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Capacity Alignment Planning for a Coal Chain: A Case Study 
Eskandarzadeh, Kalinowski and Waterer

1 Introduction
Aurizon is a large rail freight operator that owns, operates, and manages, the Central 
Queensland Coal Network, Australia’s largest coal rail network. A central planning 
problem that they face is the alignment of the available capacity of the various
components of coal chain infrastructure so as to maximize the opportunity for
trains to haul coal from the mines to the ports where the coal is unloaded and
stockpiled for export. The available capacity of the rail network is measured in
terms of train paths, but a train path is only usable if it can be linked to loading
and unloading slots at the mine and port, and the unloaded coal can then be
stacked onto a stockpile. These so called system paths are the true measure of the
available capacity of a coal chain. We consider the capacity alignment planning
problem in which a schedule of feasible system paths are sought that perform well
with respect to various performance criteria.

Related literature includes a review by Abril et al. (2008) on maximizing the
number of trains which can be scheduled on a single track rail network and the
work of Caprara et al. (2002) on the train scheduling problem. Liu and Kozan
(2011) and Masoud et al. (2017) also consider the optimization of the capacity of
coal rail networks in the Australian setting.

Before formally defining our capacity alignment planning problem we introduce
some terminology. The Central Queensland Coal Network is comprised of four main
rail corridors, each of which forms the backbone of what is referred to as a coal
system. Each system has one or more terminals. A terminal is a facility where the
railed coal is unloaded and stockpiled. A terminal is located at a port and is
connected by rail to the rail network.

In our setting, we consider a single terminal that serves two systems. Adjacent
to the terminal is a rail yard. The rail yard is a facility through which the trains
loaded with coal must pass in order to reach the terminal from either rail corridor.
Upon arriving at the yard, some trains must undergo provisioning operations such
as servicing and refuelling before continuing to the terminal.

We define a train path along a rail corridor to be the 3-tuple (system, departure 
time, arrival time). There are two types of train paths: loaded and empty. Loaded
train paths permit travel along the rail corridor in the direction the terminal. The
train path originates at the far end of the rail corridor at departure time and
terminates at the terminal at arrival time. Empty train paths serve the opposite
direction.

Loaded train paths are typically used by loaded trains hauling coal from a mine
to the terminal. Upon arriving at the terminal the loaded train enters a dump station

and the coal is unloaded into a pit where it is then transported by conveyor belt to a
pad in the terminal stockyard where it is stockpiled. The path taken by the coal
from the pit to the pad is termed a route. Typically, a dump station has several pits,
not all routes are accessible from every pit, and there are restrictions on using some
route combinations simultaneously. An unload slot is a 3-tuple (pit, start time, finish

time). If an unload slot is assigned to a train, the train must arrive at the pit and
begin unloading at start time and depart the pit no later than finish time.

We define a system path to be the 5-tuple (train path, train operator, provisioning 
state, unload slot, route). If a system path is used by a train, then the train must
follow train path, be operated by train operator, be provisioned if provisioning state is
true, use unload slot, and the unloaded coal will be transported to a pad via route.
For a system path, waiting time is defined as the time difference between the end of
provisioning and start time of the unload slot.
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A schedule is a set of system paths. The problem is to find one or more schedules
that are feasible with respect to a set of constraints and perform well against a
set of performance criteria. In the remainder of this section we define the problem
input, the constraints, and the performance criteria.

1.1 Problem input

The problem input is the following:

1. A planning horizon of four weeks or equivalently 28 days.
2. A set of train operators.
3. A set of systems.
4. The provisioning times for each train operator.
5. The maximum waiting time of a train following provisioning.
6. The set of routes in the terminal. There are 5 routes A, B, E, G, J.
7. The set of pits at the dump station. The dump station has three pits 1, 2, and

3.
8. The pit-route access mappings which determine the routes each pit has access

to. Pits 1 and 2 have access to routes A, B, E, and G. Pit 3 has access to routes
B, E, G, and J.

9. A set of available loaded train paths.
10. The unloading times at the dump station. These are fixed at 2 hours and 25

minutes.
11. The total demand for each week in the planning horizon for the system paths

corresponding to each (system, operator) combination. A system path corre-
sponds to the combination (system, operator) if its train path belongs to system

and its nominated operator is operator.
12. The target route utilizations. These are the desired fraction of system paths

corresponding to each (system, operator, route) combination in a schedule.

