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Abstract

In this paper, we present a new green two-echelon capacitated location routing problem (G-2E-CLRP), which
aims to determine simultaneous decisions on locating satellites and routing electric vehicles for city logistics
delivery system. The first echelon consists of round trips from the depot to open satellites, the second echelon
consists of tours from these satellites to the end customers, whereas battery swapping operations are only allowed
at the depot or satellites. The problem is formulated as an arc-based formulation and then we propose a set-
partitioning formulation in which routes are defined as second-echelon tours. We develop an branch-and-price
(B&P) algorithm to solve this problem and propose a column generation procedure that combines modified
Clarke Wright (MCW) savings method and pulse algorithm to provide feasible tours e�ciently. The proposed
algorithm is validated using extensive computational experiments and is found to perform well when compared
against commercial branch-and-bound/cut solvers such as CPLEX. Based on these results, we assess the benefits
of integrating locations of satellites and routes of electric vehicles in this new green two-echelon logistics system.

Keywords: Two-echelon system; Electric vehicles; Location routing problem; Branch-and-price

1 Introduction

Green logistics attempts to trade o↵ economic and environmental e�ciency in production and dis-

tribution processes. Recently, there is a trend to use electric vehicles (EVs) instead of conventional
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internal combustion engine vehicles in city logistics, since EVs can significantly reduce emissions of

CO2, NOx, and are quieter than conventional vehicles. Despite high acquisition costs, limited range

and lengthy recharging, EVs are proving attractive for city logistics because they are quiet and generate

no street-level emissions. For example, UPS (2018) continues to expand its use of electric vehicles and

works with a wide array of manufacturers, DPDHL (2017) aims to double production of its electrically

powered ”StreetScooter” delivery vehicles by opening a second manufacturing plant in Germany, and

FedEx (2019) also expands the size of its EV fleet to minimize environmental impacts.

The two-echelon distribution network is very relevant to the context of city logistics (Savelsbergh and

Van Woensel (2016)), because of legal restrictions on the use of large trucks within the city centre and

the convenience of sorting and consolidating freight before final deliveries. EVs require a two-echelon

transport system, due to their limited driving ranges, posing new challenges to transport planning and

routing. With current technology, battery-swapping (BS) is a promising option to recharging, which

replaces the existing battery by a fully charged one in ten minutes (Li (2014) and Kim (2011)). It can

improve the productivity of vehicles by mitigating disadvantages of recharging, like longer time and

battery degradation. Furthermore, drivers can take a break during this time, and depleted batteries can

be charged during o↵-peak hours with a discounted electricity price (Jie et al. (2019)). Therefore, EVs in

two echelons which swap their batteries at their start nodes (the depot or satellites) before battery power

runs out is an attractive and sensitive option. Actually, charging only at start stations not en-route

is also used in practical logistics due to the improvement of charging technology. In 2018, DPD(UK)

opened its first all-electric last-mile delivery satellite in Westminster, London. In their system, the

freight available in the London City depot is transported by the 7.5-tonners eCanters (primary EVs)

to the micro delivery depots (satellites), and then Nissan eNV200s and Paxsters (secondary EVs) serve

the final customers. Both EVs do not need additional recharging during deliveries.

In the express delivery industry, logistics companies need to establish and refurbish facilities for the

EVs by themselves, since the public charging infrastructure is not su�cient and the battery standards

for di↵erent EVs are not unified (Yang and Sun (2015)). For example, DPD(UK) has spent £500,000

to prepare a new charging system for their fleet of EVs at the satellite in Westminster, London. Hence,

optimizing the number and location of facilities with battery swapping or recharging infrastructure

could improve the e�ciency of EV operations in city logistics. In addition, tactical routing decisions

in both echelons depend on the open satellites, so interdependencies between location and routing

decisions have to be regarded simultaneously.

Against this background, our work aims to suggest an arc-based formulation of this new green two-

2



      Legend

Depot

Potential satellites

Customers

Arcs of the primary EVs

Arcs of the secondary EVs

Figure 1: An example of the G-2E-CLRP distribution network.

echelon capacitated location routing problem (G-2E-CLRP) with the goal of choosing which satellites

to open and determining the service frequencies for primary EVs and routing plans for secondary EVs

with respect to loading capacities and battery driving range constraints. Instead of the traditional

2E-LRP, our problem considers EVs with di↵erent battery consumption rates, battery driving ranges

and battery swapping costs in di↵erent echelons, and focuses on the location decision of satellites, like

a typical secondary facility location-routing problem (Mancini (2017)) or a two-echelon capacitated

location-routing problem with a single depot (Cuda et al. (2015)). All locations of the depot and

customers are given and fixed. Figure 1 shows an example of the G-2E-CLRP distribution network.

Our proposed model for this problem is to determine a) the number and location of satellites, b) the

allocation and size of primary EVs which do the round trips and swap batteries at the depot, c) the

tours of secondary EVs which accomplish customer demand and swap batteries at their start satellites.

The contribution of the present work is multifold. First, our work is the first to incorporate location

decisions of satellites with routing decisions with limited EV driving ranges and battery swapping op-

erations in a two-echelon system. Second, the related problem is rarely treated from an exact optimiza-

tion point of view. In this paper, we firstly develop a specialized branch-and-price (B&P) algorithm in

which the column generation procedure is based on a modified Clarke Wright (MCW) savings method

(heuristic) and pulse algorithm (exact algorithm). The numerical experiments demonstrate the power

of the proposed B&P algorithm and its root-node solutions exhibit good optimality gaps (below 4% on

average) in run times. Finally, we highlight the importance and advantages of studying an integrated

location and routing problem for a logistics company using EVs in a two-echelon distribution network.
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The remainder of the paper is organized as follows. In Section 2, we review recent literature related

to green or electric vehicle routing problems, and two-echelon distribution systems. The arc-based

G-2E-CLRP mathematical model is firstly introduced in Section 3. The overall design of the B&P

algorithm is discussed in Section 4. Section 5 presents computational experiments and analyzes the

results obtained. Finally, conclusions and potential future directions are given in Section 6.

2 Literature review

The G-2E-CLRP primarily combines two streams of research. The first stream is related to the green

vehicle routing problem (G-VRP) or electric vehicle routing problem (E-VRP), and the second stream

involves the two-echelon location and routing problem (2E-LRP).

2.1 Related papers on G-VRP/E-VRP

During the last decades, there has been a huge growth in the number of the G-VRP/E-VRP tackled

both by the research community and by practitioners. Early studies share a similar focus on the

routing vehicles with an initial limited fuel budget (Ichimori et al. (1983)) or with limited driving

ranges (Conrad and Figliozzi (2011)). More recently, Erdoan and Miller-Hooks (2012) introduced the

G-VRP and proposed the first model considering charging facilities on routes. Conrad and Figliozzi

(2011) firstly investigated the routing and recharging of EVs, although recharging is only allowed at

customer vertices. For recent surveys of the G-VRP/E-VRP and related technological and marketing

background of EVs, we refer the reader to Pelletier et al. (2016).

Regarding the potential improvement of charging strategies, some studies apply facility location

problem (FLP) techniques for locating charging infrastructure include vertex-based and flow-based

planning approaches (e.g., An et al. (2014) and Lee and Han (2017)). However, both G-VRP/E-VRP

and FLP lack the interdependencies between routing of vehicles and charging station location decisions.

Several contributions have emerged in recent years that focus on related integrated models from a LRP

perspective. Yang and Sun (2015) presented a battery swapping station (BSS) location routing problem

with capacitated EVs under battery driving range constraints. Schi↵er et al. (2016) showed the benefit

of integrated planning of charging station location and EV routing decisions by studying a real-world

case. In addition, Schi↵er and Walther (2017a) proposed a LRP with intra-route facilities covering

both charging stations and freight replenishing facilities. Schi↵er and Walther (2017b) considered both

partial and full recharging options for electric routing problems with time windows (E-VRPTW).
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Several heuristic solution methods have recently been investigated for solving the G-VRP/E-VRP.

