures, Bridport and 

Freycinet, between 2011 and 2017. Some adults were present in more than one enclosure 

across the years, though none appeared in more than three enclosure-years. An additional 15 

devils that were housed at the sites during this time could not be included, as no DNA sample 

was obtained, or the sample was of too poor quality to sequence. A further five females were 

contracepted during some of the enclosure years for a separate study (Cope et al., 2018a), 

none of which produced offspring. Contracepted devils were excluded from all analyses. A 

total of 123 offspring were observed in pouch checks, 34 of which did not survive to weaning 

(sampling) age so could not be included, and another 4 of which survived but were not 

sampled. Ear biopsies were collected by the Save the Tasmanian Devil Program under 

Standard Operating Procedures for handling Tasmanian devils for management purposes, and 

DNA extracted using a phenol/chloroform protocol (Sambrook et al., 1989). We considered a 

successful breeder as producing at least one offspring that survived until weaning, using the 

results of pedigree reconstruction to determine breeding status (Farquharson et al., 2019; 

Chapter 5).  

Non-genetic factors 

We used data recorded in the Tasmanian devil studbook (Srb, 2018) and the ZIMS database 

(Species 360, 2018) to obtain the age and weight for every adult in each enclosure and year. 

Not all devils were trapped on each occasion, so we took the average weight of any records 

between 1st January and 30th April where the devil was held in that enclosure, as this time 

period covers the breeding season (Keeley et al., 2017). Average weight was reasonably 

consistent throughout the breeding season (female mean = 6.68 kg, SD = 0.90 kg, coefficient 

of variation [CV] = 13.5%; male mean = 8.88 kg, SD = 1.05 kg, CV = 11.8%). For one male that 

had no weight measurement, the closest measurement to this time (December of the 

previous year) was used.  
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Genome-wide diversity 

A reduced representation sequencing (RRS) approach was used to genotype genome-wide 

SNPs by Diversity Arrays Technology Pty Ltd (DArTseq; Wenzl et al., 2004). We used a modified 

version of the Stacks (Catchen et al., 2013) and custom R (R Core Team, 2018) pipeline 

presented in Wright et al. (2019) (Chapter 4; Appendix 6) to call and filter SNPs. We built a 

catalogue of 588 Tasmanian devil samples including those sequenced for this study and for 

other purposes, and filtered in Stacks on minimum genotyping rate (-r 0.20), heterozygosity 

(--max_obs_het 0.70), minor allele frequency (--min_maf 0.01) and linkage equilibrium  

(--write_random_snp). Within the custom R script, we further filtered on minimum average 

allelic depth (> 2.5; to exclude loci with low allelic depth across the sample set at either the 

reference or alternate allele), coverage difference (< 80%), reproducibility between technical 

replicates (> 90%) and minor allele frequency (> 5%) to obtain 1,948 SNPs across the samples 

relevant to this analysis to calculate diversity metrics. 

We chose standardised genome-wide heterozygosity (HGW) as our measure of genome-wide 

diversity, calculated as the total number of heterozygous loci in a sample divided by the sum 

of the average observed heterozygosities for all samples at the same genotyped loci, using 

the ‘inbreedR’ package in R (Stoffel et al., 2016). A standardised metric reduces the influence 

of missing data. 

MHC diversity 

We typed the adults (48 males, 43 females) for which we had sufficient DNA at 12 MHC-linked 

microsatellite loci (Table A8.1.1) developed by Cheng and Belov (2014) and Day et al. (2019). 

Polymerase chain reactions (PCRs) with Qiagen Type-It Microsatellite PCR Kit were performed 

in a 10 μl reaction with 1 μl of ~12 ng/μl template DNA, and 0.2 μM of the forward and reverse 

primer for each locus. Amplification of PCR products was performed on a T100 Thermal Cycler 

(Bio-Rad) with a 5 minute 95°C enzyme activation step, followed by 30 cycles of 30 seconds 

at 95°C denaturation, 90 seconds annealing at 65°C and 30 seconds extension at 72°C, before 

a final 30 minute extension at 60°C. Capillary electrophoresis on an Abi 3130XL Genetic 

Analyser (Applied Biosystems, USA) separated fragments for allele scoring using GeneMarker 

1.95 (Soft Genetics LLC, USA) against the McLab DMSO 100 size standard (Molecular Cloning 

Laboratories, USA). 
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Similar to HGW, we standardised MHC-based heterozygosity (HMHC) for each individual. Our 

two measures of genetic diversity, HMHC and HGW, were weakly correlated (r = -0.25 in females, 

r = -0.14 in males), as were all other input variables (age and weight correlations < 0.3). 

Overall breeding success 

We first investigated the factors affecting breeding success using our entire dataset. 

Modelling both sexes together would require multiple interaction terms to be fitted to 

account for age and weight differences between the sexes, which was not feasible given our 

sample sizes. Males and females were therefore analysed in separate models containing age, 

average weight and the two standardised genetic diversity metrics, HGW and HMHC, as fixed 

predictors. Ideally, we would include the random effects of enclosure, year and individual ID 

to account for variation in breeding success amongst the two free-range enclosures, multiple 

years and repeated breeding attempts of some individuals. However, some of these had very 

low variance, so could not be fitted due to convergence issues. Therefore, we only fitted 

random intercepts with adequate variation for each model, being the individual ID for males: 

Breeding Success ~ Age + Average weight + HGW + HMHC + (1|ID), 

and the enclosure year for females: 

Breeding Success ~ Age + Average weight + HGW + HMHC + (1|EnclosureYear). 

Generalised linear mixed models, with a binomial response for successful (1) or unsuccessful 

(0) breeders were estimated with the ‘glmer’ function from the ‘lme4’ package in R. Model 

averaging and model selection using an information theoretic approach following Grueber et 

al. (2011) was used to obtain the final model. Briefly, effect sizes were standardised by 

dividing by 2 SD following Gelman (2008). Sub-models of the global model (containing all 

parameters of interest) were obtained with the ‘MuMIn’ package (Barton, 2018), and models 

within the top 2 AICc of the best model were averaged using the full average method. Details 

of the top model sets are provided in Table A8.1.2. Estimates with a relative importance (RI) 

of 1 (parameter was included in all top model sets) were back-transformed for interpretation. 

Hypothesis 1: advantage of heterozygous individuals 

A benefit of our dataset, as opposed to wild studies, is that housing animals in known groups 

creates a discrete competitive mating environment, allowing us to test specific mate choice 



103 
 

hypotheses such as the fitness benefits of heterozygosity. As distinct from the overall 

breeding success models, we would expect the individuals with highest heterozygosity, 

relative to others of the same sex in the enclosure, to be more successful regardless of their 

heterozygosity ranking relative to the larger population. We tested relative effects by centring 

all four predictors, age, weight, HGW and HMHC within each enclosure and sex (calculating the 

difference from the group mean and dividing by 2 SD of the group values) and rerunning the 

male and female models as above. 

Hypothesis 2: advantage of dissimilar mates 

To test the hypothesis that breeders are most successful when they pair with dissimilar mates 

that maximise heterozygosity of their offspring (relative to a random mate selection), we 

calculated pairwise genetic similarity as "45 = 	2 × '45/('4 + '5), where FA is the total 

alleles of female A, FB is the total alleles of male B and FAB is the total number of unique alleles 

shared by female A and male B (Wetton et al., 1987). Similarity was calculated between every 

possible opposite-sex pairing for each enclosure, and separately at the genome-wide SNPs 

and the MHC loci for which both individuals of the pair were sequenced. For each enclosure, 

we then compared the average pairwise similarity of the observed successful breeding pairs 

to an expected average. The expected average was calculated from a structured simulation 

that selected the same number of pairings as were observed to breed from the set of possible 

pairings for that enclosure (with equal sex ratios as some males bred with multiple females 

and vice versa). The simulation was repeated 100,000 times to ensure adequate parameter 

space exploration. We interpret evidence of advantage of dissimilar mates as an observed 

mean below the 95% confidence interval of the expected mean similarity under random 

mating. As some years had small numbers of observed successful pairings, we also pooled all 

enclosure years to obtain an overall estimate of observed versus expected mean pairwise 

similarities using the structured simulation, modified to account for the additional structure 

due to enclosure year group. 

Hypothesis 3: optimum genetic distance 

Observed pairwise genetic similarities below the expected range (i.e. successful pairs were 

more different from one-another than expected under random mating) may indicate 

increased fitness of dissimilar mates. In contrast, observing a high proportion of pairwise 
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similarities falling within the expected range may be predicted under the optimum genetic 

distance hypothesis, if the optimum heterozygosity is close to the mean heterozygosity. If 

animals that mate with individuals at an optimal genetic distance to themselves are more 

likely to successfully breed than other pairings, we would expect the standard deviation of 

the observed pairwise dissimilarities to be lower than that of the expected standard deviation 

of successful pairings that would occur under random mating. We therefore compared the 

observed standard deviation in pairwise similarities of the observed successful breeders to 

the standard deviation under simulated random mating.  

Results 

Overall breeding success 

Overall breeding success of females across our dataset had a negative relationship with age 

(61% probability of breeding success at age 2 vs. 47% at age 3, 34% at age 4 and 22% at age 

5, fitted values from model presented in Table 6.1). Average weight was excluded from the 

final model for females but had a positive relationship with overall breeding success for males 

(RI = 1, Table 6.1). The two genetic predictors, HGW and HMHC, had low model selection 

certainty (RI < 1) as predictors of overall breeding success for both females and males. 

Table 6.1: Overall breeding success results for females and males after model averaging. 
Breeding success (1 = success, 0 = failure) was the binomial response variable. 

1 Estimates have been standardised on 2 SD following Gelman (2008). 
2 RI is the relative importance of the predictor in the final model, calculated as the proportion of top models the predictor 

was included in. 
3 Genome-wide heterozygosity (HGW) and MHC heterozygosity (HMHC) were standardised across all loci for which an 

individual was genotyped to reduce the influence of missing data on the analysis. 

 Predictor Estimate1 (unconditional SE) RI2 

Females (N = 74) Intercept -0.1529 (0.3064)  

 Age -1.0503 (0.5526) 1 

 HGW
3 0.1097 (0.3427) 0.25 

 HMHC
3 0.0567 (0.2699) 0.20 

Males (N = 69) Intercept -0.6325 (0.3783)  

 Age 0.1886 (0.5079) 0.23 

 Average weight 1.6426 (1.0120) 1 

 HGW
3 1.1710 (1.0991) 0.78 

 HMHC
3 -0.1011 (0.3748) 0.17 
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Advantage of heterozygous individuals 

We found no evidence that individuals with high heterozygosity, relative to others in the 

enclosure, had greater breeding success in competitive breeding environments based on 

genome-wide heterozygosity nor heterozygosity at MHC loci, for either females or males 

(Table 6.2). HMHC was not included in any of our final models, while HGW had a low relative 

importance (low model selection certainty). Age showed a negative relationship with 

breeding success for females in competitive environments as per the overall breeding success 

model. The youngest female relative to the average age of the other females in the enclosure 

had a 73% fitted probability of breeding success compared to 17% for the oldest female in 

the enclosure. Conversely, age had a positive relationship with breeding success for males in 

competitive environments (the youngest male relative to the average age of the other males 

in the enclosure had a 17% fitted probability of breeding success compared to 65% in the 

oldest male), but absolute age was not an important predictor for overall male breeding 

success (Table 6.1). 

 
Table 6.2: Results of “advantage of heterozygous individuals” hypothesis tested in a 
competitive breeding scenario. 
Breeding success (1 = success, 0 = failure) was the binomial response variable. 

1 All predictors were converted to z-scores within each enclosure year and sex before input to models to reflect 

competition amongst individuals. 
2 Estimates have been standardised on 2 SD following Gelman (2008). 
3 RI is the relative importance of the predictor in the final model, calculated as the proportion of top models the predictor 

was included in. 
4 Genome-wide heterozygosity (HGW) was standardised across all loci for which an individual was genotyped to reduce the 

influence of missing data on the analysis. 
  

 Predictor1 Estimate2 (unconditional SE) RI3 

Females (N = 74) Intercept -0.1576 (0.3088)  

 z.Age -1.0744 (0.5194) 1 

 z.Average weight -0.1101 (0.3215) 0.25 

 z.HGW
4 0.0606 (0.2615) 0.21 

Males (N = 69) Intercept -0.5914 (0.3293)  

 z.Age 1.3078 (0.7160) 1 

 z.HGW
4 0.5462 (0.7263) 0.54 



106 
 

Advantage of dissimilar mates 

For both genome-wide SNPs and MHC-linked microsatellites, observed mean pairwise 

similarities for each enclosure and year fell within the 95% CI for the expected mean under 

random mating (Figure 6.1A and 6.1B). We observed no patterns across years or enclosures 

(i.e. observed values were not consistently below or above the expected mean), providing no 

evidence to support the advantage of dissimilar mates hypothesis (Figure 6.1A and 6.1B). 

Optimum genetic distance 

The standard deviation of pairwise similarities among successful breeders was close to the 

expected value under random mating (within the 95% confidence interval) for both genome-

wide SNPs and MHC-linked microsatellites (Figure 6.2A and 6.2B), providing no evidence to 

support the optimum genetic distance hypothesis.  
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Figure 6.1: Expected vs. observed similarity for advantage of dissimilar mates hypothesis. 
Observed mean pairwise similarity of successful breeding pairs (red triangle) versus expected 
mean pairwise similarity (black circle) of 100,000 simulated pairings under the same 
conditions with 95% CIs, calculated from A) genome-wide SNP data and B) MHC-linked 
microsatellite loci. Minimum and maximum simulated values outside of 95% CI shown by grey 
line. Note that the x-axes differ in scale.  

B) 

A) 
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Figure 6.2: Optimum genetic distance hypothesis. 
Observed standard deviation (SD) in pairwise similarity of successful breeding pairs (red circle) 
versus mean expected SD in pairwise similarity (black circle) of 100,000 simulated pairings 
under the same conditions with 95% CIs (black lines), calculated from A) genome-wide SNP 
data and B) MHC-linked microsatellite loci. N is the number of successful breeding pairs for 
which sequence data was available in each enclosure year. Note that enclosure years with a 
sample size of 1 successful pair were excluded as no standard deviation could be calculated. 
Numbers of total possible pairwise comparisons and numbers of successful males/females 
are identical to those presented in Figure 6.1.  

N 

A) 

B) 
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Discussion 

Mate choice is often touted as a reason to group-house individuals in captivity (Wedekind, 

2002), yet is rarely tested in realistic group-housing scenarios. As a result, the impact of mate 

choice on conservation breeding programs that utilise group-housing is not clearly 

understood. Here, we used a large observational dataset of captive group-housed Tasmanian 

devils to test three mate choice hypotheses. We found no evidence to support any of these 

genetic mate choice processes using either MHC-linked microsatellite loci or genome-wide 

SNP loci. It is therefore likely that none of these account for the high reproductive skew 

observed in this population (Farquharson et al., 2019; Chapter 5).  

Selection coefficients for diversity- and dissimilarity-based mate choice processes are likely to 

be weak (Kamiya et al., 2014), meaning that a large amount of data would be needed to detect 

any trend. The range of possible expected values exhibited under our random mating 

simulations was great enough to potentially observe values outside of the 95% CI in 

approximately 7 of the 10 enclosure years that we examined (grey bars Figure 6.1), also 

demonstrating that our captive study population has enough genetic diversity to generate 

dissimilar pairings. Nevertheless, we did not detect conclusive deviations from random 

mating, even when data from all years were pooled together. As the observed effects did not 

follow a pattern (i.e. did not all trend below or above the expected mean), we consider it 

unlikely that we would detect any pattern even with increased sample sizes. 

The MHC is widely used in mate choice studies, yet it is likely that other genomic regions are 

also involved in mate choice and/or reproductive success. For example, secondary sexual 

characteristics may be reliable indicators of general mate quality (Møller & Alatalo, 1999), 

under the “good genes” hypothesis. These secondary sexual characteristics may also be 

associated with MHC diversity, such as in white-tailed deer where the development of antlers 

is associated with allelic diversity at the MHC-DRB gene (Ditchkoff et al., 2001). Tasmanian 

devils do not display any known secondary sexual characteristics, and although males are 

slightly larger than females, the species is not clearly sexually dimorphic. We did note 

however that the older males and younger females tend to have a higher reproductive 

success (Table 6.2). While no genetic factors influenced breeding success in our population, 

age was important for both males and females in competitive breeding environments. Age 

was also important for the overall breeding success of females, but not for the overall 
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breeding success of males where average weight was instead strongly positively correlated 

with breeding success. This suggests that in enclosures with a range of ages, relatively older 

males may be able to dominate breeding events, though the absolute oldest males may not 

be the most successful overall. 

We can compare our findings here to results of devil studies under other housing conditions, 

to determine how the influence of non-genetic factors may vary between environments, even 

within a species. In smaller captive enclosures (up to four males, as opposed to up to 11 males 

herein), Gooley et al. (2018) found that weight influenced male breeding success, similar to 

our findings for overall male breeding success (Table 6.1). However, weight was excluded 

from our final competitive breeding models, so may be less important in competition. An 

explanation for this difference may be that in smaller enclosures (as those used in the Gooley 

study), heavier (i.e. larger) males are able to dominate breeding by mate guarding, a known 

behaviour in devils (Guiler, 1970), while in the larger enclosures studied herein the increased 

male competition may reduce the advantage of weight. Large free-range enclosures with 

greater number of adults will limit the ability of dominant males to guard all reproductive 

females. Compared to studies of devils housed in one-on-one pairs without opportunity for 

mate choice, we found similar effects of female age on reproductive success (Appendix 10; 

Farquharson et al., 2017; Russell et al., 2018).  

A genetic investigation by Russell et al. (2018) found that devil pairs with different numbers 

of heterozygous loci had a higher probability of breeding success than pairs with similar 

heterozygosities, using 6 of the MHC-linked microsatellites that were also included in our 

study. On the other hand, Day et al. (2019) did not detect mate choice using MHC-linked 

microsatellites in smaller group enclosures when examining overall MHC heterozygosity. 

Taken together, these observations indicate that mechanisms of mate choice vary across 

captive environment types, and specifically that group size may be an important driver of 

competition between mates. Whilst genetic-based mate choice may influence the 

reproductive success of forced monogamous pairings that do not experience competition, 

non-genetic factors contributing to behavioural dominance such as age and weight may be 

more important in mating competition and could mask any influence of MHC-associated 

reproductive success. 
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Several authors have called for empirical studies of mate choice in conservation breeding 

programs (Asa et al., 2011; Chargé et al., 2014b). By examining the largest managed captive 

breeding program in Australia, we had a unique opportunity to detect mate choice in a 

management context without experimental intervention. We did not find any evidence that 

devil breeding success was driven by any of the mate choice hypotheses we tested. It is 

possible that mate choice is occurring, either via an untested mechanism, or via the 

mechanism we tested but with an effect size that is too weak for us to detect in this 

population. In general, the effect of heterozygosity on fitness is typically weak (Chapman et 

al., 2009; Szulkin et al., 2010). However, the influence of heterozygosity at specific gene 

regions such as the MHC can be stronger than the genome-wide average (Hedrick, 2012). If it 

is true that underlying effect sizes are weak in our study system, it is difficult to conceive of 

management strategies that could be informed by this process to improve progress toward 

conservation genetic goals. It is also possible that breeding success in devils is influenced by 

unmeasured traits, as our study population exhibits a high reproductive skew, with almost 

two-thirds of individuals failing to breed given an opportunity in free-range enclosures 

(Farquharson et al., 2019; Chapter 5). Importantly, although reproductive skew decreases 

effective population size overall (Frankham et al., 2010), our current study shows that 

allowing mate choice by housing devils in groups does not appear to further exacerbate 

genetic diversity losses. 

Although experimental studies promote the use of group-housing to provide mate choice, the 

potential costs in respect of genetic diversity may be high (Chargé et al., 2014b). The strength 

and type of mate choice are not necessarily fixed within species, and can vary based on 

environmental (e.g. Robinson et al., 2012) or social conditions (such as population density e.g. 

Sharp & Agrawal, 2008; Martinossi-Allibert et al., 2019). This is likely true for devils, as 

inferences vary across contexts (e.g. Farquharson et al., 2017; Gooley et al., 2018; Russell et 

al., 2018; Day et al., 2019; see above). Managers are already aware of the need to collect and 

genotype samples for all individuals in realistic contexts to accurately assign breeding 

outcomes. A remaining challenge for conservation managers will be balancing the time taken 

to obtain sufficient sample sizes to detect any (possibly weak) effect, with the risk that mate 

choice may influence the genetic structure of the population during that time. For 

conservation management to be informed by mate choice theory, we advocate for more 
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studies in realistic captive management contexts, as opposed to solely experimental or wild 

studies, which may not apply. 
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Chapter 7: First empirical evidence for selection in captivity in an 

endangered vertebrate 

7.1 BACKGROUND 

In this Chapter I analysed Tasmanian devil triads (sire-dam-offspring combinations) 

sequenced at SNP amplicons to investigate undetected early-viability selection as a possible 

mechanism of adaptive change in captive breeding programs. Unlike Chapter 6 that examined 

pre-copulatory mate choice, this chapter specifically excludes mate choice by using known 

triads with parentage confirmed by various molecular methods including those I developed 

in Chapter 4. Triad analysis revealed deviations from Mendelian expectations, with meiotic 

drive being a possible mechanism at certain amplicons. This manuscript has been prepared 

for submission to a broad-impact journal. Supplementary Material is provided in Appendix 9. 
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Carolyn J. Hogga & Katherine Belova 
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Abstract 

Adaptation to captivity remains a critical concern for the management of threatened species 

around the world, but little is known about which conservation breeding programs are likely 

to be compromised by selective processes. Current pedigree-based management assumes 

classical Mendelian inheritance. In this study, we directly test for deviations from Mendelian 

proportions in the Tasmanian devil insurance population using known sire-dam-offspring 

triads (i.e. excluding population-level mechanisms, such as mate choice or inbreeding). The 

study includes a gradient of captive facilities, from high-intensity zoo enclosures, to wilder, 

free-range facilities. Overall, heterozygosity of observed offspring was slightly lower than 

expected given parental genotypes, possibly due to negative heterosis. We found differential 

effects across environments, but no effect of genotype on female annual productivity. Our 

molecular data, SNPs obtained by amplicon resequencing, do not allow for direct mechanistic 

inference. Nevertheless, our findings demonstrate that deviations from Mendelian 

inheritance can occur in a conservation management program.  
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Introduction 

Many evolutionary processes are important in conservation, including ‘unnatural’ selection 

such as biased harvesting (Allendorf & Hard, 2009), response to environmental contaminants 

(Nacci et al., 1999), adaptation to captivity (Frankham, 2008), and other responses to human 

activities (Massaro et al., 2013). Understanding the life-history stages at which selection acts 

helps to reveal the role that adaptation might play in conservation programs. This information 

can be used to help design management strategies that avoid unintended genetic change in 

the populations that we are aiming to restore. 

In this context, it is important not to ignore ex situ management, especially captive breeding, 

as an essential tool for conservation. IUCN Red List assessors have identified over 2,000 

species for which captive breeding is recommended to help prevent extinction (CPSG, 2018). 

Bringing animals into a controlled environment has great potential to cause unwanted genetic 

change through artificial selection. Empirical studies have reported potential adaptation to 

captivity in just a few generations (Frankham & Loebel, 1992; Latter & Mulley, 1995; Christie 

et al., 2012), with negative consequences for release of animals to the wild (Araki et al., 2007). 

Almost a decade ago, understanding and mitigating adaptation to captivity, and its effects on 

reintroduction success, was identified as a “top priority scientific research challenge in 

conservation genetics” (Frankham, 2010a; p1925). A snapshot of current conservation 

genetics research activity, taken by examining all 215 papers that cite Frankham’s 2010a 

review (Scopus search conducted 4 December 2018; more details at Table A9.2.1), uncovered 

very little recent empirical research that directly addresses this challenge. Over 26% (57/215) 

of the citing works were review or policy documents, and none of the recent works compared 

the association between genetic diversity and fitness in captive versus wild environments 

(Table A9.2.1). Although not exhaustive, this survey represents a broad sampling of recent 

conservation genetic focus highlighting the fact that the urgent question of adaptation to 

captivity is understudied. 

In conservation management, and in particular captive breeding, conservation geneticists 

typically use neutral models of genetic change for managing small populations because 

selection intensity is often unknown or thought to be low enough to be overcome by drift in 

very small populations. However, several studies have suggested that strong selection can 

occur in the small populations typified by threatened species (Hoffmann & Sgrò, 2011; 
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Ramírez-Valiente & Robledo-Arnuncio, 2015; Brüniche-Olsen et al., 2016; Wood et al., 2016; 

Hoffmann et al., 2017). Captive breeding programs are usually managed using pedigrees, an 

approach that, in addition to neutrality, assumes Mendelian inheritance. The contribution of 

a breeder’s genome to the gene pool of the next generation is estimated by summing its 

proportional contribution across offspring produced (Lacy, 1989). In pedigree-based 

management, these calculations are performed for known pairs (i.e. after pre-copulatory 

mate choice has occurred). Even when parents are known (i.e. extra-pair copulations can be 

ruled out), offspring genotypes of multiparous or iteroparous species may be biased by 

embryo losses as a result of cryptic female choice, litter size reduction, or early viability 

selection (Grueber et al., 2015a). For example, if offspring homozygous for alleles that are 

identical by descent (i.e. as a result of inbreeding) are disproportionately lost, genomic 

inbreeding of individuals may differ from the mean predicted values obtained by pedigrees. 

Prezygotic effects (e.g. meiotic drive) or gametic selection may also be confounding factors 

but are rarely quantified. 

The Tasmanian devil insurance population (IP) is an ideal study system for examining the 

possibility that artificial selection may impact a conservation breeding program. In response 

to the threat of devil facial tumour disease (DFTD), the devil IP was established in 2006 to 

prevent extinction of the species and is now the largest intensively managed conservation 

breeding program in Australasia. The IP houses over 700 devils across more than 30 

institutions representing a wide diversity of environments (Hogg et al., 2017b; see also 

Methods). Devils are polyoestrous seasonal breeders (Keeley et al., 2012), with females 

releasing large numbers of eggs per ovulation (on average 30 to 60 per ovulation) with a high 

percentage of failed embryos (Hughes, 1982). However, female devils are biologically limited 

to nursing four offspring, as they have only four teats in their pouch, providing an opportunity 

for early viability selection between the birth and pouch young stages (Grueber et al., 2015a). 

Here, we use molecular data to examine offspring and their known parents (i.e. sire-dam-

offspring triads), to test for deviations from Mendelian expectations in the devil IP. Large 

sample sizes, diverse environments, and opportunity for selection via the overproduction of 

offspring provide ideal conditions for examining selection in captivity. Previous studies of this 

population have found variation in inbreeding that is not reflected by pedigrees (Gooley et 

al., 2017), a change in mean population productivity over time (Farquharson et al., 2017; 
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Appendix 10), and variation in survival outcomes upon release to the wild, dependent on 

captive heritage (Grueber et al., 2017). The possible impacts of mate choice have also been 

examined (Chapter 6). In this study, we specifically exclude any effects of extra-pair mating 

by only examining the offspring of male-female pairs that were known to mate together, to 

uncover the role of viability selection in a closely managed conservation program. 

Materials and Methods 

Study populations 

Insurance population devils are housed at a range of breeding facilities that represent a 

gradient of management intensity (defined as the level of human intervention), and which 

vary across several axes that may influence adaptation. We have partitioned our dataset into 

three major categories, based on general characteristics of rearing habitat and opportunity 

for selection, as follows (see also Table 7.1): 

1. High-intensity sites are zoo-based facilities, housing animals in pairs during the 

breeding season and providing very controlled environments with respect to food 

availability, veterinary intervention, and high degree of exposure to human 

activities. 

2. Medium-intensity sites are larger enclosures (0.5–22 ha) that house groups of 

males and females (8–22 individuals) all year round and provide for more natural 

behavioural and social interactions (including mate choice). These include sites 

within the IP referred to as “managed environmental enclosures” and “free-range 

enclosures”. Devils in this type of housing are provided with most of their diet by 

keepers but may also consume small animals within their enclosures. Veterinary 

intervention is less frequent, occurring during regular “catch-ups”. 

3. Low-intensity site is the population inhabiting a 115 km2 island reserve (Maria 

Island) off the east coast of Tasmania. Devils were introduced to Maria Island in 

2012 and 2013 (Wise et al., 2016). Biannual trapping trips are conducted to 

monitor population growth and reconstruct the pedigree of trapped offspring 

(McLennan et al., 2018), although not all animals are necessarily trapped each 

year. Although the devils on Maria are monitored and managed at the population 

level (by selectively harvesting animals for translocation to other sites), individual 
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devils largely experience conditions very similar to the wild. Animals roam, choose 

mates, feed and interact with their environment largely in the absence of human 

intervention. 

Together, all study sites contribute to the larger IP. Collectively, both the structure of the IP, 

and the day-to-day management of individual devils within it, are based on pedigree analysis 

to inform maximal retention of founder diversity, minimisation of inbreeding, and sustainable 

reproduction (Hogg et al., 2017b; Grueber et al., 2018b). Annual breeding recommendations 

are provided to high-intensity sites to specify which pairs of devils should be housed together 

to breed. At medium-intensity sites, groups of devils are housed together such that breeding 

combinations satisfy the goals of the program (Hogg et al., 2017b), employing molecular 

markers to check parentage and construct pedigrees (Gooley et al., 2017; Gooley et al., 2018; 

Farquharson et al., 2019; Chapter 5). All triads in our dataset were verified by data 

independent from our main analysis, as described in Supplementary Methods A9.1 

(“Parentage confirmation”). 

DNA was extracted using a standard phenol/chloroform protocol with ethanol precipitation 

(Sambrook et al., 1989) from ear biopsies collected by IP institutions as part of the ongoing 

management of the population, from joeys at 7–12 months of age (Table 7.1). We were, 

therefore, unable to standardise timing of sampling across the animals included in our 

dataset. 

Molecular genotyping 

For this analysis, we sequenced devils at a selection of genomic regions using a custom re-

sequencing assay developed and described by Wright et al. (2015). In short, regions of interest 

targeting both neutral and functional (immune and behavioural) loci were identified with 

reference to the devil genome (Murchison et al., 2012). A panel of seven re-sequenced devil 

genomes were aligned to the genome with BWA (Li & Durbin, 2009) and SNPs called using 

SAMtools mpileup (Li et al., 2009). Candidate regions were searched for polymorphic loci and 

primers designed to amplify target loci. Long-range PCRs were conducted using the 

Sequalprep Long PCR Kit (Invitrogen) and normalised using the Sequalprep Normalisation Kit 

(Invitrogen) prior to library preparation using Nextera XT Sample Preparation Kit (Illumina), 

and sequencing on an Illumina MiSeq. Resulting amplicons were then realigned to the devil 

genome to call bi-allelic variants as per the re-sequenced genomes (Wright et al., 2015).  
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Table 7.1: Demographic and biological information about Tasmanian devils in each of our data subsets. 

1 Proportion of females breeding; mean litter size (± standard deviation; [Hogg et al., 2019a]). 

  Breeding conditions Environmental conditions 
Intensity Sampling 

age 
Reproductive 

output1 
Mating 
system 

Opportunity 
for mate 

choice 

Genetic 
management 

Exposure to 
environmental 

stochasticity 

Exposure 
to human 

activity 

Health/ 
veterinary 
monitoring 

Diet 

High ~6 months 38.77 ± 0.09%; 
2.63 ± 0.20 

Forced 
monogamy 

Largely 
absent 

Individual 
level 

Low Very high Daily/weekly Wholly 
controlled 

Medium ~9 months 54.98 ± 0.19%; 
2.51 ± 0.50 

Semi-
natural 

High Group level Intermediate Moderate Regular catch-
up of all 
animals 

Mainly 
controlled 

Low ~9-12 
months 

59.37 ± 0.21%; 
3.09 ± 0.41 

Natural Natural 
conditions 

Population 
level 

Natural conditions Low Annual survey 
of population 

Natural 
conditions 
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A total of 474 IP devils have been sequenced using this general approach since 2014, selected 

on the basis of a variety of conservation management and scientific values (Morris et al., 

2015; Wright et al., 2015; Hogg et al., 2019b). Consequently, and because samples are 

sequenced in batches, our dataset is highly patchy. For inclusion in our analysis, we identified 

triads of devils (sire, dam and offspring) that had genotyping data in common. We retained 

only samples that had genotyping calls at ≥ 75% of the SNPs within a given amplicon. We also 

removed amplicons with fewer than 10 triads sequenced, or fewer than 2 SNPs. 

Although our SNPs were obtained via the sequencing of PCR amplicons, we opted not to phase 

SNPs into haplotypes, because our dataset does not meet the assumption of a random sample 

of animals, intrinsic in computational phasing methods (Stephens et al., 2001; Stephens & 

Donnelly, 2003). Similarly, pedigree-based methods of haplotype reconstruction are 

premised on Mendelian inheritance and neutrality and could therefore mask any deviations 

that we are trying to detect. Instead, we investigated each SNP locus separately, with our 

inference acknowledging that SNPs within an amplicon are likely to show high linkage 

disequilibrium. Statistical significance of findings are therefore cautiously interpreted, 

considering non-independence of SNPs within amplicons.  

Additional data filtering procedures are provided at Supplementary Methods A9.1 (“SNP 

mismatch handling”). The final dataset provided data on 123 SNP loci, across five amplicons: 

IL17B, UNC13B, NF2, DIG12 and AGA (Table A9.2.2). The dataset included 140 offspring of 50 

unique sires and 54 unique dams, for a total of 214 genotyped devils. Note that 12 female 

and 18 male offspring were also represented as parents within the dataset. Although female 

devils can have litter sizes up to four, our dataset included an average of only 1.94 offspring 

per unique male-female pairing (range 1 to 6; note that some pairs bred together across 

multiple years). Due to the non-systematic means by which the molecular data were 

generated, triads were variously genotyped at different amplicons (Figure A9.3.1). 

