Cancer is a devastating disease that touches almost everyone and finding effective treatments presents a highly complex problem, requiring extensive multidisciplinary research. Mathematical and computational modelling can provide insight into both cancer formation and treatment. A range of techniques are developed in this thesis to investigate two promising therapies: oncolytic virotherapy, and combined oncolytic virotherapy and immunotherapy. Oncolytic virotherapy endeavours to eradicate cancer cells by exploiting the aptitude of virus-induced cell death. Building on this premise, combined oncolytic virotherapy and immunotherapy aims to harness and stimulate the immune system’s inherent ability to recognise and destroy cancerous cells. While both of these therapies are showing increasing success, there are still major challenges facing these therapies and the goal of this thesis is to overcome obstacles that arise from treating cancer with viruses.

Using deterministic and agent-based mathematical modelling, perturbations of treatment characteristics are investigated and optimal treatment protocols are suggested. An integro differential equation with distributed parameters is developed to characterise the function of the E1B genes in an oncolytic adenovirus. Subsequently, by using a bifurcation analysis of a coupled-system of ordinary differential equations for oncolytic virotherapy, regions of bistability are discovered, where increased injections can result in either tumour eradication or tumour stabilisation. Through an extensive hierarchical optimisation to multiple data sets, drawn from in vitro and in vivo modelling, gel-release of a combined oncolytic virotherapy and immunotherapy treatment is optimised. Additionally, using an agent-based modelling approach, delayed-infection of an intratumourally administered virus is shown to be able to reduce tumour burden.

This thesis develops new mathematical models that can be applied to a range of cancer therapies and suggests engineered treatment designs that can significantly advance current therapies and improve treatments.
The work in this thesis includes results from published articles and manuscripts under review.

Authorship Attribution Statement

Chapter 4 of this thesis includes the published work in:

I co-designed the study with the co-authors, conducted the analysis and wrote the manuscript.

Chapter 5 of this thesis includes the published work in:

I co-designed the study with the co-authors. I conducted the majority of the analysis with F.F creating Figs. 5.17, 5.18, 5.19 and 5.20 (a). I wrote the first manuscript and co-wrote the second manuscript with F.F.

Chapter 6 of this thesis includes the published works in:

I co-designed the study with the co-authors, conducted the analysis and wrote the manuscript.
Chapter 7 of this thesis includes the published work in:

I co-designed the study with the co-authors, conducted the analysis and wrote the manuscript.

Chapter 8 of this thesis includes the publication under review:

In addition to the statements above, permission to include the published material has been granted by the co-authors.

Adrianna Jenner (PhD Candidate)

As supervisor for the candidature upon which this thesis is based, I can confirm that the authorship attribution statements above are correct.

Supervisor Peter Kim
ACKNOWLEDGMENTS

When the final sentence is written on a document that summarises all the hard work and dedication of the last four years of your life, you begin to think about all the ways you might not have made it, if not for the people who helped and supported you along the way.

First and foremost I want to thank my supervisors and mentors: Peter Kim, Adelle Coster and Federico Frascoli.

Peter, under your guidance as a supervisor I grew significantly, both as a mathematician and as a person. I learnt how to be creative and passionate about my research, and to believe in my ability.

Adelle, you have been a fantastic role model to me and I am a better academic and presenter from all that you have taught me. Without your support and enthusiasm, I would not have been able to get to the position I am in today.

Federico, I am very grateful for all the time you spent mentoring and teaching me. I learnt so much from working with you and you have made a significant impact on my academic career, for which I am very grateful.

I wish to thank my family, for their love and constant support. I feel very lucky to have such an incredible family who have always been there when I needed someone to turn to.

To Michael, thank you for everything you’ve done for me over the past few years. You make me a better version of myself and I could not have done this without you nuisance.

To all of my incredible and loving friends, thank you for bringing joy and friendship to my life. Lou, you got me to where I am today and Avril, thank you so much for your careful edits and amazing friendship.

A huge thank you goes to all the people who have spent hours next to me in this PhD world. To Pantea, James, Sean, Bec and Brent, thanks for being such amazing friends and your support throughout the years.

I’d also like to thank Paul Macklin for his mentorship over the last few months. I learnt so much from our time together and am very grateful for the experience.

It is thanks to all these people, that I am proud of the person I have become and this (rather large) body of work.
CONTENTS

1 Introduction 1
2 Biological background 6
 2.1 Biological levels: genes/cells/tissues/systems 7
 2.2 Cancer 9
 2.2.1 Initial formation 9
 2.2.2 Development and growth 9
 2.2.3 Specific cancers and their attributes 12
 2.2.4 Current treatments 13
 2.3 The immune system 14
 2.3.1 The immune response 14
 2.3.2 The immune response and cancer 15
 2.3.3 The immune response and viruses 16
 2.4 Oncolytic virotherapy 16
 2.4.1 Adenovirus 17
 2.4.2 Replication cycle 17
 2.4.3 The function of the E1B genes in adenoviruses 19
 2.4.4 Viral movement 20
 2.4.5 Typical treatment application protocol 20
 2.4.6 Current oncolytic virotherapies and challenges 21
 2.4.7 Combined virotherapy and immunotherapy 22
 2.5 Experimental techniques and data collection 23
 2.5.1 Virus titer and plaque assay 23
 2.5.2 Cell viability (%) 24
 2.5.3 Tumour growth measurements 24
 2.5.4 Polymerase chain reaction (PCR) of viral genomes 24
 2.5.5 Dendritic cell release profile 25
3 Mathematical background 26
 3.1 Modelling techniques in cancer growth and oncolytic virotherapy 27
 3.2 Deterministic models 28
 3.2.1 Models for cancer 28
 3.2.2 Models of viral dynamics 29
 3.2.3 Models for oncolytic virotherapy 30
 3.2.4 Models for the immune response to cancer 33
 3.2.5 Models with distributed (random) parameters or delays 35
 3.3 Agent-based models 37
 3.3.1 Cellular automaton 37
 3.3.2 Off-lattice agent-based modelling 39
 3.4 Model optimisation 41
 3.4.1 Simultaneous and hierarchical fitting 41
 3.4.2 Numerical implementation 41
 3.4.3 Goodness of fit statistics 42
 3.5 Model analysis techniques 44
 3.5.1 Routh-Hurwitz stability criterion 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.2</td>
<td>Parameter sensitivity</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>Effects of gene-attenuation on the intracellular viral-tumour dynamics</td>
<td>46</td>
</tr>
<tr>
<td>4.1</td>
<td>Gene-attenuation of an oncolytic adenovirus</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>Distributed-parameter model of intracellular viral dynamics</td>
<td>50</td>
</tr>
<tr>
<td>4.3</td>
<td>Choosing a biologically reasonable distribution</td>
<td>54</td>
</tr>
<tr>
<td>4.4</td>
<td>Optimisation of the virus titer measurements</td>
<td>58</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Primary tier optimisation</td>
<td>59</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Secondary tier optimisation investigation</td>
<td>61</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Compatibility map summary</td>
<td>65</td>
</tr>
<tr>
<td>4.5</td>
<td>Summary</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>Dynamical systems approach to oncolytic virotherapy in vivo</td>
<td>71</td>
</tr>
<tr>
<td>5.1</td>
<td>Bifurcation and local-stability analysis for minimal mean-field model</td>
<td>73</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Local stability analysis</td>
<td>77</td>
</tr>
<tr>
<td>5.1.2</td>
<td>One-parameter bifurcation analysis</td>
<td>82</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Incomplete eradication and long-period orbits</td>
<td>85</td>
</tr>
<tr>
<td>5.2</td>
<td>Analysis of an extended model for oncolytic virotherapy</td>
<td>88</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Local stability analysis</td>
<td>91</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Characteristic dynamical regimes</td>
<td>96</td>
</tr>
<tr>
<td>5.2.3</td>
<td>The effect of dosage applications and their optimisation</td>
<td>104</td>
</tr>
<tr>
<td>5.3</td>
<td>Summary</td>
<td>108</td>
</tr>
<tr>
<td>6</td>
<td>PEG-modified adenovirus conjugated with Herceptin efficacy</td>
<td>114</td>
</tr>
<tr>
<td>6.1</td>
<td>Validation of a PEG-modified adenovirus conjugated with Herceptin</td>
<td>116</td>
</tr>
<tr>
<td>6.2</td>
<td>Optimisation of tumour growth measurements</td>
<td>117</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Simulating perturbations in tumour and virus characteristics</td>
<td>123</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Simulating the effects of different treatment dosage protocols</td>
<td>123</td>
</tr>
<tr>
<td>6.3</td>
<td>Optimisation of viral genome decay and spatial distribution</td>
<td>128</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Viral genome clearance from the blood</td>
<td>128</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Spatial distribution of virus</td>
<td>131</td>
</tr>
<tr>
<td>6.4</td>
<td>The effects of the antiviral and antitumour immune responses</td>
<td>133</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Interferon-mediated cell antiviral immunity</td>
<td>134</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Antitumour immune response</td>
<td>134</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Model extension</td>
<td>135</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Influence of the antiviral and antitumour immune responses</td>
<td>138</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Perturbations in the initial tumour size U0</td>
<td>138</td>
</tr>
<tr>
<td>6.5</td>
<td>Summary</td>
<td>140</td>
</tr>
<tr>
<td>7</td>
<td>Immune response to adenovirus expressing IL-12 & GM-CSF</td>
<td>145</td>
</tr>
<tr>
<td>7.1</td>
<td>Efficacy of IL-12, GM-CSF and DCs</td>
<td>147</td>
</tr>
<tr>
<td>7.2</td>
<td>Antitumour immune response to adenovirus expressing IL-12 and GM-CSF</td>
<td>148</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Tumour growth under treatment with an oncolytic adenovirus co-expressing IL-12 and GM-CSF</td>
<td>153</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Simulating heterogeneity in immune efficacy</td>
<td>156</td>
</tr>
<tr>
<td>7.3</td>
<td>Antitumour immune response to DC and adenovirus with IL-12 & GM-CSF</td>
<td>150</td>
</tr>
<tr>
<td>7.3.1</td>
<td>In vitro DC release profile</td>
<td>162</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Tumour growth under Ad/IL12/GMCSF and DCs</td>
<td>166</td>
</tr>
<tr>
<td>7.4</td>
<td>Optimal release profile for DC+Ad/IL12/GMCSF-loaded gel</td>
<td>171</td>
</tr>
<tr>
<td>7.5</td>
<td>Summary</td>
<td>178</td>
</tr>
<tr>
<td>8</td>
<td>Enhancing oncolytic virotherapy: insights from a Voronoi Cell-Based model</td>
<td>186</td>
</tr>
</tbody>
</table>
8.1 Model development ... 189
 8.1.1 Virus characteristics .. 189
 8.1.2 Cell characteristics ... 191
8.2 Model implementation .. 193
 8.2.1 Viral movement .. 194
 8.2.2 Viral clearance .. 195
 8.2.3 Cell movement ... 196
 8.2.4 Cell proliferation .. 199
 8.2.5 Cell infection ... 201
 8.2.6 Cell death .. 201
8.3 Parameter optimisation and sensitivity 202
 8.3.1 Optimising cell state characteristics 202
 8.3.2 Viral characteristic parameters 204
 8.3.3 Model simulation .. 204
8.4 Results: Simulating alternative treatment protocols 206
 8.4.1 Dependence of treatment outcome on entry site configuration 206
 8.4.2 Treatment with delayed initial viral-infection 213
8.5 Summary .. 220
9 Discussion ... 226
10 Conclusion and future work .. 239
 10.1 Overview of future directions .. 241
 10.2 The influence of viral-induced TRAIL release kinetics 243
 10.2.1 Model development .. 245
 10.2.2 Preliminary results: proposing reasons for TRAIL-secreting viro-
 therapy failure ... 249
 10.2.3 Summary and discussion of initial investigation 256
A Additional information for Chapter 4 260
A.1 Probability theory background .. 261
A.2 The setup and derivation for Eq. (4.1) 263
 A.2.1 Law of total probability model derivation 264
 A.2.2 Jacobian matrix transformation model derivation 265
B Additional information for Chapter 8 267
C PhysiCell setup for work discussed in Chapter 10 273
 C.1 PhysiCell setup .. 274
 C.1.1 Substrate modelling .. 274
 C.1.2 Cell mechanics and motion 275
 C.1.3 Cell proliferation ... 278
 C.1.4 Time scales in PhysiCell 279
D Model implementation for work discussed in Chapter 10 281
 D.1 Model implementation .. 282

BIBLIOGRAPHY .. 297
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>An overview of the physiological scales of the virus, tumour and immune system interaction discussed in this thesis. At the start of each chapter a subset of this diagram is presented that summaries the key concepts in that chapter.</td>
</tr>
<tr>
<td>2.1</td>
<td>Overview of the physiological scales of the biology presented in this thesis.</td>
</tr>
<tr>
<td>2.2</td>
<td>Different shapes seen in cancer experiments and treatments. In (a) is an illustration of the hanging drop tumour spheroid (inspired by image published in Horman et al. (2013)). In (b) is an illustration of the ductal carcinomas in situ (DCIS) growth (Image source: National Cancer Institute (http://www.cancer.gov)). In (c) is an image of invasive tumour branches (first published in Jiao and Torquato (2011)).</td>
</tr>
<tr>
<td>2.3</td>
<td>The replication process of an oncolytic adenovirus. Viruses can either enter the cell by receptor mediated endocytosis or, if they have been modified to express Herceptin, they will bind to the Her2/neu receptors on the cell membrane and enter that way. The virus is unpacked in the cytoplasm and the DNA is released and enters the nucleus. The DNA then undergoes strand-displacement replication where only one strand is replicated at a time. This synthesis releases a single stranded DNA, which is in turn copied into double strand DNA. These new double stranded DNA then exit the nucleus and are repacked in the cytoplasm before leaving the cell through lysis. If the virus has been genetically engineered to express secretable trimeric TRAIL, then as the virus replication new TRAIL molecules will be released from the nucleus and exit the cell.</td>
</tr>
<tr>
<td>3.1</td>
<td>An illustration for lattice-based (cellular automata) models and off-lattice models.</td>
</tr>
<tr>
<td>4.1</td>
<td>Subset of Fig. 1.1 summarising the investigation of the virus-tumour interaction in this chapter.</td>
</tr>
<tr>
<td>4.2</td>
<td>Gene tree diagram. The tree diagram above displays the presence or deletion of the E1B 19 and E1B 55 genes in each of the four viruses engineered by Kim et al. (2002). First published in Jenner et al. (2018a).</td>
</tr>
</tbody>
</table>
Figure 4.3 Illustration of the single virus-single cell dynamics. After the initial infection, the virus particle undergoes transport and disassembly (see Fig. 2.3). In this time period τ, no new virus particles are created. After time τ the virus has arrived in the nucleus and undergoes replication at a rate k for a period l, after which the cell bursts at time $\delta = \tau + l$. The solid line depicts the process for a particular cell in the population. The shaded region is illustrative of the spread due to the heterogeneity of the processes across a population of viruses and tumour cells. Note the replication rate, k, is taken to be constant for a given cell, and can be thought of as the average replication rate (at all MOI experienced by that cell during the replication period). First published in Jenner et al. (2018a).

Figure 4.4 Model simulations based on the uniform distribution. The effects of individually varying (a) average replication start time $\bar{\tau}$; (b) average replication period \bar{l}; (c) replication rate k; and (d) width of the support s, are shown with the colour indicating the varied parameter value. First published in Jenner et al. (2018a).

Figure 4.5 Model simulations based on the triangular distribution. The effects of individually varying (a) average replication start time $\bar{\tau}$; (b) average replication period \bar{l}; (c) replication rate and (d) width of the support s, are shown with the colour indicating the varied parameter value. First published in Jenner et al. (2018a).

Figure 4.6 Model simulations based on the Lévy distribution. The effects of individually varying (a) the scale of f_τ, γ_1 (b) the location of f_τ, δ_1 (c) the scale of f_l, γ_2 (d) the location of f_l, δ_2, are shown with the colour indicating the varied parameter value. First published in Jenner et al. (2018a).

Figure 4.7 Results of the optimised model, Eq. (4.1), representing the main features of the virus titer of Kim et al. (2002) for (a) HEK293 cells and (b) U343 cells. The data is represented as large coloured shapes and the model’s approximation is a solid or dotted black line. The solid grey line represents the gamma distribution of start times f_τ and the dashed grey line represents the gamma distribution for the replication period f_l. The parameter values are listed in Table 4.1. Note the two distinct groups of dynamics in the U343 cell based experiments: Subgroup 1 comprises of Ad-wt and Ad-ΔE1B19, and Subgroup 2 comprises Ad-ΔE1B55 and Ad-ΔE1B55/55. First published in Jenner et al. (2018a).

Figure 4.8 Model simulations for the Ad-ΔE1B55 and Ad-ΔE1B55/55 viral dynamics on U343 cells (Subgroup 2). The optimal model parameter dynamics are indicated as a dotted black line overlaid on the data, represented by coloured shapes. The effects of individually varying (a) average replication start time from 0.5 to 5.5, $\bar{\tau}$ (day$^{-1}$), (b) average cell replication period 0.1 to 6, \bar{l} (day$^{-1}$), (c) replication rate from 0.5 to 30, k (day$^{-1}$) and (d) distribution shape from 0.01 to 20, s, are shown with the colour indicating the varied parameter value. First published in Jenner et al. (2018a).
Figure 4.9	Model simulations for the Ad-wt and Ad-ΔE1B19 viral dynamics on U343 cells (Subgroup I). The optimal model parameter dynamics are indicated as a dotted black line overlaid on the data, represented by coloured shapes, and the effects of individually varying (a) average replication start time from 0.5 to 5.5, \(\tau \) (day\(^{-1}\)), (b) average cell replication period from 1 to 6, \(l \) (day\(^{-1}\)), (c) replication rate from 10000 to 50000, \(k \) (day\(^{-1}\)) and (d) distribution shape from 0.01 to 20, \(s \), are shown with the colour indicating the varied parameter value. First published in Jenner et al. (2018a).
Figure 4.10	Model simulations for the HEK293 cell viral dynamics. The optimal model parameter dynamics are indicated as a dotted black line overlaid on the data, represented by coloured shapes. The effects of individually varying (a) average replication start time from 1.5 to 2.5, \(\tau \) (day\(^{-1}\)), (b) average cell replication period from 0.1 to 2, \(l \) (day\(^{-1}\)), (c) replication rate from 50 to 2500, \(k \) (day\(^{-1}\)) and (d) distribution shape from 0.01 to 20, \(s \), are shown with the colour indicating the varied parameter value. First published in Jenner et al. (2018a).
Figure 4.11	Compatibility map. In this figure, the parameters \(\tau, s, k \) and \(\delta \) are linked to the Steady state, Start time and Rapidity of the dynamics. The level and nature of the effect of the parameter changes on the processes is also indicated.
Figure 5.1	Subset of Fig.1.1 summarising the investigation of the virus-tumour interaction in this chapter.
Figure 5.2	Flow diagram for the interaction between a population of uninfected tumour cells, \(U \), virus-infected tumour cells, \(I \), and virus particles, \(V \). The diagram lists parameters relating to the original model, Eqs. (5.1)-(5.3), in grey boxes and parameters relating to the non-dimensionalised form of the model, Eqs. (5.4)-(5.6), in blue boxes. First published in Jenner et al. (2018c).
Figure 5.3	Stability of the equilibrium at the origin as a function of the \((\omega, \chi)\)-parameter space. The shaded region of the parameter space represents the \((\omega, \chi)\)-parameter set corresponding to a stable node at the origin. First published in Jenner et al. (2018c).
Figure 5.4	Numerical simulation of the non-dimensionalised model, Eqs. (5.4)-(5.6), for the parameter regime where the equilibrium at the origin is stable. The time-series model solution, (a), and 3-D model curve, (b), are plotted for parameter values \(\omega = 0 \) and \(\chi = 0.1 \), and initial conditions \(U = 0.4 \), \(I = 0 \) and \(V = 0.1 \). The green asterisk represents the stable equilibrium at the origin. First published in Jenner et al. (2018c).
Numerical simulations for the non-dimensional model for \(\theta = \chi, I = \chi \omega, V = \omega \). The values of \(\lambda \) for which the characteristic function has stationary points are \(\lambda_1^* \) and \(\lambda_2^* \). First published in Jenner et al. (2018).

The nature of the stationary points \(\lambda_1^* \), (a), and \(\lambda_2^* \), (b), as functions of the \((\omega, \chi) \)-parameter space. In all figures the shaded regions represent a maximum and the white regions represent a minimum. The sign of the characteristic equation \(\rho(\lambda) \) is noted as a function of the \((\omega, \chi) \)-parameter space at the stationary point \(\lambda_1^* \), (a), and \(\lambda_2^* \), (b). Additionally, in (b), positive \(\lambda_2^* \) occurs in the white shaded and negative \(\lambda_1^* \) occurs in the blue shaded regions. First published in Jenner et al. (2018).

The nature of the non-zero equilibrium as a function of the \((\omega, \chi) \)-parameter space. The three shaded regions correspond to the three possible equilibrium stabilities: unstable focus node, saddle focus and saddle. First published in Jenner et al. (2018).

Numerical simulations of the non-dimensionalised model, Eqs. (5.4)-(5.6), for \(\chi = \omega = 0.5 \). The time-series, (a), and 3-D solution curve, (b), are plotted for initial conditions \(U = 0.4, I = 0.0243 \) and \(V = 0.56 \). The asterisks represent the equilibrium at the origin (green) and the non-zero equilibrium (purple). First published in Jenner et al. (2018).

One-parameter bifurcation plot for (a) \(U \) and (b) \(V \) as functions of \(\omega \) with \(\chi = 0.1 \). A solid line represents a stable branch and a dotted line represents an unstable branch. A branch point is labelled BP. The equilibrium branches have been labelled \(B_0, B_1 \) and \(B_2 \) for referencing. First published in Jenner et al. (2018).

Numerical simulations for the non-dimensional model for \(\chi = 0.1 \) and \(\omega = 0 \). The time-series, (a), and 3-D solution curve, (b), are plotted for initial conditions \(U = 0.15, I = 0 \) and \(V = 0.1 \). The green asterisk represents the equilibrium at the origin and the purple asterisk represents the non-zero equilibrium \(U = \chi, I = \chi \omega, V = \omega \). First published in Jenner et al. (2018).

Numerical solution curves for the non-dimensional model for a range of initial conditions. The colour of the line corresponds to the equilibrium value for \(U \), labelled \(U_1 \). First published in Jenner et al. (2018).

Numerical simulations for the non-dimensional model for \(\chi = 0 \) and \(\omega = 0.1 \). The time-series (a), and 3-D solution curve (b), are plotted for initial conditions \(U = 0.5, I = 0.05 \) and \(V = 0.2 \). The green asterisk represents the equilibrium at the origin and the purple asterisk represents the non-zero equilibrium \(U = \chi, I = \chi \omega, V = \omega \). First published in Jenner et al. (2018).
Figure 5.13 Numerical simulations of the non-dimensionalised model in Eqs. (5.4)-(5.6). For \(\omega = 0.1 \) and \(\chi = 0.01 \) (a)-(b), for \(\omega = 0.06 \) and \(\chi = 0.01 \) (c)-(d) and for \(\omega = 0.06 \) and \(\chi = 0.001 \) (e)-(f). Each coloured line represents a different initial condition: \(U = 0.9, I = 0, V = 0.5 \) (green), \(U = 0.8, I = 0, V = 0.1 \) (red) and \(U = 0.15, I = 0, V = 1 \) (blue). Long-period orbit attractors are black dotted curves. After a transient, all shown orbits appear to collapse onto the attractor. First published in Jenner et al. (2018c). Note the different scales in the plots. 86

Figure 5.14 Numerical calculation of the period, (a), and amplitude, (b)-(d), for the orbits produced by the non-dimensionalised model in Eqs. (5.4)-(5.6) as a function of \(\chi \) and \(\omega \). The colourbar links the colour of the circles to the corresponding value of \(\omega \) used in the calculation. First published in Jenner et al. (2018c). 87

Figure 5.15 Flow diagram for the interaction between a population of uninfected tumour cells, \(U \); virus-infected tumour cells, \(I \); and virus particles, \(V \). The diagram lists parameters relating to the original model Eqs. (5.10)-(5.12), in grey boxes and parameters relating to the non-dimensional form of the model, Eqs. (5.13)-(5.15), in blue boxes. First published in Jenner et al. (2019). 89

Figure 5.16 Regions representing the stability of the nonzero equilibrium, (a)-(c), and the influence of system parameters on tumour cell numbers at the equilibrium value \(U^* \). Note that carrying capacity is chosen as \(L = 100 \). In (a), the section of parameter space where the non-zero equilibrium is stable is shown. Note that (b) represents the volume in \((\xi, m, \gamma) \) giving rise to a stable node solution for the equilibrium \((U^*, I^*, V^*) \), whereas (c) is the section for a stable focus. Combining the regions in (b) and (c) gives the volume in (a). Plot (d) is the stable parameter space for different values of \(U^* \), within the following intervals: orange for \(20 < U^* < 25 \), yellow for \(35 < U^* < 40 \), green for \(50 < U^* < 55 \) and blue for \(65 < U^* < 70 \). Note that these “slices” are almost symmetrical. First published in Jenner et al. (2019). 94

Figure 5.17 Numerical simulations of Eqs. (5.13)-(5.15) demonstrating different types of dynamics, for initial conditions \(U(0) = 50, I(0) = 10, V(0) = 10 \) and fixed parameters \(m = 0.1, \gamma = 0.1 \), with values for \(\xi \) increasing from Case (1) to Case (4). Type (1) corresponds to a stable co-existence of virus and tumour due to incomplete eradication, occurring at \(\xi = 0.01 \), (2) depicts a stable oscillatory solution for \(\xi = 0.06 \), (3) shows stable long-period oscillations of “square wave” shape for \(\xi = 0.097 \) and (4) is a case of complete eradication for \(\xi = 0.12 \). Note that the carrying capacity is chosen as \(L = 100 \). First published in Jenner et al. (2019). 98
Figure 5.18	Examples of typical bifurcation plots in one parameter for the model, for (a) ξ and (b) γ, both versus U. Circled numbers correspond to the dynamical regimes illustrated in Fig. 5.17 and, for the case of periodic orbits originating from a Hopf bifurcation, only the maximum value of U is shown. For (a), the other model parameter are $m = 0.1$, $\gamma = 0.1$. Note that the switch to Case (4) (complete eradication) occurs when the branch of periodic orbits (in green) ceases to exist, for a value $\xi \approx 0.098$. Similar results for a continuation in γ are shown in (b), with the switch to Case (4) dynamics also occurring in correspondence of a branch point for the periodic orbit, at $\gamma \approx 0.0103$. An inset with a magnification on the area that shows the richest dynamical variability is also shown. The value of the other, fixed parameters are given in this case by $m = 0.1$, $\xi = 0.01$. In both cases, solutions for negative ξ and γ have been included for reasons of consistency, but do not correspond to any biologically meaningful state. First published in Jenner et al. (2019).
Figure 5.19	Bifurcation plots and bistable solutions for fixed parameter values $m = 0.5$, $\gamma = 0.1$. The rectangle in (b) shows the area where two solutions of different nature coexist, delimited by $\xi_{SN} \approx 0.1359$ and $\xi_{HB} \approx 0.1388$. A spiralling solution to an incomplete eradication is shown in (c) and occurs for initial conditions $U(0) = 60$, $I(0) = 10$, $V(0) = 40$, for a parameter $\xi_{SN} < \xi = 0.136 < \xi_{HB}$. A fully eradicated solution is shown in (d) and instead occurs for $U(0) = 40$, $I(0) = 10$, $V(0) = 5$, for the same value $\xi = 0.136$. Nullclines, i.e. the loci of points corresponding to $U' = 0$ and $V' = 0$, are in red and green. First published in Jenner et al. (2019).
Figure 5.20	Different, two-parameters continuations in (a) for m and ξ, for branches of Hopf bifurcations at different values of γ. Branches of supercritical Hopf bifurcations are shown in continuous lines, whereas those for subcritical bifurcations are in dashed lines. Generalised Hopf points are indicated by GH. Note that the branches cease to exist for low values of (m, ξ), indicating the system cannot support either stable or unstable oscillations when parameters are sufficiently small (see the inset). Plot of the corresponding amplitude of stable limit cycles for points in the ξ, m, γ parameter space are in (b). The colour of the point corresponds to the maximal value of the amplitude of the limit cycle in U. First published in Jenner et al. (2019).
Figure 5.21 Perturbations in the days between two treatments \(\phi \). Two different limit cycle regimes have been plotted for \(\gamma = 0.1, m = 0.2 \) and (a) \(\xi = 0.06915 \) or (c) \(\xi = 0.06993 \). The maximum and minimum uninfected cell number and maximum virus count is plotted as a circle in (b) and (d) for the corresponding value of \(\phi \) represented by an upward arrow in (a) and (c). Note the different scales used on the left and right axis, since the maximum and minimum amplitude of oscillations have different values. First published in [Jenner et al. (2019)].

Figure 5.22 Typical cases of dependence on injected viral dosage \(V_{T0} \) for a system in a bistable scenario. Examples of two injections with increasing dosage (i.e. injections 1 and 2) are also sketched. The effect of these injections is to push the starting point to larger values of \(V(0) \), depending on the dose that is administered. For the same initial tumour size, different dosages result in either tumour eradication or tumour stabilisation. Initial fixed conditions in (a) are given by \(U(0) = 100, I(0) = 10 \) and in (b) are given by \(U(0) = 50, I(0) = 10 \). In both cases, \(V(0) \) varies from a minimum of 20 to a maximum of 120 in constant steps and the parameters are \(m = 0.5, \gamma = 0.1 \) and \(\xi = 0.138 \). First published in [Jenner et al. (2019)].

Figure 6.1 Subset of Fig.1 summarising the investigation of the virus-tumour interaction in this chapter.

Figure 6.2 Tumour population over time for (a) PBS (Control), (b) Ad, (c) Ad-PEG and (d) Ad-PEG-HER treatments. The data for each mouse are shown with joined circles and the optimised model outputs for individual cases are shown as a thicker lines of the same colours. Note \(V = I = 0 \) for the control case. First published in [Jenner et al. (2018b)].

Figure 6.3 Tumour populations over time for (a) Control, (b) Ad, (c) Ad-PEG and (d) Ad-PEG-HER. The experimental data are plotted as circles (grey), and the trajectories for the simultaneous optimisation to all data points are shown as solid lines. The means of the data are shown as dashed lines. Note \(I = 0 \) for the control case. First published in [Jenner et al. (2018b)].

Figure 6.4 Parameter estimates from the individual and simultaneous optimisations to the data. The small (grey) circles correspond to the estimates of the parameters for each mouse. The large open circles correspond to parameter estimates from the simultaneous optimisation. The infectivity of the virus, \(\beta \), and the initial tumour size, \(U_0 \), were experiment specific. The central white lines are the means of the data, the blue boxes indicate the 95% confidence intervals and the green boxes indicate one standard deviation from the means. Note that there were fewer data points constraining the experiment-specific parameters. First published in [Jenner et al. (2018b)].
Figure 6.5 Tumour population over time predicted by the simultaneously optimised model for various (a) growth rates r between 0.001 and 0.3 (day$^{-1}$), (b) initial tumour populations U_0 between 1 and 300 (cells $\times 10^6$) and (c) infectivity rates β between 0.4 and 4.5 (day$^{-1}$). The colourmap bar matches the corresponding parameter value. All other parameters for each set were given by Table 6.4 for common and Ad-PEG-HER experiment-specific values. The dashed line represents the model solutions for unperturbed Ad-PEG-HER parameters in Table 6.4. Note the plots have different vertical scales. First published in Jenner et al. (2018b).

Figure 6.6 Effect of treatment profile. (a) Maximum viral population as a function of the total viral dose, V_{T0}, for each application profile with inset detail at low doses. (b) Eradication half-time as a function of the minimum total viral dose, V_{T0}, required. Seven different application protocols were simulated for the simultaneous optimised model for Ad-PEG-HER, Table 6.4 for the indicated number of injections, n, and days between injections, ϕ. First published in Jenner et al. (2018b).

Figure 6.7 The results of fitting biexponential decay to the viral time-series data from Kim et al. (2011a). Fig 6.7a is for the fit to the Ad data, Fig 6.7b is for the fit to the PEG data and Fig 6.7c is for the fit to the HER data. The solid line (blue) represents the fit, and the data is plotted as circle (yellow).

Figure 6.8 Diagram of the interaction between a population of uninfected tumour cells U, infected tumour cells I, and an intravenously injected oncolytic virus in the blood V_B, organs V_O and tumour site V_T, see Eqs. (6.9)-(6.14). The variable T represents the total tumour population $U + I$. The dashed lines represent the fast dynamics of the system which is due to clearance from LSECs L. These are approximated by simple exponential decay.

Figure 6.9 Optimisation of the model in Eqs. (6.9)-(6.14) to the virus genome accumulation data for the organs and tumour from Kim et al. (2011a). The total model’s predicted virus count (a) in the organs, V_O, is plotted as a solid line (orange) and (b) at the tumour, V_T, is plotted as a solid line (dark green). The experimental data from Kim et al. is plotted in the form of a box plot (purple) with the data represented as circles (black).

Figure 6.10 Compartmental diagram of the interaction between a population of uninfected tumour cells U, infected tumour cells I, and an intravenously injected oncolytic virus in the blood V_B, organs V_O and the tumour site V_T. Tumour cells may join the uninfected refractory population R_S or the infected refractory population R_I through interferon-mediation. Killer immune cells K are able to remove tumour cells through the anti-tumour immune response. See Eqs. (6.15)-(6.23) for the full model. First published in Jenner et al. (2016).
Figure 6.11	Sensitivity analysis of parameters in the Eqs. (6.15)-(6.23) using values from Table 6.2 and 6.7 as base parameters. The change in the total number of tumour cells from day 0 to 100 dependent on the relative change in each parameter value is plotted as a solid (blue) line. The (purple) circles plotted over the blue line represent the death of the tumour within 100 days.
Figure 6.12	Numerical solution to Eqs. (6.15)-(6.23) using a range of initial tumour populations U_0 for (a) $K \neq 0$ and (b) $K = 0$. The colour map bar on the right hand side matches the corresponding U_0 value with the model’s predicted tumour volume over time. First published in Jenner et al. (2016).
Figure 7.1	Subset of Fig.1.1 summarising the investigation of the virus-tumour interaction in this chapter.
Figure 7.2	Compartmental diagram for the tumour-virus interaction of an oncolytic adenovirus expressing IL-12 and GM-CSF. U and I are the uninfected and infected tumour cell populations respectively. V is the virus population, A is the APC population, H is the helper T cells population and K is the killer T cells population. Transition between states (e.g. uninfected to infected) is represented by a solid line, stimulation or activation is represented by a dotted line, death or decay is represented by a double arrow and programmed killing of tumour cells is represented by a dashed line. First published in Jenner et al. (2018a).
Figure 7.3	Output of the optimised tumour growth model, Table 7.1, for the PBS (control) case. The individual mouse data are plotted as grey circles with the mean and standard error bar at each time point in blue. The model output is plotted as a solid black line. First published in Jenner et al. (2018a).
Figure 7.4	Output of the optimised tumour growth models for the adenovirus (Ad) with no immune-stimulatory cytokines. The model parameters were optimised using (a) the early-death subgroup, (b) the low-responder subgroup, (c) the high-responder subgroup and (d) all data. The individual mouse data are plotted as grey circles with the mean and standard error bar at each time point shown in (d) in blue. The model outputs are plotted as solid black lines. Note the time axis has been extended in (b) and (c) to reveal the longer-term behaviour of the dynamics. First published in Jenner et al. (2018a).
Figure 7.5	Output of the optimised virus-tumour-immune models for the (a) Ad/IL12, (b) Ad/GMCSF and (c) Ad/GMCSF/IL12 treatment cases, see Table 7.1. The individual mouse data are plotted as grey circles with the mean and standard error bar at each time point shown in blue. The model outputs are plotted as solid black lines. First published in Jenner et al. (2018a).
Figure 7.6 Tumour cell population over time predicted by the optimised model for Ad/IL12/GMCSF for various values of (a) APC stimulation rates $s_A \in (1,1.5)$, (b) helper T cell stimulation rates $s_H \in (0.5,1)$ and (c) killer T cell killing rate $\kappa \in (1,1.5)$, indicated by the colour. The remaining parameters were fixed to the values presented in Table 7.2 column Ad/IL12/GMCSF, a detailed view for short times is shown inset for (c). First published in Jenner et al. (2018a).

Figure 7.7 Compartmental diagram for the tumour-virus interaction of co-delivered DCs and oncolytic adenovirus expressing IL-12 and GM-CSF. Variables U and I are the uninfected and infected tumour cell populations, V is the virus population, A_I is the immature APC population, A_A is the mature APC population, H is the helper T cell population and K is the killer T cell population. Transition between states (e.g. uninfected to infected) is represented by a solid line, stimulation or activation is represented by a dotted line, death or decay is represented by a double arrow and programmed killing of tumour cells is represented by a dashed line. This schematic builds on the one presented in Fig. 7.2.

Figure 7.8 Schematic for the simplified model for the release of DCs from the gel. It relates to Eq. (7.15).

Figure 7.9 Viability profile of dendritic cells (DCs) not loaded into a gel system. Circles represent the number of released viable DCs as counted by trypan blue staining from three experiments. Fit of viable DC number data to exponential decay is given by the grey curve.

Figure 7.10 Sustained release profile of dendritic cells (DCs) from soft (a)-(b) and hard (c)-(d) gelatin gel system. The stars in (a) & (c) represent the finite difference approximation to the release rate $u_{DC}(t)$ of DCs from the gel, Eq. (7.17), along with the 6th order polynomial fit to the approximations. The circles in (b) & (d) represent the number of released viable DCs from GHPA gels as counted by trypan blue staining from three experiments. The curve is the approximation to the number of DCs using Eq. (7.15).

Figure 7.11 Fit of constant release and DC proportional release rates to the dendritic cells (DCs) released from soft gelatin gel systems. In (a) the constant release rate model in Eq. (7.18) is fit to the viable DCs released from. In (b) the DC proportional release rate model in Eqs. (7.19)-(7.20) is fit to the viable DCs released. The fitted model solution is the purple curve and the green circles are the data.
Figure 7.12	Output of the optimised control data, Table 7.5 for the (a) PBS (control) case and (b) gel (control) case. The individual mouse data are plotted as grey circles with the mean and standard error bar at each time point in blue. The model output is plotted as a solid black line. In (c), both data sets were fit together. The individual mouse data are plotted as purple squares for gel data and blue circles for PBS data with the mean and standard error bar at each time point in blue for PBS data and purple for gel data.
Figure 7.13	Output for the fit of the virus-tumour-immune models for (a) Ad/IL12/GMCSF injection, (b) single DC injection and (c) DC+Ad/IL12/GMCSF single injection. The individual mouse data are plotted as grey circles with the mean and standard error bar at each time point shown in blue. The model outputs are plotted as a solid black line. All parameters fitted are in Table 7.6.
Figure 7.14	Output of the optimised virus-tumour-immune models for the gel DC+Ad/IL12/GMCSF, see Table 7.5 In (a) the individual mouse data are plotted as grey circles with the mean and standard error bar at each time point shown in blue. The model outputs are plotted as solid black lines. In (b) the model simulations for U, I, V, A, H and K are plotted as numbers of cells.
Figure 7.15	Tumour size at day 20 as a function of the constant gel-release period, tr, which varies for the virus ($u_V(t)$) and DCs ($u_{DC}(t)$), see Eq. 7.21. The red points correspond to the simulated release profiles in Fig. 7.16.
Figure 7.16	Constant gel-release profiles for the DCs ($u_{DC}(t)$) and virus ($u_V(t)$) where the release period, tr, corresponds to the red points in Fig. 7.15 where (a) $tr = 3$ for DCs, $tr = 18$ for virus, and (b) $tr = 15$ for DCs, $tr = 10$ for virus. The top row of figures corresponds to the total number of tumour cells $U + I$ and the bottom row of figures is the corresponding release profile.
Figure 7.17	Tumour size at day 20 as a function of the gel-release period, tr, and the initial release rate, b, for the virus ($u_V(t)$) and DCs ($u_{DC}(t)$). Each plane corresponds to the labelled value of tr in the inset and the red points correspond to the simulated release profiles in Fig. 7.18.
Figure 7.18	Increasing linear gel-release profiles for the DCs ($u_{DC}(t)$) and virus ($u_V(t)$) where the initial release rate and release period for each vector corresponds to the red points in Fig. 7.17 where (a) $b = 154$ for DCs, $b = 13$ for virus and $tr = 13$, and (b) $b = 358$ for DCs, $b = 18$ for virus and $tr = 5$. The top row of figures correspond to the total number of tumour cells $U + I$ and the bottom row of figures is the corresponding release profile.
Figure 7.19	Tumour size at day 20 for increasing linear release rates as a function of the release period, tr, for the virus ($u_V(t)$) and DCs ($u_{DC}(t)$) fixing the initial release rate at $b = 41.2$.
Figure 7.20 Tumour size at day 20 for a gel releasing virus, \(u_V(t) \), and DCs, \(u_{DC}(t) \), at a linear rate with a decreasing gradient. The initial release rate \(b \) has been varied for both the virus and the DCs. The red points correspond to the simulated release profiles in Fig. 7.21.

Figure 7.21 Decreasing linear gel-release profiles for the DCs \(u_{DC}(t) \) and virus \(u_V(t) \) where the initial release rate \(b \) corresponds to the red points in Fig. 7.20 where (a) \(b = 277 \) for DCs, \(b = 490 \) for virus, and (b) \(b = 1 \) for DCs, \(b = 3186 \) for virus. The top row of figures correspond to the total number of tumour cells \(U + I \) and the bottom row of figures is the corresponding release profile.

Figure 7.22 Simulations of increasing sigmoidal release profiles for the DCs \(u_{DC}(t) \) and virus \(u_V(t) \) where \(k \) and \(x_0 \) are varied for the fixed value of (a) \(\tau_r = 18 \) and (b) \(\tau_r = 10 \). The red points correspond to the release profiles simulated in Fig. 7.23.

Figure 7.23 Simulations of increasing sigmoidal release profiles for the DCs \(u_{DC}(t) \) and virus \(u_V(t) \) corresponding to the red points in Fig. 7.22 where (a) \(k = 8.6, x_0 = 5, \tau_r = 18 \) and (b) \(k = 24, x_0 = 7.5, \tau_r = 10 \). The top figure corresponds to the total number of tumour cells \(U + I \) and the bottom figure is the corresponding release profile.

Figure 7.24 Simulations of increasing sigmoidal release profiles for the DCs \(u_{DC}(t) \) and virus \(u_V(t) \) where (a) \(k \) and \(x_0 \) are varied for the fixed value of \(\tau_r = 18 \). The red point in (a) corresponds to the release profile simulated in (b) where \(k = 24, x_0 = 14 \). The top figure corresponds to the total number of tumour cells \(U + I \) and the bottom figure is the corresponding release profile.

Figure 8.1 Subset of Fig. 1.1 summarising the investigation of the virus-tumour interaction in this chapter.

Figure 8.2 Oncolytic virus life cycle. Virus particles infect either uninfected or infected tumour cells. Once inside a cell, virus particles undergo replication for a period of time. Eventually they lyse the cell, causing it to burst, and release new viral progeny that will infect other tumour cells.

Figure 8.3 Initial Voronoi tessellation. Healthy cells are coloured pale pink and tumour cells are bright green. The boundaries for each cell are represented by a solid line and the lattice points are small dots in the centres of the cells in (a). (b) shows the tessellation overlaid with the network of connected lattice points obtained using a Delaunay triangulation. The neighbourhood of interaction is indicated in blue for one point in the lattice.

Figure 8.4 Spatial histograms of the distribution of 3000 virus particles initially located at the origin after 200 hours, where particles are diffusing with stable distributed waiting times with (a) \(\alpha = 0.6 \), (b) \(\alpha = 0.8 \) and (c) no waiting times. The corresponding mean-squared displacement (MSD) of the virus particles in (a), (b) and (c) are plotted in (d).
Figure 8.5 Schematic illustrating the connection between points k, j and i in the lattice at a fixed time t. Springs connect points in the lattice and the movement of each point depends on the force derived from Hooke’s Law, assuming that motion is overdamped due to strong friction. The spring rest length between point k and j is $s_{k,j}$, and point k and i is $s_{k,j}$.

Figure 8.6 Schematic illustrating how cell-to-cell adhesion is assumed to be negligible after the cells have reached a distance apart greater than $s + a_1$.

Figure 8.7 Schematic for the probability of a particular cell proliferating given a particular distance d from the edge of the tumour, see Eq. (8.5). The maximum radial distance for which proliferation occurs, d_{max}, separates the tumour into proliferating and non-proliferating sections, with the cells inside the shaded circle having a distance greater than d_{max} from the edge, and hence being unable to proliferate.

Figure 8.8 Schematic for cell motility, illustrating the proliferation of cell k into two new cells k and l. The resulting spring rest length $s_{k,l}$ between daughter cells is then s/g_{age}, which increases over time to s, the mature cell separation.

Figure 8.9 Schematic for cell adhesion. Fig. 8.9 illustrates how the spring rest length $s_{k,l}$ increases as a function of the time since division.

Figure 8.10 Model calibration for in vivo cervical cancer SK-OV3 cell growth. Individual mouse tumour cell numbers recorded by Kim et al. (2011b) are plotted as grey circles. Overlayed in light blue dotted lines are 15 model simulations of tumour growth with the mean of these simulations in black.

Figure 8.11 Representative tumour shapes considered for treatment with an oncolytic virus (a)-(b) circular, (c)-(d) rectangular, and (e)-(f) irregular. The corresponding number of tumour cells as a function of time from 12 simulations has been plotted for each shape. Typical evolution plots for each of these shapes can be found in the Supplementary material, Fig. B.1, Fig. B.2 and Fig. B.3 respectively. Note the different scale for (f) due to the extremely fast growth of the irregular tumours.

Figure 8.12 Representative evolution of the VCBM model in a circular configuration. The four snapshots above represent equal intervals of model dynamics. Pale pink cells represent healthy cells, dark green cells represent tumour cells, light green cells represent quiescent cells, bright pink cells represent infected tumour cells and grey cells represent dead cells with empty space shaded in light grey.
Figure 8.13 The effects of the multiplicity and configuration of the injection site on a circular tumour. The initial injection configurations considered are represented in Fig. 8.13(a), 8.13(c) and 8.13(e) by the coloured regions, depicting viral particles. The corresponding total number of tumour cells over time for each injection type is plotted in Figs. 8.13(b), 8.13(d) and 8.13(f), respectively for 12 simulations. For reference, untreated tumour growth is plotted for 12 simulations in grey. Note quiescent cells are not plotted.

Figure 8.14 The effects of the multiplicity and configuration of the injection site on a rectangular tumour. The initial injection configurations considered are represented in Fig. 8.14(a), 8.14(c) and 8.14(e) by the coloured regions, depicting viral particles. The corresponding total number of tumour cells over time for each injection type is plotted in Figs. 8.14(b), 8.14(d) and 8.14(f), respectively for 12 simulations. For reference, untreated tumour growth is plotted for 12 simulations in grey. Note quiescent cells are not plotted.

Figure 8.15 The effects of the multiplicity and configuration of the injection site on an irregular tumour. The initial injection configurations considered are represented in Fig. 8.15(a) and 8.15(c) by the coloured regions, depicting viral particles. The corresponding total number of tumour cells over time for each injection type is plotted in Figs. 8.15(b) and 8.15(d), respectively for 12 simulations. Note the shorter timescale, and greater growth compared to Fig. 8.13 and 8.14. For reference, untreated tumour growth is plotted for 12 simulations in grey. Note quiescent cells are not plotted.

Figure 8.16 Virus diffusion for (a) non-modified and (b) modified virus particles at 52 hours. A comparison of the two cases shows that the region within which the virus particles have diffused is similar in both cases; however, there are less virus particles in the non-modified case due to immune clearance.

Figure 8.17 Circular tumour size under treatment with a delayed infecting oncolytic virus. The number of tumour cells predicted by the model over time is plotted under treatment with the original oncolytic virus (light blue) and with the delayed virus (dark blue) applied using profile F, Fig. 8.13. Twelve model simulations were considered for each case. The wait times for the delayed virus cases were (a) 40, (b) 52, (c) 60 and (d) 80 hours. Note the dramatic drop in tumour cell numbers upon initial viral infection in each case. In (e), the ratio of the number of extracellular virus particles to uninfected tumour cells is plotted for each treatment as a function of time. The corresponding distribution of viral particles before they can initially infect for the case of no wait time, 40 hours wait time, 60 hours wait time and 80 hours wait time is plotted in (f).
Figure 8.18	Rectangular tumour size under treatment with a delayed infecting oncolytic virus. The number of tumour cells predicted by the model over time is plotted under treatment with the original oncolytic virus (light blue) and with the delayed virus (dark blue) applied using profile E, Fig. 8.14. Twelve model simulations were considered for each case. The wait times for the delayed virus cases were (a) 40, (b) 52, (c) 60, and (d) 80 hours. Note the dramatic drop in tumour cell numbers upon initial viral infection. In (e), the ratio of the number of extracellular virus particles to uninfected tumour cells is plotted for each treatment as a function of time. The corresponding distribution of viral particles before they can initially infect for the case of no wait time, 40 hours wait time, 60 hours wait time and 80 hours wait time is plotted in (f).	217
Figure 8.19	Invasive tumour under treatment with a delayed infecting oncolytic virus. The number of tumour cells predicted by the model over time is plotted under treatment with the original oncolytic virus (light blue) and with the delayed virus (dark blue) for profile A, Fig. 8.14. Twelve model simulations were considered for each case. The wait time for the delayed virus cases was (a) 40, (b) 52, (c) 60, and (d) 80 hours.	218
Figure 8.20	Comparison of treatment effectiveness at discrete time points. Individual, mean and standard deviation measurements corresponding to the number of tumour cells from the simulations Fig. 8.17 and 8.18 after (a) & (d) 100 hours, (b) & (e) 140 hours and (c) & (f) 200 hours is plotted for circular tumours (a)-(c) and rectangular tumours (d)-(e). The number of tumour cells without treatment, Fig. 8.11 (b) and (d) has also been plotted on each figure as a control. Note the vertical axis break in the top row and the different vertical scales.	219
Figure 10.1	Subset of Fig. 11 summarising the investigation of the virus-tumour interaction in this section.	243
Figure 10.2	Illustration of the two vasculature cross sections considered for the simulations in this chapter.	246
Figure 10.3	Initial setup of vein and glioblastoma cells. Glioblastoma cells are coloured pink and vein cells are coloured brown. (a) is an example of the circular vein cross section and (b) the triangular vein cross section.	247
Figure 10.4	Life cycle of oncolytic adenovirus expressing secretable TRAIL. Virus particles infect uninfected cells. Once inside a cell, virus particles undergo replication for a period of time creating both new viruses and TRAIL molecules. Eventually the cell lyses, causing it to die and the viral progeny and TRAIL are released. TRAIL then kills uninfected tumour cells through apoptosis.	248
Figure 10.5 Examples of the different TRAIL secretion dynamics that occur with perturbations in s_T and s_τ. (a) TRAIL molecules created through replicated are secreted primarily at time of cell lysis $s_T \approx 0, s_\tau \approx \delta$. (b) TRAIL molecules are secreted whilst the virus is infected $s_T > 0, s_\tau << \delta$.

Figure 10.6 Number of tumour cells over 4 days for perturbations in s_T and s_τ for (a) triangular and (b) circular vein cross sections. Since this is just an initial investigation, a range of different values for s_T and s_τ were chosen that exhibited different dynamics. The remaining parameter values were taken from Tables D.1 and D.2.

Figure 10.7 Simulation for virus infection in a layer of tissue with triangle veins at (a) 60 mins, (b) 1440 mins (1 day) and (c) 2880 mins (2 days). Parameters were fixed to the values in Table D.1 and D.2 with $s_T = 0.0001$ and $s_\tau = 500$. Red cells represent vein cells, these cells secrete virus that infects tissue cells, which are pink cells. Once a cell becomes infected it is coloured purple, with the darker the shade corresponding to the more virus in the cell. The infected cells die turning a pale yellow and eventually disappearing. The remaining parameter values were taken from Tables D.1 and D.2.

Figure 10.8 Contour plots for the density of virus ((a), (c) and (e)) and TRAIL ((b), (d) and (f)) at 60 mins, 1440 mins (1 day) and 2880 mins (2 days). These plots correspond to the simulations in Fig. 10.7.

Figure 10.9 Simulation for virus infection in a layer of tissue with circular veins at (a) 60 mins, (b) 1440 mins (1 day) and (c) 2880 mins (2 days). Parameters were fixed to the values in Table D.1 and D.2 with $s_T = 0.0001$ and $s_\tau = 500$. Red cells represent vein cells, these cells secrete virus that infects tissue cells, which are pink cells. Once a cell becomes infected it is coloured purple, with the darker the shade corresponding to the more virus in the cell. The infected cells die turning a pale yellow and eventually disappearing. The remaining parameter values were taken from Tables D.1 and D.2.

Figure 10.10 Contour plots for the density of virus ((a), (c) and (e)) and TRAIL ((b), (d) and (f)) at 60 mins, 1440 mins (1 day) and 2880 mins (2 days). These plots correspond to the simulations in Fig. 10.9.

Figure 10.11 Tumour cell number in triangular vein cross section model with parameter perturbations in D_V, c_1 and c_R (detailed by the legend). The remaining parameters were fixed to the values presented in Table D.1 and D.2 with $s_T = 0.1$ and $s_\tau = 500$.

Figure A.1 Illustration for the law of total probability, where $f_{X,Y}(x,y)$ is the joint density function of X,Y and B is the region for which the probability of X,Y in B is being calculated.

Figure B.1 Typical evolution of the cellular automaton for a circular tumour.

Figure B.2 Typical evolution of the cellular automaton for a rectangular tumour.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.3</td>
<td>Typical evolution of the cellular automaton for an irregular tumour.</td>
<td>270</td>
</tr>
<tr>
<td>B.4</td>
<td>Typical evolution of the cellular automaton for a circular tumour with a non-delayed viral treatment.</td>
<td>271</td>
</tr>
<tr>
<td>B.5</td>
<td>Typical evolution of the cellular automaton for a circular tumour with a delayed viral treatment.</td>
<td>272</td>
</tr>
<tr>
<td>D.1</td>
<td>Schematic for the secretion of virus from a virus-filled vein cell (red). Intracellular virus n_I is secreted with rate constant s_v into the voxel and becomes part of the density of extracellular virus p_{VE}.</td>
<td>283</td>
</tr>
<tr>
<td>D.2</td>
<td>Illustration of the amount of intracellular virus $n_I(t)$ in a single infected cell. The cell needs to be infected with n_{I_*} virus particles before replication can commence. Once replication starts at time τ, new virus particles are still able to infect the cell; however, once the number of intracellular virus reaches $n_{I,T}$, further infection stops. The maximum likelihood of lysis occurring is then reached when the amount of virus exceeds α. Lysis occurs at time δ and can be before $n_I = \alpha$.</td>
<td>284</td>
</tr>
<tr>
<td>D.3</td>
<td>Schematic for the intracellular and extracellular infection, replication and lysis process. Extracellular virus p_{VE} is taken up by a cell with rate constant c_I. The virus within the cell undergoes replication at a constant rate c_R. The cell then undergoes lysis, releasing its contents back into the extracellular density of virus in the voxel.</td>
<td>286</td>
</tr>
<tr>
<td>D.4</td>
<td>Illustration of the amount of intracellular virus, $n_I(t)$, in a single infected cell. The cell needs to be infected with n_{I_*} virus particles before replication can commence. Once replication starts, new virus particles are still able to infect the cell; however, once the number of intracellular virus reaches $n_{I,T}$, further infection stops. The maximum likelihood of lysis occurring is then reached when the amount of virus exceeds α.</td>
<td>287</td>
</tr>
<tr>
<td>D.5</td>
<td>Output of optimising exponential growth rate r to U87MG glioblastoma tumour growth measurements from Oh et al. (2018) for the first 9 days (144000 minutes).</td>
<td>289</td>
</tr>
<tr>
<td>D.6</td>
<td>Simulation for virus infection in a layer of tissue with triangle veins at (a) 60 mins, (b) 1440 mins (1 day) and (c) 2880 mins (2 days). Parameters were fixed to the values in Table D.1 and D.2 with $s_T = 0.1$ and $s_\tau = 100$. Red cells represent vein cells, these cells secrete virus that infects tissue cells, which are pink cells. Once a cell becomes infected it is coloured purple, with the darker the shade corresponding to the more virus in the cell. The infected cells die turning a pale yellow and eventually disappearing.</td>
<td>293</td>
</tr>
<tr>
<td>D.7</td>
<td>Contour plots for the density of virus ((a), (c) and (e)) and TRAIL ((b), (d) and (f)) at 60 mins, 1440 mins (1 day) and 2880 mins (2 days). These plots correspond to the simulations in Fig. D.6.</td>
<td>294</td>
</tr>
</tbody>
</table>
Simulation for virus infection in a layer of tissue with circular veins at (a) 60 mins, (b) 1440 mins (1 day) and (c) 2880 mins (2 days). Parameters were fixed to the values in Table D.1 and D.2 with $s_\tau = 0.1$ and $s_\tau = 100$. Red cells represent vein cells, these cells secrete virus that infects tissue cells, which are pink cells. Once a cell becomes infected it is coloured purple, with the darker the shade corresponding to the more virus in the cell. The infected cells die turning a pale yellow and eventually disappearing.

Contour plots for the density of virus ((a), (c) and (e)) and TRAIL ((b), (d) and (f)) at 60 mins, 1440 mins (1 day) and 2880 mins (2 days). These plots correspond to the simulations in Fig. D.8.

LIST OF TABLES

Table 4.1	Parameter values for Eq. (4.1) representing the main features of the virus titer of [Kim et al. (2002)] for Fig. 4.7. Some parameters were linked across the different experiments as indicated in the table.	60
Table 6.1	Parameter values for the optimisation of the individual mouse data in Fig. 6.2. The colours used to plot the individual tumour measurements correspond to the parameter values given in the table below. Values have been rounded to two significant figures.	120
Table 6.2	Common and experiment-specific parameters for the simultaneous optimisation in Fig. 6.3.	121
Table 6.3	Parameter values for the simultaneous optimisation of the model with all data, shown in Fig. 6.3.	125
Table 6.4	Fit statistics for the simultaneous optimisation of the model with all data, shown in Fig. 6.3.	125
Table 6.5	Parameter values for the simultaneous optimisation of the model with all data.	129
Table 6.6	Parameter values for the optimisation of the viral genome in the organs and tumour on day 5, see Fig. 6.9.	133
Table 6.7	Parameter values for Eqs. (6.15)-(6.23). Note the reference to other parameters that may be found in Table 6.4.	137
Table 7.1	Experiment-specific optimisation conditions [Choi et al. (2012a)]. Equations used to optimise each experiment are listed along with the state variables considered and parameters fitted or fixed.	152
Table 7.2	Parameter estimates fixed from the literature and obtained from the sequential fit shown in Figs. 7.3, 7.4 and 7.5 to the measurements of [Choi et al. (2012a)].	158
Table 7.3	Goodness of fit measures for each parameter optimisation.	158
Table 7.4	Parameter estimates relating to Fig 7.9.	163
Table 7.5 Experiment-specific optimisation conditions. Equations used to optimise each experiment are listed along with the state variables considered and parameters fitted or fixed. Note that Ad/IL12/GMCSF has been shortened to Ad/I/G.

Table 7.6 Parameter estimates from the sequential optimisation of the model following the algorithm in Table 7.5 to the experimental measurements of Oh et al. (2017). Note that Ad/IL12/GMCSF has been shortened to Ad/I/G.

Table 8.1 Parameters in the model and their meanings.

Table 8.2 Cell parameter values. The calibrated parameters are obtained by optimising the model to the measurements of SK-OV3 cell growth seen in Fig. 8.10. The fixed parameters r_{min} and s are taken from the original lattice set up, parameters μ, η and λ are taken from Meineke et al. (2001), but scaled to the time step of 4 hours, and a_1 is arbitrary.

Table 8.3 Virus characteristic parameter values.

Table D.1 Parameters based from literature values for the PhysiCell simulations in this chapter.

Table D.2 Estimated parameter values for the PhysiCell simulations in this chapter.
ABBREVIATIONS, VARIABLES AND PARAMETERS

Below is a list of abbreviations, variables and parameters that may be helpful to the reader.

ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODE</td>
<td>ordinary differential equation</td>
</tr>
<tr>
<td>PDE</td>
<td>partial differential equation</td>
</tr>
<tr>
<td>DC</td>
<td>dendritic cell</td>
</tr>
<tr>
<td>APC</td>
<td>antigen presenting cell</td>
</tr>
<tr>
<td>NK</td>
<td>natural killer (cell)</td>
</tr>
<tr>
<td>IL-12</td>
<td>interleukin 12</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>granulocyte-macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>VCBM</td>
<td>Voronoi cell-based model</td>
</tr>
<tr>
<td>SN</td>
<td>saddle node</td>
</tr>
<tr>
<td>HB</td>
<td>Hopf bifurcation</td>
</tr>
<tr>
<td>BP</td>
<td>branch point</td>
</tr>
<tr>
<td>GH</td>
<td>Generalised Hopf</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>Ad</td>
<td>oncolytic adenovirus</td>
</tr>
<tr>
<td>PEG</td>
<td>polyethelene glycol</td>
</tr>
<tr>
<td>Ad-PEG</td>
<td>PEG-modified oncolytic adenovirus</td>
</tr>
<tr>
<td>Ad-PEG-HER</td>
<td>PEG-modified oncolytic adenovirus conjugated with Herceptin</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>TRAIL</td>
<td>TNF-related apoptosis-inducing ligand</td>
</tr>
<tr>
<td>ri-Ad-stTRAIL</td>
<td>replication-incompetent adenovirus expressing secretable TRAIL</td>
</tr>
<tr>
<td>Ad-stTRAIL</td>
<td>replication-competent adenovirus expressing secretable TRAIL</td>
</tr>
</tbody>
</table>
VARIABLES

\(C \) number of cells with replicating virus
\(\Upsilon \) number of intracellular and extracellular virus particles
\(V \) virus population
\(U \) uninfected cells
\(I \) virus-infected cells
\(V_B \) virus population in the blood
\(V_O \) virus population in the organs
\(V_T \) virus at the tumour site
\(R_S \) refractory tumour cell population
\(R_I \) infected refractory tumour cell population
\(K \) killer immune cells
\(T \) total tumour cell population
\(A \) APC population
\(H \) helper T cell population
\(A_I \) immature APCs
\(A_A \) active APCs
\(n_I \) amount of intracellular virus particles
\(p_{VE} \) density of extracellular virus in a voxel
\(p_{TE} \) density of extracellular TRAIL in a voxel
\(n_I \) intracellular amount of virus
\(T_I \) intracellular amount of TRAIL
ABBREVIATIONS, VARIABLES AND PARAMETERS

PARAMETERS

\begin{itemize}
 \item \(\tau \) start time of viral replication
 \item \(l \) period of time virus spends replicating
 \item \(\delta \) time cell bursts
 \item \(C_0 \) initial number of cells in a monolayer
 \item \(k \) intracellular viral replication rate
 \item \(r \) replication rate of tumour cells
 \item \(\beta \) virus infection rate
 \item \(d_I \) lysis rate
 \item \(d_V \) decay rate of virus particles
 \item \(\alpha \) number of new viruses created through lysis
 \item \(L \) tumour carrying capacity
 \item \(S_0 \) initial number of tumour cells
 \item \(V_0 \) number of virus particles in a single injection
 \item \(\phi \) Number of days between injections
 \item \(d_B \) decay rate of virus in the blood
 \item \(\tau_O \) transfer rate of virus in the blood to the organs
 \item \(\tau_T \) transfer rate of virus in the blood to the tumour site
 \item \(\gamma \) antiviral stimulation rate of tumour cells
 \item \(\tau_R \) re-introduction rate
 \item \(\kappa \) killing rate by immune cells
 \item \(\beta_R \) infection rate of antiviral state tumour cells
 \item \(d_{RI} \) infected antiviral cell burst rate
 \item \(s_K \) stimulation rate of killer cells
 \item \(d_K \) decay rate of killer immune cells
 \item \(V_{T0} \) total viral dosage (possibly given over multiple administrations)
 \item \(D_0 \) initial number of DCs
 \item \(g_{age} \) time steps taken for a daughter cell to grow to adult size
 \item \(p_0 \) probability constant for proliferation
 \item \(d \) distance from a tumour cell to the nearest cell on the tumour edge
 \item \(d_{max} \) radial distance that nutrient reaches by diffusion from the tumour edge
 \item \(r_{min} \) minimum distance between neighbouring cells for proliferation to occur
 \item \(p_{age} \) age a cell needs to reach before it can proliferate again
 \item \(d_{frac} \) distance spring length of a dead cell decreases at each time step
 \item \(d_{age} \) time taken for a dead cell to disintegrate
 \item \(p_i \) probability of infection occurring
 \item \(i_{age} \) time steps taken from infection to when the infected cell bursts
 \item \(r_{\mu} \) mean distance of viral movement per time step
 \item \(r_\sigma \) standard deviation for virus displacement
 \item \(a_i \) adhesion distance between two cell positions
 \item \(s_v \) secretion rate of virus from vein cell
 \item \(c_i \) rate at which cell uptakes virus
 \item \(n_{I,T} \) intracellular virus capacity
 \item \(c_R \) intracellular replication rate
 \item \(n_{I,*} \) minimum virus replication threshold
\end{itemize}
INTRODUCTION
With more than 10 million new cases each year, cancer is one of the most devastating diseases worldwide. Cancer is the collective name given to a group of illnesses sharing one commonality: uncontrollable cell division that spreads into surrounding tissues. Progress in developing curative treatments for this disease is slow, despite the years of work by scientists and clinicians. Developing effective cancer treatments is a highly complex, multidisciplinary problem that requires extensive research and creativity.