Erdoan and Miller-Hooks (2012) developed two customized heuristic algorithms including a modified

Clarke and Wright savings algorithm and a density-based clustering algorithm. Felipe et al. (2014) con-

sidered recharging operations performed with di↵erent technologies, such as partial battery recharges

and overnight depot charging. Then, several heuristics based on a simulated annealing framework are

provided. Schneider et al. (2014) focused on E-VRPTW with recharging stations and combined variable

neighborhood search (VNS) and tabu search to solve their problem. Hof et al. (2017) considered bat-

tery swap station location-routing problem with capacitated electric vehicles and intermediate stops.

They extended an adaptive variable neighborhood search (AVNS) algorithm and achieved significantly

improvements. Montoya et al. (2017) investigated nonlinear charging functions in E-VRP and devel-

oped a hybrid meta-heuristic combining an iterated local search (ILS) and a heuristic concentration

(HC). Hiermann et al. (2019) introduced fleet size and mix into the E-VRP and developed a hybrid

genetic algorithm based on layered route evaluation procedures.

Because of the complexity of the problem, only a limited number of exact algorithms for the G-

VRP/E-VRP are proposed in the literature. Desaulniers et al. (2016) developed branch-price-and-cut

(B&P&C) algorithms to solve four variants of their problem to optimality. Hiermann et al. (2016)

provided both exact and heuristic algorithms for VRPTW considering a heterogeneous electric fleet.

Their exact algorithm is a B&P framework using a labeling algorithm and a heuristic algorithm based

on an adaptive large neighborhood search (ALNS). Recently, Andelmin and Bartolini (2017) modeled

a G-VRP based on a multigraph for en route recharging options and presented a B&P&C algorithm.

According to the above review, Table 1 summarizes the main contributions to the G-VRP/E-VRP

literature.

2.2 Related papers on 2E-LRP

Multi-echelon logistics systems are common in practice, since they allow for freight sorting and con-

solidating to the city centre (Savelsbergh and Van Woensel (2016)). Recently, a number of papers

deal with multi-echelon systems, especially for two-echelon structures. Cuda et al. (2015) provided

an extensive overview and classified the related literature into three classes: the two-echelon location-

routing problems (2E-LRP), the two-echelon vehicle-routing problems (2E-VRP) and the truck and

trailer routing problems (TTRP). Furthermore, Schi↵er et al. (2019) gave a detailed review of vehicle

routing problems (VRPs) and location routing problems (LRPs) with intermediate stops, dedicated to

replenishment and unloading, refueling or idling.
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Integrated location and routing decisions is of benefit for designing distribution systems (Salhi and

Rand (1989)). Prodhon and Prins (2014) and Drexl and Schneider (2015) review the foremost related

papers on the LRP and also identify future directions for this area of research. The 2E-LRP is a

generalization of LRP, in which the satellites are connected by first echelon trips, and the location

of the depots and the satellites needed to be determined. Compared to the classical LRP, 2E-LRP

has only been studied by a few researchers. Except for some recent papers focusing on the location

decisions of both stages (Crainic et al. (2011b); Contardo et al. (2012); Schwengerer et al. (2012)), most

of papers on 2E-LRP only consider one stage location decisions, usually the second stage (Jacobsen

and Madsen (1980); Laporte (1987); Madsen (1983)). The capacitated 2E-LRP (2E-CLRP) is the

most studied problem among the 2E-LRP, firstly formalized in Boccia et al. (2010). According to the

notation of Laporte and Nobert (1988) and Cuda et al. (2015), our problem is corresponding to the

3/R/T problem with a single depot, where only return trips are allowed between the depot and open

satellites, and only the location decisions of satellites is considered. To the best of our knowledge, the

best performing exact and heuristic algorithm for the 2E-CLRP is the branch-and-cut (B&C) algorithm

and the Adaptive Large Neighborhood Search (ALNS), respectively (Contardo et al. (2012)).

Although green or electric two-echelon logistics systems have been applied in real world, the two-

echelon systems with EVs have drawn little attention for academic research in the literature. There

has been little research related to this problem. Soysal et al. (2015) is the first paper to consider CO2

emissions in the VRP as the objective, and many realistic factors were taken into account in their

formulation, such as multiple time zones, vehicle type and size, and travel distance. Later, Li et al.

(2016) extended the above problem by considering many-to-many demands in the two-echelon line-

haul level. Both papers focus on the environmental impact. Breunig et al. (2019) presented a natural

extension of the 2E-VRP in which electric vehicles are used in the second echelon. They developed a

large neighborhood search (LNS) meta-heuristic as well as an exact mathematical programming algo-

rithm to produce optimal or near-optimal solutions for their problem. Macrina et al. (2019) considered

an electric two-echelon vehicle routing problem with recharging operations in each echelon and also

proposed both exact and meta-heuristic algorithms. In particular, Jie et al. (2019) presented a two-

echelon capacitated electric vehicle routing problem with battery swapping stations (2E-EVRP-BSS)

and developed a hybrid algorithm by combining a column generation and adaptive large neighborhood

search (CG-ALNS) to solve the problem.

Our G-2E-LRP developed within this paper di↵ers from above related studies in two main ways:

First, our G-2E-CLRP just considers battery swapping strategies at start nodes other than en route
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recharging operations. Second, a B&P algorithm is proposed for our G-2E-CLRP by designing a

set-partitioning formulation and pricing subproblems, which is described detailed in Section 4.

3 Model formulation

3.1 Problem description

In this paper, we study the G-2E-CLRP which considers a two-echelon delivery network composed

of a depot, potential locations for the satellites and the customers, respectively. The depot and the

customers are situated at given and fixed locations. On the other hand, the location of candidate

satellites is determined a priori but not which satellites to open. In this two-echelon delivery network,

two types of EVs have been considered with di↵erent load capacities, battery driving ranges, power

consumption rates and battery swapping costs. The primary EVs can only serve one satellite and go

back to the depot in the first echelon, and the secondary EVs can serve more than one customer in the

second echelon and go back to the starting satellite.

Only the depot and the satellites can provide the battery swapping service for each type of EV, at

a di↵erent cost, respectively. The capacities of both EV types cannot be exceeded, and the swapping

operation times of primary EVs at the depot and of secondary EVs at each satellite are limited. Each

open satellite has to be visited by exactly one primary vehicle. Similarly, each customer has to be served

by exactly one secondary vehicle that starts from an open satellite (i.e., customer demand cannot be

split).

This model aims to find the optimal set of sites for the satellites as well as the optimal set of primary

trips and secondary routes that satisfy the customer demands and do not violate the battery capacity

and load capacity constraints. The objective is to minimize the sum of the fixed cost of open satellites,

the EV travel costs, and the battery swapping costs at the depot and the satellites.

3.2 Arc-based formulation

According to the above definition, the G-2E-CLRP may be described as the following problem. Let us

consider a directed graph G = (V,A), where V = V0 [ Vs [ Vc is the set of vertices, where V0 = {v0}

represents the depot, Vs = {vs1 , vs2 , . . . , vsns
} is the set of potential satellite locations, and Vc =

{vc1 , vc2 , . . . , vcnc
} is the customer set. These three sets of vertices are pairwise disjoint. The arc set A is

defined as A = A
1[A2 is the set of arcs (i, j) such that arc set A1 = {(i, j) : i, j 2 V0[Vs, (i, j) /2 Vs⇥Vs}

includes the arcs connecting the depot to the satellites. Arc set A
2 = {(j, k) : j, k 2 Vs [ Vc, (j, k) /2
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Table 1: Summary of the G-VRP/E-VRP contributions in the scientific literature.