Viability selection analysis 

For a biallelic SNP, differential selection within a litter can operate only when at least one 

parent is heterozygous (Figure 7.1). We can distinguish three basic types of selection: 

heterozygote advantage (heterosis, overdominance), heterozygote disadvantage (negative 

heterosis, underdominance, negative overdominance), and directional. All of these are 
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potentially detectable in the case of Figure 7.1c–d. However, if there is complete dominance 

for an allele A1, differential directional selection will only be detectable in Figure 7.1d. 

Additionally, meiotic drive (differential representation of an allele in gametes), or gametic 

level selection (probably unlikely in mammals), can mimic zygotic viability selection. Our 

dataset was limited to include only data from sire-dam genotype combinations that would be 

informative of any of these main types of selection. 

 

 

Figure 7.1: Punnett squares showing the expected offspring frequencies from the four 
possible parental genotype combinations at a diallelic SNP.  
(a) homozygous-homozygous pairing for the same allele, (b) homozygous-homozygous 

pairing for two different alleles, (c) heterozygous-homozygous pairing and (d) heterozygous-

heterozygous pairing. There is no genotypic variation on which selection can act differentially 

in (a-b). In (c-d) however, underdominance or overdominance can cause deviations from the 

expected 1:1 (heterozygote-homozygote) ratio. Additionally, in (d), differential directional 

selection acting upon the two homozygotes can cause deviations from the expected 1:2:1 

ratio. For pairs of the type shown in (c), directional selection in respect of the “A1” allele is 

indistinguishable from selection in respect of zygosity. For pairs of the type shown in (d), 

examining the relative frequencies of A1A1 versus A2A2 homozygote offspring allows the 

detection of directional selection, in addition to selection for or against heterozygotes. 

 

We tested for deviations from Mendelian proportions amongst the offspring represented in 

our dataset. We interpret any deviations as “early viability selection”, because mortality may 

have occurred at any point between fertilisation and first sampling (Table 7.1). Due to 

variation in the timing of follow-up sampling regimes amongst our sites, as well as variation 

in veterinary intervention (Table 7.1), we did not examine causes of mortality later in life. 

To test for deviations from Mendelian segregation with respect to zygosity, we calculated the 

expected heterozygosity of each SNP as the proportion of expected heterozygotes amongst 

offspring included in triads for that locus. Because only triads capable of producing variable 

offspring were included (types shown in Figures 7.1c and 7.1d), and all SNPs were bi-allelic, 

the expected heterozygosity under all conditions is 0.5. We tested whether the observed 

heterozygosity deviated from expectations by calculating the exact binomial 95% confidence 
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intervals with the ‘binom.confint’ function from the ‘binom’ package (Dorai-Raj, 2014) in R (R 

Core Team, 2018), using the sample size (number of offspring) at each SNP. Observed 

heterozygosity values that fell outside of the 95% CIs for the expected proportion are 

considered statistically significant at α = 0.05. Because the 95% CI is dependent on sample 

size, we also interpret the degree of deviation from the expected 0.5 ratio.  

To test for deviations from Mendelian segregation with respect to particular alleles 

(directional selection, meiotic drive), we examined double-heterozygote parental crosses 

(Figure 7.1d). Only two amplicons, UNC13B and AGA had at least 10 triads of this type. The 

95% CIs were calculated for these loci using an expected genotype frequency (A1A1 or A2A2, 

Figure 7.1d) of 0.25, and compared to the observed values, as above. We used the more-

common allele (highest frequency in our dataset) as the reference for each SNP.  

For the zygosity analysis, we had sufficient data to determine whether selection operates 

differently under different environments. We binned our data based on offspring birth 

location into our three environments as described above (high, medium and low intensity), 

retaining only SNPs genotyped for at least ten triads. 

Fitness consequences 

We tested whether breeding female devils experience fitness consequences as a result of 

their genotype. For this analysis, we extracted data on litter sizes from the studbook (Srb, 

2018). Because this analysis was not reliant on common genotyping data across triads, we 

were able to expand the dataset to a larger set of females that were genotyped at the same 

SNPs as used in our main analysis (N = 119 females with breeding data). 

The fitness consequences of genotype at each amplicon was assessed separately. Because we 

could not use conventional phasing methods, the genotypes of SNPs within amplicons were 

summarised into “genotype scores”. A single numeric value per amplicon per individual was 

calculated by assigning the genotype of each SNP as homozygous reference (common allele) 

= 1, homozygous alternative (rare) allele = -1 and heterozygous = 0, and taking the mean 

across the amplicon. Thus, individuals that scored close to 1 had more common variants 

across the amplicon, close to -1 more rare variants, and individuals with means close to 0 

were more heterozygous (or had roughly equal numbers of rare and common SNPs), within 

each amplicon. These genotype scores were then included as fixed predictors in linear models 
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to determine their effect on reproductive fitness in two ways: 1) to test for an effect of 

particular alleles (directional selection, meiotic drive) genotype scores were fitted directly; 2) 

to test for the effect of zygosity the scores were converted to a 0/1 predictor. In the latter 

case, values > 0.5 or < -0.5 (both more similar to homozygotes) were converted to 1, while 

values -0.5 ≤ x ≤ 0.5 (more heterozygous) were converted to 0. Models of the effect of 

genotype on female litter size were fitted using logistic regression, as described in 

Supplementary Methods A9.1 (“Fitness modelling”). 

Results 

Viability selection 

Across all triads in our dataset, observed heterozygosities of offspring were generally lower 

than expected under our null model of Mendelian inheritance (Figure 7.2). At the level of our 

entire dataset, we expected 50% of offspring genotypes to be heterozygous. In reality, only 

2,684 of 6,413 genotypes (41.9%) were heterozygous across the dataset, although this 

statistic does not account for structuring of SNPs within amplicons. Considering the non-

independent SNPs within amplicons, heterozygote deficit verged on statistically significant at 

p = 0.05 for UNC13B, although the magnitude of deviation was similar across UNC13B, NF2, 

DIG12 and AGA. A greater number of triads were genotyped at UNC13B than the other four 

loci listed, contributing to the narrower 95% CI for SNPs included in this amplicon (Figure 

7.2a). Heterozygote frequencies were, on average, close to expectations for IL17B. Multiple 

SNPs within an amplicon tended to show consistent patterns, suggestive of a small number 

of segregating haplotypes and high linkage disequilibrium among SNPs in the study 

population. 

When considering the three different management intensities independently, subtle and 

interesting patterns emerge (Figure 7.2b–d). High intensity regimes showed slight 

heterozygote deficits for NF2, DIG12 and AGA, and more substantive for IL17B. Medium 

intensity sites show slight deficits for UNC13, NF2, DIG12 and AGA, but not for IL17B. Low 

intensity sites (those with greatest environmental stochasticity; Table 7.1) are close to 

expectations for NF2 and IL17B, with slight deficits for UNC13B and AGA (see also Figures 

A9.3.2, A9.3.3). The high-intensity environment differs from the other two in its lack of mate 

choice (Table 7.1).  
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Figure 7.2: Observed vs. expected heterozygosity in offspring. 
Ratios of heterozygotes for a total of 123 individual SNPs across 5 amplicons genotyped in > 

10 triads with the potential to show deviations from Mendelian expectations. Coloured points 

indicate observed values, with error bars indicating the 95% CI. Sample size (number of 

offspring) is shown by small black bars, axis to the right. Results are shown for all triads 

included in the dataset (a), and triads from high (b), medium (c) and low (d) intensity sites, 

respectively. 

 

Our dataset was sufficient for testing for evidence of selection on particular variants 

(directional selection, meiotic drive) within two amplicons: UNC13B and AGA. Overall, we 

found statistically significant evidence that one allele was over-represented for all SNPs in 

AGA (note that the observed frequency of homozygotes with the rarer allele was higher than 

the 95% CI for the expected proportion of 0.25; Figure 7.3). For AGA, the frequencies of 

common-allele homozygotes were close to the expected 0.25 proportion, suggesting that this 

is selection that favours the rare allele, rather than selection that disfavours the common 
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allele. Again, because all SNPs at this locus showed similar patterns (Figure 7.3), it is likely that 

there is a high degree of linkage amongst them, and that selection is either operating on a 

common haplotype as a whole, or on a neighbouring linked variant. UNC13B did not show 

statistically significant deviation from expected proportions (Figure 7.3). 

 

 

Figure 7.3: Observed vs. expected ratios of alternative homozygotes. 
Ratios calculated at SNPs within amplicons genotyped in at least ten triads. Coloured points 

indicate the observed frequencies of each homozygote (red square = common allele 

homozygote; black circle = rare allele homozygote). Triangles indicate the expected 

proportion of 0.25 (see Figure 7.1d), with error bars indicating the binomial exact 95% 

confidence interval based on the sample size (number of genotyped triads at each SNP). 
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Fitness analysis 

Considering a larger dataset of genotyped female devils, we found little evidence that litter 

sizes were influenced by the SNP genotypes we report here (Figure 7.4). For those amplicons 

where there was strong evidence that genotype data should be retained in our final model 

(i.e. models in which the relative importance of the genotype parameter was greater than 

0.9), only IL17B and DIG12 showed effects (Tables A9.2.3, A9.2.4). There was a positive 

association between mean genotype score and litter size for IL17B, whereby having more 

common variants led to slightly higher litter sizes (Figure 7.4b). DIG12 showed the opposite 

trend, whereby having more common variants was associated with a decrease in mean litter 

size (Figure 7.4b). The latter result may have been largely driven by an effect of decreased 

litter size in homozygotes generally (Figure 7.4c), as the number of DIG12 rare-type 

homozygotes observed in our dataset was very low (Figure 7.4a), indicating weak predictive 

power to distinguish between decreased fitness of homozygotes generally, versus the 

decreased fitness of the common homozygote specifically.  

  



127 

 

 

Figure 7.4: Effects of SNP genotypes on female fitness (litter size). 
(Figure caption overleaf) 
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Figure 7.4 continued: For (a), frequency histograms for each amplicon indicate the prevalence 

of individuals that are more homozygous or heterozygous, on average across the gene (i.e. 

the “genotype scores”, see Methods). Panel (b) shows the effect of genotype score on litter 

sizes (per Figure 7.1d); thick line is trend from linear regression, with narrow lines the 95% CI. 

Panel (c) shows the effect of zygosity score on litter sizes (per Figure 7.1c and 7.1d); small 

filled points are fitted values from linear regression, with error bars indicating 95% CI. In (b) 

and (c), large points are observed data; plotted semi-transparent to facilitate visualisation of 

multiple overlaid points. In (b) and (c), fitted trends are only shown where there was strong 

evidence that genotype influenced litter size (see Results; full model output at Table A9.2.3 

and A9.2.4). 

Discussion 

The special case of superfluous oocyte and embryo production in Tasmanian devils, and 

varying captive management regimes of the insurance population, have allowed us to test for 

neonatal selection in a marsupial of great conservation significance. The results we have 

identified are surprising: devil offspring may be less heterozygous than expected under 

Mendelian segregation, perhaps due to selection against heterozygotes or meiotic drive. 

Importantly, this pattern varies with management regime, implicating selection as the more 

likely scenario. This negative heterosis could impact upon the ongoing genetic composition of 

the insurance population in coming generations. 

Selection against heterozygotes is well-established in the context of hybrids between two 

species or populations, where it can result from chromosomal differentiation or Bateson-

Dobzhansky-Muller effects (Arntzen et al., 2009). Within populations, however, 

underdominance is rare, because multiallelic under-dominant states are unstable and 

eventually lead to fixation of one allele (Fisher, 1923; Wright, 1931). If selection is effectively 

or intrinsically weak, however, polymorphism could persist. Patterns resembling 

underdominant selection can also occur in subdivided populations where polymorphism is 

maintained via migration-selection equilibrium (Altrock et al., 2011). Wild devil populations 

show population structure across the landscape (Jones et al., 2004; Grueber et al., 2019). If 

the variants we observed are subject to underdominance, and if this diversity is maintained 

via structure and migration, then we might predict that once populations become isolated 

(such as in captivity, or via fragmentation due to DFTD) that diversity at such loci may be 

rapidly lost. 

An alternative interpretation of our findings is meiotic drive. We can differentiate between 

underdominance and meiotic drive by considering the outcome of double-heterozygote 
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crosses (i.e. crosses of type shown in Figure 7.1d). We were able to separate out crosses of 

this type for SNPs at two of our genetic regions (UNC13B and AGA; Figure 7.3). If meiotic drive 

is the cause of decreased heterozygosity, we would expect to see a deviation from 

expectations at one variant that is greater than the overall heterozygosity deviation, and this 

is indeed what is seen for AGA (compare Figure 7.2a to Figure 7.3). Although meiotic drive is 

a plausible explanation for at least part of our findings, we do not favour it as an overall 

explanation, since this kind of selection would be unlikely to vary across management regimes 

and therefore cannot explain the differences we see across contexts. 

Our molecular data included a range of genomic regions, including loci associated with 

immunity (IL17B, DIG12) and cancer (NF2), as well as non-coding regions likely to show only 

neutral variation (AGA, UNC13B) (Table A9.2.2). As most of the SNPs genotyped in our analysis 

are non-coding (Table A9.2.2), it is unlikely that variation at the SNPs we have genotyped is 

directly associated with variation in fitness responses. However, it is plausible that our results 

may be driven by selection at neighbouring or otherwise linked loci. The great consistency 

among SNPs within loci (e.g. Figures 7.2 and 7.3) is suggestive of near complete linkage (or 

identity) disequilibrium within genes, and probably over much larger chromosomal regions. 

This observation is consistent with significant historical bottlenecking inferred from 

population genetic data (Miller et al., 2011; Morris et al., 2013; Brüniche-Olsen et al., 2014), 

and cautions against extrapolating a mechanistic association between our results and the 

inferred function of specific gene regions. 

The genomic regions we sequenced were widely distributed across the devil genome (Table 

A9.2.2), and we found that those regions that showed the strongest effects on offspring 

genotype (i.e. UNC13B [Figure 7.2a], and AGA [Figure 7.3]) were not the same as those that 

showed effects for litter size (i.e. IL17B, DIG12; Figure 7.4). This comparison suggests that 

processes that affect which embryos survive are not closely linked with those that affect litter 

sizes, an inference that is not necessarily inconsistent. One possible explanation is that, once 

neonates are produced, other biological processes have a much greater bearing on the 

number of offspring a female devil can successfully raise (i.e. regardless of their genotype). 

Our results showed a strong effect of maternal age, a trend that supports several other devil 

studies undertaken in various contexts (Gooley et al., 2017; Gooley et al., 2018; Grueber et 

al., 2018a; Farquharson et al., 2017 [Appendix 10]; Farquharson et al., 2018a [Appendix 11]). 
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We observed subtly different patterns across management levels. The result is consistent 

with a hypothesis that selection processes in captivity differ from those in the wild. The next 

question, therefore, is would we predict the patterns we see to negatively affect the diversity 

of the devil IP in coming generations? If our results are indeed a signal of viability selection, it 

may not necessarily mean that population genotypes as a whole are driven by that process 

long term. For example, in a long-term study of Stewart Island robins (Petroica australis 

rakiura), Grueber et al. (2013) showed that chance events, such as which individuals 

successfully breed early after population establishment, can play a major role in the ultimate 

genetic composition of a population several generations later, even if selection is detected. A 

similar pattern was observed for devils introduced to Maria Island, whereby variation in 

breeding success among population founders was a major contributor to the genetic diversity 

of the population several years on (McLennan et al., 2018). Because the propensity to breed 

may constitute a separate evolutionary process from that tested here, it is not easy to 

extrapolate intuitively what the long-term impact of our findings will be on devil IP diversity. 

We cannot rule out the possibility that sequencing bias may have influenced our results. The 

amplicon resequencing dataset that we used contained a lot of missing data (partly as a result 

of the way the data were collected for various projects over several years, and partly a result 

of strict filtering to call variants; see Methods; Wright et al., 2015). However, missing data is 

unlikely to drive our results, as it did not occur systematically across our dataset (Figure 

A9.3.1). Although our filtering strategy was stringent (Wright et al., 2015), there were a small 

number of sequencing mismatches observed between known parents and offspring (these 

were masked from the dataset, see Methods); we cannot determine whether these are 

mutations, or sequencing/genotyping error. Yet, as noted above, we saw a high degree of 

consistency amongst the SNPs within each amplicon (e.g. Figures 7.3 and 7.4), probably due 

to high linkage disequilibrium in the sequenced regions. Given this redundancy, it is unlikely 

that a small number of sequencing errors, even if these systematically affect particular SNPs, 

are driving the overall patterns that we have seen. As newer genotyping technologies become 

commonplace (e.g. reduced-representation sequencing), and the IP progresses, it will be 

interesting to test whether the patterns observed here are upheld when examining different 

types of genomic diversity, such as genome-wide SNPs. In any case, considering the reliance 

of contemporary captive breeding programs on pedigree management and neutral theory, 



131 

 

we believe that our results are sufficient to open a conversation about the potential for 

deviations from neutral expectations to influence the management of genetic diversity of 

captive breeding programs (see also Grueber et al., 2015a). 

As shown in our literature survey (Table A9.2.1), empirical studies of genetic change in captive 

breeding programs in relation to selection are few, but a good number of review and opinion 

papers on this topic indicate that it is a timely issue. Our results suggest that pedigree 

management alone may not be enough to prevent genetic change in captive breeding 

programs (see also Chapter 3). Captive breeding is a valuable strategy in the conservation 

toolkit, and recommended for the preservation of more than 2,000 species worldwide (CPSG, 

2018); some species, such as the California condor (Gymnogyps californianus; Snyder & 

Snyder, 2000) and Kihansi spray toad (Nectophrynoides aspergini; Harding et al., 2016) would 

have been permanently lost were it not for their captive breeding programs. It is therefore 

crucial to identify protocols that will ensure the effective application of this strategy for 

conservation. Our study contributes to a growing belief that the prolonged maintenance of 

species in captivity, i.e. over multiple generations, may result in population change that has 

potential negative consequences during translocations or reintroductions (Christie et al., 

2012; Lacy et al., 2013; Grueber et al., 2017; Willoughby et al., 2017). 

We recommend that researchers working on threatened populations consider whether the 

approach taken here could also be used in their study species to empirically test for selection 

in diverse contexts, using innovative molecular methods. For conservation managers, we 

recommend that potential genetic change be considered during breeding-program 

implementation planning, as our results show that pedigree-based management alone might 

not be enough to prevent all kinds of selection from occurring. If conservation managers have 

reason to believe that selection in captivity could influence a given population, one solution 

would be to bring individuals in for breeding and breed over 1–2 generations before releasing 

them. As the current biodiversity crisis continues to unfold, understanding the drivers of 

selection in human-managed environments will be essential to those species whose survival 

depends on captive breeding programs.  
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Chapter 8: General Discussion 

8.1 SUMMARY OF RESULTS 

In this thesis, I used a data-driven approach to collate information from multiple species, and 

generated high-density molecular data from the Tasmanian devil captive breeding program, 

to make significant discoveries about adaptation to captivity. The findings of my research 

inform captive population management strategies for conservation and reveal key areas of 

future research. 

My main findings were: 

a) Captive-born animals have 42% decreased odds of reproductive success in 

captivity compared to wild-born counterparts, with consistent effects across 

diverse captive environments including aquaculture, conservation and 

laboratory research settings (Chapter 2). 

b) The traits that show greatest sensitivity to captivity are offspring traits, such as 

offspring survival (Chapter 2). 

c) Diverse, long-running conservation breeding programs are experiencing 

generational changes in offspring survival, even under best-practice mean 

kinship management (Chapter 3). 

d) Generational fitness changes in captivity cannot be predicted by taxonomic 

relationships and vary between the sexes (Chapter 3). 

e) Inbreeding depression affects all conservation breeding programs 

investigated, including historically inbred species (Chapter 3). 

f) I have produced a new pipeline for processing high-density SNP markers to 

obtain reliable genotypes for diverse applications in non-model organisms 

with or without a reference genome (Chapter 4). 

g) There is substantial variation in reproductive success among group-housed 

Tasmanian devils, which revealed discrepancies between MULT pedigree 

management and the genetically reconstructed pedigree. The impacts of this 

deviation on genetic management justifies the use of molecular pedigree 

reconstruction in group-housed species (Chapter 5). 
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h) Investigating mate choice in realistic captive settings is complex, and results 

may differ from experimental pairings. In the Tasmanian devil, reproductive 

success could not be predicted by any of the genetic mate-choice hypotheses 

tested. Instead, non-genetic factors, such as age, were the best predictors of 

breeding success (Chapter 6). 

i) Offspring of captive Tasmanian devils showed deviations from expected 

Mendelian ratios given parental genotypes. Early viability selection may vary 

across a gradient of captive management styles, reflecting a possible 

mechanism of adaptation to captivity. Unaccounted early viability selection 

therefore biases offspring genotypes in ways that are not accounted for by 

traditional pedigree-based management (Chapter 7). 

These key discoveries have contributed to the knowledge of adaptation to captivity in 

conservation breeding programs and the applications of molecular data for conservation 

management going forward. 

8.2 ADAPTATION TO CAPTIVITY IN CONSERVATION BREEDING PROGRAMS 

Prior to undertaking the work reported in this thesis, adaptation to captivity had been 

identified as a management priority for conservation breeding programs (Frankham, 2010a). 

Pedigree-based management is targeted towards avoiding neutral change, such as genetic 

drift and inbreeding. Current strategies to minimise adaptive genetic change are based on 

pedigree management theory. Adaptive change was acknowledged as likely to occur, but 

empirical evidence of genetic adaptation was largely limited to model organisms and fish 

species. The extent of change in captivity was largely unknown: both in the diversity of species 

likely to be affected, and the magnitude of any change. 

Identifying patterns in the diversity of species experiencing fitness changes in captivity, and 

quantifying such change, required large multi-species approaches. In Chapter 2, I 

systematically reviewed the literature to collate studies on the effect of birth-origin on 

reproductive success in captivity from diverse taxa, including invertebrates, fish, birds, and 

eutherian and marsupial mammals. The studies identified in Chapter 2 usually had small 

sample sizes and focused on a single species. Considered individually, these articles are 

valuable case studies, but could not provide general trends. By undertaking a quantitative 

synthesis, I estimated the magnitude of fitness changes in captivity and provided the first 
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review of birth-origin differences in captive breeding programs. I found that wild-born 

animals across diverse taxa had consistently higher reproductive success than their captive-

born counterparts in captivity. Quantifying birth-origin differences across various 

reproductive measures revealed that offspring quality and offspring survival traits had the 

largest decrease in captive-born success. Rather than identifying taxa particularly prone to 

birth-origin effects, the data displayed weak phylogenetic signal, indicating that the effects of 

captivity on reproduction were consistent across taxa. 

Captive breeding programs exist for diverse purposes, including food production, research 

and conservation, but their sustainability is threatened if fitness of captive animals is reduced. 

It is important to identify the stage at which fitness changes occur. For example, first 

generation changes may be driven by non-genetic effects such as maternal effects, husbandry 

and nutrition. Fitness changes that continue over multiple generations are more likely to 

represent heritable genetic change. Whether the fitness changes I observed in Chapter 2 were 

due to first-generation changes or multi-generational change could not be ascertained from 

the literature. Basic summary statistics such as the number of captive generations were rarely 

reported in the published works I assessed, meaning that captive-born animals could not be 

broken down by their generation to assess long-term trends in captive breeding. 

To answer the question of first versus subsequent generational change, I obtained large 

studbooks from 15 long-running conservation breeding programs to investigate changes in 

offspring survival across multiple generations of captive breeding (Chapter 3). As in Chapter 

2, phylogenetic signal was low, so the response of different species to captivity was not 

predicted by their evolutionary relationships. Across the dataset, species varied greatly in 

their response to captive breeding, with some species showing increases in offspring survival 

over generations, some no change, and others showing decreases. I disentangled first-

generation from multi-generational effects by modelling a subset of the data, excluding 

offspring with one or both parents wild-born. Sire generation effects remained consistent 

when offspring of wild-born parents were included or excluded. However, dam generation 

effects became slightly negative for F2+ offspring, even for species that had positive slopes in 

the larger dataset. This result suggests that, for some species, dam effects are stronger in the 

first generation. Of the 15 studbooks I analysed, 12 were mammalian species, many of which 

have greater maternal than paternal care. Life-history variation such as differential parental 
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investment may contribute to the strength of maternal or paternal effects (Kokko & Jennions, 

2012). Life-history traits may explain the variable responses of species to captivity, although 

more species would need to be examined to uncover general patterns. For example, life-

history traits such as size, longevity, dispersal and fecundity are better predictors of 

nucleotide diversity than phylogenetic relationships (Romiguier et al., 2014), and so similar 

associations may be predicted for the effects of such traits on species’ genetic responses to 

anthropogenic selection (i.e. captivity). Given the different dam and sire effects observed, my 

results demonstrate that strategies to manage adaptive change should consider sex 

differences. Further, species management teams should investigate factors influencing 

offspring survival as my research has highlighted that there is no consistent pattern across 

species.  

Strategies to minimise adaptation to captivity 

In the Introduction (Chapter 1), I described three strategies recommended to minimise 

adaptation to captivity: population fragmentation; minimising the number of generations in 

captivity; and minimising selection (Frankham, 2008; Williams & Hoffman, 2009). The results 

of my research reveal additional considerations for conservation managers when applying 

these strategies. My findings also reveal conflicts with other strategies to achieve sustainable 

population growth and maintain genetic diversity. 

Population fragmentation  

Fragmenting a large population into smaller subpopulations to retain adaptive potential is 

commonly used in conservation breeding programs, where continental regions are managed 

as separate subpopulations. This strategy risks inbreeding depression if small populations 

remain isolated from one another. In Chapter 3, the pedigree-based inbreeding coefficient of 

the offspring (equivalent to the kinship of the parents) was the strongest predictor of 

offspring survival across the dataset. All species investigated demonstrated inbreeding 

depression for offspring survival, including species that suffer from historical inbreeding such 

as the cheetah, red wolf and Tasmanian devil (Menotti-Raymond & O'Brien, 1993; Hedrick & 

Fredrickson, 2008; Brüniche-Olsen et al., 2014), suggesting no evidence of purging. The effect 

of parental inbreeding was less predictable than that of offspring inbreeding. Chapter 3 

investigated the effects of parental inbreeding on offspring survival specifically; it is plausible 
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that parental inbreeding effects could be more substantial for other traits, as the impact of 

inbreeding can vary across life-history stages (Grueber et al., 2010; Harrisson et al., 2019). My 

findings add to the literature on inbreeding depression in captive breeding programs and 

reiterate the importance of pedigree-based management to minimise kinship and avoid 

inbreeding (Boakes et al., 2007). 

The fragmentation strategy requires movement between subpopulations to prevent 

inbreeding from accumulating. A pedigree-based inbreeding coefficient of approximately f = 

0.2 has been suggested as a threshold for when zoos should exchange animals between 

subpopulations (Frankham et al., 2010). However, this level of inbreeding may be far too high 

to avoid negative consequences. For the species that were most affected by inbreeding in 

Chapter 3 (black-and-white ruffed lemur, red ruffed lemur, Goeldi’s monkey and European 

mink), the guideline of f = 0.2 would see offspring survival severely compromised. On the 

other hand, the slight decrease in offspring survival at f = 0.2 for other species such as the 

cheetah may be an acceptable balance between the needs to minimise inbreeding versus 

adaptation to captivity. Managers should therefore make informed decisions around the level 

of inbreeding accumulation in their species that would necessitate transfers. The empirical 

evidence for the magnitude of inbreeding depression I provided in Chapter 3 will assist 

managers in setting these thresholds. 

Minimising the number of generations in captivity 

Extending the generation length by delaying the age of breeding will minimise the number of 

generations experienced in captivity over time. My findings in Chapter 3 and Chapter 6 inform 

the utility of this strategy. In Chapter 3, older females had reduced offspring survival, 

compared to younger females, across the majority of species in the dataset. Similarly, in the 

Tasmanian devil free-range enclosures, older females had a lower chance of producing 

offspring: the youngest female in an enclosure had the greatest probability of success 

(Chapter 6). Clearly, at least for many mammalian species, the “use it or lose it” risk applies 

for captive-breeding females (Penfold et al., 2014). On the other hand, for males, age was 

positively correlated with reproductive outcomes for multiple species (Chapter 3), including 

the devil (Chapter 6). Strategies to delay the age at breeding should therefore not be 

discounted entirely. For females, delaying the age at breeding presents a high risk, relative to 

the benefit gained from extending the generation length. Extending generation lengths via 
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attempting to breed older females is unlikely to be beneficial on balance. However, for males, 

delaying the age at breeding could both minimise adaptation to captivity and potentially 

improve reproduction. Further investigation, such as by simulating reproduction and 

retention of genetic diversity in populations over time under different strategies, is required 

to quantify the costs and benefits of this approach. 

Minimising selection in captivity 

Both intentional and unintentional selection should be avoided to prevent adaptive change 

in captivity. The minimising mean kinship strategy is the current best-practice method to 

avoid selection, reducing variation between individuals by equalising family sizes. 

Nevertheless, I found evidence of multi-generational fitness changes in many conservation 

breeding programs managed under this strategy in Chapter 3. A limitation of the mean kinship 

strategy is the need for accurate pedigree information (Hammerly et al., 2016). The pedigree 

reconstruction performed for group-housed Tasmanian devils in Chapter 5 demonstrates the 

application of molecular genetic tools to improve pedigree management. Although pedigree 

methods that to attribute fractions of parentage (MULT) in group-housed species are an 

improvement on unknown or guessed parentage (Wang, 2004), the molecular pedigree 

nevertheless revealed large discrepancies. Some individuals, including wild-born animals, 

never bred, while others were prolific breeders. Without molecular parentage assignment, 

this high variability in breeding success would go undetected and limit the efficiency of mean 

kinship management to equalise family sizes and minimise adaptation to captivity. I therefore 

recommend that molecular parentage tools are applied to captive management of group-

housed species, particularly for those species with polygamous mating structures and in 

groups containing wild-born animals. Molecular genetic approaches are often perceived as 

high-cost, but were found to be cost-effective for management of genetic diversity in 

Tasmanian devils held in free-range enclosures compared to the alternative, pedigree-only 

approach (Chapter 5). 

Unintentional selection can be minimised by providing wild-like captive environments, such 

as group-housing animals to promote natural behaviours, e.g. mate choice. Conversely, group 

housing could accelerate adaptation to captivity if there is high reproductive skew, as family 

equalisation is much more difficult to achieve. In Chapter 6, I explored genetic and non-

genetic factors contributing to reproductive skew (identified in Chapter 5) in group-housed 
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Tasmanian devils. Non-genetic factors such as age and weight had the strongest effects, with 

no clear evidence of mate choice for heterozygous mates, genetically dissimilar mates, or 

mates of an optimum dissimilarity. Reproductive success was not predicted by either 

genome-wide diversity, nor diversity at MHC-linked microsatellites. This may seem surprising 

given the large body of evidence of a genetic basis for mate choice across diverse species 

(Kamiya et al., 2014). However, it is important to note that most mate choice studies are 

experimental and are performed as pairing trials. My study instead reflects a realistic captive 

management setting, in which multiple males and females are housed together. Given 

competition between potential mates, any genetic influences may be weak in comparison to 

non-genetic effects, at least for devils. While it is clear that there is great variation in breeding 

success among group-housed devils, a genetic basis for this skew could not be identified with 

RRS nor MHC-linked data. These results suggest that high reproductive skew could promote 

adaptation to captivity, but realistic settings may limit the ability to identify the mechanism 

of any change. Molecular pedigree reconstruction will assist managers to identify 

reproductive skew so that underrepresented individuals can be targeted for breeding in order 

to avoid this unintentional selection. Traditional pedigree-based methods are also unable to 

detect early viability selection or differences in genomic relatedness (as two siblings will not 

necessarily share all alleles as identical by descent, whereas pedigree methods only provide 

a point estimate of the relationship). In Chapter 7, I identified deviations from Mendelian 

inheritance across a gradient of captive management in devils. The results of this latter study 

underscore the importance of monitoring genetic change in captivity: even when pedigrees 

are entirely known and accurate, they fail to account for selection for or against specific 

genotypes in the offspring.  

8.3 AREAS FOR FURTHER RESEARCH 

In this thesis, I have advanced knowledge of adaptation to captivity. Importantly, my work 

has addressed fitness changes in conservation settings rather than in model systems. 

However, there is still more work needed to understand the mechanisms and consequences 

of adaptive change. Building on the findings of this thesis, and with knowledge of recent 

advances in data management and genomics, I have identified three areas of further research 

that are now testable in conservation contexts: 

1. Are phenotypic changes heritable? 
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2. What genes are involved in heritable or epigenetic changes? 

3. What are the consequences of fitness changes in captivity for reintroductions? 

Heritability analysis 

Management strategies to minimise genetic adaptation to captivity are underpinned by the 

assumption of heritable adaptive change, but the heritability of fitness traits is rarely 

examined in captive settings. Heritability analysis combines pedigree information and 

phenotypic observations to estimate the genetic and non-genetic components of a trait of 

interest. A number of applications of heritability analysis have been identified as relevant to 

the investigation of adaptation to captivity (Pelletier et al., 2009; Courtney Jones & Byrne, 

2017). For example, quantifying additive genetic variance and phenotypic variance could 

allow comparisons of heritability across a gradient of captive management intensity. 

Heritability estimation could also be applied to investigate temporal trends in breeding 

values, and to estimate the relative strength of genetic drift and selection on divergent 

captive and wild populations (Pelletier et al., 2009). Although the concept of heritability 

analysis in conservation is not new (Storfer, 1996), it has been poorly applied due to the 

limitations of pedigrees. Using studbook information alone, heritability analysis could be 

performed for offspring survival, but few other traits could be examined without additional 

phenotypic information. For example, in the captive Cuvier’s gazelle (Gazella cuvieri), 

studbook data was used to estimate a moderate heritability of juvenile survival and 

demonstrate that survival has been selected for over time (Ibáñez et al., 2014). Pedigree-free 

heritability estimations are also possible using molecular estimates of relatedness (Frentiu et 

al., 2008), so could be applied to semi-natural or group-housed captive populations where 

pedigree records may be lacking. 