1.2 Constraints

The constraints or business rules of the problem are the following:

1. For each system path:
(a) the start time of its unload slot is no earlier than the finish time of its

provisioning; and
(b) the associated pit of its unload slot has access to its route.

2. For each week in the planning horizon, the number of system paths in the
schedule for each (system, operator) combination is at least equal to the loaded
train path demand for that system, operator, and week. A system path is
counted as a system path of a given week if the the start time of its unload
slot occurs in that week.

3. The schedule must respect the pit-route access mappings.
4. Each train path and unload slot can only be used in at most one system path

in the schedule.
5. Since there is only single track access to the dump stations at the terminal

there must be at least 45 minutes separation between two consecutive arrivals.
Therefore, for every two system paths in the schedule, the start times of their
unload slots must be at least 45 minutes apart.

6. Two system paths with unload slots that overlap in time cannot have the same
pit or the same route.
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7. The waiting time of any system path in the schedule cannot be greater than
the maximum waiting time.

8. Routing rules:
(a) Each route can be served by at most one pit at any time.
(b) Each pit can serve at most one route at any time.
(c) Pits 1 and 2 cannot serve routes E and G at the same time.

1.3 Performance criteria

The performance criteria for the problem are the following:

1. The number of system paths is maximized.
2. For each week of the planning horizon, the fraction of system paths for each

(system, operator) combination is close to the associated contract share. The
contract share corresponding to (week, system, operator) is defined as the ratio
of the demand for system paths which belong to week and correspond to the
(system, operator) combination over the total demand. Furthermore, the devi-
ations over (system, operator) combinations should be balanced, that is, they
should be as close to each other as possible.

3. The system paths for each (system, operator) combination are evenly distributed
over each week of the planning horizon. The deviations over (system, operator)
combinations should be balanced.

4. For each week of the planning horizon, the fraction of system paths for each
(system, operator, route) combination is close to the desired route utilization.
Furthermore, the deviations over (system, operator, route) combinations should
be balanced.

5. The total waiting time at the yard is minimized.
6. The system paths corresponding to each (system, operator) combination allow

provisioning with the given frequency. For example, with respect to departure
times, every second system path from each system, for each train operator,
allows for provisioning. The schedule should be balanced regarding this per-
formance criterion in the sense that the deviations from the ideal frequency
over (system, operator) combinations and all intervals is balanced. Continu-
ing the example, the schedule should not contain two disjoint intervals, each
with 4 system paths, in which all the system paths of one interval allow for
provisioning, while all of the system paths of the other interval do not.

2 Problem formulation

Without loss of generality, the time horizon is H = [1, h] = [1, 40320], where each
time period corresponds to a minute. A system path belongs to the time horizon
H if its unload start time is in H. The departure time of some of the system
paths is in the day before the planning horizon starts. We represent the day before
the planning horizon starts by the interval [−1439, 0]. The planning horizon is for
scheduling all system paths with unload start times in the planning horizon. Note
that all data time periods are in the range [−1439, 40320].

2.1 Parameters and variables

We define the following parameters for the given planning horizon based on the
input data:

– Y : Set of systems.
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– P : Set of available loaded train paths. Each train path p ∈ P is described by
a departure time td ∈ H, a system, an arrival time ta. The destination of all
train paths is the yard and there exists a unique origin per each system.

– O: Set of train operators.
– R: Set of routes.
– D: Set of pits.
– B = {0, 1}: Set of provisioning states in which the True state is indicated by 0

and the False state is indicated by 1.
– U : Set of all available unload slots. Each unload slot is described by a pit, and

a start time and an end time. The end time depends just on the start time.
Therefore, each unload slot can be identified by its pit and its start time. For
example unload slot (1,100) refers to the unload slot which starts at pit 1 at
time 100, and finishes two hours and 25 minutes later at time 245.

– S: Set of all valid system paths which their unload start time is in H. According
to the definition, each system path, i, is described by 5-tuple (p, o, e, u, r) ∈ S.