Oncolytic virotherapy is an emerging cancer treatment that uses virus replication to destroy cancer cells. This therapy originated from observations of accidental viral infections causing remission in cancer malignancies. Competent and specific viruses which attack tumour cells but not healthy cells have been made with advancements in the field of genetic engineering. The current state of this field includes proof of feasibility for a single-shot virotherapy cure and clinical confirmation of the intratumoural herpes simplex virus therapy for metastatic melanoma (Russell et al. 2012).

Oncolytic viruses are also being investigated as immunotherapy agents for cancer treatment. Combined virotherapy and immunotherapy is a new approach that uses a virus’ ability to lyse tumour cells (leading to the release of soluble antigens and danger signals) to drive an antitumour immune response (Bommareddy et al. 2018). This immune response then results in immune cell induced apoptosis (programmed cell death) of cancer cells. New strategies have been developed to maximise this immunotherapeutic potential through the addition of immunostimulatory cytokines to viral genes or combined injections of viruses and immune cells (Oh et al. 2017).

Mathematical and computational biology is a growing field of research that is used to answer important questions in biology. Over the years, a diverse range of techniques from this field, varying from deterministic to agent-based modelling, have provided critical insight into cancer treatments. For example, chemotherapy and radiotherapy application protocols have been significantly improved through the use of mathematical modelling (Enderling and AJ Chaplain 2014). More recently, mathematical and computational models for oncolytic virotherapy and immunotherapy have been developed (Bajzer et al. 2008; Dingli et al. 2009; Komarova and Wodarz 2010; Wares et al. 2015; Titze et al. 2017; Powathil et al. 2013; Mallet and De Pillis 2006). These models have laid out a baseline for future modelling to be developed upon.
Unfortunately, there are still major challenges facing oncolytic virotherapy and combined virotherapy and immunotherapy. Firstly, determining which genetically engineered virus can maximise both viral spread and anticancer cytotoxicity is difficult due to the unknown correlation between the virus genomes and virus effectiveness. Additionally, optimal dosage protocols for these treatments (considering treatment length and administration protocol) are not yet universally established. Overall, significant characterisation of the virus infectivity and immune response is needed to improve future iterations of these treatments.

Experimentally, determining ways to overcome obstacles to oncolytic virotherapy and combined virotherapy and immunotherapy requires significant time and expenses. Through the use of mathematical and computational modelling, however, these challenges can be investigated efficiently. The current literature surrounding the mathematics of these therapies is still basic, and novel formulations need to be designed to investigate these therapies further.

In this thesis, a range of mathematical and computational techniques are developed to advance the current baseline of oncolytic virotherapy and immunotherapy, and investigate the challenges facing these treatments. This research aims to answer two broad questions:

1. How can mathematical and computational tools be used to improve cancer therapies?
2. In what ways can oncolytic virotherapy and immunotherapy be improved?

To answer these questions, techniques that can be applied to a range of other cancer therapies are developed in this thesis. By using these, different ways of ameliorating virotherapy and immunotherapy are able to be determined and subsequent analysis provides insight into the usefulness of mathematics in cancer modelling.

To introduce the background of this thesis, Chapter 2 is a summary of the biology behind cancer, virotherapy and immunotherapy. Chapter 3 then summarises the deterministic and agent-based models related to these fields, along with mathematical optimisation and analysis techniques employed throughout this thesis. Following this,
Chapter 4-8 are individual investigations into different oncolytic virotherapy derivatives. These are conducted at two physiological scales: intracellular and extracellular.

In Chapter 4, an integro-differential system with distributed parameters is developed to model the intracellular dynamics of the virus-tumour interactions. By optimising the model parameters to *in vitro* virus titer measurements for gene-attenuations of the E1B 19 and E1B 55 kDa proteins, specific viral characteristics and the dominant processes altered by the mutations is determined. To consider how these processes act at the extracellular level, Chapter 5 investigates the sensitivity of therapy to individual tumour cell and viral heterogeneity using a system of coupled ordinary differential equations (ODEs). Bifurcation and local stability analysis are used to establish dosage protocols that result in tumour extinction.

Chapters 6 and 7 build on the results of Chapter 5 by presenting extracellular investigations into the dynamics of specific virotherapies. To overcome the rapid clearance of viral particles by the immune system, oncolytic adenoviruses can be conjugated with Herceptin. In Chapter 6, a system of coupled ODEs is used to represent the experimental data for this specific virus and predict the response of cancer growth to other treatment protocols beyond those in the experiments. To contrast this investigation, in Chapter 7 the system of ODEs is then extended to consider a combined virotherapy and immunotherapy treatment: an oncolytic adenovirus modified with immunostimulatory cytokines interleukin-12 (IL-12) and granulocyte-macrophage colony-stimulating factor (GMCSF). A sensitivity analysis of optimised parameter values is used to investigate the characteristics of the immune response to virotherapy, and suggest treatment improvements.

To begin to establish a universal optima administration protocol, a degradable gel-release mechanism is considered in Chapter 7. Using the mathematical model developed, perturbations to the application protocol that achieve optimal treatment effectiveness are determined.

In Chapter 8 a Voronoi cell-based model (VCBM) is developed to assess the sensitivity of treatment efficacy to tumour geometry. The VCBM captures the interaction between oncolytic virus particles and cancer cells in a 2-dimensional setting by using an underlying agent-based framework, where agents are cells with edges from a
Voronoi tessellation. Simulations show that delaying the infection of cancer cells, and thus allowing more time for intratumoural treatment dissemination, can improve the efficacy of oncolytic virotherapy.

A final summary and discussion of results is presented in Chapter 9 with concluding remarks in Chapter 10. Additionally, a preliminary investigation that correlates with the results presented in Chapters 4-8 is presented in Chapter ??. In this work, an agent-based framework similar to that of the VCBM in Chapter 8 is used to model an adenovirus expressing tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL).

Fig. 1.1 presents an overview of the interactions that will be discussed in detail in this thesis and the two physiological scales: intracellular and extracellular. A subset of this diagram is included at the start of each chapter, indicating the specific interactions investigated in that chapter.

Figure 1.1: An overview of the physiological scales of the virus, tumour and immune system interaction discussed in this thesis. At the start of each chapter a subset of this diagram is presented that summaries the key concepts in that chapter.
BIOLOGICAL BACKGROUND
The biological background of this therapy can be summarised into three major areas: (1) cancer, (2) the immune system and (3) oncolytic viruses. The background to these areas is provided in the following sections:

1. **Cancer** - Section 2.2 presents an overview of the initial stages of cancer, cancer development, specific cancers and their attributes, and current treatments and challenges.

2. **The immune system** - Section 2.3 presents an overview of the immune response in general, the immune response to cancer, and the immune response to viruses.

3. **Viruses** - Section 2.4 introduces the adenovirus (an important oncolytic virus), followed by an overview of the virus replication cycle, the function of the E1B genes of an adenovirus, viral movement, current virotherapies and challenges, and combined virotherapy and immunotherapy.

A significant amount of published experimental data is used in this thesis and, as such, the techniques around how this data is collected are explained in Section 2.5. To understand the specific biological background in this chapter, a brief overview of biology is provided in Section 2.1.

2.1 Biological Levels: Genes/Cells/Tissues/Systems

Biology is the science of living organisms that exist across a large range of physiological scales. Fig. 2.1 summarises the biology at the different physiological scales considered in the interaction between an oncolytic virus and tumour cells. Genes and deoxyribonucleic acid (DNA) exist at one of the smallest possible scales in cancer biology (Kaiser *et al.*, 2007). Genes are located in the cell nucleus and are the basic physical and functional unit of heredity. Genes are made of DNA, a double helix carrying genetic instructions for the development, function, growth and reproduction of organisms and viruses. A genome is an organism’s complete set of DNA, including all of its genes. In humans, a copy of the entire genome is contained in all cells that have a nucleus (Kaiser *et al.*, 2007).
Building up in scale, there are large classes of molecules and proteins that are crucial to the immune system. Antibodies are large, Y-shaped proteins produced mainly by plasma cells. They are used by the immune system to neutralise pathogens, such as bacteria and viruses (Janeway et al., 2005). Monoclonal antibodies are made by identical immune cells that are all clones of one parent cell. Monoclonal antibodies can have monovalent affinity, meaning that they bind to the same part of an antigen that is recognised by the antibody. Antigens are any substance that stimulate the immune system to produce antibodies and cytokines. Cytokines are signalling molecules that control cell activities. They allow immune cells to communicate and generate a coordinated, robust response to a target antigen (Janeway et al., 2005).

Viruses are microscopic packages of DNA (Kaiser et al., 2007). They are classified as non-living as they are unable to reproduce without a host cell. The exterior protective of a virus is called a capsid. For some viruses, the capsid is surrounded by an additional envelope which is used to help viruses avoid the host immune system (Kaiser et al., 2007). Through infection of cells, virus antigen (or viral genome) is released into the microenvironment were it can be detected by immune cells and induce an immune response (Janeway et al., 2005).

Figure 2.1: Overview of the physiological scales of the biology presented in this thesis.
Cells are the basic structural, functional, and biological unit of living organisms (Alberts et al., 2013). Cells provide structure for the body, absorb nutrients and carry out important functions. Cells that group together form tissue and then organs. Other cells, such as immune cells, scavenge the body for possible threats and protect humans from infection and disease. At the tissue and tumour level, all of the biological scales interact to promote or inhibit tumour growth.

2.2 CANCER

2.2.1 Initial formation

Cancer begins at the genetic level and starts from the mutation of a single gene (De Pillis and Radunskaya, 2001). These mutations occur due to an array of lifestyle, environment and hereditary factors. Genetic mutations that cause cancer lead to accelerated cell division and inhibition of programmed cell death (O’Connor et al., 2010). These genetic mutations then result in large populations of contiguous damaged cells known as tumours.

Tumours are heterogeneous and are made up of many different cells (De Pillis and Radunskaya, 2001). Due to over proliferation and space limitations, cancer cells are able to push out normal cells in the surrounding tissue and form densely packed groups. Normal tissue, lymphocytes, macrophages, and other types of cells can either grow at the tumour site or be recruited to the tumour through chemotaxis (De Pillis and Radunskaya, 2001). These cells end up forming part of the tumour and become known as the tumour stroma.

2.2.2 Development and growth

Excessive cancer cell proliferation, spatial limitations and interstitial pressure all influence the shape of a tumour. Furthermore, the location of the initial tumour (e.g. which organ the tumour starts in or the tumour’s proximity to the bone) can have
significant effects on the geometry and shape that the tumour forms. If there are no spatial limitations for proliferating cancer cells, then a roughly spherical tumour will form, similar to that of a hanging drop tumour spheroid ([Weiswald et al., 2015], see Fig. 2.2(a)). When there is an obstruction above and below a growing cancer cell population, the tumour will form a more cylindrical shape. This obstruction, for example, could be stiffer stromal tissue, similar to that seen in breast ductal carcinomas in situ (DCIS) ([Kim et al., 2011d], see Fig. 2.2(b)). Additionally, in certain cancers, the cells on the periphery of the tumour can become invasive cells, allowing them to degrade the surrounding extra-cellular matrix (the structure and support of cells) and invade the space of nearby cells ([Jiao and Torquato, 2011]). These tumours form invasive branches that can spread into surrounding tissue, see Fig. 2.2(c).

The cell cycle is the series of stages that occur when a cell duplicates and divides. If a healthy cell in the tissue enters the proliferative stage of the cell cycle, it will only divide if there is sufficient surrounding space. Cancer cells, however, ignore the spatial requirement and divide uncontrollably, forming regions of densely packed cells. Pressure from over proliferating cancer cells restricts the diffusion of oxygen and nutrients (such as glucose) from the blood vessels. As the tumour grows larger, insufficient nutrients reach cells within the centre of the tumour and the tumour reaches a diffusion-limited steady state. The cells towards the centre then form a quiescent tumour cell population ([Folkman and Hochberg, 1973; Sherar et al., 1987]). Quiescent cells enter into a state of dormancy, whereby their growth is arrested in the non-proliferative phase of the cell cycle ([Zhang et al., 2016]). To counteract this, tumours release tumour angiogenesis factor (a growth factor) that stimulates the creation of new capillaries so as to provide nutrients to the necrotic and hypoxic regions. This process is known as vascularisation. If the nutrient supply to quiescent cells increases then cell proliferation may resume ([Potmesil and Goldfeder, 1980]).

The later stage of a tumour’s life cycle can be the most difficult to treat. At late stages, the inner core of a tumour will be necrotic tissue, surrounded by a shell of quiescent cells, and an outermost layer of live, proliferating cells ([Folkman and Hochberg, 1973; Sherar et al., 1987]). Individual or small groups of cancer cells may then break away from
Figure 2.2: Different shapes seen in cancer experiments and treatments. In (a) is an illustration of the hanging drop tumour spheroid (inspired by image published in Horman et al. (2013)). In (b) is an illustration of the ductal carcinomas in situ (DCIS) growth (Image source: National Cancer Institute (http://www.cancer.gov)). In (c) is an image of invasive tumour branches (first published in Jiao and Torquato (2011)).

the primary tumour and initiate a new tumour in another location called a metastasis (Chaffer and Weinberg, 2011).

Apoptosis and necrosis are the primary modes of cell death. Apoptosis plays an essential role in the homeostasis of multicellular organisms (Kim et al., 2006a). Failure of cells to undergo apoptosis allows cells to grow unchecked, resulting in the initial stages of cancer (Kim et al., 2006a). Apoptosis is a mode of cell death where the cell is an active participant. It can be induced by immune cells, such as killer T cells and natural killer cells. In comparison, necrosis is associated with premature death of cells in living tissue. It can be caused by viral infection or from cells receiving insufficient
nutrients (such as oxygen and glucose). When a cell undergoes necrosis, it swells and then ruptures and the contents leak out.

2.2.3 Specific cancers and their attributes

The treatment strategy and prognosis for a cancer patient will often differ based on the type of initiating cell. Cancer cells have access to different levels of nutrients and space to grow depending on where they are located in the body. This can significantly influence the growth rate of a tumour. In this thesis, treatments for four types of cancer are presented: breast cancer, melanoma, lung cancer and cervical cancer.

2.2.3.1 Breast cancer

Breast cancer results from abnormal growth of cells lining the breast lobules or ducts. There are several different types of breast cancer and in this thesis the MDA-MB435 type is considered. This is because this breast cancer is known to express high levels of the monoclonal antibody Her2/neu+. This monoclonal antibody is found overexpressed on the surface of 20-30% of breast cancer cells (Slamon et al., 1987). Herceptin is a Her2/neu-specific monoclonal antibody that is used regularly in breast cancer treatment as it recognises and binds to Her2 (Kim et al., 2011a) (see Fig. 2.3). In this thesis, an oncolytic virus modified to express Herceptin is examined for its effectiveness on MB435 breast tumours.

2.2.3.2 Melanoma

Melanoma is a type of skin cancer which develops from the pigment-containing cells known as melanocytes. The primary cause of melanoma is over-exposure to ultraviolet light (UV). To measure melanoma growth under treatment, experimentalists often use B16-F10 melanoma tumours, as this cell line grows aggressively and cures have rarely been reported (Choi et al., 2012a).
2.2.3.3 **Lung Cancer**

Lung cancer begins in the lungs and the mutations causing this type of cancer are often linked to smoking \cite{Gibbons2014}. Lewis lung carcinoma (LLC) is the only reproducible syngeneic lung cancer model (i.e. can be grown in mice). As such, experimentalists regularly use LLC cells to predict the effectiveness of treatments on lung cancer.

2.2.3.4 **Cervical cancer**

Cervical cancers grow in lining of the cervix. SK-OV3 cervical cancer cell lines are used in mice to test treatment effectiveness for cervical cancer. These cells form adenocarcinoma, a less common and more difficult to diagnose cervical cancer. Experimentalists use SK-OV3 cells as they express Her2/neu+, a monoclonal antibody which, like MDA435 breast cancers, responds to treatment with Herceptin \cite{Kim2011a}.

2.2.4 **Current treatments**

The most commonly used cancer treatments are chemotherapy, radiotherapy and surgery. Chemotherapy is a type of cancer treatment that uses anti-cancer drugs that target and destroy over-proliferating cells in the body. Radiotherapy uses targeted ionizing radiation to kill malignant cells. Surgery is the process of physically cutting out the cancer, and is sometimes used in conjunction with chemotherapy or radiotherapy. While all these therapies are effective, they do not always result in complete tumour eradication and can be dangerous for the patient.

A phenomenon of current interest to clinicians is tumour dormancy. There is clinical evidence that a tumour mass may disappear for a period of time, or at least become no longer detectable, and then reappear, growing to a lethal size \cite{DePillis2001}. In some cases, this phenomenon is seen experimentally under oncolytic virotherapy, where approximate eradication is achieved, and then tumour regrowth occurs, see \cite{Choi2012a} and \cite{Kim2006a}.
2.3 THE IMMUNE SYSTEM

The immune system is the body’s defence against infectious organisms and cancerous cells. The immune system is made up of a complex network of cells, tissues and organs that work collectively to eradicate invading pathogens and damaged cells. Immunotherapy is a field of oncology that investigates ways to stimulate an immune system that is targeted towards cancer. As viruses naturally instigate an immune response, combined virotherapy and immunotherapy is a promising therapeutic area.

2.3.1 The immune response

The immune system is divided into the innate immune system (the first response) and the adaptive immune system (the second response). There are three primary cells in the innate immune system: macrophages, natural killer (NK) cells and dendritic cells (DCs). Macrophages and DCs form a special subgroup of immune cells called antigen presenting cells (APCs). These cells are a critical part of the immune system as they have class II major histocompatibility complexes (MHCs). Almost every cell has class I MHC and uses it to present antigen. This is essential for the function of killer T cells (CTLs), as they use the class I MHC on cells to determine whether to induce apoptosis in a particular cell. However, only cells with class II MHC molecules (e.g., macrophages and DCs) are able to activate immature helper T cells and immature killer T cells (Sompayrac, 2008; Janeway et al., 2005).

DCs can be activated by macrophages, infected cells or cancerous cells. When a DC encounters a dangerous antigen, it travels to the lymph node to activate immature T cells. At the lymph nodes, it produces interleukin-12 (IL-12) which instructs helper T cells to produce the cytokines: tumour necrosis factor (TNF), interferon (IFN)-γ and interleukin 2 (IL-2) (Sompayrac, 2008; Janeway et al., 2005).

Both TNF and IFN-γ help to keep NK cells activated and IL-2 is a growth factor which stimulates the proliferation of killer T cells, NK cells and helper T cells. NK cells are also activated by signals from macrophages. In return, activated NK cells release
cytokines that promote macrophage activation. The primary function of NK cells is to kill tumour and virus-infected cells by forcing them to undergo apoptosis (Sompayrac 2008, Janeway et al. 2005).

Immature helper T cells are activated by DCs expressing their cognate antigen. This takes between four and ten hours. Once activated, the helper T cell proliferates (Sompayrac 2008). To activate an immature killer T cell, also known as cytotoxic T lymphocyte (CTL), an activated DC presents the CTL with the dangerous antigen (Sompayrac 2008). The activated killer T cell (or CTL) then goes on to kill cells which are presenting this antigen. Also helper T cells are suppliers of interleukin-2 (IL-2) which is required for killer T cells to proliferate (Sompayrac 2008).

2.3.2 The immune response and cancer

Cancer cells are known to suppress the immune system by the induction of anergy or tolerance in the host (Janeway et al. 2005). There are, however, ways to overcome this suppression with administration of immature DCs or immunostimulatory cytokines. Intratumoural administration of DCs increases the probability of tumour antigen recognition and subsequent activation of helper T cells and killer T cells. Administration of immunostimulatory cytokines, such as IL-12 or granulocyte-macrophage colony-stimulating factor (GM-CSF), has been shown to provoke the antitumour immune response by instigating the proliferation and activation of local immune cells (Choi et al. 2012).

2.3.2.1 Effects of interleukin IL-12

IL-12 is an interleukin naturally produced by DCs and macrophages in response to antigen stimulation. It promotes the immunity of helper T cells and activation of CTLs (Choi et al. 2012a). In the presence of IL-12, helper T cells are stimulated to produce TNF, IFN-γ and IL-2, which in turn stimulates the proliferation of CTLs (Janeway et al. 2005). IL-12, accompanied with TNF, stimulates NK cells to produce IFN-γ which is protein that activates macrophages.
2.3.2.2 Effects of GM-CSF

GM-CSF is a molecule that functions like a cytokine. It is secreted by macrophages, T cells and natural killer cells. GM-CSF stimulates stem cells to produce monocyte (a type of white blood cell) that exit the circulation and migrate into tissue, whereupon they mature into macrophages and dendritic cells. Thus, it is part of the immune cascade, by which activation of a small number of macrophages can rapidly lead to an increase in their numbers. GM-CSF also enhances the processing and presentation of antigen on APCs (Heystek and Kalthoff, 2000). Studies by Choi et al. (2012) found that GM-CSF expressed in the tumour tissue strongly recruited APCs to the tumour site.

2.3.3 The immune response and viruses

Human immune systems have a very powerful and effective way of eliminating viruses. Macrophages and DCs are activated by virus-infected cells through the presentation of virus antigen. Additionally, virus-infected cells undergo lysis, the process by which the membrane of a cell breaks down, compromising its integrity. Cytokines and antigens released during lysis then activate DCs and macrophages (Janeway et al., 2005). These activated cells then stimulate helper T cells and killer T cells to the presence of the virus. Helper T cells also secrete specific cytokines for a virus invasion (specifically type Th1), that provide continual stimulation of killer T cells.

2.4 Oncolytic virotherapy

Oncolytic viruses are genetically engineered viruses that selectively infect and lyse cancerous cells without causing harm to normal cells (Russell and Peng, 2007). For some time now, viruses have been investigated as a treatment for cancer. The antitumour potency of viruses comes from their inherent ability to induce lysis in infected cells (Kumberger et al., 2016). Additional interest in oncolytic virotherapy arises from the ability to deliver anti-cancer drugs or immunostimulatory cytokines to the tumour site using viruses (Lawler et al., 2017; Myers et al., 2007). This allows for high dose and
localised long-term expression of a drug to be achieved efficiently \cite{Kim2006a}. It reduces the risk of ineffective dosing and nonspecific toxicity (damage of nearby healthy cells) \cite{Kim2006a}. In this form, viruses are known as therapeutic vectors. Viruses can also be engineered to fuse infected cells with neighbouring cells, forming syncytia (multinucleated cells) that ultimately die \cite{Bajzer2008}.

2.4.1 Adenovirus

Adenoviruses are non-enveloped viruses with an icosahedral capsid that contains a double stranded linear DNA \cite{Alemany2014}. The adenovirus is a commonly investigated virus that is showing increasing oncolytic potential. Adenoviruses are known to deliver transgenes most effectively and has widely been used in clinical applications \cite{Kim2006a}. Additionally, adenoviruses can bind to a specific carbohydrate over-expressed on certain types of cancer cells. Genetic modifications of adenoviruses aim to improve the ability of the virus particles to selectively infect, replicate and lyse cancer cells.

2.4.2 Replication cycle

The fundamental function of viruses is to infect and replicate within cells. While the replication of every oncolytic virus differs slightly, they follow essentially the same cycle. Once inside a cell, viruses undergo the molecular processes of transport, disassembly, integration, transcription, translation, assembly and, finally, export \cite{Kumberger2016}, see Fig. 2.3. The adenovirus enters the cell via receptor-mediated endocytosis \cite{Wagner1999}, whereby the genome is maintained inside the virus particle in a highly condensed form. Once inside the cell, the adenovirus exploits active transport by the host cell to get from the cell periphery to the nucleus, \cite{Kumberger2016}. As it is being transported through the cell cytoplasm, the virus is unpacked and the DNA is released from inside the capsid.
Figure 2.3: The replication process of an oncolytic adenovirus. Viruses can either enter the cell by receptor mediated endocytosis or, if they have been modified to express Herceptin, they will bind to the Her2/neu receptors on the cell membrane and enter that way. The virus is unpacked in the cytoplasm and the DNA is released and enters the nucleus. The DNA then undergoes strand-displacement replication where only one strand is replicated at a time. This synthesis releases a single stranded DNA, which is in turn copied into double strand DNA. These new double stranded DNA then exit the nucleus and are repacked in the cytoplasm before leaving the cell through lysis. If the virus has been genetically engineered to express secretable trimeric TRAIL, then as the virus replication new TRAIL molecules will be released from the nucleus and exit the cell.

Once inside the nucleus, the adenovirus’ DNA stimulates the infected cell to transcribe and replicate its genes [Liu et al. 2003, Wagner et al. 1999]. The infected cell’s transcription machinery cleaves the DNA in a strand displacement mechanism. This is the process by which an initial strand of the DNA is removed and simultaneously copied. Then the single strand that was removed is reprocessed into a double stranded DNA [Hoeben and Uil 2013, Wagner et al. 1999]. The progeny DNA is subsequently packaged into virus particles. After a certain number of virus particles have been gen-
erated, the cell reaches a maximal capacity and bursts open, undergoing lysis and consequently dying. All the new virus particles are then released from the cell.

2.4.3 The function of the E1B genes in adenoviruses

Gene-attenuated adenoviruses are emerging as a promising new modality for cancer treatment. Gene-attenuation is the process by which particular genes of the virus are deleted or removed (Kim et al., 2002). With the motivation of improving adenoviruses for cancer gene therapy, genetic attenuation of the E1B gene in adenoviruses has been investigated for enhanced oncolytic and replication effects. Replication-incompetent adenoviruses can also be created through gene-attenuation. These are viruses which are unable to replicate or lyse a cell, and are primarily used as a drug delivery vector.

The E1B gene encodes two distinct tumour antigens, the 19 kDa and 55 kDa proteins, which are both independently capable of influencing the behaviour of the adenovirus (Kim et al., 2002; Rao et al., 1992). Oncolytic adenoviruses with perturbations on the E1B genes have been tested in a range of human clinical trials on throat cancer, glioma, ovarian cancer, sarcoma, pancreatic cancer and more, see Chiocca et al. (2004); Galanis et al. (2005); Xu et al. (2003); Vasey et al. (2002); Nemunaitis et al. (2001, 2007).

Experimental studies in mice have shown that the E1B 55 kDa protein could be responsible for viral potency and non-selective replication (Kim et al., 2002). The potency of the E1B 55 kDa protein likely derives from a physical association with the p53 tumour suppressor gene (Rao et al., 1992). During the early phase of infection, E1B 55 kDa counteracts stabilisation of p53 and, therefore, the induction of cell apoptosis. Apart from interfering with the p53 function during viral infection, the E1B 55 kDa protein is also required for efficient cytoplasmic accumulation and translation of adenoviral DNA. Lee et al. (2000) showed that E1B 55 kDa-deletion promoted tumour-selective replication, however, with reduced cell killing. This reduced potency is likely due to the loss of efficient cytoplasmic accumulation and translation.

The E1B 19 kDa protein has been shown experimentally to be correlated with the rate of cell lysis. The loss of E1B 19 kDa enhances adenoviral lytic potency. In infected cells, the E1B 19 kDa protein blocks DNA fragmentation (i.e. separation of DNA into
pieces) and premature death of the host cells induced by expression of the E1A proteins (Kim et al., 2002; Rao et al., 1992). Kim et al. (2002) showed experimentally that U343 glioblastoma brain cancer cells infected by an E1B 19 kDa deleted adenovirus exhibited obvious cell lysis by 2 days post infection in vitro. They concluded that deletion of E1B 19 kDa increased the rate of cell death by infection.

2.4.4 Viral movement

Intratumoural virus transport is governed by the molecular structure of the tumour (Wang and Yuan, 2006). At the periphery of a tumour, convection is the dominant mode of transvascular transport of viral vectors. As such, viral vectors preferentially accumulate at the border of tumours (Wang and Yuan, 2006). Extracellular transport once inside a tumour, in the interstitium, is then significantly hindered by the cells and extracellular matrix (Jain, 1988, 1997; Wu et al., 1993; Yuan et al., 1994). The extracellular matrix is a network of macromolecules, such as collagen and enzymes, that provide structural and biochemical support of surrounding cells.

Within the interstitial space, viruses move by diffusion and convection as they cannot move in a self-directed manner (McKerrow and Salter, 2002). Homogeneous diffusion of viral vectors through the extracellular matrix is difficult as the size of these vectors is close to or larger than the space between fibres in the extracellular matrix (Wang and Yuan, 2006). Additionally, viral vectors may bind to cells and extracellular matrix, either with the intent to infect or by accident, which further hinders the interstitial transport (Jain, 1997; Juweid et al., 1992).

2.4.5 Typical treatment application protocol

Treatment application protocols are characterised by their method of administration and the dosage protocol. For the most part, in tumour treatment, therapy is either administered intravenously (injected into the blood) or intratumourally (injected into the tumour). The dosage protocol then defines the magnitude and systemic nature of
the treatment. For the most part, viruses are administered in discrete injections, as this is the easiest and most controllable way to administer treatment. Continuous treatment injections are possible when using materials such as degradable hydrogels (Oh et al., 2017). Treatment loaded gels can be injected adjacent to a tumour and release the treatment as the gel degrades.

2.4.6 Current oncolytic virotherapies and challenges

The success and capability of adenoviruses as a cancer treatment is evident from a range of clinical trials: see for examples Chiocca et al. (2004); Galanis et al. (2005; Nemunaitis et al. (2001, 2007); Vasey et al. (2002); Xu et al. (2003). For example, Chiocca et al. (2004) conducted a dose-escalation trial of injections of an E1B 55 kDa attenuated oncolytic adenovirus as a treatment for malignant glioma. None of the 24 patients treated experienced serious adverse effects; however, only one patient experienced remission. Galanis et al. (2005) undertook a clinical trial of the same virus, but simultaneously administered with a chemotherapy drug called MAP. For one patient, antitumour activity was seen that lasted 11 months after the injection. While their clinical investigations were promising, they also did not achieve complete remission in their patients.

There have been recent advances of other genetically modified cancer-killing viruses, for example herpes simplex virus, measles, reovirus and vesicular stomatitis Virus (Russell et al., 2012). These viruses are currently being tested in clinical trials for a range of cancer types such as glioma, ovarian cancer, sarcoma, pancreatic cancer, prostate cancer and bladder cancer (Prestwich et al., 2008; Russell et al., 2012). However, while research has progressed and is advancing, oncolytic virotherapy is still at an early stage in its development. Challenges for the field are to select viruses that transiently suppress but then unleash the power of the immune system to maximize both virus spread and anticancer immunity. Additionally, more universally effective treatment protocols need to be developed to overcome the barriers imposed by viral clearance and tumour structure (Russell et al., 2012).
Until recently, most studies of oncolytic viruses have focused on the direct antitumour properties of these vectors, (Kim et al. 2007, 2011a; Lun et al. 2005; Martuza et al. 1991; Thorne et al. 2006); however, there is now an increasing body of evidence suggesting that the host immune response may be critical to the efficacy of oncolytic virotherapy, (Choi et al. 2013a, 2012b; Elsedawy and Russell 2013; Huang et al. 2010; Melcher et al. 2011). Oncolytic viruses can also be used as cytokine delivery and generating vectors. On this basis, oncolytic viruses represent a promising novel immunotherapy strategy, which may be further combined with existing therapeutic modalities to create an effective cancer treatment.

2.4.7 Combined virotherapy and immunotherapy

Immunotherapy is a cancer treatment that uses the body’s immune response to target and destroy cancer cells. The focus of immunotherapy is to overcome cancer’s ability to suppress the immune system. Novel anticancer immunostimulatory therapies harnessing pre-existing (ineffective) immune responses have shown remarkable clinical results across several tumour types (Velcheti and Schalper 2016). However, not all patients benefit from these agents, and this is likely due to the heterogeneity in the immune response (Velcheti and Schalper 2016).

Oncolytic virotherapy can be easily integrated with tumour immunotherapies in the hope of improving their efficacy (Bommareddy et al. 2018). Oncolytic viruses are useful in immunotherapy, as they directly lyse tumour cells, leading to the release of soluble antigens and danger signals, which drive the antitumour response (Bommareddy et al. 2018). In addition, some oncolytic viruses can be engineered to express therapeutic genes. An example of a successful combined virotherapy and immunotherapy experiment can be seen in the results of Chard et al. (2015). Using the Vaccinia virus, modified with a gene that can modulate the patient’s immune system, they found that the time for which the treatment was effective was longer than without the modification. The immune protein they inserted was able to reduce the intensity of the immune response against the virus, allowing it to perform its function for a longer period of time.
2.5 EXPERIMENTAL TECHNIQUES AND DATA COLLECTION

In vitro and in vivo experiments are a way of measuring the validity and efficacy of new oncolytic therapies. In vitro experiments are performed on cells or biological molecules outside their normal biological context, whereas, in vivo experiments measure the effects on living organisms. The protocols of the experiments for data that is used in this thesis are outlined below.

2.5.1 Virus titer and plaque assay

To determine the concentration of a particular virus stock, in vitro experiments are performed. In these, aliquots of different dilutions of the stock are prepared, and applied to susceptible cells in mono-layers. The cells are incubated for a period and then covered with a nutrient rich gel. During the incubation period the infected cells release the replicated viruses (progeny). These new viruses are restricted in movement by the gel, resulting in each infectious particle producing a circular zone of infected cells, called plaque.

The plaques are counted for each dilution case, focused on those cases with between 10 and 100 plaques. By assuming that each plaque formed is representative of one infective virus particle, the titre (a measure of the concentration) of the applied solution can be determined. This is most accurate if there are very few plaques, with those with 100 plaques determining the original stock concentration to within approximately ±10%. The titre is determined as

\[\text{[titre]} = \frac{\text{pfu/mL}}{} \]
\[\text{pfu/mL} = \frac{\# \text{plaques}}{Vd} \]

where pfu is the plaque forming units, d is the dilution and V is the volume. PFU/mL represents the number of infective particles within the sample unit volume \(\text{[Baer and Kehn-Hall 2014]} \).
2.5 Experimental Techniques and Data Collection

2.5.2 Cell viability (%)

Cell viability is the quantification of the number of live cells at a point in time usually in an *in vitro* experiment. It is expressed as a percentage of the total cell population, measured as the sum of both live and dead cells.

2.5.3 Tumour growth measurements

Changes in tumour volume are used for therapy response monitoring in *in vivo* experimental studies. Experimentalists can measure tumour growth in non-invasive ways using image technologies such as MRI or x-rays, however, these are costly. Although less accurate, many experiments on mice or rats use calipers to measure the size of the tumour through the skin of the animal. This technique is convenient, cost-effective and non-invasive ([Lee et al., 2015](#)). Assuming an elliptical spheroid shape for a tumour, the volume can be estimated from the measurements of tumour length and width using $0.523 \times \text{length} \times \text{width}^2$.

2.5.4 Polymerase chain reaction (PCR) of viral genomes

Polymerase chain reaction (PCR) is a technique primarily used to measure the amount of a specific DNA in a sample. Real-time PCR is an assay that monitors the accumulation of a DNA product from a PCR reaction in real time. Experimentalists use real-time PCR to monitor the amount of viral genome in the blood stream of mice. This is done by collecting whole blood from the retro-orbital plexus and conducting quantitative real-time PCR of the sample. Similarly, to assess the distribution of virus within the mouse after injection, organs are harvested and the number of viral genomes in each sample is assessed by real-time quantitative PCR.
To investigate the release profile of dendritic cells from a gel by enzymatic degradation, the supernatant is obtained and viable dendritic cells are counted by trypan blue staining. Trypan blue is a dye that is cell membrane impermeable and therefore only enters cells with compromised membranes. Upon entry into the cell, trypan blue binds to intracellular proteins rendering the cell a blue colour and allowing for direct identification and enumeration of live and dead cells in a given population.
MATHEMATICAL BACKGROUND
The mathematical work in this thesis can be divided into four areas: (1) deterministic and distributed-parameter models, (2) agent-based models, (3) techniques for model optimisation and (4) model analysis. This chapter summarises the literature in following sections:

1. **Deterministic and distributed-parameter models** - Section 3.2 provides examples of relevant mean-field models and distributed-parameter models for cancer growth, oncolytic virotherapy, and combined oncolytic virotherapy and immunotherapy.

2. **Agent-based models** - Section 3.3 presents published cellular automata and off-lattice agent-based models used in cancer therapy.

3. **Model optimisation** - Section 3.4 provides an overview of the numerical implementation of the fitting algorithm used to analyse oncolytic virotherapy data and the goodness of fit statistical calculations.

4. **Model analysis** - Section 3.5 summarises the Routh-Hurwitz stability criterion, and the theory behind the parameter sensitivity analysis.

The motivation behind the modelling techniques for cancer growth and oncolytic virotherapy is given in Section 3.1
systems where interactions between well-mixed populations can be taken as an average rate, for example, when the rate at which cancer cells proliferate can be taken as an average rate across the entire population. The two most common deterministic frameworks in cancer research are ordinary differential equations (ODEs) and partial differential equations (PDEs).

ODEs are used when the biological interaction considered depends primarily on a single variable, time. In this way, tumour geometry or viral movement are considered insignificant. However, if the spatial aspect of cancer treatment modelling is important, PDEs are able to account for this. In addition, age-structured PDEs have been shown to be very useful in modelling cancer growth by accounting for the time a cell spends in the cell cycle (Crivelli et al., 2012).

If the heterogeneity in a biological system is important, distributed (random)-parameter models or agent-based models can be useful. In this thesis, distributed-parameter models are those that have one or more parameters drawn from a random distribution. These are useful in oncolytic virotherapy as viral infection and replication rates can be heterogeneous across a population of cells and viruses (Miyashita et al., 2015). ABMs can also be useful in virotherapy, as they allow for the interactions of a population of cells and viruses to be modelled individually.

A collection of models that represent a scaffold for this thesis are detailed below. There are many other deterministic and stochastic models that have been used in cancer therapies, but they will not be reviewed here.

3.2 Deterministic Models

3.2.1 Models for cancer

ODE models can be used to describe a growing population of tumour cells. These models are well-mixed and predominantly do not include any geometric effects. Exponential growth is one of the simplest cancer ODE models, Eq. (3A), and is useful for describing tumour growth in its initial stages (Laird, 1964). Another formulation of tumour growth is the logistic model, Eq. (3B). This model is used when considering
tumour growth over a longer time as it allows the population to reach a carrying capacity. The Gompertzian tumour growth model, Eq. (3C), captures a similar dynamic, albeit with the addition of a ln term. See the formulations of these models below:

\[
\frac{dU}{dt} = rU, \quad (3A) \quad \frac{dU}{dt} = rU \left(1 - \frac{U}{L}\right), \quad (3B) \quad \frac{dU}{dt} = rU \log \left(\frac{L}{U}\right), \quad (3C)
\]

where \(U\) is the tumour population, \(r\) is the growth rate, \(L\) is the carrying capacity, and \(t\) is time.

Both logistic and Gompertz functions model qualitatively similar tumour growth rates and are known to accurately reproduce experimentally observed proliferating tumours (Laird, 1964; Dingli et al., 2009; de Pillis et al., 2005). The primary difference between the two is that the Gompertz function will have a more rapid growth at smaller values of the dependent variable, which is time in Eq. (3B). This initial growth is what makes the Gompertz function a good approximation for tumour growth, as tumours are known to grow rapidly early on.

There are many mathematical models that consider tumour growth as a more complicated dynamical process, where spatial interactions, multiple cell types and cytokines are considered, see for examples (Adam, 1986; Anderson et al., 2000; Byrne et al., 2003; Chaplain et al., 2006; Delgado-SanMartin et al., 2015). In this thesis, the emphasis is placed more heavily on the modelling of the interaction between tumour cells and treatment, and as such, this level of cancer modelling is beyond the scope of the research.

3.2.2 Models of viral dynamics

Mean-field models can be used to add insight into the dynamics of viral-based therapies or the treatment of viral-based diseases. In these models, the viral infection and replication processes are modelled as average rates across the population. When modelling the interaction between uninfected cells, \(U\), and virus particles, \(V\), the populations are considered well-mixed and spatial dynamics are neglected.
Human Immunodeficiency Virus (HIV) causes the development of AIDS (Acquired Immune Deficiency Syndrome, or Acquired Immunodeficiency Syndrome). HIV targets cells that carry the CD4 cell-surface protein, and the major target of HIV is the helper T cell (Perelson and Nelson, 1999). After becoming infected, helper T cells produce new HIV particles. This is similar to what occurs after a tumour cell is infected by an oncolytic virus (see Section 2.4.2). Perelson and Nelson (1999) developed a system of mass-action equations to model the important features of HIV pathogenesis:

\[
\begin{align*}
\frac{dU}{dt} &= s + rU \left(1 - \frac{U}{L}\right) - d_T U - \beta UV, \\
\frac{dI}{dt} &= \beta UV - d_I I, \\
\frac{dV}{dt} &= \alpha d_I I - d_V V.
\end{align*}
\]

where \(U\) is the population of uninfected helper T cells, \(I\) is the population of infected cells, \(s\) is the rate at which new uninfected cells are created from sources within the body, \(d_T\) is the death of T cells cells, \(\beta\) is the infection rate, \(d_I\) is the rate of cell lysis, \(\alpha\) is the number of new cells created through lysis and \(d_V\) is the decay rate of the virus.

The proliferation of uninfected T cells is modelled using the logistic function, Eq. (3B). Perelson and Nelson (1999) used their system to help guide future treatment strategies of HIV.

While HIV and oncolytic viruses are different, they both undergo infection and replication in a similar manner. As such, there is a large cross-over between mean-field models in oncolytic virotherapy and HIV. There are many other mean-field models of HIV (e.g. (Li and Shuai, 2010; Bonhoeffer et al., 1997)) that share similar features to the models for oncolytic virotherapy detailed in the following section.

3.2.3 Models for oncolytic virotherapy

Mathematical models have been used to describe the interaction between an oncolytic virus and a tumour, either on a theoretical basis or applied to data. Predominantly, these models are ODE systems (similar to Eqs. (3.1)-(3.3)) where the interactions
between cancer cells and virus particles are assumed to occur at average rates across the population.

Komarova and Wodarz (2010) developed a simple base model for virotherapy:

\[
\frac{dU}{dt} = Uf(U, I) - \beta Ig(U, I), \tag{3.4}
\]

\[
\frac{dI}{dt} = \beta Uf(U, I) - dI, \tag{3.5}
\]

where \(f(U, I) \) governs the cancer growth and death processes and \(g(U, I) \) is the rate of infection. In this model, the viral population and its corresponding dynamics are assumed to be constant and not modelled explicitly. Komarova and Wodarz (2010) analysed this general system and found that if the viral spread (i.e. \(g(U, I) \)) was sufficiently fast, the tumour could be eliminated.

An example of a more complex model for oncolytic virotherapy can be seen in the work by Wodarz (2003). Wodarz (2003) studied the conditions under which virotherapy could lead to tumour remission for a non-replicating versus replicating virus. Wodarz (2003) found that for replication-competent viruses, the efficacy was optimal when the rate of virus-induced cell killing was kept small. In contrast, for replication incompetent viruses the optimal antitumour effectiveness occurred when rate of virus-induced cell killing was maximised.

One of the first models that explicitly accounted for the viral population was developed by Bajzer et al. (2008). Conducting a bifurcation analysis of their system, these authors discovered stable oscillations in the tumour population emerging from a Hopf bifurcation. While the concept of an oscillating tumour may seem unusual, such behaviour has been observed experimentally (Titze et al., 2017).

Titze et al. (2017) developed a model, analogous to Bajzer et al. (2008)'s, for treatment of glioblastoma growth with an oncolytic adenovirus:

\[
\frac{dU}{dt} = rU - dU - \beta UV, \tag{3.6}
\]

\[
\frac{dI}{dt} = \beta UV - \delta(V)I, \tag{3.7}
\]

\[
\frac{dV}{dt} = pI - dV, \tag{3.8}
\]
3.2 Deterministic Models

where \(p \) is the release rate for new virions and \(\delta \) is the infected cell death function. Matching their model to data, Titze et al. (2017) found that the treatment was predicted to give long-term tumour recurrence, similar to the original oscillating tumour behaviour suggested by Bajzer et al. (2008).

Some extensions to the basic oncolytic virotherapy models above can be seen in the works by Dingli et al. (2006, 2009); Novozhilov et al. (2006); Karev et al. (2006). Dingli et al. (2009) developed a system of ODEs that modelled the process of syncytium (virus-infected cells fusing together):

\[
\begin{align*}
\frac{dU}{dt} &= rU \ln \left(\frac{L}{U + I + s} \right) - \beta UV - \rho UI, \\
\frac{dI}{dt} &= \beta UV - dI + \lambda \rho UI, \\
\frac{dV}{dt} &= \alpha (I + s) - \omega V - \beta UV, \\
\frac{ds}{dt} &= (1 - \lambda) \rho UI - dVs,
\end{align*}
\]

where \(s \) is the number of syncytia, \(\rho \) is the rate at which additional syncytia are created and \(1 - \lambda \) is probability of syncytia fusing. Dingli et al. (2009) found that tumour eradication could only occur if the population of uninfected cells decayed faster than the cells incorporated in syncytia. By analysing their framework through a bifurcation and stability analysis, they discovered stable oscillations in the tumour cell population emerging from a Hopf bifurcation. Note that in this model, a variation of the Gompertz function (Eq. (3C)) model was used to model tumour growth.

As illustrated in the results of Bajzer et al. (2008) and Dingli et al. (2009), bifurcation analysis can be fundamental in finding conditions for successful oncolytic virotherapy. Novozhilov et al. (2006) showed using a bifurcation analysis that there is a region of the parameter space where trajectories form a family of homoclinics to the origin. A homoclinic orbit is a trajectory which joins a saddle equilibrium point to itself and yields an orbit of infinite duration. This finding was reinforced again by Berezovskaya et al. (2007), who showed how certain models possess a dynamical regime of deterministic extinction through the presence of homoclinics. From the biological point of view, the
existence of homoclinic orbits suggests that tumour cells can be eliminated with time and complete recovery is possible.

3.2.4 Models for the immune response to cancer

For many years, researchers have turned to mathematical modelling as a way of understanding the complex interactions of immune cells in the tumour microenvironment. One of the first mathematical models of immunotherapy was a system of ODEs developed by De Boer et al. (1985) to model the activation of macrophages and subsequent antitumour immune response. Their model formed the basis for the development of many other models of the tumour-immune interaction, such as the model developed by de Pillis et al. (2005) to describe the role of natural killer (NK) cells, N, and killer T cells, K, in tumour surveillance:

\[
\frac{dU}{dt} = rU \left(1 - \frac{U}{K} \right) - cNU - D, \quad (3.13)
\]

\[
\frac{dN}{dt} = \sigma - fN + \frac{gU^2}{h + U^2}N - pNU, \quad (3.14)
\]

\[
\frac{dK}{dt} = -mK + \frac{jD^2}{k + D^2}K - qKU + rNU, \quad (3.15)
\]

where

\[
D = d \frac{(K/U)^\lambda}{s + (K/U)^\lambda}, \quad (3.16)
\]

where the tumour growth was modelled logistically (Eq. (3B)), and both NKs and killer T cells were able to kill tumour cells. Using a parameter sensitivity analysis, de Pillis et al. (2005) suggested that the model can predict which patients may positively respond to treatment. Computer simulations of their model also highlighted the importance of killer T cell activation in cancer therapy.

Additionally, there has been recent work on developing models that consider the immune response to combined immunotherapy and virotherapy, such as the work of
Wares et al. (2015) and Kim et al. (2015). The work of Kim et al. (2015) looked at the effect of an oncolytic virus expressing 4-1BBL and IL-12 on the immune response:

\[
\frac{dU}{dt} = rU - \beta \frac{UV}{N} - k(I) \frac{UT}{N},
\]

(3.17)

\[
\frac{dI}{dt} = \beta \frac{UV}{N} - d_I I - k(I) \frac{IT}{N},
\]

(3.18)

\[
\frac{dV}{dt} = u_V(t) + \alpha d_I I - d_V V,
\]

(3.19)

\[
\frac{dT}{dt} = s_T(I) + pA - d_T T,
\]

(3.20)

\[
\frac{dA}{dt} = s_A(I) - d_A A,
\]

(3.21)

where \(T\) is the number of T cells at the tumour site, \(A\) is the number of APCS at the tumour site, \(N\) is the number of cells, \(u_V(t)\) is the rate at which new virus particles are injected into the system, \(s_T(I)\) is the activation rate of T cells by infected cells, \(p\) is the activation rate of T cells by APCs, and T cells and APCs die at rates \(d_A\) and \(d_T\).

Conducting a parameter sensitivity analysis of their model, Kim et al. (2015) found that combinations of specialist viruses that express either IL-12 or 4-1BBL might initially act more potently against tumours than a virus that expresses both.

A major difference between the model of Kim et al. (2015) and de Pillis et al. (2005) was the use of frequency-dependent infection terms, \(\beta \frac{UV}{N}\), in place of mass action, \(\beta UV\). Frequency-dependent terms are common in epidemic modelling as they allow for interactions to occur at a rate dependent on the frequency of the constituents as opposed to the total number. The primary difference between these two modelling terms is that mass action assumes that the infection rate increases with either an increase in the pathogens or host. Whereas, the frequency-dependent infection rate assumes that the infection rate increases with the prevalence (frequency) of infection.

Wares et al. (2015) then extended the model of Kim et al. (2015) in Eqs. (3.17)-(3.21) to include discrete DC injections and subsequent interactions. Through perturbing the dosage strategy, Wares et al. (2015) found that it is more effective to treat a tumour with immunostimulatory oncolytic viruses first followed by a sequence of DCs than to alternate virus and DC injections. While insightful, there is still a considerable amount of development needed for these models. For example the effects of the helper T cell
were not modelled explicitly by [Kim et al. (2015)] and the immature and active states of the DCs were not considered by [Wares et al. (2015)].

3.2.5 Models with distributed (random) parameters or delays

Time delays are intrinsic to the viral infection and replication processes. Most mathematical models of viral dynamics account for the intracellular delay between viral infection and the appearance of new viral progeny using a constant delay parameter, see [Herz et al. (1996); Nelson et al. (2000); Nelson and Perelson (2002); Pawelek et al. (2012); Wang et al. (2009); Zhu and Zou (2008)]. For example, [Herz et al. (1996)] developed the below model to account for the intracellular phase of the hepatitis B viral life cycle:

\[
\frac{dU}{dt} = \lambda - dU - \beta UV, \tag{3.22}
\]

\[
\frac{dI}{dt} = \beta(t-\tau)U(t-\tau)V(t-\tau)e^{-\bar{a}\tau} - aI(t), \tag{3.23}
\]

\[
\frac{dV}{dt} = kI - uV, \tag{3.24}
\]

where \(\lambda\) is the influx of cells, \(d\) is the death rate, \(\tau\) is the delay in viral production, \(\bar{a}\) is the death rate for infected cells that have not started producing virus, \(a\) is the death rate of virus-producing infected cells, \(k\) is the rate of virus production and \(u\) is the rate that free virus particles are cleared. [Herz et al. (1996)] incorporated a constant delay into the equivalent mass-action and frequency-dependent infection terms (seen in the models above). Using their model, [Herz et al. (1996)] illustrated that frequent early sampling of plasma virus would provide more reliable estimates of the hepatitis B virus free virus half-life.

While constant delays are an elegant way to account for the delay in viral production, they remove the possibility of heterogeneity within the cellular population. Viral infection, replication and evolution can be stochastic events dependent on the behaviour of viral genome molecules in each cell [Miyashita et al. (2015)]. Distributed delays can be used effectively to model both the delay in viral replication and the heterogeneous nature of a population of viruses and cells, see for example [Banks et al. (2003); Culshaw]
One of the first mathematical models to use distributed delays to model viral replication was introduced by [Mittler et al. (1998)] for HIV-1 (a type of HIV). To model the dynamics of the virus, [Mittler et al. (1998)] introduced a time delay between initial infection and the formation of productively infected cells, assuming that the variation among cells with respect to this intracellular delay could be approximated by a gamma distribution:

\[
\frac{dI}{dt} = \int_0^\infty kUf(t')V_I(t - t')e^{-mt'}dt' - \delta I(t),
\]

(3.25)

\[
\frac{dV_I}{dt} = [1 - H(t)][1 - \eta]pI(t) - cV_I(t),
\]

(3.26)

\[
\frac{dV_{NI}}{dt} = H(t)\eta pI(t) - cV_{NI}(t),
\]

(3.27)

where \(V_I\) and \(V_{NI}\) are the populations of infectious and non-infectious viruses, \(k\) is the infection rate constant, \(U\) is the constant density of uninfected target cells, \(f\) is the probability distribution for the delay \(t'\), \(t'\) is delay from infection to the time infected cells begin producing virus, \(e^{-mt}\) accounts for the loss of infected cells between the time of initial infection and the release of the first virus particles, \(\delta\) is the rate of productively infected cell death, \(h\) is the Heaviside function, \(\eta\) is the drug efficacy, \(p\) is the rate at which productively infected cells release, and \(c\) is the clearance rate of plasma virus particles. Using their model, [Mittler et al. (1998)] demonstrated that it is possible to incorporate distributed delays into existing models for HIV dynamics and from these estimate the half-life of free virus from data.

Following on from the work of [Mittler et al. (1998)], many mathematical modellers introduced distributed delays to account for the intracellular viral delay, see for example [Culshaw et al. (2003); Nakata (2011); Shu et al. (2013); Yuan and Zou (2013)]. However, distributed-delay models have not been employed in oncolytic virus modelling. Additionally, none of the previous work has considered the effects of stochasticity in the length of time viruses spend replicating [Miyashita et al. (2015)].
3.3 Agent-based models

Agent-based models are a class of computational models for simulating the actions and interactions of a population of programmed agents within a controlled environment. Cell-based computational models are a subset of agent-based models that simulate individual cells as they interact in tissue (Metzcar et al., 2019). Generally speaking, agent-based models used in cancer research are split into two classes: lattice-based (cellular automata) and off-lattice models, see Fig. 3.1.

![Figure 3.1: An illustration for lattice-based (cellular automata) models and off-lattice models.](image)

3.3.1 Cellular automaton

In cellular automata (CA) or lattice-based models, each lattice site in a structured mesh can hold a single cell (Metzcar et al., 2019). At each time step, each cell is updated with discrete lattice-based rules: remain, move to a neighbouring lattice site, die (vacating the current lattice site), or divide to place a daughter cell in a nearby site (see Fig. 3.1). Cellular automata allow individual population interactions to be modelled explicitly and probabilistically. In this way, heterogeneity and variability in biology can be captured and simulated.
A common mesh, or tessellation, used in cellular automata is the Voronoi tessellation. This is regularly used by researchers to model tumour cell sheets, \cite{Lobo2014, Kansal2000a, Schaller2005}. A Voronoi tessellation is a partitioning of a space into regions based on where the lines of the tessellation are the points equidistant to centre points in the space. The hexagonal lattice in Fig. 3.1 is an example of a Voronoi tessellation. The first use of the Voronoi tessellation to study the dynamics of tumour growth in a cellular automaton was undertaken by \cite{Kansal2000a}. Since then, researchers have used Voronoi tessellations successfully in tumour histopathological image analysis \cite{Kiss1995, Haroske1996}.

Recently, cellular automata have been derived to explain oncolytic virotherapy in a more realistic setting. \cite{Wodarz2012} developed a lattice-based stochastic computational model to understand the principles underlying virus spread in spatially structured target cell populations. Their model used a two-dimensional grid where each spot was either occupied by a cell or empty. They defined a set of rules that determined the interaction between viruses and tumour cells and predicted which pattern of virus growth (hollow ring, filled ring or dispersive) would occur based on different parameter values. They showed that long-term only hollow ring structured viral patterns resulted in treatment success.

A hybrid PDE-CA approach can also be useful in oncolytic virotherapy modelling. \cite{Paiva2009} used partial differential equations and cellular automata rules to describe the multiscale dynamics of tumour growth. Reaction-diffusion equations were defined for the tissue dynamics of nutrients and viruses. In these equations, cells acted as sinks and sources of nutrients and viruses depending on their internal states. On top of this, the cell dynamics were modelled using a stochastic process controlled by the local concentration of nutrients and free virus at the tissue level. \cite{Paiva2009} found that successful virotherapy requires a strong inhibition of the host immune response and high virus mobility.

A more detailed summary on cellular automaton models of tumour development can be found in the reviews by \cite{Moreira2002} and \cite{Boondirek2010}. For more examples of cellular automata in oncolytic virotherapy and immunotherapy, see the work of \cite{Alarcón2003, Jiao2011, Frascoli2016};
Ghaffarizadeh et al. (2018); Kim and Lee (2012); Dormann and Deutsch (2002); Powathil et al. (2013); Mallet and De Pillis (2006). The disadvantage of lattice-based modelling is that cell movement is restricted to a pre-defined grid, and over time, this can restrict the formation of spatial heterogeneity. Using an underlying off-lattice model reduces grid-based artefacts that can occur when using a fixed lattice model (Ghaffarizadeh et al. 2018), producing a more realistic representation of the biological system.

3.3.2 Off-lattice agent-based modelling

Off-lattice agent-based models can be used effectively to simulate mechanical and physiological phenomena in cells and tissues (Van Liedekerke et al. 2015). In off-lattice agent-based models, interactions between cells are usually described by forces or potentials, and position changes in cells can be obtained by solving an equation of motion (Metzcar et al. 2019; Van Liedekerke et al. 2015). A range of frameworks have been developed to model cellular interactions as centre-based models (Frascoli et al. 2013; Ghaffarizadeh et al. 2018) or boundary-based models (Meineke et al. 2001). The general difference between the two styles of off-lattice models, is that boundaries of cells play a role in boundary-based models, see Fig. 3.1.

PhysiCell is an example of a centre-based off-lattice agent-based model (Ghaffarizadeh et al. 2018). It is an open source physics-based multicellular simulator with a robust, scalable C++ code for simulating large systems of cells. It allows for biologically realistic modelling of cell cycling, apoptosis, necrosis and cell volume changes. PhysiCell is an example of a hybrid PDE-ABM model, but unlike the work of Paiva et al. (2009), PhysiCell combines a PDE framework for substrate diffusion with an off-lattice cell-based model.

Similar to the majority of off-lattice ABMs, PhysiCell models the cell-cell adhesive, cell-cell “repulsive” forces, drag forces and locomotive forces of a cell \(i \) using

\[
m_i \frac{dv_i}{dt} = \sum_{j \in N(i)} (F_{cc \text{a}}^{ij} + F_{cc \text{r}}^{ij}) + F_{\text{drag}}^{i} + F_{\text{loc}}^{i},
\]

(3.28)
where F_{cca} and F_{ccr} are cell-cell adhesive and “repulsive” forces, F_{drag} collects dissipative, drag-like forces, and F_{loc} is the locomotive forces. This equation is used to calculate the cell’s velocity v_i given a mass m_i. The explicit formulations for the force terms $F_{\text{cca}}, F_{\text{ccr}}, F_{\text{drag}}$ and F_{loc} can differ between off-lattice models, depending on the model’s assumptions.

Frascoli et al. (2013) developed their own computational framework for the migration of groups of cells in three dimensions. The model focused on the forces acting at the microscopic scale and the interactions between cells and the extracellular matrix (ECM). They developed equations of motion and velocity functions by calculating the total cell-cell and cell-ECM interactions, similar to that of Eq. (3.28). Frascoli et al. (2013) modelled cell-cell forces by assuming that cells had a compactable outer ring with a solid core.

Building on these frameworks, off-lattice ABMs have been used effectively in modelling tumour elimination by the killer-T-cell response. Kim and Lee (2012) formulated a hybrid PDE-ABM model of the dynamics of an anti-cancer killer-T-cell response in the vicinity of a developing tumour. Their work demonstrated the importance of tumour geometry in determining killer-T-cell effectiveness and the likelihood of eliminating the tumour.

A boundary-based off-lattice ABM was developed by Meineke et al. (2001) to model cell movement and arrangement in the intestinal crypt using a Voronoi tessellation. Unlike a Voronoi tessellation in a cellular automaton, the Voronoi tessellation in Meineke et al. (2001)’s model changed at every time step based on the interaction forces felt by a cell, given by a similar formulation to Eq. (3.28). The advantage of this style of modelling is that cells do not have to retain a fixed circular shape as is evident by the illustration in Fig. 3.1.

The different off-lattice ABM approaches mentioned above would be useful for modelling oncolytic virus dynamics; however, up until now, these models have yet to be applied in oncolytic virotherapy.
3.4 Model optimisation

3.4.1 Simultaneous and hierarchical fitting

Simultaneous and hierarchical parameter optimisation (or fitting) methods are useful ways of obtaining parameters that match a system of ODEs to data. For the hierarchical optimisation technique, the different dominant processes in a model that relate to each data set are first determined and the parameters relating to those processes are fit individually. For the simultaneously fitting algorithm, multiple parameters are fit to multiple data sets simultaneously and the full collection of data is used to optimise each parameter in the model. There are examples of hierarchical optimisations in the work by Kim et al. (2015) (Eqs. (3.17)-(3.21)), where they used the algorithm to optimise a set of tumour time-series measurements under treatment with an oncolytic virus expressing variations of 4-1BB and IL-12. One of the earliest illustrations of the simultaneous optimisation algorithm, can be seen in Brewer et al. (2014)’s work on modelling the trafficking kinetics of insulin-regulated glucose transporter Glut4. Gray and Coster (2016) also employed the simultaneous fitting algorithm in their work on modelling Akt, a key mediator of glucose transport in response to insulin.