In the time spent undertaking my research, the Zoological Information Management System 

(ZIMS) was released (Species 360, 2018). ZIMS presents new opportunities for research into 

threatened species in captive settings by collating studbook data with detailed husbandry 

observations. It is now possible to apply heritability estimation methods to many important 

traits including health parameters, behavioural traits, and other aspects of reproductive 

success such as mating success that are not captured by studbook data alone. Heritability 

estimation is an achievable goal in a conservation context, as analysis can be performed 

retrospectively given accurate pedigrees and standardised recording of phenotypic traits, so 
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does not require experimental manipulation of the study population (Princée, 2016). The 

results of such research would allow managers to identify the types of traits most likely to be 

under selection in captivity and ensure that these traits are not being artificially selected for 

or against over generations.  

Molecular methods to detect adaptive change 

Only molecular methods can reveal potential drivers of adaptive change that are otherwise 

overlooked by pedigrees. Deviations from expected offspring genotype ratios in devils 

(Chapter 7) suggest that undetected early viability selection is a promising area of further 

research. Of particular importance is understanding which genes show deviations, i.e. which 

genes are involved in short-term adaptive change? Reduced representation sequencing 

approaches have proven useful for examining population structure (Chapter 4), 

reconstructing pedigrees (Chapter 5), and estimating genome-wide diversity metrics (Chapter 

6). However, RRS approaches are unlikely to provide the marker density required for 

functional genomics studies as SNPs do not necessarily fall in coding regions (Wright et al., in 

prep; Appendix 12). In Chapter 7, I used an amplicon-based SNP typing method that targeted 

putatively neutral and immune regions of interest (Wright et al., 2015). Going forward, 

investigating adaptive change will benefit from the use of genomic data. A reference genome 

provides the basis of functional genomics studies by providing the tool to identify candidate 

genes of interest (as for devil; e.g. Grueber et al., 2015b). Large genome consortia that aim to 

sequence representative species across the tree of life, such as the Earth BioGenome Project 

(Lewin et al., 2018), are driving the development of genomic resources for wildlife species. If 

a species of interest does not have a reference genome, genomes of closely related species 

may be used (Galla et al., 2018). For example, regions of genetic divergence in captive 

endangered Leon Springs pupfish (Cyprinodon bovinus) have been identified by aligning to the 

sheepshead pupfish (C. variegatus) genome and inferring functions by annotated orthologues 

in model species (Black et al., 2017). 

Gene ontology enrichment tests can also be used to examine patterns of adaptive 

differentiation when combined with observations (e.g. reproductive success) by identifying 

associated candidate genes. Physiological pathways that may be of interest to investigate in 

a captive breeding context include those implicated in reproduction, behaviour and stress 

responses. Whole genome resequencing of individuals across numerous captive generations 
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can then be used to identify regions of adaptive change. Another method that has been 

applied in captive fish is transcriptomics (Christie et al., 2016). Differential gene expression 

identified by transcriptome analysis may indicate physiological pathways under selection. 

Together with experimental work in non-model organisms, these approaches can be used to 

disentangle epigenetic transgenerational change from heritable adaptive change (Hales et al., 

2017). By identifying pathways of adaptive change, management programs can be adjusted 

to minimise unnatural selective pressures. 

Do fitness changes persist in the wild? 

The ultimate goal of halting evolution in captivity (Lacy, 2009) is unlikely to be achievable in 

its entirety. I have shown that fitness changes in captivity do occur in diverse species (Chapter 

2), and that generational fitness changes are affecting many captive breeding programs 

managed even under best-practice mean-kinship management (Chapter 3). Some individuals 

have much greater reproductive success than others (Chapter 5), and particular genotypes 

may be favoured by selection in captivity (Chapter 7). Captive managers already accept that 

neutral change will occur in small captive populations and manage populations accordingly to 

minimise such change but should also acknowledge that some level of adaptive change is 

likely to occur. However, it is important to note that genetic changes in captivity are only a 

concern to the extent that they decrease the long-term sustainability of captive breeding 

programs, reintroduction success, or the viability of wild populations. This thesis has focused 

on changes occurring within captive settings - an important next step is to therefore assess 

the impact of such change on fitness upon reintroduction to the wild. My systematic review 

in Chapter 2 was targeted towards birth-origin effects in captivity, but also identified a 

number of studies investigating birth-origin effects in the wild. A systematic review examining 

wild contexts would be a useful starting point to quantify fitness costs of captive breeding. 

For example, are reintroduced captive-born populations plastic in their ability to recover wild 

fitness? Adaptive changes that become fixed and are deleterious in the wild are detrimental 

not just to the captive-born individual, but could place wild populations at risk (Araki et al., 

2009). Long-term monitoring of reintroduction efforts, over multiple generations, will allow 

researchers to determine the long-term impacts of captive breeding. Molecular genetic 

approaches may also assist in reintroduction monitoring by identifying parentage and 

determining whether captive-born animals are successfully reproducing (Attard et al., 2016). 
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Captive managers should continue to employ strategies such as maximising effective 

population size to retain adaptive potential. 

8.4 CONSERVATION MANAGEMENT RECOMMENDATIONS 

One of the rewarding aspects of this thesis has been the involvement of the international zoo 

community in providing studbook data for my research, for which I am very grateful. The 

provision of this data has been vital to address knowledge gaps in generational fitness 

changes in conservation settings. The willingness of the zoo community to address 

challenging issues such as adaptation to captivity reflects the genuine commitment of 

conservation managers to improve outcomes for threatened species and ensure the long-

term sustainability of captive breeding. Some recommendations for conservation managers 

include: 

a) Continue pedigree-based management strategies to avoid inbreeding 

depression, specifically by minimising the kinship of pairings. 

b) Revise current population-level strategies for minimising adaptation to 

captivity to consider sex differences in both the responses to captive breeding 

over generations and reproductive biology limitations such as age effects. 

c) Report basic characteristics of captive study populations, such as generations 

in captivity, in publications to ensure that data can be used for synthesis 

approaches to investigate broad patterns and inform future management. 

d) Apply molecular genetic techniques to group-housed populations to detect 

variation in reproductive success and ensure that expected contributions of 

wild-born animals are realised. The pipeline I developed in Chapter 4 can be 

used to undertake parentage analysis in a wide variety of species, as it can be 

used on various types of SNP data including RADseq, ddRAD, DArTseq and GBS 

data and for species with or without a reference genome. By reducing the error 

rate and improving the reliability of SNPs, this pipeline is of great use for the 

field of conservation genetics. 

e) Managers implementing mate choice strategies should consider fitness 

benefits in conjunction with possible trade-offs for genetic diversity and 

adaptive change if high reproductive skew occurs. 
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f) Population management software should account for generational changes in 

fitness (see below). 

The pedigree-based software PMx calculates the number of breeding pairs required to meet 

a target population size given historical average breeding success and mortality rate (Lacy et 

al., 2012). Chapter 3 showed that these reproductive metrics are not necessarily constant 

across the length of a captive breeding program. PMx will overestimate the number of 

breeding pairs required if, for example, offspring survival increases over generations. 

Overestimates may lead to excess production of offspring in zoos that are limited by finite 

capacity and resources (Asa, 2016). Alternatively, if offspring survival decreases over 

generations, PMx will underestimate the number of pairs required. Underestimates threaten 

the long-term sustainability of the captive population. Methods to adjust for biological 

parameters such as age have been developed for reproductive viability analysis (RVA) 

(Bauman et al., 2019), which could be expanded to include generation. Given the fitness 

changes I observed over generations, independent of year or inbreeding, I recommend that 

an algorithm to adjust probabilities of breeding success and offspring survival is implemented 

into PMx. Accounting for the captive generation of each parent by simple linear regression, 

or a non-linear model that separates changes in the first generation of captive breeding from 

F2+ generations, will give more precise predicted probabilities. Given that my results revealed 

differences between sire and dam effects, separate models should be implemented for each 

sex. Accounting for generational fitness changes will assist captive managers in meeting 

target demographic goals but is of course a short-term solution that does not address 

underlying causes of such fitness changes. 

My findings from the Tasmanian devil free-range enclosures have already been shared with 

the Save the Tasmanian Devil Program (STDP), who have used the results to improve breeding 

success and better manage genetic diversity. For example, the reconstructed pedigree in 

Chapter 5 was used to identify under-represented individuals to prioritise them for future 

breeding events. Some of the devils born in free-range enclosures were subsequently 

released to Maria Island, in an assisted colonisation of an island where devils had never 

previously existed. Identifying relationships down to half-siblings has informed management 

of the genetic diversity of the Maria Island by establishing the relationships between these 

‘founders’ of the Maria population. Since undertaking the analysis in Chapter 5, I have 
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continued to reconstruct the pedigree for the 2018 breeding season. These results were used 

by the STDP to select devils to release to wild mainland Tasmanian sites in order to provide a 

demographic and genetic boost to small populations. My findings in Chapter 6 of non-genetic 

factors affecting breeding success have also helped the STDP to improve predictions of which 

individuals are likely to breed in free-range enclosures. 

8.5 CONCLUSION 

The work presented in this thesis has expanded our understanding of adaptation to captivity 

in threatened, non-model species. Although the concept of adaptation to captivity is not new, 

I believe it is an emerging area of research for conservation as the molecular tools needed to 

identify adaptive change continue to advance. In this thesis, I have shown how various data 

types, including large multi-species datasets and high-density molecular markers, can be used 

to investigate adaptation to captivity in populations managed for conservation purposes. I 

have discovered that, while the effects of inbreeding, sex and age are remarkably consistent 

across vertebrate species, taxonomy cannot necessarily predict the pattern of generational 

change in conservation breeding programs. I have revealed two important mechanisms of 

adaptive change: between-individual variation in reproductive success, and undetected early 

viability selection.  

The development of a pipeline to improve the reliability of SNPs will advance the use of 

molecular genetic applications in threatened species. This pipeline is already being applied to 

captive and wild Tasmanian devil populations as well as other threatened and non-threatened 

species by not only members of our lab group, but other research groups and government 

geneticists. The current extinction crisis has driven the dependence of increasing numbers 

and diversity of species on ex situ management, so the importance of considering adaptive 

change in captivity cannot be understated.   
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Appendix 1: Supplementary Material to Chapter 2 

 

This appendix relates to Chapter 2: A meta-analysis of birth origin effects on reproduction in 

diverse captive environments. 

A1.1 SUPPLEMENTARY NOTE 1: PUBLICATION BIAS 

In testing for possible sources of publication bias in our dataset, we observed that the 

relationship between year of publication and effect size was not statistically significant 

(posterior mode slope estimate = -0.015, 95% HPD CI: [-0.05, 0.03], Figure A1.3.1a). This 

suggests no evidence of time-lag bias, such as may occur if studies with larger, significant 

effect sizes are published and dominate the literature before insignificant results, which may 

take longer to publish, appear (Higgins & Green, 2011). Egger’s regression testing for the 

symmetry of the funnel plot of the meta-analytic residuals from the overall model against 

their precision indicated statistically significant asymmetry (t115 = -0.825, P = 0.0077, Figure 

A1.3.1b). While funnel plot asymmetry is used to identify publication bias, it can also be the 

result of true heterogeneity or chance (Higgins & Green, 2011). Our dataset was characterised 

by high total heterogeneity (I2total = 94%), and high heterogeneity between studies (I2study = 

70%), so it is plausible that the funnel plot asymmetry is not reflective of publication bias. Any 

difference in reproductive success between wild-born and captive-born animals is likely to be 

of interest to captive managers. Trim-and-fill analysis estimated two effect sizes missing from 

the right-hand side of the right side of the distribution, however this was not statistically 

significant (P = 0.125), and the estimated adjustment was small (lnOR = 0.038) and does not 

qualitatively influence our results.  

We observed an outlier in our dataset (Murugan et al., 2013), with an effect size of lnOR = -

9.8 (Figure A1.3.1c). As such, we re-ran all of the above models excluding this data point. All 

model results were qualitatively similar, and the Egger’s regression still identified funnel plot 

asymmetry (t114 = -1.06, P = 0.002). However, the trim-and-fill analysis estimated no missing 

effect sizes. Overall therefore, it is unlikely that publication bias is driving our main results.  
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A1.2 SUPPLEMENTARY NOTE 2: MULTIPLE IMPUTATION 

We observed a strong linear correlation between the absolute mean of an estimate and its 

standard deviation on the natural log scale, as expected under Taylor’s Law (Taylor, 1961) 

(Figure A1.3.4). To recover missing standard deviations for 17 comparisons, we performed 20 

imputations of missing log standard deviations using the ‘mice’ package in R (van Buuren & 

Groothuis-Oudshoorn, 2011) and exponentiated the resulting values to calculate effect sizes. 

These additional 17 comparisons were added to the 115 comparisons in the main dataset, 

resulting in a total of 132 comparisons, and all meta-analyses re-run. We pooled the posterior 

estimates from each of the 20 imputations to obtain the posterior mode, and 95% HPD CIs 

were calculated on the pooled data using the ‘hdi’ function in the ‘HDInterval’ package 

(Meredith & Kruschke, 2016). An additional four species and four papers that were not 

included in the main analysis were included by imputation, resulting in 48 species and 43 

papers in total. The four additional species (cynomolgus macaque Macaca fascicularis, 

cheetah Acinonyx jubatus, American lobster Homarus americanus, and oval squid 

Sepioteuthis lessoniana) included using multiple imputation were distributed across the 

taxonomic tree represented by the main analysis. The imputed comparisons covered 

aquaculture, conservation and research environments, and four of the five reproductive trait 

categories (all except offspring survival) (Table A1.4.4). 

All estimated effects were of similar magnitude to the main analysis for all models (Table 

A1.4.4). Statistical significance of the overall result, the effects from the model fitted with the 

‘captive environment’ moderator, and the offspring quality and offspring survival traits 

remained the same as our main analysis. The estimated effects were in the same direction as 

the original analysis, with the exception of reproductive phenology, which became positive 

but remained close to zero and not statistically significant (lnOR = 0.14 [imputed] vs. -0.04 

[main analysis]). However, the effects based on imputation were estimated with poorer 

precision than in the main analysis, as evident from the widened 95% HPD CIs for each result 

(Table A1.4.4).  

We also considered whether it was possible to impute missing sample sizes, although the 

relationship between means and samples sizes was less clear than the relationship between 

mean and standard deviation (Figure A1.3.4). Imputing sample size provided a further 24 

comparisons to the 132 noted above (total N = 156). The posterior mode estimates were again 
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similar and in the same direction as the original analysis, and uncertainty in the estimates did 

not improve with the inclusion of these additional values (data not shown). Nevertheless, 

because the estimated effects were similar across our datasets, we do not believe that our 

overall conclusions are biased by missing data. 
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A1.3 SUPPLEMENTARY FIGURES 

 

Figure A1.3.1: Tests for publication bias.  
(a) Relationship between effect size (log odds ratio) and year of publication (indicated by solid 

line), to examine evidence of time-lag bias. Dashed line shows meta-analytic mean from the 

overall non-phylogenetic model. Point size is proportional to the variance of the effect size. 

(b) Funnel plot of meta-analytic residuals extracted from the overall non-phylogenetic model 

plotted against their precision (1/variance)1/2, with the dashed line at 0. (c) Funnel plot of 

effect sizes (log odds ratios) plotted against their precision, with solid line showing meta-

analytic mean.  
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Figure A1.3.2: PRISMA flowchart of the overall literature filtering strategy. 
N refers to the number of papers included at each stage of filtering. Shaded boxes represent 

the papers under consideration for inclusion in the systematic review and meta-analysis at 

each stage of filtering. a – f are the categories of comparison type, referred to in Chapter 2 

Methods. (WB = wild-born, CB = captive-born, ppn = population). PRISMA guidelines from 

Moher et al. (2009). 
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Figure A1.3.3: Filtering strategy with reasons for excluding comparisons and therefore 
papers from the analysis. 
N = number of comparisons. 
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Figure A1.3.4: Mean, standard deviation, and sample size correlations. 
Relationships between the mean and standard deviation (sd) or sample size (N) of wild-born 

and captive-born continuous comparisons (N = 67) on the natural log scale. Relationships 

between the log standard deviation and log mean of (a) wild-born and (b) captive-born 

continuous comparisons. Relationships between log sample size and log mean of (c) wild-born 

and (d) captive-born continuous comparisons.  
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A1.4 SUPPLEMENTARY TABLES 

Table A1.4.1: Heterogeneity statistics. 
Extended heterogeneity (I2) statistics for the overall non-phylogenetic model and the overall 

model + phylogeny. 

  

 Heterogeneity (%) 

 Total Phylogeny Study ID Residual variance 

Overall model 93.736 - 70.185 19.332 

Overall model + phylogeny  94.339 0.290 67.307 24.235 
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Table A1.4.2: Reproductive trait type categories. 
Assignment of captive-born to wild-born comparisons (as defined by original authors of 

publications) to reproductive trait type categories used in the meta-analyses, and direction of 

each effect on overall reproductive success. Positive effect (+) results in increased overall 

reproductive success, negative effect (-) results in decreased reproductive success. N is 

number of comparisons within each trait type category (total N = 115). 

  

Trait type Comparisons Direction 

of effect 

N 

Fertility/ 

hatchability 

Fertility (of the egg, clutch, or spawn; across years; live born 

offspring/female/reproductive year) 

+ 8 

Proportion of successful hatching (out of total incubated eggs, 

fertile eggs, clutch, or spawning; across years) 

+ 6 

Reproductive success (i.e. binary statistic indicating producing at 

least one offspring for males, females, or pairs, or of these within a 

given time frame from pairing e.g. 6 months) 

+ 13 

Proportion of population with reproductive abnormalities (e.g. 

pathological lesions of reproductive tract) 

- 1 

% normal sperm (visually) or % reactive sperm (undergo changes 

when in contact with egg) 

+ 2 

Reproductive 

yield 

Number of litters per pair + 1 

Number of offspring (e.g. per female; or per individual in given 

time frame) 

+ 12 

Clutch/litter size (of 1st/2nd/3rd/4th litter; or litter size at weaning) + 12 

Number of offspring surviving to a given time point (e.g. 5 years) 

per female per year  

+ 2 

Number of offspring produced per gram of body weight of female + 1 

Offspring 

quality 

Proportion of offspring birth abnormalities (e.g. chondrodystrophy) - 1 

Egg morphometric traits (e.g. mass, volume) + 2 

Offspring size (hatch weight or length; body weight at weaning) + 5 

Offspring 

survival 

Mortality rate (of embryos, neonates, or infants; also described as 

prenatal, perinatal or postnatal mortality) 

- 8 

Juvenile mortality rate at a given time point (e.g. 1 week, 2 weeks, 

6 months) 

- 11 

Juvenile survival (to a given time point or developmental stage) + 5 

Incidence of cannibalism/abandonment of young by parent - 3 

Proportion of young successfully reared (live offspring out of total) + 3 

Stillbirth/abortion rate - 3 

Reproductive 

phenology 

Breeding interval (between pairing and first litter; interbirth or 

spawning interval) 

- 7 

Rate of production of offspring (spawning rate) + 3 

Mating rate (e.g. matings per female per month) + 2 

 Age at first parturition - 4 
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Table A1.4.3: Generation (F) of the captive-born population compared to the wild-born 
population. 
Generation as specified within the study grouped for each study environment category. Data 

are the number of comparisons/effect sizes within each group. 

 
 
 

Table A1.4.4: Meta-analytic effect size estimates of differences in reproductive success 
between wild-born and captive-born animals in captive environments with imputed data. 
Effect size estimates for the dataset include the original comparisons (N = 115) and the 

additional imputed comparisons (N = 17). Posterior mode gives the meta-analytic log odds 

ratio (lnOR) estimate from the MCMCglmm models, with lower and upper 95% higher 

posterior density credible intervals given. Estimates with the 95% HPD CI excluding zero are 

marked with *.  

  

 Aquaculture Conservation Research Other Total 

No generation specified 7 47 25 1 80 

F1 12 0 5 0 17 

F1-F2 1 0 8 0 9 

F1-F3 3 2 1 0 6 

F1-F4 0 2 1 0 3 

Total 23 51 40 1 115 

 Posterior mode 

(lnOR) 

Lower 95% HPD 

CI 

Upper 95% HPD 

CI 

N 

Overall model* -0.67 -1.83 -0.04 132 

Overall model + phylogeny -0.96 -2.85 0.42 132 

Captive environment 

       Aquaculture* 

       Conservation 

       Research 

       Other 

 

-1.70 

-0.11 

-0.78 

2.00 

 

-3.78 

-1.38 

-2.97 

-3.50 

 

-0.18 

1.24 

0.17 

7.04 

 

25 

59 

47 

1 

 

Trait type 

       Fertility & hatchability 

       Reproductive yield 

       Offspring quality* 

       Offspring survival* 

       Reproductive phenology 

 

-0.92 

-0.84 

-1.59 

-1.21 

0.14 

 

-2.23 

-1.95 

-3.27 

-2.49 

-1.10 

 

0.03 

0.13 

-0.32 

-0.29 

1.04 

 

31 

38 

8 

33 

22 
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Table A1.4.5: Excluded studies. 
Publications comparing reproductive traits in wild-born and captive-born animals in captive 

environments excluded from main analysis and reasons for their exclusion. See Chapter 2 

Methods for details of inclusion/exclusion criteria. Note that comparing captive-born and 

wild-born animals may not have been the primary aim of some studies with missing data. 

  

Publication Species Reason(s) for exclusion 

Clubb et al., 2008  African elephant, 

Loxodonta africana, Asian 

elephant,  

Elephas maximus 

Missing data (analysis of juvenile mortality not 

conducive to calculation of effect sizes) 

Curry et al., 2015 Polar bear, Ursus 

maritimus 

Comparison biased by opportunity to breed (e.g. 

total lifetime number of litters produced) 

Direction of effect on productivity can’t be 

characterized for day of parturition or offspring 

sex ratio 

Missing data (no raw data or only P-values 

reported for litter size, incidence of stillbirths, 

neonatal mortality, juvenile survival and inter-

birth interval) 

Gupta, 1994  Round Island gecko, 

Phelsuma guentheri 
Direction of effect cannot be characterized for 

age-specific fecundity 

Ikeda et al., 2009 Oval squid, Sepioteuthis 

lessoniana 

Missing data (no error or sample size reported 

for age at first spawning or number of egg 

cases/female) 

Keeley et al., 2012 Tasmanian devil, 

Sarcophilus harrisii 

Data are encompassed in a more recent and 

larger sample size study [Hogg et al. (2015)] 

Kirkland & Linzey, 

1973 

Deer mouse, Peromyscus 

maniculatus 

Missing data (no error or sample size reported 

for litter size) 

Levallois & de 

Marigny, 2015 

Cynomolgus macaque, 

Macaca fascicularis 

Missing data (no error reported for inter-birth 

interval, no sample size reported for neonatal 

mortality, stillbirth incidence or proportional 

birth rate) 

Mace, 1988 Western lowland gorilla, 

Gorilla gorilla 

Comparison biased by opportunity to breed (e.g. 

total offspring produced per male/female) 
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Publication Species Reason(s) for exclusion 

Mar, 2013 Asian elephant, Elephas 
maximus 

Direction of effect cannot be characterized for 

age-specific fecundity or offspring sex ratio 

Missing data (analysis of interbirth interval not 

conducive to effect size calculation) 

Marker-Kraus, 

1997 

Cheetah, Acinonyx 

jubatus 

Missing data (no error or sample size for age at 

first or last parturition for males and females) 

Comparison biased by opportunity to breed (e.g. 

total number of litters and total number of 

offspring produced in a lifetime) 

Meng et al., 2003 Alpine musk deer, 

Moschus sifanicus 

Direction of effect cannot be characterized for 

mating date 

Mooney & Lee, 

1999 

Woolly monkey, Lagothrix 

lagotricha 

Missing data (only P-value reported for infant 

mortality, analysis of age at first birth and 

interbirth interval not conducive to effect size 

calculation) 

Biased measures of reproductive success (e.g. 

number of population having more than one 

reproductive event is biased by opportunity to 

breed) 

Rasweiler & 

Badwaik, 1997 

Short-tailed fruit bat, 

Carollia perspicillata 

Direction of effect cannot be characterized for 

gestation length 

Stuermer et al., 
2003 

Mongolian gerbil, 

Meriones unguiculatus 

Missing data (no error or sample size reported 

for litter size) 

Talbot et al., 1984 American lobster, 

Homarus americanus 

Comparison biased by opportunity to breed (e.g. 

total egg production and total number of eggs 

attached) 

Missing data (no error reported for number of 

eggs extruded/female or number of eggs 

attached/female) 

Vermeer & 

Devreese, 2015 

Western lowland gorilla, 

Gorilla gorilla 

Missing data (only P-value reported for infant 

mortality) 

Direction of effect cannot be characterized for 

offspring sex ratio 

Yu, 2004 Golden monkey, 

Rhinopithecus roxellanae 

Missing data (no sample size reported for 

reproductive rate) 
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Appendix 2: Supplementary Dataset to Chapter 2 

 

This appendix relates the Chapter 2: A meta-analysis of birth origin effects on reproduction in 

diverse captive environments. 

An Excel file containing the data extracted and used for the meta-analysis is available at: 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-018-03500-

9/MediaObjects/41467_2018_3500_MOESM4_ESM.xlsx 

The first sheet contains the main dataset: data extracted from the 39 studies (115 

comparisons), comprising 33 columns and 115 rows. The second sheet contains data 

extracted from the additional 41 comparisons with missing data that could be recovered by 

multiple imputation, comprising 33 columns and 41 rows. Metadata describing the column 

headings is provided on the following page. Not all columns were collected for each row. 

  



211 

 

Column name Description 

ES.ID Unique identifier for each effect size 

ID Unique identifier for each publication 

First.author First author of publication 

Year Year of publication 

Journal Journal of publication 

Species Common name of species 

Scientific.name Scientific name of species 

Major.taxon Major taxon grouping of species 

Captive.environment Captive environment of study (aquaculture, research, conservation or other) 

Generation Generation (F) of captive-breeding of the captive-born population. (No = not 

specified) 

Reproductive. 

measurement 

Reproductive trait measured between captive-born and wild-born animals in 

captivity 

Direction Expected direction of the effect of the reproductive trait measured on 

overall productivity (+ = increase in trait increases productivity) 

Trait Type of reproductive trait measured (1 = fertility/hatchability, 2 = 

reproductive yield, 3 = offspring quality, 4 = offspring survival, 5 = 

reproductive phenology) 

WB.Percentage Percentage of wild-born animals experiencing reproductive trait (where 

reported) 

WB.n1 Number of wild-born animals out of total (calculated from percentage) with 

reported trait 

WB.n2 Number of wild-born animals out of total (reported, or rounded from 

WB.n1) 

WB.success Number of wild-born animals experiencing reproductive trait in positive 

direction of productivity 

WB.failure Number of wild-born animals experiencing reproductive trait in negative 

direction of effect on productivity 

WB.N Total number of wild-born animals 

CB.Percentage Percentage of captive-born animals experiencing reproductive trait (where 

reported) 

CB.n1 Number of captive-born animals out of total (calculated from percentage) 

with reported trait 

CB.n2 Number of captive-born animals out of total (reported, or rounded from 

CB.n1) 

CB.success Number of captive-born animals experiencing reproductive trait in positive 

direction of productivity 

CB.failure Number of captive-born animals experiencing reproductive trait in negative 

direction of effect on productivity 

CB.N Total number of captive-born animals 

WB.Mean Mean of wild-born animals experiencing reproductive trait 

WB.C.Mean WB.Mean corrected for direction of effect on productivity (multiplied by -1 if 

trait has negative effect on productivity) 

WB.SD Standard deviation (wild-born) 

WB.SEM Standard error of the mean (wild-born) 

CB.Mean Mean of captive-born animals experiencing reproductive trait 

CB.C.Mean CB.Mean corrected for direction of effect on productivity (multiplied by -1 if 

trait has negative effect on productivity) 

CB.SD Standard deviation (captive-born) 

CB.SEM Standard error of the mean (captive-born) 
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Appendix 3: Supplementary Code to Chapter 2 

 

This appendix relates to Chapter 2: A meta-analysis of birth origin effects on reproduction in 

diverse captive environments. 

The following R code was used to perform the meta-analysis in Chapter 2. The code is 

annotated with the # symbol. 

########################################################################### 
# Annotated code for Farquharson, Hogg, Grueber "A meta-analysis of birth-
origin effects on reproduction in diverse captive environments" 
# This code written by Katherine Farquharson, The University of Sydney, 
2017 
# Some code adapted from: 
# Winter (2013) rotl tutorial:  
# https://cran.r-project.org/web/packages/rotl/vignettes/data_mashups.html 
# Moatt et al. (2016):  
# http://dx.doi.org/10.5061/dryad.3fc02 
# Kamiya et al. (2014):  
#https://datadryad.org/bitstream/handle/10255/dryad.71107/R%20code.R?sequen
ce=1 
########################################################################### 
 
rm(list=ls()) 
##Load packages 
library(rotl) 
library(Hmisc) 
library(MCMCglmm) 
library(metafor) 
library(ape) 
library(mice) 
library(lattice) 
library(HDInterval) 
 
############################ 
## Calculate effect sizes ## 
############################ 
es <- read.csv('data file.csv') 
#use log odds ratio as effect size (with captive-born input as control, 
wild-born as treatment) 
 
#two kinds of data - continuous (mean, sd/SEM & N), and proportional (n/N) 
#for proportional data 
es.proportional <- subset(es, (!is.na(es$WB.n1))) 
lnor.proportional <- escalc(measure="OR", ai=es.proportional$CB.success, 
bi=es.proportional$CB.failure,  
                            ci=es.proportional$WB.success, 
di=es.proportional$WB.failure,  
                            n1i=es.proportional$CB.N, 
n2i=es.proportional$WB.N, vtype='UB', add=0.5,  
                            to = 'only0', drop00=FALSE) 
es.proportional$yi <- lnor.proportional$yi 
es.proportional$vi <- lnor.proportional$vi 
 
#for continuous data 
es.continuous <- subset(es, (!is.na(es$WB.Mean))) 
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colnames(es.continuous) 
lnor.continuous <- escalc(measure='D2ORN', m1i=es.continuous$CB.C.Mean, 
m2i=es.continuous$WB.C.Mean, 
                          sd1i=es.continuous$CB.SD, 
sd2i=es.continuous$WB.SD, n1i=es.continuous$CB.N,  
                          n2i=es.continuous$WB.N, vtype='UB') 
es.continuous$yi <- lnor.continuous$yi 
es.continuous$vi <- lnor.continuous$vi 
es <- rbind(es.proportional, es.continuous) 
 
############################# 
##Create phylogenetic tree ## 
############################# 
es$Scientific.name 
es$Scientific.name <- as.character(es$Scientific.name) 
 
#change species names in es to match those of rotl tree 
es$Scientific.name[es$Scientific.name == "Cersus eldi thamin"] <- "Rucervus 
eldii" 
es$Scientific.name[es$Scientific.name == "Choreopsis liberiensis"] <- 
"Hexaprotodon liberiensis" 
es$Scientific.name[es$Scientific.name == "Clethrionymus glareolus"] <- 
"Myodes glareolus" 
es$Scientific.name[es$Scientific.name == "Equus burchelli"] <- "Equus 
burchelii" 
es$Scientific.name[es$Scientific.name == "Fenneropenaeus merguiensis"] <- 
"Penaeus merguiensis" 
es$Scientific.name[es$Scientific.name == "Gorilla gorilla gorilla"] <- 
"Gorilla gorilla" 
es$Scientific.name[es$Scientific.name == "Pan troglodytes"] <- "Pan 
troglodytes troglodytes" 
es$Scientific.name[es$Scientific.name == "Saguinus fuscicollis illigeri"] 
<- "Saguinus fuscicollis" 
es$Scientific.name[es$Scientific.name == "Eulemur mongoz, formerly Lemur 
mongoz "] <- "Eulemur mongoz" 
species <- unique(es$Scientific.name) 
species <- as.data.frame(species) 
 
species[,1] <- as.character(species[,1]) 
#Add outgroup (box jellyfish) to root tree 
outgroup <- 'Chironex fleckeri'  
species[45,1] <- outgroup 
 
taxa <- tnrs_match_names(names=species[,1], context_name = "All life") 
tr <- tol_induced_subtree(taxa$ott_id) 
taxon_map <- structure(taxa$search_string, 
names=as.character(taxa$unique_name)) 
 
#tree contains node labels for nodes that match a higher taxonomic group 
#remove extra information from tip labels: 
tr$tip.label 
otl_tips <- strip_ott_ids(tr$tip.label, remove_underscores = TRUE) 
tr$tip.label 
 
#map names to tree 
tr$tip.label <- taxon_map[otl_tips] 
tr$tip.label <- capitalize(tr$tip.label) 
 
#remove node labels 
any(duplicated(tr$node.label)) 
tr$node.label <- NULL	  
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############################### 
### Phylogenetic VCV matrix ### 
############################### 
 
#rename column to 'animal' for input to MCMCglmm 
es$animal <- es$Scientific.name 
 
#compute branch lengths using ape package default based on topology 
CorMatrix <- vcv(compute.brlen(tr, corr = T)) 
 
#match matrix to dataset 
CorExt <- as.matrix(CorMatrix[match(es$animal, rownames(CorMatrix)), 
match(es$animal, colnames(CorMatrix))]) 
levelplot(CorMatrix, xlab = '', ylab = 'Species') 
 
#remove outgroup from CorMatrix 
CorMatrix1 <- CorMatrix[-45, -45] 
levelplot(CorMatrix1) 
 
#MCMCglmm requires inverse matrix for input 
Cinv <- solve(CorMatrix1) 
Cinv2 <- as(Cinv, "dgCMatrix") 
 
################################## 
## Meta-analysis: overall model ## 
################################## 
 