References Routing Location TW Mixed fleet Recharging BS Algorithm

Contreras et al. (2011) X X Heuristic

Erdoan and Miller-Hooks (2012) X X Heuristic

Felipe et al. (2014) X X Heuristic

Schneider et al. (2014) X X X Heuristic

Sassi et al. (2014) X X X X Heuristic

Goeke and Schneider (2015) X X X Heuristic

Sassi et al. (2015) X X X Heuristic

Yang and Sun (2015) X X X Heuristic

Doppstadt et al. (2016) X X Heuristic

Desaulniers et al. (2016) X X X Exact

Hiermann et al. (2016) X X X X Heuristic and Exact

Keskin and Çatay (2016) X X X Heuristic

Liao et al. (2016) X X Heuristic

Andelmin and Bartolini (2017) X X Exact

Barco et al. (2017) X X Case study

Hof et al. (2017) X X X Heuristic

Lee and Han (2017) X X Exact

Mancini (2017) X X X Heuristic

Montoya et al. (2017) X X Heuristic

Schi↵er and Walther (2017a) X X X Heuristic

Schi↵er and Walther (2017b) X X X X Heuristic

Wang et al. (2017) X X Case study

Keskin and Çatay (2018) X X X Heuristic

Dukkanci et al. (2019) X X X Heuristic

Hiermann et al. (2019) X X X Heuristic

This work X X X Exact
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Table 2: Definitions and Notations

Notation Meaning

V0 Depot, V0 = {v0}

Vs Set of satellites, Vs = {vs1 , vs2 , . . . , vsns
}

Vc Set of customers, Vc = {vc1 , vc2 , . . . , vcnc
}

ns, nc Number of satellites and customers, respectively

A
1 Set of arcs in the first echelon, A1 = {(i, j) : i, j 2 V0 [ Vs, (i, j) /2 Vs ⇥ Vs}

A
2 Set of arcs in the second echelon, A2 = {(j, k) : j, k 2 Vs [ Vc, (j, k) /2 Vs ⇥ Vs}

m
1 The maximum number of primary EVs battery swaps at the depot

m
2
s The maximum number of secondary EVs battery swaps at the satellite s

K
1, K2 Load capacity of the EVs for the first echelon and the second echelon, respectively

B
1, B2 Battery capacity of the EVs for the first echelon and the second echelon, respectively

h
1, h2 Charge consumption rate of the EVs for the first echelon and the second echelon, respectively

qi Demand required by customer i

dij Distance between node i to node j

c
1
ij
, c2

ij
Cost of the primary EVs from node i to node j and that of the secondary EVs, respectively

c
1
b
, c2

b
Cost of battery swapping or recharging at the first echelon and the second echelon, respectively

fs Cost of opening a satellite s

ys Binary decision variable indicating whether or not satellite s opens

zijs Binary decision variable indicating whether a secondary EV from satellite s travels arc (i, j)

xij Integer decision variable specifying the frequency of primary EVs using arc (i, j)

fijs Decision variable specifying the load on a secondary EV from satellite s when leaving node i to node j

ts Decision variable specifying the total demand of customers to be served by satellite s

b
+
i

Specifies the remaining battery power when a secondary vehicle arrives at node i

b
�
i

Specifies the remaining battery power when a secondary vehicle leaves at node i
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Vs ⇥ Vs} comprises the arcs connecting satellites to the customers, as well as those connecting pairs of

customers.

A rental cost fi is given for each satellite i 2 Vs. Each customer k 2 Vc has a known and deterministic

demand qk. The load capacity of the two types EVs associated with the echelons are given as K1 and

K
2 with battery capacity B

1 and B
2 and charging consumption rate h

1 and h
2, respectively. m

1 is

the maximum number of primary EVs battery swaps or recharges at the depot. m
2
s is the maximum

number of secondary EVs battery swaps or recharges at the satellite s. The EVs travel cost of arcs

(i, j) 2 A
1 and arcs (i, j) 2 A

2 is given as c1
ij
and c

2
ij
, respectively. We assume, throughout this paper,

that the travel costs satisfy the triangle inequality. The battery swapping costs for each echelon per

time is c1
b
and c

2
b
, respectively.

Table 2 provides the definitions of variables and parameters used in formulations introduced in this

paper. Then, this arc-based model can be cast as the following Mixed Integer Linear Programming

(MILP) model as follows.

min
X

j2Vs

fjyj +
X

(i,j)2A1

c
1
ijxij +

X

i2V0

X

j2Vs

c
1
b
xij +

X

s2Vs

X

(i,j)2A2

c
2
ijzijs +

X

s2Vs

X

(s,j)2A2

c
2
b
zsjs (1)

s.t.
X

i2Vo

X

j2Vs

xij  m
1 (2)

xij  m
1
yj 8(i, j) 2 A

1 (3)

xij = xji 8(i, j) 2 A
1 (4)

[h1(dij + dji)�B
1]yj  0 8(i, j) 2 A

1 (5)

ts  K
1
X

i2V0

xis 8s 2 Vs (6)

ts =
X

(i,j)2A2

qjzijs 8s 2 Vs (7)

X

s2Vs

X

j2Vc[{s}

zijs = 1 8i 2 Vc (8)

X

j2Vc[{s}

zijs =
X

j2Vc[{s}

zjis 8i 2 Vc, 8s 2 Vs (9)

X

j2Vc

zsjs =
X

j2Vc

zjss 8s 2 Vs (10)

X

s̄2Vs\{s}

(
X

j2Vc[{s}

zsjs̄ +
X

i2Vc[{s}

ziss̄) = 0 8s 2 Vs (11)

X

j2Vc[{s}

zsjs  m
2
sys 8s 2 Vs (12)
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fijs  K
2
zijs 8(i, j) 2 A

2
, 8s 2 Vs (13)

X

s2Vs

X

j2Vc[{s}

fjis =
X

s2Vs

X

j2Vc[{s}

fijs + qi 8i 2 Vc (14)

b
�
s = B

2 8s 2 Vs (15)

b
�
i
= b

+
i

8i 2 Vc (16)

b
+
j
 b

�
i
� h

2
dijzijs +B

2(1� zijs) 8(i, j) 2 A
2
, 8s 2 Vs (17)

yj 2 {0, 1} 8j 2 Vs (18)

xij 2 Z 8(i, j) 2 A
1 (19)

tj � 0 8j 2 Vs (20)

zijs 2 {0, 1} 8(i, j) 2 A
2
, 8s 2 Vs (21)

fijs � 0 8(i, j) 2 A
2
, 8s 2 Vs (22)

b
�
i
, b

+
i
� 0 8i 2 Vs [ Vc (23)

The objective function (1) minimizes the total cost including the fixed cost of open satellites, the

EV travel cost of both echelons, and the battery swapping cost at the depot or satellites. Constraints

(2) and (12) restrict the number of battery swapping operations for primary EVs at the depot and

secondary EVs at satellites (notice that constraints limit at the same time the freight capacity of the

satellites as well). Constraints (3) indicate that any primary EV should be assigned to an open satellite.

Constraints (4) ensure each primary EV is required to go back to the depot after serving one satellite.

Constraints (5) ensure the open satellites could be visited and go back within the battery power of

a primary EV. Constraints (15) indicate that the battery capacity of a secondary EV is equal to B
2

when it departs from an open satellite. Constraints (16) ensure that the battery power remains the

same when a secondary EV visits a customer. Constraints (17) keep the balance of the battery power

of the secondary EVs arriving at node j from node i. Similarly, they guarantee that every secondary

EV has su�cient battery power to visit the remaining customers and return to the satellites.