3.4.2 Numerical implementation

A least-squares fitting method can be used to optimise model parameter values to data. This is a common technique used to optimise parameters in many different ODE systems, see the work by de Pillis et al. (2005) and Kronik et al. (2008). The least-squares fitting method determines an optimal value for the model parameters p to approximate data $d(t)$. The vertical distance between a data point and a model’s approximation to that point $y(t, p)$ is known as the residual, i.e. $d(t_i) - y(t_i, p)$. The least-squares fitting algorithm looks to minimise the L-2 norm of the residual of data to the model evaluated...
for a particular set of parameters, where \(t = [t_1, t_2, ..., t_n] \) is the discrete time points measured for the data, i.e.

\[
\min_x \|y(t, p) - d(t)\|_2^2 = \min_x \left(\sum_{i=1}^{n} (y(t_i, p) - d(t_i))^2 \right).
\]

An extension on the least-squares formulation above is weighted least squares. This is a method used when the response data might not be of equal quality and, therefore, does not have constant variance. If this is the case, the fit might be unduly influenced by data of lesser quality. To account for this, a weighted-least squares formulation can be used. This is where an additional scale factor, the weight, is included in the fitting process, i.e.

\[
\min_x \|w(t)(y(t, p) - d(t))\|_2^2,
\]

where \(w(t) \) is the weights. These weights are determined by how much each data point should influence the final parameter estimates.

In this thesis, the least-squares nonlinear fitting algorithm in Matlab (R2018b, Mathworks 2018) called *lsqnonlin* was used. The maximum number of function evaluations was \(100 \times N \), where \(N \) is the number of parameters, and the maximum number of iterations for each fit was 400. If the value of the objective function crossed \(1 \times 10^{-6} \), the iterations stopped. Each mathematical model was numerically solved using a combination of the inbuilt ODE solver *ode45* or the integral solver *integral2*.

3.4.3 Goodness of fit statistics

Goodness of fit statistics are used regularly to confirm that an optimisation of parameter values in a model to data has produced a reliable representation. The most basic measure for how well the model approximates the data is through the norm of the residuals, or residual norm. This is this the squared norm of the vector of residuals:

\[
\sum_{i=1}^{n} (y(t_i, p) - d(t_i))^2.
\]

A low residual norm represents a close fit to the data.
The ability of a model to represent data accurately is also reaffirmed by the coefficient of determination (R-squared or R^2). This is a measurement of the proportion of the variance in the data that is predictable from the model. In other words, how well the fit approximates the data. It is calculated using

$$R^2 = 1 - \frac{\sum_{i=1}^{n} (y(t_i, \mathbf{p}) - d(t_i))^2}{\sum_{i=1}^{2} (d(t_i) - \bar{d})^2}$$ \hspace{1cm} (3.30)$$

where \bar{d} is the mean of the observed data:

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d(t_i).$$ \hspace{1cm} (3.31)$$

An R^2 value close to 1 represents a good fit.

Lastly, a Pearson’s r correlation coefficient can also be used to determine whether the model is a reliable representation for the data. It is calculated using

$$r = \frac{\sum_{i=1}^{n} (d(t_i) - \bar{d})(y(t_i, \mathbf{p}) - \bar{y})}{\sqrt{\sum_{i=1}^{n} (d(t_i) - \bar{d})^2} \sqrt{\sum_{i=1}^{n} (y(t_i, \mathbf{p}) - \bar{y})^2}}$$ \hspace{1cm} (3.32)$$

where \bar{y} is the mean of the model values corresponding to the observed data points using the formula in Eq. (3.31). Again a value close to 1 represents a good approximation to the data.

A confidence interval is an interval which might contain the true parameter estimate and has an associated confidence level. A 95% confidence interval means that given 100 different samples and computing a 95% confidence interval for each sample, then approximately 95 confidence intervals will contain the true mean value. In other words, the 95% confidence interval contains the population mean 95% of the time. The confidence intervals for the parameters were calculated using the inbuilt `nlparci` function in Matlab (R2018b, Mathworks 2018). This function uses the Jacobian from `lsqnonlin` in conjunction with optimised parameter values and corresponding residuals to calculation the 95% confidence intervals for a parameter.
3.5 MODEL ANALYSIS TECHNIQUES

A range of analytical techniques can be used to obtain useful information from models similar to those described above. Bifurcation and local stability theory are useful ways to study long-term dynamics of an ODE system. A review of bifurcation and local stability theory is not provided in this thesis. We recommend the reader to the works of Guckenheimer et al. (1984) and Kuznetsov (2013) for a revision of the theory necessary.

The Routh-Hurwitz stability criterion is revised in detail below. Once parameter values that match experimental data have been obtained, a parameter sensitivity analysis is a useful way to analyse local stability and relative sensitivity for a given metric.

3.5.1 Routh-Hurwitz stability criterion

The Routh-Hurwitz stability criterion provides a necessary and sufficient condition for the stability of a linear time-invariant control system (Routh, 1877; Hurwitz, 1895). It is used in bifurcation theory and control theory to determine whether all the roots of the characteristic polynomial of a linear system have negative real parts Shinners (1998). In that way, the criterion determines if the equations of a linear system have only stable solutions without solving the system directly. Consider an nth order polynomial

$$D(s) = a_n s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0$$

the Routh array has \(n + 1\) rows and is given by the following structure:

\[
\begin{array}{ccccccc}
 a_n & a_{n-2} & a_{n-4} & \ldots \\
 a_{n-1} & a_{n-3} & a_{n-5} & \ldots \\
 b_1 & b_2 & b_3 & \ldots \\
 c_1 & c_2 & c_3 & \ldots \\
 \ldots & \ldots & \ldots & \ldots \\
\end{array}
\]
where the elements b_i and c_i can be computed as follows:

$$b_i = \frac{a_{n-1} \times a_{n-2i} - a_n \times a_{n-(2i+1)}}{a_{n-1}}$$

$$c_i = \frac{b_1 \times a_{n-(2i+1)} - a_{n-1} \times b_{i+1}}{b_1}$$

and the number of sign changes in the first column determines the number of non-negative roots.

3.5.2 Parameter sensitivity

Sensitivity analysis is a commonly used technique to quantify the dependency of the output of a mathematical system on the variables or parameters of the model (Saltelli et al., 2008). It is a useful way of studying the robustness of the results in the presence of uncertainty. One of the simplest and most common approaches is to change one input variable, keeping others at their baseline values, and measure the effect on the output (Murphy et al., 2004). More generally, in a sensitivity analysis a metric is defined to measure the change in the model value $f(t, \mathbf{p}, \mathbf{f}_0)$ for a set of parameters \mathbf{p} and initial conditions \mathbf{f}_0 from the original case denoted $f(t, \mathbf{p}^*, \mathbf{f}_0^*)$. This technique has been in a large majority of the models previously discussed, such as de Pillis et al. (2005); Kim et al. (2015); Wares et al. (2015).
THE EFFECTS OF GENE-ATTENUATION ON THE INTRACELLULAR VIRAL-TUMOUR DYNAMICS OF THE ONCOYTIC ADENOVIRUS
One major challenge in the field of oncolytic virotherapy is to determine which virus, out of a burgeoning number of engineered derivatives, can maximise both viral spread and anticancer cytotoxicity. To solve this problem, an in-depth understanding of the virus-tumour interaction generated by the genetic material of the virus is crucial. The intracellular dynamics of the virus-tumour interaction can, however, be extremely heterogeneous and difficult to model. In this chapter, an integro-differential system with distributed parameters is developed to model the intracellular dynamics of the virus-tumour interaction. Modifications to the viral E1B 19 and E1B 55 genome are then mapped to specific viral characteristics, and the dominant processes altered by the mutations determined. This allows for a thorough investigation into which genetic attenuation would produce the optimal viral vector for cancer therapy.

Some of the work in this chapter was previously published in Jenner et al. (2018a).
The adenovirus is a virus that has been investigated extensively for its potential as an oncolytic virotherapy vector, see Section 2.4.1. Due to the popularity of adenoviruses as a modality for cancer treatment, it is imperative that a way to understand the effects of gene-attenuation of this virus is developed.

Traditionally, oncolytic virus dynamics are modelled using mean field systems of ordinary differential equations (ODEs), in which the infection time and replication time period are set at the average value across the populations, see Section 3.2.3. In contrast to those assumptions, it is likely that the proportion of uninfected cells encountering a virus is initially low, and over time the probability that any uninfected cell has encountered a virus particle increases until the population of uninfected cells has been exhausted. Similarly, life spans of cells, especially infected cells, need not necessarily be exponentially distributed [Althaus et al., 2009, Dowling et al., 2005]. Thus assuming a common likelihood of cell death can result in biologically inaccurate models. Previously, modellers have developed ways to take a distributed parameter approach to modelling viral dynamics of HIV, see Section 3.2.5, and these approaches now need to be integrated into a model designed to probe the effects of viral genetic variations.

Developing a biologically accurate model that describes the interaction between gene-attenuated viruses and cell monolayers in vitro is challenging as the viral replication process is complex, see Section 2.4. With the motivation of improving adenoviral vectors for cancer gene therapy, Kim et al. (2002) constructed genetically attenuated adenoviruses and investigated the possibility of enhanced oncolytic and replication effects. Each gene-attenuated virus constructed differed slightly, depending on the presence or absence of the $E1B_{55}$ and $E1B_{19}$ genes.

Due to the nature of the experiments few measurements could be taken by Kim et al. (2002) during their investigations. Model parameter inference when the data is sparse is difficult. In this chapter, a parsimonious approach is taken to determine the effects of the genetic mutations, focusing on the variations to the dynamic processes rather than determining precise parameter values, using a multi-layer model investigation. In Section 4.2 a model that considers heterogeneity in the virus-cell interaction is developed using an integro-differential equation system. The relationships between the $E1B_{19}$ and $E1B_{55}$ genes and the downstream characteristics they control in the
viral-tumour interaction is then determined by applying the model from Section 4.2 to the results from Kim et al. (2002).

4.1 Gene-attenuation of an oncolytic adenovirus

Gene-attenuated replication-competent adenoviruses are emerging as a promising new modality for cancer treatment. The E1B gene of the adenovirus encodes two distinct tumour antigens, the E1B 19 kDa and E1B 55 kDa proteins, which are both independently capable of significantly influencing the adenoviruses behaviour, see Section 2.4.3. Experimental studies have shown that the E1B 55 kDa protein could be responsible for viral potency and non-selective replication (Kim et al., 2002; Lee et al., 2000). The E1B 19 kDa protein on the other hand, is correlated with the rate of cell lysis (Kim et al., 2002; Rao et al., 1992).

Kim et al. (2002) evaluated the possibility of improving the adenovirus for cancer gene therapy by constructing genetically attenuated adenoviral vectors with different combinations of E1B genes. Four viruses were constructed: three E1B mutant adenoviruses, Ad-ΔE1B19, Ad-ΔE1B55 and Ad-ΔE1B19/55, and one control virus Ad-wt. The Ad-ΔE1B19 virus was designed to be deficient in the E1B 19 gene, whereas the Ad-ΔE1B55 virus lacked the E1B 55 gene. The AdΔE1B9/55 virus was designed as a form of negative control, expressing neither the E1B 19 nor the E1B 55 genes. The final virus, Ad-wt, is the wild-type version of the gene-attenuated viruses. A wild-type virus is the naturally occurring, non-mutated strain of a virus. The Ad-wt was, therefore, used as a positive control for the experiments as it contained both the E1B 19 and E1B 55 genes (Kim et al., 2002). A summary of the different viruses and their commonalities is illustrated in Fig. 4.2.

To investigate how the attenuation of the E1B 19 and E1B 55 genes affect the system performance, Kim et al. (2002) performed an in vitro experiment using virus titer and plaque assays (see Section 2.5.1). Replication competency of the four viruses was determined by comparing virus titer measurements on two cell monolayers: a Human embryonic kidney cell line (HEK293) and a brain cancer cell line (U343). Approximately 2 − 8 × 10^4 HEK293 and U343 cells were plated onto a 6-well plate for each experiment.
Figure 4.2: Gene tree diagram. The tree diagram above displays the presence or deletion of the \(E_{1B}^{19} \) and \(E_{1B}^{55} \) genes in each of the four viruses engineered by Kim et al. (2002). First published in Jenner et al. (2018a).

To assay for viral growth, the cells were infected with either Ad-\(\Delta E_{1B}^{19} \), Ad-\(\Delta E_{1B}^{55} \), Ad-\(\Delta E_{1B}^{19/55} \) or Ad-wt at a multiplicity of infection (MOI) of 1. The MOI is the average number of virus particles infecting each cell, i.e., the ratio of the number of virus particles to the number of target cells in a defined space. Supernatant and monolayer samples were assayed by plaque assay at various times of incubation to determine the virus titer. Virus titer measurements were calculated as the sum of viral particles within the pellet and supernatant. The sum of these quantities is assumed to be a proxy for all intracellular and extracellular virus in the plate at the specific time points.

4.2 DISTRIBUTED-PARAMETER MODEL OF INTRACELLULAR VIRAL-DYNAMICS IN VITRO

One of the key mechanisms that ensure cancer robustness is tumour heterogeneity (Karev et al., 2006). Different tumour cells can show distinct morphological and phenotypical properties, leading to a variety of responses to treatment. Additionally, the
ability of viral particles to infect and replicate within a cell can differ substantially from cell to cell even within the one culture. Timm and Yin (2012) measured virus production from single cells and found that production rates and virus yields spanned values over a 300-fold range, highlighting an extreme diversity in virus production for cells from the same population (Timm and Yin, 2012).

Using distributed delays, mathematicians have made some progress in investigating heterogeneity in the viral replication process, see Section 3.2.5 and Eqs. (3.25)-(3.25). To model heterogeneity in the virus-tumour interaction, this chapter considers that the distribution of viral replication start times and lengths of replication for a population of viruses can each be drawn from a probability distribution. To derive the model, the interaction of a single virus and a single cell is first considered. The bold line in Fig. 4.3 depicts a schematic of the virus population over time in a single infected cell in the population, clearly accounting for the three stages of the viral replication process: infection, transport and disassembly; replication; and cell death (see Section 2.4.2).

In the initial stage of infection, the virus is yet to enter the nucleus of the cell, no replication occurs and the virus population remains unchanged. This period of time is denoted by τ. After τ it is assumed that the viral DNA arrives in the nucleus and commences replication at a linear rate k. Replication occurs for a period l after which the cell will be full to capacity with viral progeny, causing it to burst. After this time no new viral particles are created by that cell, as the cell has died at time $\delta = \tau + l$. The viral replication hijacks the usual protein replication machinery of the cell, which is assumed here to work at a constant average rate. The processes that govern extracellular and intracellular transport of the virus to the nucleus are independent of the replication machinery of the cell (Tokarev et al., 2009). As such, the length of time the viruses spends replicating is independent of the time it takes for the virus to enter the nucleus and start replicating.

It is plausible that there may be more than one viral infection per cell. In this case, the rate of replication may vary depending on how many virus particles are within one cell. In the current model, the rate of replication can be thought of as the mean rate over all possible multiplicities of infection experienced by the cell during the replication
process. This is an approximation to what is, in reality, an infection and reinfection process.

To derive a model for a group of cells infected by virus particles, consider a population of the single virus-single cell interactions, all following the same replication process represented in Fig. 4.3. Heterogeneity is assumed to exist within the cell and virus populations and to relate directly to the start time of replication, τ, and the period of time spent replicating, l. To model the delay between viral infection and the production of virus particles, let τ be the random variable that describes the time between the start of the experiment and the first replication with a probability distribution f_τ. Let l be the random variable that depicts the replication period of the virus particles with a probability distribution f_l.

To calculate the total number of virus particles (intracellular and extracellular) at any point in time, an expression for the proportion of the initial number of cells C_0
that contain replicating virus particles is derived. This is equivalent to determining the probability that the time \(t \) is in the random interval \([\tau, \tau + l]\), i.e. \(\{t > \tau\} \cap \{t < \tau + l\} \). This gives the number of cells with replicating virus particles as

\[
C(t) = C_0 \int_0^t \int_\tau^{\infty} f_{\tau, \tau + l}(x, y) dydx,
\]

where \(f_{\tau, \tau + l}(x, y) \) is the joint density function for \(\tau \) and \(\tau + l \). Due to the independence of \(\tau \) and \(l \), the joint distribution, and hence \(C(t) \) becomes

\[
C(t) = C_0 \int_0^t \int_\tau^{\infty} f_\tau(x) f_l(y - x) dydx,
\]

where this can be derived using either the law of total probability or the Jacobian matrix transformation. For more detail see Appendix A.

The change in the total virus (both intracellular and extracellular), \(\Upsilon \), at any point in time \(t \), is the cumulative number of cells actively producing virus multiplied by the rate at which the virus replicates:

\[
\frac{d\Upsilon}{dt} = kC = kC_0 \int_0^t \int_\tau^{\infty} f_\tau(x) f_l(y - x) dydx, \tag{4.1}
\]

where \(k \) is the mean viral replication rate, taken to be common across the cell population of \(C_0 \) cells. It is assumed each cell is not actively producing virus until time \(\tau \), chosen from the distribution \(f_\tau \), and that they then produce for a period, \(l \), chosen from the distribution \(f_l \). At time \(t \), the number of cells with virus replication within the nucleus is equal to the proportion of cells that have reached time \(\tau \) minus the proportion that have reached time \(\tau + l \).
4.3 CHOOSING A BIOLOGICALLY REASONABLE DISTRIBUTION

To examine how the overarching model dynamics depends on the choice of underlying distribution, Eq. (4.1) has been simulated for a range of distributions. Assuming f_τ and f_ℓ are uniform distributions gives

$$f_\tau(x; \bar{\tau}, s) = \begin{cases} \frac{1}{s} & \text{for } x \in [\bar{\tau} - \frac{s}{2}, \bar{\tau} + \frac{s}{2}] \\ 0 & \text{otherwise} \end{cases}$$

$$f_\ell(x; \bar{\ell}, s) = \begin{cases} \frac{1}{s} & \text{for } x \in [\bar{\ell} - \frac{s}{2}, \bar{\ell} + \frac{s}{2}] \\ 0 & \text{otherwise} \end{cases}$$

Figure 4.4: Model simulations based on the uniform distribution. The effects of individually varying (a) average replication start time $\bar{\tau}$; (b) average replication period $\bar{\ell}$; (c) replication rate k; and (d) width of the support s, are shown with the colour indicating the varied parameter value. First published in Jenner et al. (2018a).
where the width of the support of f_τ and f_1 has been fixed as s and the mean of each distribution is denoted by $\bar{\tau}$ and \bar{l} respectively. Simulations with uniform distributions are shown for a range of parameter values in Fig. 4.4. It is clear that each parameter controls a unique dynamic of the virus count from the model.

To compare this then to the dynamics of the model when the distribution is a triangular distribution, Eq. (4.1) was also simulated with f_τ and f_1 as triangular distributions:

$$f_\tau(x; \bar{\tau}, s) = \begin{cases} \frac{4}{s^2}(x - \bar{\tau} + \frac{s}{2}) & \text{for } x \in [\bar{\tau} - \frac{s}{2}, \bar{\tau}] \\ \frac{4}{s^2}(\bar{\tau} + \frac{s}{2} - x) & \text{for } x \in [\bar{\tau}, \bar{\tau} + \frac{s}{2}] \\ 0 & \text{otherwise} \end{cases}$$

$$f_1(x; \bar{l}, s) = \begin{cases} \frac{4}{s^2}(x - \bar{l} + \frac{s}{2}) & \text{for } x \in [\bar{l} - \frac{s}{2}, \bar{l}] \\ \frac{4}{s^2}(\bar{l} + \frac{s}{2} - x) & \text{for } x \in [\bar{l}, \bar{l} + \frac{s}{2}] \\ 0 & \text{otherwise} \end{cases}$$

where the width of the support for f_τ and f_1 has been fixed as s and the mean of each distribution is denoted by $\bar{\tau}$ and \bar{l}. The results of the simulations are shown in Fig. 4.5. The triangular distributions were also fixed to have symmetric shape, thus allowing the re-parameterisation of the distributions in terms of their mean and support.

Eq. (4.1) is also simulated with f_τ and f_1 as Lévy distributions, see Fig. 4.6. For this distribution, the variance could not be fixed as Lévy distributions have infinite variance. Similarly, since Lévy distributions have an infinite mean, the parameter perturbations cannot be linked in this example to the mean replication start time $\bar{\tau}$ and mean replication period \bar{l} in the previous examples. Instead, the location, δ_1 and δ_2, and scale γ_1 and γ_2, give the form of the Lévy distribution:

$$f_\tau(x, \delta_1, \gamma_1) = \sqrt{\frac{\gamma_1}{2\pi}} e^{-\frac{\gamma_1}{2(y - \delta_1)^3/2}}$$

$$f_1(x, \delta_2, \gamma_2) = \sqrt{\frac{\gamma_2}{2\pi}} e^{-\frac{\gamma_2}{2(y - \delta_2)^3/2}}$$
4.3 Choosing a Biologically Reasonable Distribution

Figure 4.5: Model simulations based on the triangular distribution. The effects of individually varying (a) average replication start time $\bar{\tau}$ (b) average replication period \bar{l} (c) replication rate and (d) width of the support s, are shown with the colour indicating the varied parameter value. First published in Jenner et al. (2018a).

The overall model behaviour does not depend significantly on the underlying distribution being a uniform, triangular or Lévy distribution (see Fig. 4.4, 4.5 and 4.6). When f_τ and f_l are Levy distributions (Fig. 4.6), the model behaviour for the shape and scale of these distributions reflects the behaviours of the model when the underlying distribution was the uniform or triangular distribution, albeit with different parameters. The parameters for the processes of replication - start time and period - are, therefore, not overly dependent on the nature of the underlying distribution.

Gamma distributions are widely used in engineering, science and business to model continuous variables that are always positive. These distributions are commonly used throughout the literature to model biologically plausible delays, see for example Banks et al. (2003), Blythe et al. (1984), Chattopadhyay et al. (2002), Culshaw et al. (2003), Cush...
Choosing a biologically reasonable distribution

Figure 4.6: Model simulations based on the Lévy distribution. The effects of individually varying (a) the scale of f_{τ}, γ_1 (b) the location of f_{τ}, δ_1 (c) the scale of f_l, γ_2 (d) the location of f_l, δ_2, are shown with the colour indicating the varied parameter value. First published in Jenner et al. (2018a).

The Lévy distribution is commonly used in biological modelling, their popularity in the field of biological modelling is due to their ‘tunable’ distribution that can mimic both exponential declines and general bell-shaped distributions. Since a gamma random variable is simply the sum of independent exponential random variables, the gamma distribution is a natural choice when modelling biological events, such as delay in viral replication. In this case, the waiting time before replication commences is a random event occurring in a Poisson process with some mean time between the events.

While the Lévy distribution is commonly used in biological modelling, there are advantages to choosing the gamma distribution over the Lévy distribution. The gamma distribution has a finite mean and finite variance, both of which a biological system is expected to contain, whereas the Lévy distribution does not. Numerically simulating the Lévy distribution is also costly.
For the purposes of this study, the distribution of replication start times \(f_\tau \) and the distribution of replication time lengths \(f_l \) are set as gamma distributions; although as discussed above, other distributions of similar character, such as the Lévy distribution, can also be employed. The two distributions were also reduced to a three-parameter family by linking the variances of \(f_\tau \) and \(f_l \) giving the resulting forms below:

\[
\begin{align*}
 f_\tau(x; \bar{\tau}, s) &= \frac{s^{\bar{\tau}s}}{\Gamma(\bar{\tau}s)} e^{sx} x^{\bar{\tau}s-1}, \\
 f_l(x; \bar{l}, \bar{\tau}, s) &= \frac{(\bar{l}s/\bar{\tau})^{\bar{l}^2s/\bar{\tau}}}{\Gamma(\bar{l}^2s/\bar{\tau})} e^{\bar{l}s/\bar{\tau}x} x^{\bar{l}^2s/\bar{\tau}-1}
\end{align*}
\]

where \(\bar{\tau} \) is the average replication start time, \(\bar{l} \) is the average period the virus particles spend replicating, and \(s \) describes the shape of the distributions. The linking of the variances could be relaxed, however, the parameter reduction was undertaken here due to the sparsity of the data that is optimised in the following section.

4.4 **Optimisation of the Virus Titre Measurements**

Due to the limited number of experimental time points compared to the degrees of freedom in the model, a tiered optimisation was employed to improve the efficiency of the search of the parameter space, and to identify the dominant processes affected by each mutation of the E1B gene. [Kim et al., 2002]’s virus titre measurements for the E1B gene-attenuated adenovirus were undertaken on two cell types: human embryonic kidney cells (HEK293) and brain cancer cells (U343). Based on the assumption that these cells will have different sizes and cellular machinery, it was hypothesised that the cell type will predominantly affect the mean replication period \(\bar{l} \). This accounted for cell differences causing variation in the length of time virus particles spend replicating in a cell. Leading on from this, it was also hypothesised that the viral replication rate \(k \) was cell type dependent. These hypotheses were then investigated in the primary tier optimisation below.
4.4.1 Primary tier optimisation

To reduce the degrees of freedom in the model, the initial number of cells \(C_0 \) was assumed to be common across all cell types as the wells were filled to 70% confluence. The data from \cite{Kim2002} was then normalised by dividing through by the mean of the first data point of the experiments.

Given the underlying differences in the genetic make-up of each of the oncolytic viruses, two subgroups in the virus titer measurements for U343 cells were evident, see Subgroup 1 and Subgroup 2 in Fig. 4.7. Subgroup 1 is comprised of the viral titer measurements for Ad-wt and Ad-\(\Delta \)E1B19, and Subgroup 2 of the viral titer measurements for the Ad-\(\Delta \)E1B55 and \(\Delta \)E1B19/55. Based on the experimental work of \cite{Kim2002}, the differences in the gene attenuation of the viruses should largely influence the replication rate of the virus \(k \). Therefore, the optimisation of the model parameters allowed for there to be a different replication rate for each subgroup.

To investigate the major cause of the different behaviour between the cell types, all parameters in the system were initially linked across the cell types. Then, this assumption was relaxed for a single parameter at a time. When the replication rate alone was decoupled between cell types, leaving the other parameters linked, it was insufficient to produce an accurate approximation to the data for the first 4 days. In this case, the model was unable to determine a replication period \(\bar{l} \) that was suitable for both the HEK293 and U343 cells simultaneously. As seen in Fig. 4.7, the virus production of these two cell types had very different extremes, 4 days in comparison to 8 days. This led to the introduction of an average replication period, \(\bar{l} \), that differed with cell type.

A cell-specific mean replication start time \(\bar{\tau} \) (with all other parameters linked) was then investigated to be sufficient to explain the dynamics across the three sub-groups of data. In keeping the mean replication period distribution common across the cells, the different steady state virus populations could not be modelled. The best result under this restriction produced an overly quick growth in virus for U343 cells compared to the HEK293 cells to compensate for the lack of time the system had to reach the viral steady state before cell death.
A summary of the parameter values that represent the broad features of the data is shown in Table 4.1 and a comparison of the model and data in Fig. 4.7. Some of these parameters were unique to the individual experiments but others were linked between the classes of experiments. To optimise the data, the numerical implementation described in Section 3.4 was followed.

The purpose of this optimisation is not to obtain a perfect representation of the data. Instead, by doing the primary tier optimisation, the parameter values are placed in the correct region of the parameter space. Due to the sparse nature of the data it is

Table 4.1: Parameter values for Eq. (4.1) representing the main features of the virus titer of Kim et al. (2002) for Fig. 4.7. Some parameters were linked across the different experiments as indicated in the table.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HEK293</th>
<th>Subgroup 1 U343</th>
<th>Subgroup 2 U343</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean replication start time</td>
<td>$\bar{\tau}$</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>mean replication period</td>
<td>\bar{l}</td>
<td>0.27</td>
<td>4.8</td>
</tr>
<tr>
<td>replication rate</td>
<td>k</td>
<td>760</td>
<td>41000</td>
</tr>
<tr>
<td>shape parameter</td>
<td>s</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.7: Results of the optimised model, Eq. (4.1) representing the main features of the virus titer of Kim et al. (2002) for (a) HEK293 cells and (b) U343 cells. The data is represented as large coloured shapes and the model’s approximation is a solid or dotted black line. The solid grey line represents the gamma distribution of start times f_τ and the dashed grey line represents the gamma distribution for the replication period f_l. The parameter values are listed in Table 4.1. Note the two distinct groups of dynamics in the U343 cell based experiments: Subgroup 1 comprises of Ad-wt and Ad-ΔE1B19, and Subgroup 2 comprises Ad-ΔE1B55 and Ad-ΔE1B19/55. First published in Jenner et al. (2018a).
not possible to obtain the parameter values with any certainty, but it is possible to
demonstrate the suitability of the model.

It is worth noting the dominance of the Ad\(\Delta\)E1B55 data in the fit for Subgroup 2. This
indicated that an additional mechanism was needed to explain the difference between
the Ad-\(\Delta\)E1B55 and Ad-\(\Delta\)E1B19/55 virus titer measurements, leading to the secondary
tier optimisation below.

4.4.2 Secondary tier optimisation investigation

While the primary tier optimisation in the previous section provided an overall under-
standing of the key dynamical differences between the two cell types and the two sub-
groupings of the U343 cells, it did not explain all the differences within the subgroups.
Considering Subgroup 2 of the U343 cells, it is clear that there exists a difference in the
viral genome population generated by these two gene attenuated viruses: Ad-\(\Delta\)E1B55
and \(\Delta\)E1B19/55. To examine whether any parameters could capture the characteristic
differences between these results, \(\bar{\tau}\), \(\bar{l}\), k and s were individually perturbed about the
values obtained in the primary tier optimisation, see Fig.4.8

The ranges of parameters explored were dependent on the relative change of the
solution compared to the virus titer data measurement. The fan of model solutions
produced for the perturbations in the parameters shows how effective the model can be
at producing a variety of dynamics. From the model solutions based on the parameter
perturbations, Fig.4.8 the key differences in the effects of the genes on the virus titer
of Subgroup 2 were inferred.

Perturbations in the average cell replication period \(\bar{l}\), Fig.4.8(b), resulted in a peel-
off of the virus titer measurements from the steady state. In the case of the shape
parameter s, Fig.4.8(d), there was no long-term effect on the virus titer measurement,
but rather a displacement of the initial take-off time of the virus titer. This indicates that
changes in neither \(\bar{l}\) nor s were sufficient to describe the main mechanistic differences
between the Ad-\(\Delta\)E1B55 and Ad-\(\Delta\)E1B19/55 viruses. The range of solutions produced
when these parameters are varied, however, still gives insight into their influence on
the model behaviour.
Changes in the steady-state value of the virus titer were observed under perturbations in the replication rate of the virus, \(k \), Fig. 4.8(c), with minor influence on the gradient of the virus titer measurement. The average replication start time \(\bar{\tau} \), Fig. 4.8(a), appeared to be the major determinant of the difference between the two virus titer measurements. Not only did it affect the steady state of the model, but also the time at which viral replication took off. From Fig. 4.8, it can be seen that changes in the average replication start time alone were sufficient to explain the differences between the Ad-ΔE1B55 and Ad-ΔE1B19/55 viruses.
The two virus titer time-series measurements of Subgroup 2, Ad-ΔE1B55 and Ad-ΔE1B19/55, were more dissimilar in their initial levels than the members of Subgroup 1. Examining the virus titer measurements on U343 cells, Fig. 4.7(b), clear differences can be seen for each gene attenuated virus. Recall that the mean start time and replication period, $\bar{\tau}$ and \bar{l} respectively, for Subgroups 1 and 2 of the U343 cells were different. To identify the processes that could determine the differences within Subgroup 1, again $\bar{\tau}, \bar{l}, k$ and s were perturbed individually about the Subgroup 1 values to explore the effects on the dynamics, see Fig. 4.9.
In the case of the differences in virus titer measurements of Subgroup 1, it was less clear which parameters could be influencing the changes in viral dynamics. Parameters $\hat{\tau}$, \hat{I} and k, Fig. 4.9(a), 4.9(b) and 4.9(c), were all possible determinants of the relatively small virus titer differences in this subgroup. As the average replication rate k was key to explaining the differences between Subgroups 1 and 2, it would seem a likely candidate to be the dominant parameter that described the differences within Subgroup 1 as well.
To examine how the variation in the model parameters could describe the effects of gene attenuation on virus particles infecting HEK293 cells, this analysis was repeated for the virus titer measurements on HEK293 cells, Fig. 4.10. Note that in this case, it was more challenging to determine the major differences between the four viruses, as there was significant overlap in their virus titer measurements. It is possible that all four parameters varied slightly to produce the minor variability observed between these four viruses. Kim et al. (2002) intentionally designed the experiments on HEK293 (non-cancerous) cells as a way of showing the antitumour specific potency of the oncolytic adenovirus. The primary motivation of the current investigation was to determine the specific effects of deletion of the $E1B_{55}$ and $E1B_{19}$ genes on the adenoviruses antitumour potency. The analysis on the HEK293 cells is included for completeness, and as expected, the differences between the virus titers for gene-attenuated forms of the adenovirus were less significant in HEK293 cells, compared to U343 cells.

To generate the parameter perturbation model solutions seen in Fig. 4.8, 4.9 and 4.10, a Monte Carlo simulation was employed as a cross check for the numerical approximations using ode45 and integral2.

4.4.3 Compatibility map summary

To summarise the effects of parameter perturbations in the model, a compatibility map is presented in Fig. 4.11. This maps parameter values to three specific dynamics of the model: “Steady state”, “Start time” and “Rapidity”. Each parameter τ, s, \bar{l} and k has been perturbed individually and the corresponding increase or decrease on the dynamics of the model are grouped into two levels: dominant or secondary. In this way, the models dynamics and parameters can be directly linked so that hypotheses may be drawn on future improvements on this virus or other viral therapies.

The steady state of the model’s predicted virus titer measurement decreases with increases in the mean replication start time $\bar{\tau}$. In other words, if the average virus starts replicating later, then there will be less virus produced overall. Increasing the mean replication start time also has the obvious effect on the models start time, or take of time, as the virus titer will start increasing later if $\bar{\tau}$ is larger.
Increasing the variance and shape s of the distributions f_{τ} and f_{l} results in the rapidity of the virus titer population growth decreasing. This indicates that the larger the variance of the distribution s, the slower the population of viruses grows over time. Increasing s has a secondary effect of increasing the start time of replication. This can be interpreted as the distribution of virus particles approaching the same mean-field behaviour, similar to what was examined in Section 3.2.3.

The replication rate k also has a dominant and secondary effect on the model. Increasing k decreases the rapidity of virus titer growth while increasing the start time of virus titer growth. Increasing the mean time between replication onset and lyse of cells \bar{l}, increases the virus titer steady state measurement. This is intuitive, since the longer a virus spends replicating, the more virus will be obtained overall.

Categorising the dynamics of the model with the compatibility map in Fig. 4.11 allows for the virus titer measurements in Figs. 4.8, 4.9, and 4.10 to be linked to specific processes in the model that can be linked to viral characteristics.
An identifiability analysis of the model parameters has not been conducted in this chapter; however, the compatibility map in Fig. 4.11 and the parameter perturbations in Figs. 4.8-4.10 can be used to deduce the identifiability of the model. For a model to be identifiable, different parameters must generate different probability distributions of the observable variables. It is clear that all parameters, apart from s, are identifiable in Figs. 4.8-4.10 as each parameter controls a very specific dynamic which is summarised by the compatibility map in Fig. 4.11. It is, therefore, unlikely that there will be any identifiability issues for the data and the model. Future work will consider a method such as those published by [Little et al. (2010)] as a way of confirming the identifiability of the model.

4.5 SUMMARY

Using the model presented in this chapter, the mechanisms controlled by the presence or deletion of $E1B\ 19$ and $E1B\ 55$ genes can be inferred. First, by considering how the cell type affects the overall virus titer, it is likely that cell type heavily influences the average cell replication period \bar{l} and replication rate k. This can be seen by examining the results of the optimisation of the three distinct groupings of experiments: HEK293 cells and Subgroups 1 and 2 of the U343 cells, Fig. 4.7 and Table 4.1. By allowing the replication rate k and replication period \bar{l} to vary between cell types, the model was able to capture the dynamic differences between the three groupings. Furthermore, allowing the viral replication rate k to be subgroup specific was sufficient to capture the major differences in the virus titer measurements on U343 cells. All other parameters could be linked and identical across the different experiments. From this it would appear that cell type primarily affects the average replication period and viral replication rate.

To reinforce the conclusion that the average replication period in a cell, \bar{l}, solely depends on the cell type, perturbations about the optimal values for the three groups of experiments, Fig. 4.8(b), 4.9(b) and 4.10(b) were examined. Perturbing the replication period alone was insufficient to capture the variation in each case, except perhaps the case of Subgroup 1 for U343 cells, Fig. 4.9(b), where the dynamics between the viruses
were already quite similar. Overall, the average replication period, $\bar{\tau}$, was able to reproduce the major observed differences (i.e., the primary tier of the optimisation), leading to the conclusion that this is solely a cell-specific parameter. Allowing for changes in $\bar{\tau}$ between the cell types then enabled the discovery of the specific effects of gene attenuation on the viral dynamics.

The replication rate was suggested by the experiments of [Kim et al. (2002)](#) to be a key factor in describing the differences in virus titer measurements of the four viruses. It was clear from Fig. 4.7 that the replication rate, k, of the HEK293 and U343 cells was different. However, the replication rate was also dissimilar in the optimal fit to Subgroups 1 and 2 of the U343 cells. As shown in the parameter values, Table 4.1, changes in k allowed a much higher virus titer measurement to be attained by the Ad-wt and Ad-$\Delta E1B19$ viruses (Subgroup 1) compared to that of Ad-$\Delta E1B55$ and Ad-$\Delta E1B19/55$ (Subgroup 2). This leads to the idea that the replication rate, k, is heavily affected by the presence of the $E1B$ 55 gene, as, unlike Subgroup 2, both viruses in Subgroup 1 have their $E1B$ 55 gene intact.

Analysing further the results of the tiered hierarchical optimisation, the differences between the individual viruses and the effects of certain gene combinations were determined, indicating which combination of genes that may be optimal for viral production and cell death. First considering the results of the parameter perturbations for Subgroup 2, Fig. 4.8, the difference in the two virus titer measurements for the Ad-$\Delta E1B55$ and Ad-$\Delta E1B19/55$ was clearly explained by changes in the average replication start time, $\bar{\tau}$. It would appear that deletion of both $E1B$ 55 and $E1B$ 19 delays the average start of replication of the virus but the deletion of $E1B$ 19 without the deletion of $E1B$ 55 does not, as the difference in the Ad-$\Delta E1B55$ and Ad-$\Delta E1B19/55$ is the presence of the $E1B$ 19 gene.

Thus the presence or absence of the $E1B$ 55 gene changed the effect of the deletion of the $E1B$ 19 gene. When both $E1B$ 19 and $E1B$ 55 were deleted, the start time of viral replication, $\bar{\tau}$ was delayed. However, in the presence of the $E1B$ 55 gene, deletion of the $E1B$ 19 gene reduced the replication rate, k, as seen in Fig. 4.9 for the Ad-wt and Ad-$\Delta E1B19$ viruses.
Linking the two sets of model simulations on Subgroups 1 and 2 (Fig. 4.8 and 4.9) the modelling indicates that combined gene deletion may give effects beyond the sum of the parts: deletion of both the $E1B\ 19$ and $E1B\ 55$ genes compounds the effect of the deletion the single genes alone. While reducing the replication start time, $\bar{\tau}$, appears to be sufficient to describe the differences in the Ad-$\Delta E1B55$ and Ad-$\Delta E1B19/55$, it is likely a combination of both the replication rate and replication start time that is reduced and delayed in the deletion of the $E1B\ 19$ gene from a virus deficient in the $E1B\ 55$ gene.

Examining the virus titer measurements of the four viruses on HEK293 cells, Fig. 4.10 it is less evident how the gene attenuation affects the viral characteristics. There is no clear connection to conclude regarding how the gene attenuation affects the viral characteristics in the HEK293 cell experiments. However, note that varying the viral replication start time, $\bar{\tau}$, and the viral replication rate, k, as in Fig. 4.10(a) and 4.10(c), would be sufficient to explain the small differences between the data sets in this cell type.

The results of the study are not unique to the choice of distribution. While the underlying heterogeneity in the current study is derived from a gamma distribution, many other distributions can be used and produce similar results as mentioned in Section 4.3. The dynamics of Eq. (4.1) with the underlying distributions either uniform, triangular or Lévy distribution, results in similar qualitative dynamics to those presented in Fig. 4.8, 4.9 and 4.10.

By creating a compatibility map, Fig. 4.11 the dynamics of ‘Steady state’, ‘Start time’ and ‘Rapidity’ can be linked to viral characteristics. From this, hypothesis for the effects of genetically engineering a virus with particular characteristics can be tested. For example, if the aim was to increase the overall virus titer, then the most effective way to do this would be to increase the average start time and increase either the shape of the variance or the replication rate k, as a secondary effect.

By modelling the virus titer measurements for different genetic attenuations of the oncolytic adenovirus, an understanding can be developed for which viral characteristics ultimately drive treatment efficacy. In Chapter 5 this idea is investigated further by developing an *in vivo* extracellular modelling framework for an oncolytic virus treat-
ing a growing tumour. In this way the viral characteristics of infectivity and lysis rate, which have been linked in this study to genetic markers, may be investigated for their influence in the overall efficacy of treatment.
USING A DYNAMICAL SYSTEMS APPROACH TO UNDERSTAND ONCOLYTIC VIROTHERAPY IN VIVO
OVERVIEW

Figure 5.1: Subset of Fig. 1.1 summarising the investigation of the virus-tumour interaction in this chapter

While in vitro investigations into oncolytic viruses and their lytic and replication competency reveal important details about their efficacy, it is only by considering the in vivo nature of treatment that further understanding of this therapy may be obtained. Currently, much is still unknown about the sensitivity of oncolytic virotherapy to individual tumour and viral heterogeneity. Additionally, optimal protocols detailing dose and treatment lengths are not yet universally established. In this chapter, a set of hierarchically developed models focusing on the interaction between tumour cells and virus particles engineered to infect and destroy cancerous tissue are presented. A local stability analysis and bifurcation analysis of these models quantifies the effectiveness of oncolytic virotherapy in vivo in an extracellular context. From this, conditions driving tumour extinction or survival are determined for a generic tumour-virus interaction.

The work in this chapter was previously published in Jenner et al. (2018c) and Jenner et al. (2019).
Over the past decade, hundreds of patients with cancer have been treated in clinical trials with oncolytic viruses, see Section 2.4. Unfortunately, due to the heterogeneous nature of cancer, success has been elusive, and there is a growing need to quantify the dependency of treatment outcome on cancer characteristics. Chapter 4 provided an in-depth understanding of the virus-tumour interaction as a function of a virus’ genetic material. However, to improve therapy at the clinical level, an extracellular \textit{in vivo} understanding is crucial.

A number of mathematical models have been constructed to understand the \textit{in vivo} dynamics of proliferation and diffusion of oncolytic viruses in cancerous and healthy tissues (Section 3.2.3). The two hierarchically developed models of oncolytic virotherapy outlined in this chapter are extensions of the work by Wodarz (2001) and Titze \textit{et al.} (2017) (Eqs. (3.6)-(3.8)). The models presented in this chapter focus on determining which aspects of virus-tumour interactions drive the success of oncolytic virotherapy both mathematically and biologically. The outcomes of oncolytic virotherapy predicted by the models are analysed using a range of mathematical techniques. A complete local stability analysis and bifurcation analysis of the system are used to find that stable equilibria only exist in the absence of tumour growth or viral decay, and further modelling shows the dependence of tumour size as a function of injection profile, in the case of intratumourally administered viral loads. In this chapter, parameter values and initial conditions are simulated over biologically reasonable intervals. These were determined primarily from the experimental conditions and model optimised performed in the following Chapter 6 (see Table 6.1).

5.1 A BIFURCATION AND LOCAL-STABILITY ANALYSIS OF A MINIMAL MEAN-FIELD ONCOLYTIC VIROTHERAPY MODEL

To model the interaction between an oncolytic virus and a growing tumour, a system of three ODEs is used. While ODE models do not address spatial spread, they do provide a mathematical framework within which the mean-field interactions between tumour
cells and viral particles can be explored. The state variables in the model are

- $u(\tau)$ - uninfected tumour cells,
- $i(\tau)$ - virus-infected tumour cells,
- $v(\tau)$ - free virus particles,

where τ represents the number of days.

In this section, an aggressive form of tumour is modelled, assuming that uninfected tumour cells replicate at a rate r proportional to their population. This unbounded exponential tumour growth is not biologically realistic in the long-term due to nutrient and space limitations. However, given the short time frame of the interaction between virus particles and tumour cells, exponential growth is considered a sufficient approximation for the tumour growth under treatment with an oncolytic virus.

The rate of infection of the uninfected tumour cell population is assumed to be proportional to the product of the virus and tumour cell populations (Novozhilov et al, 2006) and occurs with rate constant β. Once infected, it is assumed that tumour cells are incapable of division as the virus particle within the cell takes control of the cellular machinery for self-replication (Section 2.4.2). Virus-infected tumour cells will then burst due to lysis at a rate d_i, releasing α new virus particles.

Fig. 5.2 shows a schematic of the interaction between the uninfected tumour cell population u (or U in non-dimensional form), infected tumour cells i (or I in non-dimensional form) and the virus population v (or V in non-dimensional form). The corresponding system of equations describing the interaction is given below:

\[
\begin{align*}
\frac{du}{d\tau} &= ru - \beta uv, \quad (5.1) \\
\frac{di}{d\tau} &= \beta uv - d_i i, \quad (5.2) \\
\frac{dv}{d\tau} &= -d_v v + \alpha d_i i. \quad (5.3)
\end{align*}
\]

This model complements other oncolytic virotherapy models in the literature discussed in Section 3.2.3. The model above differs to the one developed by Titze et al. (2017) (see Eqs. (3.6)-(3.8)) as tumour cell death due to factors unrelated to treatment are neglected. In this thesis, unrelated tumour cell death is considered negligible in
5.1 BIFURCATION AND LOCAL-STABILITY ANALYSIS FOR MINIMAL MEAN-FIELD MODEL

comparison to virus-induced tumour cell death. The model above also resembles some previous modelling work by Baccam et al. (2006) on the kinetics of influenza in humans, i.e. the so called TIV model (see Section 3.2.2). Baccam et al. (2006) derived a model for target-cell limited influenza infection, which is equivalent to Eqs. (5.1)-(5.3) when \(r = 0 \). The minimal and adaptive nature of the results in this chapter can be easily translated to influenza and infectious disease modelling.

Figure 5.2: Flow diagram for the interaction between a population of uninfected tumour cells, \(U \), virus-infected tumour cells, \(I \), and virus particles, \(V \). The diagram lists parameters relating to the original model, Eqs. (5.1)-(5.3), in grey boxes and parameters relating to the non-dimensionalised form of the model, Eqs. (5.4)-(5.6), in blue boxes. First published in Jenner et al. (2018c).

A bifurcation and local stability analysis allows for quantification of the success of oncolytic virotherapy as a function of the viral and tumour characteristics. To simplify this mathematical analysis while preserving the essential properties of the model let
\(k_1 U = u, \ k_2 I = i, \ k_3 V = v \) and \(k_4 t = \tau \), in the original system of Eq. (5.1)-(5.3).

Rearranging gives

\[
\frac{dU}{dt} = rk_4 U - \beta k_3 k_4 UV, \\
\frac{dI}{dt} = \beta \frac{k_1 k_3 k_4}{k_2} UV - d_1 k_4 I, \\
\frac{dV}{dt} = -d_1 k_4 V + \alpha d_1 \frac{k_2 k_4}{k_3} I,
\]

then letting \(k_1 = k_2 = d_1 / \alpha \beta, \ k_3 = d_1 / \beta \) and \(k_4 = 1 / d_1 \) gives the non-dimensional system of equations

\[
\frac{dU}{dt} = \omega U - UV, \tag{5.4} \\
\frac{dI}{dt} = UV - I, \tag{5.5} \\
\frac{dV}{dt} = -\chi V + I, \tag{5.6}
\]

where \(\omega = r / d_1 \) and \(\chi = d_V / d_1 \), and the scaled variables are

\[
U = \frac{u}{k_1} = \frac{\alpha \beta}{d_1} u, \\
I = \frac{i}{k_2} = \frac{\alpha \beta}{d_1} i, \\
V = \frac{v}{k_3} = \frac{\beta}{d_1} v, \\
t = \frac{\tau}{k_4} = d_1 \tau.
\]

For all numerical simulations, the state variables are scaled by the initial conditions: i.e. \(U / U(0), I / I(0) \) and \(V / V(0) \).

This model pertains to an idealised situation of homogeneous tumour properties and virus spread. It is well documented that oncolytic virotherapy can fail due to intratumoural obstructions (such as the extracellular matrix) pressure and impermeable veins \([\text{Ariffin et al.}, 2014] \). To investigate conditions driving tumour extinction based solely on the mean-field virus-tumour interaction, spatial obstacles that may inhibit treatment efficacy are ignored. In Chapter 8 these obstacles are modelled and discussed in more detail.
5.1 Bifurcation and local-stability analysis for minimal mean-field model

5.1.1 Local stability analysis

While parameter estimates for tumour cell replication, viral decay, and viral infectivity are readily available in the literature, see Komarova and Wodarz (2010); Titze et al. (2017), they represent only one adaptation of the tumour-virus interaction. In this section, a detailed local stability analysis is used to quantify how the system behaves under various tumour and virus characteristics and determine the possible treatment outcomes.

5.1.1.1 Equilibrium solutions

The equilibria for the non-dimensionalised system Eqs. (5.4)-(5.6) is given by

\[U = 0, \quad I = 0, \quad V = 0, \quad \text{and} \]
\[U = \chi, \quad I = \chi \omega, \quad V = \omega. \]

For the specific case of \(\chi = 0 \) or \(\omega = 0 \), two more equilibria exist. For \(\chi \) to be equal to zero, \(dV = 0 \), i.e. viral particles are not decaying. Biologically, this represents the case when the virus is not cleared by the immune system. The resulting equilibrium for \(\chi = 0 \) is \(U = 0, I = 0 \) and \(V \in \mathbb{R} \).

Similarly, when \(\omega = 0, \tau = 0 \), i.e. tumour cells are not replicating. This can be thought of biologically as a stagnant or non-growing tumour. The oncolytic viruses will, therefore, only be removing existing tumour cells. The resulting equilibrium at \(\omega = 0 \) is at \(I = 0, V = 0 \) and \(U \in \mathbb{R} \). Therefore, there are four equilibria in total, two of which only exist for the specific cases \(\chi = 0 \) or \(\omega = 0 \).

5.1.1.2 Stability of the equilibrium at the origin: \(U = 0, I = 0, V = 0 \)

To achieve complete tumour eradication in the model, the equilibrium at the origin must be stable. Evaluating the Jacobian of the non-dimensionalised model at the equilibrium at the origin gives the following eigenvalues:

\[\lambda_1 = \omega, \quad \lambda_2 = -1, \quad \lambda_3 = -\chi. \]
Thus, the equilibrium is a stable node for $\chi \geq 0$ and $\omega \leq 0$ and a saddle point for all other regions in the parameter space, as summarised in Fig. 5.3.

![Figure 5.3: Stability of the equilibrium at the origin as a function of the (ω, χ)-parameter space. The shaded region of the parameter space represents the (ω, χ)-parameter set corresponding to a stable node at the origin. First published in Jenner et al. (2018c).](image)

![Figure 5.4: Numerical simulation of the non-dimensionalised model, Eqs. (5.4)–(5.6), for the parameter regime where the equilibrium at the origin is stable. The time-series model solution, (a), and 3-D model curve, (b), are plotted for parameter values $\omega = 0$ and $\chi = 0.1$, and initial conditions $U = 0.4$, $I = 0$ and $V = 0.1$. The green asterisk represents the stable equilibrium at the origin. First published in Jenner et al. (2018c).](image)

Biologically, both ω and χ need to be non-negative real numbers. As such, the reasonable parameter values resulting in a stable node at the origin are $\omega = 0$ and $\chi \geq 0$. When $\omega = 0$, there is no tumour growth, i.e. $r = 0$, and there is a benign tumour or a
malignant tumour growing at a negligible rate. Fig. 5.4 shows a numerical simulation of Eqs. (5.4)-(5.6) for typical parameter values that result in a stable node at the origin: all tumour cells and virus particles die out over time, achieving complete tumour eradication.

5.1.1.3 Stability of the non-zero equilibrium: $U = \chi, I = \chi \omega$ and $V = \omega$

Evaluating the Jacobian for the non-dimensionalised model at the non-zero equilibrium $U = \chi, I = \chi \omega$ and $V = \omega$, gives the characteristic equation:

$$\rho(\lambda) = -\lambda^3 - (1 + \chi)\lambda^2 - \chi \omega.$$ \hfill (5.9)

The eigenvalues corresponding to the non-zero equilibrium are the roots of the characteristic equation, Eq. (5.9). The position and nature of the stationary points of the characteristic equation are used to deduce the sign and number of real roots of Eq. (5.9). See Fig. 5.5 for a more detailed explanation.

Stationary points of the characteristic equation, Eq. (5.9), occur for two values of λ:

$$\lambda_1^* = 0, \quad \lambda_2^* = -\frac{2}{3}(1 + \chi).$$

The first stationary point listed, λ_1^*, is fixed on the vertical axis $\lambda = 0$. The corresponding value of the characteristic equation at the stationary point λ_1^* is $\rho(\lambda_1^*) = -\chi \omega$. The second derivative at the stationary point λ_1^* is $\rho''(\lambda_1^*) = -2(1 + \chi)$. Therefore the stationary point at λ_1^* is a minimum for $\chi < -1$ and a maximum for $\chi > -1$. This is summarised in Fig. 5.6(a) along with the sign of $\rho(\lambda_1^*)$.

The location of the second stationary point, λ_2^*, depends solely on the value of χ, i.e. for $\chi < -1$ it is positive and for $\chi > -1$ it is negative. The value of the characteristic polynomial at λ_2^*:

$$\rho(\lambda_2^*) = -\frac{4}{27}(1 + \chi^3) - \chi \omega,$$

determines the nature of the stationary point, summarised in Fig. 5.6(b).

The Routh-Hurwitz criterion (for details see Section 3.5.1) is used to determine whether there exists a ω, χ combination resulting in stable solutions, i.e. all roots of
Figure 5.5: All possible cubics for the characteristic function in Eq. (5.9). Collection of the possible shapes displayed by the cubic determining the sign and nature of the eigenvalues for the non-zero equilibrium: $U = \chi, I = \chi \omega, V = \omega$. The values of λ for which the characteristic function has stationary points are λ_1^* and λ_2^*. First published in Jenner et al. (2018c).

The characteristic equation having negative real part. The Routh-Hurwitz stability criterion is a necessary and sufficient condition for the stability of a linear time invariant control system. For the Routh-Hurwitz criterion to be satisfied $\chi \omega$ needs to both less than and greater than zero, which gives a contradiction. As such, there is no set of χ and ω that will result in all roots of the characteristic equation where the real parts are negative and, therefore, the non-zero equilibrium will always be unstable.

The sign of the eigenvalues for the non-zero equilibrium, and hence the nature of the non-zero equilibrium, are determined by the position of the two stationary points λ_1^* and λ_2^* in the $(\lambda, \rho(\lambda))$-plane, refer to Fig. 5.5 The nature of the equilibrium for each region of the (ω, χ)-parameter space is plotted in Fig. 5.7 There are three possible values of the non-zero equilibrium: an unstable focus node, a saddle focus and a saddle. For biologically reasonable parameters, $\omega > 0$ and $\chi > 0$, there is a saddle focus,
Figure 5.6: The nature of the stationary points λ^*_1, (a), and λ^*_2, (b), as functions of the (ω, χ)-parameter space. In all figures the shaded regions represent a maximum and the white regions represent a minimum. The sign of the characteristic equation $\rho(\lambda)$ is noted as a function of the (ω, χ)-parameter space at the stationary point λ^*_1, (a), and λ^*_2, (b). Additionally, in (b), positive λ^*_2 occurs in the white shaded and negative λ^*_2 occurs in the blue shaded regions. First published in Jenner et al. (2018c).

which consists of one negative real eigenvalue and a pair of complex eigenvalues with positive real parts.

Figure 5.7: The nature of the non-zero equilibrium as a function of the (ω, χ)-parameter space. The three shaded regions correspond to the three possible equilibrium stabilities: unstable focus node, saddle focus and saddle. First published in Jenner et al. (2018c).

To illustrate the behaviour of the saddle focus, the numerical solution to the model, Eqs (5.4)-(5.6), is plotted in Fig. 5.8 for initial conditions close to the non-zero equilibrium. For biologically reasonable parameters there are growing oscillations in all of the
variables for the first 30 days of the oncolytic virus tumour interaction, illustrating that this regime of the virus-tumour interaction does not result in tumour eradication.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5_8.png}
\caption{Numerical simulations of the non-dimensionalised model, Eqs. (5.4)-(5.6), for $\chi = \omega = 0.5$. The time-series, (a), and 3-D solution curve, (b), are plotted for initial conditions $U = 0.4$, $I = 0.0243$ and $V = 0.56$. The asterisks represent the equilibrium at the origin (green) and the non-zero equilibrium (purple). First published in Jenner et al. (2018c).}
\end{figure}

Note that the choice of scaling for U, I and V corresponds to the proportion of the initial amount of those populations. As such $U = 1$, $V = 1$ and $I = 1$ indicates the cell and virus amounts present initially in the dimensional system of Eqs. (5.1)-(5.3).

5.1.2 One-parameter bifurcation analysis

To determine how the value of the equilibrium solutions change to variations in the virus and tumour characteristics, a bifurcation analysis of the non-dimensionalised model was conducted. In Fig. 5.9, the branches of equilibria were plotted for $\chi = 0.1$. Given that $\omega > 0$, both equilibria are unstable, as previously illustrated in the local stability analysis. The effect of changing χ is that as χ approaches zero from above, the non-zero equilibrium value for U and I decreases and the value for V remains constant, while the stability of the equilibria stays the same (not plotted).

In Fig. 5.9(a), at $\omega = 0$ there is a zero eigenvalue on the branch of equilibria labelled B2 (i.e. the axis $U = 0$). As such, between the two branch points (BP1 and BP2) and below the branch point at the origin (i.e. BP1), there are two eigenvalues with negative
5.1 Bifurcation and Local-Stability Analysis for Minimal Mean-Field Model

Figure 5.9: One-parameter bifurcation plot for (a) U and (b) V as functions of ω with $\chi = 0.1$. A solid line represents a stable branch and a dotted line represents an unstable branch. A branch point is labelled BP. The equilibrium branches have been labelled B_0, B_1 and B_2 for referencing. First published in Jenner et al. (2018c).

Figure 5.10: Numerical simulations for the non-dimensional model for $\chi = 0.1$ and $\omega = 0$. The time-series, (a), and 3-D solution curve, (b), are plotted for initial conditions $U = 0.15$, $I = 0$ and $V = 0.1$. The green asterisk represents the equilibrium at the origin and the purple asterisk represents the non-zero equilibrium $U = \chi$, $I = \chi \omega$, $V = \omega$. First published in Jenner et al. (2018c).

real part and one zero eigenvalue. Above BP_2 there is one eigenvalue with negative real part, one eigenvalue with positive real part and one zero eigenvalue. Therefore branch B_2 has a two dimensional manifold that is stable below BP_2 and a one-dimensional stable manifold above BP_2. To illustrate the behaviour of this branch, in Fig. 5.10 a numerical simulation was presented for Eqs. (5.4)-(5.6) when $\omega = 0$ and $\chi = 0.1$.
Recall that this case represents a non-growing tumour so treatment will only amount to eradicating already existing cells. The model solution tends to a stable fixed point where \(I = V = 0 \) and \(U \approx 0.02 \).

From the analysis in Fig. 5.3 and 5.4 for \(\omega = 0 \) (i.e. a static tumour) the equilibrium at the origin is also stable. This means, in general, that there is a set of initial conditions that will tend to the origin and a set of initial conditions that will tend to a non-zero fixed point for \(\omega = 0 \) and \(\chi \geq 0 \) (the case when the tumour cells are not replicating). In Fig. 5.11, the solution curves for the model were plotted for a fixed \(\chi = 0.1 \) and \(\omega = 0 \), and a range of initial conditions. For a subset of initial conditions in the parameter space, the resulting stable equilibrium is non-zero for the uninfected tumour cells. This occurs for small values of initially infected cells, \(I \), and virus particles, \(V \), and is a subset of the (larger) basin of attraction of the portion of branch \(B_2 \) between \(BP_1 \) and \(BP_2 \).

Figure 5.11: Numerical solution curves for the non-dimensional model for a range of initial conditions. The colour of the line corresponds to the equilibrium value for \(U \), labelled \(U_{tf} \). First published in Jenner et al. (2018c).

An interesting case occurs when \(\chi = 0 \), representing a virus decay rate of zero, i.e. the virus is not cleared from the tumour site. In Fig. 5.12, the numerical model solution for \(\chi = 0 \) and \(\omega \geq 0 \) is shown. Note that the uninfected and infected tumour populations are quickly eradicated whilst the virus population tends to a non-zero fixed point. This corresponds to the branch of stable equilibria at \(U = I = 0 \) and \(V \in \mathbb{R} \) (see Section 5.1.3). While the virus population is still non-zero in this situation, the tumour populations have been eradicated and, therefore, this is a positive outcome for oncolytic virotherapy. This result is interesting, as it says that if it were possible
5.1 BIFURCATION AND LOCAL-STABILITY ANALYSIS FOR MINIMAL MEAN-FIELD MODEL

5.1.3 Incomplete eradication and long-period orbits

The goal of the previous section was to determine whether there was a parameter regime that would result in complete tumour eradication. Unfortunately, since the equilibrium at the origin is unstable for $\chi > 0$ and $\omega > 0$, tumour eradication cannot be achieved for a growing tumour and decaying virus. However, numerically simulating Eqs. (5.4)-(5.6) for a long time period shows the existence of stable long-period orbits, see Fig. 5.13. These orbits could be indicating that, in the limit for $\chi \to 0^+$, the system shows a quasi-homoclinic state. By simulating the non-dimensionalised system for three biologically reasonable initial conditions, time-series and phase portraits were produced for a range of parameter values. It is clear from Fig. 5.13 that the lower the value of χ or ω, the closer the orbit gets to the long-period orbit state.