#MCMCglmm also requires variances as input - we have no random structure 
specified for variances 
MEV <- es$vi 
 
prior <- list(R=list(V=1,nu=0.002),G=list(G1=list(V=1, nu=0.002))) 
 
#model will take a few minutes to run 
o.model <- MCMCglmm(yi ~ 1, random = ~ ID, mev = MEV, data = es, verbose=T, 
nitt=5000000, 
                   thin=3000, burnin=150000, prior=prior, pr=T) 
 
#results of all models may vary slightly from reported results (iterative 
Bayesian models) 
summary(o.model) 
 
#model diagnostics 
effectiveSize(o.model$Sol) # >1000 
effectiveSize(o.model$VCV) # >1000 
autocorr.diag(o.model$VCV) #all below 0.1 
plot(o.model$Sol[,1]) 
plot(o.model$VCV) #convergence looks good 
heidel.diag(o.model$VCV) #all passed 
 
#run same model again 2x to check convergence of results (Gelman-Rubin 
statistic < 1.1) 
o.model_1 <- MCMCglmm(yi ~ 1, random = ~ ID, mev = MEV, data = es, 
verbose=T, nitt=5000000, 
                     thin=3000, burnin=150000, prior=prior, pr=T) 
o.model_2 <- MCMCglmm(yi ~ 1, random = ~ ID, mev = MEV, data = es, 
verbose=T, nitt=5000000, 
                     thin=3000, burnin=150000, prior=prior, pr=T) 
summary(o.model_1) 
summary(o.model_2) 
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gelman.diag(mcmc.list(o.model$Sol, o.model_1$Sol, o.model_2$Sol)) #all < 
1.1 
o.model$DIC 
o.model_1$DIC #use lowest DIC - o.model_1 in our case (though all are very 
similar) 
o.model_2$DIC 
 
################################################ 
### Meta-analysis: Overall model + phylogeny ### 
################################################ 
 
prior.phylo <- list(R=list(V=1,nu=0.002),G=list(G1=list(V=1, nu=0.002), 
G2=list(V=1, nu=0.002))) 
 
o.modelphylo <- MCMCglmm(yi ~ 1, random = ~animal + ID, mev = MEV, data = 
es, verbose=T, 
                   nitt=5000000, thin=3000, burnin=150000, 
prior=prior.phylo, pr=T,  
                   ginverse=list(animal = Cinv2)) 
summary(o.modelphylo) 
 
#model diagnostics: 
effectiveSize(o.modelphylo$Sol) # >1000 
effectiveSize(o.modelphylo$VCV) #>1000 
autocorr.diag(o.modelphylo$VCV) #all below 0.1 
plot(o.modelphylo$Sol[,1]) 
plot(o.modelphylo$VCV) 
heidel.diag(o.modelphylo$VCV) #all passed 
 
#run same model again 2x to check convergence of results (Gelman-Rubin 
statistic < 1.1) 
o.modelphylo_1 <- MCMCglmm(yi ~ 1, random = ~animal + ID, mev = MEV, data = 
es, verbose=T,  
                     nitt=5000000, thin=3000, burnin=150000, 
prior=prior.phylo, pr=T,  
                     ginverse=list(animal = Cinv2)) 
o.modelphylo_2 <- MCMCglmm(yi ~ 1, random = ~animal + ID, mev = MEV, data = 
es, verbose=T,  
                     nitt=5000000, thin=3000, burnin=150000, 
prior=prior.phylo, pr=T,  
                     ginverse=list(animal = Cinv2)) 
summary(o.modelphylo_1) 
summary(o.modelphylo_2) 
 
o.modelphylo$DIC #317.6251 
o.modelphylo_1$DIC #317.5601 
o.modelphylo_2$DIC #317.5375 <- lowest DIC 
 
gelman.diag(mcmc.list(o.modelphylo$Sol, o.modelphylo_1$Sol, 
o.modelphylo_2$Sol)) #all <1.1 
 
############################################################ 
### Comparing overall model to overall model + phylogeny ### 
############################################################ 
 
summary(o.model_1)$DIC #317.3776 
summary(o.modelphylo_2)$DIC #317.5375 
#the non-phylogenetic model has a slightly lower DIC so is the better model 
 
## Heterogeneity statistics  
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#for multilevel meta-analysis, extended heterogeneity statistic suggested 
(Nakagawa) 
 
k <- 115 #number of effect sizes 
#sampling error: 
s2m <- sum(1/es$vi) * (k-1) / (sum(1/es$vi)^2 - sum((1/es$vi)^2)) 
 
#For overall model (without phylogeny) 
s2t <- o.model_1$VCV[,"ID"]+o.model_1$VCV[,"units"]+s2m 
#total heterogeneity: 
I2t <- 100* ((o.model_1$VCV[,"units"]+o.model_1$VCV[,"ID"])/s2t) 
posterior.mode(I2t) 
#study ID heterogeneity: 
I2s <- 100* ((o.model_1$VCV[,"ID"])/s2t) 
posterior.mode(I2s) 
#residual variance 
I2r <- 100* ((o.model_1$VCV[,"units"])/s2t) 
posterior.mode(I2r) #19.3% 
 
#For overall model + phylogeny 
#total variance: 
s2t.p <- 
o.modelphylo_2$VCV[,"animal"]+o.modelphylo_2$VCV[,"ID"]+o.modelphylo_2$VCV[
,"units"]+s2m 
#total heterogeneity: 
I2t.p <- 100* 
((o.modelphylo_2$VCV[,"units"]+o.modelphylo_2$VCV[,"animal"]+o.modelphylo_2
$VCV[,"ID"])/s2t.p) 
posterior.mode(I2t.p) 
#phylogeny heterogeneity: 
I2p.p <- 100* ((o.modelphylo_2$VCV[,"animal"])/s2t.p) 
posterior.mode(I2p.p) 
HPDinterval(I2p.p) 
#study ID heterogeneity: 
I2s.p <- 100* ((o.modelphylo_2$VCV[,"ID"])/s2t.p) 
posterior.mode(I2s.p) 
#residual variance: 
I2r.p <- 100* ((o.modelphylo_2$VCV[,"units"])/s2t.p) 
posterior.mode(I2r.p) #24.2% 
 
##Calculate phylogenetic heritability (lamda, phylogenetic signal) 
lamda <- o.modelphylo_2$VCV[,"animal"]/ 
  (o.modelphylo_2$VCV[,"animal"] + o.modelphylo_2$VCV[,"ID"] + 
o.modelphylo_2$VCV[,'units']) 
posterior.mode(lamda) 
 
#Heterogeneity is high in both models 
#Phylogenetic signal is low, and DIC is lower in non-phylogenetic model 
#Proceed with non-phylogenetic meta-regression 
 
############################################# 
### Meta-regression: Captive Environment  ### 
############################################# 
 
mr.model.ce <- MCMCglmm(yi ~ factor(Captive.environment)-1, random = ~ ID, 
mev = MEV, data = es, 
                   verbose=T, nitt=5000000, thin=3000, burnin=150000, 
prior=prior, pr=T) 
summary(mr.model.ce) 
 
#model diagnostics: 
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effectiveSize(mr.model.ce$Sol) # >1000 
effectiveSize(mr.model.ce$VCV) #>1000 
autocorr.diag(mr.model.ce$VCV) #all below 0.1 
plot(mr.model.ce$Sol[,1]) 
plot(mr.model.ce$VCV) 
heidel.diag(mr.model.ce$VCV) #all passed 
 
#run same model again 2x to check convergence of results (Gelman-Rubin 
statistic < 1.1) 
mr.model.ce_1 <- MCMCglmm(yi ~ factor(Captive.environment)-1, random = ~ 
ID, mev = MEV, data = es, 
                     verbose=T, nitt=5000000, thin=3000, burnin=150000, 
prior=prior, pr=T) 
mr.model.ce_2 <- MCMCglmm(yi ~ factor(Captive.environment)-1, random = ~ 
ID, mev = MEV, data = es, 
                     verbose=T, nitt=5000000, thin=3000, burnin=150000, 
prior=prior, pr=T) 
summary(mr.model.ce_1) 
summary(mr.model.ce_2) 
 
mr.model.ce$DIC #317.0837 
mr.model.ce_1$DIC #317.0486 
mr.model.ce_2$DIC #317.0434 <- lowest DIC model 
 
gelman.diag(mcmc.list(mr.model.ce$Sol, mr.model.ce_1$Sol, 
mr.model.ce_2$Sol)) #all < 1.1 
 
#################################### 
### Meta-regression - Trait type ### 
#################################### 
 
mr.model.t <- MCMCglmm(yi ~ factor(Trait)-1, random = ~ ID, mev = MEV, data 
= es, verbose=T,  
                   nitt=5000000, thin=3000, burnin=150000, prior=prior, 
pr=T) 
summary(mr.model.t) 
 
#model diagnostics: 
effectiveSize(mr.model.t$Sol) # >1000 
effectiveSize(mr.model.t$VCV) #>1000 
autocorr.diag(mr.model.t$VCV) #all below 0.1 
plot(mr.model.t$Sol[,1]) 
plot(mr.model.t$VCV) 
heidel.diag(mr.model.t$VCV) #all passed 
 
#run same model again 2x to check convergence of results (Gelman-Rubin 
statistic < 1.1) 
mr.model.t_1 <- MCMCglmm(yi ~ factor(Trait)-1, random = ~ ID, mev = MEV, 
data = es,  
                     verbose=T, nitt=5000000, thin=3000,burnin=150000, 
prior=prior, pr=T) 
mr.model.t_2 <- MCMCglmm(yi ~ factor(Trait)-1, random = ~ ID, mev = MEV, 
data = es,  
                     verbose=T, nitt=5000000, thin=3000, burnin=150000, 
prior=prior, pr=T) 
summary(mr.model.t_1) 
summary(mr.model.t_2) 
 
mr.model.t$DIC #286.5063 
mr.model.t_1$DIC #286.5062 <- lowest DIC 
mr.model.t_2$DIC #286.5142 
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gelman.diag(mcmc.list(mr.model.t$Sol, mr.model.t_1$Sol, mr.model.t_2$Sol)) 
#all < 1.1 
 
#################################### 
### Measures of publication bias ### 
#################################### 
 
##Time-lag bias 
#meta-regression with year of publication to see if effect sizes change 
over time 
mr.model.y <- MCMCglmm(yi ~ Year, random = ~ID, mev = MEV, data = es, 
verbose=T, nitt=5000000,  
                   thin=3000, burnin=150000, prior=prior, pr=T) 
summary(mr.model.y) 
 
#model diagnostics: 
effectiveSize(mr.model.y$Sol) # >1000 
effectiveSize(mr.model.y$VCV) #>1000 
autocorr.diag(mr.model.y$VCV) #all below 0.1 
plot(mr.model.y$Sol[,1]) 
plot(mr.model.y$VCV) 
heidel.diag(mr.model.y$VCV) #all passed 
 
#run same model again 2x to check convergence of results (Gelman-Rubin 
statistic < 1.1) 
mr.model.y_1 <- MCMCglmm(yi ~ Year, random = ~ID, mev = MEV, data = es, 
verbose=T,  
                     nitt=5000000, thin=3000, burnin=150000, prior=prior, 
pr=T) 
mr.model.y_2 <- MCMCglmm(yi ~ Year, random = ~ID, mev = MEV, data = es, 
verbose=T,  
                     nitt=5000000, thin=3000, burnin=150000, prior=prior, 
pr=T) 
summary(mr.model.y_1) 
summary(mr.model.y_2) 
 
gelman.diag(mcmc.list(mr.model.y$Sol, mr.model.y_1$Sol, mr.model.y_2$Sol)) 
#all < 1.1 
#year is not significant - no evidence of publication bias over time 
 
mr.model.y$DIC #316.5641 
mr.model.y_1$DIC #316.5887 
mr.model.y_2$DIC #316.495 <-- lowest DIC 
 
##Egger's regression  
#use meta-analytic residuals 
#meta-analytic residuals = raw data - predictions 
o.model_1$Random$formula <- update(o.model_1$Random$formula, ~.+leg(mev, -
1, FALSE):units) 
prediction <- predict(o.model_1, marginal= ~leg(mev, -1, FALSE):units) 
precision <- sqrt(1/es$vi) 
MR <- es$yi - prediction 
zMR <- MR*precision 
egger<-lm(zMR ~ precision) 
summary(egger)  
#intercept is significant - evidence of possible publication bias (though 
correction is small) 
summary(egger)$coefficients 
 
##Funnel plot 
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graphics.off() 
par(mfrow=c(1,2)) 
plot(es$yi, precision, xlab='Log odds ratio', ylab = 'Precision') 
abline(v=posterior.mode(o.model_1$Sol)[1],lwd=1) #v is the meta-analytic 
mean 
plot(MR, precision, xlab = 'Meta-analytic residuals', ylab = 'Precision') 
abline(v=0,lwd=1,lty=2) 
 
##Trim-and-fill analysis  
#for multi-level meta-analysis, can only be performed on meta-analytic 
residuals 
#removes smaller studies causing funnel plot asymmetry, 
#uses trimmed funnel plot to estimate the true centre of the funnel,   
#replaces omitted studies and their missing counterparts around the centre 
(filling) 
model.tf <- rma(yi=MR,sei=1/precision) 
summary(model.tf) 
TFL <- trimfill(model.tf,side="left",estimator="R0") 
TFR <- trimfill(model.tf, side='right', estimator = 'R0') 
summary(TFL) #no studies estimated to be missing on left side 
summary(TFR) #2 studies estimated to be missing on right side, but P = 
0.125, estimate is small 
graphics.off() 
range(MR) 
funnel(TFL,xlab="Meta-analytic residuals",xlim=c(-6,6)) 
funnel(TFR,xlab="Meta-analytic residuals",xlim=c(-6, 6)) 
 
#apparent outlier (with odds ratio = -10) could be affecting results 
#this comes from ES.ID 75 (Murugan et al. 2013) 
 
## Rerun all models without outlier  
es2 <- es[c(-90),] 
MEV2 <- es2$vi 
 
o.model_out <- MCMCglmm(yi ~ 1, random = ~ ID, mev = MEV2, data = es2, 
verbose=T, nitt=5000000, 
                    thin=3000, burnin=150000, prior=prior, pr=T) 
o.modelphylo_out <- MCMCglmm(yi ~ 1, random = ~animal + ID, mev = MEV2, 
data = es2, verbose=T, 
                    nitt=5000000, thin=3000, burnin=150000, 
prior=prior.phylo, pr=T,  
                    ginverse=list(animal = Cinv2)) 
mr.model.ce_out <- MCMCglmm(yi ~ factor(Captive.environment)-1, random = ~ 
ID, mev = MEV2,  
                            data = es2, verbose=T, nitt=5000000, thin=3000, 
burnin=150000,  
                            prior=prior, pr=T) 
mr.model.t_out <- MCMCglmm(yi ~ factor(Trait)-1, random = ~ ID, mev = MEV2, 
data = es2,  
                    verbose=T, nitt=5000000, thin=3000, burnin=150000, 
prior=prior, pr=T) 
 
#compare models with & without outlier 
summary(o.model) 
summary(o.model_out) 
 
summary(o.modelphylo) 
summary(o.modelphylo_out)  
 
summary(mr.model.ce) 
summary(mr.model.ce_out) 
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summary(mr.model.t) 
summary(mr.model.t_out) 
#qualitatively the same - does not alter conclusions 
 
##Publication bias (with outlier removed) 
##Time-lag bias 
mr.model.y_out <- MCMCglmm(yi ~ Year, random = ~ID, mev = MEV2, data = es2, 
verbose=T, nitt=5000000,  
                       thin=3000, burnin=150000, prior=prior, pr=T) 
summary(mr.model.y_out) 
 
##Egger's regression  
o.model_out$Random$formula <- update(o.model_out$Random$formula, 
~.+leg(mev, -1, FALSE):units) 
prediction_out <- predict(o.model_out, marginal= ~leg(mev, -1, 
FALSE):units) 
precision_out <- sqrt(1/es2$vi) 
MR_out <- es2$yi - prediction_out 
zMR_out <- MR_out*precision_out 
egger_out <-lm(zMR_out ~ precision_out) 
summary(egger_out)  
#intercept is significant, correction still small 
 
##Funnel plot 
graphics.off() 
par(mfrow=c(1,2)) 
plot(es2$yi, precision_out, xlab='Log odds ratio', ylab = 'Precision') 
abline(v=posterior.mode(o.model_out$Sol)[1],lwd=1) #v is the meta-analytic 
mean 
plot(MR_out, precision_out, xlab = 'Meta-analytic residuals', ylab = 
'Precision') 
abline(v=0,lwd=2) 
 
##Trim-and-fill analysis  
model.tf_out <- rma(yi=MR_out,sei=1/precision_out) 
summary(model.tf_out) 
TFL_out <- trimfill(model.tf_out,side="left",estimator="R0") 
TFR_out <- trimfill(model.tf_out, side='right', estimator = 'R0') 
summary(TFL_out) #no studies estimated to be missing on left side 
summary(TFR_out) #now 0 studies are estimated to be missing on right side 
graphics.off() 
range(MR_out) 
funnel(TFL_out,xlab="Meta-analytic residuals",xlim=c(-4,4)) 
funnel(TFR_out,xlab="Meta-analytic residuals",xlim=c(-4, 4)) 
#no substantial differences by excluding outlier 
 
##MI to recover missing standard deviations (N = 17 additional comparisons) 
 
complete <- read.csv('completecases.csv', header=T) 
# as the data we are imputing is continuous (mean, sd, N) use this subset 
of data to form correlation matrix 
#to impute data from 
complete.c <- complete[49:115,] 
 
#load missing data 
missing <- read.csv('missing data imputation no variance without sample 
size.csv', header=T) 
tail(missing) 
colnames(complete.c) 
colnames(missing) 
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combined <- rbind(complete.c, missing) 
colnames(combined) 
 
#using columns 27, 28, 31, 32 to impute missing data 
#plot missing data using md.pattern (1 = observed, 0 = missing) 
md.pattern(combined[, c(27, 28, 31, 32)]) #mean known for all, 
#SD missing for 17 effect sizes. 
 
#check correlations between variables - MI uses this matrix 
cor(combined[,c(27, 28, 31, 32)], use = "pairwise.complete.obs") 
 
#use log scale to impute data as relationship is not linear otherwise 
plot(combined$CB.Mean, combined$CB.SD) 
plot(log(combined$CB.Mean), log(combined$CB.SD)) 
 
plot(combined$WB.Mean, combined$WB.SD) 
plot(log(combined$WB.Mean), log(combined$WB.SD)) 
 
#can't do log of negative numbers - identify negative values (direction of 
effect on reproductive success is negative) 
CB.negatives <- which(combined$CB.C.Mean <0) 
WB.negatives <- which(combined$WB.C.Mean <0) 
 
which(combined$WB.SD == 0) #one WB.SD = 0, so can't be logged. Add 0.00001 
(measurement is litter size) to this estimate? 
 
combinedlog <- combined 
combinedlog[66,28] <- 0.5 
combinedlog$CB.C.Mean[CB.negatives] <- combined$CB.C.Mean[CB.negatives]*-1 
combinedlog$WB.C.Mean[WB.negatives] <- combined$WB.C.Mean[WB.negatives]*-1 
 
combinedlog$CB.C.Mean <- log(combinedlog$CB.C.Mean) 
combinedlog$WB.C.Mean <- log(combinedlog$WB.C.Mean) 
combinedlog$CB.SD <- log(combinedlog$CB.SD) 
combinedlog$WB.SD <- log(combinedlog$WB.SD) 
combinedlog$CB.N <- log(combinedlog$CB.N) 
combinedlog$WB.N <- log(combinedlog$WB.N) 
 
###################################################### 
### Multiple imputation (MI); creating 20 datasets ### 
###################################################### 
#rerun all analyses with imputed data 
 
#load missing data to be imputed 
missing <- read.csv('data file 2.csv', header=T) 
#17 comparisons have missing standard deviation, 24 have missing sample 
size 
 
#reload original data (used above): 
complete <- read.csv('data file.csv', header=T) 
#as the data we are imputing is continuous (mean, sd, N) use this subset of 
data (continuous traits) to form correlation matrix 
#to impute data from 
complete.c <- complete[49:115,] 
 
#impute missing standard deviations (N = 17 comparisons) 
missing2 <- missing[!is.na(missing$WB.N),] 
combined <- rbind(complete.c, missing2) 
 
colnames(combined) 
#using columns 19, 25, 27, 28, 31, 32 to impute missing data 
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#plot missing data using md.pattern (1 = observed, 0 = missing) 
md.pattern(combined[, c(19, 25, 27, 28, 31, 32)]) #mean & N known for all, 
SD missing for 17 
 
#check correlations between variables - MI uses this matrix 
cor(combined[,c(19, 25, 27, 28, 31, 32)], use = "pairwise.complete.obs") 
 
#use log scale to impute data as relationship is not linear otherwise 
plot(combined$CB.Mean, combined$CB.SD) 
plot(log(combined$CB.Mean), log(combined$CB.SD)) 
plot(combined$WB.Mean, combined$WB.SD) 
plot(log(combined$WB.Mean), log(combined$WB.SD)) 
plot(combined$CB.Mean, combined$CB.N) 
plot(log(combined$CB.Mean), log(combined$CB.N)) 
plot(combined$WB.Mean, combined$WB.N) 
plot(log(combined$WB.Mean), log(combined$WB.N)) 
 
#can't do log of negative numbers - identify negative values (direction of 
effect on reproductive success is negative) 
CB.negatives <- which(combined$CB.C.Mean <0) 
WB.negatives <- which(combined$WB.C.Mean <0) 
 
which(combined$WB.SD == 0) #one WB.SD = 0, so can't be logged. Add 0.5 
(measurement is litter size) to this estimate 
 
combinedlog <- combined 
combinedlog[66,28] <- 0.5 
combinedlog$CB.C.Mean[CB.negatives] <- combined$CB.C.Mean[CB.negatives]*-1 
combinedlog$WB.C.Mean[WB.negatives] <- combined$WB.C.Mean[WB.negatives]*-1 
 
combinedlog$CB.C.Mean <- log(combinedlog$CB.C.Mean) 
combinedlog$WB.C.Mean <- log(combinedlog$WB.C.Mean) 
combinedlog$CB.SD <- log(combinedlog$CB.SD) 
combinedlog$WB.SD <- log(combinedlog$WB.SD) 
combinedlog$CB.N <- log(combinedlog$CB.N) 
combinedlog$WB.N <- log(combinedlog$WB.N) 
 
#  multiple imputation (MI); creating 20 datasets 
nos.log.Imp <- mice(combinedlog[,c(19, 25, 27, 28, 31, 32)], m = 20) 
 
####check imputations (Imp) 
names(nos.log.Imp) 
nos.log.Imp$imp$WB.SD 
nos.log.Imp$imp$CB.SD 
 
#see if imputations seem reasonable given data: 
stripplot(nos.log.Imp, pch = 20, cex = 1.2) #blue is observed values, red 
is imputed missing values 
densityplot(nos.log.Imp) 
 
#check convergence of imputations 
plot(nos.log.Imp) 
 
##Create function to backtransform, make negative values negative again 
(where direction 
#of effect on reproductive success is negative), calculate effect sizes and 
run meta-analysis,  
#then run for each of 20 imputations and combine as one MCMClist 
 
MImodel <- function(i) { 
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  data <- cbind(combinedlog[,1:13], combinedlog[,c(19, 25)], 
complete(nos.log.Imp, action = i)) 
  data$CB.C.Mean <- exp(data$CB.C.Mean) 
  data$WB.C.Mean <- exp(data$WB.C.Mean) 
  data$CB.SD <- exp(data$CB.SD) 
  data$WB.SD <- exp(data$WB.SD) 
  data$CB.N <- exp(data$CB.N) 
  data$WB.N <- exp(data$WB.N) 
  negs <- which(data$Direction == '-') 
  data$WB.C.Mean[negs] <- data$WB.C.Mean[negs]*-1 
  data$CB.C.Mean[negs] <- data$CB.C.Mean[negs]*-1 
  lnor.continuous <- escalc(measure='D2ORN', m1i=data$CB.C.Mean, 
m2i=data$WB.C.Mean, 
                            sd1i=data$CB.SD, sd2i=data$WB.SD, 
n1i=data$CB.N,  
                            n2i=data$WB.N, vtype='UB') 
  data$yi <- lnor.continuous$yi 
  data$vi <- lnor.continuous$vi 
  data2 <- complete[1:48,] 
  lnor.proportional <- escalc(measure="OR", ai=data2$CB.success, 
bi=data2$CB.failure,  
                              ci=data2$WB.success, di=data2$WB.failure,  
                              n1i=data2$CB.N, n2i=data2$WB.N, vtype='UB', 
add=0.5,  
                              to = 'only0', drop00=FALSE) 
  data2$yi <- lnor.proportional$yi 
  data2$vi <- lnor.proportional$vi 
  data1 <- data[,c(1:13,22:23)] 
  data3 <- data2[,c(1:13,34:35)] 
  data4 <<- rbind(data1, data3) 
  MEV <<- data4$vi 
  prior <<- list(R=list(V=1,nu=0.002),G=list(G1=list(V=1, nu=0.002))) 
} 
 
o.model <- function(i) { 
  MCMCglmm(yi ~ 1, random = ~ ID, mev = MEV, data = data4, verbose=T, 
nitt=5000000, 
           thin=3000, burnin=150000, prior=prior, pr=T) 
} 
 
MImodel(1) 
nos.log.model1 <- o.model(1) 
MImodel(2) 
nos.log.model2 <- o.model(2) 
MImodel(3) 
nos.log.model3 <- o.model(3) 
MImodel(4) 
nos.log.model4 <- o.model(4) 
MImodel(5) 
nos.log.model5 <- o.model(5) 
MImodel(6) 
nos.log.model6 <- o.model(6) 
MImodel(7) 
nos.log.model7 <- o.model(7) 
MImodel(8) 
nos.log.model8 <- o.model(8) 
MImodel(9) 
nos.log.model9 <- o.model(9) 
MImodel(10) 
nos.log.model10 <- o.model(10) 
MImodel(11) 
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nos.log.model11 <- o.model(11) 
MImodel(12) 
nos.log.model12 <- o.model(12) 
MImodel(13) 
nos.log.model13 <- o.model(13) 
MImodel(14) 
nos.log.model14 <- o.model(14) 
MImodel(15) 
nos.log.model15 <- o.model(15) 
MImodel(16) 
nos.log.model16 <- o.model(16) 
MImodel(17) 
nos.log.model17 <- o.model(17) 
MImodel(18) 
nos.log.model18 <- o.model(18) 
MImodel(19) 
nos.log.model19 <- o.model(19) 
MImodel(20) 
nos.log.model20 <- o.model(20) 
 
#VCV = variance components 
nos.log.MI.comb.VCV <- mcmc.list(nos.log.model1$VCV, nos.log.model2$VCV, 
nos.log.model3$VCV, nos.log.model4$VCV, nos.log.model5$VCV, 
nos.log.model6$VCV, nos.log.model7$VCV, 
                                 nos.log.model8$VCV, nos.log.model9$VCV, 
nos.log.model10$VCV, nos.log.model11$VCV, nos.log.model12$VCV, 
nos.log.model13$VCV, 
                                 nos.log.model14$VCV, nos.log.model15$VCV, 
nos.log.model16$VCV, nos.log.model17$VCV, nos.log.model18$VCV, 
nos.log.model19$VCV, 
                                 nos.log.model20$VCV) 
summary(nos.log.MI.comb.VCV) 
 
#Sol = solutions 
nos.log.MI.comb.Sol <- mcmc.list(nos.log.model1$Sol, nos.log.model2$Sol, 
nos.log.model3$Sol, nos.log.model4$Sol, nos.log.model5$Sol, 
nos.log.model6$Sol, nos.log.model7$Sol, nos.log.model8$Sol, 
                                 nos.log.model9$Sol, nos.log.model10$Sol, 
nos.log.model11$Sol, nos.log.model12$Sol, nos.log.model13$Sol, 
nos.log.model14$Sol, nos.log.model15$Sol,  
                                 nos.log.model16$Sol, nos.log.model17$Sol, 
nos.log.model18$Sol, nos.log.model19$Sol, nos.log.model20$Sol) 
plot(mcmc.list(nos.log.model1$Sol[,1], nos.log.model2$Sol[,1], 
nos.log.model11$Sol[,1]))  
#check plot with different models for visual convergence 
 
autocorr.diag(nos.log.MI.comb.VCV) #passes autocorrelation 
heidel.diag(nos.log.MI.comb.VCV) #all passed 
 
nos.log.MI.sol1 <- as.data.frame(nos.log.model1$Sol[,1]) 
nos.log.MI.sol2 <- as.data.frame(nos.log.model2$Sol[,1]) 
nos.log.MI.sol3 <- as.data.frame(nos.log.model3$Sol[,1]) 
nos.log.MI.sol4 <- as.data.frame(nos.log.model4$Sol[,1]) 
nos.log.MI.sol5 <- as.data.frame(nos.log.model5$Sol[,1]) 
nos.log.MI.sol6 <- as.data.frame(nos.log.model6$Sol[,1]) 
nos.log.MI.sol7 <- as.data.frame(nos.log.model7$Sol[,1]) 
nos.log.MI.sol8 <- as.data.frame(nos.log.model8$Sol[,1]) 
nos.log.MI.sol9 <- as.data.frame(nos.log.model9$Sol[,1]) 
nos.log.MI.sol10 <- as.data.frame(nos.log.model10$Sol[,1]) 
nos.log.MI.sol11 <- as.data.frame(nos.log.model11$Sol[,1]) 
nos.log.MI.sol12 <- as.data.frame(nos.log.model12$Sol[,1]) 
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nos.log.MI.sol13 <- as.data.frame(nos.log.model13$Sol[,1]) 
nos.log.MI.sol14 <- as.data.frame(nos.log.model14$Sol[,1]) 
nos.log.MI.sol15 <- as.data.frame(nos.log.model15$Sol[,1]) 
nos.log.MI.sol16 <- as.data.frame(nos.log.model16$Sol[,1]) 
nos.log.MI.sol17 <- as.data.frame(nos.log.model17$Sol[,1]) 
nos.log.MI.sol18 <- as.data.frame(nos.log.model18$Sol[,1]) 
nos.log.MI.sol19 <- as.data.frame(nos.log.model19$Sol[,1]) 
nos.log.MI.sol20 <- as.data.frame(nos.log.model20$Sol[,1]) 
 
#pool posterior estimates 
nos.log.MI.comb.sol1 <- rbind(nos.log.MI.sol1, nos.log.MI.sol2, 
nos.log.MI.sol3, nos.log.MI.sol4, nos.log.MI.sol5, nos.log.MI.sol6, 
nos.log.MI.sol7, nos.log.MI.sol8, nos.log.MI.sol9, nos.log.MI.sol10, 
                              nos.log.MI.sol11, nos.log.MI.sol12, 
nos.log.MI.sol13, nos.log.MI.sol14, nos.log.MI.sol15, nos.log.MI.sol16, 
nos.log.MI.sol17, nos.log.MI.sol18, nos.log.MI.sol19,  
                              nos.log.MI.sol20) 
posterior.mode(nos.log.MI.comb.sol1) #posterior mode of pooled estimates 
hdi(nos.log.MI.comb.sol1, credMass=0.95) #95% HPD CI of pooled estimates 
 
##### Phylogenetic model (with MI data) 
 
#update tree - extra species included with MI data 
data4$Scientific.name <- as.character(data4$Scientific.name) 
 
#change species names in es to match those of rotl tree 
data4$Scientific.name[data4$Scientific.name == "Cersus eldi thamin"] <- 
"Rucervus eldii" 
data4$Scientific.name[data4$Scientific.name == "Choreopsis liberiensis"] <- 
"Hexaprotodon liberiensis" 
data4$Scientific.name[data4$Scientific.name == "Clethrionymus glareolus"] 
<- "Myodes glareolus" 
data4$Scientific.name[data4$Scientific.name == "Equus burchelli"] <- "Equus 
burchelii" 
data4$Scientific.name[data4$Scientific.name == "Fenneropenaeus 
merguiensis"] <- "Penaeus merguiensis" 
data4$Scientific.name[data4$Scientific.name == "Gorilla gorilla gorilla"] 
<- "Gorilla gorilla" 
data4$Scientific.name[data4$Scientific.name == "Pan troglodytes"] <- "Pan 
troglodytes troglodytes" 
data4$Scientific.name[data4$Scientific.name == "Saguinus fuscicollis 
illigeri"] <- "Saguinus fuscicollis" 
data4$Scientific.name[data4$Scientific.name == "Eulemur mongoz, formerly 
Lemur mongoz "] <- "Eulemur mongoz" 
 
species <- unique(data4$Scientific.name) 
species <- as.data.frame(species) 
species[,1] <- as.character(species[,1]) #48 unique species with missing 
data included 
 
#Add outgroup (box jellyfish) to root tree 
outgroup <- 'Chironex fleckeri'  
species[49,1] <- outgroup 
 
taxa <- tnrs_match_names(names=species[,1], context_name = "All life") 
tr <- tol_induced_subtree(taxa$ott_id) 
taxon_map <- structure(taxa$search_string, 
names=as.character(taxa$unique_name)) 
tr$tip.label 
otl_tips <- strip_ott_ids(tr$tip.label, remove_underscores = TRUE) 
tr$tip.label 
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tr$tip.label <- taxon_map[otl_tips] 
tr$tip.label <- capitalize(tr$tip.label) 
any(duplicated(tr$node.label)) 
tr$node.label <- NULL 
plot(tr, show.tip.label=TRUE, show.node.label = FALSE) 
 