The capacity constraints are formulated in (6) and (13) for the first echelon and the second echelon,

respectively. Constraints (14) and (7) indicate that the flow’ balance on each customer node is equal

to the demand of this node, and the flow is equal to the demand assigned to the open satellites at the

second echelon. Constraints (8) assign each customer to only one open satellite, and constraints (9)

ensure the flow conservation for the secondary EVs. Moreover, constraints (10) force each route in the

second echelon to begin and end at the same open satellite, while implying that the outgoing and the
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incoming routes associated to each satellite are equal. Constraints (11) forbid the presence of sub-tours

containing di↵erent satellites, which means that we cannot dispatch secondary EVs among satellites.

Finally, constraints (18)-(23) specify the domains of the variables. In particular, notice that while the

arc variables zijs can be defined as Boolean, each customer being served by at most one secondary EV,

the first echelon arc variables xij must be a non-negative integer.

Actually, the model formulation is identical for the pickup problem where K1 and K
2 are redefined

as the remaining load capacity of the EVs in first echelon and second echelon, fijs denotes the remaining

load capacity on a secondary EV from satellite s when leaving node i to node j. Constraints (14) need

some tweaking to ensure the flow’ balance for each customer. In addition, battery swapping operations

also can be replaced by recharging operations depending on the real case, and related parameters

change accordingly.

The above model has a polynomial-size number of variables and constraints, but provides a poor

lower bound and a long run time. These issues are common and discussed for similar formulations (see

Crainic et al. (2011a)). The numerical evaluation of this formulation will be presented in Section 5.

Then, we develop an e�cient B&P algorithm in Section 4 to solve the G-2E-CLRP to optimality for

larger size instances.

4 Branch-and-price algorithm

We first formulate the G-2E-CLRP as a set partitioning formulation (Section 4.1) using the Danzig-

Wolfe decomposition method (Dantzig and Wolfe (1960)) as a master problem (MP), and its continuous

relaxation is called the linear master problem (LMP). Pricing subproblems are defined to search the

secondary routes with negative reduced costs (Section 4.2). As the number of column variables in MP

grows exponentially with the problem-instance size, it would be di�cult for commercial solvers such as

CPLEX to solve the MP directly so a B&P algorithm (Algorithm 1) is developed instead with a new

column generation (CG) procedure in Section 4.3.

In our B&P algorithm, an initial feasible solution is firstly generated by a heuristic algorithm based

on a modified Clarke Wright (MCW) savings method described in Section 4.6. Then, a restricted MP

(RMP) involving a small subset of variables is considered at each branch node, and then its continuous

relaxation (RLMP) is solved to optimality using CPLEX. Based on the resulting and dual solutions

of RLMP, the CG procedure is called (Section 4.3) to generate a set of new columns with negative

reduced costs to the current RLMP, and updated RLMP is solved again until no new column exists.

12



Then, we can obtain the optimal solution of LMP (that is, the final solution of the RLMP). If it is

fractional, some branching rules (Section 4.5) are applied to generate two complementary subproblems

and the same procedure is called to solve each of them until an optimal integer solution is found or the

problem is found to be infeasible. A best first search strategy is implemented in the branch-and-bound

tree. It is worth noting that a similar aggregate-based lower bound LBAG(y,x) proposed by Dellaert

et al. (2018) was implemented in our B&P framework, as detailed in Section 4.4. Algorithm 1 outlines

this modified procedure.

4.1 Set partitioning formulation

We denote R as the set of all feasible secondary routes. Each secondary route r 2 Rs starts from an

open satellite s, visits one or several customers in Vc, and ends at s, and
P

s2Vs
Rs = R. Note that

secondary routes traverse only arcs in A
2. Let ↵ri 2 {0, 1} be a binary parameter equal to 1 if customer

i is visited in route r, and 0 otherwise. The cost of each route r 2 R is pr. Finally, given a secondary

route r 2 R, let qr =
P

i2Vc
↵riqi  K

2 denote the total demand of customers visited. Hence, each

secondary route r 2 R does not violate the vehicle capacity by construction. Furthermore, the path-

based G-2E-CLRP reformulation uses an additional set of variables. Let zr be a binary variable that

takes value 1 if route r 2 R belongs to the solution, and 0 otherwise. Then, the arc-based formulation

can be reformulated as the following set-partitioning problem.

MP:

min
y,x,z

X

j2Vs

fjyj +
X

(i,j)2A1

c
1
ijxij +

X

i2V0

X

j2Vs

c
1
b
xij +

X

r2R
przr (24)

s.t. constraints (2)-(5) and (18)-(19)
X

r2Rs

zrqr  K
1
X

i2Vo

xis 8s 2 Vs (25)

X

r2R
↵rizr = 1 8i 2 Vc (26)

X

r2Rs

zr  m
2
sys 8s 2 Vs (27)

zr 2 {0, 1} 8r 2 R (28)

Objective (24) is the same as objective (1). Constraints (25) guarantee that the total customer

demand served by the same satellite s does not exceed its capacity supported by primary EVs. Con-

straints (26) ensure that all customers can be visited only once. Constraints (27) state that at most m2
s

13



Algorithm 1: B&P algorithm

1 Comment: Let ⌦ be the list of all active nodes in the B&P tree;

2 Comment: Let !r be the solution of continuous relaxation of node !;

3 Best  The constructed initial solution presented by heuristic algorithm (Section 4.6);

4 Initialize RMP at root node !̄ using routes in Best and compute !̄r by CG, ⌦  {!̄} ;

5 while ⌦ 6= ? do

6 !  The node in ⌦ with the minimum lower bound, ⌦  ⌦\!;

7 if !r is better than Best then

8 if !r is feasible (integral) then

9 Best  !r;

10 else

11 Branching on ! according to Section 4.5;

12 if branching location variables then

13 Modify Vs to V
0
s based on the results of branching;

14 Generate new columns by using heuristic algorithm (Section 4.6) for each satellite s 2 V
0
s ;

15 Add these feasible columns to corresponding RLMP to make sure them feasible;

16 end

17 if location variables y and frequency variables of primary EVs x are both integral then

18 Calculate the aggregate-based lower bound LBAG(y,x);

19 if node cost of !r < LBAG(y,x) then

20 Construct !1 and !
2 which obtained from branching on !;

21 Compute !
1
r and !

2
r by CG;

22 ⌦  ⌦ [ {!1
,!

2};

23 end

24 else

25 Construct !1 and !
2 which obtained from branching on !;

26 Compute !
1
r and !

2
r by CG;

27 ⌦  ⌦ [ {!1
,!

2};

28 end

29 end

30 end

31 end
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times the secondary EVs can swap battery at satellite s. Moreover, constraints (28) impose integrality

restrictions on the decision variables.

Then, the linear MP (LMP) can be strengthened by the following two valid inequalities:

X

s2Vs

ys � d
X

i2Vc

qi/K
2e/max

s2Vs

{m2
s} (29)

X

i2Vo

X

j2Vs

xij � d
X

i2Vc

qi/K
1e (30)

Constraint (29) indicates a minimum number of satellites that need to be open to satisfy the total

demand. Constraint (30) imposes a minimum number of primary EVs that need to be on duty to ship

the total demand to the satellites. From now on, the formulation of LMP includes constraints (29) and

(30).