Let Hd, Ha, Hs denote the sets of departure times, arrival times, and unload
start times respectively. More formally,

Hd = {t′ : ∃y ∈ Y and ta ∈ [−1439, 40320] (y, t′, ta) ∈ P},

Ha = {t′ : ∃y ∈ Y and td ∈ [−1439, 40320] (y, td, t′) ∈ P},

Hs = {t′ ∈ H : ∃` ∈ D (`, t′) ∈ U}.

Let S1 = Y, S2 = Hd, S3 = Ha, S4 = O, S5 = B, S6 = D, S7 = Hs and S8 = R.
Note that S ⊆ P ×O×B×U ×R, P ⊆ Y ×Hd×Ha, and U ⊆ D×Hs. For a subset
J ⊆ {1, 2, . . . , 8}, we define map SJ :

∏
i∈J Si → 2S as follows:

SJ ((si)i∈J ) = {((s′1, s′2, s′3), s′4, s
′
5, (s

′
6, s
′
7), s′8) ∈ S : s′j = sj for all j ∈ J}

Furthermore for Q ⊆
∏

j∈J Sj , let SJ (Q) =
⋃

s∈Q SJ (s). We say that system path
i ∈ S has property s ∈

∏
j∈J Sj if i ∈ SJ (s). Analogously, for Q ⊆

∏
j∈J Sj we

say that system path i has property Q, if i ∈ SJ (Q). For ease of exposition and
readability, we define new subscripts for maps SJ . More specifically, let SYOH s =
S{1,4,7}, SP = S{1,2,3}, SU = S{6,7}, SHs = S{7}, SR = S{8}, SYOH s = S{1,4,7},
SYOH sR = S{1,4,7,8}, SYH dO = S{1,2,4}, and SYH dOB = S{1,2,4,5}.

We denote the decision of choosing or not choosing system path i ∈ S in
a schedule by binary variable xi, that is, xi = 1 indicates that system path i

is chosen and xi = 0 indicates otherwise. Let xJ (Q) =
∑

i∈SJ (Q) xi denote the
summation of the variables corresponding to system paths that have property Q.
We similarly define new subscripts for maps XJ .

2.2 Constraints

We formulate the constraints as follows:

Constraint sets 1 and 7: The constraint sets 1 and 7 are implicit in the construction
of the set of system paths S.

Constraint set 2: Let the demand for the system paths with property (y, o) ∈ Y ×
O in week j of the planning horizon be denoted by dqj . The system path i =
(p, o, e, u = (`, ts), r) ∈ S belongs to week j ∈ W = {1, 2, 3, 4} if the start time of
its unload slot, i.e., ts, is in the jth week, i.e., ts ∈ Ij = [10080(j − 1) + 1, 10080j]
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where 10080 is the number of minutes in a week and discrete interval Ij describes
week j. Then

xYOH s (y, o, Ij) ≥ dyoj for all y ∈ Y, o ∈ O and j ∈W. (1)

Variable xYOW (y, o, Ij) which denotes x{1,4,7}({y} × {o} × Ij) is the number of
system paths in the given schedule x = (xi)i∈S with property (y, o) where their
unload slots u = (`, ts) ∈ U belong to week j, i.e., ts ∈ Ij .

Constraint sets 3 and 6: Let At(r), r ∈ R, t ∈ H be the set of all system paths
i ∈ SR(r) such that their unload slots overlap time t ∈ H. For each r ∈ R, we
denote the collection of all distinct sets At(r) over all t ∈ H by S0(r). To define it
more formally, we have:

At(r) = {(p′, o′, e′, u′, r′) ∈ SR(r) : u′ = ((`, p), t′), t ∈ [t′, t′ + 144]},

S0(r) = {At(r) : t ∈ H, ∀t′ ∈ H At(r) 6⊂ At′(r), |At(r)| > 1}.

In a similar way, let Dt(`), ` ∈ D be the set of all system paths i ∈ SD(`) such that
their unload slots overlap time t ∈ H. For each ` ∈ D, we denote the collection of
all distinct sets Dt(`) over all t ∈ H by S1(l). Let Bt, t ∈ H be the set of all system
paths i ∈ S such that

(a) their pits are either pit 1 or 2;
(b) their routes are either route E or G; and
(c) their unload slots overlap time t ∈ H.