#Phylogenetic VCV matrix (with MI data) 
 
data4$animal <- data4$Scientific.name 
CorMatrix <- vcv(compute.brlen(tr, corr = T)) 
CorExt <- as.matrix(CorMatrix[match(data4$animal, rownames(CorMatrix)), 
match(data4$animal, colnames(CorMatrix))]) 
levelplot(CorMatrix, xlab = '', ylab = 'Species') 
CorMatrix1 <- CorMatrix[-49, -49] 
levelplot(CorMatrix1) 
Cinv <- solve(CorMatrix1) 
Cinv2 <- as(Cinv, "dgCMatrix") 
 
prior.phylo <- list(R=list(V=1,nu=0.002),G=list(G1=list(V=1, nu=0.002), 
G2=list(V=1, nu=0.002))) 
 
o.modelphylo <- function(i) { 
  data4$Scientific.name <- as.character(data4$Scientific.name) 
  data4$Scientific.name[data4$Scientific.name == "Cersus eldi thamin"] <- 
"Rucervus eldii" 
  data4$Scientific.name[data4$Scientific.name == "Choreopsis liberiensis"] 
<- "Hexaprotodon liberiensis" 
  data4$Scientific.name[data4$Scientific.name == "Clethrionymus glareolus"] 
<- "Myodes glareolus" 
  data4$Scientific.name[data4$Scientific.name == "Equus burchelli"] <- 
"Equus burchelii" 
  data4$Scientific.name[data4$Scientific.name == "Fenneropenaeus 
merguiensis"] <- "Penaeus merguiensis" 
  data4$Scientific.name[data4$Scientific.name == "Gorilla gorilla gorilla"] 
<- "Gorilla gorilla" 
  data4$Scientific.name[data4$Scientific.name == "Pan troglodytes"] <- "Pan 
troglodytes troglodytes" 
  data4$Scientific.name[data4$Scientific.name == "Saguinus fuscicollis 
illigeri"] <- "Saguinus fuscicollis" 
  data4$Scientific.name[data4$Scientific.name == "Eulemur mongoz, formerly 
Lemur mongoz "] <- "Eulemur mongoz" 
  data4$animal <- data4$Scientific.name 
  MCMCglmm(yi ~ 1, random = ~animal + ID, mev = MEV, data = data4, 
verbose=T, 
           nitt=5000000, thin=3000, burnin=150000, prior=prior.phylo, pr=T,  
           ginverse=list(animal = Cinv2)) 
} 
 
MImodel(1) 
nos.log.phylomodel1 <- o.modelphylo(1) 
MImodel(2) 
nos.log.phylomodel2 <- o.modelphylo(2) 
MImodel(3) 
nos.log.phylomodel3 <- o.modelphylo(3) 
MImodel(4) 
nos.log.phylomodel4 <- o.modelphylo(4) 
MImodel(5) 
nos.log.phylomodel5 <- o.modelphylo(5) 
MImodel(6) 
nos.log.phylomodel6 <- o.modelphylo(6) 
MImodel(7) 
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nos.log.phylomodel7 <- o.modelphylo(7) 
MImodel(8) 
nos.log.phylomodel8 <- o.modelphylo(8) 
MImodel(9) 
nos.log.phylomodel9 <- o.modelphylo(9) 
MImodel(10) 
nos.log.phylomodel10 <- o.modelphylo(10) 
MImodel(11) 
nos.log.phylomodel11 <- o.modelphylo(11) 
MImodel(12) 
nos.log.phylomodel12 <- o.modelphylo(12) 
MImodel(13) 
nos.log.phylomodel13 <- o.modelphylo(13) 
MImodel(14) 
nos.log.phylomodel14 <- o.modelphylo(14) 
MImodel(15) 
nos.log.phylomodel15 <- o.modelphylo(15) 
MImodel(16) 
nos.log.phylomodel16 <- o.modelphylo(16) 
MImodel(17) 
nos.log.phylomodel17 <- o.modelphylo(17) 
MImodel(18) 
nos.log.phylomodel18 <- o.modelphylo(18) 
MImodel(19) 
nos.log.phylomodel19 <- o.modelphylo(19) 
MImodel(20) 
nos.log.phylomodel20 <- o.modelphylo(20) 
 
#VCV = variance components 
nos.log.phylo.MI.comb.VCV <- mcmc.list(nos.log.phylomodel1$VCV, 
nos.log.phylomodel2$VCV, nos.log.phylomodel3$VCV, nos.log.phylomodel4$VCV, 
nos.log.phylomodel5$VCV, nos.log.phylomodel6$VCV, nos.log.phylomodel7$VCV, 
                                       nos.log.phylomodel8$VCV, 
nos.log.phylomodel9$VCV, nos.log.phylomodel10$VCV, 
nos.log.phylomodel11$VCV, nos.log.phylomodel12$VCV, 
nos.log.phylomodel13$VCV, 
                                       nos.log.phylomodel14$VCV, 
nos.log.phylomodel15$VCV, nos.log.phylomodel16$VCV, 
nos.log.phylomodel17$VCV, nos.log.phylomodel18$VCV, 
nos.log.phylomodel19$VCV, 
                                       nos.log.phylomodel20$VCV) 
summary(nos.log.phylo.MI.comb.VCV) 
 
#Sol = solutions 
nos.log.phylo.MI.comb.Sol <- mcmc.list(nos.log.phylomodel1$Sol, 
nos.log.phylomodel2$Sol, nos.log.phylomodel3$Sol, nos.log.phylomodel4$Sol, 
nos.log.phylomodel5$Sol, nos.log.phylomodel6$Sol, nos.log.phylomodel7$Sol, 
nos.log.phylomodel8$Sol, 
                                       nos.log.phylomodel9$Sol, 
nos.log.phylomodel10$Sol, nos.log.phylomodel11$Sol, 
nos.log.phylomodel12$Sol, nos.log.phylomodel13$Sol, 
nos.log.phylomodel14$Sol, nos.log.phylomodel15$Sol,  
                                       nos.log.phylomodel16$Sol, 
nos.log.phylomodel17$Sol, nos.log.phylomodel18$Sol, 
nos.log.phylomodel19$Sol, nos.log.phylomodel20$Sol) 
plot(mcmc.list(nos.log.phylomodel1$Sol[,1], nos.log.phylomodel2$Sol[,1], 
nos.log.phylomodel3$Sol[,1]))  
 
autocorr.diag(nos.log.phylo.MI.comb.VCV) #passes autocorrelation 
heidel.diag(nos.log.phylo.MI.comb.VCV) #all passed 
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nos.log.phylo.MI.sol1 <- as.data.frame(nos.log.phylomodel1$Sol[,1]) 
nos.log.phylo.MI.sol2 <- as.data.frame(nos.log.phylomodel2$Sol[,1]) 
nos.log.phylo.MI.sol3 <- as.data.frame(nos.log.phylomodel3$Sol[,1]) 
nos.log.phylo.MI.sol4 <- as.data.frame(nos.log.phylomodel4$Sol[,1]) 
nos.log.phylo.MI.sol5 <- as.data.frame(nos.log.phylomodel5$Sol[,1]) 
nos.log.phylo.MI.sol6 <- as.data.frame(nos.log.phylomodel6$Sol[,1]) 
nos.log.phylo.MI.sol7 <- as.data.frame(nos.log.phylomodel7$Sol[,1]) 
nos.log.phylo.MI.sol8 <- as.data.frame(nos.log.phylomodel8$Sol[,1]) 
nos.log.phylo.MI.sol9 <- as.data.frame(nos.log.phylomodel9$Sol[,1]) 
nos.log.phylo.MI.sol10 <- as.data.frame(nos.log.phylomodel10$Sol[,1]) 
nos.log.phylo.MI.sol11 <- as.data.frame(nos.log.phylomodel11$Sol[,1]) 
nos.log.phylo.MI.sol12 <- as.data.frame(nos.log.phylomodel12$Sol[,1]) 
nos.log.phylo.MI.sol13 <- as.data.frame(nos.log.phylomodel13$Sol[,1]) 
nos.log.phylo.MI.sol14 <- as.data.frame(nos.log.phylomodel14$Sol[,1]) 
nos.log.phylo.MI.sol15 <- as.data.frame(nos.log.phylomodel15$Sol[,1]) 
nos.log.phylo.MI.sol16 <- as.data.frame(nos.log.phylomodel16$Sol[,1]) 
nos.log.phylo.MI.sol17 <- as.data.frame(nos.log.phylomodel17$Sol[,1]) 
nos.log.phylo.MI.sol18 <- as.data.frame(nos.log.phylomodel18$Sol[,1]) 
nos.log.phylo.MI.sol19 <- as.data.frame(nos.log.phylomodel19$Sol[,1]) 
nos.log.phylo.MI.sol20 <- as.data.frame(nos.log.phylomodel20$Sol[,1]) 
 
nos.log.phylo.MI.comb.sol1 <- rbind(nos.log.phylo.MI.sol1, 
nos.log.phylo.MI.sol2, nos.log.phylo.MI.sol3, nos.log.phylo.MI.sol4, 
nos.log.phylo.MI.sol5, nos.log.phylo.MI.sol6, nos.log.phylo.MI.sol7, 
nos.log.phylo.MI.sol8, nos.log.phylo.MI.sol9, nos.log.phylo.MI.sol10, 
                                    nos.log.phylo.MI.sol11, 
nos.log.phylo.MI.sol12, nos.log.phylo.MI.sol13, nos.log.phylo.MI.sol14, 
nos.log.phylo.MI.sol15, nos.log.phylo.MI.sol16, nos.log.phylo.MI.sol17, 
nos.log.phylo.MI.sol18, nos.log.phylo.MI.sol19,  
                                    nos.log.phylo.MI.sol20) 
posterior.mode(nos.log.phylo.MI.comb.sol1) 
hdi(nos.log.phylo.MI.comb.sol1, credMass=0.95) 
 
### Study environment model (with MI data) 
ce.model <- function(i) { 
  MCMCglmm(yi ~ factor(Captive.environment)-1, random = ~ ID, mev = MEV,  
           data = data4, verbose=T, nitt=5000000, thin=3000, burnin=150000,  
           prior=prior, pr=T) 
} 
 
MImodel(1) 
nos.log.cemodel1 <- ce.model(1) 
MImodel(2) 
nos.log.cemodel2 <- ce.model(2) 
MImodel(3) 
nos.log.cemodel3 <- ce.model(3) 
MImodel(4) 
nos.log.cemodel4 <- ce.model(4) 
MImodel(5) 
nos.log.cemodel5 <- ce.model(5) 
MImodel(6) 
nos.log.cemodel6 <- ce.model(6) 
MImodel(7) 
nos.log.cemodel7 <- ce.model(7) 
MImodel(8) 
nos.log.cemodel8 <- ce.model(8) 
MImodel(9) 
nos.log.cemodel9 <- ce.model(9) 
MImodel(10) 
nos.log.cemodel10 <- ce.model(10) 
MImodel(11) 
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nos.log.cemodel11 <- ce.model(11) 
MImodel(12) 
nos.log.cemodel12 <- ce.model(12) 
MImodel(13) 
nos.log.cemodel13 <- ce.model(13) 
MImodel(14) 
nos.log.cemodel14 <- ce.model(14) 
MImodel(15) 
nos.log.cemodel15 <- ce.model(15) 
MImodel(16) 
nos.log.cemodel16 <- ce.model(16) 
MImodel(17) 
nos.log.cemodel17 <- ce.model(17) 
MImodel(18) 
nos.log.cemodel18 <- ce.model(18) 
MImodel(19) 
nos.log.cemodel19 <- ce.model(19) 
MImodel(20) 
nos.log.cemodel20 <- ce.model(20) 
 
#VCV = variance components 
nos.log.ce.MI.comb.VCV <- mcmc.list(nos.log.cemodel1$VCV, 
nos.log.cemodel2$VCV, nos.log.cemodel3$VCV, nos.log.cemodel4$VCV, 
nos.log.cemodel5$VCV, nos.log.cemodel6$VCV, nos.log.cemodel7$VCV, 
                                    nos.log.cemodel8$VCV, 
nos.log.cemodel9$VCV, nos.log.cemodel10$VCV, nos.log.cemodel11$VCV, 
nos.log.cemodel12$VCV, nos.log.cemodel13$VCV, 
                                    nos.log.cemodel14$VCV, 
nos.log.cemodel15$VCV, nos.log.cemodel16$VCV, nos.log.cemodel17$VCV, 
nos.log.cemodel18$VCV, nos.log.cemodel19$VCV, 
                                    nos.log.cemodel20$VCV) 
summary(nos.log.ce.MI.comb.VCV) 
 
#Sol = solutions 
nos.log.ce.MI.comb.Sol <- mcmc.list(nos.log.cemodel1$Sol, 
nos.log.cemodel2$Sol, nos.log.cemodel3$Sol, nos.log.cemodel4$Sol, 
nos.log.cemodel5$Sol, nos.log.cemodel6$Sol, nos.log.cemodel7$Sol, 
nos.log.cemodel8$Sol, 
                                    nos.log.cemodel9$Sol, 
nos.log.cemodel10$Sol, nos.log.cemodel11$Sol, nos.log.cemodel12$Sol, 
nos.log.cemodel13$Sol, nos.log.cemodel14$Sol, nos.log.cemodel15$Sol,  
                                    nos.log.cemodel16$Sol, 
nos.log.cemodel17$Sol, nos.log.cemodel18$Sol, nos.log.cemodel19$Sol, 
nos.log.cemodel20$Sol) 
plot(mcmc.list(nos.log.cemodel1$Sol[,1], nos.log.cemodel2$Sol[,1], 
nos.log.cemodel3$Sol[,1]))  
 
autocorr.diag(nos.log.ce.MI.comb.VCV) #passes autocorrelation 
heidel.diag(nos.log.ce.MI.comb.VCV) #all passed 
 
nos.log.ce.MI.sol1 <- as.data.frame(nos.log.cemodel1$Sol[,1:4]) 
nos.log.ce.MI.sol2 <- as.data.frame(nos.log.cemodel2$Sol[,1:4]) 
nos.log.ce.MI.sol3 <- as.data.frame(nos.log.cemodel3$Sol[,1:4]) 
nos.log.ce.MI.sol4 <- as.data.frame(nos.log.cemodel4$Sol[,1:4]) 
nos.log.ce.MI.sol5 <- as.data.frame(nos.log.cemodel5$Sol[,1:4]) 
nos.log.ce.MI.sol6 <- as.data.frame(nos.log.cemodel6$Sol[,1:4]) 
nos.log.ce.MI.sol7 <- as.data.frame(nos.log.cemodel7$Sol[,1:4]) 
nos.log.ce.MI.sol8 <- as.data.frame(nos.log.cemodel8$Sol[,1:4]) 
nos.log.ce.MI.sol9 <- as.data.frame(nos.log.cemodel9$Sol[,1:4]) 
nos.log.ce.MI.sol10 <- as.data.frame(nos.log.cemodel10$Sol[,1:4]) 
nos.log.ce.MI.sol11 <- as.data.frame(nos.log.cemodel11$Sol[,1:4]) 
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nos.log.ce.MI.sol12 <- as.data.frame(nos.log.cemodel12$Sol[,1:4]) 
nos.log.ce.MI.sol13 <- as.data.frame(nos.log.cemodel13$Sol[,1:4]) 
nos.log.ce.MI.sol14 <- as.data.frame(nos.log.cemodel14$Sol[,1:4]) 
nos.log.ce.MI.sol15 <- as.data.frame(nos.log.cemodel15$Sol[,1:4]) 
nos.log.ce.MI.sol16 <- as.data.frame(nos.log.cemodel16$Sol[,1:4]) 
nos.log.ce.MI.sol17 <- as.data.frame(nos.log.cemodel17$Sol[,1:4]) 
nos.log.ce.MI.sol18 <- as.data.frame(nos.log.cemodel18$Sol[,1:4]) 
nos.log.ce.MI.sol19 <- as.data.frame(nos.log.cemodel19$Sol[,1:4]) 
nos.log.ce.MI.sol20 <- as.data.frame(nos.log.cemodel20$Sol[,1:4]) 
 
nos.log.ce.MI.comb.sol1 <- rbind(nos.log.ce.MI.sol1, nos.log.ce.MI.sol2, 
nos.log.ce.MI.sol3, nos.log.ce.MI.sol4, nos.log.ce.MI.sol5, 
nos.log.ce.MI.sol6, nos.log.ce.MI.sol7, nos.log.ce.MI.sol8, 
nos.log.ce.MI.sol9, nos.log.ce.MI.sol10, 
                                 nos.log.ce.MI.sol11, nos.log.ce.MI.sol12, 
nos.log.ce.MI.sol13, nos.log.ce.MI.sol14, nos.log.ce.MI.sol15, 
nos.log.ce.MI.sol16, nos.log.ce.MI.sol17, nos.log.ce.MI.sol18, 
nos.log.ce.MI.sol19,  
                                 nos.log.ce.MI.sol20) 
posterior.mode(nos.log.ce.MI.comb.sol1) 
hdi(nos.log.ce.MI.comb.sol1, credMass=0.95) 
 
#### Trait type (with MI data) 
t.model <- function(i) { 
  MCMCglmm(yi ~ factor(Trait)-1, random = ~ ID, mev = MEV,  
           data = data4, verbose=T, nitt=5000000, thin=3000, burnin=150000,  
           prior=prior, pr=T) 
} 
 
MImodel(1) 
nos.log.tmodel1 <- t.model(1) 
MImodel(2) 
nos.log.tmodel2 <- t.model(2) 
MImodel(3) 
nos.log.tmodel3 <- t.model(3) 
MImodel(4) 
nos.log.tmodel4 <- t.model(4) 
MImodel(5) 
nos.log.tmodel5 <- t.model(5) 
MImodel(6) 
nos.log.tmodel6 <- t.model(6) 
MImodel(7) 
nos.log.tmodel7 <- t.model(7) 
MImodel(8) 
nos.log.tmodel8 <- t.model(8) 
MImodel(9) 
nos.log.tmodel9 <- t.model(9) 
MImodel(10) 
nos.log.tmodel10 <- t.model(10) 
MImodel(11) 
nos.log.tmodel11 <- t.model(11) 
MImodel(12) 
nos.log.tmodel12 <- t.model(12) 
MImodel(13) 
nos.log.tmodel13 <- t.model(13) 
MImodel(14) 
nos.log.tmodel14 <- t.model(14) 
MImodel(15) 
nos.log.tmodel15 <- t.model(15) 
MImodel(16) 
nos.log.tmodel16 <- t.model(16) 
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MImodel(17) 
nos.log.tmodel17 <- t.model(17) 
MImodel(18) 
nos.log.tmodel18 <- t.model(18) 
MImodel(19) 
nos.log.tmodel19 <- t.model(19) 
MImodel(20) 
nos.log.tmodel20 <- t.model(20) 
 
#VCV = variance components 
nos.log.t.MI.comb.VCV <- mcmc.list(nos.log.tmodel1$VCV, 
nos.log.tmodel2$VCV, nos.log.tmodel3$VCV, nos.log.tmodel4$VCV, 
nos.log.tmodel5$VCV, nos.log.tmodel6$VCV, nos.log.tmodel7$VCV, 
                                   nos.log.tmodel8$VCV, 
nos.log.tmodel9$VCV, nos.log.tmodel10$VCV, nos.log.tmodel11$VCV, 
nos.log.tmodel12$VCV, nos.log.tmodel13$VCV, 
                                   nos.log.tmodel14$VCV, 
nos.log.tmodel15$VCV, nos.log.tmodel16$VCV, nos.log.tmodel17$VCV, 
nos.log.tmodel18$VCV, nos.log.tmodel19$VCV, 
                                   nos.log.tmodel20$VCV) 
summary(nos.log.t.MI.comb.VCV) 
 
#Sol = solutions 
nos.log.t.MI.comb.Sol <- mcmc.list(nos.log.tmodel1$Sol, 
nos.log.tmodel2$Sol, nos.log.tmodel3$Sol, nos.log.tmodel4$Sol, 
nos.log.tmodel5$Sol, nos.log.tmodel6$Sol, nos.log.tmodel7$Sol, 
nos.log.tmodel8$Sol, 
                                   nos.log.tmodel9$Sol, 
nos.log.tmodel10$Sol, nos.log.tmodel11$Sol, nos.log.tmodel12$Sol, 
nos.log.tmodel13$Sol, nos.log.tmodel14$Sol, nos.log.tmodel15$Sol,  
                                   nos.log.tmodel16$Sol, 
nos.log.tmodel17$Sol, nos.log.tmodel18$Sol, nos.log.tmodel19$Sol, 
nos.log.tmodel20$Sol) 
plot(mcmc.list(nos.log.tmodel1$Sol[,1], nos.log.tmodel2$Sol[,1], 
nos.log.tmodel3$Sol[,1]))  
 
autocorr.diag(nos.log.t.MI.comb.VCV) #passes autocorrelation 
heidel.diag(nos.log.t.MI.comb.VCV) #all passed 
 
nos.log.t.MI.sol1 <- as.data.frame(nos.log.tmodel1$Sol[,1:5]) 
nos.log.t.MI.sol2 <- as.data.frame(nos.log.tmodel2$Sol[,1:5]) 
nos.log.t.MI.sol3 <- as.data.frame(nos.log.tmodel3$Sol[,1:5]) 
nos.log.t.MI.sol4 <- as.data.frame(nos.log.tmodel4$Sol[,1:5]) 
nos.log.t.MI.sol5 <- as.data.frame(nos.log.tmodel5$Sol[,1:5]) 
nos.log.t.MI.sol6 <- as.data.frame(nos.log.tmodel6$Sol[,1:5]) 
nos.log.t.MI.sol7 <- as.data.frame(nos.log.tmodel7$Sol[,1:5]) 
nos.log.t.MI.sol8 <- as.data.frame(nos.log.tmodel8$Sol[,1:5]) 
nos.log.t.MI.sol9 <- as.data.frame(nos.log.tmodel9$Sol[,1:5]) 
nos.log.t.MI.sol10 <- as.data.frame(nos.log.tmodel10$Sol[,1:5]) 
nos.log.t.MI.sol11 <- as.data.frame(nos.log.tmodel11$Sol[,1:5]) 
nos.log.t.MI.sol12 <- as.data.frame(nos.log.tmodel12$Sol[,1:5]) 
nos.log.t.MI.sol13 <- as.data.frame(nos.log.tmodel13$Sol[,1:5]) 
nos.log.t.MI.sol14 <- as.data.frame(nos.log.tmodel14$Sol[,1:5]) 
nos.log.t.MI.sol15 <- as.data.frame(nos.log.tmodel15$Sol[,1:5]) 
nos.log.t.MI.sol16 <- as.data.frame(nos.log.tmodel16$Sol[,1:5]) 
nos.log.t.MI.sol17 <- as.data.frame(nos.log.tmodel17$Sol[,1:5]) 
nos.log.t.MI.sol18 <- as.data.frame(nos.log.tmodel18$Sol[,1:5]) 
nos.log.t.MI.sol19 <- as.data.frame(nos.log.tmodel19$Sol[,1:5]) 
nos.log.t.MI.sol20 <- as.data.frame(nos.log.tmodel20$Sol[,1:5]) 
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nos.log.t.MI.comb.sol1 <- rbind(nos.log.t.MI.sol1, nos.log.t.MI.sol2, 
nos.log.t.MI.sol3, nos.log.t.MI.sol4, nos.log.t.MI.sol5, nos.log.t.MI.sol6, 
nos.log.t.MI.sol7, nos.log.t.MI.sol8, nos.log.t.MI.sol9, 
nos.log.t.MI.sol10, 
                                nos.log.t.MI.sol11, nos.log.t.MI.sol12, 
nos.log.t.MI.sol13, nos.log.t.MI.sol14, nos.log.t.MI.sol15, 
nos.log.t.MI.sol16, nos.log.t.MI.sol17, nos.log.t.MI.sol18, 
nos.log.t.MI.sol19,  
                                nos.log.t.MI.sol20) 
posterior.mode(nos.log.t.MI.comb.sol1) 
hdi(nos.log.t.MI.comb.sol1, credMass=0.95) 
 
#compare MI model results to original analysis model results 
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Appendix 4: Supplementary Material to Chapter 3 

 

This appendix relates to Chapter 3: Changes in fitness over generations in captivity in 

conservation breeding programs. 

A4.1 SUPPLEMENTARY TABLES 

Table A4.1.1: Modelled results for offspring survival. 
A) Results of offspring survival for the extended dataset analysis (N = 37,484 individuals) after 

model averaging (conditional average). B) Results of offspring survival for the extended 

dataset F2+ analysis when individuals with one or both wild-born parents are excluded (N = 

27,734 individuals). Estimates presented are after model averaging (conditional average). 

 
  

Predictor Estimate Adjusted SE 95% CI RI 

A) All offspring     

     Intercept 0.5387 0.2039 0.1391, 0.9382  

     Dam generation -0.0367 0.0188 -0.0735, 0.0002 0.70 

     Sire generation 0.0350 0.0192 -0.0026, 0.0726 0.83 

     Dam age at breeding -0.0755 0.0130 -0.1010, -0.0499 1 

     Sire age at breeding 0.0522 0.0133 0.0261, 0.0782 1 

     Dam f 0.0172 0.0134 -0.0090, 0.0435 0.32 

     Sire f -0.0073 0.0135 -0.0337, 0.0192 0.21 

     Offspring f -0.1526 0.0128 -0.1776, -0.1276 1 

B) F2+     

     Intercept 0.5280 0.1814 0.1725, 0.8834  

     Dam generation -0.0741 0.0211 -0.1155, -0.0328 1 

     Sire generation 0.0585 0.0205 0.0182, 0.0988 1 

     Dam age at breeding -0.1088 0.0148 -0.1378, -0.0797 1 

     Sire age at breeding 0.0735 0.0148 0.0445, 0.1026 1 

     Dam f 0.0163 0.0150 -0.0132, 0.0457 0.32 

     Sire f 0.0052 0.0152 -0.0245, 0.0349 0.19 

     Offspring f -0.1884 0.0144 -0.2167, -0.1602 1 
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Table A4.1.2: Top model sets. 
Top model set (top 2 AICC) of generalised linear mixed models for each of the five models 

where one offspring per litter/clutch has been selected. All parameters were retained in each 

of the five top model sets. Subset 3 was used as a representative model to fit random slopes. 

a Change in AICC from the best model. 
b Akaike model weight. 
  

Subset Model statement AICC Δi
a wi

b 

1 b0 + Dam age + Sire age + Offspring f  27526.9  0.226 

 b0 + Sire generation + Dam age + Sire age + Offspring f 27528.1 1.20 0.124 

 b0 + Dam generation + Dam age + Sire age + Offspring f 27528.2 1.33 0.116 

 b0 + Dam age + Sire age + Sire f + Offspring f 27528.6 1.77 0.093 

 b0 + Dam age + Sire age + Dam f + Offspring f 27528.7 1.81 0.091 

2 b0 + Dam age + Sire age + Offspring f 27516.3  0.243 

 b0 + Sire generation + Dam age + Sire age + Offspring f 27517.6 1.29 0.127 

 b0 + Dam age + Sire age + Sire f + Offspring f 27518.3 1.95 0.091 

 b0 + Dam age + Sire age + Dam f + Offspring f 27518.3 1.97 0.090 

 b0 + Dam generation + Dam age + Sire age + Offspring f 27518.3 1.99 0.090 

3 b0 + Dam age + Sire age + Offspring f 27527.7  0.224 

 b0 + Sire generation + Dam age + Sire age + Offspring f 27528.7 0.99 0.136 

 b0 + Dam generation + Dam age + Sire age + Offspring f 27529.3 1.61 0.100 

 b0 + Dam age + Sire age + Dam f + Offspring f 27529.5 1.81 0.091 

 b0 + Dam age + Sire age + Sire f + Offspring f 27529.5 1.81 0.090 

4 b0 + Sire generation + Dam age + Sire age + Offspring f 27559.7  0.207 

 b0 + Dam age + Sire age + Offspring f 27560.7 0.97 0.127 

 b0 + Sire generation + Dam age + Sire age + Sire f + Offspring f  27561.4 1.69 0.089 

 b0 + Dam age + Sire age + Sire f + Offspring f 27561.6 1.87 0.081 

 b0 + Dam generation + Sire generation + Dam age + Sire age + 

Offspring f 
27561.7 1.96 0.078 

5 b0 + Sire generation + Dam age + Sire age + Offspring f 27514.2  0.175 

 b0 + Dam age + Sire age + Offspring f 27514.3 0.07 0.169 

 b0 + Dam age + Sire age + Sire f + Offspring f 27515.6 1.31 0.091 

 b0 + Dam generation + Dam age + Sire age + Offspring f 27515.8 1.51 0.082 

 b0 + Sire generation + Dam age + Sire age + Sire f + Offspring f 27516.0 1.79 0.072 

 b0 + Dam generation + Sire generation + Dam age + Sire age + 

Offspring f 
27516.2 1.94 0.066 

 b0 + Sire generation + Dam age + Sire age + Dam f + Offspring f 27516.2 1.98 0.065 
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A4.2 SUPPLEMENTARY FIGURES 

 

Figure A4.2.1: Model estimates for offspring survival analysis with five random subsets. 
Estimates (square +/- SE interval) using the five random selections of one offspring per 

litter/clutch (N = 21,282 individuals). The third subset (black) was selected as the 

representative dataset to model random slopes. 
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Figure A4.2.2: Number of each species in each dataset. 
Number of individuals of each species in the main random litter-mate analysis (black, total N 

= 21,282), representative random litter-mate F2+ analysis (black hatched, total N = 16,516), 

extended dataset model (grey, total N = 37,484), and extended dataset F2+ model (grey 

hatched, total N = 27,734). 
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Figure A4.2.3: Random slope estimates for African wild dog. 
Random slopes estimated using a dataset with only one individual per litter/clutch (N = 

21,282), or the dataset with only one individual per litter/clutch and F2+ offspring only (N = 

16,516) for dam and sire generation F2+. Points represent raw data, shaded by density. 

  



238 

 

 
Figure A4.2.4: Random slope estimates for black-and-white ruffed lemur. 
Random slopes estimated using a dataset with only one individual per litter/clutch (N = 

21,282), or the dataset with only one individual per litter/clutch and F2+ offspring only (N = 

16,516) for dam and sire generation F2+. Points represent raw data, shaded by density. 
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Figure A4.2.5: Random slope estimates for cheetah. 
Random slopes estimated using a dataset with only one individual per litter/clutch (N = 

21,282), or the dataset with only one individual per litter/clutch and F2+ offspring only (N = 

16,516) for dam and sire generation F2+. Points represent raw data, shaded by density.  
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Figure A4.2.6: Random slope estimates for Eastern bongo. 
Random slopes estimated using a dataset with only one individual per litter/clutch (N = 

21,282), or the dataset with only one individual per litter/clutch and F2+ offspring only (N = 

16,516) for dam and sire generation F2+. Points represent raw data, shaded by density. 
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Figure A4.2.7: Random slope estimates for European mink. 
Random slopes estimated using a dataset with only one individual per litter/clutch (N = 

21,282), or the dataset with only one individual per litter/clutch and F2+ offspring only (N = 

16,516) for dam and sire generation F2+. Points represent raw data, shaded by density. 
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Figure A4.2.8: Random slope estimates for Goeldi’s monkey. 
Random slopes estimated using a dataset with only one individual per litter/clutch (N = 

21,282), or the dataset with only one individual per litter/clutch and F2+ offspring only (N = 

16,516) for dam and sire generation F2+. Points represent raw data, shaded by density. 
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Figure A4.2.9: Random slope estimates for meerkat. 
Random slopes estimated using a dataset with only one individual per litter/clutch (N = 

21,282), or the dataset with only one individual per litter/clutch and F2+ offspring only (N = 

16,516) for dam and sire generation F2+. Points represent raw data, shaded by density. 
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Figure A4.2.10: Random slope estimates for prehensile-tailed skink. 
Random slopes estimated using a dataset with only one individual per litter/clutch (N = 

21,282), or the dataset with only one individual per litter/clutch and F2+ offspring only (N = 

16,516) for dam and sire generation F2+. Points represent raw data, shaded by density. There 

was not enough variation in dam or sire inbreeding to fit random slopes for these parameters 

(Table 3.1). 
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Figure A4.2.11: Random slope estimates for radiated tortoise. 
Random slopes estimated using a dataset with only one individual per litter/clutch (N = 

21,282). Points represent raw data, shaded by density. There was not enough variation in dam 

sire or offspring inbreeding to fit random slopes for these parameters, nor were there F2+ 

offspring (Table 3.1).  
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Figure A4.2.12: Random slope estimates for red panda. 
Random slopes estimated using a dataset with only one individual per litter/clutch (N = 

21,282), or the dataset with only one individual per litter/clutch and F2+ offspring only (N = 

16,516) for dam and sire generation F2+. Points represent raw data, shaded by density. 
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Figure A4.2.13: Random slope estimates for red ruffed lemur. 
Random slopes estimated using a dataset with only one individual per litter/clutch (N = 

21,282), or the dataset with only one individual per litter/clutch and F2+ offspring only (N = 

16,516) for dam and sire generation F2+. Points represent raw data, shaded by density. 

  



248 

 

 
Figure A4.2.14: Random slope estimates for red wolf. 
Random slopes estimated using a dataset with only one individual per litter/clutch (N = 

21,282), or the dataset with only one individual per litter/clutch and F2+ offspring only (N = 

16,516) for dam and sire generation F2+. Points represent raw data, shaded by density. 

  



249 

 

 
Figure A4.2.15: Random slope estimates for scimitar-horned oryx. 
Random slopes estimated using a dataset with only one individual per litter/clutch (N = 

21,282), or the dataset with only one individual per litter/clutch and F2+ offspring only (N = 

16,516) for dam and sire generation F2+. Points represent raw data, shaded by density. 
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Figure A4.2.16: Random slope estimates for Tasmanian devil. 
Random slopes estimated using a dataset with only one individual per litter/clutch (N = 

21,282), or the dataset with only one individual per litter/clutch and F2+ offspring only (N = 

16,516) for dam and sire generation F2+. Points represent raw data, shaded by density. 

  



251 

 

 
Figure A4.2.17: Random slope estimates for Western swamp tortoise. 
Random slopes estimated using a dataset with only one individual per litter/clutch (N = 

21,282). There was not enough variation in dam sire or inbreeding to fit random slopes for 

these parameters, nor were there F2+ offspring (Table 3.1).  
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Appendix 5: Supplementary Material to Chapter 4 

 

This appendix relates to Chapter 4: From reference genomes to population genomics: 

comparing three reference-aligned reduced representation sequencing pipelines in two 

wildlife species. 