To quantify the dependence of the orbits on the parameter values, the amplitude and period were numerically calculated as a function of χ and ω in Fig. 5.14. The period

Figure 5.12: Numerical simulations for the non-dimensional model for $\chi = 0$ and $\omega = 0.1$. The time-series (a), and 3-D solution curve (b), are plotted for initial conditions $U = 0.5, I = 0.05$ and $V = 0.2$. The green asterisk represents the equilibrium at the origin and the purple asterisk represents the non-zero equilibrium $U = \chi, I = \chi \omega, V = \omega$. First published in Jenner et al. (2018).
Figure 5.13: Numerical simulations of the non-dimensionalised model in Eqs. (5.4)-(5.6). For $\omega = 0.1$ and $\chi = 0.01$ (a)-(b), for $\omega = 0.06$ and $\chi = 0.01$ (c)-(d) and for $\omega = 0.06$ and $\chi = 0.001$ (e)-(f). Each coloured line represents a different initial condition: $U = 0.9, I = 0, V = 0.5$ (green), $U = 0.8, I = 0, V = 0.1$ (red) and $U = 0.15, I = 0, V = 1$ (blue). Long-period orbit attractors are black dotted curves. After a transient, all shown orbits appear to collapse onto the attractor. First published in Jenner et al. (2018c). Note the different scales in the plots.
between oscillations has been calculated as a function of χ (i.e.: d_V/d_1, the ratio of viral death to cell burst rate) and ω (i.e.: r/d_1, the ratio of tumour cell replication to cell burst rate), see Fig. 5.14(a). Decreasing χ and increasing ω results in a longer period of time between the oscillations. Therefore, a slower growing tumour relative to cell burst rate would produce longer intervals of no growth between its rapid burst-like growths. Equivalently, a more rapid clearance of the viral particles relative to cell burst rate would result in longer periods between the oscillations. This can happen when the immune system has a strong response to the presence of an oncolytic virus.
The role of the immune system in oncolytic virotherapy is explained in more detail in Chapter 6 and 7.

Fig. 5.14(b)-(d) shows how the amplitude of the oscillation depends on χ and ω. There is an inverse relationship between the amplitude of the oscillation for uninfected tumour cells, U, and the amplitude of oscillation for infected tumour cells, I, and virus particles, V. Increasing ω results in a lower amplitude for U, and a larger amplitude for I and V. Improving treatment correlates to obtaining the lowest possible tumour population and therefore the lower the amplitude of the uninfected tumour cells close to the long-period orbit state, the more effective the treatment.

5.2 Analysis of an Extended Model for Oncolytic Virotherapy

The dimensional model in the previous Section 5.1 can be extended to consider how the outcome of oncolytic virotherapy may vary when more complex modelling terms for tumour growth and virus-infection are used. In Eqs. (5.1)-(5.3), an aggressively growing tumour was modelled; however, in vivo tumour growth is controlled by nutrient and spatial limitations. As such, tumour growth naturally grows towards a carrying capacity (Section 2.2.2). To account for this, the Gompertz function is now used to model tumour growth, i.e. $g(u) = r \log(\frac{L}{u})u$, where L is the carrying capacity of the tumour and r is the proliferation constant, see Section 3.2.1.

The rate at which virus particles infect tumour cells depends on a number of factors. In the model outlined in Section 5.1, the rate of infection was assumed to be proportional to the number of virus particles and uninfected tumour cells. It is also common in epidemic modelling to consider that virus infection occurs at a frequency dependent rate, where the likelihood of a virus infecting a tumour cell depends on the number of tumour cells available to infect. In this case, viruses are modelled as being sufficiently close to the tumour, so that the infection rate is dominated by the number of viral particles and the occurrence of uninfected cells in the overall tumour mass. An example of this modelling term is in [Kim et al. (2015)]'s model for the effectiveness of an oncolytic virus expressing 4-1BBL and IL-12, Eqs. (3.17)-(3.21).
To model the virus infection, a frequency-dependent function, rather than a simple mass-action term, is now introduced: virus particles at the tumour site infect susceptible tumour cells according to the expression \(\frac{\beta uv}{u + i} \), where \(\beta \) is the infectivity rate.

\[\frac{du}{d\tau} = r \ln \left(\frac{L}{u} \right) u - \frac{\beta uv}{u + i}, \]
\[\frac{di}{d\tau} = \frac{\beta uv}{u + i} - d_i i, \]
\[\frac{dv}{d\tau} = -d_v v + \alpha d_i i. \]

Figure 5.15: Flow diagram for the interaction between a population of uninfected tumour cells, \(U \); virus-infected tumour cells, \(I \); and virus particles, \(V \). The diagram lists parameters relating to the original model Eqs. (5.10)-(5.12), in grey boxes and parameters relating to the non-dimensional form of the model, Eqs. (5.13)-(5.15), in blue boxes. First published in Jenner et al. (2019).

Introducing these new assumptions for the tumour growth rate and virus-infection rate into the equivalent terms in Eq. (5.1)-(5.3) gives the following system of equations:

Fig. 5.15 depicts the flow diagram of the three populations described in the Eqs. (5.10)-(5.12). To arrive at a scaled version of the system, consider the units of state variable...
v and the parameter α: \([v] = \text{# virions} \), \([\alpha] = \text{# virions per cell} \). So, v can be re-scaled to give:

\[
\hat{v} = \frac{v}{\alpha}
\]

\[
[\hat{v}] = \frac{[v]}{[\alpha]} = \frac{\text{# virions}}{\text{# virions per cell}} = \text{# cells},
\]

which represents cell numbers, like \(u \) and \(i \) for the tumour. Substituting this re-scaled variable into the model gives:

\[
\frac{du}{d\tau} = r \ln \left(\frac{L}{u} \right) - \beta \alpha u \hat{v}\frac{u}{u+i},
\]

\[
\frac{di}{d\tau} = \beta \alpha u \hat{v}\frac{u}{u+i} - d_i i,
\]

\[
\frac{d\hat{v}}{d\tau} = d_i i - d_V \hat{v}.
\]

To eliminate time, \(\beta \) is used to rescale \(\tau \). The units of \(\beta \) are

\[
[\beta] = \frac{1}{\text{# virions per unit time}},
\]

so for \(\hat{\beta} = \beta \alpha \), the units of \(\hat{\beta} \) would be \([\hat{\beta}] = 1/\text{time} \). Scaling time by \(\hat{\beta} \) gives \([t] = [\hat{\beta}] [\tau] \) and the system of equations can now be rewritten for the independent dimensionless variable \(t \):

\[
\frac{dU}{dt} = m \ln \left(\frac{L}{U} \right) - \frac{UV}{U+I}, \quad (5.13)
\]

\[
\frac{dI}{dt} = \frac{UV}{U+I} - \xi I, \quad (5.14)
\]

\[
\frac{dV}{dt} = \xi I - \gamma V, \quad (5.15)
\]

where \(m = \frac{r}{\hat{\beta}} \), \(\xi = \frac{d_i}{\hat{\beta}} \), \(\gamma = \frac{d_V}{\hat{\beta}} \) and \(\hat{\beta} = \beta \alpha \) are dimensionless parameters, and \(t \) represents a dimensionless time, with \(t = \hat{\beta} \tau \). Note that the state variables are now \(U, I \) and \(V \), which have units \# cells. The three parameters \(m, \xi \) and \(\gamma \) that regulate the behaviour of the system represent tumour growth, tumour cell death and viral decay, respectively. As a result of the non-dimensionalisation process, where parameters are all scaled by the infectivity rate, the rate of conversion of uninfected cells \(U \) to infected cells \(I \) due to the viral load \(V \), i.e. the term \(\pm \frac{UV}{U+I} \), is not affected by any parameter.
Similar models to Eqs. (5.13)-(5.15) were discussed in Chapter 3, see Eqs. (3.1)-(3.3), Eqs. (3.13)-(3.16) and Eqs. (3.17)-(3.21). While similar, none of these models considered a growth term with a carrying capacity (logistic or Gompertz) combined with a frequency-dependent infection term as is the case in Eqs. (5.13)-(5.15).

5.2.1 Local stability analysis

Similar to the analysis in Section 5.1.1, a local stability analysis of Eqs. (5.13)-(5.15) shows a number of interesting results. Of particular relevance is the existence of a stable equilibrium corresponding to eradication, which is characterised by a singular Jacobian matrix. This solution can coexist with other equilibria, for example a stable focus or a stable node, which correspond to incomplete eradication of the tumour. In Section 5.2.2 this occurrence is shown to give rise to bistability for some biologically relevant parameter ranges.

5.2.1.1 Equilibrium solutions

Setting the right-hand-side of Eqs. (5.13)-(5.15) to zero, three equilibria are found: (a) a solution at a value for the uninfected cells equalling the carrying capacity, indicating a treatment with no effect; (b) a non-zero solution representing incomplete eradication, characterised by a quiescent tumour despite the viral load being constant and non-zero; and (c) an equilibrium at the origin corresponding to complete eradication of the tumour (in the limit as all three variables go to zero). The populations corresponding to such cases are

(a) \[U = L, \quad I = 0, \quad V = 0; \]

(b) \[U = L \exp \left(\frac{\xi}{m \gamma} (\gamma - 1) \right) = U^*, \quad I = \frac{L}{\gamma} (1 - \gamma) \exp \left(\frac{\xi}{m \gamma} (\gamma - 1) \right) = I^*, \]
\[V = \frac{L \xi}{\gamma^2} (1 - \gamma) \exp \left(\frac{\xi}{m \gamma} (\gamma - 1) \right) = V^*; \]

(c) \[U = 0, \quad I = 0, \quad V = 0. \]
The Jacobian of the system is given by

\[
J = \begin{pmatrix}
 \frac{m \ln \left(\frac{L}{U} \right) - m - \frac{VI}{(U + I)^2}}{VI} & \frac{UV}{(U + I)^2} & -\frac{U}{(U + I)} \\
 \frac{VI}{(U + I)^2} & -\xi - \frac{UV}{(U + I)^2} & \frac{U}{U + I} \\
 0 & \xi & -\gamma
\end{pmatrix}, \quad (5.16)
\]

and the character of the eigenvalues for the above equilibria is discussed below.

5.2.1.2 (a) Stability of ineffective treatment equilibrium: \(U = L, I = 0, V = 0 \)

The first equilibrium (a) corresponds to a failed treatment where uninfected tumour cells \(U \) grow to the system’s carrying capacity \(L \) and no viral particle survives. Evaluating the Jacobian at this point gives

\[
J = \begin{pmatrix}
 -m & 0 & -1 \\
 0 & -\xi & 1 \\
 0 & \xi & -\gamma
\end{pmatrix},
\]

which gives rise to the characteristic equation

\[
\rho(\lambda; m, \gamma, \xi) = -(\lambda + m) \left(\lambda^2 + (\xi + \gamma)\lambda + \xi(\gamma - 1) \right). \quad (5.17)
\]

For a non-zero tumour growth \(m > 0 \), the overall stability of this equilibrium depends on the roots \(\lambda_2 \) and \(\lambda_3 \) of the quadratic factor, because the root \(\lambda_1 = -m \) of the linear factor is negative. After calculating \(\lambda_2 \) and \(\lambda_3 \), the equilibrium is found to be either a stable node or stable focus when \(\xi + \gamma > 0 \) and \(\xi(\gamma - 1) > 0 \). Since the parameter values in this model are considered to be always positive, the first condition holds. The second condition implies that, if \(\gamma < 1 \), the equilibrium is unstable, and vice versa for \(\gamma > 1 \).
5.2.1.3 (b) Stability of partial eradication solution: $U = U^*, I = I^*, V = V^*$

The model emits a second, non-zero equilibrium where a small tumour mass coexists with virus particles. The characteristic equation for this solution, after substituting U^*, I^*, V^* in the Jacobian, is given by

$$\rho(\lambda; m, \gamma, \xi) = -\lambda^3 - \lambda^2(\gamma + m + \xi) + \lambda \left(\gamma m(\xi - 1) + \frac{\xi^2}{\gamma} - \xi(2m + \xi)\right) + \gamma m \xi (\gamma - 1).$$

(5.18)

For this cubic, the Routh-Hurwitz criterion, in particular the Routh array method (see Section 3.5.1), is used to deduce the parameter values that produce three roots with negative real parts. This criterion states that, given a general cubic of the form $\rho(\lambda) = a_0 \lambda^3 + a_1 \lambda^2 + a_2 \lambda + a_3$, two conditions need to be met simultaneously for all roots to have negative real parts, i.e.

(i) $\frac{a_1 a_2 - a_0 a_3}{a_1} < 0$ and (ii) $a_3 < 0$

with, in this case, $a_0 = -1$, $a_1 = - (\gamma + m + \xi)$, $a_2 = \left(\gamma m(\xi - 1) + \frac{\xi^2}{\gamma} - \xi(2m + \xi)\right)$ and $a_3 = \gamma m \xi (\gamma - 1)$. Condition (ii) is easily satisfied for $0 < \gamma < 1$, given that all parameters are assumed to be positive. Condition (i) requires that $a_1 a_2 > a_0 a_3$, since $a_1 < 0$. The region in the ξ, m, γ parameter space that satisfies this condition can be numerically computed and is depicted in Fig. 5.16(a). Using the discriminant of Eq. (5.18) and imposing the appropriate conditions, subsections of the region corresponding to a stable node or stable focus are illustrated in Fig. 5.16(b) and (c). Note that all regions are smooth and connected.

It is also interesting to consider which parameter regimes result in a low tumour burden (or threshold) U_T. To visualise how the value of the equilibrium U^* changes as a function of parameter values, the regions of parameter space satisfying the following equality for a given threshold U_T can be computed using:

$$\xi = \frac{m}{\gamma - 1} \ln \left(\frac{U_T}{L}\right).$$

(5.19)
Figure 5.16: Regions representing the stability of the nonzero equilibrium, (a)-(c), and the influence of system parameters on tumour cell numbers at the equilibrium value U^*. Note that carrying capacity is chosen as $L = 100$. In (a), the section of parameter space where the non-zero equilibrium is stable is shown. Note that (b) represents the volume in (ξ, m, γ) giving rise to a stable node solution for the equilibrium (U^*, I^*, V^*), whereas (c) is the section for a stable focus. Combining the regions in (b) and (c) gives the volume in (a). Plot (d) is the stable parameter space for different values of U^*, within the following intervals: orange for $20 < U^* < 25$, yellow for $35 < U^* < 40$, green for $50 < U^* < 55$ and blue for $65 < U^* < 70$. Note that these “slices” are almost symmetrical. First published in Jenner et al. (2019).

Plots for four different U_T, varying within intervals, are shown in Fig. 5.16(d). For convenience, the value for L was set as $L = 100$ and fixed for all the remaining analysis. The regions are roughly symmetric, with parameter γ being the major contributor to changes in U^* values. For example, when $\gamma \lesssim 0.5$, there is a set of ξ and m values
resulting in $20 \lesssim U^* \lesssim 25$. Since m represents the growth rate of tumours and U^* is mostly insensitive to its variations, the analysis indicates that a value of ξ (the lysis rate) can always be chosen to decrease the volume of the tumour, so long as the decay rate γ is low (i.e. the virus does not decay too quickly). This suggests that, irrespective of how aggressive the tumour is growing, it can be stabilised when the virus is able to induce lysis slowly and additionally avoids clearance.

5.2.1.4 (c) Stability of full eradication solution: $U = 0, I = 0, V = 0$

The last equilibrium of the model represents the case of complete eradication, where all variables are zero. As anticipated, the Jacobian is singular due to the presence of logarithmic and rational terms in U and $(U + I)$ respectively. An analytical treatment of the Jacobian is not possible and, in particular, the presence of logarithmic terms $m \ln(L/U)$ is not treatable with straightforward expansions for $U \to 0$. A different approach based on numerical integration and computation of eigenvalues, under specific assumptions on U, I and V, is instead used to discuss the possibility of this being a steady-state solution in the next section.

From the biological point of view, it is important to note that the Gompertz function does not represent a mechanistic model of growth and does not describe how a tumour proliferates from first principles. It is instead mostly employed as a fitting curve that describes the size of a growing tumour over time. Further, a value of uninfected tumour cells $U = 1$ equates, in this model, to a tumour volume of 1 mm^3, i.e. roughly corresponding to 10^6 cells. In the simulated time series presented and when the eigenvalues of the Jacobian have been computed, U is always treated as being zero for values $U << 10^{-6}$, which effectively represents the case when tumour cells have been thoroughly eradicated.

As far as the equilibrium’s stability is concerned, the eradication solution can be stable or unstable, depending on the value of model parameters. As a general rule, it is observed that parameter sets where ξ is high, corresponding to a fast infected cell death rate, tend to yield a stable equilibrium as long as the viral decay rate γ is not excessive. This suggests that the engineered virus has to induce infected cell death quickly, whilst also being sufficiently resilient: one characteristic alone is not
sufficient. If, for example, the infected cells die at rate \(\xi \) and the virus dies too fast, then the equilibrium turns into an unstable point and no eradication is possible. A clear picture of how eradication depends on viral characteristics will emerge with the aid of bifurcation plots, which are discussed in the next section.

5.2.2 Characteristic dynamical regimes

The model supports a number of dynamical regimes that represent interesting long-term possible outcomes of oncolytic virotherapy. In Fig. 5.17, four distinctive behaviours associated with the equilibria previously described are presented. Case (1) is an example of an equilibrium solution where the virus co-exists with uninfected and infected tumour cells, i.e. equilibrium (b): \(U = U^*, V = V^* \) and \(I = I^* \). The time series is for an attracting node, but similar long-term dynamics exist for the case of an attracting focus, with the only difference being an initial, oscillatory transient that then dampens to a plateau. Note how the uninfected cells \(U \) are the first to reach the equilibrium \(U^* = L \exp\left(\frac{\xi}{m \gamma} (\gamma - 1) \right) \), which corresponds, for the chosen parameters, to \(U^* \approx 40.65 \). This behaviour, under the right parameter perturbation, can transition into stable oscillatory dynamics, visible in Case (2).

Case (2) shows stable oscillations, characterised also by a quiescent phase where the system variables are close to zero and periods of growth and decay of cells and virus exist. Generally, it is observed that this refractory state tends to have a longer duration than the active phase. Also, in this case, the uninfected cells \(U \) are the first to grow, with a subsequent increase in the infected cells \(I \) and then in the virus load \(V \). The duration of the rest and active phases of oscillations depends on the system parameters and changes continuously from Case (2) to the limiting Case (3) (illustrated with a bifurcation analysis in the following section).

Case (3) is an extreme scenario where the system oscillates between two long plateaus of quasi-complete eradication (i.e. \(U = I = V \approx 0 \)) and quasi-ineffective treatment (i.e. \(U \approx L = 100, I = V \approx 0 \)). The inset shows the “square wave” appearance of the system’s trajectories on a long time scale, whereas the switch from the two states is illustrated in the main figure, showing how the growth in \(I \) and \(V \) causes the uninfec-
ted cell numbers to decrease. It is important to note that the system cannot stabilise on either equilibria, because both equilibria are unstable (illustrated with a bifurcation analysis in the following section).

In Case (3) there are long periods where the tumour is practically undetectable, followed by a rapid instantaneous increase to the tumour carrying capacity, where the tumour stabilises for a period of time, followed by a rapid reduction to an undetectable tumour. These dynamics could be explained by the presence of two or three different time scales. Biologically this is plausible as the infection and lysis of cancer cells can occur at a different time scale to the replication of cancer cells. A suitable rescaling of the mode would introduce a small parameter which in theory could reduce the model to a simpler system. Future work will investigate this; however for this thesis the full model is used as in the following chapter it will be optimised to experimental data.

Finally, a complete eradication solution is depicted in Case (4). Although, for the chosen initial conditions and parameters, the model shows a monotonic decline to zero for U, other examples have been found where U first shows a maximum, followed by an exponential decrease. Also in this final case, as for the other three scenarios just discussed, observe that U is the fastest to reach its equilibrium value, with I and V following.

To appreciate where these regimes occur and how the parameters influence their existence, two bifurcation plots with respect to system variables ξ and γ versus U are presented in Fig. 5.18. In both plots, stable branches are indicated with continuous lines, whereas unstable ones are dashed. The two black branches at $U = 0$ and $U = L = 100$ indicate the full eradication and failed treatment solutions, respectively. The red line indicates the partial eradication case, where a non-zero value for the tumour volume and the viral load is present. Numbers point to areas where the typical dynamics just discussed in Fig. 5.17 can be found.

For the case of a codimension one plot with respect to ξ (Fig. 5.18(a)), two branch points are present: one at $U = 100$ and $\xi = 0$, where the partial eradication solution coalesces with the failed treatment case, and a second at $U = 100$ and $\xi \approx 0.098$ where the oscillatory, stable branch (green line) terminates. For this second branch, AUTO was unable to conclusively determine whether these were branch points, the software
Figure 5.17: Numerical simulations of Eqs. (5.13)-(5.15) demonstrating different types of dynamics, for initial conditions $U(0) = 50, I(0) = 10, V(0) = 10$ and fixed parameters $m = 0.1, \gamma = 0.1$, with values for ξ increasing from Case (1) to Case (4). Type (1) corresponds to a stable co-existence of virus and tumour due to incomplete eradication, occurring at $\xi = 0.01$, (2) depicts a stable oscillatory solution for $\xi = 0.06$, (3) shows stable long-period oscillations of “square wave” shape for $\xi = 0.097$ and (4) is a case of complete eradication for $\xi = 0.12$. Note that the carrying capacity is chosen as $L = 100$. First published in Jenner et al. (2019).

indicated it was a bifurcation point and that there was a switch between the two stabilities of the branch. This branch originates from a supercritical Hopf bifurcation (HB), which causes the initial partial eradication branch to lose its stability. Note how, at this value of ξ, a change in the stability of the eradication solution $U = 0$ (black line) also occurs, with a “pseudo” saddle-node bifurcation (SN) occurring and a stable, fully eradicating regime appearing for $\xi > \xi_{SN} \approx 0.098$. The saddle-node is considered as “pseudo” because the singularity of the Jacobian implies that one eigenvalue is infinite at the origin. So, for values of the system close to zero, but not strictly zero, a change of sign in the eigenvalues occurs in the neighbourhood of SN (explained below). This
eradication solution branch regains its stability at $\xi = 0$ through a second “pseudo” saddle-node bifurcation (SN). Note also that the partial and full eradication branches (i.e. red and black lines, respectively) do not intersect. Finally, note that solution for parameter values that are negative do not bear any biological value.

![Figure 5.18](image)

Figure 5.18: Examples of typical bifurcation plots in one parameter for the model, for (a) ξ, and (b) γ, both versus U. Circled numbers correspond to the dynamical regimes illustrated in Fig. 5.17 and, for the case of periodic orbits originating from a Hopf bifurcation, only the maximum value of U is shown. For (a), the other model parameter are $m = 0.1$, $\gamma = 0.1$. Note that the switch to Case (4) (complete eradication) occurs when the branch of periodic orbits (in green) ceases to exist, for a value $\xi \approx 0.098$. Similar results for a continuation in γ are shown in (b), with the switch to Case (4) dynamics also occurring in correspondence of a branch point for the periodic orbit, at $\gamma \approx 0.0103$. An inset with a magnification on the area that shows the richest dynamical variability is also shown. The value of the other, fixed parameters are given in this case by $m = 0.1$, $\xi = 0.01$. In both cases, solutions for negative ξ and γ have been included for reasons of consistency, but do not correspond to any biologically meaningful state. First published in [Jenner et al.](2019).

It is worth noting that, along the red branch of coexisting solutions, U can span a large range of values, with U increasing as the infected cell death rate ξ decreases. For example, close to the HB, which occurs at $\xi_{HB} \approx 0.042$, a partial eradication solution for $\xi = 0.04$ gives a tumour burden $U \approx 2$. Note also the extension of the plateau of the periodic branch (green) close to the $U = 100$ unstable equilibrium, before the branch point. This indicates that a “square wave” type of oscillation can be present for a moderately extended parameter interval in ξ.
Although not shown in the diagram, the switch between the node and the focus equilibrium typical of the partial eradication solution takes place along the red branch. For the chosen parameters in Fig. 5.18(a), this happens at $\hat{\xi} \approx 0.01675$, with focus’s existing for a value ξ such that $\hat{\xi} < \xi < \xi_{HB}$. Generally speaking and as shown in Fig. 5.16(b)-(c), the value at which the equilibrium type changes depends also on the other parameters m and γ of the model.

The system’s behaviour also shows a strong, nonlinear dependence on viral death rate γ, as illustrated in Fig. 5.18(b). With respect to the case of ξ, the sensitivity of the model to γ is somewhat reversed: intuitively, a surge in infected cell death ξ should act on the model in a similar way as a reduction in virus death rate γ and vice versa. For example, the branch of oscillatory solutions (green) out of the supercritical Hopf bifurcation (HB) shows an increasing maximum in U as γ decreases, opposite to what happens for ξ (see the inset, in particular).

The stable, impartial eradication solution branch (red) shows higher tumour volumes with increasing γ, and coalesces with the unstable $U = 100$ branch (in black) at $\gamma = 1$. For $\gamma > 1$, the ineffective treatment solution is stable, as previously found from the analysis of the characteristic equation corresponding to this solution, i.e. Eq. (5.17). A virus with a decay rate $\gamma > 1$ has no effect on the tumour. It is important to note that a mechanism identical to that observed in the bifurcation plot for ξ allows the existence of Case (4) solutions, i.e. complete eradication. At a value of $\gamma \approx 0.0103$, the inset shows the termination of the oscillatory solutions (in green) and the occurrence of a “pseudo” saddle-node point in the full eradication branch, making complete destruction of the tumour possible. From the biological perspective, this indicates that the right balance between the death rate of infected cells and the viruses mortality must be achieved for an eradication to occur, depending on the growth rate m of the tumour. In particular, as γ is increased from zero, the model goes from full eradication to oscillations with an amplitude that decreases with γ, and subsequently to incomplete eradication up until $\gamma = 1$.

As previously mentioned, the full eradication solution gives rise to a singular Jacobian, making a purely numerical approach to continuation impossible. For solutions where $U \neq 0$, results have been obtained by using AUTO (Doedel, 2007) and XP-
PAUT (Ermentrout, 2002) softwares. For the case of solutions occurring for $U = 0$, a combination of numerical methods and symmetry arguments have been employed. It is assumed that $U < I < V$, as exemplified by Case (4) shown in Fig. 5.17. If $\epsilon > 0$ and small, and it is imposed that $U \to e^n$, $V \to e^m$ and $I \to e^l$ with $n > m > l$, then the eigenvalues of the Jacobian in Eq. (5.16) can be numerically computed.

For example, in determining the stability of the full eradication branch in Fig. 5.18(a), the values $U = 10^{-7}$, $V = 10^{-5}$ and $I = 10^{-4}$ were substituted into the Jacobian in Eq. (5.16) and the eigenvalues were evaluated numerically. For $\xi > \xi_{SN} \approx 0.0975$, all three eigenvalues were negative and real, whereas for $\xi < \xi_{SN}$ two were positive and one was negative. For example, choosing $\xi = 0.095$ gave eigenvalues $\lambda_1 \approx -0.15$, $\lambda_2 \approx -0.06$ and $\lambda_3 \approx 8 \cdot 10^{-5}$. For the case $\xi = 0.099$, the first two eigenvalues were basically unchanged, but the last one changed sign and is $\lambda_3 \approx -2 \cdot 10^{-3}$. Similar results hold for the “pseudo” SN on the eradication branch for continuation in γ (see Fig. 5.18(b)), and the method is consistent for all the parameters m, γ and ξ tested (not all shown here). These results were also checked by integrating the equations of motion with XPPAUT, and confirming that the solution was indeed attracting when stable or repelling when unstable, as shown in the bifurcation diagrams. Numerical integration in most cases allows for the variables U, V and I to go to values as low as 10^{-20}.

One important feature of the model is that stable oscillations exist for some biologically meaningful combinations of parameters. There is evidence of oscillations in tumour size under treatment with an oncolytic virus occuring in vivo (Dingli et al., 2009). For some parameter choices, a different structure of bifurcation plots emerge, with significant consequences from the biological perspective. In this sense, a typical example for a continuation in ξ is illustrated in Fig. 5.19(a). An unstable periodic branch (green) originates from a subcritical Hopf bifurcation (HB) and maintains its unstable character until it collapses with the $U = L = 100$ (black) branch. For this diagram, viral decay γ is the same as in Fig. 5.18(b), but a value of $m = 0.5$ (moderately high growth rate) is chosen, whereas both previous diagrams in Fig. 5.18 have been obtained with $m = 0.1$ (moderate growth rate). A more aggressive tumour, assuming that the viral decay is the same, does not engage in oscillatory behaviour with the virus, but only partial or full eradication is possible (i.e. black and red lines).
As shown in Fig. 5.19(b), the “pseudo” saddle-node (SN) on the full eradication $U = 0$ branch (in black) occurs for a value ξ_{SN} that is less than the value ξ_{HB} at which the subcritical Hopf (HB) originates. This occurrence is due to the fact that the periodic branch shows increasing values of max U for decreasing values of ξ, when it is unstable. This is the opposite of what happens for the stable periodic branch described in Fig. 5.18(a), where $\xi_{HB} < \xi_{SN}$ and the stability of the eradicated solution does not switch in this way.

Figure 5.19: Bifurcation plots and bistable solutions for fixed parameter values $m = 0.5, \gamma = 0.1$. The rectangle in (b) shows the area where two solutions of different nature coexist, delimited by $\xi_{SN} \approx 0.1359$ and $\xi_{HB} \approx 0.1388$. A spiralling solution to an incomplete eradication is shown in (c) and occurs for initial conditions $U(0) = 60, I(0) = 10, V(0) = 40$, for a parameter $\xi_{SN} < \xi = 0.136 < \xi_{HB}$. A fully eradicated solution is shown in (d) and instead occurs for $U(0) = 40, I(0) = 10, V(0) = 5$, for the same value $\xi = 0.136$. Nullclines, i.e. the loci of points corresponding to $U' = 0$ and $V' = 0$, are in red and green. First published in Jenner et al. (2019).
The change in the order in which the SN and HB emerge as \(\xi \) is increased is responsible for the generation of a region of bistability, where two separate and distinct equilibria exist for an interval of infected cell death values. For values of \(\xi \) in this region, different initial conditions can lead to different outcomes, as shown in Fig. 5.19(c)-(d). The initial dosage of viral load and the numbers of infected and uninfected tumour cells can strongly influence the final fate of the system and, lead to somewhat unexpected results. In the first case (Fig. 5.19(c)), a spiralling solution achieves an incomplete eradication, which belongs to the red branch in Fig. 5.19(b). Conversely, the second case shows a complete eradication to a vanishing tumour, after traversing two maxima in \(U \) and \(V \) respectively, corresponding to the black branch in Fig. 5.19(b). A small variation in the initial conditions can hence result in the therapy being effective or instead giving rise to a partial eradication.

The existence of this area of bistability is associated with the presence of a subcritical Hopf bifurcation whose loci of points in \(\xi \) and \(m \), and for different values of \(\gamma \), are plotted in Fig. 5.20(a). Generalised Hopf points (GH) separate subcritical Hopf points (dashed lines) from supercritical Hopf bifurcations (continuous lines). For a revision on Generalised Hopf points see the works of Guckenheimer et al. (1984) and Kuznetsov (2013). Note that, if the growth \(m \) is sufficiently small, no Hopf bifurcation can be present and the system does not support oscillations, either stable or unstable. For example, as a result of the interruption of the Hopf branches shown in the inset of Fig. 5.20(a), any one-parameter bifurcation plot in \(\xi \) for a fixed \(\gamma = 0.1 \) and values of \(m \lesssim 0.008 \), does not contain a stable or unstable oscillatory branch, since no Hopf point exists for such values. Biologically this indicates that there is a lower bound on the tumour growth rate for oscillations (stable or unstable) to exist, implying that a very slow growth in general leads to a complete eradication for sufficiently high infected cell death rates, and so long as the viruses death rate is not excessively pronounced.

A numerical analysis of the model for a range of \(\xi, \gamma \) and \(m \) values shows that limit cycle amplitudes for \(U \) do not follow a clear pattern, as captured by Fig. 5.20(b). Oscillations of different amplitudes can be achieved by the system and depending on the growth rate of the tumour, they can be enhanced by increases in \(\xi \) and decreases in \(\gamma \) (see the bifurcation diagrams in Fig. 5.18). Large and small values of \(\gamma \) are qualitat-
ively the primary drivers of large amplitude stable oscillations. Also, there are visible large regions of the parameter space for which small oscillations in U can be achieved. These low oscillations are primarily achieved when the decay rate of the virus is low, suggesting that low tumour sizes can be achieved when the virus is decaying slowly.

\[\gamma = 0.10\]
\[\gamma = 0.20\]
\[\gamma = 0.05\]

![Graph](image)

Figure 5.2: Different, two-parameters continuations in (a) for m and ξ for branches of Hopf bifurcations at different values of γ. Branches of supercritical Hopf bifurcations are shown in continuous lines, whereas those for subcritical bifurcations are in dashed lines. Generalised Hopf points are indicated by GH. Note that the branches cease to exist for low values of (m, ξ), indicating the system cannot support either stable or unstable oscillations when parameters are sufficiently small (see the inset). Plot of the corresponding amplitude of stable limit cycles for points in the ξ, m, γ parameter space are in (b). The colour of the point corresponds to the maximal value of the amplitude of the limit cycle in U. First published in Jenner et al. (2019).

5.2.3 The effect of dosage applications and their optimisation

As shown, there are large sections of parameter space that give birth to regimes with dormant tumours or tumour-virus oscillations, which can give rise to different outcomes when coupled with clinical therapies. A typical treatment application protocol considered by experimentalists is constant dosages of virus via external intratumoural injections at given time intervals (Section 2.4.5). If the treatment is administered over
the course of \(n \) injections with \(\phi \) number of days between injections, a virus injection protocol \(u_V(t) \) can be summarised by the following generic schedule:

\[
u_V(t) = \begin{cases}
\frac{V_{T0}}{n} \delta(t - t_i) & t_i = (i - 1)\phi, \quad \text{where } i = 1, \ldots, n, \\
0 & \text{otherwise.}
\end{cases}
\] (5.20)

where \(V_{T0} \) is the total virus dosage and \(\delta \) is the delta function. This injection function is added into the \(\frac{dV}{dt} \) equation in Eqs. (5.4)-(5.6). To numerically simulate the model in Matlab, the model was implemented as an impulsive differential equation.

Given this simple scheme in Eq. (5.20), it was possible to consider how dosage perturbations affect regions of the bifurcation diagrams and whether they result in either tumour eradication or a stable tumour size below a given threshold. The two typical scenarios considered are oscillations and bistability.

5.2.3.1 Effects of injections on a stable, oscillatory trajectory

After numerically exploring different areas of the parameter space that give rise to oscillations, simple therapies given by Eq. (5.20) did not alter the long term behaviour of the model. If an oscillatory, stable state were to exist between virus and tumours, increments in the viral load through injections were not predicted to achieve complete eradication. From the dynamical point of view, an increase in viral load via external perturbation cannot force the system out of the basin of attraction of a stable limit cycle. Nonetheless, transient phenomena do exist and are worth discussing.

Considering two injections, i.e. \(n = 2 \), for a system already in a stable oscillatory state, the number of days \(\phi \) between injections altered the size of the tumour and virus populations as the system returned to its stable state. Assuming the first injection was a fixed initial injection, in Fig. 5.21 a single period of two different stable limit cycles of the model is shown, with arrows representing the instants at which injections that increased the viral load have been administered. The corresponding maximum and minimum tumour size, along with the maximum virus count reached, are also presented.
5.2 Analysis of an Extended Model for Oncolytic Virotherapy

![Graphs showing cell and virus counts over time](image)

Figure 5.21: Perturbations in the days between two treatments ϕ. Two different limit cycle regimes have been plotted for $\gamma = 0.1$, $m = 0.2$ and (a) $\xi = 0.06915$ or (c) $\xi = 0.06993$. The maximum and minimum uninfected cell number and maximum virus count is plotted as a circle in (b) and (d) for the corresponding value of ϕ represented by an upward arrow in (a) and (c). Note the different scales used on the left and right axis, since the maximum and minimum amplitude of oscillations have different values. First published in [Jenner et al. (2019)](https://doi.org/10.1016/j.jenner.2019.01.001).

Injections that occur at different phases of the cycles have different outcomes. As seen in Fig. 5.21(b)-(d) for the red and magenta curves around $\phi \approx 62$, dosing the virus close to the minimum in tumour population provides a typical outcome: the tumour initially responds to the injection by achieving a minimal size, but this is followed by a rebound that causes U to reach the highest value (max U in the plot) of all other tested injections. Note that, in some cases and for sufficiently high dosages, the minima achieved by U can be pushed to values so low that it becomes experimentally undetectable. Injections at other instants within one oscillation period yield rebounds.
proportional to the original amplitude of the limit cycle, with best results occurring for the lowest amplitudes.

Perturbing the number of days between additional injections \(\Phi \), the total injection amount \(V_{T0} \) or the number of injections \(n \) did not affect the long term dynamics (not shown here), which remains oscillatory in the long term. Reinforcing that there is no dosage protocol that can be administered for virus-tumour interactions in these parameter regimes that will result in tumour eradication.

5.2.3.2 Effects of injections on a trajectory in the bistable region

For a solution in a bistable region, the final outcome of any injection was highly dependent on the initial tumour size and viral load. In particular, due to the complex structure of the basin of attraction of the two competing solutions, i.e. full eradication and an incomplete quiescent state, doses that were higher than a specific threshold (highly dependent on the system parameters) could lead to a partial eradication rather than a complete one.

Consider the administration of single injections of increasing dosage as depicted in Fig. 5.22. Depending on the initial uninfected tumour population size \(U(0) \), injections can lead to different outcomes or even have no effect on the final state. Considering the case of a high tumour size (Fig. 5.22(a), \(U(0) = 100 \)), different dosages always resulted in final eradication. Some dosages lead to transient oscillations in the \(U-V \) plane, but eventually eradication was achieved for all plotted trajectories.

For a smaller initial tumour size (Fig. 5.22(b), \(U(0) = 50 \)), full eradication was only obtained if the dose was either sufficiently low or sufficiently high. There exists a considerable interval of possible doses that push the system to a stable focus corresponding to a dormant state, where eradication is not complete. Note that the first two low dosage injections, i.e. injections 1 and 2 in Fig. 5.22(b), also lead to a final eradication state after few oscillations on the \(U-V \) plane.

This result is interesting, as it suggests that, for given initial tumour size and characteristics of the virus, there can be a unique interval of dosage sizes that does not result in treatment success. Boosting the amount of virus does not always guarantee a successful outcome.
Figure 5.22: Typical cases of dependence on injected viral dosage V_{T0} for a system in a bistable scenario. Examples of two injections with increasing dosage (i.e. injections 1 and 2) are also sketched. The effect of these injections is to push the starting point to larger values of $V(0)$, depending on the dose that is administered. For the same initial tumour size, different dosages result in either tumour eradication or tumour stabilisation. Initial fixed conditions in (a) are given by $U(0) = 100$, $I(0) = 10$ and in (b) are given by $U(0) = 50$, $I(0) = 10$. In both cases, $V(0)$ varies from a minimum of 20 to a maximum of 120 in constant steps and the parameters are $m = 0.5$, $\gamma = 0.1$ and $\xi = 0.138$. First published in Jenner et al. (2019).

5.3 SUMMARY

Before considering the effects of specific tumour types and engineered viral derivatives, it is important to obtain an overview of what drives the efficacy of oncolytic viruses. In this chapter, two models were hierarchically developed and analysed to show a number of interesting features, both from the mathematical and the biological points of view. Firstly, a range of possible long term dynamical outcomes and stability conditions have been found for the virus-tumour interaction. From this, a number of nontrivial singular bifurcation scenarios emerged, with the presence of an important system equilibrium (i.e. full tumour eradication) in the case of the more complex model in Section 5.2. Additionally, comparing the two hierarchical models allows for a more in-depth understanding of what drives the different dynamics both mathematically and biologically. In discussing the stability of these two mathematical models, it is possible to deduce and suggest possible treatment perturbations or regimes that result in an improved outcome.
To introduce the possible long-term behaviour of virus-tumour interactions, a local stability analysis and bifurcation analysis was first conducted for the minimal model developed, Eqs. (5.4)-(5.6). The core dynamics of this interaction were captured in \(\chi \) and \(\omega \) representing the ratio of tumour replication and viral decay to cell burst rate respectively. Dynamics of this model can be grouped into two sub-categories: those that occur for either benign tumours or non-decaying viruses, and those that occur in the presence of tumour growth and viral decay.

The equilibrium at the origin is unstable for all biologically reasonable parameter values, except the case where \(\omega = 0 \) and \(\chi \geq 0 \). When \(\omega = 0 \), there is no tumour growth in the model: this can only occur for a specific type of tumour, i.e. a benign tumour or a tumour whose growth is extremely slow relative to the time scale of therapy. For this tumour type, the model predicts that complete tumour eradication can be obtained for a specific range of initial conditions, see Fig. 5.11. High enough initial viral dosages and initial tumour sizes result in complete tumour eradication: benign or slow growing tumours would do well under this treatment, given the right initial tumour sizes and viral dosages.

The non-zero equilibrium in Eqs. (5.4)-(5.6) is stable in the absence of viral decay, i.e. for \(\chi = 0 \). In Fig. 5.12 the corresponding model simulations for \(\chi = 0 \) and \(\omega \geq 0 \) show how the system tends to equilibrium \(U = I = 0 \) and \(V = R \). Whilst developing a virus that rigorously does not decay is impossible, experimentalists have developed ways to shield viral particles from immune detection and clearance (an example of this is the polymer polyethylene glycol (Kim et al., 2011a) that is discussed in Chapter 6). However, at the moment, this is a purely hypothetical scenario, as the non-decaying virus, while harmless, will still need to be removed after it has eliminated the tumour. The model predicts that if it were possible to genetically engineer an oncolytic virus to remain within the system indefinitely, complete tumour eradication can be obtained.

Analysis of equilibria for the case of an exponentially growing tumour and viral particles undergoing decay, i.e. \(\chi > 0 \) and \(\omega > 0 \), suggested that there is no way for treatment to eradicate the tumour, as both equilibria are unstable. As shown in Fig. 5.7 and 5.8, the non-zero equilibrium is a saddle focus and the origin is a saddle, causing model solutions to spiral outwards with increasing amplitude. However, nu-
merically simulating the non-dimensionalised model for a long time period showed
the appearance of long-period orbits, see Fig. 5.13. This suggests the possibility of a
tumour eradication state, where long periods of tumour remission would occur.

The complexity in the behaviour of the tumour and virus populations increased with
the addition of the Gompertzian tumour growth and frequency-dependent infection
expression in Eqs. 5.13-5.15. As shown in Fig. 5.18, an increase in infected cell lysis ξ,
or a decrease in viral death rate γ drives the system through similar stages of typical
dynamics, from partial eradication to tumour-virus oscillations, as those seen in the
dynamics of the minimised model.

A metastable regime that appears somewhat counter-intuitive is represented by the
so-called “square wave” oscillations, which are observed in a small interval of biologi-
cally relevant parameters (see Fig. 5.17(c)). Given the size of the parameter space where
this dynamics takes place, it may be unlikely that such extreme tumour expansions
can be directly observed in a clinical setting. Nonetheless, the switch between a quasi-
eradicated to a quasi-ineffective treatment regime points to the importance of achieving
a complete elimination of the tumour if a sudden resurgence is to be avoided.

There are two primary ways to interpret biologically the presence of long-period
orbits in oncolytic virotherapy: complete tumour eradication or tumour remission. A
long-period orbit can be considered as an example of complete tumour eradication: if
the population of cells drops below certain levels, this could mean extinction. This in
a more realistic setting could occur if increased likelihood of clearance or death due to
nutrient deficiency is taken into account. In the long-period orbits shown in Fig. 5.13
close to zero ($< 10^{-6}$), and in this time frame other effects are likely to eradicate the
negligible number of remaining cells.

Long-period dynamics are a known feature in virotherapy models. Previously, [Novo-
vozhilov et al. (2006)] showed that for a model of oncolytic virotherapy there is a region
of the parameter space where trajectories form a family of homoclinics to the origin.
From the biological point of view, this occurrence implies that tumour cells can be elim-
inated with time, and complete recovery is possible. Similarly, [Berezovskaya et al. (2001)]
showed that the origin can have its own basin of attraction in the phase space, which
corresponds to deterministic extinction of both species. [Berezovskaya et al. (2007)] also
showed how certain models possess a dynamical regime of deterministic extinction, through the presence of homoclinics.

To quantify how the behaviour of long-period orbits is influenced by the parameter space, the period of oscillations as a function of both χ (the ratio of the decay of viral particles to cell burst rate) and ω (the ratio of tumour replication to cell burst rate) is computed. In Fig. 5.14(a), decreasing the ratio of viral death to cell death, i.e. χ, irrespective of the rate of tumour cell replication r and to cell burst rate d, i.e. ω, results in a longer period between oscillations, i.e. more time between tumour regrowth. Alternatively, decreasing the ratio of tumour cell replication to cell burst rate, i.e. ω, increases the period. Therefore, decreasing both the ratio of the decay of viral particles to cell burst rate and the ratio of tumour replication rate to cell burst rate is a very effective strategy for increasing the period of the long-period orbits.

The existence of an extended area of the parameter space where oscillations among system variables arise is also seen in the more complex model in Section 5.2. These regimes, which also tend to respond nonlinearly to external injections (see Fig. 5.22), have been known for quite some time in clinical settings (Dingli et al., 2009; Wodarz, 2016). One major finding for this model is that virotherapy can prevent oscillations from occurring if the resulting infected cell death rate is sufficiently strong or, alternatively, the virus tends to survive for sufficiently long times in the infected population.

Furthermore, and this is particularly interesting, oscillations tend to have larger amplitudes and periods for increasing γ (or increasing m), before they disappear completely for sufficiently high values. This is worth reflecting on, especially from the clinical perspective. Designing a virus that results in fast infected cell death and that is still not sufficiently resilient may turn out to be a riskier strategy, since it could trigger larger fluctuations in the tumour population. These oscillations also occur at relatively distant time intervals from each other and long periods of tumour inactivity may be misinterpreted as successful eradication.

Looking at Fig. 5.18(a) and assuming that a low value of uninfected tumour cells U represents a good outcome, a slower infected cell death rate, say with a $\xi \approx 0.04$, results in a quiescent tumour of a smaller size than the amplitude of oscillations caused by a fast infected cell death rate with, for instance $\xi \approx 0.08$ (i.e. twice as fast). This is
also true from the point of view of resilience, see in particular the inset of Fig. 5.18 (b): a virus that remains active for longer, say $\gamma \approx 0.015$, produces oscillations with very high values of U, whereas a virus decaying twice as fast, say with $\gamma \approx 0.03$, produces a stable tumour of a smaller size. All this shows that therapeutic strategies must be chosen carefully and thoughtfully, and that optimal design of an oncolytic virus must be targeted on the tumour characteristics, in particular its proliferation rate.

Another key feature of the oscillations for the first model in Section 5.1 see Fig. 5.13 is their amplitude. In Fig. 5.14 (b)-(d) the dependence of the amplitude of the oscillation on χ (the ratio of the decay of viral particles to cell burst rate) is examined. In all cases, the lower the value of χ the lower the amplitude of the oscillation. However, considering ω (the ratio of tumour replication to cell burst rate), increasing ω increases the amplitude of the oscillation for infected tumour cells and virus particles and decreases the amplitude for uninfected tumour cells. One of the primary objectives of a therapy is to reduce the number of uninfected tumour cells, and therefore reduce the amplitude of the oscillation for U. In that respect, a decrease in the ratio of the decay of viral particles to cell burst rate, χ, and an increase in the ratio of tumour replication to cell burst rate, ω would be ideal. This will result in the lowest possible amplitude for the uninfected tumour cells. Note that this suggestion is also associated with a long period between oscillations, so it represents overall the most effective way of improving oncolytic virotherapy.

When considering perturbations of the treatment strategy for the more complex model, therapies that couple with external injections of viral loads could have very different outcomes depending on the state of the system. They can perturb a trajectory that was meant to be of full eradication into a dormant state, see Fig. 5.22.

Comparing both models illustrates the driving mechanisms behind some of the interesting dynamics seen in the models stability. For both models, achieving complete tumour eradication is challenging and it is with the addition of the Gompertzian tumour growth and frequency-dependent virus infection that regions resulting in tumour death for growing tumours exist.

Oscillations in tumour cell population size have been seen in vivo in several other viral dynamic models (Bajzer et al., 2008; Dingli et al., 2009; Wodarz, 2016). Komarova
and Wodarz (2010) showed that using mass action to model the viral infectivity leads to strong oscillations in the population of viruses and cancer cells. Titze et al. (2017) suggested that the rise and fall of tumour growth, seen in oscillations, could be due to the lack of bioincubators for viral replication. This is analogous to behaviours typical of predator-prey systems, where oscillations occur due to a heavy dependence of each population on the other for survival.

One of the main limitations of both models in this chapter is the endless influx of viral load that occurs in the model: once the viral cycle is set into motion, and unless viral death rate is excessive (i.e. $\gamma > 1$ for the Gompertz model), there is no natural stopping mechanism for viral infections. This simplification is, for example, responsible for the appearance of dormant, partially eradicated tumours, which, after an initial transient, perpetually coexist with a constant viral load. These dynamics are common for models with unlimited reservoirs of populations (Wilkie, 2013).

From the local stability and bifurcation analysis of two generic models for oncolytic virotherapy, it was possible to determine parameter regions resulting in treatment success or failure. Additionally, the effects of different treatment profiles were examined for a generic oncolytic virus. In the following Chapter, the model developed in Section 5.2 is used to optimise tumour time-series measurements for an oncolytic adenovirus conjugated with Herceptin. This allows for a specific virus and tumour parameter set to be obtained, and a subset of the full model bifurcation analysis to be discussed in detail.
EFFICACY OF A PEG-MODIFIED ONCOLYTIC ADENOVIRUS CONJUGATED WITH HERCEPTIN CONSIDERING ANTIVIRAL IMMUNITY AND THE ANTITUMOUR IMMUNE RESPONSE
OVERVIEW

Figure 6.1: Subset of Fig 1.1 summarising the investigation of the virus-tumour interaction in this chapter

The overview of long-term dynamics for oncolytic virotherapy in Chapter 5 forms the basis of this chapter’s study for a particular treatment modality: a PEG-modified oncolytic adenovirus conjugated with Herceptin. This treatment was engineered by Kim et al. (2011a) to overcome the clearance of viral particles in the blood by the immune system. Unfortunately, PEG and Herceptin modification are unable to overcome the effect of another obstacle, interferon-mediated antiviral cell-immunity. This antiviral immunity is initiated by infected cells releasing interferon that obstructs viral replication in neighbouring cells. While this mechanism can impede the efficacy of the virus, a strong antitumour immune response (killer immune cells stimulated by virus-infected tumour cells) can be sufficient to counteract this effect and result in tumour eradication. This chapter investigates interventions that could improve the efficacy of a PEG-modified oncolytic adenovirus conjugated with Herceptin and considers how the treatment outcome may vary in the presence of interferon-mediated antiviral cell immunity and the antitumour immune response.

Most of the work in this chapter was previously published in Jenner et al. (2018b) and Jenner et al. (2016).
A major obstacle for oncolytic virotherapy is the short retention of virus particles in the blood due to immune clearance (Kim et al. 2011a). To combat this, Kim et al. (2011a) modified an oncolytic adenovirus (Section 2.4) with the non-immunogenic polymer polyethylene glycol (PEG). Additionally, to increase the ability of the virus to bind to and be internalised by host cells, Kim et al. (2011a) conjugated the PEG-modified adenovirus with a monoclonal antibody known as Herceptin (see Fig. 2.3).

PEG is an uncharged, hydrophilic, non-immunogenic polymer that is known to reduce protein-protein interactions (Kim et al. 2011a). Modification of adenovirus vectors with PEG is known to increase the survival of virus particles as they travel through the bloodstream by shielding them from immune detection (Mok et al. 2005). PEG-modified viruses, therefore, have a higher chance of initially reaching the tumour cells before being cleared (Mok et al. 2005). The disadvantage of PEG modification is that it weakens the ability of the virus to interact with and target tumour cells, which inhibits virus infectivity (Kim et al. 2011a).

For some cancer types, the decrease in efficacy of oncolytic virotherapy incurred through PEG modification can be overcome by conjugating the viruses with Herceptin. Herceptin is a Her2/neu-specific monoclonal antibody that is used regularly in breast cancer treatment as it recognises and binds to Her2, found over-expressed on the surface of certain types of breast cancer cells (Section 2.2.3.1). The conjugation of an oncolytic adenovirus with Herceptin allows the modified virus to selectively accumulate within tumours expressing Her2, leading to a higher probability of tumour cell infection and in turn tumour cell death.

6.1 Validation of a PEG-modified adenovirus conjugated with Herceptin

To quantify the effectiveness of modifying an adenovirus with PEG and Herceptin, Kim et al. (2011a) conducted three in vivo experiments. The first experiment looked at the tumour volume in six mice under treatment with different perturbations of the virus. The second experiment measured the viral decay in the blood over the first 60 minutes. The third experiment measured the spatial distribution of the viral genome on day 5.
Kim et al. (2011a) measured tumour volume changes under four different treatment protocols: one control treatment and three varying oncolytic adenoviruses. The control treatment was an injection of 100µL of phosphate buffered saline (PBS), and the three virus-based injections were an oncolytic adenovirus without any modification (Ad), a PEG-modified adenovirus (Ad-PEG) and a PEG-modified adenovirus conjugated with Herceptin (Ad-PEG-HER). Each treatment protocol was intravenously injected into different groups of six nude mice (mice with non-functioning immune systems) with pre-established tumours of size 100-120mm³ that were made up of Her2/neu-expressing human breast cancer cells MDA-MB435 (Section 2.2.3.1). In each experiment 1×10^{10} viral particles were injected intravenously on days 0, 2 and 4. The tumour volume in each mouse was recorded every second day for 60 days from the first injection (Section 2.5.3).

Kim et al. (2011a) also conducted experiments to measure the viral genomes present over the first 60 minutes. The purpose of this experiment was to understand how rapidly viral particles decay after injection. Kim et al. injected 1×10^{10} viral particles of each Ad, Ad-PEG and Ad-PEG-HER into six BALB/c mice. The total viral genomes present in each mouse was recorded at 5, 10, 20, 30, 40 and 60 minutes after first injection (Section 2.5.4).

Kim et al. also assessed the viral distribution 5 days post injection. Similar to the previous two experiments, mice with pre-established tumours of size 100-120mm³ were injected intravenously with 1×10^{10} viral particles of Ad-PEG-HER on days 0, 2 and 4. On day 5, the organs from each mouse were harvested and the number of viral genomes in each sample was assessed (Section 2.5.4).

6.2 Optimisation of Tumour Growth Measurements under Treatment with a Peg-Modified Adenovirus Conjugated with Herceptin

Mathematical models have been used extensively to provide insight into oncolytic virotherapy (Section 3.2.3). In Chapter 5 a local stability analysis and bifurcation analysis was conducted for a model of the virus-tumour interaction, considering Gompertzian tumour growth and frequency-dependent virus infection (Eqs. (5.10)-(5.12)). As the tu-
mourn growth measurements of [Kim et al. (2011a)] were conducted on nude mice, the model in Eqs. (5.10)-(5.12) can be used to understand the efficacy of the PEG-modified adenovirus conjugated with Herceptin in the absence of an immune response (such as the interferon-mediated antiviral immunity or antitumour immune responses). See the restated model equations below:

\[
\begin{align*}
\frac{dU}{dt} &= r \log \left(\frac{L}{U} \right) U - \frac{\beta UV}{U + I}, \\
\frac{dI}{dt} &= \frac{\beta UV}{U + I} - d_1 I, \\
\frac{dV}{dt} &= u_v(t) - d_V V + \alpha d_I I, \\
u_v(t) &= \begin{cases}
V_0 \delta(t - t_i), & t_i = 0, 2, 4, \\
0, & \text{otherwise}
\end{cases}
\end{align*}
\]

(6.1) (6.2) (6.3) (6.4)

where the uninfected tumour population is represented by \(U\), signifying cells susceptible to infection, \(I\) is the infected cells and \(V\) is the virus particles. The injection function \(u_v(t)\) has been included to account for \(V_0\) virus particles injected intravenously on days 0, 2 and 4. Note that \(U\) and \(I\) represent numbers of cells, \(V\) represents the number of viral particles and \(t\) is time.

Any virus produced via replication within the tumour cells loses PEG modification and conjugation with Herceptin. A single average infectivity \(\beta\) (which also accounts for tumour cell discovery by the virus) and a single decay rate \(d_V\) are assigned for the combined populations of original and replicated viruses, noting that the population is dominated by naked (replicated) viruses over the majority of the time course of the experiments. Here the tumour volume is assumed to be proportional to the number of tumour cells, and the density is assumed to be \(10^6 \text{cells/mm}^3\) [Wares et al., 2015].

To obtain parameter estimates for the model, individual and simultaneous optimisations following the implementation detailed in Section 3.4 were performed on the tumour time-series data. Firstly, the model was optimised using the data of the tumour cell population for each individual mouse to obtain independent estimates of all parameters, see Fig. 6.2 and Table 6.1. To numerically simulate the model in Matlab, the model was implemented as an impulsive differential equation: at each injection time,
Initially, the \(V \) and \(I \) populations were zero. In the case of the PBS (control) experiment, there were no viral particles in the PBS injection and therefore no infected cells. For the viral experiments, \(V_0 = 10^{10} \) particles. The number of new virus particles created through lysis (viral burst size) was fixed at 3500 as reported in [Chen et al., 2001]. When solving Eqs. (6.1)-(6.4) numerically, the denominator was replaced by \(U + I + \epsilon \) for \(\epsilon = 0.0001 \) to avoid the singularity as \(U + I \to 0 \) (discussed in the previous chapter).

It is clear from Fig. 6.2 that there is quite a varied response to each treatment, reflected in the range of parameter values returned in the fit of each individual tumour.
Table 6.1: Parameter values for the optimisation of the individual mouse data in Fig. 6.2. The colours used to plot the individual tumour measurements correspond to the parameter values given in the table below. Values have been rounded to two significant figures.

<table>
<thead>
<tr>
<th>Param.</th>
<th>Units</th>
<th>Description</th>
<th>PBS</th>
<th></th>
<th></th>
<th></th>
<th>Ad</th>
<th></th>
<th></th>
<th>Ad-PEG</th>
<th>Ad-PEG-HER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dark blue</td>
<td>Light blue</td>
<td>Green</td>
<td>Black</td>
<td>Red</td>
<td>Pink</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>cells×10^6</td>
<td>carrying capacity</td>
<td>5300</td>
<td>10000</td>
<td>7300</td>
<td>2400</td>
<td>1200</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>day$^{-1}$</td>
<td>growth rate</td>
<td>0.043</td>
<td>0.024</td>
<td>0.03</td>
<td>0.05</td>
<td>0.26</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U_0</td>
<td>cells×10^6</td>
<td>initial tumour size</td>
<td>220</td>
<td>230</td>
<td>230</td>
<td>250</td>
<td>95</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>virus×10^9</td>
<td>viral burst size</td>
<td>2</td>
<td>2</td>
<td>2.5</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>cells×10^6</td>
<td>carrying capacity</td>
<td>5600</td>
<td>3700</td>
<td>3000</td>
<td>10000</td>
<td>2100</td>
<td>10000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>day$^{-1}$</td>
<td>growth rate</td>
<td>0.036</td>
<td>0.057</td>
<td>0.05</td>
<td>0.022</td>
<td>0.049</td>
<td>0.039</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_I</td>
<td>day$^{-1}$</td>
<td>burst rate</td>
<td>0.1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_V</td>
<td>day$^{-1}$</td>
<td>viral decay rate</td>
<td>3.5</td>
<td>3.05</td>
<td>2.5</td>
<td>2.4</td>
<td>3.5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>day$^{-1}$</td>
<td>infection rate</td>
<td>0.2</td>
<td>1.5</td>
<td>0.85</td>
<td>1.2</td>
<td>0.2</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>virus×10^9</td>
<td>viral burst size</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>3.3</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>cells×10^6</td>
<td>carrying capacity</td>
<td>7500</td>
<td>2300</td>
<td>3900</td>
<td>3500</td>
<td>1200</td>
<td>830</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>day$^{-1}$</td>
<td>growth rate</td>
<td>0.042</td>
<td>0.09</td>
<td>0.28</td>
<td>0.055</td>
<td>0.12</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_I</td>
<td>day$^{-1}$</td>
<td>burst rate</td>
<td>0.24</td>
<td>2</td>
<td>0.15</td>
<td>2</td>
<td>0.86</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_V</td>
<td>day$^{-1}$</td>
<td>viral decay rate</td>
<td>2.1</td>
<td>1.8</td>
<td>2.1</td>
<td>1.9</td>
<td>1.4</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>day$^{-1}$</td>
<td>infection rate</td>
<td>0.58</td>
<td>0.8</td>
<td>0.6</td>
<td>0.63</td>
<td>0.43</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As such, it is not possible to use the optimised parameter values to the individual tumour time-series measurement to predict the characteristics of treatment, instead the averaged response needs to be used.
Table 6.2: Common and experiment-specific parameters for the simultaneous optimisation in Fig. 6.3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumour growth rate</td>
<td>PBS Ad Ad-PEG Ad-PEG-HER</td>
</tr>
<tr>
<td>Tumour carrying capacity</td>
<td>L</td>
</tr>
<tr>
<td>Tumour cell burst rate</td>
<td>d_l</td>
</tr>
<tr>
<td>Viral decay rate</td>
<td>d_V</td>
</tr>
<tr>
<td>Initial tumour size</td>
<td>U_{0PBS} U_{0Ad} $U_{0Ad-PEG}$ $U_{0Ad-PEG-HER}$</td>
</tr>
<tr>
<td>Infection rate</td>
<td>β_{Ad} β_{Ad-PEG} $\beta_{Ad-PEG-HER}$</td>
</tr>
</tbody>
</table>

In future work, it may be worth investigating the variability in individual response using a random effects model, where parameters are random variables.

To quantify the average response to the treatment protocol, the model parameters were then optimised using all the experimental data simultaneously for both common parameters and those specific to that experiment, see Table 6.2. The tumour growth dynamics, governed by parameters r and L, were considered to be common across all experiments. Similarly the parameters relating to cell lysis rate, d_l, and viral decay, d_V, were considered to be common to all viral experiments. The infectivities and initial tumour sizes were taken to be protocol specific. The different levels of modification in the virus were hypothesised to result in different infectivity rates; therefore, this value must be free to vary between experiments. Overall, 11 parameters were optimised using 750 data points across four protocols of five or six data sets each. The fit equally weighted each of the experimental data sets, accounting for any differences in the number of data time points between sets (for example, the PBS experiment had 198 data points and the Ad experiment had 186 data points, but each set was taken to have equal weight in the optimisation, see Section 3.4).

The four data sets (PBS, Ad, Ad-PEG and Ad-PEG-HER) were used simultaneously to optimise the model parameters. The model output is shown overlaid with the experimental data in Fig. 6.3. The parameter values and fit characteristics of the simultaneous optimisation are shown in Table 6.4. The parameter values obtained from both the individual and the simultaneous optimisations are shown in Fig. 6.4. Some of the simultaneous fit parameters lie within the distribution of the estimates obtained in the individual optimisations.
As evident in Fig. 6.2 and 6.3, the simple mathematical model in Eqs. (6.1)-(6.4), describes the interaction between an oncolytic virus and tumour cells. The model is able to identify the primary processes and capture observed experimental results. When fit to the data for individual cases it can be seen that the model easily replicates a wide range of treatment responses. The ability of the model to reproduce the data closely is measured by the R-squared and Pearson’s r Correlation coefficient Table 6.4. From this, the model is a reliable representation for the interaction between an oncolytic virus and tumour cells.