We denote the collection of all distinct such sets Bt over interval H by S2. Or more
formally,

Bt ={(p′, o′, e′, u′, r′) ∈ S : r′ ∈ {E, G}, u′ = ((`′, p), t′), (`′, p) ∈ {1, 2}, t ∈ [t′, t′ + 144]},

S2 ={Bt : t ∈ H, ∀t′ ∈ H Bt 6⊂ Bt′ , |Bt| > 1}.

Then ∑
i∈Q

xi ≤ 1 for all r ∈ R,Q ∈ S0(r), (2)

∑
i∈Q

xi ≤ 1 for all l ∈ D,Q ∈ S1(l), (3)

∑
i∈Q

xi ≤ 1 for all Q ∈ S2. (4)

Constraint set 4: ∑
i∈SP (p)

xi ≤ 1 for all p ∈ P, (5)

∑
i∈SU (u)

xi ≤ 1 for all u ∈ U, (6)
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Constraint set 5: Constraint 5 is equivalent to this constraint that in a feasible
schedule in every 45 minute interval in the planning horizon, at most one unload
slot starts. There are 40276 45 minute intervals in a planning horizon and the

last interval starts at time 40276. More formally, for t ∈ [1, 40276], let S>45(t) = 
SW ([t, t + 44]) and let S>45 = {S>45(t) : t ∈ [1, 40276]}, then∑

i∈Q
xi ≤ 1 for all Q ∈ S>45. (7)

2.3 Performance criteria

We formulate the performance criteria as follows:

Criterion 1: The number of system paths is equal to
∑

i∈S xi. Let z(1) = −
∑

i∈S xi.
The goal is to maximize this measure.

Criterion 2: Let dj denote the total demand over week j ∈ W . The associated
contract share for (system, operator) combination (y, o) ∈ Y × O in week j ∈ W is
equal to dyoj/dj . We want the share of system paths with property (y, o) in week j,
i.e., xYOH s (y, o, Ij)/xH s (Ij) is as close as possible to the associated contract share
or equivalently xYOH s (y, o, Ij) is as close as possible to xH s (Ij)dqj/dj . Therefore

the associated deviation vector is z(2) = (z
(2)
yoj)(y,o,j)∈Y×O×W where

z
(2)
yoj = xYOH s (y, o, Ij)− dqj/djxH s (Ij) (8)

for all (y, o, j) ∈ Y ×O ×W .

Criterion 3: Assume we have n system paths in week j. One plausible interpretation
of performance criteria 3 is that the number of system paths in each day to be as

close as possible to n/7. The deviation vector is z(3) = (z
(3)
yoji)(y,o,j,i)∈Y×O×W×[1,7]

where

z
(3)
yoji = xYOH s (y, o, bji)− xYOH s (y, o, Ij)/7 (9)

for all (y, o, bji) ∈ Y × O × W × [1, 7], and bji = [10080(j − 1) + 1440(i − 1) +
1, 10080(j − 1) + 1440i] describes day i ∈ [1, 7] of week j.

Criterion 4: Let fyoj(r) be the desired route r ∈ R utilization by system paths
with property (y, o) ∈ Y × O (i.e., system paths which are from system y and are
operated by operator o) in week j ∈ W where fyoj(r) is a real number between
zero and one. In other word, 100×fyoj(r) percent of total number of system paths
in week j from system y which are operated by operator o, are assigned to route

r. The deviation vector is z(4) = (z
(4)
yojr)(y,o,j,r)∈Y×O×W×R where

z
(4)
yojr = xYOH sR (y, o, Ij , r)− fyoj(r)xY OHs(y, o, Ij) (10)

for all (y, o, j, r) ∈ Y ×O ×W ×R.