A5.1 SUPPLEMENTARY METHODS 

Tasmanian devil reduced-representation sequencing 

In response to concerns about the persistence of the devil in the wild, a captive insurance 

population was established in 2006 with the intake of 122 founders from across Tasmania 

(Hogg et al., 2015). Due to the progression of the disease, founding devils were only obtained 

from limited locations on the east coast or from the north-western region of Tasmania, 

causing distinct population structuring among the founding individuals (Hogg et al., 2015). To 

overcome concerns of potential inbreeding, founders were regularly paired with individuals 

from the opposing provenance resulting in mixed lineages among the insurance population 

(Hogg et al., 2015). The insurance population now consists of over 700 devils across 37 zoo-

based facilities and free-range enclosures, one island (Maria Island) and a fenced peninsula 

(Forestier Peninsula) (Hogg et al., 2017b). For this study, we selected 131 Tasmanian devil 

samples from our genomic DNA database, including 65 wild-caught individuals of both 

eastern and western origins, and 66 captive-born individuals from the Tasmanian devil 

insurance population with mixed lineages (Hogg et al., 2015). The wild-caught individuals 

included here were a subset of those used to establish the insurance population (i.e. 

population “founders”), for which sufficient archival DNA was available for analysis. 

Ear biopsies in 70% ethanol, or 1 mL whole blood in EDTA, have been collected from 

Tasmanian devils by the Save the Tasmanian Devil Program, or participating zoos, for 

management purposes since the commencement of the insurance population. These archival 

samples varied in quality, assessed visually via gel electrophoresis (see below). DNA was 

extracted using either a modified phenol/chloroform protocol (Sambrook & Russell, 2006) or 

commercial DNA extraction kit (Qiagen DNeasy Blood & Tissue Kit). DNA sample quality was 

assessed using a NanoDrop to measure DNA concentration, and by visualisation via agarose 

gel (0.8%, 90 V for 30 minutes) to measure concentration and fragmentation. Extractions 
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were scored from 1 - 8, with a strong, clear band on the gel given a ranking of 1 - 2 ‘high 

quality’, 3 - 4 is a moderate-strength band, 5 - 6 is a weak fragmented ‘poor quality’ band and 

7 - 8 is no evidence of a band or DNA ‘very poor quality’ (see Figure A5.3.5a for examples). Of 

our 131 unique samples, 26 (19.8%) were rated ‘high’ quality, 49 (28.6%) ‘moderate’ quality, 

and 56 (32.6%) ‘poor’ quality. None were rated ‘very poor’. There was no clear trend in sample 

quality vs. sequencing quality, measured as proportion of missing data/total SNPs (Figure 

A5.3.5b-d) across the three pipelines. 

Of the many RRS techniques available, DArTseqTM (Diversity Arrays Technology Pty Ltd, 

hereafter DArT PL) is particularly well-used in Australia for varied applications including 

management of selective breeding programs, genetic mapping, and population genetics 

studies (Ren et al., 2015; Lambert et al., 2016; Baloch et al., 2017). Initially developed for use 

in commercial crop species, the approach has since been applied to diverse wildlife including 

mammals (Schultz et al., 2018), reptiles (Melville et al., 2017), amphibians (Lambert et al., 

2016), and fish (Donnellan et al., 2015; DiBattista et al., 2017; Pazmiño et al., 2017). The 

restriction enzyme combination used by DArT PL for our dataset was PstI-SphI, with fragments 

sequenced on a HiSeq 2500 as 77-bp single-end reads. DArT PL also performed technical 

sample replicates, resulting in raw sequences from 166 samples for analysis. Following 

sequencing, DArT PL returns results from their proprietary data filtering pipeline, DArTSoft14, 

as a Microsoft Excel spreadsheet. Recently, the dartR package (Gruber et al., 2018) in R (R 

Core Team, 2018) has been developed for filtering and analysis of the DArT PL spreadsheets. 

In this study however, we processed the raw sequencing reads also provided by DArT PL. 

Raw data were processed using the ‘process_radtags’ module of Stacks v2.0b (Catchen et al., 

2013) with the flags --disable_rad_check and --inline_null (as a single inline barcode was used) 

to remove barcodes (4bp - 8bp) for each sequencing lane, check for adapter contamination 

and clean data of reads containing uncalled bases. We performed checks of the log files to 

ensure all samples had a reasonable number of reads. Cleaned reads were then investigated 

using FastQC (Andrews, 2010) to visually check for sequencing errors and to determine if 

reads needed to be trimmed. These cleaned reads were used as input for further processing 

and analysis in all three pipelines. 
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A5.2 SUPPLEMENTARY TABLES 

Table A5.2.1: Summary statistics for the resultant SNP loci datasets of three pipelines. 
Data filtered less stringently at a higher allowable missing data (30% call rate; cf Table 4.1), for Tasmanian devil (N = 131) and pink-footed goose 
(N = 40), including the total number of loci (total loci), the average number of loci sequenced across individuals (mean loci), the amount of 
missing data (%), the calculated error rates (%), the mean observed heterozygosity across loci (HO), the mean expected heterozygosity across 
loci (HE), and the average multilocus heterozygosity of individuals (MLH). 

1 Error rates could not be calculated for the pink-footed goose dataset as no replicates were included in the current analysis. Error rate is calculated after filtering on SNPs with > 85% 
reproducibility, so is lower than initial error rates. 
  

Dataset Pipeline Total loci Mean loci (min; max) % missing Error rate1 (%) HO (± SD) HE (± SD) MLH (± SD) 
Devils Stacks 2,537 1,773.4 (680; 2,186) 30.1 1.9 0.215 (0.168) 0.260 (0.167) 0.208 (0.042) 
 SAMtools 786 479.4 (172; 569) 39.0 5.8 0.342 (0.186) 0.357 (0.121) 0.328 (0.090) 
 GATK 2,450 1,834.8 (682; 2,192) 25.1 4.9 0.163 (0.147) 0.251 (0.163) 0.167 (0.033) 

Geese Stacks 139,979 86,844.2 (1,616; 128,458) 38.0 NA 0.163 (0.157) 0.207 (0.153) 0.134 (0.036) 
 SAMtools 146,599 79,440.6 (3,407; 109,403) 45.8 NA 0.290 (0.181) 0.351 (0.134) 0.286 (0.117) 
 GATK 601,707 412,978.5 (10,584; 553,941) 31.4 NA 0.137 (0.125) 0.216 (0.155) 0.126 (0.041) 
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A5.3 SUPPLEMENTARY FIGURES 

 
 

Figure A5.3.1: Ratios of genotype calls between the three different pipelines for devils and 
geese. 
Blue indicates the most frequent homozygotes, orange indicates heterozygotes and grey the 

least frequent homozygotes. Note that SAMtools and GATK are able to report those 

homozygotes that match the reference or alternate allele but Stacks assigns the most 

frequent allele as the reference allele, hence how these genotypes are referred to here. 
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Figure A5.3.2: Venn diagram depicting number of shared loci between the three different 
pipelines for (a) devil and (b) goose. 
  

(a) 

(b) 
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Figure A5.3.3: PCoA of the devil dataset only for the three pipelines, considering all three 
populations. 
“West” (red) and “east” (blue) are the wild-born founding individuals (N = 65). “IP” (green) 

are the captive-born insurance population individuals. Row one shows data processed with a 

call rate of 70%, row two shows data processed less stringently with a call rate of 30%. Inertia 

ellipses illustrate groupings and do not necessarily indicate confidence. 
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Figure A5.3.4: PCoAs of the two datasets after processing through three pipelines. 
Data filtered less stringently, allowing more missing data (30% call rate). For devils, red is the 

“west” and blue is the “east” population. For goose, red is the “Iceland” and blue is the 

“Denmark” population. Inertia ellipses illustrate groupings and do not necessarily indicate 

confidence. 
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Figure A5.3.5: Gel quality vs. missing data. 
a) Gel image example of sample quality from 1 (highest) to 8 (no apparent DNA); b) - d) Gel 

quality rank (rank 7 and 8 not included as too low quality to include in study) vs. the amount 

of missing data of a sample for the b) Stacks, c) SAMtools and d) GATK pipelines. Boxplots are 

scaled with the width proportional to the number of samples within the gel quality rank 

(range 9 to 44). 
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Appendix 6: Supplementary Code to Chapter 4 

 

This appendix relates to Chapter 4: From reference genomes to population genomics: 

comparing three reference-aligned reduced representation sequencing pipelines in two 

wildlife species. 

The following R code has been published alongside the article presented in Chapter 4 as the 

custom R script to process reduced representation sequencing SNPs. The R script contains 

functions to read in VCF files; filter on allelic depth, coverage difference, call rate, minor allele 

frequency, heterozygosity, reproducibility; identify possible sex-linked SNPs; and calculate 

error rates post-filtering. Comments are annotated with #. 

#This document has been created to process reduced representation 
sequencing output in VCF format (e.g. from Stacks/2.0b pipeline with output 
generated from the "populations" module specified with the -vcf flag to 
obtain populations.snps.vcf file). We provide code to reproduce metrics 
provided by DArT PL (DArTseq) from user-processed data for downstream 
filtering.  
 
#For information about the vcfR package in R, see online 
[tutorial](https://knausb.github.io/vcfR_documentation/index.html) from 
package creators. Also see this [pdf](https://samtools.github.io/hts-
specs/VCFv4.2.pdf) for how to interpret vcf format. 
 
#Set working directory first. 
 
rm(list=ls()) 
 
#Need to install "vcfR" package in R if not already installed. Once 
installed, load package: 
 
library(vcfR) 
 
##Read in data 
#Read in and check populations.snps.vcf file: 
 
vcf <- read.vcfR("populations.snps.vcf") 
head(vcf) 
queryMETA(vcf) 
 
#The vcf file has a format with three sections: 
#1. Meta information - defines the abbreviations used elsewhere in the 
file. 
#2. Fixed information - first 8 columns, contain chromosomal position & ID, 
REF and SNP allele, and SNP quality info: 
#  + allelic depths for the ref and alt alleles in the order listed (AD) 
#  + allele frequency (AF) 
#  + combined depth across samples (DP) 
#  + number of samples with data (NS) 
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#3. Genotype information - one column per sample, includes: 
#  + genotype encoded as alleles separated by /. Alleles are "0" for the 
reference allele, "1" for alternate, or "." if missing (GT). Heterozygote : 
0/1 
#  + read depth at this position for this sample (DP) 
#  + haplotype qualities (HQ) 
#  + genotype likelihoods (GL) 
#  + conditional genotype quality (GQ) 
 
#Reformat the dataset to obtain SNP data by combining the chromosome 
position information and the genotype information in a new object. 
'extract.gt' function extracts genotype information, 'getFIX' function 
extracts fixed data for each row. 
 
gt <- extract.gt(vcf, IDtoRowNames = F) 
fixed <- getFIX(vcf) 
snps <- cbind(fixed[,1:5], gt) 
head(snps)[,1:10] 
snps.1 <- as.data.frame(as.matrix(snps)) 
snps.1$CHROM <- as.character(as.factor(snps.1$CHROM)) 
snps.1$POS <- as.character(as.factor(snps.1$POS)) 
snps.1$ID <- as.character(as.factor(snps.1$ID)) 
snps.1$identifier <- with(snps.1, paste0(CHROM, POS, ID)) 
snps.3 <- snps.1[,1:(ncol(snps.1)-1)] 
 
##Data filtering 
 
#Our raw data has been filtered in Stacks/2.0b "populations" module with: 
#  * __-r 0.70__ (must be sequenced at >= 70% of samples in a population to 
process loci). This is equivalent to "CallRate" column in DArTseq filtered 
data, although it is calculated including technical replicates in Stacks 
data. 
#  * __--min_maf 0.01__ 
#  * __--max_obs_het 0.70__ 
#  * __--write_random_snp__ (restrict data analysis to one random SNP per 
locus) - filters linked SNPs. However, any filtering after this step in R 
uses data already reduced to one SNP per locus, not necessarily the best 
SNP in the locus if further filtering is needed, so better to change 
filtering parameters in Stacks rather than using R post-Stacks. 
   
####Read Depth 
#Filter on read depth to remove SNPs with low read depth at ref and/or alt 
allele. This is equivalent to the AvgCountRef and AvgCountSNP columns in 
the DArT data.  
#This step can be time consuming with many samples. 
 
read.depth <- extract.gt(vcf, element="AD") 
length(unique(rownames(read.depth))) 
nrow(read.depth) 
read.depth.ref <- masplit(read.depth, record = 1, sort=0) 
read.depth.snp <- masplit(read.depth, record = 2, sort=0) 
 
#for reference allele coverage: 
head(read.depth.ref)[1:6,1:6] 
read.depth.ref.count<- rowSums(read.depth.ref, na.rm=T) 
head(read.depth.ref.count) 
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read.depth.ref <- as.data.frame(read.depth.ref) 
read.depth.ref$length <- rep(NA) 
 
n <- ncol(read.depth.ref)-1 
for (r in 1:nrow(read.depth.ref)) { 
  read.depth.ref$length[r] <- length(which(read.depth.ref[r,1:n] !=0)) 
} 
 
read.depth.ref.avg <- read.depth.ref.count/read.depth.ref$length 
head(read.depth.ref.avg) 
summary(read.depth.ref.avg) 
 
#for snp allele coverage: 
read.depth.snp.count<- rowSums(read.depth.snp, na.rm=T) 
head(read.depth.snp.count) 
 
read.depth.snp <- as.data.frame(read.depth.snp) 
read.depth.snp$length <- rep(NA) 
 
n2 <- ncol(read.depth.snp)-1 
for (r in 1:nrow(read.depth.snp)) { 
  read.depth.snp$length[r] <- length(which(read.depth.snp[r,1:n2] !=0)) 
} 
 
read.depth.snp.avg <- read.depth.snp.count/read.depth.snp$length 
summary(read.depth.snp.avg) 
 
#We have selected a minimum read depth of 2.5 for our data. Histograms can 
be used to visualise appropriate thresholds for other types of data. 
 
length(which(read.depth.ref.avg > 2.5)) 
length(which(read.depth.snp.avg > 2.5)) 
 
coverage.rd <- cbind(read.depth.ref.avg, read.depth.snp.avg) 
coverage.rd <- as.data.frame(coverage.rd) 
coverage.rd$snp.index <- 1:nrow(coverage.rd) 
coverage.rd1 <- coverage.rd[which(coverage.rd$read.depth.ref.avg > 2.5),] 
nrow(coverage.rd) 
nrow(coverage.rd1) 
coverage.rd2 <- coverage.rd1[which(coverage.rd1$read.depth.snp.avg > 2.5),] 
nrow(coverage.rd2) 
 
par(mfrow=c(2,2)) 
hist(read.depth.ref.avg, main="Read depth of ref allele", xlab="Read 
depth") 
hist(read.depth.snp.avg, main="Read depth of snp allele", xlab="Read 
depth") 
hist(coverage.rd2$read.depth.ref.avg, main="Read depth of ref allele > 
2.5", xlab="Read depth") 
hist(coverage.rd2$read.depth.snp.avg, main="Read depth of snp allele > 
2.5", xlab="Read depth") 
 
index <- 1:nrow(snps.3) 
snps.index <- cbind(index, snps.3) 
snps.rd <- snps.index[which(snps.index[,1] %in% coverage.rd2$snp.index),] 
nrow(snps.rd) 
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####Coverage 
#We also need to filter by __coverage__. If the reference and SNP allele do 
not amplify at the same rate, this may indicate potential bias (errors in 
calling). DArT PL includes AvgCountRef as the sum of the tag read counts 
for all samples, divided by the number of samples with non-zero tag read 
counts for the reference allele row, AvgCountSNP is the same but for the 
SNP allele row.  
#Coverage can be calculated as the absolute percentage difference between 
the AvgCountRef and AvgCountSNP columns. vcf output gives Allele Depth, 
with coverage of reference, then coverage of SNP allele e.g. AD = 4,3 means 
reference allele has coverage = 4, snp allele coverage = 3. Count only non-
zero reads (already filtered out anyway from above). 
 
#Need to extract AD (allelic depth) for each sample and loci. 
 
coverage.rd2$max <- pmax(coverage.rd2$read.depth.ref.avg, 
coverage.rd2$read.depth.snp.avg) 
coverage.rd2$diff <- ((abs(coverage.rd2$read.depth.ref.avg - 
coverage.rd2$read.depth.snp.avg))/(coverage.rd2$max))*100 
hist(coverage.rd2$diff, main="Coverage difference", xlab="% diff in 
coverage") 
 
#Histogram can be used to determine appropriate thresholds for filtering. 
We aim for SNPs with a low coverage difference. The following check will 
give an idea as to how many SNPs will be retained with varying coverage 
difference, but is not filtering.  
 
length(which(coverage.rd2$diff <= 80)) 
 
####Call Rate 
 
#Histogram of Call Rate: 
 
callrate <- apply(snps.rd, 1, function(x) 100-
(sum(is.na(x))/(ncol(snps.rd)-5))*100) 
hist(callrate, main="Call Rate", xlab="Call Rate") 
 
#Number of SNPs retained with call rate threshold: 
length(which(callrate >= 30)) 
 
 
####Minor Allele Frequency (MAF) 
#SNPs have already been filtered on MAF in Stacks (using --min_maf 0.01 
flag in populations module). We may wish to further filter on MAF for 
downstream purposes, e.g. parentage analysis is optimised with only a few 
hundred SNPs at high MAF. 
 
snps.rd1 <- snps.rd 
snpsrd1 <- as.data.frame(snps.rd1) 
snps.rd1$refcount <- rep(NA) 
n3 <- ncol(snps.rd) 
for (r in 1:nrow(snps.rd1)) { 
  snps.rd1$refcount[r] <- 2*(length(which(snps.rd1[r,7:n3] == "0/0"))) +  
    length(which(snps.rd1[r,7:n3] == "0/1")) 
} 
 
snps.rd1$altcount <- rep(NA) 
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for (r in 1:nrow(snps.rd1)) { 
  snps.rd1$altcount[r] <- 2*(length(which(snps.rd1[r,7:n3] == "1/1"))) +  
    length(which(snps.rd1[r,7:n3] == "0/1")) 
} 
 
snps.rd1$minor <- pmin(snps.rd1$refcount, snps.rd1$altcount) 
snps.rd1$total <- snps.rd1$refcount + snps.rd1$altcount 
snps.rd1$maf <- snps.rd1$minor/snps.rd1$total 
hist(snps.rd1$maf, main="Minor Allele Frequency", xlab="MAF") 
 
#Number of SNPs retained with MAF threshold: 
 
length(which(snps.rd1$maf > 0.01)) 
 
###Heterozygosity 
#SNP calling may result in an excess of heterozygotes. We filtered on --
max_obs_het of 0.7 in the "populations" module of Stacks already. For other 
pipelines where heterozygosity filtering is not easily achieved, or if the 
user would like to visualise data to choose appropriate threshold: 
 
#Heterozygosity 
snps.rd2 <- snps.rd 
snps.rd2$na <- rep(NA) 
snps.rd2$na <- apply(snps.rd2, 1, function(x) sum(is.na(x))) 
snps.rd2$seq <- rep(NA) 
snps.rd2$seq <- ncol(snps.rd2) - snps.rd2$na - 8 
snps.rd2$hets <- apply(snps.rd2, 1, function(x) length(which(x == "0/1"))) 
het_count.rd <- 100*(snps.rd2$hets/snps.rd2$seq) 
hist(het_count.rd, main="Heterozygosity", xlab="Proportion of heterozygotes 
at SNP") 
 
####Reproducibility 
#Additionally, we can filter on __reproducibility__ by comparing technical 
replicates (performed by DArTseq). DArTseq defines reproducibility as the 
proportion of technical replicate assay pairs for which the marker score is 
consistent.  
#For other sequencing methods, this code can be applied to other forms of 
replicates (e.g. within-plate or between-plate replicates) to filter on 
reproducibility and/or calculate error rates. 
 
#Use replicate pairs (we have named them T1 & T2 to distinguish). Create a 
.csv file with one column listing all samples and their technical 
replicates (this section only works for pairs of replicates). Column should 
be ordered by sample e.g. sample1_T1, sample1_T2, sample2_T1, sample2_T2 
(though will be reordered regardless). 
 
tech.reps <- read.csv('technical replicates - pairs.csv', header=F) 
snp.tech.reps.rd <- snps.rd[,which(colnames(snps.rd) %in% tech.reps$V1)] 
head(colnames(snp.tech.reps.rd)) 
snp.tech.reps.rd <- snp.tech.reps.rd[,order(names(snp.tech.reps.rd))] 
head(colnames(snp.tech.reps.rd)) 
snp.tech.match.rd <- matrix(nrow=nrow(snp.tech.reps.rd), 
ncol=ncol(snp.tech.reps.rd)) 
 
for(r in 1:nrow(snp.tech.reps.rd)){ 
  for(c in seq(1,ncol(snp.tech.reps.rd), 2)) { 
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      if(!is.na(snp.tech.reps.rd[r,c]) && !is.na(snp.tech.reps.rd[r,(c+1)]) 
&& snp.tech.reps.rd[r,c] != snp.tech.reps.rd[r,c+1]){ 
  snp.tech.match.rd[r,c] <- "ERROR" 
      } else { 
    snp.tech.match.rd[r,c] <- NA 
      } 
  } 
} 
snp.tech.match.rd <- as.data.frame(as.matrix(snp.tech.match.rd)) 
snp.tech.match.rd$error <- rep(NA) 
n4 <- ncol(snp.tech.match.rd) - 1 
for (r in 1:nrow(snp.tech.match.rd)) { 
  snp.tech.match.rd$error[r] <- length(which(snp.tech.match.rd[r,1:n4] == 
"ERROR")) 
} 
 
snp.tech.match.rd$reproducibility <- rep(NA) 
n5 <- (ncol(snp.tech.match.rd) - 2)/2 
snp.tech.match.rd$reproducibility <- 100-((snp.tech.match.rd$error/n5)*100) 
summary(snp.tech.match.rd$reproducibility) 
summary(snp.tech.match.rd$error) 
error.rate <- 100-snp.tech.match.rd$reproducibility 
summary(error.rate) #mean error rate pre-filtering (aside from read depth 
filtering) 
hist(snp.tech.match.rd$reproducibility, main="Reproducibility between 
technical replicates (pairs)", cex.main=0.8, xlab="Reproducibility %") 
 
####Identifying possible sex-linked SNPs 
#It may also be necessary to remove possibly __sex-linked SNPs__. If it is 
not clear how to sort sex-linked SNPs based on genotype position, we can 
instead  filter by possibly sex-linked SNPs. If the SNP is heterozygous in 
at least one female but homozygous in all males, SNP may be sex-linked and 
should be removed from analysis.  
#__NOTE__: This is for XX/XY systems - for ZZ/ZW systems code can be easily 
altered. This filtering step should be performed with the whole dataset to 
increase power of detection.  
 
#First, seperate male and female samples. We are able to do this based on 
our naming system with F_samplename or M_samplename, where unknown sexes 
will be ignored. If sample naming system does not follow, an additional 
file could be provided with sex information. 
 
snps.rd.f <- snps.rd 
ids <- colnames(snps.rd.f) 
str(ids) 
males <- ids[which(startsWith(ids, "M_") == T)] 
females <- ids[which(startsWith(ids, "F_") == T)] 
snp.males <- snps.rd.f[,(which(colnames(snps.rd.f) %in% males))] 
snp.females <- snps.rd.f[,(which(colnames(snps.rd.f) %in% females))] 
 
#Next, identify SNPs that are heterozygous in at least one female. vcf 
format encodes heterozygotes as "0/1": 
 
snp.females <- cbind(snps.rd.f[,1:6], snp.females) 
het.females <- rep(NA) 
for (r in 1:nrow(snp.females)) { 



266 
 

  het.females[r] <- ifelse("0/1" %in% snp.females[r,7:ncol(snp.females)], 
"HET", "FALSE") 
} 
het.females <- cbind(snp.females[,1], het.females) 
 
#Now identify SNPs where there are no male heterozygotes: 
snp.males <- cbind(snps.rd.f[,1:6], snp.males) 
het.males <- rep(NA) 
for (r in 1:nrow(snp.males)) { 
  het.males[r] <- ifelse("0/1" %in% snp.males[r,7:ncol(snp.males)], "HET", 
"FALSE") 
} 
 
#Now find SNP index for when het.females = "HET" but het.males = "FALSE": 
str(het.females) 
het.females <- as.data.frame(het.females) 
het.males <- as.data.frame(het.males) 
hets <- cbind(het.females, het.males) 
colnames(hets) <- c("index", "het.females", "het.males" ) 
sex.linked.a <- hets[which(hets$het.females == "HET"),] 
sex.linked <- sex.linked.a[which(sex.linked.a$het.males == "FALSE"),] 
 
#Number of possibly sex-linked SNPs: 
nrow(sex.linked) 
 
#Now filter data to remove these SNPs. 
snps.rd.g <- snps.rd.f[which(!(snps.rd.f[,1] %in% sex.linked$index)),] 
nrow(snps.rd.g) 
nrow(snps.rd.f) - nrow(snps.rd.g) #should equal number of possibly sex-
linked SNPs 
 
##Filter data 
#Now filter data with the thresholds decided above.  
filter.rd <- cbind(coverage.rd2, snp.tech.match.rd$reproducibility, 
callrate, het_count.rd, snps.rd1$maf) 
filter.rd <- as.data.frame(as.matrix(filter.rd)) 
filter.rd$snp.index <- 1:nrow(filter.rd) 
colnames(filter.rd) <- c("read.depth.ref.avg", "read.depth.snp.avg", 
"snp.index", "max", "diff", "Reproducibility", "Callrate", 
"Heterozygosity", "maf") 
nrow(filter.rd) 
 
filter.1.rd <- filter.rd[which(filter.rd$diff <=80),] 
nrow(filter.1.rd) 
 
filter.2.rd <- filter.1.rd[which(filter.1.rd$Reproducibility > 85),] 
nrow(filter.2.rd) 
 
###we filtered on call rate, heterozygosity and MAF in Stacks, so do not 
need to perform this additional filtering. Unhash following code and set 
thresholds to filter on these parameters. 
#filter.3.rd <- filter.2.rd[which(filter.2.rd$Callrate > 70),] 
#nrow(filter.3.rd) 
#filter.4.rd <- filter.3.rd[which(filter.3.rd$Heterozygosity <= 70),] 
#nrow(filter.4.rd) 
#filter.5.rd <- filter.4.rd[which(filter.4.rd$maf >= 0.01),] 
#nrow(filter.5.rd) 
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index <- 1:nrow(snps.rd.g) 
snps.index <- cbind(index, snps.rd.g) 
snps.filter.rd <- snps.index[which(snps.index[,1] %in% 
filter.2.rd$snp.index),] #update filter.2.rd to appropriate selection if 
call rate, heterozygosity, MAF filtering is performed. 
nrow(snps.filter.rd) 
#Write out file of filtered SNPs (unhash code): 
#write.csv(snps.filter.rd, file="filteredsnps.csv") 
 
##Recalculate reproducibility/error rates after filtering 
#Previous calculations of reproducibility were made on data only filtered 
by read depth > 2.5. 
#Can re-calculate reproducibility to obtain error rate after the downstream 
filtering pipeline has been run. 
 
#Only calculate error rates for complete cases, so when genotype recorded 
for both replicates (not when recorded for one but NA for other). 
snp.tech.reps.filter <- snps.filter.rd[,which(colnames(snps.filter.rd) %in% 
tech.reps$V1)] 
head(colnames(snp.tech.reps.filter)) 
snp.tech.reps.filter <- 
snp.tech.reps.filter[,order(names(snp.tech.reps.filter))] 
head(colnames(snp.tech.reps.filter)) 
snp.tech.match.filter <- matrix(nrow=nrow(snp.tech.reps.filter), 
ncol=ncol(snp.tech.reps.filter)) 
 
for(r in 1:nrow(snp.tech.reps.filter)){ 
  for(c in seq(1,ncol(snp.tech.reps.filter), 2)) { 
      if(!is.na(snp.tech.reps.filter[r,c]) && 
!is.na(snp.tech.reps.filter[r,(c+1)]) && snp.tech.reps.filter[r,c] != 
snp.tech.reps.filter[r,c+1]){ 
  snp.tech.match.filter[r,c] <- "ERROR" 
      } else { 
    snp.tech.match.filter[r,c] <- NA 
      } 
  } 
} 
snp.tech.match.filter <- as.data.frame(as.matrix(snp.tech.match.filter)) 
snp.tech.match.filter$error <- rep(NA) 
n4.f <- ncol(snp.tech.match.filter) - 1 
for (r in 1:nrow(snp.tech.match.filter)) { 
  snp.tech.match.filter$error[r] <- 
length(which(snp.tech.match.filter[r,1:n4.f] == "ERROR")) 
} 
 
snp.tech.match.filter$reproducibility <- rep(NA) 
n5.f <- (ncol(snp.tech.match.filter) - 2)/2 
snp.tech.match.filter$reproducibility <- 100-
((snp.tech.match.filter$error/n5.f)*100) 
summary(snp.tech.match.filter$reproducibility) 
summary(snp.tech.match.filter$error) 
error.rate.filter <- 100-snp.tech.match.filter$reproducibility 
summary(error.rate.filter) #error rate 
sd(error.rate.filter) 
hist(snp.tech.match.filter$reproducibility, main="Reproducibility between 
technical replicates (pairs)", cex.main=0.8, xlab="Reproducibility %")	  
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Appendix 7: Supplementary Code to Chapter 5 

 

This appendix relates to Chapter 5: A case for genetic parentage assignment in captive group 

housing. 