4.2 Pricing subproblem

The pricing subproblem constructs a feasible secondary route with a minimum reduced cost, using

the dual values obtained from the RLMP. If the constructed route has negative reduced cost, its

corresponding column is added to the RLMP. Otherwise, the LP procedure terminates with an optimal

solution to the current MP. Specifically, let u, v, and ⌧ be the dual variables of the constraints (25)-

(27), respectively. Then, the reduced cost of decision variable zr to open satellite s 2 Vs is equal

to

p̃r = pr �
X

i2Vc

↵ri(ui + qivs)� ⌧s (31)

Thus, the optimality condition for any feasible route is given by

pr �
X

i2Vc

↵ri(ui + qivs)� ⌧s  0 (32)

By substituting ↵ri by
P

j2Vc[{s0},j 6=i
zij and letting s

0 be the dummy satellite corresponding to s,

the optimality condition can be stated as

X

i2Vc[{s}

X

j2Vc[{s0},j 6=i

c
2
ijzij +

X

j2Vc

c
2
b
zsj �

X

i2Vc

X

j2Vc[{s0},j 6=i

(ui + qivs)zij � ⌧s  0 (33)

Therefore, given the values of u, v, and ⌧ obtained by solving RLMP, the pricing subproblem (PP-s)

corresponding to open satellite s 2 Vs is presented as follows:

PP-s:

min
X

i2Vc

X

j2Vc[{s0},j 6=i

(c2ij � ui � qivs)zij +
X

j2Vc

c
2
sjzsj + c

2
b
� ⌧s (34)
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s.t.
X

j2Vc

zsj = 1 (35)

X

j2Vc

zjs0 = 1 (36)

X

j2Vc[{s},j 6=i

zji =
X

j2Vc[{s0},j 6=i

zij 8i 2 Vc (37)

X

i2Vc

qi

X

j2Vc[{s0},j 6=i

zij  K
2 (38)

bj  bi � h
2
dijzij +B

2(1� zij) 8i 2 Vc, 8j 2 Vc [ {s0}, j 6= i (39)

bj  B
2 � h

2
dsjzsj 8j 2 Vc (40)

zij 2 {0, 1} 8i 2 Vc [ {s}, 8j 2 Vc [ {s0}, j 6= i (41)

bi � 0 8i 2 Vc [ {s0} (42)

The objective function (34) minimizes the reduced cost of the constructed column with respect to zij .

Constraints (35)-(36) are associated with the routing decision for this satellite s, where constraints (37)

ensure the flow balance. Constraints (38) relate to the total secondary EV tour capacity. Constraints

(39)-(40) enforce sub-tour elimination constraints using the cumulative battery capacity consumed

upon visiting a particular customer node.

It can be shown that the pricing subproblem is modeled as an elementary shortest path problem

with resource constraints (ESPPRC) which is NP-hard in the strong sense (Dror (1994)) and is com-

putationally challenging to find feasible paths. Therefore, it is crucial to seek a more e�cient solution

methodology to generate feasible columns in order to solve larger size instances for the G-2E-CLRP,

as detailed in next subsection.

4.3 Column generation procedure

For the detailed CG procedure, it first invokes a two-phase column generation (Section 4.3.2) to itera-

tively provide as much as possible columns with negative reduced costs to the RLMP. If above heuristic

procedure fails to construct a new column, then the pulse algorithm (Section 4.3.1) is used globally,

as a last resort. When there is also no feasible column constructed, then the CG terminates and the

LMP is known to be solved to optimality (Desaulniers et al. (2006)).
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4.3.1 Pulse algorithm (Exact)

For our pricing subproblems, battery capacity and load capacity are key resource constraints. Tra-

ditionally, ESPPRC are most solved with labeling algorithms. Feillet et al. (2004) proposed a label

correcting algorithm which is the first exact approach for the ESPPRC. Then, Lozano et al. (2015)

developed a pulse algorithm based on bounding and pruning strategies to discard partial paths, which

do not rely on dominance rules and performed well against state-of-the-art algorithms for the ESPPRC

on VRPTW instances. Furthermore, we refer the reader to Costa et al. (2019) for a comprehensive

review on exact algorithms for the ESPPRC and VRP.

In order to handle subproblems e�ciently, we present a tailored pulse algorithm by reconstructing

a battery used window for each node. That is, each node i 2 Vs [ Vc is served within its battery

consumed window [ais, bis] from open satellite s, where ais = h
2
csi and bis = B

2 � h
2
cis. We create a

new label L = (Pl, Rl, Ql, Bl) for each partial path, which comprises the following elements: (i) Pl the

corresponding partial path; (ii) Rl the cumulative reduced cost; (iii) Ql the cumulative load capacity

consumption; (iv) Bl the cumulative battery capacity consumption. An overview of our pulse algorithm

is given in Algorithms 2 and 3, and implementation details are refer to Lozano et al. (2015).

4.3.2 Two-phase column generation (Heuristic)

For two-phase column generation procedure, the main idea is to use savings to decompose the pricing

subproblem into two phases. For each open satellite s 2 V
0
s and its reachable customers Zs in terms

of branching results and battery capacity constraints, the saving pair of customer i and j is s
2
ijs

=

c
2
sj
+ c

2
is0 � c

2
ij
, 8i 2 Zs, j 2 Zs, j 6= i . Then, the objective (34) can also be expressed as

min
X

i2Zs

(c2si + c
2
is0 � ui � qivs)

X

j2Zs[{s0},j 6=i

zij �
X

i2Zs

X

j2Zs,j 6=i

s
2
ijszij + c

2
b
� ⌧s (43)

where
P

j2Zs[{s0},j 6=i
zij can be regarded as an assign decision that if customer i in route r 2 R is

served by satellite s or not. Apparently, the cost of dual variables u, v and ⌧ only a↵ect this assign

decision not secondary route decision. Hence, the first phase is to generate a customer assignment

problem (CAP-s) based on the dual values from RLMP, to decide which customers are assigned to

satellite s. Substituting
P

j2Vc[{s0},j 6=i
zij by a new decision variable �is, the formulation of CAP is the

following:

CAP-s:

X

i2Zs

(c2si + c
2
is0 � ui � qivs)�is � ⌧s (44)
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s.t.
X

s2V 0
s

�is  1 8i 2 Zs (45)

�is 2 {0, 1} 8i 2 Zs, 8s 2 V
0
s , j 6= i (46)

The objective function (44) minimizes the reduced cost of assigning customers to open satellite

s, while constraints (45) ensure that each customer is served at most once. Note that CAP-s is an

integer programming problem. It is easy to see that the continuous relaxation of CAP-s has an integral

polyhedron.

Based on the assignment result of the first phase, the second phase is to construct feasible columns

for each satellite s 2 V
0
s using parallel version of modified Clarke Wright (MCW) algorithm and

pulse algorithm in sequence, where Clarke Wright (CW) algorithm is firstly proposed for the classical

VRP(Clarke and Wright (1964)) and extended for a new variant of VRP called green-VRP (Erdoan

and Miller-Hooks (2012)). Then, iteratively adds a set of columns satisfying optimality condition (32)

to the RMP, until no column is found, then the two-phase column generation procedure terminates.

4.4 Lower bound

Actually, it would be slow convergence in column generation process when the solution is near the

optimum. Hence, after ensuring integrality of location decisions y and frequency decisions x of primary

EVs, we implement an aggregate-based lower bound LBAG(y,x) (ideas come from Dellaert et al. (2018))

in B&P tree to mitigate this tailing-o↵ e↵ect.