Criterion 5: Let wi denote the waiting time for system path i ∈ S, then the total
waiting time is equal to z(5) =

∑
i∈S wixi. The goal is to minimize this measure.
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Criterion 6: Let g(y, o, I) be the desired fraction of system paths with property
(y, o) which their departure times are in the interval I ⊆ H1 = [−1439, 40320]
and they are allowed to be provisioned. One suitable choice for g(y, o, I) is to be
defined as equal to 1/k. Let Hd

y = {t′ ∈ H1 : ∃ta ∈ [−1439, 40320] p = (y, t′, ta) ∈ P}
includes all departure times of system paths from system y. Let H ′dy = {[t1, t2] :

t1, t2 ∈ Hd
y , t1 ≤ t2}. We define the deviation vector as z(6) = (z

(6)
yoI)(y,o,I)∈Y×O×H′d

y

where

z
(6)
yoI = xYH dOB (y, I, o, 1)− g(q, I)xYH dO(y, I, o) (11)

for all (y, o, I) ∈ Y ×O×H ′dy . One of the main improvements one can make to make
the above measure less computationally expensive is to reduce the number of values
which set I can take. If we know which intervals contain exactly k system paths
in the optimal solution, then we just need to consider those intervals. However,
since we do not know the optimal schedule before solving the model, we need to
consider intervals of all lengths which can contain k consecutive system paths in
any possible optimal schedule.

The deviations associated with Criteria 2–4 and 6 are vectors. In order to mea-
sure these criteria we need to formalise notions of deviation and unbalancedness. Let
z = (zi)i∈n denote such a deviation vector. Then each element zi is the deviation
of component i of this criterion from some target value. We define the deviation of
z to be D(z) = ‖z‖p and the unbalancedness of z to be B(z) = minz0∈R{‖z−z0e‖p}
where p ∈ {1, 2} and e = (1, . . . , 1)T . Thus, the length of the vector z is the mea-
sure of deviation and the shortest distance between z and a point on the line
z1 = z2 = . . . = zn is the measure of unbalancedness. For each of these criteria we
wish to minimize both the deviation and the unbalancedness.

2.4 Model formulation

The aforementioned constraints and performance criteria gives rise to the following
mixed-integer conic programme (MICP) with multiple objectives:

min
(
z(1), z(2D), z(2B), z(3D), z(3B), z(4D), z(4B), z(5), z(6D), z(6B)

)
=

(
z(1),D(z(2)), B(z(2)), D(z(3)), B(z(3)),

D(z(4)), B(z(4)), z(5), D(z(6)), B(z(6))

)
subject to (1)–(11), xi ∈ {0, 1} for all i ∈ S.

We now make several observations about this model that we will use to our
advantage when solving it. For Criteria 2–4, and 6, we note that for any deviation
vector z, the optimal value for z0 is the average of the components of z under the
2-norm, the median of the components of z under the 1-norm, and that B(z) ≤
D(z) for either norm. Furthermore, for a feasible deviation vector, the sum of the
components of z is equal to zero. Thus, under the 2-norm, B(z) = D(z) and so a
minimum deviation solution also minimizes unbalancedness. Consequently, we can
omit the objective functions z(·B) under the 2-norm.

3 Solution methodology

To solve the multi-objective MICP described in the previous section, we employ an
hierarchical optimization procedure in which we solve successive single objective

7
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MICPs. The order in which the criteria were presented reflects their relative im-
portance to Aurizon and minimizing deviation is more important than minimizing
unbalancedness.

To begin the hierarchical optimization we optimize the MICP with respect

to the first objective function z(1). Let z
(1)
∗ denote the value of the best integer

solution found and suppose that in a solution to the multiple objective MICP
we require that the value of z(1) degrades by a factor of at most a(1) where
a(1) ≥ 0. We refer to a(1) as the degradation factor and add the threshold con-

straint z(1) ≤ z
(1)
∗ (1 + a(1)) to the current MICP. In the next stage, we opti-

mize the current MICP with respect to the second objective function z(2D) and

then add the corresponding threshold constraint z(2) ≤ z
(2)
∗ (1 + a(2)) to the cur-

rent MICP. The above process is repeated until all objective functions z(i) for
i ∈ {1, 2D, 2B, 3D, 3B, 4D, 4B, 5, 6D, 6B} have been considered.

Each single objective MICP can be reformulated as a mixed-integer second-
order cone programme under the 2-norm, and it can be reformulated as a mixed-
integer linear programme under the 1-norm.