The following R code has been published alongside the article presented in Chapter 5. The 

first part of this script is adapted from the code in Appendix 6 to process reduced 

representation sequencing SNPs as per the method presented in Chapter 4, with 

modifications described in Chapter 5. The second part of this script is to perform parentage 

analysis. Comments are annotated with #. 

rm(list=ls()) 
 
#Need to install "vcfR" package in R if not already installed. Load 
package: 
library(vcfR) 
 
##Read in data 
#Read in and check populations.snps.vcf file: 
vcf <- read.vcfR("populations.snps.vcf") 
head(vcf) 
queryMETA(vcf) 
 
#Reformat the dataset to obtain SNP data by combining the chromosome 
position information and the genotype information in a new object. 
'extract.gt' function extracts genotype information, 'getFIX' function 
extracts fixed data for each row. 
gt <- extract.gt(vcf, IDtoRowNames = F) 
fixed <- getFIX(vcf) 
snps <- cbind(fixed[,1:5], gt) 
head(snps)[,1:10] 
snps.1 <- as.data.frame(as.matrix(snps)) 
snps.1$CHROM <- as.character(as.factor(snps.1$CHROM)) 
snps.1$POS <- as.character(as.factor(snps.1$POS)) 
snps.1$ID <- as.character(as.factor(snps.1$ID)) 
snps.1$identifier <- with(snps.1, paste0(CHROM, POS, ID)) 
snps.3 <- snps.1[,1:(ncol(snps.1)-1)] 
 
##Data filtering 
 
#Our raw data has been filtered in Stacks/2.0b "populations" module with: 
#  * __-r 0.20__ (must be sequenced at >= 20% of samples in a population to 
process loci) 
#  * __--write_random_snp__ (restrict data analysis to one random SNP per 
locus) - filters linked SNPs 
#  * __--min_maf 0.01__ 
#  * __--max_obs_het 0.70__ 
   
####Read Depth 
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#Filter on allelic read depth to remove SNPs with low coverage at ref or 
snp("alt") allele. 
read.depth <- extract.gt(vcf, element="AD") 
length(unique(rownames(read.depth))) 
nrow(read.depth) 
read.depth.ref <- masplit(read.depth, record = 1, sort=0) 
read.depth.snp <- masplit(read.depth, record = 2, sort=0) 
 
#for reference allele depth: 
head(read.depth.ref)[1:6,1:6] 
read.depth.ref.count<- rowSums(read.depth.ref, na.rm=T) 
head(read.depth.ref.count) 
read.depth.ref <- as.data.frame(read.depth.ref) 
read.depth.ref$length <- rep(NA) 
 
n <- ncol(read.depth.ref)-1 
for (r in 1:nrow(read.depth.ref)) { 
  read.depth.ref$length[r] <- length(which(read.depth.ref[r,1:n] !=0)) 
} 
 
read.depth.ref.avg <- read.depth.ref.count/read.depth.ref$length 
head(read.depth.ref.avg) 
summary(read.depth.ref.avg) 
 
#for snp allele depth: 
read.depth.snp.count<- rowSums(read.depth.snp, na.rm=T) 
head(read.depth.snp.count) 
 
read.depth.snp <- as.data.frame(read.depth.snp) 
read.depth.snp$length <- rep(NA) 
 
n2 <- ncol(read.depth.snp)-1 
for (r in 1:nrow(read.depth.snp)) { 
  read.depth.snp$length[r] <- length(which(read.depth.snp[r,1:n2] !=0)) 
} 
 
read.depth.snp.avg <- read.depth.snp.count/read.depth.snp$length 
summary(read.depth.snp.avg) 
 
length(which(read.depth.ref.avg > 2.5)) #can change this number to see how 
many SNPs will be retained 
length(which(read.depth.snp.avg > 2.5)) 
 
coverage.rd <- cbind(read.depth.ref.avg, read.depth.snp.avg) 
coverage.rd <- as.data.frame(coverage.rd) 
coverage.rd$snp.index <- 1:nrow(coverage.rd) 
coverage.rd1 <- coverage.rd[which(coverage.rd$read.depth.ref.avg > 2.5),] 
#decide on minimum allelic depth here 
nrow(coverage.rd) 
nrow(coverage.rd1) 
coverage.rd2 <- coverage.rd1[which(coverage.rd1$read.depth.snp.avg > 2.5),] 
#decide on minimum allelic depth here 
nrow(coverage.rd2) 
 
#visually compare distribution of SNPs pre- and post- filtering 
par(mfrow=c(2,2)) 
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hist(read.depth.ref.avg, main="Read depth of ref allele", xlab="Read 
depth") 
hist(read.depth.snp.avg, main="Read depth of snp allele", xlab="Read 
depth") 
hist(coverage.rd2$read.depth.ref.avg, main="Read depth of ref allele > 
2.5", xlab="Read depth") 
hist(coverage.rd2$read.depth.snp.avg, main="Read depth of snp allele > 
2.5", xlab="Read depth") 
 
index <- 1:nrow(snps.3) 
snps.index <- cbind(index, snps.3) 
snps.rd <- snps.index[which(snps.index[,1] %in% coverage.rd2$snp.index),] 
nrow(snps.rd) 
 
####Coverage Difference 
#We also need to filter by __coverage difference__. If the reference and 
SNP allele do not amplify at the same rate, this may indicate potential 
bias (errors in calling).  
#Coverage can be calculated as the absolute percentage difference between 
the REF alllelic depth and ALT allelic depth. vcf output gives Allele 
Depth, with coverage of reference, then coverage of SNP allele e.g. AD = 
4,3 means reference allele has coverage = 4, snp allele coverage = 3. Count 
only non-zero reads. 
 
coverage.rd2$max <- pmax(coverage.rd2$read.depth.ref.avg, 
coverage.rd2$read.depth.snp.avg) 
coverage.rd2$diff <- ((abs(coverage.rd2$read.depth.ref.avg - 
coverage.rd2$read.depth.snp.avg))/(coverage.rd2$max))*100 
hist(coverage.rd2$diff, main="Coverage difference", xlab="% diff in 
coverage") 
length(which(coverage.rd2$diff < 60)) #edit this to see how many SNPs will 
be retained 
 
####Call Rate 
 
#Histogram of Call Rate/Genotyping rate: 
callrate <- apply(snps.rd, 1, function(x) 100-
(sum(is.na(x))/(ncol(snps.rd)-5))*100) 
hist(callrate, main="Call Rate", xlab="Call Rate") 
#We have already filtered on call rate in Stacks, however could filter 
within this script if desired. 
length(which(callrate >= 20)) #edit to see how many SNPs would be retained 
 
####Minor Allele Frequency (MAF) 
#SNPs have already been filtered on MAF in Stacks (using --min_maf 0.01 
flag in populations module). We may wish to further filter on MAF for 
downstream purposes, e.g. parentage analysis with Sequoia recommends higher 
MAF > 0.3, and only requires a few hundred SNPs so we can reduce the SNP 
set. 
 
snps.rd1 <- snps.rd 
snpsrd1 <- as.data.frame(snps.rd1) 
snps.rd1$refcount <- rep(NA) 
n3 <- ncol(snps.rd) 
for (r in 1:nrow(snps.rd1)) { 
  snps.rd1$refcount[r] <- 2*(length(which(snps.rd1[r,7:n3] == "0/0"))) +  
    length(which(snps.rd1[r,7:n3] == "0/1")) 
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} 
 
snps.rd1$altcount <- rep(NA) 
for (r in 1:nrow(snps.rd1)) { 
  snps.rd1$altcount[r] <- 2*(length(which(snps.rd1[r,7:n3] == "1/1"))) +  
    length(which(snps.rd1[r,7:n3] == "0/1")) 
} 
 
snps.rd1$minor <- pmin(snps.rd1$refcount, snps.rd1$altcount) 
snps.rd1$total <- snps.rd1$refcount + snps.rd1$altcount 
snps.rd1$maf <- snps.rd1$minor/snps.rd1$total 
hist(snps.rd1$maf, main="Minor Allele Frequency", xlab="MAF") 
length(which(snps.rd1$maf > 0.05)) #edit this to see how many SNPs would be 
retained 
 
###Heterozygosity 
#Excess heterozygotes in data may indicate problems with SNP-calling 
software. We have already filtered on --max_obs_het (maximum observed 
heterozygosity = 70%) in Stacks, however could be applied in this script if 
needed. Calculate proportion of heterozygous genotypes: 
#Heterozygosity 
snps.rd2 <- snps.rd 
snps.rd2$na <- rep(NA) 
snps.rd2$na <- apply(snps.rd2, 1, function(x) sum(is.na(x))) 
snps.rd2$seq <- rep(NA) 
snps.rd2$seq <- ncol(snps.rd2) - snps.rd2$na - 8 
snps.rd2$hets <- apply(snps.rd2, 1, function(x) length(which(x == "0/1"))) 
het_count.rd <- 100*(snps.rd2$hets/snps.rd2$seq) 
hist(het_count.rd, main="Heterozygosity", xlab="Proportion of heterozygotes 
at SNP") 
 
####Reproducibility 
#Additionally, we can filter on __reproducibility__ by comparing technical 
replicates (performed by DArTseq). DArTseq defines reproducibility as the 
proportion of technical replicate assay pairs for which the marker score is 
consistent. 
#We can also use this to calculate error rate with all technical replicates 
for each individual SNP so that we can filter on reproducibility. Use 
samples with 2 technical replicates (we have named them T1 & T2, e.g. 
F_1224_ChinaGirl_T1, F_1224_ChinaGirl_T2). Only calculate error rates for 
complete cases, so when genotype recorded for both replicates (not when 
recorded for one but NA for other). 
#Create a .csv file with one column listing all samples and their technical 
replicates (this section of code only works for pairs of replicates). 
Column must be ordered by sample e.g. sample1_T1, sample1_T2, sample2_T1, 
sample2_T2 
 
tech.reps <- read.csv('technical replicates - pairs.csv', header=F) 
snp.tech.reps.rd <- snps.rd[,which(colnames(snps.rd) %in% tech.reps$V1)] 
head(colnames(snp.tech.reps.rd)) 
snp.tech.reps.rd <- snp.tech.reps.rd[,order(names(snp.tech.reps.rd))] 
head(colnames(snp.tech.reps.rd)) 
snp.tech.match.rd <- matrix(nrow=nrow(snp.tech.reps.rd), 
ncol=ncol(snp.tech.reps.rd)) 
 
for(r in 1:nrow(snp.tech.reps.rd)){ 
  for(c in seq(1,ncol(snp.tech.reps.rd), 2)) { 
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      if(!is.na(snp.tech.reps.rd[r,c]) && !is.na(snp.tech.reps.rd[r,(c+1)]) 
&& snp.tech.reps.rd[r,c] != snp.tech.reps.rd[r,c+1]){ 
  snp.tech.match.rd[r,c] <- "ERROR" 
      } else { 
    snp.tech.match.rd[r,c] <- NA 
      } 
  } 
} 
snp.tech.match.rd <- as.data.frame(as.matrix(snp.tech.match.rd)) 
snp.tech.match.rd$error <- rep(NA) 
n4 <- ncol(snp.tech.match.rd) - 1 
for (r in 1:nrow(snp.tech.match.rd)) { 
  snp.tech.match.rd$error[r] <- length(which(snp.tech.match.rd[r,1:n4] == 
"ERROR")) 
} 
 
snp.tech.match.rd$reproducibility <- rep(NA) 
n5 <- (ncol(snp.tech.match.rd) - 2)/2 
snp.tech.match.rd$reproducibility <- 100-((snp.tech.match.rd$error/n5)*100) 
summary(snp.tech.match.rd$reproducibility) 
summary(snp.tech.match.rd$error) 
error.rate <- 100-snp.tech.match.rd$reproducibility 
summary(error.rate) 
hist(snp.tech.match.rd$reproducibility, main="Reproducibility between 
technical replicates (pairs)", cex.main=0.8, xlab="Reproducibility %") 
 
#We can then combine information from technical replicates: 
#  * first choose best quality technical replicate, based on highest call 
rate (least amount of missing data) 
#  * then, where higher quality sample is missing data, add genotype 
information from lower quality (lower call rate) sample where possible 
 
#Step 1: 
na_count <- function(x) sapply(x, function(y) sum(is.na(y))) 
nocalls <- na_count(snps.rd[7:ncol(snps.rd)]) 
nocalls2 <- cbind(nocalls, colnames(snps.rd[7:ncol(snps.rd)])) 
nocalls3 <- nocalls2[which(rownames(nocalls2) %in% tech.reps$V1),] 
nrow(nocalls3) 
tech.reps$nocalls <- rep(NA) 
tech.reps2 <- tech.reps[which(tech.reps$V1 %in% colnames(snps.rd)),] 
nrow(tech.reps2) 
 
for (r in 1:nrow(tech.reps2)) { 
  tech.reps2[r,2] <- nocalls2[which(tech.reps2[r,1] == nocalls2[,2]),1] 
} 
 
tech.reps3 <- tech.reps2 
tech.reps3$max <- rep(NA) 
for (r in seq(1, nrow(tech.reps3), 2)){ 
  if(tech.reps3[r,2] > tech.reps3[(r+1),2]) { 
    tech.reps3$max[r] <- "MAX" 
    tech.reps3$max[r+1] <- "MIN" 
  } else { 
    tech.reps3$max[r] <- "MIN" 
    tech.reps3$max[r+1] <- "MAX" 
  } 
} 
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tech.reps4 <- tech.reps3[which(tech.reps3$max == "MAX"),] #these samples 
have highest number of no genotypes 
nrow(tech.reps4) #should be half of nrow(tech.reps3) 
tech.reps.min <- tech.reps3[which(tech.reps3$max == "MIN"),] #these samples 
have lowest number of no calls (best) 
 
#Step 2: Combine technical replicates into one composite sample for better 
call rate. Rather than just using the sample with the highest call rate, we 
can combine multiple technical replicates to improve Sequoia results. Do 
this by taking the technical replicate with the highest call rate, then 
adding any genotypes from the lower call rate replicate where the highest 
call rate replicate is not already sequenced. 
 
max.snps <- snps.rd[,(which(colnames(snps.rd) %in% tech.reps4$V1))] 
ncol(max.snps) 
min.snps <- snps.rd[,(which(colnames(snps.rd) %in% tech.reps.min$V1))] 
ncol(min.snps) 
#if not ordered pairs will not be in same row between min.snps and max.snps 
head(colnames(max.snps)) 
head(colnames(min.snps)) 
max.snps <- max.snps[,order(names(max.snps))] #order to be same 
min.snps <- min.snps[,order(names(min.snps))] #order to be same 
head(colnames(max.snps)) 
head(colnames(min.snps)) 
 
combined <- min.snps 
for (r in 1:nrow(combined)){ 
  for (c in 1:ncol(combined)){ 
    if (is.na(min.snps[r,c])){ 
      combined[r,c] <- max.snps[r,c] 
    }  
  } 
} 
 
snps.rd.a <- snps.rd 
ncol(snps.rd.a) 
snps.rd.a <- snps.rd.a[,-(which(colnames(snps.rd.a) %in% tech.reps2$V1))] 
ncol(snps.rd.a) 
snps.rd.b <- cbind(snps.rd.a[1:ncol(snps.rd.a)], combined) 
ncol(snps.rd.b) 
 
#We can also do this technical replicate combination for samples with three 
technical replicates, as we have in our dataset. Find replicate with 
highest call rate, then add genotype information from second highest call 
rate replicate, and finally lowest call rate. 
tech.reps.trios <- read.csv('technical replicates - trios.csv', header=F) 
#first get snp data for trios 
snp.tech.reps.trios <- snps.rd[,which(colnames(snps.rd) %in% 
tech.reps.trios$V1)] 
ncol(snp.tech.reps.trios) 
head(colnames(snp.tech.reps.trios)) 
 
##must be in right order 
nocalls3.t <- nocalls2[which(rownames(nocalls2) %in% tech.reps.trios$V1),] 
nrow(nocalls3.t) 
tech.reps.trios$nocalls <- rep(NA) 
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tech.reps.trios2 <- tech.reps.trios[which(tech.reps.trios$V1 %in% 
colnames(snps.rd)),] 
nrow(tech.reps.trios2) 
 
for (r in 1:nrow(tech.reps.trios2)) { 
  tech.reps.trios2[r,2] <- nocalls2[which(tech.reps.trios2[r,1] == 
nocalls2[,2]),1] 
} 
 
tech.reps.trios3 <- tech.reps.trios2 
tech.reps.trios3$max <- rep(NA) 
for (r in seq(1, nrow(tech.reps.trios3), 3)){ 
  if((tech.reps.trios3[r,2] > tech.reps.trios3[(r+1),2]) && 
(tech.reps.trios3[r,2] > tech.reps.trios3[(r+2),2])) { 
    tech.reps.trios3$max[r] <- "MAX.A" 
    tech.reps.trios3$max[r+1] <- "MIN.A" 
    tech.reps.trios3$max[r+2] <- "MIN.A" 
  }  
  if((tech.reps.trios3[(r+1),2] > tech.reps.trios3[r,2]) && 
(tech.reps.trios3[(r+1),2] > tech.reps.trios3[(r+2),2])) { 
    tech.reps.trios3$max[r] <- "MIN.B" 
    tech.reps.trios3$max[r+1] <- "MAX.B" 
    tech.reps.trios3$max[r+2] <- "MIN.B"  
  } else { 
    tech.reps.trios3$max[r] <- "MIN.C" 
    tech.reps.trios3$max[r+1] <- "MIN.C" 
    tech.reps.trios3$max[r+2] <- "MAX.C" 
  } 
} 
 
tech.reps.trios.max <- tech.reps.trios3[which(tech.reps.trios3$max == 
c("MAX.A", "MAX.B", "MAX.C")),] #these samples have highest number of no 
genotypes, and should be combined last 
nrow(tech.reps.trios.max) #should be third of nrow(tech.reps.trios3) 
 
tech.reps.trios3a <- rbind(tech.reps.trios3[which(tech.reps.trios3$max == 
"MIN.B"),], tech.reps.trios3[which(tech.reps.trios3$max == "MIN.C"),]) 
#these samples have lowest number of no calls (best) 
nrow(tech.reps.trios3a) 
 
#now find minimum from these two: 
for (r in seq(1, nrow(tech.reps.trios3a),2)){ 
  if((tech.reps.trios3a[r,2] > tech.reps.trios3a[(r+1),2])){ 
    tech.reps.trios3a$max[r] <- "MED" 
    tech.reps.trios3a$max[r+1] <- "MIN" 
  } else { 
    tech.reps.trios3a$max[r] <- "MIN" 
    tech.reps.trios3a$max[r+1] <- "MED" 
  } 
} 
 
tech.reps.trios.min <- tech.reps.trios3a[which(tech.reps.trios3a$max == 
"MIN"),] 
nrow(tech.reps.trios.min) #should be one third of nrow(tech.reps.trios3) 
 
tech.reps.trios.med <- tech.reps.trios3a[which(tech.reps.trios3a$max == 
"MED"),] 
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nrow(tech.reps.trios.med) #should be one third of nrow(tech.reps.trios3) 
 
#Combine technical replicates, starting with highest call rate ("MIN"), 
then next ("MED"), finally lowest ("MAX") 
max.trios <- snps.rd[,(which(colnames(snps.rd) %in% 
tech.reps.trios.max$V1))] 
ncol(max.trios) 
med.trios <- snps.rd[,(which(colnames(snps.rd) %in% 
tech.reps.trios.med$V1))] 
ncol(med.trios) 
min.trios <- snps.rd[,(which(colnames(snps.rd) %in% 
tech.reps.trios.min$V1))] 
ncol(min.trios) 
 
#is not ordered so pairs will not be in same row between min.snps and 
max.snps 
head(colnames(max.trios)) 
head(colnames(med.trios)) 
head(colnames(min.trios)) 
 
max.trios <- max.trios[,order(names(max.trios))] 
med.trios <- med.trios[,order(names(med.trios))] 
min.trios <- min.trios[,order(names(min.trios))] 
 
combined.trios <- min.trios 
for (r in 1:nrow(combined.trios)){ 
  for (c in 1:ncol(combined.trios)){ 
    if (is.na(min.trios[r,c])){ 
      combined.trios[r,c] <- med.trios[r,c] 
    }  
  } 
} 
 
combined.trios2 <- combined.trios 
for (r in 1:nrow(combined.trios2)){ 
  for (c in 1:ncol(combined.trios2)){ 
    if (is.na(combined.trios[r,c])){ 
      combined.trios2[r,c] <- max.trios[r,c] 
    } 
  } 
} 
 
snps.rd.c <- snps.rd.b[,-(which(colnames(snps.rd.a) %in% 
tech.reps.trios$V1))] 
ncol(snps.rd.c) 
snps.rd.d <- cbind(snps.rd.c[1:ncol(snps.rd.c)], combined.trios2) 
ncol(snps.rd.d) 
ncol(snps.rd.b) - ncol(snps.rd.d) 
 
##Choose between replicates 
#If there are within or between plate replicates (not technical replicates, 
instead replicates provided by researcher), we can only use one for 
downstream purposes such as Sequoia. Therefore choose the replicate with 
the highest call rate. This code works for replicates where there are pairs 
(i.e. M_948_Jimmy_R1 vs. M_948_Jimmy_T1/T2) 
reps <- read.csv('plate replicates.csv', header=F) 
nrow(reps) 
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snp.reps <- snps.rd.d[,which(colnames(snps.rd.d) %in% reps$V1)] 
ncol(snp.reps) #once technical replicate has been chosen, now choosing 
between plate replicates 
na_count <- function(x) sapply(x, function(y) sum(is.na(y))) 
nocalls.reps <- na_count(snp.reps) 
nocalls3.reps <- cbind(nocalls.reps, colnames(snp.reps)) 
nrow(nocalls3.reps) 
reps$nocalls <- rep(NA) 
reps2 <- reps[which(reps$V1 %in% colnames(snps.rd.d)),] 
nrow(reps2) 
 
for (r in 1:nrow(reps2)) { 
  reps2[r,2] <- nocalls3.reps[which(reps2[r,1] == nocalls3.reps[,2]),1] 
} 
 
reps3 <- reps2 
str(reps3) 
reps3$nocalls <- as.numeric(as.character(reps3$nocalls)) 
reps3$max <- rep(NA) 
for (r in seq(1, nrow(reps3), 2)){ 
  if(reps3[r,2] > reps3[(r+1),2]) { 
    reps3$max[r] <- "MAX" 
    reps3$max[r+1] <- "MIN" 
  } else { 
    reps3$max[r] <- "MIN" 
    reps3$max[r+1] <- "MAX" 
  } 
} 
 
reps4 <- reps3[which(reps3$max == "MAX"),] #these samples have highest 
number of no genotypes 
nrow(reps4) #should be half of nrow(tech.reps3) 
reps.min <- reps3[which(reps3$max == "MIN"),] #these samples have lowest 
number of no calls (best) 
 
#now remove other replicates so that only replicates with highest call rate 
are included 
min.snps.rep <- snps.rd.d[,(which(colnames(snps.rd.d) %in% reps.min$V1))] 
combined.reps <- min.snps.rep 
snps.rd.rep <- snps.rd.d[,-(which(colnames(snps.rd.d) %in% reps2$V1))] 
ncol(snps.rd.rep) 
snps.rd.rep2 <- cbind(snps.rd.rep[1:ncol(snps.rd.rep)], combined.reps) 
ncol(snps.rd.rep2) 
ncol(snps.rd.d) - ncol(snps.rd.rep2) #should equal ncol(snp.reps)/2 
ncol(snp.reps)/2 
 
#There may also be some that have more than one replicate, e.g. 
M_1460_Malt, M_1460_Malt_R, M_1460_Malt_R1 
reps.npairs <- read.csv("catalogue_805//plate replicates trios.csv", 
header=F) 
nrow(reps.npairs) 
snp.reps.npairs <- snps.rd.rep2[,which(colnames(snps.rd.rep2) %in% 
reps.npairs$V1)] 
ncol(snp.reps.npairs) #3 replicates for each sample to choose from 
 
nocalls.reps.npairs <- na_count(snp.reps.npairs) 
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nocalls3.reps.npairs <- cbind(nocalls.reps.npairs, 
colnames(snp.reps.npairs)) 
nrow(nocalls3.reps.npairs) 
reps.npairs$nocalls <- rep(NA) 
reps.npairs2 <- reps.npairs[which(reps.npairs$V1 %in% 
colnames(snps.rd.rep2)),] 
nrow(reps.npairs2) 
 
for (r in 1:nrow(reps.npairs2)) { 
  reps.npairs2[r,2] <- nocalls3.reps.npairs[which(reps.npairs2[r,1] == 
nocalls3.reps.npairs[,2]),1] 
} 
 
reps.npairs3 <- reps.npairs2 
str(reps.npairs3) 
reps.npairs3$nocalls <- as.numeric(as.character(reps.npairs3$nocalls)) 
reps.npairs3$max <- rep(NA) 
#compare R to R1/R2 
for (r in seq(1, nrow(reps.npairs3), 3)){ 
  if((reps.npairs3[r,2] > reps.npairs3[(r+1),2]) && (reps.npairs3[r,2] > 
reps.npairs3[(r+2),2])) { 
    reps.npairs3$max[r] <- "MAX.A" 
    reps.npairs3$max[r+1] <- "MIN.A" 
    reps.npairs3$max[r+2] <- "MIN.A" 
  } else { 
      if((reps.npairs3[(r+1),2] > reps.npairs3[r,2]) && 
(reps.npairs3[(r+1),2] > reps.npairs3[(r+2),2])) { 
    reps.npairs3$max[r] <- "MIN.B" 
    reps.npairs3$max[r+1] <- "MAX.B" 
    reps.npairs3$max[r+2] <- "MIN.B"  
  } else { 
    reps.npairs3$max[r] <- "MIN.C" 
    reps.npairs3$max[r+1] <- "MIN.C" 
    reps.npairs3$max[r+2] <- "MAX.C" 
  } 
  } 
} 
 
reps.npairs3.max <- reps.npairs3[which(reps.npairs3$max == c("MAX.A", 
"MAX.B", "MAX.C")),] #these samples have highest missing data 
nrow(reps.npairs3.max) #should be third of nrow(reps.npairs3) 
 
reps.npairs3a <- rbind(reps.npairs3[which(reps.npairs3$max == "MIN.B"),], 
reps.npairs3[which(reps.npairs3$max == "MIN.C"),], 
reps.npairs3[which(reps.npairs3$max == "MIN.A"),]) #these samples have 
lowest number of no calls (best) 
nrow(reps.npairs3a) 
 
#now find minimum from these two: 
for (r in seq(1, nrow(reps.npairs3a),2)){ 
  if((reps.npairs3a[r,2] > reps.npairs3a[(r+1),2])){ 
    reps.npairs3a$max[r] <- "MED" 
    reps.npairs3a$max[r+1] <- "MIN" 
  } else { 
    reps.npairs3a$max[r] <- "MIN" 
    reps.npairs3a$max[r+1] <- "MED" 
  } 
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} 
 
reps.npairs.min <- reps.npairs3a[which(reps.npairs3a$max == "MIN"),] #these 
samples have lowest number of no calls (best) 
nrow(reps.npairs.min) 
#now remove other replicates so that only replicates with highest call rate 
are included 
min.snps.reps.npairs <- snps.rd.rep2[,(which(colnames(snps.rd.rep2) %in% 
reps.npairs.min$V1))] 
combined.reps.npairs <- min.snps.reps.npairs 
snps.rd.reps.npairs <- snps.rd.rep2[,-(which(colnames(snps.rd.rep2) %in% 
reps.npairs$V1))] 
ncol(snps.rd.reps.npairs) 
snps.rd.reps.npairs2 <- 
cbind(snps.rd.reps.npairs[1:ncol(snps.rd.reps.npairs)], 
combined.reps.npairs) 
ncol(snps.rd.reps.npairs2) 
ncol(snps.rd.rep2) - ncol(snps.rd.reps.npairs2) #should equal 
(ncol(snp.reps)/3)*2 
ncol(snp.reps.npairs)/3 
 
snps.rd.f <- snps.rd.reps.npairs2 
dim(snps.rd.f) 
 
####Identifying possible sex-linked SNPs 
#It is also necessary to remove possibly __sex-linked SNPs__. If it is not 
clear how to sort sex-linked SNPs based on genotype position, we can 
instead  filter by possibly sex-linked SNPs. If the SNP is heterozygous in 
at least one female but homozygous in all males, SNP may be sex-linked and 
should be removed from analysis. NOTE: This is for XY systems - for birds 
or others may be the other way around. Make sure this filtering step is 
done with whole dataset to increase power of detection.  
#First, seperate male and female samples (based on naming system with 
F_SB_name or M_SB_name). Unknown sexes will be ignored. 
males <- ids[which(startsWith(ids, "M_") == T)] 
females <- ids[which(startsWith(ids, "F_") == T)] 
snp.males <- snps.rd.f[,(which(colnames(snps.rd.f) %in% males))] 
snp.females <- snps.rd.f[,(which(colnames(snps.rd.f) %in% females))] 
 
#Next, identify SNPs that are heterozygous in at least one female. vcf 
format encodes heterozygotes as "0/1": 
snp.females <- cbind(snps.rd.f[,1:6], snp.females) 
het.females <- rep(NA) 
for (r in 1:nrow(snp.females)) { 
  het.females[r] <- ifelse("0/1" %in% snp.females[r,7:ncol(snp.females)], 
"HET", "FALSE") 
} 
het.females <- cbind(snp.females[,1], het.females) 
 
#Now identify SNPs where there are no male heterozygotes: 
snp.males <- cbind(snps.rd.f[,1:6], snp.males) 
het.males <- rep(NA) 
for (r in 1:nrow(snp.males)) { 
  het.males[r] <- ifelse("0/1" %in% snp.males[r,7:ncol(snp.males)], "HET", 
"FALSE") 
} 
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#Now find SNP index for when het.females = "HET" but het.males = "FALSE": 
str(het.females) 
het.females <- as.data.frame(het.females) 
het.males <- as.data.frame(het.males) 
hets <- cbind(het.females, het.males) 
colnames(hets) <- c("index", "het.females", "het.males" ) 
sex.linked.a <- hets[which(hets$het.females == "HET"),] 
sex.linked <- sex.linked.a[which(sex.linked.a$het.males == "FALSE"),] 
 
#Number of possibly sex-linked SNPs: 
nrow(sex.linked) 
 
#Now filter data to remove these SNPs. 
snps.rd.g <- snps.rd.f[which(!(snps.rd.f[,1] %in% sex.linked$index)),] 
nrow(snps.rd.g) 
nrow(snps.rd.f) - nrow(snps.rd.g) #should equal number of possibly sex-
linked SNPs 
 
#Now filter data based on parameters decided above. 
filter.rd <- cbind(coverage.rd2, snp.tech.match.rd$reproducibility, 
callrate, het_count.rd, snps.rd1$maf) 
filter.rd <- as.data.frame(as.matrix(filter.rd)) 
filter.rd$snp.index <- 1:nrow(filter.rd) 
colnames(filter.rd) <- c("read.depth.ref.avg", "read.depth.snp.avg", 
"snp.index", "max", "diff", "Reproducibility", "Callrate", 
"Heterozygosity", "maf") 
nrow(filter.rd) 
 
#filter on coverage difference: 
filter.1.rd <- filter.rd[which(filter.rd$diff <=60),] 
nrow(filter.1.rd) 
 
#filter on reproducibility: 
filter.2.rd <- filter.1.rd[which(filter.1.rd$Reproducibility >= 90),] 
nrow(filter.2.rd) 
 
#filter on call rate (if needed, we have already filtered in Stacks): 
filter.3.rd <- filter.2.rd[which(filter.2.rd$Callrate >= 20),] 
nrow(filter.3.rd) 
 
#filter on heterozygosity (if needed, we have already filtered in Stacks): 
filter.4.rd <- filter.3.rd[which(filter.3.rd$Heterozygosity <= 70),] 
nrow(filter.4.rd) 
 
#filter on MAF: 
filter.5.rd <- filter.4.rd[which(filter.4.rd$maf >= 0.05),] 
nrow(filter.5.rd) 
 
index <- 1:nrow(snps.rd.g) 
snps.index <- cbind(index, snps.rd.g) 
snps.filter.rd <- snps.index[which(snps.index[,1] %in% 
filter.5.rd$snp.index),] 
nrow(snps.filter.rd) 
#write.csv(snps.filter.rd, file="FREs_filteredsnps.csv") 
 
##Re-filter on higher MAF for Sequoia 
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#We have used our entire catalogue of devil samples for the initial 
filtering steps, as larger sample sizes improve confidence of SNP calls. We 
are only performing parentage analysis for the free-range enclosure, so we 
can now refilter more stringently using our population of interest. 
#Sequoia requires higher MAF to obtain informative SNPs. Using higher MAF 
across whole catalogue may not be useful if the population of interest 
(Bridport & Freycinet) have high relatedness and therefore similar 
genotypes. So filter on MAF just within population of interest now. Should 
also filter on call rate so that there is not too much missing data for 
parentage analysis with Sequoia. 
 
dim(snps.filter.rd) 
 
#provide list of samples of relevance 
ppn <- read.csv('FREs lifehistory all reps.csv', header=T) 
nrow(ppn) 
 
fre.snps <- snps.filter.rd[,which(colnames(snps.filter.rd) %in% ppn$ID)] 
fre.snps2 <- cbind(snps.filter.rd[,2:7], fre.snps) 
ncol(fre.snps) 
 
fre.snps2 <- as.data.frame(fre.snps2) 
n3 <- ncol(fre.snps2) 
fre.snps2$refcount <- rep(NA) 
 
for (r in 1:nrow(fre.snps2)) { 
  fre.snps2$refcount[r] <- 2*(length(which(fre.snps2[r,8:n3] == "0/0"))) +  
    length(which(snps.rd1[r,7:n3] == "0/1")) 
} 
 
fre.snps2$altcount <- rep(NA) 
for (r in 1:nrow(fre.snps2)) { 
  fre.snps2$altcount[r] <- 2*(length(which(fre.snps2[r,7:n3] == "1/1"))) +  
    length(which(fre.snps2[r,7:n3] == "0/1")) 
} 
 
fre.snps2$minor <- pmin(fre.snps2$refcount, fre.snps2$altcount) 
fre.snps2$total <- fre.snps2$refcount + fre.snps2$altcount 
fre.snps2$maf <- fre.snps2$minor/fre.snps2$total 
hist(fre.snps2$maf, main="Minor Allele Frequency", xlab="MAF") 
length(which(fre.snps2$maf > 0.01)) #can edit to see how many SNPs would be 
retained 
filter.fre.snps <- fre.snps2[which(fre.snps2$maf > 0.01),1:n3] #filter on 
MAF here 
dim(filter.fre.snps) 
 
#Also filter on call rate for this population: 
callrate.fre <- apply(filter.fre.snps, 1, function(x) 100-
(sum(is.na(x))/(ncol(filter.fre.snps)-6))*100) 
hist(callrate.fre, main="Call Rate", xlab="Call Rate") 
length(which(callrate.fre > 80)) #can edit to see how many SNPs would be 
retained 
filter.fre.snps$callrate.fre <- callrate.fre 
summary(filter.fre.snps$callrate.fre) 
 
filter.fre.snps2 <- filter.fre.snps[which(filter.fre.snps$callrate.fre > 
80), 1:(ncol(filter.fre.snps)-1)] #filter on call rate here 
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dim(filter.fre.snps2) 
 
##Format data for parentage analysis in Sequoia 
#Once we have filtered the data to get a subset of quality SNPs, we can use 
these SNPs to determine parentage using the 'sequoia' package in R.  
#Sequoia requires genotype data in 1 row per individual (with individual as 
row name), 1 column per SNP format (with SNP as column name). Data from vcf 
is the other way around. Sequoia can use replicates, as it allows a few 
mismatches (so can use technical replicates etc.), however they must have 
identical names. Genotypes coded as: 
#  * 0 = zero copies of reference allele (currently "1/1") 
#  * 1 = one copy of reference allele (currently "0/1") 
#  * 2 = two copies of reference allele (currently "0/0") 
#  * -9 = missing data (currently "./." or NA) 
 
filter.fre.snps2$CHROM <- as.character(as.factor(filter.fre.snps2$CHROM)) 
filter.fre.snps2$POS <- as.character(as.factor(filter.fre.snps2$POS)) 
filter.fre.snps2$ID <- as.character(as.factor(filter.fre.snps2$ID)) 
filter.fre.snps2$identifier <- with(filter.fre.snps2, paste0(CHROM, POS, 
ID)) 
 
#Recode genotypes for Sequoia format (same as PLINK format): 
filter.fre.snps3 <- filter.fre.snps2[,7:(ncol(filter.fre.snps2) -1)] 
genotypes <- t(filter.fre.snps3) 
genotypes2 <- as.data.frame(as.matrix(genotypes)) 
colnames(genotypes2) <- filter.fre.snps2$identifier 
 
#replace "1/1" with "0" 
genotypes3 <- matrix(nrow=nrow(genotypes2), ncol=ncol(genotypes2)) 
nrow(genotypes3) #number of samples 
ncol(genotypes3) #number of snps 
 
for (r in 1:nrow(genotypes2)) { 
  for (c in 1:ncol(genotypes2)) { 
      genotypes3[r,c] <- ifelse(genotypes2[r,c] == "1/1", "0", NA) 
    } 
} 
 
#replace "0/0" with "2" 
for (r in 1:nrow(genotypes2)) { 
  for (c in 1:ncol(genotypes2)) { 
    genotypes3[r,c] <- ifelse(genotypes2[r,c] == "0/0", "2", 
genotypes3[r,c]) 
  } 
} 
 
#replace "0/1" with "1" 
for (r in 1:nrow(genotypes2)) { 
  for (c in 1:ncol(genotypes2)) { 
    genotypes3[r,c] <- ifelse(genotypes2[r,c] == "0/1", "1", 
genotypes3[r,c]) 
  } 
} 
 
#replace "NA" with "-9" 
genotypes3 <- replace(genotypes3, is.na(genotypes3), "-9") 
colnames(genotypes3) <- colnames(genotypes2) 
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rownames(genotypes3) <- rownames(genotypes2) 
 
####Export for Sequoia 
#"genotypes3" is now in correct format for Sequoia. Export as .csv for 
input to Sequoia script. 
#Unhash code to run this (to avoid replacing file), and update with file 
directory. 
#write.csv(genotypes3, file="genotypes for sequoia_fres.csv") 
 
#Run parentage analysis with Sequoia. Requires life history file with 
sample name, sex and year of birth. See sequoia information for ability to 
deal with unknown life-history information. 
library(sequoia) 
s.genotypes<- as.matrix(read.csv('genotypes for sequoia_fres.csv', 
header=TRUE, row.names=1)) 
lifehist <- read.csv('FREs lifehistory all reps.csv', header=T) #input 
life-history file 
lifehist$ID <- as.character(as.factor(lifehist$ID)) 
 
lifehist2 <- lifehist[which(lifehist$ID %in% rownames(s.genotypes)),] 
nrow(lifehist2) 
s.genotypes2 <- s.genotypes[which(rownames(s.genotypes) %in% 
lifehist2$ID),] 
nrow(s.genotypes2) 
#first run without MaxSibIter to assign P-O (parent offspring) 
relationships 
ParOUT <- sequoia(GenoM = s.genotypes2, 
                  LifeHistData = lifehist2, 
                  MaxSibIter = 0, 
                  Err = 0.01) #can vary error rate depending on error of 
sequencing data 
#now run with MaxSibIter to include sibling information 
SeqOUT <- sequoia(GenoM = s.genotypes2, 
                  SeqList = ParOUT, 
                  MaxSibIter = 5, 
                  Err = 0.01) 
 
ped <- SeqOUT$Pedigree 
may <- SeqOUT$MaybeParent 
 
#write.csv(SeqOUT$Pedigree, file='ped.csv') 
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Appendix 8: Supplementary Material to Chapter 6 

 

This appendix relates to Chapter 6: Deciphering genetic mate choice: not so simple in group-

housed conservation breeding programs. 