We first solve a simple set partitioning problem (SPP-s) to obtain the minimal cost for serving a

customer i from an open satellite s, in which satellite s 2 V
0
s is considered as the depot with unlimited

capacity. Then, SPP-s is developed as follows:

SPP-s:

min
X

r2Rs

przr (47)

s.t.
X

r2Rs

↵rizr = 1 8i 2 Vc (48)

zr 2 {0, 1} 8r 2 Rs (49)

The pulse algorithm is used to generate feasible columns to solve the LP-relaxation of SPP-s to

optimality. Define �is as the dual values associated with constraints (48), which can be considered as

the minimal cost of serving customer i from satellite s. For customers which could not been served
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directly by any satellite, this value is set to infinity. Then, for an integral solution (y,x) of a child

node in B&P tree, we can obtain the aggregate-based lower bound as follows:

LBAG(y,x) =
X

j2V 0
s

fjyj +
X

(i,j)2A1

c
1
ijxij +

X

i2V0

X

j2V 0
s

c
1
b
xij +

X

i2Vc

min
s2V 0

s

{�is} (50)

Algorithm 2: Pulse algorithm (Main)

1 Comment: Battery consumed window [�, �̄], battery step �, node i 2 Vc [ {s};

2 bound(�, [�, �̄]);

3 pulse(s, L);

4 return optimal path P
⇤;

Algorithm 3: Pulse(i, L)

1 Comment: �+(i) = {j 2 Vc [ {s} | (i, j) 2 A
2} the set of next reachable nodes from node i;

2 Comment: rsj = c
2
sj
+ c

2
b
� ⌧s, rij = c

2
ij
� ui � qivs, i 6= s reduced cost contribution;

3 Comment: �ij = h
2
dij battery consumption;

4 if isFeasible(i, L) = true then

5 if checkBounds(i, L) = false then

6 if rollback(i, L) = false then

7 Pl  Pl [ {i};

8 Ql  Ql + qi;

9 for j 2 �+(i) do

10 Rl  Rl + rij ;

11 Bl  max{aj , Bl + �ij};

12 pulse (j, L);

13 end

14 end

15 end

16 end
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4.5 Branching rules

If the optimal solution of the LMP (which is the solution to the last RLMP) is fractional, a branching

decision is required. Branching on location variables is given higher priority since it results empirically

in the best improvement in the lower bound. Then, the following four branching rules are applied in

order to create two new child nodes.

Branching on the location of satellites. If there is a satellite s 2 Vs with a most fractional (closer

to 0.5) variable ys, apply the dichotomy branching by enforcing ys = 0 on one branch and ys = 1 on

the other. At the same time, valid inequality xis  0 could be added into left branch. Note that there

is no need to solve the pricing subproblem corresponding to closed satellite s.

Branching on the number of primary EVs. If there is a satellite s 2 Vs whose number of primary

EVs x̂is is most fractional, then consider the constraint xis  bx̂isc on one branch, and xis � dx̂ise on

the other.

If a column variable zr, r 2 Rs is most fractional, there must exist other columns (routes) serving at

least one common customer in column r. According to the definition in Danna and Le Pape (2005),

find the other satisfied column r
0 and the first common customer i.

Branching on the assignment of customers to the open satellites. If column r and r
0 are from

di↵erent satellites, that means customer i is served partially. Let Li be the set of all columns that visit

customer i belonging to satellite s. Then, consider
P

r2Li
zr = 0 on one branch, and

P
r2Li

zr = 1 on

the other.

Branching on arcs. If route r and r
0 are from the same satellite s, that means at least one arc

in route r is served partially. Find the branch arc (i, j) in terms of the procedure in Danna and

Le Pape (2005). Let Hij be the set of all columns that visit the routing arc (i, j) 2 A
2. Then, consider

P
r2Hij

zr = 0 on one branch and
P

r2Hij
zr = 1 on the other.

4.6 Initial Solution

This subsection describes a heuristic algorithm that constructs an initial solution for any feasible

instance of the G-2E-CLRP. The main idea is to minimize the number of open satellites and ensure

that the load and battery capacity of EVs. The overall heuristic framework is outlined as follows.

Step 1 (Candidate satellites list (CSL) generation phase).

Step 1.1: First choose potential satellites from Vs to V̄s, in terms of the battery capacity constraints

of primary EVs.
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Step 1.2: Create a list CSL as the set of candidate satellites to open with corresponding customers,

in which satellites in V̄s sequenced in a decreasing order of the number of times that customers choose

as the nearest satellite.

Step 2 (Customer assignment list (CAL) generation phase).

Step 2.1: Calculate the minimum number of satellites to open, denoted by N
0, is defined as follows:

N
0 = max{1, d

P
i2Vc

qi

K2 e ⇤ 1
maxs2V̄s

m2
s
}.

Step 2.2: Choose first N 0 satellites in CSL to create a List CAL.

Step 2.3: Check each satellite s in CAL is in its capacity m
2
sK

2 or not. If yes, go to Step 2.5;

otherwise, choose this satellite s and its customer k with most demand and go to Step 2.4.

Step 2.4: Reassign customer k to other satellites in CAL and ensure the capacity of chosen satellite.

If success, update CAL and continue Step 2.3; otherwise, update N 0 = N
0+1 and go back to Step 2.2.

Step 2.5: Check if there exists customer k in Vc is not been served. If yes, go back to Step 2.4;

otherwise, go to Step 3.

Step 3 (Modified Clarke Wright algorithm (MCW) phase).

Generate electric vehicle routes for each satellite in CAL by using modified Clarke Wright (MCW)

algorithm, which is designed to consider EVs driving range limitation from parallel version of CW

algorithm (Paessens (1988)).

Step 4 (Verify solution phase).

Check secondary routes for each satellite s in CAL is in its maximum number m2
s or not. If yes, go

to Step 5; otherwise, update N
0 = N

0 + 1 and go back to Step 2.2.

Step 5 (Termination phase).

Stop the heuristic algorithm and return current objective function value and optimal solution.

5 Computational experiments

In this section, we conduct numerical experiments with two aims. First, we evaluate the performance of

our exact B&P algorithm for di↵erent types of instance. Second, we measure the benefit of integrated

location and routing planning for this new green two-echelon system, and economic analysis is analyzed

to assess the impact of EVs using in city logistics. All experiments are coded by JAVA and run on a

computer with a 8GB RAM and 2.3 GHz CPU.
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5.1 Generation of G-2E-CLRP benchmark instances

Our benchmark instances for the G-2E-CLRP are natural extensions of the 2E-VRP instances known

as Set 1 to Set 3 by Perboli et al. (2011). In our G-2E-CLRP instances, new information is: rental

cost of satellites, battery swapping cost, battery driving ranges and battery consumption rates of both

types of EVs. The unit battery swapping fee is set to 2 for the first echelon and 1 for the second

echelon. The battery driving ranges of the large EVs and the small EVs are defined in a simple way,

that is, each EV can serve the most distant satellite or customer node and then go back to the depot

or satellite within the battery capacity limitation. Let dmax denote the maximum Euclidean distance

between any two points on the network. We set B
1 � d2 ⇤max

i2V0

min
j2Vs

{dij}e, B2 � d2 ⇤max
i2Vs

min
j2Vc

{dij}e,

and B
1 � B

2, the rental cost of satellites is set d0.5 ⇤ B1e in terms of Yang and Sun (2015). We set

the EV consumption rate in both echelons to 1 per kilometre. Furthermore, the depot, satellites and

customers locations are unchanged. In our pulse algorithm, the lower bound procedure is run with

� = 15 and � = b0.5 ⇤B2c.

Table 3 provides a summary of generated instances which includes the name of instances (Inst.),

the number of satellites(ns) and customers (nc), the rental cost (fs), the maximum number of primary

EVs battery swaps at the depot (m1) and secondary EVs battery swaps at open satellite s (m2
s),

traveling cost of each echelon (c1
ij
and c

2
ij
), battery swapping cost of both echelons (c1

b
and c

2
b
), battery

consumption rate of both echelons (h1 and h
2), battery driving ranges of both echelons (B1 and B

2)

and load capacity of both EVs (K1 and K
2).