For parameters held in common across experiments, all data points constrained the values. However, in the case of experiment-specific parameters such as the infectivity rate, β, which took different values for different experiments, fewer data points...
6.2 Optimisation of Tumour Growth Measurements

constrained the values. Thus for some experiment-specific parameters the simultaneous estimates were dissimilar to those from the individual optimisations (Fig. 6.4). Although each data set was weighted equally, the constraints on the common parameters resulted in different optimal values.

6.2.1 Simulating perturbations in tumour and virus characteristics

To determine if the outcome of Ad-PEG-HER treatment was dependent on the tumour characteristics, the tumour population over time was simulated with separate perturbations to the growth rate r and initial tumour size U_0, keeping the other parameters constant, see Fig. 6.5. Perturbations in viral characteristics are also thought to alter the treatment outcome. To examine the effect of changes in the viral infectivity on the tumour population, perturbations in β are shown in Fig. 6.5(c).

It is clear that there is a relationship between a successful treatment outcome and the aggressive nature of the tumour. Treatment efficacy is highly dependent upon the initial tumour size and proliferation rate. The simulations suggest that the slower the tumour cells are proliferating, the higher the likelihood of the viral treatment reducing the tumour to a manageable size. For aggressive tumours, there is an initial plateauing of the tumour cell population, showing the treatment taking effect; however, this is followed by an increase in tumour size. Increasing virulence of the virus by increasing viral infectivity is also shown to reduce the tumour size significantly.

6.2.2 Simulating the effects of different treatment dosage protocols

In Section 5.2.3, a general investigation into the effect of changes to the dosage protocols for the model was undertaken. Perturbations in dosage amounts were shown to result in significantly different long-term outcomes in the region of bistability, see Fig. 5.22 and also influence the maximum and minimum tumour sizes in regimes of stable limit cycles, see Fig. 5.21. The equivalent non-dimensional form of the variables
Figure 6.4: Parameter estimates from the individual and simultaneous optimisations to the data. The small (grey) circles correspond to the estimates of the parameters for each mouse. The large open circles correspond to parameter estimates from the simultaneous optimisation. The infectivity of the virus, β, and the initial tumour size, U_0, were experiment specific. The central white lines are the means of the data, the blue boxes indicate the 95\% confidence intervals and the green boxes indicate one standard deviation from the means. Note that there were fewer data points constraining the experiment-specific parameters. First published in Jenner et al. (2018b).
Table 6.3: Parameter values for the simultaneous optimisation of the model with all data, shown in Fig. 6.3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Description</th>
<th>PBS</th>
<th>Ad</th>
<th>Ad-PEG</th>
<th>Ad-PEG-HER</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>virus$\times 10^9$</td>
<td>viral burst size</td>
<td>-</td>
<td>3500</td>
<td>3500</td>
<td>3500</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>cells$\times 10^6$</td>
<td>carrying capacity</td>
<td>3490</td>
<td>3490</td>
<td>3490</td>
<td>3490</td>
<td>(2230, 4750)</td>
</tr>
<tr>
<td>r</td>
<td>day$^{-1}$</td>
<td>growth rate</td>
<td>0.037</td>
<td>0.037</td>
<td>0.037</td>
<td>0.037</td>
<td>(0.018, 0.056)</td>
</tr>
<tr>
<td>d_1</td>
<td>day$^{-1}$</td>
<td>burst rate</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>(-2, 2)</td>
</tr>
<tr>
<td>d_V</td>
<td>day$^{-1}$</td>
<td>viral decay rate</td>
<td>1.38</td>
<td>1.38</td>
<td>1.38</td>
<td>1.38</td>
<td>(-52, 55)</td>
</tr>
<tr>
<td>U_{0PBS}</td>
<td>cells$\times 10^6$</td>
<td>initial tumour size</td>
<td>251</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(139, 453)</td>
</tr>
<tr>
<td>U_{0Ad}</td>
<td>cells$\times 10^6$</td>
<td>initial tumour size</td>
<td>-</td>
<td>200</td>
<td>-</td>
<td>-</td>
<td>(63, 337)</td>
</tr>
<tr>
<td>$U_{0Ad-PEG}$</td>
<td>cells$\times 10^6$</td>
<td>initial tumour size</td>
<td>-</td>
<td>-</td>
<td>223</td>
<td>-</td>
<td>(69, 378)</td>
</tr>
<tr>
<td>$U_{0Ad-PEG-HER}$</td>
<td>cells$\times 10^6$</td>
<td>initial tumour size</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>153</td>
<td>(37, 269)</td>
</tr>
<tr>
<td>β_{Ad}</td>
<td>day$^{-1}$</td>
<td>infection rate</td>
<td>-</td>
<td>0.562</td>
<td>-</td>
<td>-</td>
<td>(-16, 17)</td>
</tr>
<tr>
<td>β_{Ad-PEG}</td>
<td>day$^{-1}$</td>
<td>infection rate</td>
<td>-</td>
<td>0.771</td>
<td>-</td>
<td>-</td>
<td>(-19, 21)</td>
</tr>
<tr>
<td>$\beta_{Ad-PEG-HER}$</td>
<td>day$^{-1}$</td>
<td>infection rate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.862</td>
<td>(-20, 22)</td>
</tr>
</tbody>
</table>

Table 6.4: Fit statistics for the simultaneous optimisation of the model with all data, shown in Fig. 6.3

<table>
<thead>
<tr>
<th>Goodness of fit statistics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-squared</td>
<td>0.4286</td>
</tr>
<tr>
<td>Pearson’s r correlation coefficient</td>
<td>0.6547</td>
</tr>
</tbody>
</table>
Figure 6.5: Tumour population over time predicted by the simultaneously optimised model for various (a) growth rates r between 0.001 and 0.3 (day$^{-1}$), (b) initial tumour populations U_0 between 1 and 300 (cells $\times 10^6$) and (c) infectivity rates β between 0.4 and 4.5 (day$^{-1}$). The colourmap bar matches the corresponding parameter value. All other parameters for each set were given by Table 6.4 for common and Ad-PEG-HER experiment-specific values. The dashed line represents the model solutions for unperturbed Ad-PEG-HER parameters in Table 6.4. Note the plots have different vertical scales. First published in Jenner et al. (2018b).

for the Ad-PEG-HER virus are $m = 0.0429$, $\gamma = 1.6009$ and $\xi = 0.1160$, (see Eqs. (5.13)-(5.15)), which according to the two-parameter bifurcation plot in Fig. 5.20 is not in a region close to a Hopf bifurcation. As such, for the Ad-PEG-HER parameter set, limit cycles or bistability will not emerge.

While the interesting dynamics in Section 5.2.3 will not be seen for the Ad-PEG-HER virus, it is still worth investigating the sensitivity of the model to alterations in the application profile $u_V(t)$ for this virus. Using the generic dosage schedule previously defined in Eq. (5.20), the effect on the tumour cell population was simulated from day
0 to 100 under different total dosages and application profiles $u_V(t)$. The model was simulated using the parameters simultaneously optimised for the Ad-PEG-HER virus, Table 6.4, with the dose, V_{T0}, between 0 and 1500, the number of injections, n, between 0 and 6 and the period between injections, ϕ, between 0 and 10 days.

One major concern in viral treatments is the toxicity caused through the accumulation of the virus in the system. To examine this, the maximum virus level reached at any time between day 0 to 60 for each application profile was determined, Fig. 6.6(a). To quantify the effects of differing application profiles on treatment outcome, the changes in eradication half-time were measured. The eradication half-time is defined as the time taken for the tumour to decrease to and remain smaller than half its initial size. The minimum viral dose required for a finite eradication half-time was determined for each application profile, Fig. 6.6(b). From Fig. 6.6(b), it would seem that the best strategy for fast tumour eradication is a single high dose injection.

![Graph](image)

Figure 6.6: Effect of treatment profile. (a) Maximum viral population as a function of the total viral dose, V_{T0}, for each application profile with inset detail at low doses. (b) Eradication half-time as a function of the minimum total viral dose, V_{T0}, required. Seven different application protocols were simulated for the simultaneous optimised model for Ad-PEG-HER, Table 6.4, for the indicated number of injections, n, and days between injections, ϕ. First published in Jenner *et al.* (2018b).
6.3 COMPARTMENTALISATION OF THE VIRAL POPULATION TO OPTIMISE VIRAL GENOME CLEARANCE AND SPATIAL DISTRIBUTION MEASUREMENTS

To use the viral genome clearance measurements and spatial distribution data from Kim et al. (2011) described in Section 6.1, the virus population V is now compartmentalised to virus in the blood, organs and tumour site. In the previous model, Eqs. (6.1)-(6.4), the viral decay was modelled using the approximation $\frac{dV}{dt} = -d_V V$. To capture data for the clearance of the virus from the blood, the interaction and transfer of virus between the blood, organs and tumour must be modelled explicitly. The timescales of the two viral genome experiments are significantly different and this is considered when extending the model to compartmentalise the virus populations.

6.3.1 Viral genome clearance from the blood

The viral genome clearance data measured the viral number in the blood over 60 minutes post injection. In this time, the liver quickly removes the bulk of the virus particles circulating in the blood (Ganesan et al., 2011). Liver sinusoidal endothelial cells (LSECs) are the most efficient endocytotic cell population of the body; they scavenge molecules from the bloodstream and possess potent immune functions (Knolle and Wohlleber, 2016). Ganesan et al. (2011) showed in their experiments with an adenovirus, that nearly all virus was cleared by LSECs. Ganesan et al. (2011) suggested that LSECs take up and destroy the majority of an injected virus, doing so quickly (minutes) and extensively (>90%), leaving only a small fraction of circulating virus to infect the body. Ganesan et al. (2011) notes that virus in the bloodstream undergoes rapid biexponential clearance.

A minimal model for the clearance of viral particles in the blood V_B by LSECs L_C is given by

$$\frac{dV_B}{dt} = -d_L L_C - d_B V_B - \tau_O V_B, \quad (6.5)$$
$$\frac{dL_C}{dt} = a_L V_B, \quad (6.6)$$
where t is time. Viral particles are cleared by LSECs at a rate d_L proportional to the number of LSECs. Virus is also cleared from the blood by other factors (e.g. complement immune system) at a rate d_B. Additionally, viral particles leave the blood and travel to the organs at a rate τ_O. Initially there is a population L_0 of LSECs, and more LSECs are stimulated and recruited by the presence of virus in the blood at a rate a_L.

See the schematic in Fig. 6.8.

Since d_B and τ_O can be combined, these viral decay terms can represented by a single parameter $d_B + \tau_O = \omega$. Solving the system in Eqs. (6.5)-(6.6) gives a biexponential expression for $V_B(t)$:

$$V_B(t) = Ae^{k_1t} + (V_0 - A)e^{k_2t}, \quad \text{for} \quad k_{1,2} = \frac{-\omega \pm \sqrt{\omega^2 - 4d_La_L}}{2}, \quad (6.7)$$

where the initial condition $V_B(0) = V_0$ has been used to eliminate one constant of integration. Fitting Eq. (6.7) to the viral genome measurements in the blood by Kim et al. (2011a) gives the resulting curve in Fig. 6.7 and values in Table 6.5. It is clear from Fig. 6.7 that the dynamics of the Ad-PEG virus are significantly different to those of the Ad and Ad-PEG-HER viruses. As such, it is not possible to assume that this model is able to capture the dynamics of the Ad-PEG data. The underlying mechanisms of viral clearance for the Ad-PEG virus are unexpected and future work will investigate this in further detail.

To use these results in the second viral genome experiment by Kim et al. (2011a), the quasi-steady-state dynamics for Eq. (6.7) needs to be considered as the time scale of the second experiment was on the order of days. As t increases, one term will dominate the
expression for $V_B(t)$. For $k_1 >> k_2$, this means that $A e^{k_1 t} \to 0$ faster than $(V_0 - A) e^{k_2 t}$, and therefore the quasi-steady-state form of this equation is

$$V_B(t) = A_2 e^{k_2 t} = (V_0 - A) e^{-k_2 t}$$

with the rate of change for $V_B(t)$ approximated by

$$\frac{dV_B}{dt} = k_2 (V_0 - A) e^{k_2 t} = k_2 V_B$$

with initial condition now $V_B(0) = V_0 - A$. Since the units of the decay rate is minutes, this is re-scaled into days to obtain the parameter for the decay from the blood for the second viral genome experiment, i.e. $d_B + \tau_O = k_2 \times 60 \times 24$. Note that variations on
the model in Eqs. (6.5)-(6.6) were examined; however, since the viral genome in the blood was measured on a much faster time scale then the other experiments, further complexity was not needed.

6.3.2 Spatial distribution of virus

In the second set of virus-based experiments, Kim et al. (2011) measured the viral genome number in the organs and tumour site. In this experiment, the viral genome distribution was measured on day 5. The model in the previous section considered the viral clearance in the first 60 minutes in the absence of both the immune response and tumour cells. To model the spatial distribution of viral genome on day 5, the quasi-steady-state approximation in Eq. (6.8) is combined with the model used to optimise the tumour time-series measurements, Eqs. (6.1)-(6.4). See the below system of equations:

\[
\begin{align*}
\frac{dV_B}{dt} &= u_V(t) - d_B V_B - \tau_O V_B - \tau_T V_B T, \\
\frac{dV_O}{dt} &= \tau_O V_B - d_V V_O, \\
\frac{dV_T}{dt} &= \tau_T V_B (S + I) - d_V V_T + \alpha d_I I \\
\frac{dU}{dt} &= r \log \left(\frac{L}{U} \right) U - \frac{\beta U V_T}{U + I}, \\
\frac{dI}{dt} &= \frac{\beta U V_T}{U + I} - d_I I, \\
u_V(t) &= (V_0 - A)(\delta(t) + \delta(t - 2) + \delta(t - 4)),
\end{align*}
\]

where \(V_O \) is the virus population in the organs and \(V_T \) is the virus population at the tumour site. The virus in the blood is cleared by the immune system at a rate \(d_B V_B \) proportional to the amount circulating. Virus in the blood travels to other organs at a rate \(\tau_O V_B \) proportional to the amount of virus in the blood. The population of the virus in the regions other than the blood or tumour arrives at a rate \(\tau_O V_B \) proportional to the amount in the blood, and decays at a rate \(d_V V_O \) proportional to the amount in the other location. The virus from the blood then arrives at the tumour site at a
rate $d_T V_B (U + I)$ proportional to the amount in the blood and the total population of tumour cells, accounting the effects of Herceptin. See the schematic in Fig. 6.8.

Figure 6.8: Diagram of the interaction between a population of uninfected tumour cells U, infected tumour cells I and an intravenously injected oncolytic virus in the blood V_B, organs V_O and tumour site V_T, see Eqs. (6.9)-(6.14). The variable T represents the total tumour population $U + I$. The dashed lines represent the fast dynamics of the system which is due to clearance from LSECs L. These are approximated by simple exponential decay.

To optimise the measurement of viral genome in the organs and tumour on day 5, the parameter values of r, K, α, d_I, U_0 and d_V were fixed to those obtained from fitting to the tumour time-series data, see Table 6.4. Since the virus used in these experiments is the Ad-PEG-HER virus, the value of β was fixed to be the value for the Ad-PEG-HER virus. Using the results of the previous fit to the viral time-series data (Section 6.3.1), τ_O was fixed to be: $\tau_O = k_2 - d_B$, where k_2 has been re-scaled to units of day$^{-1}$ as opposed to min$^{-1}$. Fitting the viral genome in the organs and tumour on day 5 to the model, while allowing d_B and τ_T to vary, gives the fit in Fig. 6.9 and parameter values in Table 6.6. The optimisation algorithm followed the numerical implementation in Section 3.4.
6.4 The effects of the antiviral and antitumour immune responses

To establish infections in vivo viruses must compete against powerful immune defence mechanisms. The immune system is developed to respond to the presence of viral particles in the body and clear any virus-infected cells (see Section 2.3). The previous experiments by Kim et al. (2011a) considered only nude mice (mice without a functioning immune system) and the immune response was neglected. It is worth considered

Figure 6.9: Optimisation of the model in Eqs. (6.9)-(6.14) to the virus genome accumulation data for the organs and tumour from Kim et al. (2011a). The total model’s predicted virus count (a) in the organs, \(V_O \), is plotted as a solid line (orange) and (b) at the tumour, \(V_T \), is plotted as a solid line (dark green). The experimental data from Kim et al. is plotted in the form of a box plot (purple) with the data represented as circles (black).

Table 6.6: Parameter values for the optimisation of the viral genome in the organs and tumour on day 5, see Fig. 6.9.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Description</th>
<th>Value</th>
<th>95% Conf. Inf</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_B)</td>
<td>day(^{-1})</td>
<td>Decay rate from the blood</td>
<td>5.3495</td>
<td>(5.3483, 5.3507)</td>
</tr>
<tr>
<td>(\tau_T)</td>
<td>day(^{-1})</td>
<td>Transfer to the tumour site</td>
<td>3.3(\times 10^{-4})</td>
<td>(0.0001, 0.0006)</td>
</tr>
</tbody>
</table>

As the confidence intervals were tight on these parameters and visual inspection of the fit shows the model’s predicted viral counts sit well within the range of experimental results, it is possible to conclude that these parameter values provide a good model approximation to the data.
how the system would behave in the presence of interferon-mediated antiviral cell immunity and the antitumour immune response.

6.4.1 Interferon-mediated cell antiviral immunity

Infection of a cell by a virus triggers the production of antiviral factors that induce an antiviral state in neighbouring cells (Hertzog, 2012; Shiroki and Toth, 1988). The main antiviral factor is the cytokine interferon (IFN), which is a known preventer of intracellular viral replication (Barber, 2001; Goodbourn et al., 2000). IFN stimulates an antiviral state in target cells, whereby, once these cells are infected, the replication of the virus is blocked due to synthesis of a number of enzymes that interfere with the replication processes (Goodbourn et al., 2000). Infection of cells in an antiviral state causes the induction and secretion of more interferons that alert nearby cells and activate the immune system, (Levy et al., 2001). It has been hypothesised that antiviral factors play a crucial role in the outcome of treatment of tumour cells with an oncolytic virus (Wodarz et al., 2012), and the work in this section looks to investigate this further.

6.4.2 Antitumour immune response

In recent years the interplay of the immune system with cancer therapies has become a topic of increasing interest. As an oncolytic virus replicates only within tumour cells, the localised viral infection recruits the immune response to the tumour site. Once there, the immune cells kill virus-infected cells through inducing apoptosis (Section 2.3). Immune cells also have the ability to kill tumour cells, even if they aren’t infected by a virus. Studies have shown that the release of tumour antigen into the microenvironment, through lysis of tumour cells, stimulates the immune cells and instigates killing of uninfected tumour cells (Section 2.3). In this thesis, the ability of immune cells to kill uninfected tumour cells is referred to as the antitumour immune response.
6.4.3 Model extension

There are currently many virus-tumour-immune mathematical models in the literature (Section 3.2.4). However, none have accounted for the combined effects of interferon-mediated antiviral immunity, the antitumour immune response and the intravenous injection of an oncolytic virus. Kim et al. (2011)’s tumour time-series experiment (Section 6.2) and two viral genome experiments (Section 6.3) considered the response to an oncolytic adenovirus in nude mice. Therefore, in these experiments the function of the antiviral immunity and the antitumour immune response were negligible. In reality, the antitumour and antiviral immune responses can play a major role in the outcome of therapy.

The model in the previous section is now extended to include the effects of the antiviral cell immunity and antitumour immune response, giving the below system of equations:

\[
\frac{dV_B}{dt} = u_V(t) - d_B V_B - \tau_O V_B - \tau_T V_B T, \quad (6.15)
\]

\[
\frac{dV_O}{dt} = \tau_O V_B - d_V V_O, \quad (6.16)
\]

\[
\frac{dV_T}{dt} = \tau_T T V_B - d_V V_T + \alpha d_I I, \quad (6.17)
\]

\[
\frac{dU}{dt} = \tau \log \left(\frac{L}{U} \right) U - \frac{\beta U V_T}{T} - \frac{\gamma U (I + R_I)}{T} + \tau_R R_S - \frac{\kappa U K}{T}, \quad (6.18)
\]

\[
\frac{dI}{dt} = \frac{\beta U V_T}{T} - \frac{\kappa U K}{T}, \quad (6.19)
\]

\[
\frac{dR_S}{dt} = \frac{\gamma U (I + R_I)}{T} - \frac{\beta R_S V_T}{T} - \tau_R R_S, \quad (6.20)
\]

\[
\frac{dR_I}{dt} = \frac{\beta_R R_S V_T}{T} - d_R R_I, \quad (6.21)
\]

\[
\frac{dK}{dt} = s_K (I + R_I) - d_K K, \quad (6.22)
\]

\[
T = U + I + R_S + R_I, \quad (6.23)
\]

where \(R_S \) is the uninfected cells in an interferon-mediated antiviral state, \(R_I \) is the infected tumour cells in an interferon-mediated antiviral state and \(K \) is the killer immune cell population. Cells in an antiviral (or refractory) state are those that have been temporarily removed from the uninfected population due to signalling by antiviral factors.
A single state variable has been chosen to account for the complex antitumour immune response. In Chapter 7, the antitumour immune response is considered in more detail, but for the analysis to follow this assumption is sufficient.

Figure 6.10: Compartmental diagram of the interaction between a population of uninfected tumour cells U, infected tumour cells I, and an intravenously injected oncolytic virus in the blood V_B, organs V_O and the tumour site V_T. Tumour cells may join the uninfected refractory population R_S or the infected refractory population R_I through interferon-mediation. Killer immune cells K are able to remove tumour cells through the antitumour immune response. See Eqs. (6.15)-(6.23) for the full model. First published in Jenner et al. (2016).

The new interactions in the model are detailed as follows. Uninfected cells join the refractory population due to antiviral factors released by the infected tumour cells at a rate γ proportional to the frequency of the interferon-producing populations, I and R_I. Cells in the refractory state can be infected by the virus to become infected refractory cells, R_I, at a rate β_R. Cells leave the refractory population to re-join the uninfected population at a slow rate τ_R, where $\tau_R << \gamma$. Apoptosis, or programmed cell death occurs due to infection at rate d_{RI}. It is assumed the immune cells are stimulated proportionally by the infected tumour populations, I and R_I, at rate s_K. This stimulation is due to antigen presentation and the secretion of antiviral factors. Immune cells die at a rate d_K. The uninfected and infected cells are killed by the immune system at a frequency-dependent rate κ. See Fig. 6.10 for a summary of model interactions.
For the most part, the parameters in the model can be approximated based on literature and the previous optimisations in Sections 6.2 and 6.3. The decay rate of the killer cell population was approximated by the decay rate of T cells which have a half-life of 48 hours giving $d_K = 0.35/(\text{day}^{-1})$ \cite{De Boer et al., 2001}. Killer immune cells are stimulated by the infected tumour cells, I and R_I, through antigen presentation and the secretion of antiviral factors. This stimulation takes 1 day, so $s_K = 1/(\text{day}^{-1})$ \cite{van Stipdonk et al., 2001; Veiga-Fernandes et al., 2000}. For the killing rate parameter κ, de Pillis et al. \cite{2005} estimated a maximum fractional kill rate of 1.43 (day^{-1}), which we approximate with $\kappa = 2/(\text{day}^{-1})$. All of these parameter values can be found in Table 6.7.

Table 6.7: Parameter values for Eqs. (6.15)-(6.23). Note the reference to other parameters that may be found in Table 6.4.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_B</td>
<td>day$^{-1}$</td>
<td>decay rate of virus in the blood</td>
<td>5.3495</td>
</tr>
<tr>
<td>τ_O</td>
<td>day$^{-1}$</td>
<td>transfer rate of virus from blood to organs</td>
<td>0.0001</td>
</tr>
<tr>
<td>τ_T</td>
<td>day$^{-1}$</td>
<td>transfer rate of virus from blood to tumour</td>
<td>3.3×10^{-4}</td>
</tr>
<tr>
<td>γ</td>
<td>day$^{-1}$</td>
<td>antiviral stimulation rate of tumour cells</td>
<td>$\beta/50$</td>
</tr>
<tr>
<td>τ_R</td>
<td>day$^{-1}$</td>
<td>re-introduction rate</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>κ</td>
<td>day$^{-1}$</td>
<td>killing rate</td>
<td>2</td>
</tr>
<tr>
<td>β_R</td>
<td>day$^{-1}$</td>
<td>infection rate of antiviral tumour cells</td>
<td>β</td>
</tr>
<tr>
<td>d_{R_I}</td>
<td>day$^{-1}$</td>
<td>infected antiviral cell burst rate</td>
<td>d_I</td>
</tr>
<tr>
<td>s_K</td>
<td>day$^{-1}$</td>
<td>stimulation rate of immune cells</td>
<td>1</td>
</tr>
<tr>
<td>d_K</td>
<td>day$^{-1}$</td>
<td>decay rate of immune cells</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Unfortunately, it is difficult to find approximations for the rate γ of removal of uninfected cells into the refractory state and the rate τ_R these cells re-join the uninfected population. For now, it is assumed that γ is $1/50$th the rate of the viral infection, i.e. $\gamma = \beta/50$. In addition, the rate at which the refractory cells rejoin the uninfected population is assumed to be slow, so we set $\tau_R = 10^{-4}$.

Whilst refractory cells have increased viral defences, it is assumed that the infection rate of refractory cells is equivalent to the infection rate of uninfected cells, i.e., $\beta_R = \beta$. Similarly, the rate of programmed cell death due to viral infection is equivalent to the rate of lysis, i.e., $d_{R_I} = d_I$.
6.4.4 Influence of the antiviral and antitumour immune responses

To quantify the importance of the antiviral and antitumour immune responses, a parameter sensitivity analysis was conducted for Eqs. (6.15)-(6.23), see Fig. 6.11. To gain a thorough understanding of what underlying interactions were most affected by small perturbations, two sensitivity measures were chosen. The first metric was a measurement of how the total number of tumour cells from day 0 to 100 changed with perturbations in each parameter value in Table 6.7. The second measure monitored whether or not the tumour volume had decreased below 10^{-1}, which was deemed as tumour death. The parameter sensitivity analysis can be used to discuss the sensitivity of the unknown parameters β_R and γ. The sensitivity of the parameter τ_R has not been plotted as the relative tumour volume only changed 10^{-1} fold, which can be considered negligible. Instead, the viral-infectivity rate β has been included.

Parameters relating to the antiviral immune response are apparently insensitive in comparison to parameters relating to the antitumour immune response. This could be due to the approximation for these parameters being in a regime where the antiviral response is insignificant. Overall, the sensitivity analysis shows that heterogeneity in the antiviral immune response has a lesser effect on overall treatment outcome in comparison to heterogeneity in the antitumour immune response.

Fig. 6.11(f) shows that perturbations in d_B lead to the lowest total tumour population compared to all other parameter perturbations. This suggests that a reduction in the rate of decay of viral particles in the blood would lower the tumour growth substantially. However, whilst producing a low total tumour population over time, the tumour is not eradicated within the time interval.

6.4.5 Perturbations in the initial tumour size U_0.

To investigate the effect of the initial tumour size U_0 on overall treatment efficacy, numerical solutions to Eqs. (6.15)-(6.23) are plotted for initial tumour sizes ($\times 10^6$) ranging from 1 to 400, see Fig. 6.12(a). Parameter values were fixed to those in Table 6.2 and
Figure 6.11: Sensitivity analysis of parameters in the Eqs. (6.11)-(6.23) using values from Table 6.2 and 6.7 as base parameters. The change in the total number of tumour cells from day 0 to 100 dependent on the relative change in each parameter value is plotted as a solid (blue) line. The (purple) circles plotted over the blue line represent the death of the tumour within 100 days.

Table 6.7: Perturbations in U_0 suggest that the larger the initial tumour size, the quicker the tumour will die out. Fig. 6.12(a) also suggests that starting treatment on a tumour of size < 40 will both delay the maximum turning point and increase the maximum tumour size reached.

To evaluate what role the antitumour immune response plays in the sensitivity of U_0, the killer immune population was set equal to zero and the same numerical simulation
Figure 6.12: Numerical solution to Eqs. (6.15)–(6.23) using a range of initial tumour populations U_0 for (a) $K \neq 0$ and (b) $K = 0$. The colourmap bar on the right hand side matches the corresponding U_0 value with the model’s predicted tumour volume over time. First published in Jenner et al. (2016).

As for Fig. 6.12(a) was conducted, see Fig. 6.12(b). In the absence of the antitumour response, the change in initial tumour size has a monotonic effect on the total number of tumour cells. In comparing Fig. 6.12(a) and Fig. 6.12(b), the effect of initial tumour size is evidently extremely different, reinforcing that the addition of an antitumour immune response causes the dynamics of the system to change dramatically. The larger the initial tumour size the better the treatment outcome, and the smaller the initial tumour size the larger the tumour will grow over time. Without the antitumour immune response, the initial tumour size has no substantial effect on treatment outcome, leading to the conclusion that with the addition of the antitumour immune response, a dramatic shift in the dynamics of the model occurs, largely dependent on the initial tumour size.

6.5 SUMMARY

By extending the model derived in Chapter 5 it is possible to closely reproduce the experimental results from Kim et al. (2011a) for a PEG-modified adenovirus conjugated with Herceptin. The tumour time-series measurements for the PEG-modified adenovirus conjugated with Herceptin were obtained using the model in Eqs. (6.1)–(6.4). To determine the decay rate of virus in the blood over 60 minutes using the viral gen-
ome measurements, a compartmentalisation of the virus population was developed, see Eqs. (6.5)-(6.6). Then, by combining the two models, a model was developed to embody the spatial distribution of the virus genome collected by [Kim et al. 2011a], see Eqs. (6.9)-(6.14). The parameter values obtained in all optimisations in this chapter were then combined to develop a model for the efficacy of the virus in the presence of the interferon-mediated antiviral immunity and antitumour immune response.

An individual and simultaneous optimisation approach was used for the tumour-time series measurements in this chapter. When fit to the data for individual cases, it can be seen visually that the model easily captures a wide range of treatment responses, see Fig. 6.2 and Table 6.1. The ability of the model to reproduce the data closely in the simultaneous optimisation is reaffirmed by the R-squared and Pearson’s correlation coefficient Table 6.4 and the results in Fig. 6.3. This illustrates that the model is a reliable and adaptable representation for the interaction between a PEG-modified adenovirus conjugated with Herceptin and tumour cells. Examining specifically the parameter values in Table 6.4 obtained through the simultaneous fitting of the model to the tumour time-series data, it is evident that increasing viral modification, Ad to Ad-PEG to Ad-PEG-HER, increased the infectivity of the treatments with Ad-PEG-HER having the highest infectivity rate.

It is widely known that humans are incredibly heterogeneous and as such, individual responses to treatment will vary. The treatment efficacy is highly dependent upon the initial tumour size and proliferation rate, Fig. 6.5(a) and 6.5(b). Simulations of the treatment protocol on tumours of differing characteristics shows that the treatment is capable of slowing and possibly reversing tumour growth. The results of Fig. 6.5(a) suggest that the slower the tumour cells are proliferating the more likely the viral treatment can reduce the tumour to a manageable size. However, for aggressive tumours with high growth rates r, there is an initial plateauing of the tumour cell population showing the viral treatment taking effect; however, this is followed by an increase in tumour size. This suggests that the overall tumour proliferation is eventually too high for the viral lysis to overcome and an increase in tumour cell population with time occurs. If the infectivity of the virus were higher then the outcome would most likely be similar to that of less aggressively growing tumours.
Interestingly, it would appear that the treatments are more effective in halting tumour progression when the initial tumour size, U_0, is mid-range, around 50×10^6 cells (or 50 mm^3), see Fig. 6.5(b). It may be that smaller tumours are initially hidden from the treatment, delaying the treatment effect. This may be caused by the infectivity rate being highly depending on the frequency of uninfected cells to total cells, which would be variable for an initially small tumour. The maximum tumour population was reduced as U_0 reduced and the peak was delayed. However, for extremely small U_0, the tumour appears to escape the treatment with the peak tumour population again increasing as U_0 decreases. Considering this dependence on initial tumour size, in the presence of interferon-mediated antiviral immunity and the antitumour immune response, there is quite a different outcome, see Fig. 6.12. For larger initial tumours, the treatment is more effective on day 60, when compared to smaller initial tumours in the presence of the antiviral and antitumour immune responses. Then, in the absence of the antitumour immune response, this dynamic is absent and tumour growth for all initial tumour sizes is seen.

One major concern in viral treatments is toxicity. Tracking the maximum viral level during the first 100 days of treatment shows an initial decrease as the application dose increases, independent of the application profile, Fig. 6.6(a). This likely corresponds to the increasing effectiveness of the dose in decreasing the tumour population, and thus also limiting the maximum viral population. For small values of the total injection, V_{T0}, one injection achieves a smaller maximum virus level compared to spreading the dose over increasing numbers of injections. The maximum viral population then goes on to climb linearly as V_{T0} is further increased irrespective of the application profile. This can be interpreted as the virus being too effective in killing off the tumour cells before they proliferate, thus also slowing viral replication.

By spreading the total viral dose into multiple injections, the peak viral load is constrained, despite having an initial higher dose as seen in the lesser gradients of the multiple-injection profiles, see Fig. 6.6(a) and 6.6(b). From this, it could be possible that viral replication is not the driving force behind tumour cell eradication in these scenarios, but rather the intravenous virus is the major player in the eradication. Naturally many application profiles can be considered. Given a particular viral treatment,
and the biological constraints such as maximum viral load tolerance, the model can be used to optimise the proposed application profile.

In Section 6.3, a simple model for the clearance of virus by Liver Sinusoidal Endothelial Cells (LSECs), see Eqs. (6.5)-(6.6), was used to reproduce the dynamics of viral genome measurements in the blood over 60 minutes, see Fig. 6.7. Comparing the parameter values obtained for this optimisation, Table 6.5 it is clear that the PEG-modification and conjugation with Herceptin decreases the rapid initial decay of the virus, but increases the slow rate of decay.

Taking the quasi-steady-state approximation to the model for LSEC clearance of the viral genome in the blood and the model for the overall virus-tumour interaction, a model for the spatial distribution of the virus on day 5 is presented in Eqs. (6.9)-(6.14). Parameter values are then obtained for an optimisation of the model to the viral genome measurements on day 5, see Fig. 6.9 and parameter values in Table 6.6. Since the confidence intervals were tight, the parameter values were then fixed for the decay rate from the blood and transfer rate to the tumour site and used to build a model that considered the antiviral cell immunity and antitumour immune responses.

To understand the significance of the antiviral and antitumour immune responses, a sensitivity analysis of the model developed in Eqs. (6.15)-(6.23) was conducted, see Fig. 6.11. Overall, the antitumour immune response appears more sensitive than the antiviral immune response. Perturbations in the killing rate \(\kappa \), the stimulation rate of killer immune cells \(s_K \) and the death rate of killer cells \(d_K \) are all able to achieve significant changes in the tumour size with tumour eradication possible for subsets of the parameter perturbations. It is worth noting that decreasing the stimulation rate of killer immune cells or the killing rate has an adverse effect on the tumour size and renders the treatment unsuccessful.

In this chapter, the outcome of treatment with a PEG-modified adenovirus conjugated with Herceptin was shown to depend on the initial tumour size and the presence of the antitumour immune response. The field of immunotherapy looks to harness the power of the antitumour immune response and increase the stimulation of specific immune cells. In Chapter 7, an investigation into a perturbation of the oncolytic aden-
ovirus in this chapter is examined and the antitumour immune response is investigated in more detail.
IMPROVING THE ANTITUMOUR IMMUNE RESPONSE FROM AN ADENOVIRUS MODIFIED WITH IL-12 AND GM-CSF
OVERVIEW

Figure 7.1: Subset of Fig. 1.1 summarising the investigation of the virus-tumour interaction in this chapter

Combined virotherapy and immunotherapy has been emerging as a promising and effective cancer treatment for some time. As discussed in Chapter 6, the strength of the antitumour immune response can be crucial to the outcome of oncolytic virotherapy. In this chapter, this response is investigated in more detail by considering an oncolytic adenovirus expressing immunostimulatory cytokines interleukin 12 (IL-12) and granulocyte-monocyte colony-stimulating factor (GM-CSF). These cytokines are known to heighten the antitumour immune response by stimulating the activation of killer T cells and helper T cells. Extending the framework in Chapter 6, a system of ordinary differential equations (ODEs) is developed to model the immune response to an oncolytic adenovirus modified with IL-12 and GM-CSF. To quantify the impact of clearance on this treatment, two delivery mechanisms are considered: single intratumoural injection and degradable virus-loaded hydrogels. Gel-release mechanisms allow for a sustained release of the therapy so that their efficacy may be extended. A major challenge facing gel-release therapies is determining the optimal release profile. Using the mathematical model developed, perturbations to the application protocol that achieve optimal treatment effectiveness can be determined.

Some of the work in this chapter was previously published in Jenner et al. (2018a).
The focus of immunotherapy is to overcome the suppression of the immune system by cancer, through stimulating an antitumour immune response (Section 2.4.7). As discussed in Chapter 6, oncolytic viruses represent a promising novel immunotherapy, as they elicit an immune response that can lead to the death of tumour cells.

Interleukin 12 (IL-12) and granulocyte-monocyte colony-stimulating factor (GM-CSF) have been used regularly as immunotherapeutic agents in cancer gene therapy, see Sections 2.3.2.1 and 2.3.2.2. To strengthen the therapeutic efficacy of these cytokines, Choi et al. (2012a) modified an oncolytic adenovirus to express IL-12 and GM-CSF. They investigated how intratumoural injections of viruses expressing different combinations of the cytokines prevented tumour growth. IL-12 is known to have potent anti-tumour effects through promotion of the immunity of helper T cells and activation of killer T cells, see Section 2.3.2.1. Choi et al. (2012a) found that intratumoural doses of adenovirus expressing IL-12 strongly induced the activation and recruitment of T cells, including helper T cells and killer T cells. The cytokine GM-CSF is known to enhance the processing and presentation of antigen on antigen presenting cells (APCs), see Section 2.3.2.2. Choi et al. (2012a) found that intratumoural injections of adenovirus expressing GM-CSF strongly recruited APCs to the tumour site.

One major challenge for the oncolytic adenovirus expressing IL-12 and GM-CSF is sustaining the antitumour immune response. Oh et al. (2017) developed a gelatin-based hydrogel for sustained virus release. They also examined the impact of co-delivery of the virus and dendritic cells (DCs) from within the gel. DCs are highly efficient and specialized APCs that can induce a T cell response to antigen, see Section 2.3. By presenting tumour-associated antigens to killer T cells, DCs can induce tumour-specific immunity. These closely related therapies of Choi et al. (2012a) and Oh et al. (2017) have the potential to be an effective therapeutic tool if their delivery can be optimised.

7.1 Therapeutic Efficacy of an Oncolytic Adenovirus Expressing IL-12 and GM-CSF, and Dendritic Cells

To determine whether modification of an oncolytic adenovirus with either IL-12 or GM-CSF could improve oncolytic virotherapy, Choi et al. (2012a) investigated the antitumour
mour effect of an oncolytic adenovirus (Ad) co-expressing IL-12 and GM-CSF (Ad/IL12/GMCSF) compared to an oncolytic adenovirus expressing IL-12 (Ad/IL12) or GM-CSF (Ad/GMCSF). B16-F10 murine melanoma (Section 2.2.3.2) tumours in six to eight C57BL/6 mice were injected intratumourally with either phosphate-buffered saline (PBS), Ad, Ad/IL12, Ad/GMCSF or Ad/IL12/GMCSF on days 0, 2 and 4. Beginning when the average size of the tumour was 80-100 mm3, tumour size was measured from initial treatment injection (Section 2.5.3).

Building on the experiments of [Choi et al. (2012a), Oh et al. (2017)] considered the effectiveness of a gelatin-based hydrogel as a co-delivery system for Ad/IL12/GMCSF and DCs. The gel matrix enables sustained release of both the virus and DCs while preserving their biological activity over a considerable time period, leading to efficient retention of both therapeutics in tumour tissue. [Oh et al. (2017)] conducted an in vitro study to determine the release profiles for the dendritic cells (DCs) loaded onto the hydrogel, see Section 2.5.5.

[Oh et al. (2017)] then examined how tumour size changed under treatment in an in vivo setting. Once Lewis lung carcinoma (LLC) cell based tumours reached an average size of 100 – 150 mm3 in C57BL/6, they were administered with a single treatment of PBS, gel, Ad/IL12/GMCSF (2×10^{10} VP), DC (2.5×10^6 cells), Ad/IL12/GMCSF (2×10^{10} VP) in combination with DCs (2.5×10^6 cells) (Ad/IL12/GMCSF+DC) or combination of Ad/IL12/GMCSF and DCs encapsulated in GHPA gel (Ad/IL12/GMCSF+DC+gel). See Section 2.2.3.3 for more information on lung cancer and LLCs or Section 2.5.3 for the tumour growth measurement protocol.

7.2 ANTITUMOUR IMMUNE RESPONSE TO ADENOVIRUS EXPRESSING IL-12 AND GM-CSF

To create a model for the antitumour effect of an oncolytic adenovirus expressing IL-12 and GM-CSF, the previous model in Eqs. (6.1)–(6.4) for an oncolytic virus and a
population of tumour cells is extended to consider individual immune cell types. There are six state variables considered in the system of equations below:

\[
\begin{align*}
\frac{dU}{dt} &= r \log \left(\frac{L}{U} \right) U - \beta \frac{U V}{T} - \kappa \frac{K U}{T}, \\
\frac{dI}{dt} &= \beta \frac{U V}{N} - d I - \kappa I, \\
\frac{dV}{dt} &= u V(t) - d V + \alpha d I, \\
\frac{dA}{dt} &= s_A I - d_A A, \\
\frac{dH}{dt} &= s_H A - d_H H, \\
\frac{dK}{dt} &= s_K H + s_K A - d_K K, \\
\end{align*}
\]

\[
u_V(t) = \begin{cases} V_0 \delta(t - t_i), & t_i = 0, 2, 4, \\ 0, & \text{otherwise,} \end{cases}
\]

\[
\begin{align*}
U(0) &= U_0, & V(0) &= 0, & H(0) &= 0, \\
I(0) &= 0, & A(0) &= 0, & K(0) &= 0,
\end{align*}
\]

where \(t \) is time (days), \(U \) is the uninfected tumour population, \(I \) is the infected tumour population and \(V \) is the number of virus particles. As the model was developed for an adenovirus expressing IL-12 and GM-CSF the populations of immune cells considered here are those most affected by these cytokines: antigen-presenting cells (APCs), \(A \); helper T cells, \(H \); and killer T cells, \(K \). The total cell population at the tumour site at any time \(t \) is given by \(T = U + I + A + H + K \). In Fig. 7.2 there is a schematic for the interactions modelled. As the virus was administered intratumourally, there is no need to model the virus in the organs and blood (as was discussed in Chapter 6). Additionally, the influence of the interferon-mediated antiviral immunity is not considered crucial in this chapter. Note that this is the same killer T cell population that was considered in Eqs. (6.15)–(6.23), but this time the activation mechanism is modelled in more detail. Note that the above model is similar to the model used by [Kim et al. (2015)] detailed in Eqs. (3.17)–(3.21).

APCs include dendritic cells and macrophages. These cells are stimulated by infected cells at rate \(s_A \) and decay at a rate \(d_A \). Helper T cells are then stimulated by APCs at
rate s_H and decay at rate d_H. Both APCs and helper T cells then activate killer T cells at rate s_{KA} and s_{KH} respectively. Killer T cells induce apoptosis in uninfected and infected tumour cells at a frequency-dependent rate with constant κ. Killer T cells decay at rate d_K. Initially, it is assumed there are no stimulated immune cells as these are only generated through the presence of virus-infected tumour cells, I. For more biological detail about the immune interactions, see Section 2.3.

The interaction between tumour cells and immune cells are modelled using mass action as an approximation of the geometric and spatial effects. Frequency-dependent rates have been incorporated to model cell-cell and cell-virus interactions at the tumour
site as it is assumed these occur at a rate proportional to the frequency of the interacting cells. In other words, virus infection or killer T cell killing of tumour cells just depends on the number of viruses or killer T cells and the frequency of the population they are infecting or killing.

To fit the model to the data from Choi et al. (2012a), certain parameters were fixed to those found in the literature. The average time taken for an infected tumour cell to undergo lysis is one day, so \(d_1 = 1 \text{day}^{-1} \) (Ganly et al., 2000). The estimation for the rate that the virus leaves the tumour site \(d_V \) is based on laboratory observations of Li et al. (2008) and Wang et al. (2006), which observe 90% of the virus population decays in one day. Using the half-life decay formulas assuming exponential decay gives \(d_V = -\log(0.1) = 2.3/\text{day} \). Helper T cells are known to have a half-life of 3 days (Kim et al., 2011c), which gives \(d_{H1} = -\log(2)/3 = 0.23/\text{days} \). For the immune cell death rates, it was assumed that APCs and helper T cells die or exit the system at a similar rate, therefore \(d_A = d_{H1} = 0.23/\text{day} \) (Kim et al., 2011c). The number of viral particles created through lysis \(\alpha \) and the decay rate of killer T cells \(d_K \) was set to the values in Table 6.1 and 6.7.

All of the parameter estimates are summarised in Table 7.2. The remaining parameters in the model were obtained by sequentially fitting parameters for submodels of Eqs. (7.1)-(7.7) to the data, and fixing their values for higher level models in accordance with gradual modifications of the base adenovirus, see Table 7.1 for the summary. Sequential or hierarchical fitting is different to the simultaneous fitting method employed in Chapter 6 where all parameters were fit to their corresponding data sets simultaneously. The numerical implementation of the optimisation is detailed in Section 3.4.

To assess the antitumour effectiveness of the immunostimulatory adenovirus, Choi et al. (2012a) first conducted a control (PBS) experiment that monitored tumour growth in the absence of treatment. Since there were no viral particles present in the control experiment, the model was reduced to the uninfected tumour population, \(U \), by fixing \(V = I = A = H = K = 0 \) in Eqs. (7.1)-(7.7). The tumour volume is assumed proportional to the number of tumour cells, and the density to be \(10^6 \text{cells/mm}^3 \). The parameter values, describing the tumour replication constant, \(r \), and carrying capacity, \(L \), were fit to the data and fixed for all subsequent simulations.
The first virus-based experiment was the oncolytic adenovirus (Ad) with no immunostimulatory cytokines. It is assumed that the immune response to Ad alone would be significantly less than the response to oncolytic adenovirus modified with either IL-12 or GM-CSF. As such, the presence of the populations of immune cells were assumed negligible, i.e. $A = H = K = 0$ in Eqs. (7.1)–(7.7). This resulted in the PEG and Herceptin-modified adenovirus model in Eqs. (6.1)–(6.4). The remaining parameters of the model describing the infection rate of the virus β and initial tumour size U_0 were fit and their values were fixed for all subsequent simulations.

The last three viruses tested were modifications of the adenovirus with the different cytokines Ad/GMCSF, Ad/IL12 and Ad/IL12/GMCSF. Choi et al. (2012a) found that intratumoural doses of adenovirus expressing IL-12 strongly induced the activation and recruitment of T cells, including helper T cells and killer T cells. Hence, to fit the tumour time-series measurements under treatment with Ad/IL12, the population of APCs was considered negligible, $A = 0$ in Eqs. (7.1)–(7.7). Similarly for the adenovirus expressing GM-CSF, it was assumed the effect on the helper T cell population was negligible as GM-CSF primarily stimulates the antigen presenting cells (Choi et al. 2012a). Therefore, for this experiment the model was adjusted to exclude the helper T cells by setting $H = 0$, and the remaining model was fit to the data. For the Ad/IL12/GMCSF

Table 7.1: Experiment-specific optimisation conditions

<table>
<thead>
<tr>
<th>Experiment</th>
<th>PBS</th>
<th>Ad</th>
<th>Ad/GMCSF</th>
<th>Ad/IL12</th>
<th>Ad/IL12/GMCSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevant equations</td>
<td>Eq. (7.1)</td>
<td>Eq. (7.1)</td>
<td>Eq. (7.1)</td>
<td>Eq. (7.1)</td>
<td>Eq. (7.1)</td>
</tr>
<tr>
<td></td>
<td>Eq. (7.2)</td>
<td>Eq. (7.2)</td>
<td>Eq. (7.2)</td>
<td>Eq. (7.2)</td>
<td>Eq. (7.2)</td>
</tr>
<tr>
<td></td>
<td>Eq. (7.3)</td>
<td>Eq. (7.3)</td>
<td>Eq. (7.3)</td>
<td>Eq. (7.3)</td>
<td>Eq. (7.3)</td>
</tr>
<tr>
<td></td>
<td>Eq. (7.4)</td>
<td>Eq. (7.4)</td>
<td>Eq. (7.4)</td>
<td>Eq. (7.4)</td>
<td>Eq. (7.4)</td>
</tr>
<tr>
<td></td>
<td>Eq. (7.5)</td>
<td>Eq. (7.5)</td>
<td>Eq. (7.5)</td>
<td>Eq. (7.5)</td>
<td>Eq. (7.5)</td>
</tr>
<tr>
<td></td>
<td>Eq. (7.6)</td>
<td>Eq. (7.6)</td>
<td>Eq. (7.6)</td>
<td>Eq. (7.6)</td>
<td>Eq. (7.6)</td>
</tr>
<tr>
<td>Params fit</td>
<td>r, L, U_0</td>
<td>β</td>
<td>$s_H, s_{KH}, s_A, s_{KA}, s_{KA}$</td>
<td>s_{KA}, s_{KH}</td>
<td>κ</td>
</tr>
<tr>
<td>Params fixed (Table 7.2)</td>
<td>r, L, U_0</td>
<td>β, d_1</td>
<td>$\alpha, d_V, d_H, d_L, d_A$</td>
<td>α, d_V, d_A</td>
<td>α, d_V, d_A</td>
</tr>
</tbody>
</table>

7.2 Antitumour immune response to adenovirus expressing IL-12 and GM-CSF
virus the full model, Eqs. (7.1)-(7.7), was used to fit the model parameters as both cytokines were present.

Due to the overlap in the cytokines expressed by the three viruses, the stimulation rates of the APCs, s_A, and helper T cells, s_H, could be determined specifically from optimisation to the Ad/GMCSF and Ad/IL12 data respectively. Once the values were obtained, they were fixed in the fit of the model to the Ad/IL12/GMCSF experiment. The remaining parameters s_{KA}, s_{KH} and κ were then allowed to vary between the three experiments and were used to quantify the major differences in the outcome of treatment from the cytokine expression of the three viruses. A full summary of the experiment-specific sequential optimisation for the five data sets can be found in Table 7.1.

The model was fit to the mean of the data with normalisation using the standard error. When solving Eqs. (7.1)-(7.7) numerically, T was replaced by $T + \epsilon$ for $\epsilon = 0.001$, to avoid the singularity occurring as $T \to 0$. As a second and third injection of treatment was given on days 2 and 4, the model was solved piecewise to account for the addition of V_0 virus particles at each injection time.

7.2.1 Tumour growth under treatment with an oncolytic adenovirus co-expressing IL-12 and GM-CSF.

The model parameters r, the replication rate of tumour cells, and L, the carrying capacity of the tumour, were first optimised using the PBS tumour time-series measurements, see Fig. 7.3. The trajectory of tumour growth arising from the optimised model is close to the tumour growth data from the experiment. The estimates obtained for the parameters are presented in Table 7.2 with the corresponding goodness of fit estimates in Table 7.3. These values were then used when optimising the model parameters using the other, virus-based, experiments.

To create a baseline for the effectiveness of oncolytic adenoviruses without IL-12 or GM-CSF, Choi et al. (2012a) monitored the growth of pre-established tumours in 8 mice after treatment with an adenovirus, previously discussed in Section 7.1. The tumour time-series measurements exhibited high variability and illustrate the heterogeneity
in response to treatment, see Fig. 7.4. Multiple mice did not survive the experiments duration. Within this data, however, there were three clear subgroups of treatment responses: those that died early, Fig. 7.4(a); low responders, those whose tumours grew slowly until about day 10, after which point the tumours grew exponentially, Fig. 7.4(b); and high responders, those with small tumours over the whole duration of the experiment, Fig. 7.4(c).

To determine whether the model could adequately represent the observed behaviour, model and parameter values were optimised using each subgroup of data, Fig. 7.4. The optimised values for the infection rate, β, and initial tumour size, U_0, differed for the different subgroups. For the subset that died early $\beta = 1.3$ and $U_0 = 220$. For the low responder subgroup $\beta = 0.92$ and $U_0 = 27$, and for the high responder subset $\beta = 1.1$ and $U_0 = 18$.

The dynamics of the model optimised to each subgroup was qualitatively similar: each of the solutions rises to a maximum and then decays. Perturbations in β and U_0 alter the location and value of the turning point, not the existence. The large range of initial tumour sizes, U_0, obtained is an accurate reflection of the initial tumour sizes observed in the experiment. The difference in the infection rates, β, between the three treatment response subgroups was less variable, and the model output was less sensitive to changes in β than U_0.

Figure 7.3: Output of the optimised tumour growth model, Table 7.1, for the PBS (control) case. The individual mouse data are plotted as grey circles with the mean and standard error bar at each time point in blue. The model output is plotted as a solid black line. First published in Jenner et al. (2018a).
Figure 7.4: Output of the optimised tumour growth models for the adenovirus (Ad) with no immune-stimulatory cytokines. The model parameters were optimised using (a) the early-death subgroup, (b) the low-responder subgroup, (c) the high-responder subgroup and (d) all data. The individual mouse data are plotted as grey circles with the mean and standard error bar at each time point shown in (d) in blue. The model outputs are plotted as solid black lines. Note the time axis has been extended in (b) and (c) to reveal the longer-term behaviour of the dynamics. First published in Jenner et al. (2018a).

Optimising the parameters to all data simultaneously, Fig 7.4(d), resulted in $\beta = 1.2$ and $U_0 = 85$, inside the range obtained for the 3 subgroups. Due to the different trajectories, the mean trend of the data and the individual points diverge around day 11 and do not represent any given mouse in the observations. For mice undergoing different treatment protocols it is not possible to predict whether they would have been high or low responders if treated with adenovirus with no immunostimulatory cytokines. The estimates $\beta = 1.2$ and $U_0 = 85$ obtained using all the data simultaneously lie within the range of the other subgroup estimates, and all the model outputs exhibit the same
features. Thus, these values are used when optimising the other model parameters using the data from the more highly modified treatments.

The model parameters were optimised to each immunostimulatory adenovirus-based experiment of [Choi et al. (2012a)](2012a) (i.e. Ad/IL12, Ad/GMCSF, Ad/IL12 GMCSF) as detailed in Table 7.1. Fig. 7.5 shows the tumour cell population over time for each experiment overlaid with the optimised model. The parameter values obtained are presented in Table 7.2 and the goodness of fit measures in Table 7.3.

It can be seen that the model is a good representation of the features of the tumour growth trajectories. As with the Ad experiments, some of the experiments show different response levels to the treatments. In these cases, the model presented reflects the mean behaviour of the data rather than that of any particular subgroup (for instance in Fig. 7.5(c) the mean value straddles two subgroups of responders).

7.2.2 Simulating heterogeneity in immune efficacy

To determine ways of improving the efficacy of Ad/IL12/GMCSF, it helps to consider how the outcome of treatment depends on heterogeneity in immune characteristics. Using model parameters from the optimisation to the Ad/IL12/GMCSF data (Table 7.2), the effects of perturbations in the rates of immune stimulation and apoptosis induction were investigated. The effect of increasing the immunostimulatory capability of infected cells on APCs or APCs on helper T cells was considered. To investigate stronger immune stimulation, the APC stimulation rate, s_A, and the helper T cells stimulation rate, s_H, were perturbed individually by approximately 20-30%, keeping the other parameters constant, see Fig. 7.6(a) and 7.6(b) respectively. To further investigate how changes in the rate of killer-T-cell-induced apoptosis alters treatment outcome, the killing rate of killer T cells, κ, was also perturbed, Fig. 7.6(c). As the experiments of [Choi et al. (2012a)](2012a) showed significant tumour growth over the space of 33 days, it is assumed that this is the therapeutic window over which this treatment needs to be effective.
7.2 Antitumour immune response to adenovirus expressing IL-12 and GM-CSF

Figure 7.5: Output of the optimised virus-tumour-immune models for the (a) Ad/IL12, (b) Ad/GMCSF and (c) Ad/GMCSF/IL12 treatment cases, see Table 7.1. The individual mouse data are plotted as grey circles with the mean and standard error bar at each time point shown in blue. The model outputs are plotted as solid black lines. First published in Jenner et al. (2018a).

In Fig. 7.6(a), it is evident, as expected, that the higher the stimulation rate of APCs by infected tumour cells, the larger the number of tumour cells. Decreasing the stimulation rate of APCs, results in a much smaller tumour burden, smaller than even the initial tumour size. These findings suggest that increasing APC stimulation has a negative effect on the ability of the treatment to reduce tumour size, and this rate should actually be decreased for an optimal treatment to be obtained. Comparing this to the perturbation in the immunostimulatory rate of helper T cells, Fig. 7.6(b), the opposite occurs with the larger stimulation rates resulting in the smallest tumour size.
Table 7.2: Parameter estimates fixed from the literature and obtained from the sequential fit shown in Figs. 7.3, 7.4 and 7.5 to the measurements of Choi et al. (2012a)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Description</th>
<th>PBS</th>
<th>Ad</th>
<th>Ad/IL12</th>
<th>Ad/GMCSF</th>
<th>Ad/IL12/GMCSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>virus$\times 10^{10}$</td>
<td>viral burst size</td>
<td>-</td>
<td>3500</td>
<td>3500</td>
<td>3500</td>
<td>3500</td>
</tr>
<tr>
<td>d_1</td>
<td>day$^{-1}$</td>
<td>burst rate</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d_V</td>
<td>day$^{-1}$</td>
<td>viral decay rate</td>
<td>-</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>d_A</td>
<td>day$^{-1}$</td>
<td>decay of APCs</td>
<td>-</td>
<td>-</td>
<td>0.23</td>
<td>-</td>
<td>0.23</td>
</tr>
<tr>
<td>d_H</td>
<td>day$^{-1}$</td>
<td>decay of helper T cells</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>d_K</td>
<td>day$^{-1}$</td>
<td>decay of killer T cells</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>day$^{-1}$</td>
<td>tumour growth rate</td>
<td>0.066</td>
<td>0.066</td>
<td>0.066</td>
<td>0.066</td>
<td>0.066</td>
</tr>
<tr>
<td>L</td>
<td>cells$\times 10^6$</td>
<td>carrying capacity</td>
<td>3.2×10^5</td>
<td>3.2×10^5</td>
<td>3.2×10^5</td>
<td>3.2×10^5</td>
<td>3.2×10^5</td>
</tr>
<tr>
<td>β</td>
<td>day$^{-1}$</td>
<td>infection rate</td>
<td>-</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>U_0</td>
<td>cells$\times 10^6$</td>
<td>initial tumour size</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>s_A</td>
<td>day$^{-1}$</td>
<td>APC activation rate</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>-</td>
<td>1.2</td>
</tr>
<tr>
<td>s_{KA}</td>
<td>day$^{-1}$</td>
<td>APC activate killer T cell</td>
<td>-</td>
<td>-</td>
<td>5.4</td>
<td>-</td>
<td>7.1</td>
</tr>
<tr>
<td>s_{H}</td>
<td>day$^{-1}$</td>
<td>helper T cell activation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>s_{KH}</td>
<td>day$^{-1}$</td>
<td>helper T cell activate killer T cell</td>
<td>-</td>
<td>-</td>
<td>5.0</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>day$^{-1}$</td>
<td>killing rate</td>
<td>-</td>
<td>-</td>
<td>0.84</td>
<td>1.1</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Table 7.3: Goodness of fit measures for each parameter optimisation

<table>
<thead>
<tr>
<th></th>
<th>Residual norm</th>
<th>Coefficient of determination</th>
<th>Pearson’s correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>0.33</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Ad</td>
<td>7.4</td>
<td>0.99</td>
<td>0.87</td>
</tr>
<tr>
<td>Ad/GMCSF</td>
<td>90</td>
<td>0.99</td>
<td>0.96</td>
</tr>
<tr>
<td>Ad/IL12</td>
<td>6.6</td>
<td>0.99</td>
<td>0.97</td>
</tr>
<tr>
<td>Ad/GMCSF/IL12</td>
<td>26</td>
<td>0.99</td>
<td>0.91</td>
</tr>
</tbody>
</table>
7.2 Antitumour Immune Response to Adenovirus Expressing IL-12 and GM-CSF

Figure 7.6: Tumour cell population over time predicted by the optimised model for Ad/IL12/GMCSF for various values of (a) APC stimulation rates $s_A \in (1,1.5)$, (b) helper T cell stimulation rates $s_H \in (0.5,1)$ and (c) killer T cell killing rate $\kappa \in (1,1.5)$, indicated by the colour. The remaining parameters were fixed to the values presented in Table 7.2 column Ad/IL12/GMCSF, a detailed view for short times is shown inset for (c). First published in Jenner et al. (2018a).

In Fig. 7.6(c), larger κ values resulted in effective early containment of tumour growth. For very large values of κ, close to $\kappa = 1.5$, the tumour is completely eradicated (for this model, we consider complete tumour eradication to occur if the total tumour population drops below 10^{-3}) in this window of time. However, for mid-range values of the apoptosis rate, e.g. $\kappa = 1.25$, the treatment results in a large growth of the tumour around day 25. These two treatment responses (complete eradication or unbounded growth) mimic the results seen in Fig. 7.5(c).
Interestingly, when κ is much smaller, e.g. κ = 1, a lower maximum tumour count is achieved within this time frame. These findings suggest the existence of a mid-range interval of κ values for which the treatment is significantly less effective in the time frame of 33 days (the therapeutic window discussed earlier) than may have been anticipated outside of this interval. Also, for large values of κ complete tumour eradication can be obtained. This indicates that tumour cell apoptosis is a critical feature in the efficacy of treatment.

7.3 Response to treatment with dendritic cells and adenovirus expressing IL-12 and GM-CSF released from an injectable gel

In the previous section, the model developed assumed that the primary driver of the immune response was virus-infected tumour cells. The virus-infected tumour cells stimulated APCs which in turn activated killer T cells and helper T cells. Using the Ad/IL12/GMCSF virus created by Choi et al. (2012a), Oh et al. (2017) considered injections of both the virus and immature dendritic cells (DCs). As such, the stimulation of the immune system by uninfected tumour cells needs to be modelled explicitly. Below is a modified version of Eqs. (7.1)-(7.7) from Section 7.2:

\[
\begin{align*}
\frac{dU}{dt} &= r \log \left(\frac{L}{U} \right) U - \beta \frac{U V}{T} - \kappa \frac{K U}{T}, \\
\frac{dI}{dt} &= \beta \frac{U V}{T} - d_1 I - \kappa \frac{K I}{T}, \\
\frac{dV}{dt} &= u_V(t) - d_V V + \alpha d_1 I, \\
\frac{dA_1}{dt} &= u_{DC}(t) - s_{AU} A_1 U + r_{A1} I - s_{A1} A_1 I - d_{A1} A, \\
\frac{dA_A}{dt} &= s_{AU} A_1 U + s_{A1} A_1 I - d_A A, \\
\frac{dH}{dt} &= s_H A - d_H H, \\
\frac{dK}{dt} &= s_{KH} H + s_{KA} A - d_K K,
\end{align*}
\]

where t is time. A schematic for the model is given in Fig. 7.7.
Figure 7.7: Compartmental diagram for the tumour-virus interaction of co-delivered DCs and oncolytic adenovirus expressing IL-12 and GM-CSF. Variables U and I are the uninfected and infected tumour cell populations, V is the virus population, A_I is the immature APC population, A_A is the mature APC population, H is the helper T cell population and K is the killer T cell population. Transition between states (e.g. uninfected to infected) is represented by a solid line, stimulation or activation is represented by a dotted line, death or decay is represented by a double arrow and programmed killing of tumour cells is represented by a dashed line. This schematic builds on the one presented in Fig. 7.2.