A8.1 SUPPLEMENTARY TABLES 

Table A8.1.1: Characteristics of 12 MHC-linked microsatellites. 
All markers developed by Cheng and Belov (2014), with the exception of MHCI12 (Day et al., 
2019). 

  

Locus MHC class linked Multiplex Fluorescent tag 
MHCI06 I MHC 1 NED 
MHCI09 I MHC 1 6-FAM 
MHCI08 I MHC 1 PET 
MHCI07 I MHC 2 NED 
MHCI02 I MHC 2 PET 
MHCI10 I MHC 2 NED 
MHCII02 II MHC 2 VIC 
MHCI05 I MHC 3 6-FAM 
MHCI11 II MHC 3 VIC 
MHCII03 II MHC 3 PET 
MHCI01 I MHC 3 NED 
MHCI12 I N/A 6-FAM 
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Table A8.1.2: Top model set (top 2 AICC) of generalised linear mixed models for overall 
breeding success and relative breeding success (standardised across competitive breeding 
enclosure). 
Female models were fitted with a random intercept for “enclosure.year”, male models were 

fitted with a random intercept for “ID”. The final models are provided in Table 6.1 and 6.2. 

Model statement AICC Δi
1 wi

2 
Females (overall)    

b0 + Age 103.8  0.262 
b0 + Age + HGW

3 105.4 1.59 0.118 
b0 + Age + HMHC

3 105.8 1.98 0.097 
Males (overall)    

b0 + Average weight + HGW
3 92.0  0.191 

b0 + Age + Average weight + HGW
3 93.0 1.02 0.115 

b0 + Average weight 93.1 1.08 0.111 
b0 + Average weight + HGW

3 + HMHC
3 93.6 1.61 0.085 

Females (relative) 3    
b0 + z.Age 103.3  0.275 
b0 + z.Age + z.Average weight 104.8 1.50 0.130 
b0 + z.Age + z.HGW

3 105.2 1.90 0.106 
Males (relative) 4    

b0 + z.Age + z.HGW
3 92.7  0.214 

b0 + z.Age 93.0 0.30 0.184 
1 Change in AICC from the best model. 
2 Akaike model weight. 
3 Genome-wide heterozygosity (HGW) and MHC heterozygosity (HMHC) were standardised across all loci for which an 
individual was genotyped to reduce the influence of missing data on the analysis. 
4 All predictors were converted to z-scores within each enclosure year and sex before input to models to reflect 
competition amongst individuals. 
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Appendix 9: Supplementary to Chapter 7 

 

This appendix relates to Chapter 7: First empirical evidence of selection in captivity in an 

endangered vertebrate. 

A9.1 SUPPLEMENTARY METHODS 

Parentage confirmation 

For high-intensity triads, the studbook (Srb, 2018) and keeper records were examined to 

confirm the cohabitation of the sire and dam during the relevant breeding season and verify 

unambiguous attribution of offspring to the dam. For devils housed in groups at medium- and 

low-intensity sites, parentage was determined using up to 33 microsatellite markers 

(following Jones et al., 2003; Gooley et al., 2017), and the software Cervus (Kalinowski et al., 

2007), and/or with ~ 1,126 SNPs generated by restriction-site associated DNA sequencing 

(Diversity Arrays Technology Pty. Ltd.) and the R package ‘sequoia’ (Huisman, 2017), using the 

method developed in Chapter 4. We also verified our parentage results against biological 

knowledge of the species, such as maximal number of offspring per female of four (Guiler, 

1970), and known cohabitation of males and females in a given breeding year. 

SNP mismatch handling 

Mismatches between offspring and parental genotypes can occur due to mutation (likely 

rare), sequencing error, or incorrect triad assignment. We used Cervus to check for 

mismatches using the presumed sire and dam as fixed candidate parents of each given 

offspring and found 25/184 (13.6%) triads had at least one SNP mismatching. Triads varied in 

the number of SNP loci that they were sequenced at, so we calculated the mismatch 

percentage at both the sire, dam and triad level. Triads with > 5% mismatches at either the 

sire, dam or triad level were assumed to be incorrect and excluded from the analysis (18 triads 

removed). Of the 18 triads removed, 8 had been assigned using breeding records only, and 

10 using molecular methods, 9 of which were triads from Maria Island, where it is possible 

that an untrapped but closely related individual is the true parent. The remaining 7 triads with 

≤ 5% mismatches did not have more than 2 SNPs mismatching at either the sire, dam or triad 

level. These were assumed to be sequencing errors or possible mutations, so the triads were 

retained for analysis, with the mismatching data masked out. 
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Fitness modelling 

We used logistic regression where the response variable litter size was fitted as a binomial 

two-column matrix of successes and failures, such that the number of successes was the 

number of observed offspring, and the number of failures was four minus the number of 

offspring (as the maximum litter size is four; Guiler, 1970). Because the devil IP is intensively 

managed, past breeding success of an individual may influence the likelihood of that 

individual being given further opportunities to breed, and so multiple breeding attempts from 

a given female are not necessarily independent. Thus, we included only the first breeding 

attempt of each female. In addition to genotype score, regression modelling also included 

breeding year, dam age and enclosure type (medium/high intensity versus low intensity 

housing) as fixed predictors (Farquharson et al., 2017; Appendix 10). Models were fitted in R 

using ‘lme4’ (Bates et al., 2015), standardised with ‘arm’ (Gelman & Su, 2015), and model 

selection performed via information theory (Grueber et al., 2011) using ‘MuMIn’ (Barton, 

2018). Regression results are reported on the standardised scale (data were standardised by 

subtracting the mean and dividing by 2 SD, [Gelman, 2008]). Parameters of interest are 

converted back to the original scale for interpretation on figures; this was only performed for 

genotype predictors that showed very strong support for their inclusion in the final model 

(i.e. they had a relative importance, also known as the sum of Akaike weights, greater than 

0.9). Confidence intervals around fitted values were evaluated via parametric bootstrapping. 
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A9.2 SUPPLEMENTARY TABLES 

Table A9.2.1: Research activity on adaptation to captivity. 
We conducted a literature survey to generate an overview of research activity in the field of conservation genetics, and determine how much 
research was being undertaken on adaptation to captivity. On 4 December 2018, we used Scopus to conduct a “cited search” of all papers that 
reference Frankham’s 2010a review paper of critical issues in conservation genetics, which included adaptation to captivity as a priority research 
challenge. Although our method is not intended to exhaustively identify all published works in conservation genetics, we expect that the resulting 
215 works are representative of academic focus in the field, potentially capturing papers that target the conservation genetic research challenges 
identified therein (Frankham, 2010a). All papers were downloaded to an Endnote library, and sorted into broad categories based on the title and 
abstract (in the first instance), and full text (if necessary). A total of 13 studies that had an ex situ (e.g. captive) focus were further subdivided 
into more-specific categories. 

  

Topic N References 
Reviews and other secondary 

literature (such as book chapters) 
33 Mobley et al., 2011; Uller & Leimu, 2011; Angeloni et al., 2012; Braby et al., 2012; Palstra & Fraser, 2012; 

Segelbacher, 2012; Taylor & Friesen, 2012; Van Andel & Aronson, 2012b; Van Andel & Aronson, 2012a; 
Steiner et al., 2013; Duarte et al., 2015; Fisch et al., 2015; Grueber, 2015; Larson et al., 2015; Parlato et al., 
2015; Wilkening et al., 2015; Clulow & Clulow, 2016; Figiel, 2016; Olivieri et al., 2016; Schierenbeck, 2016; 
Shepard et al., 2016; Taylor & Soanes, 2016; Anson, 2017; Fuentes-Pardo & Ruzzante, 2017; Nualart et al., 
2017; Ornosa et al., 2017; Pérez-Espona, 2017; Sheth & Thaker, 2017; Sork, 2017; Tingley et al., 2017; Fan 

et al., 2018; Perez et al., 2018; Torres-Florez et al., 2018 
Policy comment/ 

management review 
24 Dulloo et al., 2010; Haig et al., 2011; Funk et al., 2012; Caro & Sherman, 2013; Dulloo, 2013; Hoban et al., 

2013a; Hoban et al., 2013b; Koskela et al., 2013; Lu et al., 2013; Paz-Vinas et al., 2013; Jensen et al., 2014; 
Pauls et al., 2014; Carbonell, 2015; Braby & Williams, 2016; Fady et al., 2016; Galla et al., 2016; Hermoso et 

al., 2016; Ledoux et al., 2016; Ottewell et al., 2016; Ovenden et al., 2016; Cook & Sgrò, 2017; von der 
Heyden, 2017; Cook & Sgrò, 2018; Lange et al., 2018 
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Topic N References 
Genetic diversity and population 

structure 
105 Beatty & Provan, 2011; Birt et al., 2011; Dalianis et al., 2011; Lawton et al., 2011; Zanetti et al., 2011; 

Zschokke et al., 2011; Brütting et al., 2012; Gömöry et al., 2012; Huang & Zhou, 2012; Kaya et al., 2012; 
Munshi-South, 2012; Perry et al., 2012; Sapir & Mazzucco, 2012; Spencer et al., 2012; Terracciano et al., 

2012; Tnah et al., 2012; Wenzel et al., 2012; Brauer et al., 2013; Díez-del-Molino et al., 2013; Lesser et al., 
2013; Lopez & Barriero, 2013; Perry et al., 2013; Sanz et al., 2013; Tsykun et al., 2013; Baalsrud et al., 2014; 

Baden et al., 2014; Baillie et al., 2014; Fernández-Mazuecos et al., 2014; Halbur et al., 2014; Katz et al., 
2014; Li et al., 2014b; Roy et al., 2014; Sanchez et al., 2014; Schwalm et al., 2014; Torres-Florez et al., 2014; 
Turlure et al., 2014; Yao et al., 2014; Álvarez et al., 2015; Benavente et al., 2015; Bian et al., 2015a; Bian et 
al., 2015b; de Camargo et al., 2015; Di Giacomo et al., 2015; Farias et al., 2015; García-Navas et al., 2015; 

Gradish et al., 2015; Guo et al., 2015; Hadas et al., 2015; Larriera et al., 2015; Li et al., 2015; Malekian et al., 
2015; Najbar et al., 2015; Oakley, 2015; Psaroudaki et al., 2015; Rianti et al., 2015; Suni & Whiteley, 2015; 

Wang et al., 2015; Ahrens & James, 2016; Al-Janabi et al., 2016; Baillie et al., 2016; Basto et al., 2016; 
Bohling et al., 2016; Carlson et al., 2016; Chong et al., 2016; Fourcade et al., 2016; Gebiola et al., 2016; 
Geue et al., 2016; Goossens et al., 2016; Jing et al., 2016; Lopes-Lima et al., 2016; Lumibao et al., 2016; 

MacLeod & Steinfartz, 2016; Priolli et al., 2016; Rico et al., 2016; Riesgo et al., 2016; Rodríguez-Quilón et 
al., 2016; Solano et al., 2016; Sousa-Santos et al., 2016; Yardeni et al., 2016; Ayala-Burbano et al., 2017; 
Carreira et al., 2017; Cox et al., 2017; Domínguez et al., 2017; Faulks et al., 2017; Fonseca et al., 2017; 

Honka et al., 2017; Jinga & Ashley, 2017; Mouton et al., 2017; Nowland et al., 2017; Rico, 2017; Roitman et 
al., 2017; Amaike et al., 2018; Amirchakhmaghi et al., 2018; Angelone et al., 2018; Bradshaw et al., 2018; 

Coates et al., 2018; Do Prado et al., 2018; Domingues et al., 2018; Fountain et al., 2018; Gugger et al., 2018; 
Ismail et al., 2018; Kangas et al., 2018; Padró et al., 2018; Sutton et al., 2018; Mahboob et al., 2019 

In situ ecology and evolution, 
including taxonomy 

23 Mariani et al., 2012; Ni et al., 2012; Page et al., 2012; Pertoldi et al., 2012; Rydgren et al., 2012; Fourcade et 
al., 2013; Pluess et al., 2013; Solano et al., 2013; Beltran et al., 2014; Wan et al., 2014; Wordley et al., 2014; 
Jaramillo-Correa et al., 2015; Ramírez-Valiente & Robledo-Arnuncio, 2015; Silva et al., 2015; Stapley et al., 
2015; Brüniche-Olsen et al., 2016; Hasbún et al., 2016; Cobben et al., 2017; de Groot et al., 2017; Lima et 

al., 2017; Bangs et al., 2018; Capitani et al., 2018; Truettner et al., 2018 
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Topic N References 
Reintroductions 12 Huff et al., 2010; Weeks et al., 2011; Lintermans, 2013; Tollington et al., 2013; Li et al., 2014a; Liu et al., 

2014; Lumibao & McLachlan, 2014; Frankham, 2016; Richards et al., 2016; Kronenberger et al., 2017; 
Jensen et al., 2018; Shemesh et al., 2018 

Inbreeding depression 3 Angeloni et al., 2011; Reed et al., 2012; Angeloni et al., 2014 
Disease 2 Criscione, 2013; Cornwall et al., 2018 

Ex situ conservation 13 (see below) 
     Wild vs. captive genetic diversity 6 Brütting et al., 2013; Ozer & Ashley, 2013; Shan et al., 2014; Witzenberger & Hochkirch, 2014; Castellanos-

Morales et al., 2016; Anderson et al., 2017 
     Captive management 3 Leus et al., 2011; Rodewald et al., 2011; Sandoval-Castillo et al., 2017 

     Sampling design 2 Hoban & Schlarbaum, 2014; Hoban & Strand, 2015 
     Genetic rescue experiment 1 Weisenberger et al., 2014 

     Reproductive success 1 Kiik et al., 2017 
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Table A9.2.2: Details of the five sequencing amplicons used in this study. 

 

Amplicon 
ID 

Genomic location 
of amplicon 

(UCSC) 

Nearby genes 
(UCSC) 

Location of SNPs Function notes Reference 

IL17B chr1_GL834622:5
06838-509979 

IL17B:chr1_GL8346
22506838-509979 

The first few SNPs are predicted to 
fall just outside the gene with most 
other SNPs falling in introns. Two 

SNPs (506759 and 509694) are 
predicted to fall in exons at either 

end of the gene. 

Immune region of interest- 
interleukin. 

Morris et al., 
2015 

UNC13B chr2_GL841539:2
046503-2056190 

UNC13B:chr2_GL84
1539:1873970-

2205813 

Amplicon is largely in intronic 
regions although one SNP (2050495) 

is predicted to fall in an exon 

This amplicon was designed as it came 
up as significant in a preliminary 

GWAS analysis for resilience to devil 
facial tumour disease, although this 

finding was not upheld with the 
addition of further samples (Wright et 

al., 2017). 

Wright et al., 
2015 

NF2 chr2_GL842060: 
28389-37701 

NF2:chr2_GL84206
0:81458-149966 

SNPs are 44 kb from the NF2 gene. NF2 is involved in progression of 
schwannomas (Hadfield et al., 2010), 
of which DFTD is a type (Murchison et 
al., 2010). This amplicon is considered 

putatively neutral as the amplified 
region does not lie within the gene 

and has not displayed signs of 
selection in past analyses (BW unpubl. 

data). 

Wright et al., 
2015 
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Amplicon 
ID 

Genomic location 
of amplicon 

(UCSC) 

Nearby genes 
(UCSC) 

Location of SNPs Function notes Reference 

DIG12 chr3_GL850167: 
29343-35668 

DIG12:chr3_GL850
167:29387-35520 

Only one SNP is expected to fall in an 
exon. 

Immune region of interest: devil 
immunoglobulin. Note, this gene is 
annotated as LILRA5/6 on the UCSC 

genome. 

Morris et al., 
2015 

AGA chr6_GL864793:3
14413-323784 

AGA:chr6_GL86479
3:242456-261095 

NEIL3:chr6_GL8647
93:343085-410581 

SNPs are in intergenic regions: 53.4 
kb from AGA and 19.6 kb from NEIL3 

Originally chosen as a non-coding 
region, representative on 

chromosome 6. 

Wright et al., 
2015 
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Table A9.2.3: Linear modelling of the effects of genotype on litter size for female Tasmanian devils.  
Litter size modelled as a proportion of the maximum four joeys, showing model averaged effect sizes with adjusted standard error in parentheses 
and relative importance (RI; sum of Akaike weights) in brackets (statistics pertaining to top model sets are provided in Table A9.2.4). Blanks 
indicate predictors that were tested, but which did not appear in the top model set. Predictors with both a strong effect size (relative to error) 
and low model selection uncertainty (i.e. high RI) are in bold (see Chapter 7 Methods for more information). Effects are standardised following 
Gelman (2008), and models are fitted with a logit link. 

1 Medium/high intensity housing versus low intensity housing. 
2 Only first breeding attempts of individual females were included.

Selection Gene N Intercept Enclosure type1 Gene Breeding year Dam age2 

Directional IL17B 102 -0.463 (0.106) -0.193 (0.211) [0.34] 0.479 (0.227) [1.00]  -0.812 (0.234) [1.00] 

 UNC13B 95 -0.410 (0.109) -0.256 (0.219) [0.41]   -0.849 (0.238) [1.00] 

 NF2 86 -0.465 (0.117) -0.210 (0.234) [0.23]  0.277 (0.231) [0.32] -1.047 (0.264) [1.00] 

 DIG12 88 -0.472 (0.117) -0.342 (0.302) [0.49] -0.578 (0.233) [1.00] -0.378 (0.310) [0.20] -1.160 (0.274) [1.00] 

 
AGA 72 -0.338 (0.129) -0.299 (0.308) [0.26] -0.486 (0.262) [0.76] 0.865 (0.293) [1.00] -1.006 (0.295) [1.00] 

Heterozygosity IL17B 102 -0.456 (0.106) -0.206 (0.210) [0.36] 0.298 (0.248) [0.42]  -0.837 (0.232) [1.00] 

 UNC13B 95 -0.410 (0.109) -0.256 (0.219) [0.41]   -0.849 (0.238) [1.00] 

 NF2 86 -0.466 (0.117) -0.210 (0.234) [0.20] -0.122 (0.247) [0.15] 0.277 (0.231) [0.27] -1.051 (0.265) [1.00] 

 DIG12 88 -0.487 (0.119) -0.397 (0.317) [0.54] -0.972 (0.262) [1.00] -0.424 (0.314) [0.25] -1.266 (0.285) [1.00] 

 AGA 72 -0.330 (0.128) -0.342 (0.305) [0.29] 0.240 (0.261) [0.24] 0.840 (0.298) [1.00] -1.066 (0.292) [1.00] 
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Table A9.2.4: Top model sets for effect of genotype on litter size. 
Information theoretic statistics for the component models (top model sets) that contributed 

to the final (averaged) models shown in Table A9.2.3. An “X” indicates that a predictor was 

included in each model. See the caption to Table A9.2.3 for more information on model 

structure. 

1 Enclosure type (medium/high intensity housing versus low intensity housing). 
2 Breeding year. 
3 Dam age; only first breeding attempts of individual females were included. 
  

Selection Gene ET1 Gene Year2 Age3 df logLik AICc delta weight 
Directional IL17B  X  X 3 -205.9 418.0  0.66 

  X X  X 4 -205.5 419.3 1.31 0.34 

 UNC13B    X 2 -191.7 387.6  0.59 

  X   X 3 -191.0 388.3 0.72 0.41 

 NF2    X 2 -168.3 340.8  0.45 

    X X 3 -167.6 341.5 0.65 0.32 

  X   X 3 -167.9 342.1 1.32 0.23 

 DIG12  X  X 3 -173.1 352.4  0.51 

  X X  X 4 -172.5 353.5 1.16 0.29 

  X X X X 5 -171.8 354.2 1.85 0.20 

 AGA  X X X 4 -137.1 282.7  0.50 

  X X X X 5 -136.6 284.1 1.33 0.26   
  X X 3 -138.9 284.2 1.49 0.24 

Heterozygosity IL17B    X 2 -208.3 420.7  0.37 

   X  X 3 -207.5 421.3 0.60 0.27 

  X   X 3 -207.8 421.8 1.11 0.21 

  X X  X 4 -207.1 422.5 1.80 0.15 

 UNC13B    X 2 -191.7 387.6  0.59 

  X   X 3 -191.0 388.3 0.72 0.41 

 NF2    X 2 -168.3 340.8  0.38 

    X X 3 -167.6 341.5 0.65 0.27 

  X   X 3 -167.9 342.1 1.32 0.20 

   X  X 3 -168.2 342.7 1.90 0.15 

 DIG12  X  X 3 -169.0 344.4  0.46 

  X X  X 4 -168.4 345.3 0.92 0.29 

  X X X X 5 -167.5 345.6 1.26 0.25 

 AGA   X X 3 -138.9 284.2  0.47 

  X  X X 4 -138.3 285.1 0.93 0.29 

   X X X 4 -138.5 285.6 1.36 0.24 
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A9.3 SUPPLEMENTARY FIGURES 

 
Figure A9.3.1: Venn diagram showing the number of triads sequenced at each amplicon or 
combination of amplicons.  
The distribution of values across the diagram indicates that many trios were largely 

sequenced at different loci, and therefore that patterns across loci are unlikely to result from 

structure in the dataset. 
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Figure A9.3.2: Comparison of observed and expected heterozygosity between sites with 
varying environmental variation.  
Populations are buffered against environmental variation in both the high and medium-

intensity housing, while individual exposure to natural variation in food availability, weather, 

etc., is greater at the low-intensity Maria Island site. 

  



296 
 

 
Figure A9.3.3: Comparison of observed and expected heterozygosity between sites with 
varying opportunity for mate choice.  
Mate choice may occur at both the medium-intensity group housing, and the low intensity 

island population, while forced monogamy is used at high-intensity sites. 
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Appendix 10: Pedigree analysis reveals a generational decline in 

reproductive success of captive Tasmanian devil (Sarcophilus harrisii): 

implications for captive management of threatened species 

 

A10.1 BACKGROUND 

The following article provides an investigation into reproductive success in the Tasmanian 

devil insurance population. Modelling the factors contributing to reproductive success 

revealed a generational decline in the probability of a female producing offspring. 

Reproductive success increased with the number of years an institution had held devils, 

suggesting husbandry expertise that could be shared to improve breeding at newer zoos. Dam 

age also had a strong negative effect on reproductive success, as per Chapter 6. 

This paper was revised and published during the course of my PhD research, incorporating 

results that I obtained during my AVBS(Hons) degree. I collated the data, performed the 

analysis, prepared figures and tables and drafted the manuscript, with the support and 

guidance of Carolyn Hogg and Catherine Grueber, who obtained funding for the research. 
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A10.2 MAIN ARTICLE 
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A10.3 SUPPLEMENTARY MATERIAL TO A10.2 

Tables are numbered as per A10.2 Main article. 

Table S1: Full model before model dredging and averaging for breeding success of the 
Tasmanian devil at intensive sites. 
All models were fitted with the random factors ‘Site’ and ‘Year’. The top models after model 

dredging are provided in Table S2, and the final model after model averaging is provided in 

Table 2. 

a Estimates are standardized on two SD following Gelman (2008). 
b Sire origin (captive) was the reference category. 
c Dam origin (captive) was the reference category. 
 
 

Table S2: Top model set (top 2 AICC) of generalized linear mixed models for breeding success 
of the Tasmanian devil at intensive sites. 
All models were fitted with the random factors ‘Site’ and ‘Year’. The final model is provided 

in Table 2. 

a Change in AICC from the best model. 
b Akaike model weight. 
  

Fixed effects Estimatea SE 
Intercept -0.30 0.32 
Sire age -0.13 0.50 

Sire origin (wild)b -0.59 0.72 
Sire generation -0.27 0.57 

Dam age -1.96 0.51 
Dam origin (wild)c 0.30 0.68 
Dam generation -1.46 0.70 

Years since site held species 1.23 0.60 
Holdings 0.89 0.61 

Model statement AICC Δi
a wi

b 
b0 + dam age + dam generation + years since site held 

insurance ppn 217.5  0.104 
b0 + dam age + dam generation + holdings + years since 

site held insurance ppn 218 0.45 0.083 
b0 + sire origin + dam age + dam generation + years since 

site held insurance ppn 219.3 1.80 0.042 
b0 + dam origin + dam age + dam generation + years since 

site held insurance ppn 219.4 1.84 0.042 
b0 + sire origin + dam age + dam generation + holdings + 

years since site held insurance ppn 219.4 1.86 0.041 
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Table S3: Full model before model dredging and averaging for litter size of the Tasmanian 
devil at intensive sites. 
All models were fitted with the random factors ‘Site’ and ‘Year’. The top models after model 

dredging are provided in Table S4, and the final model after model averaging is provided in 

Table 2. 

a Estimates are standardised on two SD following Gelman (2008). 
b Sire origin (captive) was the reference category. 
c Dam origin (captive) was the reference category. 
 

 

Table S4: Top model set (top 2 AICC) of generalized linear mixed models for litter size of the 
Tasmanian devil at intensive sites. 
All models were fitted with the random factors ‘Site’ and ‘Year’. The final model is provided 

in Table 2. 

a Change in AICC from the best model. 
b Akaike model weight. 
  

Fixed effects Estimatea SE 
Intercept 0.77 0.12 
Sire age 0.26 0.43 

Sire origin (wild)b -0.18 0.49 
Sire generation 0.05 0.41 

Dam age -0.31 0.37 
Dam origin (wild)c 0.67 0.54 
Dam generation -0.35 0.43 

Years since site held species 0.22 0.36 
Holdings -0.26 0.30 

Model statement AICC Δi
a wi

b 
b0 + dam generation 231.1  0.061 
b0 + dam origin 231.3 0.15 0.056 

b0 + dam origin + holdings 232.6 1.48 0.029 
b0 + dam origin + dam generation 232.8 1.70 0.026 
b0 + dam generation + holdings 233.1 1.95 0.023 
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Table S5: Full model before model dredging and averaging for breeding success of female 
Tasmanian devils. 
All models were fitted with the random factors ‘Site’ and ‘Year’. The top models after model 

dredging are provided in Table S6, and the final model after model averaging is provided in 

Table 2. 

a Estimates are standardised on two SD following Gelman (2008). 
b Dam origin (captive) was the reference category. 
c Management (free-range) was the reference category. 
 

 

Table S6: Top model set (top 2 AICC) of generalized linear mixed models for the breeding 
success of female Tasmanian devils. 
All models were fitted with the random factors ‘Site’ and ‘Year’. The final model is provided 

in Table 2.  

a Change in AICC from the best model. 
b Akaike model weight. 
  

Fixed effects Estimatea SE 
Intercept -0.46 0.26 
Dam age -0.33 0.30 

Dam origin (wild)b -0.14 0.47 
Dam generation -0.54 0.47 

Management (intensive)c -0.58 0.57 

Model statement AICC Δi
a wi

b 
b0  315.2  0.172 

b0 + dam generation 315.9 0.67 0.123 
b0 + management 316.5 1.33 0.088 
b0 + dam age 316.6 1.36 0.087 

b0 + dam age + dam generation 316.8 1.63 0.076 
b0 + dam origin 316.9 1.72 0.073 

b0 + management + dam generation 317.1 1.90 0.066 
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Table S7: Full model before model dredging and averaging for litter size of female 
Tasmanian devils. 
All models were fitted with the random factors ‘Site’ and ‘Year’. The top models after model 

dredging are provided in Table S8, and the final model after model averaging is provided in 

Table 2. 

a Estimates are standardised on two SD following Gelman (2008). 
b Dam origin (captive) was the reference category. 
c Management (free-range) was the reference category. 
 

 

Table S8: Top model set (top 2 AICC) of generalized linear mixed models for litter size of 
female Tasmanian devils (Sarcophilus harrisii). 
All models were fitted with the random factors ‘Site’ and ‘Year’. The final model is provided 

in Table 2. 

a Change in AICC from the best model. 
b Akaike model weight. 
  

Fixed effects Estimatea SE 
Intercept 0.76 0.11 
Dam age -0.29 0.22 

Dam origin (wild)b 0.61 0.34 
Dam generation 0.12 0.32 

Management (intensive)c -0.20 0.22 

Model statement AICC Δi
a wi

b 
b0 + dam origin 311.8  0.228 

b0 + dam origin + dam age 312.9 1.06 0.134 
b0 + dam origin + management 313.6 1.75 0.095 
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Appendix 11: Are any populations ‘safe’? Unexpected reproductive 

decline in a population of Tasmanian devils free of devil facial tumour 

disease 

A11.1 BACKGROUND 

Since the emergence of devil facial tumour disease in north-east Tasmania in 1996, it has 

spread westerly across Tasmania. Only two wild populations remain unaffected: a recently 

discovered population in south-west Tasmania, and a population in the north-western tip at 

Woolnorth. The Woolnorth population has long-term monitoring data available. In this article, 

we investigated temporal reproductive success in the Woolnorth population. Reproductive 

success substantially declined between the 2004-2009 and 2014-2016 time periods. The 

decline could not be attributed to changes in body condition over the same time. Our findings 

therefore demonstrate why long-term monitoring of disease-free populations is still essential. 

This publication resulted from a collaboration between our research group and our 

conservation partners in the Save the Tasmanian Devil Program. The data analysis was led by 

myself and Rebecca Gooley (also completing her PhD in our group at the time of this study); 

we joint first-authored this article. I analysed reproductive success and body condition data, 

prepared figures, and drafted sections of the manuscript. Rebecca analysed reproductive 

success and Southern Oscillation Index data, and drafted sections of the manuscript. The size-

adjusted body condition measure developed in this paper has since been applied by the Save 

the Tasmanian Devil Program to monitor body condition in wild populations including Maria 

Island. 

  



311 
 

A11.2 MAIN ARTICLE 

  



312 
 

  



313 
 

  



314 
 

  



315 
 

  



316 
 



317 
 

  



318 
 

Appendix 12: A demonstration of conservation genomics for 

threatened species management 

A12.1 BACKGROUND 

The following appendix contains the abstract of a manuscript that I contributed to during the 

course of my PhD research, led by Belinda Wright. The manuscript has been revised and is 

currently in preparation for resubmission to Molecular Ecology Resources. Resequenced 

whole genomes from 24 Tasmanian devils were used to conduct a genome-wide association 

study (GWAS) for breeding success. Reduced representation sequencing data is assumed to 

be representative of genome-wide heterozygosity, but this assumption is rarely tested. By 

comparing RRS data to the whole genome data, RRS was found to be a good proxy for 

genome-wide heterozygosity. However, marker density was not high enough to examine 

functional diversity such as through GWAS. 

For this study, I processed RRS data using the method I developed in Chapter 4 (R script in 

Appendix 6), and critically revised the manuscript. 
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A12.2 ABSTRACT 

A demonstration of conservation genomics for threatened species 

management 

Belinda Wrighta, Katherine A. Farquharsona, Elspeth A. McLennana, Katherine Belova,  

Carolyn J. Hogga & Catherine E. Gruebera,b 

a) The University of Sydney, Faculty of Science, School of Life and Environmental 

Sciences, NSW 2006, Australia 

b) San Diego Zoo Global, PO Box 120551, San Diego, CA 92112, USA 

 
As species extinction rates increase, genomics provides a powerful tool to support intensive 

management of threatened species. However, to date, few case studies have been published. 

We use the Tasmanian devil to demonstrate how conservation genomics can be implemented 

in threatened species management. We sequenced the genomes of 24 individuals from the 

captive breeding program, and conducted reduced-representation sequencing (RRS) of 98 

founders from the same program. A subset of the genome-sequenced samples was also 

sequenced by RRS, so we are able to directly compare genome-wide heterozygosity with 

estimates from RRS data. We found good congruence between the two datasets, indicating 

that our RRS data reflects inter-individual variation well. Similarly, analysis of gene-ontology 

classifications showed further congruence between the two datasets, suggesting minimal bias 

in our RRS data. We also attempted genome-wide association studies with both datasets 

(regarding breeding success), but the genomic data suffered from small sample size, while the 

RRS data suffered from lack of precision, highlighting a key trade-off in the design of 

conservation genomic research. Nevertheless, we identified two genes possibly associated 

with variation in breeding success, both involved in sperm function. Individual RRS 

heterozygosity was not associated with the likelihood of a founder breeding in captivity but 

was negatively associated with litter sizes of breeding females. Our observation of high 

congruence between whole-genome and RRS datasets offers hope for conservation 

geneticists who target the latter due to its cost efficiency. We caution, however, that deep 

functional insights may be impaired by a lack of precision. 

 