Table 3: Characteristics of the G-2E-CLRP instances

# Inst. nc ns fs m
1

m
2
s c

1
ij

c
2
ij

c
1
b

c
2
b

h
1

h
2

B
1

B
2

K
1

K
2

1 10 12 3 50 3 2 1 1 2 1 1 1 100 80 15000 6000

5 12 4 50 3 2 1 1 2 1 1 1 100 80 15000 6000

2 3 21 3 75 3 2 1 1 2 1 1 1 150 130 15000 6000

3 21 4 75 3 2 1 1 2 1 1 1 150 130 15000 6000

3 3 21 3 75 3 2 1 1 2 1 1 1 150 130 15000 6000

3 21 4 75 3 2 1 1 2 1 1 1 150 130 15000 6000
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5.2 Performance of B&P algorithm

In this section, we use the generated test instances of Set 1 to Set 3 to evaluate the computational

performance of our B&P algorithm, and compare it against the arc-based formulation (Section 3.2)

using the B&C algorithm of CPLEX 12.7. All runs were performed with a time limit of 3600 CPU

seconds.

Tables 4 and 5 give the instance description and report the results of the test. In these tables,

column 1 shows the name of each instance. The column “Description” stands for the set of potential

satellites. The column “T(s)” presents the computing time (in seconds) of CPLEX and B&P algorithm,

respectively. The best results (optimal solutions or best upper bound found within 3600 seconds)

obtained with CPLEX and B&P algorithm are provided by column “Best”. The column “Gap(%)”

provides the optimality gap found by CPLEX and by B&P algorithm at termination or at the root-node

within a time limit of 3600 seconds. Columns 6-8 report the root-node performance of B&P algorithm.

The column “LB” means the lower bound obtained by our column generation. Columns 9-12 focus on

the overall of performance of B&P algorithm. The column “B&B N.” indicates the number of B&P

nodes explored.

As shown in Table 4, our B&P algorithm can solve small instances of Set 1 in only two seconds,

which is significantly faster than CPLEX that took an average of 400 seconds to compute. Table 5

reports that the results on medium instances of Set2 and Set3, containing 21 customers and at most 4

candidate satellites . The results clearly show that our B&P algorithm also gives a notable improvement

in computational time by solving medium instances to optimality in only a few seconds. Moreover, our

B&P root node solutions exhibit an optimality gap of 3.4% on average and are achieved within about

2 seconds.

5.3 Profit of integrated planning for the G-2E-CLRP

In order to show the large benefits of integrated planning in our G-2E-CLRP, we compare our in-

tegration approach to the sequential approach where the long-term strategic location decisions are

determined first, and other tactical decisions such as routing plans, are decided later. Here, heuris-

tic procedure talked about in Section 4.6 is used to o↵er sequential results, whose locations of open

satellites and the set of customers assigned to each open satellite are determined first.

Table 6 displays the relative savings obtained by using our integration approach that simultaneously

consider location and routing over the sequential procedure. The average savings are 21.6%, 41.3%,
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Table 4: Comparison of results obtained with CPLEX and B&P algorithm on instances with 12 customers

Instance Description CPLEX B&P algorithm

Satellites Best Gap(%) T(s) Root-node B&P Overall B&P algorithm

LB Gap(%) T(s) Best Gap(%) T(s) B&B N.

Set 1

En13s3-1 1,2,3 462 15.4 3604.5 407.9 6.4 0.4 436 0.0 0.9 27.0

En13s3-2 2,5,10 354 0.0 28.8 319.8 9.7 0.4 354 0.0 0.9 27.0

En13s3-3 3,4,8 366 0.0 45.9 344.4 5.9 0.4 366 0.0 0.6 7.0

En13s3-4 4,5,6 356 0.0 24.1 337.1 5.3 0.4 356 0.0 0.5 5.0

En13s3-5 5,7,9 362 0.0 11.5 351.4 2.9 0.5 362 0.0 0.6 5.0

En13s3-6 6,7,12 392 0.0 8.3 385.2 1.7 0.4 392 0.0 1.7 47.0

En13s3-7 7,8,9 400 0.0 12.2 396.2 1.0 0.6 400 0.0 0.6 5.0

En13s3-8 8,10,11 452 0.0 135.8 439.9 2.7 0.4 452 0.0 0.6 11

En13s3-9 9,11,12 496 0.0 715.0 483.7 2.5 0.5 496 0.0 0.5 3.0

En13s3-10 10,11,12 486 0.0 173.4 467.2 3.9 0.5 486 0.0 0.5 5.0

En13s4-1 1,2,3,4 398 0.0 1155.7 362.4 8.9 0.4 398 0.0 1.4 47.0

En13s4-2 3,4,5,6 354 0.0 26.8 333.9 5.7 0.6 354 0.0 1.1 11.0

En13s4-3 1,4,7,11 346 0.0 43.7 314.8 9.0 0.5 346 0.0 0.9 17.0

En13s4-4 2,3,6,12 340 0.0 15.4 333.0 2.1 0.5 340 0.0 0.6 5.0

En13s4-5 5,7,10,11 362 0.0 18.6 351.4 2.9 0.5 362 0.0 0.6 7.0

Average 1.0 401.3 4.7 0.5 0.0 0.8
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Table 5: Comparison of results obtained with CPLEX and B&P algorithm on instances with 21 customers

Instance Description CPLEX B&P algorithm

Satellites Best Gap(%) T(s) Root-node B&P Overall B&P algorithm

LB Gap(%) T(s) Best Gap(%) T(s) B&B N.

Set 2

En22s3-1 6,8,17 564.2 0.0 160.3 558.7 1.0 1.6 564.2 0.0 1.6 3

En22s3-2 9,14,19 565.8 0.0 320.4 532.6 5.9 1.8 565.8 0.0 4.0 23

En22s3-3 10,11,12 624.8 0.0 1334.7 609.9 2.4 1.9 624.8 0.0 3.6 23

En22s4-1 6,8,11,12 573.8 0.0 441.0 560.8 2.3 1.9 573.8 0.0 2.0 5

En22s4-2 9,14,16,17 562.7 0.0 505.4 524.2 6.8 2.2 562.7 0.0 5.4 29

En22s4-3 9,10,12,16 538.1 0.0 220.7 524.7 2.5 2.3 538.1 0.0 2.9 7

Average 0.0 497.1 3.5 1.9 0.0 3.2

Set 3

En22s3-1 13,14,16 562.7 0.0 257.6 550.1 2.2 1.6 562.7 0.0 2.1 5

En22s3-2 14,17,19 587.2 5.8 3600.0 575.2 2.0 1.4 587.2 0.0 1.8 9

En22s3-3 13,17,21 597.9 4.8 3600.0 592.4 0.9 1.6 597.9 0.0 5.2 31

En22s4-1 13,14,16,17 562.7 0.0 602.0 548.8 2.5 2.2 562.7 0.0 2.6 5

En22s4-2 14,17,19,21 587.2 7.9 3600.0 575.2 2.0 1.7 587.2 0.0 3.3 23

En22s4-3 13,16,19,21 585.2 2.2 3600.0 575.1 1.7 1.9 585.2 0.0 3.8 25

Average 3.4 2543.3 1.9 1.7 0.0 3.1
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48.8% for instances of Set 1, Set 2 and Set3, respectively. The extreme savings are 85.9% for in-

stance En22s4-2 of Set 3. These results clearly show why logistics company should incorporate routing

decisions into determining location decisions when they design a green two-echelon delivery system.