The function \(u_V(t) \) is now the rate at which virus is introduced into the system, either from an intratumoural injection or released from a hydrogel. Immature DCs are introduced into the system either through direct intratumoural injection or release from the gel at a rate described by the function \(u_{DC}(t) \). The immature DCs are activated by interacting with uninfected or infected tumour cells at rate \(s_{AU} \) and \(s_{AI} \) respectively. Infected cells recruit immature DCs to the tumour site at rate \(r_{AI} \) and immature DCs die at rate \(d_{AI} \).
Using the in vitro study on the gel-release profile by Oh et al. (2017) (see Section 7.1), the function describing the release of DCs, \(u_{\text{DC}}(t) \), can be determined. This function will then be used to optimise the in vivo tumour time-series measurements.

7.3.1 In vitro DC release profile

To obtain the function \(u_{\text{DC}}(t) \) that describes the rate at which DCs leave the gel, first consider the simple model for DCs:

\[
\frac{dD}{dt} = u_{\text{DC}}(t) - d_{\text{DC}}D, \tag{7.15}
\]

where \(D \) is the number of DCs outside the gel, and DCs in the gel leave at a rate \(u_{\text{DC}}(t) \) and decay at a rate \(d_{\text{DC}} \). Let \(D_0 \) be the initial number of DCs. The function for the rate that dendritic cells flow out from the gel, \(u_{\text{DC}} \), is a function of time as it depends on the rate at which the gel is degrading, which can either occur slowly or quickly depending on the stiffness of the gel (soft or hard). It also depends on the number of DCs left inside the gel. The schematic in Fig. 7.8 summarises the model.

![Figure 7.8](image)

Figure 7.8: Schematic for the simplified model for the release of DCs from the gel. It relates to Eq. (7.15).

The viable DC count (in the absence of the gel medium) can be used to obtain the decay rate \(d_{\text{DC}} \). Since there is no gel in this experiment, only the decay rate of the DCs is present in the model, see Fig. 7.9 and Table 7.9 for the resulting fit.

The results for the number of DCs released from the soft and hard gel are plotted in Fig. 7.10(b) and 7.10(d) respectively. These relate to the function \(D(t) \) in Eq. (7.15). Since the function for \(D(t) \) and \(u_{\text{DC}}(t) \) are both left undetermined, the most that can be obtained from the data is an approximation to \(u_{\text{DC}}(t) \) at each time-point of \(D(t) \).

Using a finite difference approximation, Eq. (7.15) can be written as...
Figure 7.9: Viability profile of dendritic cells (DCs) not loaded into a gel system. Circles represent the number of released viable DCs as counted by trypan blue staining from three experiments. Fit of viable DC number data to exponential decay is given by the grey curve.

Table 7.4: Parameter estimates relating to Fig 7.9

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Description</th>
<th>Value</th>
<th>95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_{DC}</td>
<td>day$^{-1}$</td>
<td>decay rate of DCs</td>
<td>0.7889</td>
<td>(-0.9972, 0.5805)</td>
</tr>
<tr>
<td>D_0</td>
<td>No. of DCs</td>
<td>Initial number of DCs</td>
<td>967100</td>
<td>(840500, 1094000)</td>
</tr>
</tbody>
</table>

\[
\frac{D(t+h) - D(t)}{h} \approx u_{DC}(t) - d_{DC}D(t). \quad (7.16)
\]

Rearranging gives an expression for $u_{DC}(t)$:

\[
u_{DC}(t) \approx D(t+1) + (d_{DC} - 1)D(t). \quad (7.17)
\]

Assuming that DCs outside the gel lose viability at a rate d_{DC}, equivalent to that obtained in Table 7.4 for Fig. 7.9, the expression for the rate of change of DCs outside the gel can be used to calculate $u_{DC}(t)$. Taking the forward finite difference in Eq. (7.17) for all time points up until day 6, where the backward finite difference equivalent is used, $u_{DC}(t)$ can be calculated. The results of this approximation to the soft gel data are plotted in Fig. 7.10(a) as stars.

To extract a function describing the release rate of DCs from the gel, it is sufficient to approximate $u_{DC}(t)$ as closely as possible. Fitting a 6^{th} order polynomial to Eq. (7.17), gives the curve for $u_{DC}(t)$ in Fig. 7.10(a). Using this expression for $u_{DC}(t)$ and simulating Eq. (7.15) gives the curve overlayed on the DC measurements for soft gels, see...
Figure 7.10: Sustained release profile of dendritic cells (DCs) from soft (a)-(b) and hard (c)-(d) gelatin gel system. The stars in (a) & (c) represent the finite difference approximation to the release rate $u_{DC}(t)$ of DCs from the gel, Eq. (7.17), along with the 6th order polynomial fit to the approximations. The circles in (b) & (d) represent the number of released viable DCs from GHPA gels as counted by trypan blue staining from three experiments. The curve is the approximation to the number of DCs using Eq. (7.15).

Fig. 7.10 (a)-(b). Repeating this for the DC measurements for hard gel, gives Fig. 7.10 (c)-(d), assuming that the expression for $u_{DC}(t)$ is a 6th order polynomial. As $u_{DC}(t) \geq 0$, for values of the 6th order polynomial approximation that are negative, $u_{DC}(t) = 0$.

To determine whether there was a simpler biologically reasonable way to model the DCs released from the gel, two other models were tested. Assuming the rate at which DCs leave the gel is a constant rate k gives

$$\frac{dD}{dt} = k - d_{DC}D.$$ (7.18)
Optimising this model for the value of k to the data gives the approximation in Fig. 7.11(a). It is clear from this fit, that a constant release rate from the gel is unable to capture the dynamics of the data. This can be seen mathematically, since the rate of change of $D(t)$ with this formulation will be exponential as opposed to linear.

Considering instead that the rate of release of DCs from the gel is proportional to the number of DCs in the gel at any point in time, D_I, gives

$$\frac{dD_I}{dt} = -kD_I, \quad (7.19)$$
$$\frac{dD}{dt} = kD_1 - d_{DC}D. \quad (7.20)$$

Optimising k from this model gives model solution in Fig. 7.11(b). Again, this simple assumption is unable to produce a model that can approximate the data. This highlights that, while a 6th order polynomial is not a biological representation of the release rate of DCs from the gel, it is able to approximate the data more accurately than models that were based on biological reason. Note that the expression for $u_{DC}(t)$ is only an approximation of the true release profile, motivated by the need to model the gel-release profile in the in vivo experiments in the following section.

Figure 7.11: Fit of constant release and DC proportional release rates to the dendritic cells (DCs) released from soft gelatin gel systems. In (a) the constant release rate model in Eq. (7.18) is fit to the viable DCs released from. In (b) the DC proportional release rate model in Eqs. (7.19)-(7.20) is fit to the viable DCs released. The fitted model solution is the purple curve and the green circles are the data.
Table 7.5: Experiment-specific optimisation conditions [Oh et al. (2017)]. Equations used to optimise each experiment are listed along with the state variables considered and parameters fitted or fixed. Note that Ad/IL12/GMCSF has been shortened to Ad/I/G.

<table>
<thead>
<tr>
<th>Relevant equations</th>
<th>PBS & Gel</th>
<th>Ad/I/G</th>
<th>DC</th>
<th>DC+Ad/I/G</th>
<th>DC+Ad/I/G+Gel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eq. (7.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eq. (7.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eq. (7.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eq. (7.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eq. (7.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eq. (7.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eq. (7.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th>r, L, U₀</th>
<th>β, U₀</th>
<th>K</th>
<th>s_{AH,0}, r_{AH,0}, a, b, U₀, k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Params fit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameters fixed (Table 7.6)</td>
<td>r, L</td>
<td>r, L, β</td>
<td>r, L, β</td>
<td></td>
</tr>
<tr>
<td>Parameters fixed (Table 7.2)</td>
<td>d_{V, A, S_{H, d_{H}}, s_{KH, s_{KA, d_{K}}}}</td>
<td>d_{V, A, S_{H, d_{H}}, s_{KH, s_{KA, d_{K}}}}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.3.2 Tumour growth under treatment with DCs and oncolytic adenovirus co-expressing IL-12 and GM-CSF

In a similar manner to the sequential fit to the data from Choi et al. (2012a) in Section 7.2, the model in Eqs. (7.8)-(7.14) was fit sequentially to the tumour time-series measurements of Oh et al. (2017) for PBS, gel, Ad/IL12/GMCSF, DC+Ad/IL12/GMCSF and DC+Ad/IL12/GMCSF+gel. Table 7.5 gives a summary of the fitting algorithm.

Oh et al. (2017) conducted two control experiments: one where the tumour growth was measured over time with a PBS injection and the other where the tumour growth was measured over time with an injected empty gel, see Fig. 7.12. In both of these experiments the underlying tumour growth should be identical; however, it is clear that they are different. Fitting r, L and U₀ with the model from Eqs. (7.8)-(7.13) in the absence of treatment and immune cells, i.e. I = V = A₁ = A₂ = H = K = 0 gave the fits in Fig. 7.12 and the value for the tumour growth rate and carrying capacity r = 0.082 and L = 1800 for the PBS injection, and r = 0.127 and L = 12000 for the gel. It was not
possible to deduce whether the gel influences the growth of the tumour or whether the difference was inherent heterogeneity. As such, the PBS control and gel control were fit together to given Fig. 7.12 and parameter values in Table 7.6. To fit the remaining in vivo treatment data sets, the underlying growth rate of the tumour was fixed to the parameter values obtained from the simultaneous fit of the PBS and gel data.

Figure 7.12: Output of the optimised control data, Table 7.5 for the (a) PBS (control) case and (b) gel (control) case. The individual mouse data are plotted as grey circles with the mean and standard error bar at each time point in blue. The model output is plotted as a solid black line. In (c), both data sets were fit together. The individual mouse data are plotted as purple squares for gel data and blue circles for PBS data with the mean and standard error bar at each time point in blue for PBS data and purple for gel data.

In the previous Section 7.2, the model parameters in Eqs. (7.1)-(7.6) were optimised to Choi et al. (2012a)'s B16-F10 cell tumour measurements in C57BL/6 mice under treatment with an adenovirus expressing IL-12 and GM-CSF. Oh et al. (2017) used the same adenovirus expressing IL-12 and GM-CSF and measured the size of Lewis Lung
Carcinoma (LLC) cell generated tumours under treatment with this virus in C57BL/6 mice. The treatment protocols were also different; *Choi et al.* (2012a) injected 1×10^{10} VP on days 0, 2 and 4, whereas *Oh et al.* (2017) injected 2×10^{10} on day 0.

As there was no injection of DCs initially, it was assumed that immune stimulation is driven solely by the injected virus with the effects of endogenous DCs assumed negligible. As the modifications to the model were made for the addition of a DC injection, the original Eqs. (7.1)-(7.6) were used to fit the injection of Ad/IL12/GMCSF into LLC tumours. Additionally, since the underlying virus and mice are the same, the parameter values obtained in Section 7.2 for the Ad/IL12/GMCSF virus were used for the optimisation of the Ad/IL12/GMCSF virus in *Oh et al.* (2017)’s experiment. Note to obtain the original model in Section 7.2 from Eqs. (7.8)-(7.14), A_A = 0 in Eq. 7.11 and A_A are directly stimulated by infected cells I; i.e., $s_A I$.

As different tumour cell lines were used for the experiments of *Choi et al.* (2012a) and *Oh et al.* (2017), this was hypothesised to affect both the viruses infectivity β, along with the killing rate of the immune cells κ. Fixing all other parameter values to those in Table 7.2 for the Ad/IL12/GMCSF results and Table 7.6 for the underlying tumour growth and allowing the initial size S_0, the infectivity rate β and the killing rate κ to vary gave the fit in Fig. 7.13(a) and parameter values in Table 7.6.

To determine the true effectiveness of combined DC and Ad/IL12/GMCSF injections, *Oh et al.* (2017) also tested tumour growth under a single injection of 2.5×10^6 immature DCs. The likelihood of a DC recognising and becoming activated by a tumour cell is much lower than that of a DC recognising and becoming activated by an infected tumour cell. Since there was no virus present, the model in Eqs. (7.8)-(7.13) simplified by fixing $I = V = 0$

The *in vitro* experiment in Section 7.3.1 fitted the decay rate d_{DC} of a group of immature DCs and this value was used to approximate the decay rate d_{A1} of immature DCs. Assuming that the rate at which APCs stimulate helper cells and helper cells stimulate killer cells was independent of the type of antigen, the parameter values were taken from those used in Section 7.2 Table 7.2. The parameters left to fit were then the stimulation rate of the immature DCs, s_{AU}, and the killing rate of killing cells, κ. The killing rate κ was allowed to vary as previously it was fit considering a virus
As expected the stimulation rate of immature DCs by tumour cells is very low, and the killing rate is on par to the one obtained in the previous section. This leads to the hypothesis that the killing rate κ is not affected by the antigen that has been used to stimulate the killer T cells.

In Section 7.2 and for the Ad/IL12/GMCSF fit in Fig. 7.13(a), the immature and mature DCs were considered to be one population of APCs. It was assumed that, since the experiment looked at only a virus treatment, APCs would only be stimulated by infected tumour cells. This term in the previous sections model incorporated the rate of recruitment of new immature DCs to the tumour site as well as the rate at which

Figure 7.13: Output for the fit of the virus-tumour-immune models for (a) Ad/IL12/GMCSF injection, (b) single DC injection and (c) DC+Ad/IL12/GMCSF single injection. The individual mouse data are plotted as grey circles with the mean and standard error bar at each time point in blue. The model output is plotted as a solid error black line. All parameters fitted are in Table 7.6.
they were stimulated to be activated DCs. For the injection of immature DCs and Ad/IL-12/GM-CSF, the immature and mature populations and the rate at which they are recruited and stimulated was considered separately as in Eqs. (7.8)-(7.13).

Assuming the rate s_{A1} that uninfected tumour cells stimulate immature DCs can be taken from the previous optimisation in Fig. 7.13(b), the rates r_{A1} and s_{A1} at which infected cells recruit inactivated APCs and also stimulate inactivated APCs were obtained. Fixing κ to be what was also obtained in the Ad/IL-12/GM-CSF optimisation, gave the optimised parameter values for r_{A1}, s_{A1} and U_0 with the simulated tumour cell number in Fig. 7.13(c) and parameter values in Table 7.6.

The final experiment of Oh et al. (2017) combined all the previous in vitro and in vivo experiments to examine the effects of virus and DC release from a hydrogel material. Oh et al. (2017) injected DC+Ad/IL-12/GM-CSF loaded gel into C57BL/6 mice with LLC tumours. The release profile of the DCs was fixed to be $u_{DC}(t)$ from the in vitro soft gel release profile optimised in Section 7.3.1. Once outside the gel, the dynamics of the tumour, DC and virus interaction were assumed to be the same as the model optimised to the DC+Ad/IL-12/GM-CSF tumour time-series measurement, Fig. 7.13(c).

Oh et al. (2017) added 2×10^{10} virus particles and 2.5×10^6 DCs to the gel which was more initial DCs than in the in vitro experiment. As there were no time-series data for the viral release profile from the gel, the function $u_V(t)$ was obtained from the data for the DC+Ad/IL-12/GM-CSF+gel experiments. All other parameter values were fixed to those obtained in the previous section. Assuming the release rate was linear with time, similar to the dynamics evident in the $u_{DC}(t)$ finite difference approximation, gave the formula

$$u_V(t) = \begin{cases} at + b, & \text{for } t \leq 6 \\ 0 & \text{otherwise} \end{cases}$$

where $a > 0$ and $b \geq 0$. Fixing all parameters to that obtained in Table 7.6, it was then possible to fit for a and b and U_0 to give Fig. 7.14 and the parameter values in Table 7.6. A full summary of the experiment-specific sequential optimisation followed above for the five data sets can be found in Table 7.5.

As evident in Fig. 7.14(a), the model is able to approximate the data. The optimisation returns a release profile for the virus, plotted in Fig. 7.14(b), that is similar to that
Figure 7.14: Output of the optimised virus-tumour-immune models for the gel DC+Ad/IL12/GMCSF, see Table 7.5. In (a) the individual mouse data are plotted as grey circles with the mean and standard error bar at each time point shown in blue. The model outputs are plotted as solid black lines. In (b) the model simulations for U, I, V, A, A, H and K are plotted as numbers of cells of that of the DCs, by definition. From the plot of all the populations in Fig. 7.14(b), it is clear that the initial immune response is driven by a large increase in helper T cells consecutively with mature APCs. This then prolongs the killer immune cell population’s survival. From the model, it does appear though, that it is the initial viral infection that drives the tumour population down significantly. From this, it is possible to investigate how the release profile of the gel could be altered to optimise and reduce the tumour burden further.

7.4 OPTIMAL RELEASE PROFILE FOR DC+AD/IL12/GMCSF-LOADED GEL

As seen in the previous section, the gel-based medium effectively delivered a sustained therapeutic efficacy for the Ad/IL12/GMCSF treatment combined with a population of immature DCs. Unfortunately, due to high costs and large multitude of possible engineered derivatives, Oh et al. (2017) were not able to determine whether they had created a gel with an optimal treatment release profile. Using the model parameters for the DC+Ad/IL12/GMCSF+gel experiment of Oh et al. (2017), it was possible to investigate whether the gel’s release profile could be altered to result in a more effective therapy using an exhaustive numerical approach.
Table 7.6: Parameter estimates from the sequential optimisation of the model following the algorithm in Table 7.5 to the experimental measurements of Oh et al. [2017]. Note that Ad/IL12/GMCSF has been shortened to Ad/I/G.

<table>
<thead>
<tr>
<th>Param</th>
<th>Units</th>
<th>Description</th>
<th>PBS& Gel</th>
<th>Ad/I/G</th>
<th>DC</th>
<th>DC+Ad/I/G</th>
<th>DC+Ad/I/G+gel</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_{AI}</td>
<td>day$^{-1}$</td>
<td>Immature DCs decay rate</td>
<td>-</td>
<td>0.7889</td>
<td>0.7889</td>
<td>0.7889</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>cells$\times10^6$</td>
<td>carrying capacity</td>
<td>14000</td>
<td>14000</td>
<td>14000</td>
<td>14000</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td>day$^{-1}$</td>
<td>growth rate</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>U_0</td>
<td>cells$\times10^6$</td>
<td>initial tumour size</td>
<td>20</td>
<td>86</td>
<td>50</td>
<td>41</td>
<td>55</td>
</tr>
<tr>
<td>β</td>
<td>day$^{-1}$</td>
<td>infection rate</td>
<td>-</td>
<td>0.7286</td>
<td>-</td>
<td>0.7286</td>
<td>0.7286</td>
</tr>
<tr>
<td>κ</td>
<td>day$^{-1}$</td>
<td>killing rate</td>
<td>-</td>
<td>0.8231</td>
<td>0.5633</td>
<td>0.8231</td>
<td>0.8231</td>
</tr>
<tr>
<td>s_{AIU}</td>
<td>day$^{-1}$</td>
<td>APC activation rate by U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.5×10^{-6}</td>
<td>5.5×10^{-6}</td>
</tr>
<tr>
<td>r_{AI}</td>
<td>day$^{-1}$</td>
<td>recruitment rate of A_I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0006</td>
<td>0.0006</td>
</tr>
<tr>
<td>s_{AI}</td>
<td>day$^{-1}$</td>
<td>APC activation rate by I</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>α</td>
<td>virus$\times10^{10}$</td>
<td>viral burst size</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3500</td>
<td>3500</td>
</tr>
<tr>
<td>d_I</td>
<td>day$^{-1}$</td>
<td>burst rate</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d_V</td>
<td>day$^{-1}$</td>
<td>viral decay rate</td>
<td>-</td>
<td>2.3</td>
<td>-</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>d_A</td>
<td>day$^{-1}$</td>
<td>decay of APCs</td>
<td>-</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>d_H</td>
<td>day$^{-1}$</td>
<td>decay of helper T cells</td>
<td>-</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>d_K</td>
<td>day$^{-1}$</td>
<td>decay of killer T cells</td>
<td>-</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>s_{AI}</td>
<td>day$^{-1}$</td>
<td>APC activation rate</td>
<td>-</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s_{KAI}</td>
<td>day$^{-1}$</td>
<td>APC activates killer T cell</td>
<td>-</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>s_H</td>
<td>day$^{-1}$</td>
<td>helper T cell activation</td>
<td>-</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>s_{KH}</td>
<td>day$^{-1}$</td>
<td>helper T cell activate K</td>
<td>-</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
</tbody>
</table>
To investigate possible optimal release profiles from the gel, three general release rate functions were chosen: constant, linear and sigmoidal, given by

\[
\begin{align*}
 f(x) &= \frac{A_0}{t_r}, \\
 f(x) &= ax + b, \\
 f(x) &= \frac{A}{1 + e^{-k(x-x_0)}},
\end{align*}
\]

(7.21)

where \(A_0\) is the initial amount of either DCs or virus, \(t_r\) is the length of time the treatment is released from the gel, \(a\) and \(b\) are the gradient and initial release rate, and \(A\), \(k\) and \(x_0\) are the maximum release rate, steepness of the curve and the midpoint of the curve. Fixing the total virus and DCs released over \(t_r\) days to the \(V_0\) and \(D_0\) amounts determined in the previous section gives the constraint

\[
V_0 = \int_0^{t_r} u_V(s) ds, \quad D_0 = \int_0^{t_r} u_{DC}(s) ds,
\]

(7.22)

where \(u_V(t > t_r) = u_{DC}(t > t_r) = 0\), and restricts the parameter search space. Fixing all parameter values not related to the release curves to those in the DC+Ad/IL12/GMC SF+gel column in Table 7.6, the tumour size on day 20 under different gel release profiles was simulated using Eqs. (7.8)-(7.13).

Starting with the constant release function described above in Eq. (7.21), the release period, \(t_r\), was allowed to be independent for DCs and virus. Varying this constant release rate gave the tumour size on day 20 in Fig. 7.15. To illustrate how the tumour growth changes under different constant release profiles, two simulated release profiles corresponding to the red points in Fig. 7.15 are plotted in Fig. 7.16. It is clear there is a major shift in the dynamics of the tumour growth, depending on the length of time that the DCs and virus are released from the gel, and a global minimum of approximately 10mm\(^3\) is achieved.

The original gels developed by [Oh et al. (2017)](#) had an increasing linear release, see Fig. 7.10. Considering variations on this linear release rate could improve the efficacy of the therapy. Assuming that the gradient of the release rate from the gel is increasing, i.e., \(a > 0\), then using Eq. (7.22) to conserve the total amount of virus and DCs released from the gel, leaves two free variables to describe the linear release rate from the gel: the length of time the gel is releasing, \(t_r\), and the initial release rate, \(b\). By fixing the release time \(t_r\) to be equal for the virus and DCs, the values of \(b\) and \(t_r\) were simulated to give
Figure 7.15: Tumour size at day 20 as a function of the constant gel-release period, tr, which varies for the virus ($u_V(t)$) and DCs ($u_{DC}(t)$), see Eq. 7.21. The red points correspond to the simulated release profiles in Fig. 7.16.

Figure 7.16: Constant gel-release profiles for the DCs ($u_{DC}(t)$) and virus ($u_V(t)$) where the release period, tr, corresponds to the red points in Fig. 7.15 where (a) $tr = 3$ for DCs, $tr = 18$ for virus, and (b) $tr = 15$ for DCs, $tr = 10$ for virus. The top row of figures corresponds to the total number of tumour cells $U+I$ and the bottom row of figures is the corresponding release profile.

different tumour sizes at day 20, see Fig. 7.17. To illustrate how the tumour growth changes under different release profiles, two linear release profiles corresponding to the red points in Fig. 7.17 are simulated in Fig. 7.18. The global minimum achieved under an increasing linear release in Fig. 7.17 is 500mm3. The tumour size under treatment with a gel releasing at a increasing linear rate is clearly influenced by how long the gel releases the virus and DCs, i.e. tr, see Fig. 7.17. To investigate how different values of tr for the virus and DC might influence this tumour size minimum, b was fixed to 41.2 for the virus and DCs and tr was allowed
7.4 Optimal Release Profile for DC+Ad/IL12/GMCSF-Loaded Gel

Figure 7.17: Tumour size at day 20 as a function of the gel-release period, \(t_r \), and the initial release rate, \(b \), for the virus (\(u_V(t) \)) and DCs (\(u_{DC}(t) \)). Each plane corresponds to the labelled value of \(t_r \) in the inset and the red points correspond to the simulated release profiles in Fig. 7.18.

Figure 7.18: Increasing linear gel-release profiles for the DCs (\(u_{DC}(t) \)) and virus (\(u_V(t) \)) where the initial release rate and release period for each vector corresponds to the red points in Fig. 7.17 where (a) \(b = 154 \) for DCs, \(b = 13 \) for virus and \(t_r = 13 \), and (b) \(b = 358 \) for DCs, \(b = 18 \) for virus and \(t_r = 5 \). The top row of figures correspond to the total number of tumour cells \(U + I \) and the bottom row of figures is the corresponding release profile.

Interestingly, this simulation resulted in a qualitatively similar optimisation surface to that in Fig. 7.15 suggesting that a very short release period for the DCs and a release period of 10 to 15 days for the virus may be able to achieve a global minimum of 60mm\(^3\).

While the gel release mechanisms measured by Oh et al. (2017) had an increasing gradient, it is worth considering how effective a treatment would be when released at a decreasing linear rate. In contrast to the previous linear-release investigations,
a negative linear release function meant that under the constraint in Eq. 7.22 if the function crossed the horizontal axis before t_r, i.e. $-b/a < t_r$, then the release function would be zero at $t \geq -b/a$. Alternatively, if $-b/a > t_r$ then the function would always be positive. This meant that modifying the constraint in Eq. 7.22 to be

$$D_0 = \int_{-b/a}^{0} (as + b) ds, \quad V_0 = \int_{-b/a}^{0} (as + b) ds,$$

would mean that the value of the dosage from the gel could be less than or equal to D_0 and V_0 and that initial release rate b would be the only free variable. In Fig. 7.20 the tumour size on day 20 after treatment with a gel with a decreasing release gradient has been plotted. It is clear that there are values for which the tumour size is minimised.

Figure 7.19: Tumour size at day 20 for increasing linear release rates as a function of the release period, t_r, for the virus ($u_V(t)$) and DCs ($u_{DC}(t)$) fixing the initial release rate at $b = 41.2$.

Time evolutions of the release profiles corresponding to the red points in Fig. 7.20 are plotted in Fig. 7.21. A quite interesting result from Fig. 7.21 is the global minimum of 20mm3 is obtained when both the initial rate of DCs released and the total amount of DCs released is low, see the $u_{DC}(t)$ profile in Fig. 7.21(b).

Using the constraint in Eq. 7.22 there are two possible formulations of A for either an increasing or decreasing sigmoidal release rate:

$$A = \frac{D_0 k}{\ln \left(\frac{1+e^{k(t-x_0)}}{1+e^{-kx_0}} \right)}, \quad A = \frac{-D_0 k}{\ln \left(\frac{1+e^{-k(t-x_0)}}{1+e^{kx_0}} \right)},$$
Figure 7.20: Tumour size at day 20 for a gel releasing virus, $u_V(t)$, and DCs, $u_{DC}(t)$, at a linear rate with a decreasing gradient. The initial release rate b has been varied for both the virus and the DCs. The red points correspond to the simulated release profiles in Fig. 7.21.

Figure 7.21: Decreasing linear gel-release profiles for the DCs ($u_{DC}(t)$) and virus ($u_V(t)$) where the initial release rate b corresponds to the red points in Fig. 7.20, where (a) $b = 277$ for DCs, $b = 490$ for virus, and (b) $b = 1$ for DCs, $b = 3186$ for virus. The top row of figures correspond to the total number of tumour cells $U + I$ and the bottom row of figures is the corresponding release profile.

where the sign of k depicts either an increasing or decreasing sigmoid function. If the profiles for the virus and the DCs are considered equivalent, the increasing sigmoidal release results in the range of tumour sizes plotted in Fig. 7.22(a) for $tr = 18$. Reducing tr reduces the surfaces overall tumour size until $tr = 10$, after which point the surface’s minimum begins to increase again, see Fig. 7.22(b) for $tr = 10$. In Fig. 7.23 are simulations of the release profiles corresponding to the red points in Fig. 7.22. For a decreasing sigmoidal release curve, variations in the curve steepness k and curve
midpoint x_0 gives Fig. 7.24(a). It is clear this dosage profile performs the worst out of possible gel profiles, with an example simulation in Fig. 7.24(b).

Figure 7.22: Simulations of increasing sigmoidal release profiles for the DCs ($u_{DC}(t)$) and virus ($u_V(t)$) where k and x_0 are varied for the fixed value of (a) $tr = 18$ and (b) $tr = 10$. The red points correspond to the release profiles simulated in Fig. 7.23

Figure 7.23: Simulations of increasing sigmoidal release profiles for the DCs ($u_{DC}(t)$) and virus ($u_V(t)$) corresponding to the red points in Fig. 7.22 where (a) $k = 8.6$, $x_0 = 5$, $tr = 18$ and (b) $k = 24$, $x_0 = 7.5$, $tr = 10$. The top figure corresponds to the total number of tumour cells $U + I$ and the bottom figure is the corresponding release profile.

7.5 SUMMARY

The two mathematical models presented in this chapter were used to identify the primary processes in the interaction between a population of tumour cells and an
7.5 Summary

Figure 7.24: Simulations of increasing sigmoidal release profiles for the DCs ($u_{DC}(t)$) and virus ($u_V(t)$) where (a) k and x_0 are varied for the fixed value of $tr = 18$. The red point in (a) corresponds to the release profile simulated in (b) where $k = 24$, $x_0 = 14$. The top figure corresponds to the total number of tumour cells $U + I$ and the bottom figure is the corresponding release profile.

Oncolytic adenovirus co-expressing IL-12 and GM-CSF with and without a DC injection. The results of [Choi et al. (2012)] and [Oh et al. (2017)] related to this therapy, were successfully replicated by parameter optimisation, see Fig. 7.3-7.5. It is evident through visual inspection of these figures, that the model, along with the hierarchical fitting algorithm in Table 7.1 and 7.5, provides a reliable representation of the data. Goodness of fit measurements in Table 7.3 for the optimisation to variants of an Ad/IL12/GMCSF virus (Section 7.2), confirm that the model closely approximated the true system with R^2 values greater than 0.98 and Pearson’s correlation coefficient greater than 0.87.

Heterogeneity within individual mice tumour responses is visible under all treatment’s investigated in this chapter. Most significant is the tumour response to an unmodified oncolytic adenovirus (Ad), Fig. 7.4. There are three noticeable subgroups of treatment responses: those that died early; low responders, those whose tumours grew slowly until about day 10, after which point the tumours grew exponentially; and high responders, those with small tumours over the whole duration of the experiment. To examine the differences behind the heterogeneity between the subgroups, and to see whether the model was sufficiently flexible to embody all the observed behaviour, the model was optimised to each subgroup. All were well explained by the model. The sub-
groups had slightly different rates of infectivity of the treatment, but more importantly started with different initial tumour sizes. Examining the models for the subgroups and that for all the data, Fig. 7.4, it is evident that the long-term dynamics of these underlying subgroups are qualitatively similar.

Quantifying the effects of IL-12 and GM-CSF combinations on treatment efficacy is possible through optimising parameters in the model to the experiments of Choi et al. (2012a). The nature of the hierarchical experiments allows for the primary differences between the immunostimulatory oncolytic adenoviruses to be examined. Comparing killer-T-cell-induced apoptosis rates, \(\kappa \), for the Ad/IL12 and Ad/GMCSF viruses, Table 7.2, it is clear that expression of cytokine IL-12 results in a higher immune cell killing rate. Therefore, the addition of IL-12 has a greater effect on improving immune-cell killing rate \(\kappa \), and consequently tumour-cell death. This is also evident when comparing the tumour time-series measurements obtained in Fig. 7.5(a) and 7.5(b) where it is clear that Ad/IL12 has a greater antitumour potency then Ad/GMCSF. The largest immune-cell killing rate was obtained for co-expression of both cytokines -Ad/IL12/GMCSF. This suggests that it is only with both cytokines that the treatment reaches its maximal effectiveness in stimulating the immune system to attack the tumour cells.

While the results of the Ad/IL12/GMCSF experiments reduce the tumour population most significantly out of the virus-only five experiments, the finding that helper T cell activation is decreased requires further investigation. How exactly this might be hindering the immune interaction and the obtaining of optimal treatment efficacy will be the subject of future work. In Fig. 7.5, it can be seen that only one mouse in the Ad/IL12/GMCSF experiment had tumour growth after day 20. The optimisation results propose that tumour cells in this case may have escaped immune removal by down-regulation of helper T cell activation.

Since Oh et al. (2017) used the same Ad/IL12/GMCSF virus developed by Choi et al. (2012a) to treat LLC tumour cells, it is possible to quantify further the impact of this combined cytokine combination on the killer T cell killing rate. Since the only difference between the Ad/IL12/GMCSF tumour time-series experiments was the underlying tumour cell type, it was assumed this would only influence the infectivity
rate, β, and the killing rate, κ. Both the infectivity rate of virus particles and the killing rate of the killer T cells was decreased when treating LLC tumours. This shows that it is quite possible that immune activity may be driven by the underlying tumour cell type.

To investigate the possible effects of immune heterogeneity, individual responses to changes in immune efficacy were simulated. The analysis in Fig. 7.6 suggests there is a counter-intuitive relationship between treatment efficacy and immune stimulation rates. The dependence of treatment efficacy on APC simulation, s_A, and helper T cell stimulation, s_H, differs significantly (Fig. 7.6(a) and 7.6(b)) when using the model optimised for Ad/IL12/GMCSF on B16F10 tumour cells (Table 7.2). Simulations show that increasing the stimulation rate of APCs has a negative effect on the treatment efficacy, allowing for the tumour cell population to escape the control of treatment and grow unbounded. However, increasing helper T cell stimulation rates has a positive effect on treatment efficacy, allowing for the tumour cell population to be controlled for longer and, for certain parameters, to be completely eliminated. These results suggest that there is a sensitive threshold of APC stimulation, above which a negative effect on the immune response occurs. Biologically, this could signify an over-stimulation of immune cells results in the original virus treatment becoming ineffective as the immune cells kill off the virus. On the other hand, increased stimulation of helper T cells consistently promoted tumour cell death. The results presented are purely hypothetical and suggest that further investigations of this cancer treatment could examine how increasing the expression of IL-12 cytokine and decreasing GM-CSF expression has a downstream effect of the probable increase in helper T cell stimulation and decrease in APC stimulation.

Heterogeneity in immune-cell-induced apoptosis is a key determinant of treatment outcome. Perturbations in the rate of killer-T-cell-induced apoptosis, κ, for the Ad/IL12/GMCSF model, see Fig. 7.6(c), demonstrate a very interesting phenomenon: the existence of a parameter window for which the treatment is relatively ineffective compared to parameter values outside this interval. An extremely sensitive non-linear relationship exists between treatment outcome and κ. In Fig. 7.6(c), at lower values of κ, the tumour population is initially controlled with slow growth over time, reaching a turn-
ing point after which tumour volume decreases. It may be that the immune system is able to control the tumour growth even with this smaller killing rate.

Interestingly, if the killer T cell killing rate is increased, the tumour volume at the turning point increases and, for a range of κ values, the tumour population is able to grow unbounded. Increasing κ further, the tumour population can be completely eradicated (in this model, we assume complete eradication is obtained when the total tumour population drops below 10^{-3}). From this result, the different responses in the mice in Fig. 7.6 (i.e. tumour eradication or unbounded growth) could possibly be explained by a difference in the immune cell killing rate of tumour cells. These results also suggest that there may be a window of killer-T-cell-induced apoptosis rates for which the treatment is ineffective, but outside of which either controlled tumour growth within the time period of 33 days is achieved or complete eradication.

In Fig. 7.6(c), it is also evident that there is an exchange in the dominant processes acting as a function of the cell-induced apoptosis rate, κ. For high values of κ, it is clear that tumour cells are predominantly removed by the immune system, which is why the tumour is eventually completely eradicated. However, reducing the value of κ results in the initial decrease in tumour cell numbers due to viral interactions rather than the immune system. This result reinforces the importance of stimulating the correct mechanisms at the right stage of tumour growth when investigating improvements for combined oncolytic virotherapy and immunotherapy. This sensitivity of the killer T cell response was also seen in the analysis of de Pillis et al. (2005), detailed in Section 3.2.4.

While it is helpful to understand how the immune characteristics can be manipulated to improve the outcome of treatment, realistically this may be challenging. Oh et al. (2017) decided to further extend the work of Choi et al. (2012a) to consider an additional injection of immature DCs. By extending the model in Eqs. (7.1)-(7.6) to consider the activation of APCs from immature to mature APCs, Eqs. (7.8)-(7.14), it was possible to reproduce their tumour time-series measurements, see Fig. 7.13. Following this, Oh et al. (2017) investigated a gel-release mechanism for delivery of their DC+Ad/IL12/GMCSF therapy. They found that tumour size under the gel-release mechanism decreased by 50% on day 20; however, tumour eradication was not obtained, see Fig. 7.14(a). To help understand ways of improving this therapy, it was
necessary to obtain the release profile of the virus from the gel, something not measured by \cite{Oh2017}. By fixing the parameter values in the model to all previous optimisations, it was possible to obtain the curve describing the rate at which the virus was released from the gel, see Fig. 7.14(b). Using this model as a platform, it was then possible to investigate alternative gel-release profiles and determine if an optimal exists.

One of the simplest gel-release profiles is a constant. This is qualitatively similar to what could be thought of as a prolonged transfusion of a drug or treatment. Fixing the underlying model parameter values to those in Table 7.2 and 7.6 and simulating unique lengths of time for the virus and DCs to be released from the gel gives the tumour size on day 20 in Fig. 7.15. There is a global minimum tumour size of 10mm^3 achieved for a very short release period of the DCs and a prolonged release period of the virus. This implies that an initial burst of a large number of DCs stimulates an immune response that under a prolonged constant release of virus from the gel is able to result in approximate tumour eradication.

The original gel-release profile was approximately linear, and a natural extension was to examine the tumour volume under different linear releases. If the release period t_r is equivalent for both the DCs and the virus, as is the case with the original gel, an increasing linear release is unable to achieve a tumour volume much lower than what was already achieved with the current gel, see Fig. 7.17 A gel with a release period of approximately $t_r = 11$ and initial release rate of $b = 50$ is able to reduce the tumour volume by 50% of what was obtained in the original gel.

Allowing for the gel to have different increasing linear release periods for the virus and DCs results in a minimum tumour size at day 20 of 60mm^3, see Fig. 7.19. Interestingly, to achieve this minimum, similar constraints are needed on the release period for the DCs and virus as that of the constant gel-release simulations in Fig. 7.15. This reinforces that tumour treatment is significantly improved when the DCs are given very rapidly and the virus is given over an extended period of time. The converse to this is seen when considering a gel with a decreasing linear release rate, see Fig. 7.20. A minimum tumour size of 20mm^3 is achieved by releasing a very small amount of DCs for a long time, with a rapid release of the initial virus dose, see Fig. 7.21(b). This
infers that if the immune response is not too heavily stimulated initially, the virus is able to reduce the tumour volume considerably.

A sigmoidal gel-release profile was unable to achieve a tumour volume as low as that of the constant and linear release profiles. Simulations of increasing sigmoidal release profiles in Fig. 7.22 show that as t_r is decreased from 18 to 10 days, it is possible to obtain a low tumour volume of 225mm3, which is still an improvement on the original gel’s efficacy. Unfortunately, changing the release profile to be a decreasing sigmoidal curve increases the tumour size overall, see Fig. 7.24. For low enough release periods, e.g. $t_r = 16$, there is still a reduction in tumour volume when compared to the original gel. However, this is still much larger than if an optimal constant or linear release profile is used.

One major assumption in the models developed in this chapter is that the rate at which immune cells are stimulated is independent of the antigen type. The immune response modelled in this chapter allows for killer T cells to kill both uninfected and infected tumour cells; however, in reality immune cells are antigen specific (Janeway et al. 2005). In response to an oncolytic virus there will be two types of antigen: tumour-specific and virus-specific. This results in immune cells becoming activated as either tumour-antigen or virus-antigen specific. In Eq. 7.11 this was considered by allowing for immature APCs to be stimulated by both uninfected tumour cells (tumour-antigen) and infected tumour cells (virus-antigen). Unfortunately, there is insufficient data to determine the individual activation and stimulation rates of the antigen specific immune cells for the APCs, helper cells and killer T cells. As such, they were modelled as one activated immune population, similar to the works of Wares et al. (2015) and Kim et al. (2015) (Section 3.2.4).

From the results in this chapter, it is clear that systems of ODEs can be used to replicate data and determine possible treatment improvements. The limitation in this style of modelling is the inability to consider the possible spatial dependency of tumour growth or viral movement. It is possible that the position of the intratumoural injection or the gel could significantly influence the outcome of treatment. Additionally, while the effects of heterogeneity were discussed through a parameter sensitivity analysis, it is not possible to model a heterogeneous population of cells through an ODE or
PDE system. In the following chapter, an agent-based model is developed that aims to capture these missing aspects and investigate them in relation to oncolytic virotherapy.
ENHANCING ONCOLOYTIC VIROTHERAPY: INSIGHTS FROM A VORONOI CELL-BASED MODEL
The previous Chapters 5-7 presented investigations of oncolytic virotherapy using predominantly mean-field mathematical approaches. It is well known that spatial interactions can influence the behaviour and outcome of cancer therapy. In this chapter, a spatially driven Voronoi cell-based model (VCBM) is developed to investigate the hindrance of oncolytic virotherapy previously mentioned in Chapter 6: the rapid decay of virus particles within the body. The VCBM derived captures the interaction between oncolytic virus particles and cancer cells in a 2-dimensional setting by using an underlying agent-based model framework, where the agents are cells defined by edges of a Voronoi tessellation. The sensitivity of treatment efficacy is investigated in response to the configuration of the initial treatment injections for different tumour shapes: circular, rectangular and irregular. Additionally, the effect of delaying the infection of cancer cells by modifying viral particles with alginate (a hydrogel polymer used in a range of cancer treatments) is investigated.

The work in this chapter has been submitted to the Journal of Theoretical Biology (Nov. 20 2018) entitled “Enhancing Oncolytic Virotherapy: Observations from a Voronoi cell-based Model “.
The rapid decay in the concentration of viral particles due to clearance and dispersion at the tumour site shortens the window of effectiveness for oncolytic virotherapy. The treatment needs to act quickly and effectively to compete with the division of the cancer cells. Additionally, the inability to efficiently distribute the viruses within solid tumours represents a significant barrier limiting the success of clinical trials (Liu et al., 2007; Parato et al., 2005). The relatively static viral distribution within a tumour is caused primarily by two factors: the non-uniformity of the tumour structure and the increase in viral clearance as a function of the number of infected tumour cells.

Regardless of whether the therapeutic viral vector has been administered through intravenous injection (discussed in Chapter 6) or intratumoural delivery (discussed in Chapter 7), inhomogeneous infection and diffusion of the viral particles will occur. Some studies have tried to improve the efficacy of oncolytic virotherapy by combining it with treatments to disrupt the tumour structure and reduce viral clearance, including degradation of the extracellular matrix (ECM) with relaxin (Ganesh et al., 2007; Kim et al., 2011b) and Anti-VEGF therapies (Kottke et al., 2010). This chapter investigates in silico how coating the virus particles in alginate (a hydrogel polymer used in a range of cancer treatments) to delay viral infection could help overcome the effects of viral clearance and inhomogeneous infection and diffusion.

Mean-field mathematical models of an oncolytic virus interacting with cancer cells have been shown to effectively provide insight into a range of treatment perturbations (Chapters 5-7). For aggressive tumours, however, stochasticity in tumour cell characteristics and behaviours can be the dominant driver of cancer progression, and mean-field models are unable to fully capture this process.

In this investigation an agent-based approach (Section 3.3.2) is developed to model tumour formation and treatment with an oncolytic virus. A Voronoi tessellation is used in an off-lattice framework to mimic tumour formation. Researchers have demonstrated that Voronoi tessellations successfully replicate tumour histopathological images (Haroske et al., 1996). Voronoi tessellations allow for tumour cells to be modelled as heterogeneous convex polygons which reflects the abnormal morphology of tumour cells. Therefore, the use of this Voronoi cell-based model (VCBM) allows for a more spa-
tially realistic representation of the interaction between cancer cells and virus particles compared to other off-lattice model formulations, see Section 3.3.1

8.1 MODEL DEVELOPMENT

Agent-based models can be used effectively to simulate mechanical and physiological phenomena in cells and tissues, see Section 3.3. In off-lattice agent-based models, interactions between cells are usually described by forces or potentials, and position changes in cells can be obtained by solving an equation of motion (Metzcar et al. 2019, Van Liedekerke et al. 2015). The Voronoi cell-based model (VCBM) designed in this chapter is an off-lattice agent-based model that mimics tumour formation and treatment with an oncolytic virus. In the model, cells are generated from a set of points with boundaries obtained from a Voronoi tessellation. Viruses are modelled as a separate agent-based population that diffuses across the Voronoi tessellation of cells. The model evolution is driven by the virus and cell characteristics.

8.1.1 Virus characteristics

The success of oncolytic virotherapy relies on the inherent ability of viruses to replicate and lyse cells. Oncolytic viral particles are genetically engineered to replicate preferentially within tumour cells (Kim et al. 2006b, Russell et al. 2012). A summary of the infection process of an oncolytic virus and corresponding death of a tumour cell is shown in Fig. 8.2. Viruses are unable to distinguish between tumour cells and healthy cells and can infect both; however, it is assumed that the effects of viral infection of healthy cells are negligible as a result of the viral genetic modifications. More than one virus can infect a single cell (Phan and Wodarz 2015, Syverton and Berry 1947) but it is assumed here that the multiplicity of infection does not affect the replication rate.

The immune system is stimulated by the presence of virus-infected cells (2.3.3) initiating the clearance of extracellular virus particles. Virus-infected cells activate a cascade of killer T cells, and these cells clear viral particles from the tumour. In this model,
The movement of individual viral vectors in tumour tissues is governed by the structure of the tumour, see Section 2.4.4. Current continuous spatial models for oncolytic virotherapy either do not explicitly model viral movement (Wein et al., 2003; Wodarz et al., 2012) or model viral movement by classical diffusion (Friedman et al., 2006; Mok et al., 2009). Agent-based models that consider individual viral movement have similarly used lattice random walks to model individual viral movement through a tumour (Paiva et al., 2011). However, since virus particles can struggle to diffuse due to the dense extracellular matrix and disorganised structure of the tumour cells, particles commonly can get stuck for long periods of time at their initial entry site (Kim et al., 2006b). This is analogous to a population of particles diffusing anomalously. This difference in diffusive motion of the virus can be crucial to the outcome of oncolytic virotherapy.
virotherapy, as particles cannot disseminate and infect cells within the tumour if they get stuck at the periphery.

Anomalous diffusion, as opposed to classical diffusion or lattice random walks, has been chosen to model the possible crowding or trapping of viruses at the initial injection site. Anomalous diffusion is a diffusion process whose variance scales non-linearly with time. The analogy between anomalous diffusion and diffusive motion of macromolecules due to overcrowding has previously been discussed in Höfling and Franosch (2013). The movement of viral vectors through the tumour microenvironment is thus achieved using subdiffusion, a type of anomalous diffusion. In this way, the movement of viral particles can be modelled using a continuous-time random walk (CTRW), where a stable distribution is used to determine the waiting times between individual particles consecutive movement. In this model, anomalous diffusion of a population of virus particles is approximated on discrete-time intervals.

8.1.2 Cell characteristics

To model the interaction between an oncolytic virus and a growing tumour, consider five different types of cell agents: uninfected tumour cells, virus-infected tumour cells, dead tumour cells, empty space and normal healthy cells. The position of each cell in 2-D space is defined by a singular point and when all points are connected they form a lattice. The Voronoi tessellation of the lattice is used to define the edges of a particular cell in the VCBM and determine the neighbourhood of interaction for a particular point in the lattice, see Fig. 8.3(a).

The Voronoi tessellation is generated by determining the region of space where the Euclidean distance to a point is less than the distance to any other point in the lattice. The boundary of a particular cell is the line equidistant from that cell’s point and another point in the lattice, such that the set of cells generated by all the points of the lattice forms the tessellation. Voronoi cells on the boundary of the tessellation will have infinite area, by definition. To avoid any interference from these boundary Voronoi cells, the generated grid of points is always made to be sufficiently larger than the simulation area so that the boundary cells do not influence the dynamics of the
model. The advantage of the chosen lattice topology is that cells are not fixed in space, and are not inherently confined to a particular arrangement.

![Initial Voronoi tessellation](image)

Figure 8.3: Initial Voronoi tessellation. Healthy cells are coloured pale pink and tumour cells are bright green. The boundaries for each cell are represented by a solid line and the lattice points are small dots in the centres of the cells in (a). (b) shows the tessellation overlaid with the network of connected lattice points obtained using a Delaunay triangulation. The neighbourhood of interaction is indicated in blue for one point in the lattice.

A finite domain of tumour cells and the surrounding environment is considered and Dirichlet boundary conditions are employed (i.e. cell states are fixed beyond the boundary). The complete grid of points is larger than the necessary domain for the dynamics seen in all simulations in this study. Initially, the points in the lattice are arranged so that the corresponding Voronoi cells form a hexagonal tessellation (see Fig. 8.3(a)) analogous to other work in the literature (Buijs et al., 2004; Lobo, 2014).

There are many mechanisms governing cell movement within a tumour, such as pressure-driven motility. The primary movement of tumour cells in the VCBM is driven by cell proliferation. The spatial relationship between points in the lattice is defined by a network of springs and modelled using Hooke’s Law. The lattice employed uses the Hooke’s Law formalism to maintain a fixed separation between mature cells by setting the spring rest lengths between the points of mature cells to be identical.

The neighbourhood of interaction for a particular Voronoi cell is defined as the neighbouring cells that share a connecting edge with it, i.e. the nearest neighbour set of points in the lattice that are joined to that point by a single spring, see Fig. 8.3(b).
These points are determined by taking a Delaunay triangulation of the lattice and finding the set of cells that are connected in the triangulation. Cells in the neighbourhood of interaction for a particular Voronoi cell are the cells that can influence the movement of that cell at each time step.

A known hallmark of cancer is rapid cell proliferation. For tumour cells to divide, there must be sufficient surrounding space and nutrients. Pressure from closely packed neighbouring cancer cells restricts the access of oxygen and nutrients, hence cells towards the centre of an enlarging tumour receive a smaller level of nutrients than those near the edge and tend to form a quiescent tumour cell population, see Section 2.2.2.

Neither virus-infected tumour cells nor healthy cells proliferate in the model. Typically, viruses replicate their genomes and generate new progeny by deregulating cell-cycle checkpoint controls and modulating cell proliferation pathways (Bagga and Bouchard, 2014). Hence, the likelihood of a virus-infected cell proliferating is low and the effects are taken to be negligible in the model. Additionally, to facilitate the rapid formation of a tumour in a static tissue environment, it is assumed that healthy cells divide at a much slower rate than tumour cells, so for the timescale and extent of the model, the effects of healthy cell proliferation are also neglected. It is also assumed that healthy cells do not die as viral particles do not replicate within them.

Once a cancer cell has died from viral-induced cell lysis, the remnants disintegrate over a period of time. Once a dead cell has disintegrated, it turns into empty space. In the model, there are cells designated as empty space. These cells are removed from the lattice and do not contribute to the force calculation for any individual cell. These empty cells are only part of the model to keep the size of each living cell bounded in the visualisation.

8.2 Model Implementation

At any given time, there exists a set of virus and cell agents, each obeying the rules defined below. Each cell is endowed with one of five possible states: uninfected tumour cell, virus-infected tumour cell, dead tumour cell, empty space or normal healthy cell. Uninfected tumour cells can either proliferate, move or become infected cells. Virus-
infected tumour cells can either move or die. Dead cells can disintegrate into empty space. Healthy cells can only move over the time-scale of the investigation.

Since it is assumed that healthy cells can only move and do not proliferate, healthy cells are unable to regenerate and proliferate back into the empty space left by any dead tumour cells in the time frame of the simulations. This is biologically plausible, for example in the case with breast cancer. Once the tumour has been resected, patients are often left with soft tissue defects and disfigurements due to the inability of the nearby tissue to regenerate (Stosich and Mao, 2005).

8.2.1 Viral movement

In the VCBM, it is assumed that the movement of virus particles through a tumour can be captured realistically with random waiting times between consecutive movements drawn from a heavy-tailed distribution of the form $P(W > w) \sim w^{-1-\alpha}$ where $\alpha \in (0, 1)$. Trajectories of particles with waiting times W from this probability measure may be simulated exactly on a discrete-time grid by drawing a waiting time W for each particle after a single step from the stable distribution with stability parameter α using

$$W = \frac{\sin(\alpha(V + \pi/2))}{\cos(V)^{1/\alpha}} \left(\frac{\cos(V - \alpha(V + \pi/2))}{E} \right)^{\frac{1-\alpha}{\alpha}},$$

(8.1)

where V is uniformly distributed on the interval $(-\pi/2, \pi/2)$ and E is exponentially distributed with unit rate parameter, see Carnaffan and Kawai (2017), Janicki and Weron (1993).

To simulate the viral motion, the following algorithm is used. Initially, each virus particle is assigned a waiting time W, drawn from the distribution in Eq. (8.1). Once the virus has waited the appropriate number of time intervals, the step length of the displacement of the virus particle is drawn from a gamma distribution with mean r_μ and variance r_σ. The angle the virus rotates relative to its previous position is a random variable drawn from the uniform distribution $[0, 2\pi)$. Whilst other distributions could have been used, the choice of the gamma distribution was motivated by its strictly positive bell-shape, definite average and ‘tunable’ characteristics, (Frank, 2009). This
was similar to the reasoning in Section 4.3 for the virus titer model. After each step in the virus particle’s motion, a new waiting time W is then drawn from the above distribution in Eq. (8.1).

In Fig. 8.4, the density of viral particles after 200 hours is compared with and without waiting times W (Fig. 8.4(a)-(b) and Fig. 8.4(c) respectively). The variance of the distribution of the anomalously diffusing population scales as a power-law, proportionally to t^α (Carnaffan and Kawai, 2017). Smaller values of α (corresponding to heavier tails in the waiting time distribution) result in slower spreading of viruses, while as $\alpha \to 1$, linear scaling of variance with time is recovered as the regularity of long trapping events decreases (Carnaffan and Kawai, 2017; Janicki and Weron, 1993). As a result, as the value of α is increased in Fig. 8.4(a)-8.4(b), the spread in the histograms is noticeably increased.

To provide more insight into how subdiffusive viral motion differs from a continuous random walk, in Fig. 8.4(d) the mean-squared displacement (MSD) is plotted, corresponding to the density of viral particles after 200 hours in Fig. 8.4(a), (b) and (c). It is evident from Fig. 8.4(d) that viral movement without waiting times results in a linear MSD as a function of time. This is in contrast to viral particles with waiting times between consecutive movement generated from Eq. (8.1) with stability parameter of $\alpha = 0.6$ and $\alpha = 0.8$ which resulted in a nonlinear MSD over time. Initially the displacement of viral particles from the initial seeding location increases quickly, and then as time goes on, there is a decrease in how rapidly the mean displacement increases. For a review of the time averaging of CTRW with a broad distribution of waiting times, see Neusius et al. (2009).

8.2.2 Viral clearance

To simulate rapid clearance of virus due to immune stimulation, individual viral particles are assumed to die based on the proportion of the total number of infected cells I_T in that quadrant i that the virus is in, i.e. I_i/I_T.

Figure 8.4: Spatial histograms of the distribution of 3000 virus particles initially located at the origin after 200 hours, where particles are diffusing with stable distributed waiting times with (a) $\alpha = 0.6$, (b) $\alpha = 0.8$ and (c) no waiting times. The corresponding mean-squared displacement (MSD) of the virus particles in (a), (b) and (c) are plotted in (d).

8.2.3 Cell movement

The position of each cell (except for dead and empty cells) is updated by calculating the effective displacement of the cell’s lattice point using Hooke’s Law. Force is modelled as a network of damped springs connecting the kth point to its neighbouring points. The spring connecting the kth and jth point has a rest length $s_{k,j}(t)$, which can vary over time t. All points in the lattice are connected in this way and the spring rest lengths between points can be unique. Fig. 8.5 shows an example of the set-up between three points k, j and i. In this example the spring connecting $s_{k,j}$ is shorter than the spring connecting $s_{k,i}$, allowing for cell growth and decay.
8.2 Model Implementation

Figure 8.5: Schematic illustrating the connection between points k, j and i in the lattice at a fixed time t. Springs connect points in the lattice and the movement of each point depends on the force derived from Hooke’s Law, assuming that motion is overdamped due to strong friction. The spring rest length between point k and j is $s_{k,j}$, and point k and i is $s_{k,i}$.

Following the implementation in [Meineke et al. (2001); Murray et al. (2009); Osborne et al. (2017)], the displacement of the kth point (cell) on the lattice is given by

$$m_k \frac{d^2 \mathbf{r}_k}{dt^2} = \sum_{j \in \tilde{N}(k)} \mathbf{F}^I_{k,j} + \mathbf{F}^V_k,$$

(8.2)

where m_k is the mass of the kth point, \mathbf{r}_k is its spatial position, $\mathbf{F}^I_{k,j}$ is the interaction force between a pair of neighbouring points, \mathbf{F}^V_k is the viscous force acting on the kth point, and the sum is taken over neighbouring points to k in the lattice, i.e. $\tilde{N}(k)$, determined by the Delaunay triangulation. The total interaction force $\mathbf{F}^I_k(t)$ acting on the kth point at time t is equal to the sum of all forces from the springs of all points i connected to k:

$$\mathbf{F}^I_k(t) = \sum_{j \in \tilde{N}(k)} \mathbf{F}^I_{k,j} = \mu \sum_{\forall i} \frac{\mathbf{r}_{k,i}(t)}{||\mathbf{r}_{k,i}(t)||} (s_{k,i}(t) - ||\mathbf{r}_{k,i}(t)||),$$

(8.3)

where μ is the spring constant, $\mathbf{r}_{k,i}(t)$ is the vector from the kth to the ith point at time t, $s_{k,i}$ is the spring rest length from the kth to the ith point at time t and $||\mathbf{r}_{k,i}(t)||$ is the L2-norm of the vector $\mathbf{r}_{k,i}(t)$, see Fig. 8.5

Eq. (8.2) can then be simplified using two key assumptions. The first is that the viscous force \mathbf{F}^V_k, i.e. point-point, point-medium and point-matrix interactions, can be
modelled by assuming that the drag on the kth point is independent of the springs and is proportional to its velocity, with constant of proportionality η. Secondly, the points are assumed to be in a relatively dissipative environment, so point motion can be approximated as being overdamped due to strong friction. Hence

$$m_k \frac{d^2r_k}{dt^2} \sim 0.$$

Prior cell-centered models have used this same inertialess assumption ($m_k \frac{d^2r_k}{dt^2} \approx 0$) (Drasdo et al., 1995; Galle et al., 2005; Macklin et al., 2012). Thus

$$F^l_k = -F^v_K = \eta v_k,$$

where v_k is the velocity of the kth point. Approximating this velocity over a small time interval Δt, gives

$$F^l_k \approx \eta \frac{r(t + \Delta t) - r(t)}{\Delta t}.$$

Thus the effective displacement of the kth point within a small time interval Δt in the overdamped limit is

$$r_k(t + \Delta t) = r_k(t) + \frac{1}{\eta} F_k(t) \Delta t = r_k(t) + \lambda \sum \frac{r_{k,i}(t)}{||r_{k,i}(t)||} (s_{k,i}(t) - ||r_{k,i}(t)||), \quad (8.4)$$

where $r_k(t)$ is the position of the kth point in the lattice at time t and η is the damping constant. Cell mobility is described by the ratio $\lambda = \mu/\eta$, which is known to influence the velocity of the relaxation process (Meineke et al., 2001).

Adhesion effects between neighbouring cells are modelled using a linear force and cut-off distance α. When the Euclidean distance between points on the lattice of neighbouring cells is longer than $s_{k,i} + \alpha$, no interaction takes place, see Fig. 8.6.
8.2 Model implementation

\[||r_{kj}|| > s_{k,j} + a_1 \]

Figure 8.6: Schematic illustrating how cell-to-cell adhesion is assumed to be negligible after the cells have reached a distance apart greater than \(s + a_1 \).

8.2.4 Cell proliferation

To model cell proliferation, a cell’s distance to the nutrient source and local spatial limitations are considered. The distance from a cell to the nutrient source \(d \) is assumed to be the Euclidean distance between the cell and its closest peripheral tumour cell, which are assumed to be adjacent to nutrient sources. The effect of mechanical confinement pressure is accounted for by \(d_{\text{max}} \), the maximum radial distance that still allows a cell to obtain nutrients from its surroundings. If \(d > d_{\text{max}} \), then the cell does not proliferate, essentially becoming a quiescent cell. The probability of a cell dividing based on the nutrients it receives is

\[p_d = p_0 \left(1 - \frac{d}{d_{\text{max}}} \right), \tag{8.5} \]

where \(p_0 \) is a proliferation constant. Note that \(p_0 \) is dimensionless as \(p_d \) is the dimensionless probability of a cell proliferating in a given time step \(t + \Delta t \).

Fig. 8.7 illustrates how \(d_{\text{max}} \) segregates the tumour into a rim of proliferating and non-proliferating cells. Additionally, to account for the spatial limitation on proliferation, tumour cells only divide if there is least \(r_{\text{min}} \) space between a tumour cell and any cell in its neighbourhood of interaction. This formulation is based on similar probability calculations in cellular automata and agent-based models (Jiao and Torquato, 2011; Kansal et al., 2000b).

If a cell proliferates, the framework also allows the encoding of the addition and movements of lattice points (and the associated VCBM) as a cell divides into two...
8.2 Model implementation

Figure 8.7: Schematic for the probability of a particular cell proliferating given a particular distance \(d \) from the edge of the tumour, see Eq. (8.5). The maximum radial distance for which proliferation occurs, \(d_{\text{max}} \), separates the tumour into proliferating and non-proliferating sections, with the cells inside the shaded circle having a distance greater than \(d_{\text{max}} \) from the edge, and hence being unable to proliferate.

daughter cells. When a cell at position \(k \) divides, a new lattice point \(l \) is created, so that \(k \) and \(l \) are now the points associated with the two daughter cells, see Fig. 8.8.

Figure 8.8: Schematic for cell motility, illustrating the proliferation of cell \(k \) into two new cells \(k \) and \(l \). The resulting spring rest length \(s_{k,l} \) between daughter cells is then \(s / g_{\text{age}} \), which increases over time to \(s \), the mature cell separation.

To simulate the enlargement and repositioning of the daughter cells, allowing for gradual cell volume changes (Ghaffarizadeh et al., 2018; Mumenthaler et al., 2013), the resting spring length of the connection between \(k \) and \(l \) is taken to be a linear ramp from a value \(s / g_{\text{age}} \) up to the mature resting spring length, \(s \), over a time \(g_{\text{age}} \) as indicated in Fig. 8.9. Note the two daughter cells are placed at a random angle of orientation from the original position of the mother cell at a random distance less than...
or equal to \(s/g_{\text{age}} \) apart. Once a cell has proliferated, it takes \(p_{\text{age}} \) time steps before the daughter cells will proliferate again, including the \(g_{\text{age}} \) time steps for the daughter cells to mature and re-position.

![Diagram](image)

Figure 8.9: Schematic for cell adhesion. Fig. 8.9 illustrates how the spring rest length \(s_{k,1} \) increases as a function of the time since division.

8.2.5 Cell infection

In each time step, all uninfected and infected tumour cells are checked to see whether they will be infected. If there is at least one virus agent within the perimeter of a cell, then the cell becomes infected with probability \(p_i \). If there are \(\zeta_T \) virus particles within the perimeter of a cell, then a random number of virus particles \(\zeta \), drawn from a uniform distribution of the number of viruses able to infect that cell, i.e. \(\zeta = U(0, \zeta_T) \), infects the cell. These virus agents are then removed from the extracellular virus population and the tumour cell becomes an infected cell.

8.2.6 Cell death

Once inside a tumour cell, viral particles undergo replication for \(i_{\text{age}} \) time steps, after which the cell will burst and release \(v \) new virus particles. These new particles are placed randomly within the perimeter of the cell that burst. If the cell bursts, it becomes a dead cell. Once a cell has died from a virus infection, it is assumed that it takes \(d_{\text{age}} \) time steps to disintegrate: at each time increment, the spring rest lengths of the dead cell to all its neighbours reduces by \(d_{\text{frac}} \) to simulate cell disintegration.
8.3 PARAMETER OPTIMISATION AND SENSITIVITY

All parameters in the model are collated in Table 8.1. The parameters relating to cell state characteristics were optimised using time-series measurements for the growth of cervical cancer SK-OV3 cells (Section 2.2.3.4 \textit{in vivo} (Kim \textit{et al.}, 2011b). The model was assumed to be updated on a time step of 4 hours for the parameter optimisation and all future numerical simulations.

<table>
<thead>
<tr>
<th>Table 8.1: Parameters in the model and their meanings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell parameters</td>
</tr>
<tr>
<td>(g_{\text{age}})</td>
</tr>
<tr>
<td>(p_0)</td>
</tr>
<tr>
<td>(d)</td>
</tr>
<tr>
<td>(d_{\text{max}})</td>
</tr>
<tr>
<td>(r_{\text{min}})</td>
</tr>
<tr>
<td>(p_{\text{age}})</td>
</tr>
<tr>
<td>(d_{\text{frac}})</td>
</tr>
<tr>
<td>(d_{\text{age}})</td>
</tr>
<tr>
<td>Cell motility parameters</td>
</tr>
<tr>
<td>(s)</td>
</tr>
<tr>
<td>(\mu)</td>
</tr>
<tr>
<td>(\eta)</td>
</tr>
<tr>
<td>(a_l)</td>
</tr>
<tr>
<td>Virus parameters</td>
</tr>
<tr>
<td>(i_{\text{age}})</td>
</tr>
<tr>
<td>(p_i)</td>
</tr>
<tr>
<td>(r_{\mu})</td>
</tr>
<tr>
<td>(r_{\sigma})</td>
</tr>
<tr>
<td>(\nu)</td>
</tr>
</tbody>
</table>

8.3.1 Optimising cell state characteristics

To verify the robustness and predictive capability of the model, the growth of cervical cancer in mice was investigated. The volume of cervical cancer SK-OV3 cells has been measured in three mice over time by Kim \textit{et al.} (2011b). SK-OV3 cells have an average diameter of 14.1\(\mu \text{m} \) (Chen \textit{et al.}, 2011) and, interpolating the calculation of Del Monte (2009), this equates to approximately 4.8 \(\times \) \(10^8 \) cells per \(\text{mm}^3 \). Due to computational and geometric constraints in the model, rather than representing a single cell in the
2D setting, each Voronoi cell was taken to represent the average characteristics of 10^{10} SK-OV3 cells, and the data scaled accordingly by a factor of 10^{10}. The VCBM was then used to determine the growth of SK-OV3 cells, with the trend showing good correspondence with the data, see Fig. 8.10 and Table 8.2

![Figure 8.10: Model calibration for in vivo cervical cancer SK-OV3 cell growth. Individual mouse tumour cell numbers recorded by Kim et al. (2011b) are plotted as grey circles. Overlayed in light blue dotted lines are 15 model simulations of tumour growth with the mean of these simulations in black.](image)

Table 8.2: Cell parameter values. The calibrated parameters are obtained by optimising the model to the measurements of SK-OV3 cell growth seen in Fig. 8.10. The fixed parameters r_{min} and s are taken from the original lattice set up, parameters μ, η and λ are taken from Meineke et al. (2001), but scaled to the time step of 4 hours, and a_l is arbitrary.

<table>
<thead>
<tr>
<th>Calibrated parameters</th>
<th>SK-OV3 data</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_{age} (hour)</td>
<td>12</td>
</tr>
<tr>
<td>p_0</td>
<td>0.7</td>
</tr>
<tr>
<td>d_{MAX} (μm)</td>
<td>45</td>
</tr>
<tr>
<td>p_{age} (hour)</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fixed parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{min} (μm)</td>
</tr>
<tr>
<td>s (μm)</td>
</tr>
<tr>
<td>μ ($\mu\text{g}/\text{hour}^2$)</td>
</tr>
<tr>
<td>η ($\mu\text{g}/\text{hour}^{-1}$)</td>
</tr>
<tr>
<td>a_l (μm)</td>
</tr>
</tbody>
</table>

Note that the volume of cervical cancer SK-OV3 cells was measured over 25 days, and the parameters returned were therefore a function of days. The number of Voronoi cells is plotted as a function of hours, see Fig. 8.10 as are the parameter values in
The simulation implementation was additionally tested to ensure that there were no artefacts in the results due to the choice of time step.

8.3.2 Viral characteristic parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_i</td>
<td>0.9</td>
<td>Chapter 6</td>
</tr>
<tr>
<td>i_{age} (hour$^{-1}$)</td>
<td>24</td>
<td>Chapter 6</td>
</tr>
<tr>
<td>ν (no. of virus particles)</td>
<td>5</td>
<td>Chapter 6</td>
</tr>
<tr>
<td>r_{μ} (\mu m)</td>
<td>0.05</td>
<td>Mok et al. (2009)</td>
</tr>
<tr>
<td>r_{σ} (\mu m)</td>
<td>0.1</td>
<td>Mok et al. (2009)</td>
</tr>
</tbody>
</table>

The remaining parameter values in the model were approximated from the literature. The probability p_i of infection occurring was approximated by the rate of infection determined in Chapter 6 assuming that the infection rate can be modelled by an exponential probability distribution. The decay rate was approximated using the average duration of cell lysis of 24 hours. The number of new viruses created, ν, was approximated from the value of α in Chapter 6 increased slightly, because this chapter considers individual virus agents rather than a mean-field approximation to the viral dynamics (closer to some of the individual mice values returned in Table 6.1). The mean and variance for viral step length were scaled from the diffusion coefficient of HSV particles reported at 5×10^{-10} cm2s$^{-1}$ by (Mok et al., 2009). See Table 8.3 for a summary.

8.3.3 Model simulation

Cancer cell proliferation, spatial limitations and obstructions influence the shape of a tumour, see Section 2.2.2 and Fig. 2.2. To understand the sensitivity of the treatment to tumour shape, the outcome of virotherapy is investigated on three generic tumour shapes: circular (Fig. 8.11(a)), rectangular (Fig. 8.11(c)), and irregular (Fig. 8.11(e)). To generate each shape, the same basic underlying VCBM rules have been used, with some additions in the case of rectangular and irregular tumour growth.
Circular tumours can be generated directly using the model described in the previous section. If there are no spatial limitations for proliferating cancer cells \textit{in vivo}, a roughly circular tumour will form, similar to the cross-section of a hanging drop tumour spheroid \cite{Weiswald2015}, see Fig. 2.2. Note the apparent difference between the exponential growth seen in Fig. 8.10 and the more linear growth seen in Fig. 8.11b. The difference is due to the slower growth of the tumour on the time scale of hours as opposed to days, and also due to the smaller number of cells.

When there is an obstruction above and below an initial seeding of tumour cells \textit{in vivo}, a rectangular tumour shape will form. This obstruction can be considered as stiffer stromal tissue, similar to that seen in breast ductal carcinomas in situ (DCIS), see Fig. 2.2, which have approximately rectangular cross sections. These tumours form in a rectangular shape due to spatial limitations above and below the tumour. To encourage rectangular tumour formation in the VCBM, a horizontal impenetrable boundary is positioned above and below the initial grouping of tumour cells. This was simulated by placing a dense horizontal line of points into the lattice (not plotted) at the position of the impenetrable boundary, and then requiring that all healthy cells above and below this horizontal boundary are unable to move.

In certain cancers, cells on the periphery of a tumour can become invasive cells, allowing them to degrade the ECM and remove nearby cells, forming irregular branches, see Fig. 2.2. To generate an irregular tumour, a collection of tumour cells on the tumour periphery are designated that are able to invade the space of healthy cells and occupy their position. These cells move in a direction that maximises their nutrient and oxygen supply \cite{Jiao2011}. In the model, nutrients are assumed to flow in from the boundary of the domain, so these invasive cells move in a direction away from the tumour.

Typical evolutions of the model for three tumour shapes: circular, rectangular and irregular are presented in the Appendix B Fig. B.1, B.2 and B.3 respectively. While the shapes generated have not been directly matched to experimental tumour images, they represent shapes occurring in tumour formation as discussed above and in Section 2.2.2.
8.4 RESULTS: SIMULATING ALTERNATIVE TREATMENT PROTOCOLS

Using the aforementioned automaton rules for oncolytic viruses and corresponding parameter values in Table 8.1 and 8.3, a representative model evolution is shown for a circular tumour with viral treatment in Fig. 8.12. Over time, healthy cells are surrounded by the tumour cell population and this is reminiscent of the true biological scenario, since healthy cells are regularly found within tumours (Park et al. 2000).

All simulations presented in the following results section use the same VCBM virus rules, unless specified otherwise. Since the size of the adenovirus is approximately 90-100 nm (Appert et al. 2012), this means that based on the size of an SK-OV3 cell, an adenovirus is 0.65%-0.7% of the cell’s size. Therefore virus transport mechanisms are assumed to not be influenced by whether they are in a cell filled area or an area with no cells.

8.4 RESULTS: SIMULATING ALTERNATIVE TREATMENT PROTOCOLS

In this chapter, oncolytic virotherapy effectiveness is only considered on small tumours, aiming to improve the diffusive viral properties of this therapy for early-stage cancers. Two major therapy perturbations are examined in the following subsections: the configuration of the viral injections entry sites and the effects of delaying the infection of cancer cells by viral particles. These modifications to the current therapy are examined in detail on the three tumour shapes generated.

8.4.1 Dependence of treatment outcome on entry site configuration

Traditional viral therapy is administered by either intravenous or intratumoral injection (Wang and Yuan 2006). However, the possible dependence of therapy outcome on the position of initial treatment injection has not been investigated systematically. Using the VCBM, it is investigated whether there is an optimal injection configuration for the three tumour shapes: circular (Fig. 8.13), rectangular (Fig. 8.14) and irregular (Fig. 8.15). The varying initial injection configurations considered are represented pictorially by
Figure 8.11: Representative tumour shapes considered for treatment with an oncolytic virus (a)-(b) circular, (c)-(d) rectangular, and (e)-(f) irregular. The corresponding number of tumour cells as a function of time from 12 simulations has been plotted for each shape. Typical evolution plots for each of these shapes can be found in the Supplementary material, Fig. B.1, Fig. B.2 and Fig. B.3 respectively. Note the different scale for (f) due to the extremely fast growth of the irregular tumours.
8.4 Results: Simulating Alternative Treatment Protocols

Figure 8.12: Representative evolution of the VCBM model in a circular configuration. The four snapshots above represent equal intervals of model dynamics. Pale pink cells represent healthy cells, dark green cells represent tumour cells, light green cells represent quiescent cells, bright pink cells represent infected tumour cells and grey cells represent dead cells with empty space shaded in light grey.

Enumerated and coloured virus shapes with the resulting number of tumour cells as a function of time also shown. Across all injection configurations considered, the total dosage was the same. In the case where more than one injection was considered, the dosage was split evenly amongst the injections.

Increasing the multiplicity of the treatment injection sites improved the overall treatment efficacy for circular tumours, see Fig. 8.13. On average, the tumour cell count at 280 hours and the overall rate of tumour growth was highest when the total viral dose
was given in a single injection, profiles A, B and C in Fig. [8.13](b), irrespective of the injection location. In comparison, the average tumour size at 280 hours was smaller for three radially symmetric treatment injections, profiles D, E and F Fig. [8.13](d). Furthermore, the tumour size was dramatically reduced in the first 160 hours when three radially symmetric injections were administered mid tumour, see injection profile E. While a greater initial reduction in tumour size occurred with injection profile E than profile F, the average tumour size achieved at 280 hours was smaller when radially symmetric injections were applied at the periphery of the tumour, profile F. The reason for injections on the periphery performing better than intratumoural injections, is due to peripheral injections controlling the outward growth of the tumour more than intratumoural injections. These dynamics are similar to three non-symmetric injections at the same radial position from the tumour centre, as in profiles G, H and I in Fig. [8.13](f). However, overall injections need to be given radially symmetrically to see an optimal effect in the treatment efficacy.

In rectangular tumours, the size after treatment was slightly more variable than in circular tumours, see Fig. [8.14]. On average, single injections resulted in smaller tumour reductions, see injection profiles A, B and C in Fig. [8.14](b) respectively, along the major (long) axis of the rectangle, and G in Fig [8.14](f), which was off both the major and minor (short) axes of the rectangle at the periphery of the long edge of the tumour. There were examples of individual tumour growths after a single injection that stabilise; however, these occurred rarely. This shows that despite the tumour’s vertical growth being restricted, a single injection along a major or minor axis was unable to control the tumour growth to the same extent as two injections. Apart from two injections off the short-axis of the rectangular tumour on the periphery of the long side (injection profile F), all other two injection profiles lowered the tumour growth see profiles D and E and profile H in Fig. [8.14](d).

The lowest tumour size was obtained with two intratumoural injections in the direction of the long edge, i.e. profile D, and on the periphery of the long edge of the minor axis, and off the major axis, i.e. profile H in Fig. [8.14](f). Additionally, the rate of growth on average was significantly reduced when two injections are given intratumourally or
Figure 8.13: The effects of the multiplicity and configuration of the injection site on a circular tumour. The initial injection configurations considered are represented in Figs. 8.13(a), 8.13(c) and 8.13(e) by the coloured regions, depicting viral particles. The corresponding total number of tumour cells over time for each injection type is plotted in Figs. 8.13(b), 8.13(d) and 8.13(f), respectively for 12 simulations. For reference, untreated tumour growth is plotted for 12 simulations in grey. Note quiescent cells are not plotted.
Figure 8.14: The effects of the multiplicity and configuration of the injection site on a rectangular tumour. The initial injection configurations considered are represented in Fig. 8.14(a), 8.14(c) and 8.14(e) by the coloured regions, depicting viral particles. The corresponding total number of tumour cells over time for each injection type is plotted in Figs. 8.14(b), 8.14(d) and 8.14(f), respectively for 12 simulations. For reference, untreated tumour growth is plotted for 12 simulations in grey. Note quiescent cells are not plotted.
8.4 Results: simulating alternative treatment protocols

Figure 8.15: The effects of the multiplicity and configuration of the injection site on an irregular tumour. The initial injection configurations considered are represented in Fig. 8.15(a) and 8.15(c) by the coloured regions, depicting viral particles. The corresponding total number of tumour cells over time for each injection type is plotted in Figs. 8.15(b) and 8.15(d), respectively for 12 simulations. Note the shorter timescale, and greater growth compared to Fig. 8.13 and 8.14. For reference, untreated tumour growth is plotted for 12 simulations in grey. Note quiescent cells are not plotted.

on the periphery and off-centre. Profile D intuitively results in a low tumour burden as these injections have access to more tumour cells than any other injection; however, this is not the case for profile H. In this case, the efficacy of this injection comes from the virus controlling one of the proliferating directions of the tumour.

For the irregular tumours, spreading the dose across multiple injection sites lowered the tumour size. A single intratumoural injection, profile G Fig. 8.15(d), produced the largest average tumour at 160 hours. This is not surprising, since the irregular tumour has invasive cells that generate rapid tumour growth away from the centre of the tumour, where only quiescent cells would be present. If the injection multiplicity
8.4.2 Treatment with delayed initial viral-infection

To improve virotherapy, a more advanced delivery system that provides sustained infection of tumour cells is needed (Choi et al., 2013b). While optimising the injection configuration shown in the previous section can help, more needs to be done to improve the treatment. One idea is to modify viral vectors with a substance, such as an alginate gel, to delay the initial infection time, allowing for further diffusion through the tumour bulk prior to the initial infection and activation of clearance.

Alginate, a naturally occurring biopolymer, has several unique properties that have enabled it to be used for delivery of a variety of biological agents, including viruses (Choi et al., 2013b; Sharma et al., 2003). The ability to encapsulate viral particles in alginate microbeads has been tested as a vaccine delivery system, (Kwok et al., 1989; Wee et al., 1995). Choi et al. (2013b) show that the biological activity of viral particles loaded in alginate gel is prolonged compared with naked virus (Choi et al., 2013b). The
microenvironment around the gel-encapsulated virus also provides protection from
clearance by the immune system over an extended time period (Choi et al., 2013b;
Muruve et al., 1999; Ruzek et al., 2002). This idea is theoretical and has not yet been
shown to be biologically plausible. Additionally, as the size of an adenovirus is 0.6%-0.7%
the size of an SK-OV3 cell, it is assumed that alginate coating will not influence
the size as significantly as to warrant a change in the transport properties and rates.

The effects of delayed viral treatment on circular, Fig. 8.17 rectangular, Fig. 8.18 and
invasive tumours, Fig. 8.19 was investigated. In each of these figures, the predicted
number of tumour cells under treatment with the original oncolytic virus is overlaid
with that of the delayed-initial infection virus for the various values of the delay time.
The pore size, degradation rate and release kinetics of alginate can also be controlled
(Gombotz and Wee, 1998), so four different initial infection delays of 40, 52, 60 and 80
hours were simulated.

Delaying the infection of viral particles allows the treatment to disseminate further
into the tumour before the first infection, see Fig. 8.16 for a visual representation of the
dynamic, and Figs. 8.17(f) and 8.18(f) for the distribution of viral particles at different
times. In Fig. 8.17(f) and 8.18(f), it is clear that the variance of the position of the viral
particles initially is smaller than that of the delayed viral particles before their initial
infection, after their corresponding wait periods. Typical evolutions of the model for
circular tumours under treatment with a non-delayed and delayed virus is plotted in
the Appendix B, see Fig. B.4 and B.5 respectively.

The treatment was administered in three injections on the periphery for circular tu-
mours (profile F, Fig. 8.13(c)), two injections on the short ends for rectangular tumours
(profile E, Fig. 8.14(c)) and three injections on the tumour bulk periphery for irregu-
lar tumours (profile A, Fig. 8.15(a)). For circular and rectangular tumours, Fig. 8.17
and Fig. 8.18 the modified delayed virus resulted in lower tumour cell numbers than
that of the non-delayed virus. Each injection had the same amount of virus particles,
irrespective of the tumour shape or delay length.

In the circular tumours, the delay of the onset of viral infection initially allowed the
tumour cell numbers to increase rapidly compared to the tumours undergoing non-
delayed viral treatment, Fig. 8.17 At the onset of the infection, however, a dramatic
8.4 Results: Simulating Alternative Treatment Protocols

Figure 8.16: Virus diffusion for (a) non-modified and (b) modified virus particles at 52 hours. A comparison of the two cases shows that the region within which the virus particles have diffused is similar in both cases; however, there are less virus particles in the non-modified case due to immune clearance.

Drop in tumour cell numbers was observed. For shorter delay times, Fig. 8.17(a) and (b), the tumour numbers were similar under the delayed and non-delayed treatments following the onset time. For treatments with longer delays, Fig. 8.17(c) and (d), the tumour numbers under the delayed treatment dropped below that of the non-delayed treatment at the onset time, and the trend of the subsequent increase was on average below that of the non-delayed treatment. This illustrates that while the addition of a delay in the viral infection allows the tumour to grow to a size larger than the initial one, the viral treatment’s effectiveness is increased due to its ability to disseminate further into the tumour, see Fig. 8.17(f).

For non-circular tumours, delaying the onset of viral infection results in tumour growths with equivalent slopes. In the case of rectangular tumours, Fig. 8.18, delaying the viral infection means that once the virus particles infect, the size of the tumour is lower at that point than the size of the tumour under treatment with non-delayed virus. So while the tumour growths have the same rate, the size of the tumour is smaller for the delayed viral treatment. In the case of irregularly shaped tumours, Fig. 8.19, whilst the dramatic drop in tumour cell numbers was observed upon the onset time in the
Figure 8.17: Circular tumour size under treatment with a delayed infecting oncolytic virus. The number of tumour cells predicted by the model over time is plotted under treatment with the original oncolytic virus (light blue) and with the delayed virus (dark blue) applied using profile F, Fig. 8.13. Twelve model simulations were considered for each case. The wait times for the delayed virus cases were (a) 40, (b) 52, (c) 60 and (d) 80 hours. Note the dramatic drop in tumour cell numbers upon initial viral infection in each case. In (e), the ratio of the number of extracellular virus particles to uninfected tumour cells is plotted for each treatment as a function of time. The corresponding distribution of viral particles before they can initially infect for the case of no wait time, 40 hours wait time, 60 hours wait time and 80 hours wait time is plotted in (f).
Figure 8.18: Rectangular tumour size under treatment with a delayed infecting oncolytic virus. The number of tumour cells predicted by the model over time is plotted under treatment with the original oncolytic virus (light blue) and with the delayed virus (dark blue) applied using profile E, Fig. 8.14. Twelve model simulations were considered for each case. The wait times for the delayed virus cases were (a) 40, (b) 52, (c) 60, and (d) 80 hours. Note the dramatic drop in tumour cell numbers upon initial viral infection. In (e), the ratio of the number of extracellular virus particles to uninfected tumour cells is plotted for each treatment as a function of time. The corresponding distribution of viral particles before they can initially infect for the case of no wait time, 40 hours wait time, 60 hours wait time and 80 hours wait time is plotted in (f).
8.4 RESULTS: SIMULATING ALTERNATIVE TREATMENT PROTOCOLS

In Fig. 8.19, a comparison of the treatment effectiveness at discrete time points is presented. The number of tumour cells as a function of the virus delay, at 100, 140 and 200 hours have been summarised for circular and rectangular tumours. In every case it is clear that the delayed virus was more effective on average than the non-delayed treatment, or the control case when no treatment was administered, irrespective of the
8.4 RESULTS: SIMULATING ALTERNATIVE TREATMENT PROTOCOLS

Figure 8.20: Comparison of treatment effectiveness at discrete time points. Individual, mean and standard deviation measurements corresponding to the number of tumour cells from the simulations Fig. 8.17 and 8.18 after (a) & (d) 100 hours, (b) & (e) 140 hours and (c) & (f) 200 hours is plotted for circular tumours (a)-(c) and rectangular tumours (d)-(e). The number of tumour cells without treatment, Fig. 8.11(b) and (d) has also been plotted on each figure as a control. Note the vertical axis break in the top row and the different vertical scales.

length of the delay. It was clear however that at 100 hours, the choice of delay had an effect on the number of tumour cells, with a delay of 52 hours resulting in the smallest average tumour cell number for both circular and rectangular tumours. However, at 200 hours, there was less sensitivity to the initial delay. This illustrates that in the short term, the length of the delay before the initial viral infection can play a significant role in the size of the tumour. To determine whether this result solely relied on the fact that the tumour size at the start of a delayed virus’ infection is larger, the two types of treatment were simulated on the same size tumour at the start of their infection time (image not included). Since the delayed virus had disseminated further, the treatment performed much better than the non-delayed virus, given its inability to diseminate as far.
8.5 summary

The rapid clearance of viral particles is a major obstacle in the effectiveness of oncolytic virotherapy. Viral particles are cleared by the immune system, reducing both the numbers of particles acting and the window of time within which the treatment persists. In this chapter, a Voronoi cell-based model (VCBM) is developed for the interaction between a growing tumour and an oncolytic virus treatment and ways to optimise the treatment protocol are investigated. By optimising the injection site configuration and modifying the viruses to delay their infection, it is possible to improve the efficacy of this therapy with a particular focus on small early stage tumours.

There are two primary protocols for administering an oncolytic virus, either intratumourally or intravenously. When treatment is administered intravenously, it is challenging to predict where the treatment will enter a tumour and it is usually at multiple sites on the tumour periphery. Alternatively, when treatment is administered intratumourally, it is possible to designate the entry site location to some extent. In Fig. 8.13, 8.14 and 8.15 the application location is shown to be a crucial determinant of treatment efficacy for circular, rectangular and irregular tumours. The position and multiplicity of the intratumoural injections can significantly affect the outcome of the therapy.

To determine which injection profile results in the most effective treatment, the number of tumour cells over time for 12 model simulations has been plotted in Fig. 8.13, 8.14 and 8.15. From visually inspecting the plots, it is not clear in every case which treatment is the most effective, and so the mean and standard deviation for each injection profile was also calculated. Using these measurements it was established that the best treatment outcome across the different shapes was achieved with 3 or more injections, where the same total dosage was divided evenly among the number of injections. In the short-term, injections that were within a tumour produced the most effective treatment. However, long term, the optimal injection configuration depends significantly on the tumour shape.

For a circular tumour, Fig. 8.13 single injections of oncolytic virus particles gave rise to the highest average tumour size over time of any of the injection configurations considered. The location of the single injection had no significant effect on the tumour
size. The lack of response to the single injection protocol is due to single injections promoting an increased multiplicity of infection with a subsequent enhancement of viral trapping that limits the breadth of spread irrespective of the location on the tumour.

In contrast, the mean and standard deviation of a circular tumour size at 280 hours was noticeably lower for three injections along the radius of the tumour or at the periphery. Increasing the injections allows for an improved diffusivity and virus to cell contact rate. The best performing injection protocol on circular tumours for a window of 50 hours was three radial and rotationally symmetric injections. After 50 hours, the efficacy of central tumour injections was overtaken by injections on the tumour periphery. This effect is due to injections on the periphery of circular tumours restricting cell growth on the boundaries, where the growth rate is usually the fastest.

The optimal treatment injection configuration for rectangular tumours, Fig. 8.14, was not dissimilar to that of circular tumours: on average, increasing the injection multiplicity improved the treatment efficacy. However, there were some cases where a single injection close to the edge of a tumour caused a reduction of tumour growth similar to that of multiple injections, see Fig. 8.14(b) and (d). This stochasticity of tumour response is explained by the fact that the tumour’s primary growth occurs in a horizontal direction. Since Ductal Carcinoma In Situ (DCIS) have approximately rectangular cross sections, this could suggest that treating these cancers with virotherapy would result in a wide variety of unpredictable responses, depending on the location and multiplicity of injection.

From the injection configuration model simulations, the optimal injection profile for rectangular tumours can also be determined. Two intratumoural injections positioned halfway from the centre along the horizontal semi-axes (profile D, Fig. 8.14) reduced the tumour volume the most out of all injection configurations considered. However, administering treatment in this way could be difficult. An alternative is to administer two injections above and below the tumour (profile H, Fig. 8.14), a third of the way along the horizontal. In real tumours, this could be a simpler way of administering treatment as the tumour itself does not need to be penetrated.

It is also interesting to note that there is a pronounced oscillation in tumour cell numbers soon after injection for both the circular and rectangular tumours, see Fig. 8.13.
There are two reasons why oscillations occur in the model. Firstly, the oscillations are caused by the increase in free-space within the tumour allowing cells to proliferate that were previously too confined. The second reason is, in the case of the delayed virus, a significant amount of cells are infected once the virus delay has passed, and these cells lyse simultaneously, allowing nutrients to access cells, that previously had a low probability of proliferating.

For an irregular tumour shape, it is shown in Fig. 8.15 that the most successful treatment outcome in the first 60 hours was obtained when the treatment was administered at the periphery of the tumour bulk as opposed to the invasive spines. The multitude of injections significantly affects this outcome: when ten injections are given at the periphery of the tumour, the treatment did considerably better than when three injections were administered at the periphery. Additionally, comparing this option to one single intratumoural injection, it fared the worst out of all the possible profiles. After 60 hours, the optimal injection configuration was the one that eliminated all invasive cells on the tumour spines. By eradicating the invasive cells the tumour growth is reduced significantly so that, while treatment takes longer to be effective, the overall tumour growth rate gets reduced.

While optimising the treatment injection configuration can help to improve the standard of the current treatment, there is more that can be done to increase the efficacy. To tackle the diffusivity obstacle presented by the tumour microenvironment, oncolytic viral particles can be modified to delay their infection for a specific period of time. Delaying the onset of viral infection within a tumour allows for further infiltration of the tumour prior to the onset of immune clearance.

For circular tumours it was shown that the delayed virus caused an average reduction of tumour volume at 200 hours of between 5% and 11% (depending on the length of the delay), Fig. 8.17. While the delay of 100 hours resulted in the largest initial infected cell population of 105 cells, the long-term average size of a tumour was lowest for the treatment with a 52-hour delay, the latter is the treatment recommended for further investigation. Future investigations will look at whether additional doses of the treatment can further improve this result.
The success of delayed virus infection on circular tumours can be attributed to the diffusive properties of the virus. Since the infection of the tumour cells is initially delayed, the virus is able to disseminate further into the tumour before it initially infects the cells. Additionally, due to the coating of the virus, the immune system is unable to clear the virus during the period of time before its initial infection. Therefore, since the mean squared displacement of the virus is larger for a virus that has had a delayed infection, then more virus undergoes the first round of infection. From this, more secondary virus is created from the first round of infection than the non-delayed virus’ first round of infection.

In Fig. 8.17, it is clear there is an optimal timing for the delay of initial viral infection with a 52-hour delay resulting in the lowest tumour size. This has to do with the tumour growth relative to the length of infection delay. If the virus is delayed from infecting the tumour cells for too long, then the tumour will have grown to a size that is too large for the current diffusion rate of the virus to have an effect. Future work will investigate optimising the relationship between the delay of infection onset, the size of the initial tumour and the diffusivity of the virus.

For rectangular tumors, the modified virus, irrespective of the delay, had a considerable effect on reducing the tumour burden Fig. 8.18. By 200 hours (Fig. 8.20), each delayed virus reduced the tumour numbers to approximately the same level: the only major difference in the delay was how many cells were initially removed by the virus, but even this was not significant. There appeared to be no optimal delay in this case as all worked just as well as each other. This is due to rectangular tumours having a maximum tumour growth rate, since they are bounded above and below by an impenetrable boundary. The overall growth rate of rectangular tumours was less affected by the delayed viral infection treatment compared to that of the circular tumours. Since the virus diffuses radially from the initial injection and rectangular tumours grow primarily horizontally, the effectiveness of the delayed virus, due to its ability to disseminate further into the tumour, could be reduced accordingly. It is clear, however, that the use of a delayed onset virus overall improved the treatment outcome for rectangular tumours.
In the case of irregular tumour formation, the modified delayed virus was no more effective than the original non-delayed form. In a few cases, the non-delayed form resulted in lower tumour sizes than the delayed form. This is due to the aggressive nature of the tumour shape. Invasive tumours are able to grow away from the treatment sites in a multitude of ways, evading the viruses swiftly and efficiently.

The sensitivity of the number of tumour cells as a function of the treatment delay is summarised in Fig. 8.20. By comparing the different tumour cell numbers, at 100 hours a delay of 80 hours led to a higher tumour cell count, compared to the other delays, whereas at 200 hours, a delay of 80 hours had a lower average that most of the other delayed viruses. This illustrates how the delayed virus takes time to catch up with a growing tumour.

In general, after around 140 hours, the chosen delay doesn’t contribute significantly, with all delays resulting in smaller tumour cell numbers on average than the treatments with no delay or for a tumour growing without treatment. As such, the effectiveness of the delay is a function of time. If this treatment was to be tested experimentally, this suggests that only early measurements would reveal any difference between the effectiveness of the different delay treatments. Overall, this result suggests that there could be a significant dependence of tumour size on the timing of the measurement.

In conclusion, for circular and rectangular tumours, modifying viral particles to delay their infection can produce a notable advantage to therapy; however, for irregular tumours the benefit remains unclear. This model is presented in 2-dimensions and with the addition of a third dimension, the drop in tumour cell numbers could be significantly larger. Future work will investigate the delayed virus efficacy on 3-dimensional tumour shapes.

It is worth noting here that the results are dependent on the underlying dynamics of the model. To investigate the possible validity of these results on a more heterogeneous sampling of tumour types and viral treatment modalities, it would be worth considering different viral dissemination profiles, tumour growth dynamics and viral clearance rates. In the next stage of this work, it also would be worth investigating how the immune system dynamics may influence the viral clearance and whether the delayed virus is truly more effective in the presence of an antiviral immune response.
The spatial investigation in this chapter has allowed for a visual in-depth appreciation of the general virus-tumour cell dynamics in oncolytic virotherapy. Using a Voronoi tessellation to form the shapes of cells, combined with force balance equations, allows for a good approximation of the real life spatial effects of pressure and cell-to-cell interactions.
DISCUSSION
In this thesis, mathematical models have provided valuable insight into oncolytic virotherapy and immunotherapy. Deterministic, probabilistic and agent-based modelling were used to model the intricate and complex interactions between viruses, immune cells and tumour cells at the intracellular and extracellular scale. Often the data used to optimise parameter values was sparse and creative techniques were developed to draw insight from this data.

SUMMARY OF THESIS RESULTS

A challenge facing oncolytic virotherapy is determining how to maximise both viral spread and anticancer cytotoxicity. Many experimentalists are investigating genetic attenuation for this purpose. To assist in the understanding of variations in characteristics and effect of these gene-attenuated viruses, a novel integro-differential system with distributed parameters was developed (Eq. (4.1)). Intracellular viral and tumour heterogeneity was modelled using distributed parameters for viral replication start times and cellular burst times. This is an important and significant inclusion as the intracellular replication process is known to be extremely stochastic (see Section 2.4.2). Miyashita *et al.* (2015) showed that stochastic processes govern the number of viral genomes that establish infection and the accumulation of their progenies in an infected cell. Additionally, as reviewed in Section 3.2.5, time delays are intrinsic to the infection and replication processes of viruses and have been considered in numerous models for human immunodeficiency virus (HIV). As the generation of new viral progeny drives the success of oncolytic virotherapy, it is crucial to model the intracellular dynamics using distributed delays. At the smallest biophysical scale considered in this thesis, an integro-differential model was used to understand the effects of E1B gene-attenuation of the adenovirus (Chapter 4). This mathematical framework can be used to understand the genetic characteristics of many oncolytic viruses and is a useful step in the direction of creating a safer and more effective viral treatment platform.

Scaling up, an extracellular mean-field approach for the viral-tumour interaction was developed (Chapter 5), consisting of two systems of ordinary differential equations (ODEs). Comparison to, and tuning with, experimental data showed that these
deterministic models can be successfully used to represent the extracellular dynamics of the virus-tumour interaction. Initially, a minimal coupled system of ODEs was introduced to capture the infection and lysis of tumour cells, see Eqs. (5.1)-(5.3). Whilst a number of biological limitations existed in this model (such as unimpeded tumour growth) the simplicity allowed for a thorough local stability and bifurcation analysis to be conducted. Interestingly, this model did not possess any regimes that could result in complete tumour eradication, demonstrating that models similar to this would also predict treatment failure.

Changing the biological assumptions of the minimal extracellular model to consider Gompertzian tumour growth and frequency-dependent viral infectivity rates, resulted in the extended model in Eqs. (5.10)-(5.12). This model showed a singular equilibrium and a number of highly nonlinear behaviours that had interesting biological consequences, see Fig. 5.17. For example, the model predicts long-period “square wave” oscillations, something not seen regularly in mean-field models of oncolytic virotherapy. This suggests that long-periods of remission can be followed by rapid regrowth of the tumour to the environmental carrying capacity. At this point, the virus population builds back up and the brings the tumour back to remission (see Fig. 5.17 case (4)). Additionally, the model illustrates regions of bistability, i.e. where two different outcomes can occur depending on the initial conditions, see Fig. 5.22.

These interesting dynamics were the result of a number of non-trivial bifurcation scenarios in the presence of an important system equilibrium (i.e full tumour eradication) that is characterised by a singular Jacobian. This occurrence required the use of a hybrid combination of numerical continuation, symmetry considerations and integration of the model to map out the dynamics as a function of relevant model parameters. The methodology could hopefully be used in future studies of singular equilibria systems.

The analysis of the minimal system of ODEs with Gompertzian tumour growth was then applied to an experimental oncolytic adenovirus modified with polyethylene glycol (PEG) and conjugated with Herceptin (Chapter 6), and an oncolytic adenovirus expressing IL-12 and GM-CSF (Chapter 7). Mean-field formulations were chosen for these studies as the inclusion of spatial dependencies or stochasticity into these
models would have added too many degrees of freedom to enable conclusions to be
drawn regarding optimisation of the therapies. The models allowed insight into the
efficacy of the viral infectivity and immune stimulation in improving oncolytic viro-
therapy and immunotherapy. For example, increasing the viral infectivity rate for a
PEG and Herceptin-modified adenovirus resulted in a dramatic drop in the tumour
size (see Fig. 5.5(c)). A similar effect was seen for the IL-12 and GM-CSF expressing
virus, where reducing the virus-infected cell stimulation of APCs was shown to in-
crease the effectiveness of the therapy (see Fig. 7.6).

Moving from consideration of well-mixed mean-field systems, geometric effects on
the virus-cell interactions were encoded using a Voronoi cell-based model (VCBM)
(Chapter 8). While deterministic models can provide invaluable insight, agent-based
models (ABMs) allow for more realistic simulations of the actions and interactions of
tumour cells and individual virus particles at the smaller scale. The two dimensional
investigations explored indicated the utility of the approach, justifying the extension
to model realistic three-dimensional geometries in future studies, and tuning to other
growth rates and formation characteristics. The VCBM could also be applied beyond
the particular cancer and viral interactions of the PEG and Herceptin-modified virus
and the IL-12 and GM-CSF expressing virus analysed in this thesis.

Additionally, the studies indicate that the VCBM can act as an excellent visualisation
tool for biologists and clinicians, for example to pinpoint the depth of the treatment
spread and its effectiveness, as shown in Fig. 8.12. One difference of this model to
previous spatial models for oncolytic virotherapy (Section 3.3.1) is that viruses are
assumed to follow a continuous-time random walk, with waiting times between suc-
cessive movements drawn from a stable distribution. This particular modelling was
chosen specifically to capture the trapping phenomena and the inability of viruses to
diffuse through the tumour microenvironment (Kim et al. 2006b), something that is
not captured through the use of classical diffusion (Friedman et al. 2006; Mok et al.
2009) or simple lattice random walks (Paiva et al. 2011).
A large portion of this thesis centered around the development of fitting algorithms that could optimise model parameters to a range of different experimental measurements. To improve oncolytic virotherapy and immunotherapy, mathematical models were optimised to data. Different approaches were used for time-series measurements (e.g. Fig. 6.3) versus single time-point values (e.g. Fig. 6.9). Additionally, sparse data sets (e.g. Fig. 4.7) required a different interpretation focusing on the identification of the primary determinants of the system behaviour.

A simultaneous optimisation approach was taken for the PEG and Herceptin-modified adenovirus. The model for this virus was optimised both to individual data sets and also simultaneously to the combined data for tumour growth (Fig. 6.2 and Fig. 6.3 respectively). Whilst the tumour growth rate and the initial number of tumour cells were relatively tightly distributed (due to the constraint of multiple data points) amongst the individual parameter fits (Table 6.1), the lysis rate and the viral decay had more variance (being constrained by fewer data points). More specifically, for the lysis rate of the infected tumour cells there is evidence of a bimodal distribution from the individual data set optimisations. This bimodal behaviour is not experiment specific, but instead appears to be an underlying bimodal response in the mice. Restricting this parameter to be common across all data sets in the simultaneous optimisation (Table 6.2) constrained the search space and determined which mode best represents the mean response under all experimental protocols.

Hierarchical fitting algorithms are useful when the processes differing between successive data sets are clear. An extensive hierarchical fitting approach was taken to tune the mean-field model for an oncolytic adenovirus expressing IL-12 and GM-CSF (without immature dendritic cell (DC) injections, Eqs. (7.1)-(7.7), and with immature DC injections, Eqs. (7.8)-(7.14)). Eleven time-series measurements from in vitro and in vivo experiments were combined for the optimisation process. The results suggest some underlying competition between the IL-12 and GM-CSF’s effectiveness on immune cell stimulation. Examining the parameter values in Table 7.2 shows a decrease in the rate of helper T cell activation, s_H, and an increase in the rate of antigen-presenting cell
(APC) activation, s_A, when both cytokines are being expressed. Mechanistically, this suggests that combining both cytokines reduces the number of T cells produced and increases the presence of APCs at the tumour site, indicating the existence of negative feedback.

To improve treatment with the adenovirus expressing IL-12 and GM-CSF, the virus was combined with a population of immature DCs. Hierarchically combining the previous virus-based experiments with the in vitro DC decay measurements, parameters for the stimulation of immature DCs by infected and uninfected tumour cells were estimated, see Table 7.6. From this work, the unknown release profile of the virus from the gel could then be obtained, see Fig. 7.14, demonstrating the effectiveness of this method in combining multiple data sets.

A two-tier hierarchical and simultaneous optimisation allowed the identification of the key differences in the actions of the gene-attenuated adenoviruses: Ad-wt, Ad-ΔE1B19, Ad-ΔE1B55 and Ad-ΔE1B1955. This method was employed to combat the sparse nature of the virus titer measurements, see Fig. 4.7. Firstly, the parameters affected by the cell type were separated. The viruses were then grouped based on the differences in their virus titer measurements with the replication rate as the main difference between subgroups. Simultaneous optimisations were used to obtain the overall parameters for the subgroups of the viruses, see Table 4.1. Parameter perturbations for each subgroup were then used to determine the defining process of each virus, see Figs. 4.8 and 4.9. This two-tier hierarchical optimisation approach enabled differences in related gene manipulations to be identified (summarised below).

DETERMINISTIC AND PROBABILISTIC MODELLING

There were limitations to each of the different modelling frameworks developed in this thesis. In the ODE systems, only well-mixed populations were considered and the ability of the virus to infect already infected tumour cells was ignored. This restriction was relaxed in the VCBM investigation and had a noticeably significant effect. For example, in the case of the delayed-infection virus, Fig. 8.16, it is clear that with multiple viral infections there is a reduction in the total number of extracellular viruses available to
infect uninfected cells. This finding could be fed back into future mean-field modelling. By comparing the models and results from the different scales and modelling bases, it is possible to make deductions about the sensitivity of biological extracellular interactions.

LOW SCALE MODELLING AND ITS BIOLOGICAL IMPACT

Modelling the intracellular dynamics of viral infection, replication and cell lysis has led to ways of improving viruses by attenuating their genetic material. The dominant processes for induced genetic mutations of an oncolytic adenoviruses were identified by a two-tier hierarchical optimisation of the integro-differential equation with distributed parameters to virus titer measurements. The $E1B_{55}$ gene primarily influences the replication rate of the virus with the deletion of this gene resulting in a significant reduction in the rate (Fig. 4.7b)). On top of this, the deletion of both the $E1B_{55}$ and $E1B_{19}$ genes resulted in a long delay in the average replication start time of the virus. The differences in the Ad-wt and Ad-ΔE1B19 virus populations (Fig. 4.9) indicated that deleting only the $E1B_{19}$ gene has an effect on the replication rate, a characteristic not previously hypothesised to be connected with this gene.

WHAT CAN BE INFERRED FROM PARAMETER PERTURBATIONS AND MODELLING CHOICES

It is widely known that humans are incredibly heterogeneous and everyone’s response to treatment is slightly different. The extracellular virus-cell interactions (such as virus infectivity) and the way they influence treatment outcome has been a major theme of this thesis. The parameter sensitivity analyses provided insight into which dynamics are the key drivers of interactions and how parameters, and therefore interactions, may be tuned to better improve treatment.

The juxtaposition of the two minimal models for the extracellular dynamics of viruses and tumour cells (Chapter 5), allows for a comparison of how the outcomes of
therapy change with different biological modelling assumptions. Assuming an exponential tumour growth rate and mass-action viral infectivity, a bifurcation analysis showed that oncolytic virotherapy is unable to eradicate the tumour, see Fig. 5.9. However, oscillations that appear like homoclinics emerge for certain regions in the parameter space, indicating a quasi-eradication or remission state is possible, see Fig. 5.13.

Extending this model to consider Gompertzian tumour growth and frequency-dependent virus infection, it was shown through a bifurcation analysis that tumour eradication can be achieved for viral characteristics that fit well with the growth rate of the tumour, see Fig. 5.17 (4) and 5.18. Interestingly, the model shows that therapies involving oncolytic viruses endowed with high potency do not universally constitute successful strategies for eradication. The model points to a number of interesting findings regarding the role of oscillations between a tumour and an oncolytic virus, specifically in the region of bistability, see Fig. 5.22. This shows that including either the Gompertzian tumour growth or frequency-dependent virus dynamics was able to introduce stability of the equilibrium at the origin.

Parameter regimes that result in tumour eradication were then investigated for the PEG and Herceptin-modified adenovirus (Chapter 6). A constrained parameter perturbation was used to explore the effects of the alteration of different characteristics of the treatment, see Fig. 6.5. The tumour characteristics were shown to have a profound effect on the efficacy of treatment, along with viral infectivity. Increasing the viral infectivity or decreasing the tumour replication rate reduce the tumour size most significantly. These results suggest that there may be ways of manipulating viral infectivity to achieve clinically realistic tumour eradication.

Interestingly, the efficacy of this PEG and Herceptin-modified treatment in the presence of the interferon-mediated antiviral cell-immunity and antitumour immune response is still driven by the viral infectivity rate (Fig. 6.11). This aligns with the intuition that increasing the infectivity increases initial cell death and subsequent antitumour immune response. Initial tumour size also influences the eventual tumour size only in the presence of the antitumour immune response. In the absence of this response, if the antiviral-immunity is present, this sensitivity is not present (comparing Figs. 6.5b and 6.12).
Further investigations into the immune sensitivity were made for an oncolytic adenovirus modified with IL-12 and GMCSF (Chapter 7). The results showed the existence of certain killer-T-cell-induced apoptosis rates for which this treatment is ineffective, see Fig. 7.6(c). For fast and slow killer T cell induced apoptosis rates, the tumour size was dramatically reduced around day 30. This demonstrates that this interaction and the time frame of the treatment can result in vastly different outcomes. Controlling the killer-T-cell-induced apoptosis rates could be achieved through the introduction of an experimental cancer treatment known as CTLA-4 blockades (Henson et al., 2008; Parry et al., 2005). Using the CTLA-4 blockade, researchers have shown that this treatment can enhance T cell cytotoxic responses and induce the differentiation of CD4 T cells (or helper T cells) (Leach et al., 1996).

The model for the adenovirus modified with IL-12 and GM-CSF also suggested that reducing APC stimulation and increasing helper T cell stimulation could possibly improve treatment, see Fig. 7.6(a) and (b). Researchers have suggested the possibility that chemical inhibition of the MAPK ERK pathway in DCs reduces the maturation of these APCs and therefore the stimulation rate (Liechtenstein et al., 2012; Puig-Kröger et al., 2001). This is one possible avenue of investigation that could be undertaken to test the results in Fig. 7.6(a). To increase the helper T cell activation, both cytokines IL-1 and IL-12 are known to heavily stimulate the differentiation of naive T cells (Macatonia et al., 1995; Liechtenstein et al., 2012). So to test the results seen in Fig. 7.6(b), an additional intravenous injection of IL-12 or IL-1 could be a possible way of increasing the stimulation rate of helper T cells.

Whilst the immune system can be an asset to oncolytic virotherapy, it can also be a hindrance. The rapid decay in the concentration of viral particles due to clearance by the immune system shortens the window of effectiveness for oncolytic virotherapy. To avoid this clearance, oncolytic viral particles can be modified to delay their infection for a specific period of time as investigated by the VCBM in Chapter 8.

Delaying the onset of viral infection within a tumour allows for further infiltration of the tumour bed, see Fig. 8.16. This modified treatment results in a reduced tumour population over time for circular and rectangular tumour shapes, see Fig. 8.17 and 8.18. This addition to therapy could prove to be a simple yet effective way to improve the
efficacy of oncolytic virotherapy for some tumour types. The suggested viral modification is worth investigating further and verifying experimentally as it could prove to be a better treatment protocol. These simulations illustrate both the usefulness of mathematical modelling and the importance of the extracellular dynamics, specifically viral clearance.

THE IMPACT OF THE TREATMENT DELIVERY SYSTEM

The development of an effective delivery system would further advance virotherapy and immunotherapy by maximising safety, efficacy and duration of transgene expression. In Chapters 5–8, alternative application protocols were investigated with two main categories: administration protocol (intravenous vs intratumoural) and dosage protocol (discrete versus continuous). The two possible administration protocols are investigated generally (Chapter 5 and 8) and for specific therapies (Chapters 6 and 7). Whilst these investigations above considered discrete dosing strategies, continuous delivery through the use of a gel-release mechanism was also considered (Chapter 7). From all these investigations, conclusions can be drawn about the influence of dosage protocol on the interactions. Overall, this thesis has used mathematics to illustrate ways that oncolytic virotherapy and immunotherapy may be improved through better viral application protocols.

Using the VCBM developed in Chapter 8 it was possible to find optimal intratumoural injection locations as a function of tumour shape. The injection site configuration was shown to play a significant role in the overall treatment outcome, see Figs. 8.13–8.15. The distance between intratumoural injections and their corresponding distances to the centre of the tumour had a significant effect on the overall treatment outcome for circular tumours, see Fig. 8.13. When the three injections reside at the same location, the resulting tumour burden was quite high, irrespective of the distances from the injections to the centre of the tumour. Whereas, if the injections were given at a reasonable distance apart, the treatment reduced the tumour size significantly. Furthermore, in this scenario, the further the injections were from the tumour centre, the more
effective the treatment. This suggests that intratumoural injections should be given far from the tumour centre and distant from each other.

The sensitivity of the injection protocol was also considered for a rectangular tumour shape and an invasive tumour shape, see Fig. 8.13 and 8.14. In the case of a rectangular tumour, the model predicated that injections at either end of the tumour would be considerably more effective that injections in the centre or above and below the tumour. For an invasive tumour shape, it was shown in Fig. 8.15 that the most successful treatment outcome is obtained when the treatment is administered at the periphery as opposed to the invasive spines. Also the multitude of injections significantly affected the outcome. When ten injections were given at the periphery of the tumour, the treatment did considerably better than when three injections were given at the periphery. Additionally, comparing this to one single intratumoural injection, in every case this fared the worst out of all the possible injection combinations.

Discrete injections of oncolytic virus can result in vastly different outcomes depending on the state of the virus-tumour interaction. The existence of a bistable region in the extracellular virus-tumour interaction resulted in different initial viral loads causing vastly different outcomes, often in a counter-intuitive way (see Fig. 5.22). If the initial tumour size is small, full eradication can only be achieved if the dose is either sufficiently low or sufficiently high. Small viral loads are effective because they first allow the tumour to growth to larger sizes, thus eliciting stronger viral responses. In addition, this result indicates that if subsequent injections are given too quickly, the system can be pushed into a dormant tumour regime, whereas if only a single initial dose was administered the tumour could have been eradicated. The modelling could then be used to design experiments to investigate this positive effect of low viral doses. The initial results of this model also indicate the need to extend the system to include the dynamics of virus penetration and diffusion which certainly play a fundamental role in the success of virotherapy.

Not only can additional injections perturb a trajectory that may have resulted in full eradication into a dormant state, but as shown for oscillations in Fig. 5.21 they can have a transient, often negative effect on the whole system. If additional dosages are administered when the system resides on a stable oscillating state, these injections, de-
pending on when in the cycle are provided, tend to increase the amplitude of few cycles of oscillations before the system goes back to its original fluctuations with no ability to drive the model out of this phase, see Fig. 5.21. Strategies that instead optimise the quality of the oncolytic virus or reduce the tumour growth rate are preferable as oscillations can be reduced or damped to zero either by increasing the speed of infected cell death or the life span of virus at the right amount or suppressing tumour growth, see Fig. 5.18. In this sense, rather than complex injection schedules or larger amounts of externally provided virus, the model suggests that pharmacological interventions that aim at blocking or reducing the growth of the tumour would be most effective.

Experimental studies can only explore a finite number of strategies, and using the parameters optimised for the PEG and Herceptin-modified virus, the effects of increasing the viral dose and dosage protocol were demonstrated (Fig. 6.6). In the absence of negative effects of viral overload, it would seem from Fig. 6.6(b) that the best strategy for fast-tumour eradication would be a single, very high dose injection. Realistically, however, the choice of treatment strategy will depend on interplay between dosage size and eradication half-time.

Comparing the high dose single injection to application protocols with ten days between injections, it is clear that much lower viral doses are required to reach finite eradication half-times. Increasing the days between injections can lessen the dose required to reach eradication, and this trend appears insensitive to the number of injections. Overall, application protocols with two injections appear to provide good combinations of lower doses and reasonably short eradication half-times. The analysis shows that limiting and reducing tumour size and growth is a possibility under the current or slightly modified treatment regime. Shrinkage and then surgical removal may be a possible treatment design utilising oncolytic viruses and may be less detrimental than chemotherapy.

Moving from discrete to continuous treatment administrations, hydrogels are an effective way of providing a long-term continuous local treatment. A full numerical simulation of the possible dosage protocols for a gel loaded with DCs and adenovirus expressing IL-12 and GM-CSf was investigated in Chapter 7. Through an exhaustive
numerical search using the optimised model for the IL-12 and GM-CSF-expressing adenovirus combined with DC injections, it was possible to determine constant, linear and sigmoidal gel-release profiles that would significantly reduce the tumour population. In essence, the optimal constant gel-release (Fig. 7.15) and increasing linear gel-release (Fig. 7.19) profiles occur when DCs are released for a shorter period of time than viruses. The idea of manufacturing a gel that released its contents at type-specific rates such as this, does not appear to have been considered previously. The analysis in Chapter 7 indicated this would make a significant impact on the efficacy of treatment.

Overall, the results around the treatment administration protocol provided insight into the significance of the extracellular dynamics. Vastly different outcomes are seen when mean-field modelling compared to agent-based modelling are used to simulate discrete dosage protocols (Fig. 5.22, 6.6 and 8.13). For certain parameter regimes of the mean-field models, it is possible to achieve tumour eradication either in the regions of bistability (Fig. 5.22) or for a high enough initial dosage (Fig. 6.6). However, eradication appears not to be possible in the VCBM (Fig. 8.13). This shows that modelling the extracellular processes and the manner in which they are simulated can be crucial to predicting the outcome of tumour eradication.

Significance of the Research

To significantly improve the prognosis of cancer treatments, there is a need for more multidisciplinary collaborations. The range of stochastic and deterministic mathematical models and analysis techniques developed in this thesis are applicable in future oncolytic virotherapy and immunotherapy studies. A large majority of the work is also translatable to other novel cancer therapies that need further analysis with regards to intracellular or extracellular dynamics. Through the treatment studies presented, a range of data-fitting techniques have been applied and the relative advantages and applicability explored. This thesis has suggested a range of treatment improvements that would significantly change the face of oncolytic virotherapy. With future collaborations and mathematical analysis, it may be possible to advance these results and determine a range of effective anti-cancer treatments.
Cancer and cancer treatment presents a highly complex, multidisciplinary problem and with the help of mathematical modelling, new effective ways of treating this disease can be devised. This thesis aimed to improve the efficacy of oncolytic virotherapy and immunotherapy using a range of mathematical techniques. The mathematical models were created to embody the processes underlying the dynamic interactions between cancer cells, normal tissue, the different treatment vectors and immune system. They were tuned to accurately reflect the biological system using multiple in vitro and in vivo experimental measurements from a range of different oncolytic virotherapies and immunotherapies. These models then provided both quantitative and qualitative insight into the virus-tumour interplay, the application protocols and the efficacy of the treatments. The results indicate that the key features of viral infectivity and therapy administration protocol are the primary determinants of the outcome of the therapy.

Drawing on both deterministic and stochastic modelling, it has been possible to develop a useful representation of the biological interaction between an oncolytic virus, the immune system and cancer. The mathematics has provided insight into the fundamental questions about the effects of gene-attenuation on an oncolytic adenovirus, and identified the specific processes that particular mutations alter in the virus-cancer dynamics. In turn, through modelling the antiviral-mediated cell-immunity, it has been possible to deduce the role refractory sub-populations of tumour cells play in therapy outcome.

A core theme through the studies in this thesis is that both viral infectivity and therapy administration protocols are key to improving the tumour eradication ability of oncolytic viral vectors. The bifurcation analyses showed that regions of bistability result in a highly sensitive outcome to the application protocol. These results were seen most significantly in the case of gel-release therapy, where it was clear that altering the gel-release rate could improve the therapy to the point of complete tumour eradication. The inclusion of spatial heterogeneity also indicated the effect of the treatment administration geometry on the optimal treatment results.

This thesis has identified key tunable features of both the virus and application protocols that improve treatment outcomes for a range of different virotherapies. In this work, it was shown how different mechanistic ways of modelling extracellular
and intracellular interactions may influence the outcome of therapy. The scale of the effects of the extracellular interactions were then clear. The studies have identified that extracellular interactions are a major determinant of the success or failure of cancer therapy.

Mathematical modelling has been shown to be a highly effective tool for improving oncolytic virotherapy and providing insight into the mysteries surrounding the cancer-virus interaction. The modelling work in this thesis has provided a range of useful and malleable models that can be used both for the specific engineered viruses modelled and also as a methodology for other therapies. Future extensions of the work in this thesis, and applications of it to other therapies, will help to further cancer research and hopefully bring us one step closer to a cure.

The mathematical and biological techniques and insight in this thesis provide a platform for further work. In this section, an overview of some possible future directions is provided. This is then followed by a preliminary investigation that complements the work in the previous chapters of this thesis.

10.1 Overview of Future Directions

The heterogeneous intracellular viral replication process was investigated in this thesis using a minimal integro-differential model (Eq. (4.1)). The model developed is not specific to oncolytic virotherapy, and could be used to understand the heterogeneity in the intracellular processes of a wide range of viruses, such as HIV. The ability of the model to capture the virus titer dynamics suggests that future modelling of oncolytic viruses should consider the stochasticity induced by cellular heterogeneity. A logical extension of the model is to include the extracellular dynamics examined in the other chapters.

A simplifying assumption of the model in Eq. (4.1) was that the multiplicity of infection (MOI) (i.e. the number of viruses entering a single cell) can be approximated by an average replication rate. D’Halluin and Milleville (1984) demonstrated that the MOI does actually influence the rate of synthesis of viral DNA during production. It
is, therefore, worth adding this assumption for the multiplicity of infection into the model, to determine its effect on the virus titer.

Surface modification of an oncolytic virus, for example PEG-modification and Herceptin conjugation (Chapter 6), poses a problem in treatment optimisation: any virus produced via replication within a tumour cell will lose surface modification after one replication. This transformation was not explicitly modelled in Eqs. (6.1)-(6.4). A future extension could investigate how different decay rates for the coated and non-coated viruses influences the model dynamics. Additionally, it would be worth re-investigating the dosage protocol to determine whether the loss of surface modification influences the results of Fig. 6.6 i.e. a large single dosage performs best.

The viral time-series measurements for the PEG-modified adenovirus were noticeably different compared to the measurements for the unmodified adenovirus, and the PEG and Herceptin modified adenovirus, see Fig. 6.7. The standard model assumption of biexponential decay was unable to capture the behaviour of the PEG-modified adenovirus as there appears to be two clear phases to this viruses decay. An interesting extension would be to determine what mechanism governs this virus’s clearance and how it might effect the treatment’s efficacy.

A natural extension of the gel-release profile investigations (Section 7.4) is to analyse this system using techniques from optimal control theory. Optimal gel-release profiles to reduce the size of the tumour could then be determined computationally. Also of note is the difference in the tumour growth under a single PBS or empty gel injection (Fig. 7.12). Future work should examine the possibility of the gel having an effect on the underlying tumour growth. Subsequently, the gel-release profile should be optimised taking this effect into account.

The Voronoi cell-based model (VCBM) (Chapter 8) could be used to investigate other oncolytic viruses. For example, oncolytic viruses expressing relaxin (a hormone which breaks down the extracellular matrix) are becoming more popular as a treatment for solid tumours (Kim et al., 2006b). Using the VCBM, the effects of relaxin on virus spread and infectivity could be investigated by changing the cell-cell spring dynamics, or changing the stability parameter of the stable distribution of viral movement waiting times (see Fig. 8.4). The VCBM could also be broadened to a three-dimensional
framework, allowing for other tumour characteristics to be included, such as vascularisation and necrosis. This extension would, however, increase the computational cost, as both the number of cells and time period over which they require simulation would be much larger than the current investigation.

Above, are just a few of the possible future directions and extensions from the research in this thesis. The following section details a preliminary investigation that was inspired by the work in this thesis. An agent-based modelling platform known as PhysiCell (Ghaffarizadeh et al., 2018), was used to model an oncolytic adenovirus expressing secretable tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). Drawing on the work in the preceding chapters, models for the intracellular and extracellular dynamics of this oncolytic virus were developed. The model was then used to investigate the influence of intravenous injections and TRAIL production, providing insight into an unexplored biological mechanism. A succinct overview of the model is provided below with specific details of the PhysiCell setup and model implementation given in Appendix C and D respectively.

10.2 A PRELIMINARY INVESTIGATION INTO THE INFLUENCE OF VIRAL-INDUCED TRAIL RELEASE KINETICS: A PHYSICELL REALISATION

Figure 10.1: Subset of Fig 1.1 summarising the investigation of the virus-tumour interaction in this section
Glioblastoma is an aggressive and malignant form of brain cancer. Most glioblastomas develop from normal glial cells (such as astrocytes which support nerve cells) by multistep tumourigenesis \cite{Urbanska2014}. The tumours are characterised by infiltrating growth, making them difficult to distinguish from normal tissue \cite{Urbanska2014}. Glioblastomas are difficult to cure with conventional cancer therapies \cite{Oh2018}. Some of this difficulty can be attributed to tumour cells failing to undergo apoptosis. Research has thus begun to focus on triggering apoptosis in glioblastoma cells via alternative routes \cite{Hawkins2004}. A wide variety of apoptosis-inducing molecules have been identified as possible alternative apoptosis triggers \cite{Kim2006a}. The best characterised are the ligand-type cytokine molecules of the tumour necrosis factor (TNF) family. Binding of TRAIL to the receptors of glioblastoma cancer cells has been shown to effectively trigger the apoptosis pathway \cite{Kim2006a,Hawkins2004}. In addition, TRAIL has negligible effects on normal cells making it an excellent addition to glioblastoma therapy \cite{Hawkins2004}.