Table 6: Comparison of the integration and sequential results of our G-2E-CLRP

Instance Optimal objective Instance Optimal objective Instance Optimal objective

Set 1 Sequntial Integration Savings Set 2 Sequntial Integration Savings Set 3 Sequntial Integration Savings

En13s3-1 468 436 7.3 En22s3-1 847.8 564.2 50.3 En22s3-1 739.1 562.7 31.3

En13s3-2 439 354 24.0 En22s3-2 684.7 565.8 21.0 En22s3-2 960.5 587.2 63.6

En13s3-3 511 366 39.6 En22s3-3 814.0 624.8 30.3 En22s3-3 735.7 597.9 23.1

En13s4-1 468 398 17.6 En22s4-1 956.5 573.8 66.7 En22s4-1 763.9 562.7 35.8

En13s4-2 354 354 0.0 En22s4-2 783.9 562.7 39.3 En22s4-2 1091.3 587.2 85.9

En13s4-3 489 346 41.3 En22s4-3 753.6 538.1 40.1 En22s4-3 897.8 585.2 53.4

Average 21.6 41.3 48.8

5.4 Sensitivity analysis for the G-2E-CLRP

In this section, we analyze the sensitivity of the result to the rental cost and the battery driving

range. Table 7 shows the impact of the rental cost of satellites and the battery driving range of each

echelon. The column “Instance” stands for the name of each instance. The group of columns shows

the description of the instances: the rental cost of satellites (fs) and the battery driving range B
1 and

B
2 in each echelon, respectively. The next group of columns reports the results of the instances: the

number of open satellites (ns), the number of tours in the second echelon (n2
r), the final rental cost

(RC), the final travel cost and battery swapping cost (tactical cost, TC) and the overall cost (Best).

These experiments highlight the significant impact of the rental cost of satellites and EV battery

capacity in each echelon in the instances under study. First of all, as the rental cost of satellites grows,

both the number of open satellites and the tactical cost slightly decrease: e.g., in the instance En22s4-2

of Set 2, the number of satellites to open from 3 to 2, the corresponding tactical cost from 422.7 to

428.8 and the overall cost from 422.7 to 578.8 when the battery driving range in each echelon fixed

at 130 and 110, respectively. Moreover, the number of open satellites show little change when battery

driving range varies. The battery driving ranges actually a↵ect the number of open satellites in our

G-2E-CLRP. In these conditions, the location of satellites is a key strategy for logistics enterprises to

support EVs in their two-echelon system.

The battery driving range of EVs has an even larger impact to reduce the two-echelon distribution
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costs of logistics enterprises. For considered instances, if the battery driving range of the first echelon

increases, the number of open satellites and the number of secondary tours maybe decrease, and

both the tactical cost and the overall cost will decrease: e.g., in the instance En22s3-2 of Set 2, the

tactical cost from 446.8 to 428.8, the overall cost from 671.8 to 578.8 when the battery driving range

of secondary EVs from 90 to 110 and the rental cost fixed at 75. The reason maybe because customers

could be served by less satellites when the battery driving range is improved and the rental cost is

high. It is worth mentioning that the larger battery driving range is also helpful for reducing the times

of swapping batteries. Therefore, the location of satellites and the configuration of EVs, especially the

battery driving range of secondary EVs, should be well-balanced for logistics enterprises in terms of

their infrastructures (with di↵erent rental and refurbishing costs) and demand network to enrich the

application of EVs in practice.

6 Conclusion and future work

In this paper, we present the G-2E-CLRP that considers the locations of satellites, di↵erent types of

EVs and battery swapping operations at start nodes in a two-echelon delivery network. Furthermore,

the capacity limitation of satellites and the load and battery capacity of EVs are also incorporated

into the G-2E-CLRP model to represent real-world requirements. We introduce a compact arc-based

formulation, propose a set partitioning formulation and develop an e�cient B&P algorithm for the

G-2E-CLRP. In the pricing subproblems, we design a new column generation procedure embedded into

a branch-and-bound framework to generate feasible columns for the RLMPs. It consists of a two-phase

heuristic column generation procedure where first using the CAP to choose customers for each open

satellites and followed by Modified Clarke Wright (MCW) algorithm and pulse algorithm to generate

feasible secondary routes, and an exact pulse algorithm by reconstructing battery capacity constraints

to battery consumption windows for each node to solve RLMPs exactly.

To assess the performance of the proposed B&P algorithm, we conduct experiments on the basis of

the benchmark instances in the literature. We demonstrate the strong performance of our algorithm

in comparison with the MIP solver CPLEX. This approach is able to solve to optimality small- and

medium-size instances, and provides tight lower bounds at the root-node. Finally, in the economic

analysis, we perform several experiments to highlight the importance of integrating location and routing

decisions, and the managerial implications of using EVs in a two-echelon logistics system.

The future research perspectives are multiple. Inclusion of stochastic elements in the G-2E-CLRP
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Table 7: Sensitivity analysis of rental costs and battery driving ranges

Instance Description G-2E-CLRP Instance Description G-2E-CLRP

Set2 fs B
1

B
2

ns n
2
r FC TC Best Set3 fs B

1
B

2
ns n

2
r FC TC Best

En22s3-2 0 110 90 3 5 0 430.4 430.4 En22s3-3 0 110 110 3 6 0 853.0 853.0

30 110 90 3 5 90 430.4 520.4 30 110 110 3 6 90 853.0 943.0

75 110 90 3 5 225 430.4 655.4 75 110 110 3 5 225 853.0 1078.0

0 110 110 2 4 0 428.8 428.8 0 130 110 3 6 0 853.0 853.0

30 110 110 2 4 60 428.8 488.8 30 130 110 3 6 90 853.0 943.0

75 110 110 2 4 150 428.8 578.8 75 130 110 3 5 225 853.0 1078.0

0 130 110 2 4 0 428.8 428.8 0 130 130 2 4 0 447.9 447.9

30 130 110 2 4 60 428.8 488.8 30 130 130 2 4 60 447.9 507.9

75 130 110 2 4 150 428.8 578.8 75 130 130 2 4 150 447.9 597.9

0 130 130 2 3 0 415.8 415.8 0 150 130 2 4 0 447.9 447.9

30 130 130 2 4 60 415.8 475.3 30 150 130 2 4 60 447.9 507.9

75 130 130 2 4 150 415.8 565.8 75 150 130 2 4 150 447.9 597.9

0 150 130 2 3 0 415.8 415.8 0 150 150 2 4 0 445.4 445.4

30 150 130 2 4 60 415.8 475.3 30 150 150 2 4 60 445.4 505.4

75 150 130 2 4 150 415.8 565.8 75 150 150 2 4 150 445.4 595.4

En22s4-2 0 110 90 3 6 0 445.7 445.7 En22s4-2 0 110 110 3 6 0 705.6 705.6

30 110 90 3 6 90 445.7 535.7 30 110 110 3 6 90 705.6 795.6

75 110 90 3 5 225 446.8 671.8 75 110 110 3 6 225 705.6 930.6

0 110 110 3 6 0 422.7 422.7 0 130 110 3 6 0 705.6 705.6

30 110 110 2 4 60 428.8 488.8 30 130 110 3 6 90 705.6 795.6

75 110 110 2 4 150 428.8 578.8 75 130 110 3 6 225 705.6 930.6

0 130 110 3 6 0 422.7 422.7 0 130 130 2 4 0 437.2 437.2

30 130 110 2 4 60 428.8 488.8 30 130 130 2 4 60 437.2 497.2

75 130 110 2 4 150 428.8 578.8 75 130 130 2 4 150 437.2 587.2

0 130 130 2 4 0 412.7 412.7 0 150 130 2 4 0 437.2 437.2

30 130 130 2 4 60 412.7 472.7 30 150 130 2 4 60 437.2 497.2

75 130 130 2 4 150 412.7 562.7 75 150 130 2 4 150 437.2 587.2

0 150 130 2 4 0 412.7 412.7 0 150 150 2 4 0 437.2 437.2

30 150 130 2 4 60 412.7 472.7 30 150 150 2 4 60 437.2 497.2

75 150 130 2 4 150 412.7 562.7 75 150 150 2 4 150 437.2 587.2
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is a meaningful direction in order to derive robust long-term network structures, such as modeling

demand uncertainty. Other promising topics include exploring the adaptive large neighborhood search

(ALNS) meta-heuristic to solve pricing subproblems for larger scale problems, and investigating the

G-2E-CLRP with special aspects such as tours in first echelon, or customer time windows.
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