While TRAIL has shown potent and cancer-selective killing activity, concerns over delivery and toxicity have limited clinical progress \cite{Jeong2009}. As such, researchers have been investigating using an oncolytic adenovirus as a delivery vector \cite{Kim2006a,Jeong2009,Oh2018}. To evaluate the therapeutic potential of TRAIL-based virotherapy in brain tumours, \cite{Kim2006a} engineered a replication-incompetent adenovirus ri-Ad-stTRAIL to deliver the gene that encodes secretable trimeric TRAIL. The ri-Ad-stTRAIL virus was designed to induce the secretion of TRAIL in virus-infected cells, leading to apoptosis in uninfected neighbouring tumour cells. \cite{Kim2006a} showed that the ri-Ad-stTRAIL effectively decreased cell viability (Section 2.5.2) to 42% by day 3. They also showed that ri-Ad-stTRAIL treatment of U-87MG glioblastoma murine tumours suppressed and controlled tumour growth for the first 20 days, after which the tumour grew back.

To improve the effectiveness of the adenovirus-TRAIL therapy, \cite{Oh2018} developed a replication-competent oncolytic adenovirus expressing secretable TRAIL (Ad-stTRAIL). They investigated the efficacy of this virus on U-87MG glioblastoma tumours in vivo and showed that the cancer cell-killing effects were markedly higher.
with the expression of secretable TRAIL. Unfortunately, the treatment was unable to completely eradicate the tumour, similar to the results of [Kim et al. (2006a)]

Oh et al. (2018) found that Ad-stTRAIL yielded a more extensive viral distribution within tumour tissue than just the replication-competent adenovirus alone. They suggested that this phenomenon could be mediated by neighbouring cell spread using apoptotic bodies or cell death causing voids that influence treatment spread. Oh et al. (2018) noted that the complex nature of the tumour microenvironment, such as the network of blood vessels, is also a critical limiting factor of the spread of virus within the tissue. In this section, a preliminary and introductory investigation is conducted into the possible causes of treatment failure. Additionally, the dependence of the treatment efficacy on the TRAIL-release mechanisms is explored.

10.2.1 Model development

While the Voronoi cell-based model (VCBM) developed in Chapter 8 was helpful in determining the dependence of treatment outcome on tumour shape, to understand the effects of TRAIL secretion and intravenous injections, a smaller scale tissue off-lattice agent-based model (ABM) is needed. To create this ABM, the open source multicellular system simulator PhysiCell is used (Ghaffarizadeh et al. 2018). In the model, viruses are modelled as a continuously diffusing population that interacts with glioblastoma cells. The model’s evolution is driven by the biological assumptions detailed below for the vein cell characteristics, glioblastoma cell characteristics and virus model.

10.2.1.1 Vein cell characteristics

Tumour vasculature can play a major role in tumour growth and therapeutic efficacy (Section 2.2.2). In this work, static vein cells are established to simulate the influence of the vasculature on tumour tissue formation and treatment delivery. These vein cells put force on the surrounding proliferating tumour cells, but are unable to move or proliferate. Normally cells that create blood vessels and line the veins, such as endothelial cells, are highly proliferative in the tumour microenvironment (Section 2.2.2). How-
ever, it is assumed that these cells are static as the core function of the vein cells is to simulate the arrival of intravenously injected treatment.

To reduce the computational time of the simulations, a 2-dimensional framework was chosen for the simulations. Since this limits the possible geometry of the vascular system, two vein shapes were considered: triangular and circular, see Fig. 10.2. These shapes are chosen based on a roughly conical tumour vasculature. Initially, all cells were placed in a hexagonal pattern. Cells were then designated either vein cells or glioblastoma cells based on whether they were in the region chosen to be a vein or not.

Figure 10.2: Illustration of the two vasculature cross sections considered for the simulations in this chapter.

10.2.1.2 **Glioblastoma characteristics**

Glioblastomas are incredibly heterogeneous tumours, made up of a range of different glial cells (Inda et al., 2014). For the purpose of this work, glioblastoma heterogeneity is not considered to play a major role in TRAIL-mediated apoptosis or viral-induced lysis (Kim et al., 2006a). As such, only a single homogeneous population of glioblastoma cells is considered. These cells proliferate rapidly to form a crowded disorganised tissue layer that reflects a typical section of a glioblastoma. To investigate the efficacy of the oncolytic adenovirus expressing secretable TRAIL on tumour growth at the cell level, only a small section of tumour tissue is modelled.
10.2 THE INFLUENCE OF VIRAL-INDUCED TRAIL RELEASE KINETICS

In Chapter 8, the quiescent cell population and the influence of nutrient diffusion was investigated in detail see Fig. 8.11, 8.12. For now, only a section of tumour tissue is considered and the influence of nutrient presence on the growth of tumour cells is assumed to be uniform across the 2-D cross-section. Future extensions of this preliminary work could investigate this on a larger scale. Additionally, since the virus is not modified to express immunostimulatory cytokines, the effects of immune cells are not considered. The initial setup of the vein and glioblastoma cells can be seen in Fig. 10.3.

Figure 10.3: Initial setup of vein and glioblastoma cells. Glioblastoma cells are coloured pink and vein cells are coloured brown. (a) is an example of the circular vein cross section and (b) the triangular vein cross section.

10.2.1.3 Adenovirus expressing secretable TRAIL model

Similar to the work in Chapters 5, 8 Ad-TRAIL virus particles infect glioblastoma cells, replicate inside them, and then lyse the infected cells. To investigate whether the intracellular replication of the virus influences the TRAIL-based virotherapy, intracellular virus replication is explicitly modelled. Intracellular virus particles start replicating only after enough particles have infected the cell. This results in a delay in the start of virus replication similar to that considered in Chapter 4 see Fig. 4.3. This also allows for some stochasticity in the start time of replication amongst the infect cell popula-
tion. The likelihood of lysis occurring is a function of the number of intracellular virus particles, resulting in a similar dynamic to Fig. 4.3

During replication of the TRAIL-expressing virus, the cell creates new TRAIL molecules, see Fig. 2.3. These molecules are secreted into the microenvironment by the virus-infected cell and induce apoptosis in uninfected tumour cells. This occurs by TRAIL binding to the receptors on the cell surface and signalling the apoptosis cascade. TRAIL can induce apoptosis in infected cells, but for the number of cells modelled, this is not considered significant. Fig. 10.4 is a schematic for the TRAIL-expressing adenovirus infection life-cycle.

![Diagram of TRAIL-expressing adenovirus infection life-cycle](image)

Figure 10.4: Life cycle of oncolytic adenovirus expressing secretable TRAIL. Virus particles infect uninfected cells. Once inside a cell, virus particles undergo replication for a period of time creating both new viruses and TRAIL molecules. Eventually the cell lyses, causing it to die and the viral progeny and TRAIL are released. TRAIL then kills uninfected tumour cells through apoptosis.
10.2 THE INFLUENCE OF VIRAL-INDUCED TRAIL RELEASE KINETICS

10.2.2 Preliminary results: proposing reasons for TRAIL-secreting virotherapy failure

After treatment with an oncolytic adenovirus expressing secretable TRAIL, both Kim et al. (2006a) and Oh et al. (2018) saw a regrowth in the tumour. In this section, initial investigations are conducted into the possible mechanisms inhibiting treatment efficacy at a tissue level. The influence of the TRAIL secretion start time and secretion rate on tumour tissue are simulated. Perturbations of different parameters is also used to further understand the failing regimes of this treatment. The results in this section illustrate the usefulness of the chosen modelling framework and motivate the need for future, more extensive, investigations. The model used in this section is detailed extensively in Appendix C and D. The PhysiCell setup for virus and TRAIL diffusion along with cell movement and proliferation is given in Appendix C. The models developed for virus replication, TRAIL creation and cell apoptosis from either viruses or TRAIL particles is all detailed in Appendix D.

10.2.2.1 Influence of TRAIL release mechanism on treatment dissemination

There are two variable characteristics in the model for TRAIL release (Eq. (D.7)): the length of time cells wait after replication has started before they begin secreting TRAIL \(s_\tau \), and the rate TRAIL is secreted from the cell \(s_T \). These characteristics control whether TRAIL is primarily released during replication or when the cell lyses (which occurs \(\delta \) minutes after infection), see Fig. 10.5. To investigate the influence of the TRAIL release mechanism, the number of tumour cells over 4 days is plotted in Fig. 10.6 for variations in \(s_T \) and \(s_\tau \). The remaining parameter values were taken from Table D.1, where the choice of each parameter has also been given in Appendix section D.1.0.4.

Since the virus arrives in the tumour tissue through the veins, the analysis was conducted for triangular Fig. 10.6(a) and circular Fig. 10.6(b) vein cross sections. A similar trend is observed in the case of circular vein cross sections, where a slower TRAIL secretion rate, improves the treatment most significantly. The geometry of the vein appears to play an important role in the diffusive spread of the virus, where it is clear that multiple small circular veins allow for treatment to spread more effectively than triangular veins. In Fig. 10.7 and 10.8 are simulations with the triangular veins
and in Fig. 10.9 and 10.10 are the corresponding simulations for the circular veins. In these figures the vein cells, uninfected and infected cells and dead cells are denoted in Fig. 10.7 and Fig. 10.9 and the density of TRAIL and the virus are given in Fig. 10.8 and Fig. 10.10.

In Fig. 10.6 there are clearly two very different dynamics depending on the secretion rate and release time of TRAIL. In the case of triangular vein cross sections, treatment performs best when $s_T = 0.0001$ and $s_\tau = 500$. This is most likely due to the virus spreading further throughout the tissue before the initial onset of TRAIL induced apoptosis. This can be seen by comparing the simulations for $s_T = 0.1$ and $s_\tau = 500$ in Fig. D.6 and D.7, $s_\tau = 500$ in Fig. 10.7 and 10.8, to the simulations for $s_T = 0.0001$ and . Decreasing the secretion rate, appears to allow for more cells to become infected over time.

![Cell lysis](a) ![Cell lysis](b)

Figure 10.5: Examples of the different TRAIL secretion dynamics that occur with perturbations in s_τ and s_T. (a) TRAIL molecules created through replicated are secreted primarily at time of cell lysis $s_T \approx 0, s_\tau \approx \delta$. (b) TRAIL molecules are secreted whilst the virus is infected $s_T > 0, s_\tau << \delta$.
Figure 10.6: Number of tumour cells over 4 days for perturbations in s_T and s_τ for (a) triangular and (b) circular vein cross sections. Since this is just an initial investigation, a range of different values for s_T and s_τ were chosen that exhibited different dynamics. The remaining parameter values were taken from Tables D.1 and D.2.
10.2 The Influence of Viral-Induced Trail Release Kinetics

Figure 10.7: Simulation for virus infection in a layer of tissue with triangle veins at (a) 60 mins, (b) 1440 mins (1 day) and (c) 2880 mins (2 days). Parameters were fixed to the values in Table D.1 and D.2 with $s_T = 0.0001$ and $s_T = 500$. Red cells represent vein cells, these cells secrete virus that infects tissue cells, which are pink cells. Once a cell becomes infected it is coloured purple, with the darker the shade corresponding to the more virus in the cell. The infected cells die turning a pale yellow and eventually disappearing. The remaining parameter values were taken from Tables D.1 and D.2.
Figure 10.8: Contour plots for the density of virus ((a), (c) and (e)) and TRAIL ((b), (d) and (f)) at 60 mins, 1440 mins (1 day) and 2880 mins (2 days). These plots correspond to the simulations in Fig. 10.7.
10.2 The Influence of Viral-Induced Trail Release Kinetics

Figure 10.9: Simulation for virus infection in a layer of tissue with circular veins at (a) 60 mins, (b) 1440 mins (1 day) and (c) 2880 mins (2 days). Parameters were fixed to the values in Table D.1 and D.2 with $s_T = 0.0001$ and $s_T = 500$. Red cells represent vein cells, these cells secrete virus that infects tissue cells, which are pink cells. Once a cell becomes infected it is coloured purple, with the darker the shade corresponding to the more virus in the cell. The infected cells die turning a pale yellow and eventually disappearing. The remaining parameter values were taken from Tables D.1 and D.2.
Figure 10.10: Contour plots for the density of virus ((a), (c) and (e)) and TRAIL ((b), (d) and (f)) at 60 mins, 1440 mins (1 day) and 2880 mins (2 days). These plots correspond to the simulations in Fig. 10.9.
10.2.2.2 Initial parameter sensitivity analysis

To start to investigate how the treatment’s efficacy may depend on other mechanisms, the number of tumour cells has been plotted for different values of the virus diffusion coefficient D_V, the cell uptake rate of virus c_I and the replication rate of TRAIL in the cell c_R, see Fig. 10.11. Specific increases or decreases of these parameters were chosen based on their qualitative impact they had in the model behaviour. Only one parameter was perturbed at a time and the remaining parameters were fixed to the values in Tables D.1 and D.2. The values of s_T and s_τ were fixed to $s_T = 0.1$ and $s_\tau = 500$. They were chosen such that the original simulation predicted tumour cell population increase.

![Graph showing tumour cell number in triangular vein cross section model with parameter perturbations in D_V, c_I and c_R (detailed by the legend). The remaining parameters were fixed to the values presented in Table D.1 and D.2 with $s_T = 0.1$ and $s_\tau = 500$.]

Figure 10.11: Tumour cell number in triangular vein cross section model with parameter perturbations in D_V, c_I and c_R (detailed by the legend). The remaining parameters were fixed to the values presented in Table D.1 and D.2 with $s_T = 0.1$ and $s_\tau = 500$.

10.2.3 Summary and discussion of initial investigation

TRAIL-based virotherapies hold significant promise as an effective treatment for glioblastoma. Currently, the treatment is unable to completely eradicate the tumour. Combining intracellular and extracellular modelling from previous chapters, a PhysiCell based model was developed as a platform to investigate the reasons for treatment
The influence of viral-induced trail release kinetics failure. Perturbations in the TRAIL release mechanism were shown to influence the dissemination and tumour suppression. An initial parameter sensitivity analysis also predicted parameter regions where success was unobtainable.

The influence of the TRAIL release mechanism can clearly be seen in Fig. 10.6 where the tumour cell population number was plotted as a function of the rate at which cells secrete TRAIL, \(s_T \), and the delay from the start of TRAIL creation to TRAIL release \(s_\tau \). It is clear that treatment efficacy depends on the secretion rate of TRAIL. Decreasing the secretion rate significantly decreases the tumour cell population for triangular and circular vein cross sections. This implies that a slower release of TRAIL allows for further treatment spread and tumour cell killing than one large burst at the time of cell lysis. Biologically, this is most likely due to the competition of TRAIL and virus particles for the same uninfect ed cell population.

Initially, the difference between fast and slow TRAIL release rates is not significant in the spatial time-evolution of the model (Fig. 10.7 and D.6 respectively). It is only at 2 days, that these simulations show qualitatively different dynamics. The infiltration of the virus infection into the tumour tissue is clearly more extensive in the case of the slower TRAIL secretion D.6(c). This suggests that rapid release of TRAIL from infected cells decreases the neighbouring tumour cell population and results in reduced subsequent viral infections.

The ‘cross-talk’ between cells and the microenvironment can play a significant role in the delivery of viral treatment to the tissue. Oh et al. (2018) noted that the blood vessels can function as a limiting factor towards the TRAIL-based virotherapy. As such, the PhysiCell model was simulation for different shaped veins (triangular and circular), see Fig. 10.2.

The tumour cell population responds very differently to treatment arriving through triangular vein cross sections compared to circular vein cross sections, see Fig. 10.6. The triangular shaped veins resulted in a weaker initial outward propagation of the infection region compared to circular veins (Fig. D.6(b) versus D.8(b)). However, as the area of the infected region is smaller, this results in a prolonged effectiveness of the treatment (Fig. D.6(c) versus D.8(c)). This behaviour is most likely an artefact of the assumption that each vein cell starts with an equivalent initial amount of virus that it
then secretes. Biologically, this is reasonable as veins within the tumour are extremely permeable and wider sections of veins would have an increased likelihood of virus particle extravasation (Section 2.2.2). The fact that the shape of the vein seems to have a significant impact on the outcome of the simulations (Fig. 10.6) suggests that further investigation on vein shape is needed.

To begin to explore whether there are other mechanisms that improve TRAIL-based virotherapy treatment, the tumour cell population was simulated for different parameters values, see Fig. 10.11. The TRAIL release mechanism parameters s_T and s_τ were fixed to values that resulted in tumour cell population growth for triangular vein cross sections. Simulations of perturbations in parameter values for the triangular vein cross sections, then showed that it is difficult to improve the treatment efficacy. One interesting result from the simulation in Fig. 10.11, was that reducing the replication rate of TRAIL, was able to stabilise tumour growth.

Increasing the diffusion coefficient for the virus, D_V, had no significant influence on the effectiveness of the therapy. This is likely due to the fact that the secretion rate of TRAIL s_T was high, so TRAIL was still able to infect and kill the neighbouring rim of cells, which was enough to inhibit treatment propagation. Increasing the cells uptake rate of the virus, c_I, initially decreased the tumour cell population by creating more infected cells. However, this in turn increased the number of cells secreting TRAIL and resulted in the tumour cell population increasing significantly.

Interesting behaviour in the tumour cell population was observed with perturbations in the rate TRAIL molecules are created in the cell, c_R, (Fig. 10.11). Decreasing c_R results in a stabilising of the tumour cell number. This suggests that if less TRAIL is created, then the TRAIL molecules and virus particles are able to stabilise the tumour growth. Whereas, increasing the rate of TRAIL generation, is able to significantly reduce the tumour cell number. So if more TRAIL molecules are created, the treatment can be just as effective as if the TRAIL molecules are secreted slower (Fig. 10.6). Overall, Fig. 10.11 suggests that a more extensive parameter sensitivity analysis of the model needs to be conducted so as to truly understand the dynamics.

As this is a preliminary study, there are limitations to the modelling platform and the reliability of the results discussed. The next step of this investigation will be to use
data from the experiments of [Kim et al. (2006a), Jeong et al. (2009) and Oh et al. (2018)] to inform the parameters in the model that were estimated, see Table D.1 and D.2. To investigate the initial results in Fig. 10.6 and 10.11, the model will be simulated with a set of parameters from a Latin hypercube sampling of the parameter space. This will help to determine whether the treatment outcome depends on the secretion rate of TRAIL, or whether the dynamics in Fig. 10.6 were a result of stochastic fluctuations in the model. Additionally, the defining features of glioblastoma tumours, such as heterogeneous spatial growth and large regions of hypoxia, have not been included in the model and need to be considered.

Preliminary investigations into an oncolytic virus engineered to stimulate the production of TRAIL has further demonstrated the utility of the mathematical frameworks developed in this thesis. While still at an elementary stage, the work in this section is a good representation of the future of mathematical modelling in oncolytic virotherapy.
The expectation for the total number of viral particles produced from a population of cells over time (Eq. (4.1)) is derived using results from probability theory. The theory behind the derivation is reviewed below, followed by a derivation of the model using the Law of Total Probability and a derivation of the model using the Jacobian matrix transformation.

A.1 Probability Theory Background

The time at which an individual virus particle starts replicating and the length of time it replicates are random variables. The expected value of a random variable is the long-run average value of repetitions of the experiment it represents. An event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. Two events are dependent if the outcome or occurrence of the first affects the outcome or occurrence of the second so that the probability is changed. The events of viral start time, τ, and length of time replicating, l, are therefore independent, but the viral start time and end time, δ, are dependent. In other words, τ and l are independent events and τ and δ are dependent events, since $\delta = \tau + l$.

When considering the probability of multiple events occurring, a joint probability density function can be useful. The joint probability density function (joint pdf) is a function used to characterize the probability distribution of a continuous random vector. It is a multivariate generalization of the probability density function (pdf) (which characterizes the distribution of a continuous random variable). Given random variables X, Y, that are defined on a probability space, the joint probability distribution for X, Y, is a probability distribution that gives the probability that each of X, Y, falls in any particular range or discrete set of values specified for that variable (DeGroot and Schervish, 2012; Park and Park, 2018), i.e.:

$$f_{X,Y}(x,y) = P(X \leq x, Y \leq y)$$

The joint probability distribution can be expressed either in terms of a joint cumulative distribution function or in terms of a joint probability density function (in the
case of continuous variables). The joint probability density function $f_{X,Y}(x,y)$ for two continuous random variables is equal to:

$$f_{X,Y}(x,y) = f_{Y|X}(y,x)f_X(x) = f_{X|Y}(x|y)f_Y(y)$$

where $f_{Y|X}(y,x)$ and $f_{X|Y}(x|y)$ are the conditional distributions of Y given $X = x$, and of X given $Y = y$ respectively, and $f_X(x)$ and $f_Y(y)$ are the marginal distributions for X and Y respectively (DeGroot and Schervish, 2012; Park and Park, 2018).

The derivation of the model in Eq. (4.1) is presented in two ways (Section A.2.1 and A.2.2). The first uses the law of total probability and the second uses the Jacobian matrix transformation. The law of total probability states that the probability of X, Y being in the region B, i.e. $P((X,Y) \in B)$ can be written as:

$$P((X,Y) \in B) = \int \int_B f_{X,Y}(x,y)\,dx\,dy,$$

$$= \int P((X,Y) \in B|Y = y)f_Y(y)\,dy,$$

where $f_{X,Y}(x,y)$ is the joint density function for X,Y (DeGroot and Schervish, 2012; Zwillinger and Kokoska, 2000). The logic behind the law of total probability is that if $Y = y$ is fixed, then the probability of X,Y being in the region is calculated for all possibly X,Y values by multiplying by the marginal probability distribution $f_Y(y)$ and integrating over all possible values of Y. A schematic illustrating the concept of the joint density function and how it is obtained by integrating over this function, is given in Fig. A.1 Therefore, the probability of $(X,Y) \in B$ is equivalent to calculating the area under the surface $f_{X,Y}(x,y)$ on the set B, i.e.:

$$\int \int_B f_{X,Y}(x,y)\,dx\,dy$$

The second theory used to derive the model is the Jacobian matrix transformation. That is, if the random vector (X,Y) has PDF $f_{X,Y}(x,y)$ then $g(X,Y)$ has PDF:
A.2 The setup and derivation for eq. (4.1)

Consider an initial number of cells \(C_0 \), each containing a single virus particle. Virus particles start replicating at time \(\tau \) which is a random variable drawn from the distribution \(f_\tau(x) \). Virus particles stop replicating after they have replicated for a length of time \(l \) (i.e. at time \(\tau + l \)) which is another random variable drawn from the distribution \(f_l(x) \) (whose parameters are not necessarily the same as those of \(f_\tau(x) \)). Calculating the expected proportion of cells \(C(t) \) that have virus particles replicating within them at time \(t \) is equivalent to finding the probability of the event \(t \) occurring after time \(\tau \) and before time \(\tau + l \), i.e. the region:

\[
A = \{ t > \tau \} \cap \{ t < \tau + l \}.
\]
Integrating the joint density function \(f_{\tau, \tau+l}(x, y) \) of the random variables \(\tau \) and \(l \), over the region \(A \) can determine the probability for a particle being at \(t > \tau \) and \(t < \tau + l \), i.e. that a virus is replicating. There are two ways to derive this probability, both of which are outlined below. The first method uses the law of total probability and the second uses a Jacobian transformation.

A.2.1 Law of total probability model derivation

The expression for the joint density function \(f_{\tau, \tau+l} \) can be derived using the law of total probability. The probability that \(t > \tau \) and \(t < \tau + l \) is equivalent to writing:

\[
P(\{\tau < t\} \cap \{t < \tau + l\}) = \int_0^{\infty} P(\{\tau < t\} \cap \{t < \tau + l | \tau = x\}) f_{\tau}(x) \, dx
\]

where \(f_{\tau} \) is the PDF of \(\tau \). Now since \(\tau = x \), if \(x > t \) then the probability is zero. This simplifies the above to

\[
P(\{\tau < t\} \cap \{t < \tau + l\}) = \int_0^t P(\{t < \tau + l | \tau = x\}) f_{\tau}(x) \, dx
\]

which can be simplified further to

\[
P(\{\tau < t\} \cap \{t < \tau + l\}) = \int_0^t P(\{t < x + l | \tau = x\}) f_{\tau}(x) \, dx = \int_0^t P(l > t - x) f_{\tau}(x) \, dx
\]

which is equal to

\[
P(\{\tau < t\} \cap \{t < \tau + l\}) = \int_0^t \int_{t-s}^{\infty} f_l(z) f_{\tau}(x) \, dz \, dx \quad (A.1)
\]

where \(f_l \) is the PDF of \(l \). With the change of variables \(y = z + x \), Eq. (A.1) can be rewritten for the proportion of cells with virus particles undergoing replication inside them at any time \(t \) as:
From this, the change in the total virus (both intracellular and extracellular), \(\nu \), at any point in time, \(t \), is the cumulative number of cells actively producing virus multiplied by the rate at which the virus replicates:

\[
\frac{d\nu}{dt} = kC = kC_0 \int_0^t \int_\tau^\infty f_\tau(x)f_1(y-x)\,dy\,dx
\]

where \(k \) is the mean viral replication rate, across the cell population of \(C_0 \) cells. Here it is assumed that each cell is not actively producing virus until time \(\tau \), chosen from the distribution \(f_\tau \), and that they then produce for a period, \(l \), chosen from the distribution \(f_1 \). At time \(t \), the number of cells with virus replicating within the nucleus is equal to the proportion of cells that have reached time \(\tau \) minus the proportion that have reached time \(\tau + l \).

A.2.2 Jacobian matrix transformation model derivation

Alternatively, to obtain the joint density function \(f_{\tau,\tau+l} \), a Jacobian matrix transformation can be used. Let the linear transformation \(u : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be defined by:

\[
u(x, y) = (x, x + y).
\]

Now the density function \(f_{\tau,\tau+l}(x, y) \), is the density of \(u(\tau, l) \). Then using the Jacobian matrix transformation, if the random vector \((X, Y) \) has PDF \(f_{X,Y}(x, y) \) then \(g(X, Y) \) has PDF:

\[
f_{X,Y}(g^{-1}(x, y))|J_{g^{-1}}(x, y)|
\]
where \(J_{g^{-1}} \) is the Jacobian matrix for \(g^{-1} \). Calculating \(g^{-1} \) and \(|J_{g^{-1}}| \), also using the fact that \(\tau \) and \(l \) are independent (i.e. \(f_{\tau,l}(x,y) = f_\tau(x)f_l(y) \), where \(f_{\tau,l}(x,y) \) is the joint density function of \((\tau, l) \)) and substitute \(g^{-1}(x,y) \) to obtain

\[
f_{\tau,\tau+1}(x,y) = f_\tau(x)f_l(y-x)
\]

Therefore, the probability of a cell having a virus replicating inside of it, is the same as the proportion of cells that have replicating virus within them at any point \(t \) in time is given by:

\[
C(t) = \int_0^t \int_t^\infty f_{\tau,\tau+1}(x,y) \, dy \, dx \quad (A.4)
\]

where \(f_{\tau,\tau+1}(x,y) \) is the joint density function for \(\tau \) and \(\tau + 1 \) and substituting (10) into (7) the proportion of cells with virus particles undergoing replication inside them at any time \(t \):

\[
C(t) = \int_0^t \int_t^\infty f_\tau(x)f_l(y-x) \, dy \, dx
\]

which is equivalent to the equation derived above, Eq. (A.2).
ADDITIONAL INFORMATION FOR CHAPTER 8
Typical evolutions of the model for three tumour shapes: circular, rectangular and irregular are presented in Fig. B.1, B.2 and B.3 respectively. Additionally, typical evolutions of the model for circular tumours under treatment with a non-delayed and delayed virus is plotted in Fig. B.4 and B.5.

Figure B.1: Typical evolution of the cellular automaton for a circular tumour.
Figure B.2: Typical evolution of the cellular automaton for a rectangular tumour.
Figure B.3: Typical evolution of the cellular automaton for an irregular tumour.
Figure B.4: Typical evolution of the cellular automaton for a circular tumour with a non-delayed viral treatment.
Figure B.5: Typical evolution of the cellular automaton for a circular tumour with a delayed viral treatment.
PHYSICELL SETUP FOR WORK DISCUSSED IN CHAPTER 10
To investigate the efficacy of the TRAIL-expressing adenovirus, a model for the interactions described above are developed in the open-source physics-based multicellular simulator known as PhysiCell \cite{Ghaffarizadeh18}. PhysiCell provides a robust, scalable C++ code for simulating large systems of cells on standard desktop computers. It allows for biologically realistic modelling of cell cycling, apoptosis, necrosis and cell-volume changes. It includes a standard library of sub-models for cell-fluid and solid-volume changes, cycle progression, apoptosis, necrosis, mechanics and motility. It also allows for specific models describing these characteristics to be user defined. Each cell can dynamically update its phenotype based on its microenvironmental conditions.

PhysiCell is directly coupled to a biotransport solver known as BioFVM \cite{Ghaffarizadeh15}. BioFVM simulates many diffusing substrates and cell-secreted signals in the microenvironment. Each cell is able to dynamically update its phenotype based on its microenvironmental conditions. Each cell is modelled as a software agent with an independent state, and its own rules to change its behaviour based on local environmental conditions and communication. PhysiCell is an off-lattice modelling platform, meaning that cells can have variable sizes and can move freely without grid artifacts. Below is a brief overview of PhysiCell’s inbuilt substrate model (BioFVM), cell mechanics and motion setup, cell proliferation and time scale. For a more extensive and in-depth explanation see \cite{Ghaffarizadeh18}.

C.1.1 Substrate modelling

The in-built biotransport solver in PhysiCell is known as BioFVM \cite{Ghaffarizadeh15}. It can efficiently simulate secretion, diffusion, uptake and decay of multiple substrates in a large 3-D microenvironment. BioFVM solves the PDE

\[
\frac{\partial p}{\partial t} = D \nabla^2 p - \lambda p + S(p^* - p) - Up + \sum_{\text{cells } k} \delta(r - r_k)W_k [S_k(p^* - p) - U_k p] \text{ in } \Omega
\]

\((C.1) \)
C.1 PhysicsCell setup

with no-flux conditions on $\partial \Omega$. Here Ω is the computational domain with boundary $\partial \Omega$, p is the vector of substrate densities, p^* are the substrate saturation densities, D are the diffusion coefficients, λ are the decay rates, S is the bulk supply rates and U is the bulk uptake rates. Here $\delta(x)$ is the Dirac delta function, r_k is the k^{th} cell’s position, W_k is its volume, S_k is its vector of source rates and U_k it its vector of uptake rates. All vector-vector products are element-wise. Note that the term $p^*_V - p_{VE}$ assumes that intracellular substrates (or molecules) are secreted at a rate proportion to the density difference of the substrate on the exterior of the cell and the saturation density. For more information see (Ghaffarizadeh et al., 2015, 2018).

The PDE in Eq. (C.1) is used to model the diffusion of extracellular virus particles and TRAIL molecules. In other words $p = [p_V, p_T]$ where p_V is the density of the virus and p_T is the density of TRAIL molecules. In this way, individual viral particles are not explicitly modelled as in the VCBM, saving computational time. Additionally, the saturation densities are specific for viruses and TRAIL molecules, $p^* = [p^*_V, p^*_T]$. The diffusion coefficient was also substrate dependent, i.e $D = [D_V, D_T]$.

To model the virus and TRAIL molecules in the microenvironment, the bulk source and uptake rates S and U are set to zero, and only the supply and uptake rates of cells S_k and U_k is considered. Supply and uptake rates of cells are specific for viruses and TRAIL molecules, i.e. $S_k = [S_{kV}, S_{kT}]$ where S_{kV} is the virus secretion rate from a cell, and S_{kT} is the TRAIL secretion rate from a cell, and $U_k = [U_{kV}, U_{kT}]$. These rates also depend on the cells in the microenvironment, with different functions of S_{kV}, S_{kT}, U_{kV} and U_{kT} for vein cells and glioblastoma cells. Functions for the supply, S_k, and uptake, U_k, of the virus and TRAIL into the microenvironment are developed in the following Section D.1.

C.1.2 Cell mechanics and motion

Cell mechanics and motion are modelled using the PhysiCell built-in rules detailed below (Ghaffarizadeh et al., 2018). Cell agents are assumed to bind to one another within a prescribed interaction distance (some multiple of their radius), and they can exert a pushing force on neighbours. Similar to the equations of motion for the VCBM
PhysiCell uses potential functions to implement simple mechanics and motion. Each cell’s position \(\mathbf{r}_i \) is updated by calculating its current velocity \(\mathbf{v}_i \) based upon the balance of forces acting upon it. For cell \(i \) at position \(\mathbf{r}_i(t) \) with velocity \(\mathbf{v}_i(t) \) and with a set \(N(i) \) of nearby cells (assuming there is no basement membrane interactions), PhysiCell models the cell-cell adhesive, cell-cell “repulsive” forces and drag forces using

\[
m_i \frac{d\mathbf{v}_i}{dt} = \sum_{j \in N(i)} (F_{\text{cca}}^{ij} + F_{\text{ccr}}^{ij}) + F_{\text{drag}}^i + F_{\text{loc}}^i,
\]

where \(F_{\text{cca}} \) and \(F_{\text{ccr}} \) are cell-cell adhesive and “repulsive” forces, \(F_{\text{drag}} \) collects dissipative, drag-like forces, and \(F_{\text{loc}} \) is the locomotive forces. PhysiCell models the drag-like forces by

\[
F_{\text{drag}}^i = -\nu_i \mathbf{v}_i,
\]

where \(\nu \) is a (fluid) drag coefficient as in \cite{Frieboes2007, Macklin2009, Macklin2012}.

The same inertialess assumption \((m_i \dot{\mathbf{v}}_i \approx 0) \) used to simplify Eqs. (8.2) in Section 8.2.3 is also used in PhysiCell. This assumes that forces equilibrate at relatively fast time scales relative to the time scales of cell cycling, death, volume changes, and multicellular patterning. This assumption allows Eq. (C.2) to be solved for \(\mathbf{v}_i \):

\[
\mathbf{v}_i = \frac{1}{\nu_i} \left(\sum_{j \in N(i)} (F_{\text{cca}}^{ij} + F_{\text{ccr}}^{ij}) + F_{\text{loc}}^i \right).
\]

PhysiCell uses potential functions for the adhesive interactions \(\phi \) and repulsive interactions \(\psi \) \cite{Ghaffarizadeh2018}. For adhesion, PhysiCell models

\[
\nabla \phi_{n,R_A}(\mathbf{r}) = \begin{cases} \frac{\mathbf{r}}{\|\mathbf{r}\|} \left(\frac{1}{\|\mathbf{r}\|} \right)^{n+1} & \text{if } \|\mathbf{r}\| \leq R_A, \\ 0 & \text{otherwise} \end{cases}
\]

Here, \(R_A \) is the maximum adhesive interaction distance, and \(n \) is an integer power (typically 1) chosen for the smoothness of the force’s behaviour as \(r \rightarrow R_A; \ n = 0 \)
gives minimal smoothness: continuity of the force itself, but not of any derivatives \cite{Ghaffarizadeh2018}. For repulsion, PhysiCell models

\[
\nabla \psi_{n,R}(\mathbf{r}) = \begin{cases}
- \frac{\mathbf{r}}{|\mathbf{r}|} \left(1 - \frac{|\mathbf{r}|}{R}\right)^{n+1} & \text{if } |\mathbf{r}| \leq R_A, \\
0 & \text{otherwise}
\end{cases}
\]

where \(n\) is again the smoothness at the edge of interaction \cite{Ghaffarizadeh2018}.

Following previous work by Macklin et al. \cite{Macklin2012} and D’Antonio et al. \cite{D'Antonio2013}, PhysiCell models cell-cell adhesive force between cells \(i\) and \(j\) with individual adhesion parameters \(R_{i,A}\) and \(R_{j,A}\)

\[
F_{cc}^{ij} = -C_{cc} A_i A_j \nabla \psi_{n_{cc},R_{i,A}+R_{j,A}}(\mathbf{r}_j - \mathbf{r}_i),
\]

(\ref{eq:cell-cell-adhesive-force})

where \(C_{cc}\) is the cell-cell adhesion parameter, \(A_i\) and \(A_j\) are the cells’ relative adhesiveness parameters \((0 \leq A_i \leq 1)\), and \(n_{cc}\) is the cell-cell adhesion exponent parameter.

By default \(A_i = 1\) for all cells.

If cells \(i\) and \(j\) have radii \(R_i\) and \(R_j\), respectively, then the cell-cell repulsive force in PhysiCell is modelled by

\[
F_{ccr}^{ij} = -C_{ccr} \nabla \psi_{n_{ccr},R_i+R_j}(\mathbf{r}_j - \mathbf{r}_i),
\]

(\ref{eq:cell-cell-repulsive-force})

where \(C_{ccr}\) is the cell-cell repulsion parameter, and \(n_{ccr}\) is the cell-cell repulsion exponent parameter.

In addition to the forces due to interaction with other cells, cell may demonstrate a net locomotive force to become motile. A cell changes its migration velocity stochastically between \(t\) and \(t + \Delta t_{\text{mech}}\) with probability

\[
\text{Prob}(\text{change } v_{\text{mot}}) = \frac{\Delta t_{\text{mech}}}{T_{\text{per}}}.
\]

If a cell changes its migration velocity, it chooses a new migration direction \(d_{\text{migrate}}\).

For this model, it is assumed that cancerous cells have completely unbiased random motion. To calculate the contribution \(F_{\text{loc}}\) to the cell’s velocity, the migration direction
\(\text{d}_{\text{migrate}} \) is normalised and then multiplied by the cell’s migration speed, \(s_{\text{loc}} \, (\mu\text{m/min}) \). This then gives
\[
\mathbf{v}_{\text{mot}} = s_{\text{loc}} \frac{\text{d}_{\text{migrate}}}{\|\text{d}_{\text{migrate}}\|}.
\]
Combining all the assumptions above then gives the formulation for the velocity of the \(i \)-th cell in PhysiCell as
\[
\mathbf{v}_i = \sum_{j \in N(i)} \left(-\sqrt{c_{\text{cca}}^i c_{\text{cca}}^j} \nabla \phi_{1,R_i + R_j} (r_i - r_j) - \sqrt{c_{\text{ccr}}^i c_{\text{ccr}}^j} \nabla \psi_{1,R_i + R_j} (r_i - r_j) \right) + \mathbf{v}_{i,\text{mot}},
\]
where \(c_{\text{cca}}^i \) and \(c_{\text{ccr}}^i \) are the \(i \)-th cell’s cell-cell adhesion and repulsion parameters. Note that if cell \(i \) and \(j \) have identical cell-cell adhesion and repulsion parameters \(c_{\text{cca}} \) and \(c_{\text{ccr}} \), the cell-cell interaction coefficients simplify to the form in Eq. (C.3) and (C.4). Additionally worth noting, the adhesion interaction potential function \(\phi_{n,R}(\mathbf{x}) \) is zero for \(\|\mathbf{r}\| > R \), and approaches zero with smoothness given by \(n \). Similarly, \(\psi_{n,R}(\mathbf{r}) \) is a repulsion interaction potential function that is zero for \(\|\mathbf{r}\| > R \). Thus, cell-cell mechanical interactions occur over finite distances.

The cell’s position is then updated in PhysiCell using the second-order Adams-Bashforth discretisation:
\[
\mathbf{r}_i(t + \Delta t_{\text{mech}}) = \mathbf{r}_i(t) + \frac{1}{2} \Delta t_{\text{mech}} (3\mathbf{v}_i(t) - \mathbf{v}_i(t - \Delta t_{\text{mech}})),
\]
where \(\Delta t_{\text{mech}} \) is the cell mechanics time scale (see Section C.1.4). For any further background into the derivation or for the parameter values in PhysiCell, see Ghaffarizadeh et al. (2018); D’Antonio et al. (2013); Macklin et al. (2012).

C.1.3 Cell proliferation

PhysiCell includes a cell-cycle modeling framework, where each cell cycle model is a collection of phases, transition rates between the phases, and a cell-division phase transition (Ghaffarizadeh et al., 2018). Since glioblastomas are characterised by rapid cell proliferation, each cancer cell in the model follows the PhysiCell cycle model \texttt{Live}. This model is equivalent to the exponential growth used in Chapter 5 Eqs. (5.1)-(5.3).
For a population of uninfected cancer cells U, the rate of growth for the population is given by
\[
\frac{dU}{dt} = rU
\]
where r is the proliferation rate. In PhysiCell, the transition rate (or replication rate) is r. Note that birth is a stochastic event for each cell in the model. If such a process occurs at rate r, then between time t and $t + \Delta t$, the probability of the event occurring for that agent is $r\Delta t$.

When a cell divides, all sub-volumes are divided in half and a duplicate of the cell (including all state and parameter values) is made. To determine where to place the cell and its duplicate, PhysiCell calculates the vector \mathbf{d} where
\[
\mathbf{d} = \frac{\mathbf{x} - (\mathbf{x} \cdot \mathbf{\theta}) \mathbf{\theta} + ((1 - p)(\mathbf{x} \cdot \mathbf{\theta})) \mathbf{\theta}}{|\mathbf{x} - (\mathbf{x} \cdot \mathbf{\theta}) \mathbf{\theta} + ((1 - p)(\mathbf{x} \cdot \mathbf{\theta})) \mathbf{\theta}|}.
\]
and $0 \leq p \leq 1$ is the degree of polarisation, and $\mathbf{\theta}$ is the cell’s unit orientation vector and $\mathbf{x} \in [-1, 1] \times [-1, 1] \times [-1, 1]$ is a random vector. Note that if $p = 1$ then \mathbf{d} is a random unit vector perpendicular to $\mathbf{\theta}$, and if $p = 0$, then \mathbf{d} is a random unit vector in 3-D space. 2-D simulations should set $\mathbf{\theta} = [0, 0, 1]$. Different to the previous work in Chapter 8, cells divide without checking for an open neighbour site, they can just divide and push any neighbours out of the way.

c.1.4 Time scales in PhysiCell

There are three time scales in PhysiCell: biotransport Δt_{diff}, cell mechanics Δt_{mech} and cell processes Δt_{cell}. This is to account for diffusive biostransport occurring relatively fast compared to cell mechanics and cell processes (Ghaffarizadeh et al., 2018). The biotransport time step was chosen based on work by Ghaffarizadeh et al. (2015), where they showed that $\Delta t_{\text{diff}} = 0.01$ min gives stable and accurate results (relative error 5% or less) for diffusion, decay and secretion rates typical of cancer biology. The other time steps were chosen from the work by Ghaffarizadeh et al. (2018). They showed that $\Delta t_{\text{mech}} = 0.1$ min accurately and stably computes the cell mechanics
(for tissue engineering and cancer biology problems), and $\Delta t_{\text{cell}} = 6$ min sufficiently resolves the 1 hour time scales in cell cycling, death and volume changes.
MODEL IMPLEMENTATION FOR WORK DISCUSSED IN CHAPTER 10
D.1 Model Implementation

The PhysCell framework described in the previous section is now extended to include models for the growth and treatment of glioblastomas using an oncolytic adenovirus expressing secretable TRAIL. To do this, mathematical models for the amount of intracellular virus in vein cells and glioblastoma cells are developed below. These are used to calculate the secretion rates S_k and uptake rates U_k of cells in the BioFVM PDE Eq. (C.1). These models are used to simulate viral secretion from vein cells, viral infection, replication and lysis of glioblastoma cells, and TRAIL generation, section and apoptosis induction of glioblastoma cells.

D.1.0.1 Vein cell secretion

The vasculature can play a major role in the efficacy of cancer therapies (Section 2.2.2).

To simulate intravenous injections of oncolytic adenovirus, static vein cells are each initially endowed with V_0/N_V virus particles, where V_0 is the total amount of virus injected initially and N_V is the number of vein cells in the model. Vein cells then secrete the virus into the microenvironment, simulating the arrival of an intravenous injection of treatment. The amount of virus secreted becomes part of the density of extracellular virus, which is simulated using BioFVM’s PDE formulation in Eq. (C.1). BioFVM models the microenvironment substrates’ bulk source/sink terms as decoupled sets of systems of ODEs, where one vector of ODEs is in each computational voxel. A voxel in PhysCell represents a value on a regular grid in three-dimensional space. Consider $p_E = [p_{EV}, p_{ET}]$ to represent the density in each voxel of virus, p_{VE}, and TRAIL, p_{TE}.

Let $n_I(t)$ be the amount of virus inside a cell at time t. The vein cells secrete virus at a rate

$$\frac{dn_I}{dt} = -s_v n_I(p_V^* - p_{VE}), \quad (D.1)$$

where s_v is the secretion rate constant, p_V^* is the virus saturation density (see Section C.1.1) and p_{VE} is the density of virus in the voxel containing the vein cell. The rate at which virus leaves the vein cells is proportional to the amount inside the cell n_I and also the difference between the density of virus in the voxel and the saturation
density (see Eq. (C.1)). The density of extracellular virus in the voxel will increase at a rate proportional to volume of the voxel V_{voxel}. Therefore the rate of change of the density of virus in the voxel will be

$$\frac{dp_{VE}}{dt} = s_v \frac{n_I}{V_{\text{voxel}}} (p^*_V - p_{VE}). \quad (D.2)$$

See Fig. D.1 for a summary of the vein secretion model.

Figure D.1: Schematic for the secretion of virus from a virus-filled vein cell (red). Intracellular virus n_I is secreted with rate constant s_v into the voxel and becomes part of the density of extracellular virus p_{VE}.

To implement this in PhysiCell, the secretion rate in Eq. (C.1) S_{kV} is given by

$$S_{kV} = \frac{1}{V_{\text{voxel}}} s_v n_I,$$

as the multiple of $p^*_V - p_{VE}$ is already factored into the PDE formulation of BioFVM. For vein cells the uptake rate for virus particles and the secretion and uptake rate of TRAIL molecules are set to 0, i.e. $U_{kV} = 0, S_{kT} = 0$ and $U_{kT} = 0$. The intracellular amount of the virus is approximated using a forward-Euler approximation:

$$n_I(t + \Delta t_{\text{cell}}) = n_I(t) - \Delta t_{\text{cell}} s_v n_I(t)(p^*_V - p_{VE}).$$

This value is calculated and stored in the cell phenotype as the model iterates.
Glioblastoma cell infection, intracellular replication and lysis function

The viral infection, replication and lysis of glioblastoma cells is modelled as a three stage process: (1) initial infection, (2) replication and additional infection, and (3) replication and lysis, see Fig. D.2. This is similar to the model developed in Chapter 4 for the intracellular virus replication (see Fig. 4.3). The amount of intracellular virus \(n_1 \) in a glioblastoma cell is modelled by

\[
\frac{dn_1}{dt} = c_I p_{VE} V_{voxel} \left(1 - \frac{n_1}{n_{1,T}}\right) \left(1 - H(n_1 - n_{1,T})\right) + c_R H(n_1 - n_{1,*}) \tag{D.3}
\]

where \(c_I \) is the infection rate, \(n_{1,T} \) is the maximum infection capacity, \(n_{1,*} \) is the minimum amount of intracellular virus needed for replication to commence, \(c_R \) is the virus replication and \(H \) is the Heaviside function. Virus is assumed to infect at cell at a rate proportion to the amount available to infect, \(n_E = p_{VE} V_{voxel} \). The rate at which viruses replicate is assumed to be constant. Once the total intracellular amount of virus has reached \(n_{1,T} \) the virus is no longer infected by any extracellular virus. This is to allow for a controlled virus infection, where multiple infections of a single cell can occur.

![Figure D.2: Illustration of the amount of intracellular virus \(n_1(t) \) in a single infected cell. The cell needs to be infected with \(n_{1,*} \) virus particles before replication can commence. Once replication starts at time \(\tau \), new virus particles are still able to infect the cell; however, once the number of intracellular virus reaches \(n_{1,T} \), further infection stops. The maximum likelihood of lysis occurring is then reached when the amount of virus exceeds \(\alpha \). Lysis occurs at time \(\delta \) and can be before \(n_1 = \alpha \).](image-url)
Assuming that there is a capacity for the amount of virus, $n_{I,T}$, a particular cell can take up, the rate of uptake can be modelled using a logistic function. The density, p_{VE}, of virus in the voxel outside the virus-infected cell is modelled by

$$\frac{dp_{VE}}{dt} = -c_I p_{VE} \left(1 - \frac{n_I}{n_{I,T}}\right) \left(1 - H(n_I - n_{I,T})\right).$$

To model this in PhysiCell, the uptake rate, U_{kV}, in Eq. (C.1) is given by

$$U_{kV} = c_I \left(1 - \frac{n_I}{n_{I,T}}\right) \left(1 - H(n_I - n_{I,T})\right)$$

as the multiple p_{VE} is already factored into the PDE formulation of BioFVM. Similar to the vein wall cells, the amount of intracellular virus is approximated using a forward-Euler approximation:

$$n_I(t + \Delta t_{cell}) = n_I(t) + \Delta t_{cell} \left(c_I p_{VE} V_{voxel} \left(1 - \frac{n_I}{n_{I,T}}\right) + c_R H(n_I - n_{I,*})\right) \quad (D.4)$$

Following the ideology of the virus titer modelling in Chapter 4, the lysis rate of virus-infected cells is given by the Hill function

$$a_f(n_I) = \frac{n_I^b}{(\alpha/2)^b + n_I^b}, \quad (D.5)$$

where b is an integer exponent controlling the steepness of the curve ($b \geq 1$) and α is the number of new virus particles created through lysis (used in Chapters 6 and 7). A number of studies have characterized biochemical switches from the perspective of steady-state behavior and Hill functions [Ferrell Jr and Xiong, 2001; Ferrell and Machleder, 1998], see the model from de Pillis et al. (2005) in Eqs. (3.13)-(3.16). To make sure cells aren’t undergoing lysis too early, there are three stages to the lysis cell death considered:

$$a(n_I) = \begin{cases}
0 & n_I < \alpha/5, \\
a_f(n_I) & \alpha/5 < n_I < \alpha, \\
\infty & n_I > \alpha,
\end{cases}$$
where cells aren’t able to die unless they have at least $\alpha/5$ viruses and lyse once they reach α viruses. The time a cell undergoes lysis is δ. When the cell dies, the amount of intracellular virus is secreted instantaneously into the voxel containing that cell, and the density of the virus is updated. If the density in the voxel is close to or above saturation p^*_V, then only an amount of virus that would take the density in the voxel to p^*_V is released and the remainder is released over time. Similar to the model in Chapter 8, death of uninfected tumour cells by causes other than viral lysis is assumed negligible. See Fig. D.3 for a mathematical summary of the viral infection, replication and lysis stages of TRAIL release.

![Diagram](image)

Figure D.3: Schematic for the intracellular and extracellular infection, replication and lysis process. Extracellular virus p_{VE} is taken up by a cell with rate constant c_I. The virus within the cell undergoes replication at a constant rate c_R. The cell then undergoes lysis, releasing its contents back into the extracellular density of virus in the voxel.

D.1.0.3 TRAIL generation and secretion

As the oncolytic adenovirus expressing secretable trimeric TRAIL undergoes replication, new TRAIL molecules are created, see Section 2.4.2 TRAIL molecules are created
at the same rate as new virus particles, giving the amount of intracellular TRAIL molecules, \(T_I \), as

\[
\frac{dT_I}{dt} = c_R H(n_I - n_{I*}) - s_T T_I H(t - s_T)(p_T^* - p_{TE}).
\]

(D.6)

where \(C_R \) is the rate at which TRAIL is created, \(s_T \) is the rate of TRAIL secretion, \(p_T^* \) is the TRAIL saturation density and \(p_{TE} \) is the density of TRAIL in the voxel containing the infected cell. For viral replication to occur, at least \(n_{I*} \) virus particles need to be present in the cell (Eq. (D.3)). Trail is secreted from the cell at a rate \(s_T \), proportional to the amount of TRAIL present in the cell. Secretion starts at time \(s_T \) and continues until time \(\delta \), at which point the cell undergoes lysis and the remaining viruses inside the cell are released (similar to the model in Chapter 4). Fig. D.4 depicts an illustration of the intracellular TRAIL amount for a single infected cell over time.

![Graph showing intracellular TRAIL amount over time](image)

Figure D.4: Illustration of the amount of intracellular virus, \(n_I(t) \), in a single infected cell. The cell needs to be infected with \(n_{I*} \) virus particles before replication can commence. Once replication starts, new virus particles are still able to infect the cell; however, once the number of intracellular virus reaches \(n_{I,T} \), further infection stops. The maximum likelihood of lysis occurring is then reached when the amount of virus exceeds \(\alpha \).

As for the previous intracellular amounts, TRAIL is calculated using a forward-Euler approximation:

\[
T_I(t + \Delta t_{cell}) = T_I + \Delta t_{cell} \frac{dT_I}{dt}(p_T^* - p_{TE}).
\]
To make sure the value for T_I does not become negative, a condition needs to be imposed on p_T^* such that

$$T_I + \Delta t_{cell}(c_T - s_T T_I(p_T^* - p_{TE})) > 0$$
$$T_I(1 - \Delta t_{cell}s_T(p_T^* - p_{TE})) > 0$$
$$p_T^* < \frac{1}{\Delta t_{cell}s_T} < \frac{1}{\Delta t_{cell}s_T} + p_{TE}.$$

The secretion rate of the cell for the BioFVM PDE, Eq. (C.1), is

$$\frac{dp_{TE}}{dt} = s_T \frac{T_I}{V_{VOXEL}} H(t - s_T)(p_T^* - p_{TE}). \quad (D.7)$$

To model this in PhysiCell, the secretion rate, S_{kT}, in Eq. (C.1) is given by

$$S_{kT} = s_T \frac{T_I}{V_{VOXEL}} H(t - s_T),$$

where the term $p_T^* - p_{TE}$ is already factored into the PDE formulation of BioFVM Eq. (C.1). For glioblastoma cells, the secretion rate for virus particles and the uptake rate of TRAIL molecules are set to 0, i.e. $U_{kV} = 0$ and $S_{kT} = 0$. When the cell lyses, it releases the remaining TRAIL molecules until the saturation density of the voxel p_T^*. If more TRAIL is present in the cell then it is released over time, so that the density of TRAIL in the voxel does not exceed p_T^*.

The rate of TRAIL-induced apoptosis for a particular cell depends on the density of TRAIL molecules in the local microenvironment, i.e. $a_T(p_{TE})$. A similar function to that used for the viral lysis is used for TRAIL induced apoptosis:

$$a_T(p_{TE}) = \frac{p_{TE}^b}{p_{TE}^b + p_{TE}^b}, \quad (D.8)$$

again with the condition that minute traces of TRAIL will not induce apoptosis of cells:

$$a(p_{TE}) = \begin{cases}
0 & p_{TE} < T_{min}, \\
 a_f(n_I) & p_{TE} \geq T_{min}
\end{cases}$$
D.1.0.4 Parameters and model simulations

To determine the base line glioblastoma cell replication rate \(r \), measurements for the growth of U-87MG glioblastoma murine tumours by Oh et al. (2018) were used. These measurements were obtained using the same method for tumour growth in previous chapters, see Section 2.5.3. Fitting an exponential growth curve to the data gave the fit in Fig. D.5 and Table D.1. The confidence intervals returned were tight and the \(R^2 \) value was 0.9996. The growth rate was only fit for the first 9 days as limiting factors (such as carrying capacity) would influence the tumour growth after this time and these are not explicitly modelled.

Most of the remaining parameters are estimated based on literature or work in the previous chapters, see Table D.1. The mathematical and experimental work of Dinh et al. (2005) is used to estimate parameters relating to the internalisation rate of the virus \(c_1 \) and the replication rate \(c_R \). They developed an integrative computational framework to model biophysical processes involved in viral gene delivery. Dinh et al. (2005) derived the internalisation rate of cells to be \(c_1 = 0.072 \text{ min}^{-1} \) from kinetic studies of adenovirus trafficking and propagation. The transcription rate in Dinh et al. (2005) proposed is 0.033\text{min}^{-1}.

The diffusion coefficient of the virus, \(D_V \), was approximated using the work of Yakimovich et al. (2012), where the transmission mode of human adenovirus (HAdV)
in monolayers of epithelial cells was analysed by wet-lab experimentation and a computer simulation. Assuming adenoviruses can be approximated as spherical, D_V was estimated to be $243 \mu m^2/min$ for particle motion in fibrous tumours. The diffusion coefficient of TRAIL molecules D_T is approximated using the diffusion coefficient of molecules in fibroblast-contracted collagen gel measured by Kihara et al. (2013). Since TRAIL has a molecular weight of 40 kDa, the diffusion coefficient of an equivalently weighted molecule, FITC dextrain, is used to approximate TRAIL’s diffusion coefficient $D = 2682 \mu m^2/min$ (Kihara et al., 2013).

Since all the previous models in this thesis used a viral decay rate that considered not just local intratumoural decay, but also loss to other organs (Chapter 6) and immune clearance (Chapter 8), the decay rates λ_V and λ_T for virus particles and TRAIL are estimated from the literature. The half-life of the adenovirus in tissue was estimated by Ethier et al. (2004) to be 318 minutes, using the half-life decay formula this gives the virus decay rate of $\lambda_V = -\ln(1/2)/318 = 0.0022/min$. TRAIL is known to have an average half-life of 630 minutes (Lim et al., 2011). Using the half-life decay formulas gives the TRAIL decay rate of $\lambda_T = -\ln(0.5)/630 = 0.0011/min$. This supports what Jeong et al. (2009) concluded from their experiments with the ri-Ad-stTRAIL, that viral copies decayed quicker than the TRAIL molecules.

The rate at which virus particles are secreted from vein cells is assumed to be equivalent to the rate determined in Chapter 6 for the rate of transfer of the virus from the blood to the tumour site. As such, this gives $s_v = 0.4752/min$. The initial virus injection was taken from the experiments of Oh et al. (2018) who use $V_0 = 5 \times 10^9$ TRAIL-expressing adenovirus particles when treatment murine U-87MG murine tumours.

For some parameters it was not possible to determine their values from the literature, so they have been estimated so that the system is in a qualitatively steady state (i.e. tumour growth and treatment efficacy roughly stabilise), see Table D.2. The saturation density of the virus and TRAIL molecules (in other words the density at which the cells stop secreting) was assumed to be equivalent $p^* = 10$. The intracellular virus capacity was set to $n_{I,T} = 100$ to make sure that there wasn’t an unrealistic number of viruses infecting cells. The minimum virus replication threshold was $n_{I*} = 10$ to
make sure that any cell that hadn’t been sufficiently infected did not start replicating.
The integer exponent for the Hill function was set as $b = 3$, so that both apoptosis
rates $a_f(n_I)$ Eq. (D.5) and $a_T(p_{TE})$ Eq. (D.8) resembled a sigmoidal curve with a clear
switch between non-apoptotic and apoptotic states.

Evolution of the model for the parameters in Table D.1 and D.2 is plotted in Fig. D.6
for triangular vein cross sections and Fig. D.8 for circular vein cross sections. The
corresponding virus and TRAIL densities for each simulation is plotted in Fig. D.7 and
Fig. D.9. In the following section, all simulations are presented as the average of five
model simulations. For the same parameter set, the model simulations didn’t show
significant stochasticity in the tumour cell population.
Table D.1: Parameters based from literature values for the PhysiCell simulations in this chapter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Description</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_V</td>
<td>$\mu m^2/min^{-1}$</td>
<td>virus diffusion coefficient</td>
<td>243</td>
<td>Yakimovich et al. (2012)</td>
</tr>
<tr>
<td>D_T</td>
<td>$\mu m^2/min^{-1}$</td>
<td>TRAIL diffusion coefficient</td>
<td>2682</td>
<td>Kihara et al. (2013)</td>
</tr>
<tr>
<td>λ_V</td>
<td>min$^{-1}$</td>
<td>virus decay rate</td>
<td>0.0022</td>
<td>Ethier et al. (2004)</td>
</tr>
<tr>
<td>λ_T</td>
<td>min$^{-1}$</td>
<td>TRAIL decay rate</td>
<td>0.0011</td>
<td>Lim et al. (2011)</td>
</tr>
<tr>
<td>r</td>
<td>min$^{-1}$</td>
<td>replication rate</td>
<td>0.0001482</td>
<td>Fit to data from Oh et al. (2018) (Fig. D.5) and Kim et al. (2011a) (Table 6.7 and Fig. 6.9)</td>
</tr>
<tr>
<td>s_v</td>
<td>min$^{-1}$</td>
<td>secretion rate of virus from vein cell</td>
<td>0.4752</td>
<td>Fit to data from Kim et al. (2011a) (Table 6.7 and Fig. 6.9)</td>
</tr>
<tr>
<td>V_0</td>
<td>virus</td>
<td>initial amount of virus in injection</td>
<td>5×10^9</td>
<td>(Oh et al., 2018)</td>
</tr>
<tr>
<td>c_I</td>
<td>min$^{-1}$</td>
<td>rate at which cell uptakes virus</td>
<td>0.072</td>
<td>Dinh et al. (2005)</td>
</tr>
<tr>
<td>c_R</td>
<td>min$^{-1}$</td>
<td>intracellular replication rate</td>
<td>0.033</td>
<td>Dinh et al. (2005)</td>
</tr>
<tr>
<td>α</td>
<td>virus</td>
<td>size when lysis rate is the maximum</td>
<td>3500</td>
<td>Chen et al. (2001)</td>
</tr>
</tbody>
</table>

Table D.2: Estimated parameter values for the PhysiCell simulations in this chapter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p^*_V</td>
<td>virus</td>
<td>virus saturation density (density at which the cells stop secreting)</td>
<td>10</td>
</tr>
<tr>
<td>p^*_T</td>
<td>TRAIL</td>
<td>TRAIL saturation density (density at which the cells stop secreting)</td>
<td>10</td>
</tr>
<tr>
<td>$n_{1,v}$</td>
<td>virus</td>
<td>minimum virus replication threshold</td>
<td>10</td>
</tr>
<tr>
<td>b</td>
<td>-</td>
<td>integer exponent for hill function</td>
<td>3</td>
</tr>
<tr>
<td>M</td>
<td>$\mu m^2/min^{-1}$</td>
<td>density when apoptosis rate is maximum</td>
<td>10</td>
</tr>
<tr>
<td>T_{min}</td>
<td>$\mu m^2/min^{-1}$</td>
<td>minimum TRAIL density required for apoptosis</td>
<td>10^{-2}</td>
</tr>
</tbody>
</table>
Figure D.6: Simulation for virus infection in a layer of tissue with triangle veins at (a) 60 mins, (b) 1440 mins (1 day) and (c) 2880 mins (2 days). Parameters were fixed to the values in Table D.1 and D.2 with $s_T = 0.1$ and $s_T = 100$. Red cells represent vein cells, these cells secrete virus that infects tissue cells, which are pink cells. Once a cell becomes infected it is coloured purple, with the darker the shade corresponding to the more virus in the cell. The infected cells die turning a pale yellow and eventually disappearing.
Figure D.7: Contour plots for the density of virus ((a), (c) and (e)) and TRAIL ((b), (d) and (f)) at 60 mins, 1440 mins (1 day) and 2880 mins (2 days). These plots correspond to the simulations in Fig. D.6.
Figure D.8: Simulation for virus infection in a layer of tissue with circular veins at (a) 60 mins, (b) 1440 mins (1 day) and (c) 2880 mins (2 days). Parameters were fixed to the values in Table D.1 and D.2 with $s_T = 0.1$ and $s_T = 100$. Red cells represent vein cells, these cells secrete virus that infects tissue cells, which are pink cells. Once a cell becomes infected it is coloured purple, with the darker the shade corresponding to the more virus in the cell. The infected cells die turning a pale yellow and eventually disappearing.
Figure D.9: Contour plots for the density of virus ((a), (c) and (e)) and TRAIL ((b), (d) and (f)) at 60 mins, 1440 mins (1 day) and 2880 mins (2 days). These plots correspond to the simulations in Fig. D.8.