4 Computational investigation

In this section, we investigate the performance of the hierarchical optimisation
procedure to solving the multi-objective MICP on an instance of realistic size.
The investigation is carried out on a machine with dual oct core 3.33GHz Intel
Xeon E5-2667 v2 processors and 256 GB of RAM. The number of threads used is 13
out of available 16 threads. We use Gurobi v8.0.0 via the Python API and Python
v3.6.4. The time limit for solving each single objective MICP is 600 seconds. The
instance has the following characteristics:

– The maximum waiting time is 60 minutes.
– There are two train operators named op1 and op2 and two systems named s1

and s2.
– The demand for each week is given in Table 1.
– The unload slots are generated with consideration of constraint set 5 and the

implication of constraint set 6 for unload slots. The maximum number of unload
slots which can be used in each day is 27. Note that the constraint set 5 is
implicit in the construction of unload slots and is therefore not coded.

– The departure times of train paths from systems s1 and s2 are 20 minutes and
90 minutes apart respectively. Some of these train paths are cancelled due to
maintenance activities.

– The desired provisioning frequency for system paths from system s2 is one per
two and for system paths from system s1 is one per one (i.e., we prefer all
system paths from system s1 to allow provisioning).

– The route utilization ratios are shown in Table 2. The route utilization ratios
for system s2 and train operator op2 are zero.

The performance statistics under each norm are shown in Tables 3 and 4. Each
row in the table corresponds to a single objective MICP and we use the following
notation:

– Relax: the objective function value of the initial MICP relaxation.
– Root: the objective function value of the final MICP relaxation solved at the

root node of the branch-and-bound tree.
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– BestBnd: the objective function value of the best MICP relaxation found during
the branch-and-bound search.

– BestFeas: the objective function value of the best feasible solution found during
the branch-and-bound search.

– Gap: the optimality gap of the best feasible solution which we define to be
|BestFeas−BestBnd|/BestFeas

Under the 2-norm, Gurobi finds an optimal solution to each single objective
MICP associated with Criteria 1 and 2, and finds a solution within one percent of
the optimal value for 5. However, it cannot find good solutions for the other criteria
within 600 seconds. It is not that surprising that the 1-norm leads to much better
performance than what was observed under the 2-norm. Gurobi solves the single
objective MICPs associated with Criteria 1–3 and 5 to optimality. The quality
of the solutions is much better for Criteria 4 and 6, much worse for Criterion
5, and about the same for the other criteria. The reason that the solution for
Criterion 5 under the 1-norm is much worse than the solution under the 2-norm is
that the threshold constraint associated with Criterion 4 under the 2-norm is not
restrictive compared to that under the 1-norm. In Table 3, the value of the best
integer solution found under Criterion 4 is 10090 which is likely to be far from
optimal.

One interesting observation is that the best integer solution values of the devi-
ation and unbalancedness objectives associated with Criteria 2-4 and 6 are equal.
This implies that the median of the components of each deviation vector is zero and
that the minimum deviation solution also minimizes unbalancedness. We believe
that this is an artefact of the instance rather than the model and so in general we
cannot omit the unbalancedness objectives as we did under the 2-norm. However,
we have reason to believe that this could be a common occurrence when solving
practical instances and so revised the hierarchical optimization procedure to skip
minimizing unbalancedness if the median of the deviation solution is zero.

The performance statistics of the revised procedure are shown in Table 5 and
Table 6 compares for each criterion, the deviation of the final multiple objective
MICP solutions when evaluated under the 2-norm. Overall the solutions found
under the 1-norm are better quality and can be found comparatively quickly using
the revised hierarchical optimization procedure.

5 Conclusion

We consider a capacity alignment planning problem for a coal chain that is faced
by our industry partner Aurizon in which a schedule of system paths are sought
that perform well with respect to various performance criteria. For many of these
criteria the schedule should not only minimize the deviation from some prescribed
targets but also the deviations should be well balanced. We model the problem as
a mixed-integer conic programme (MICP) with multiple objectives which we then
solve using a hierarchical optimization procedure. In each stage of this procedure
a single objective MICP must be solved. Depending upon whether we evaluate the
associated performance criteria under a 2- or 1-norm we reformulate the problem
as either a mixed-integer second-order cone programme or as a mixed-integer linear
programme respectively.

A property of the model is that a minimum deviation solution for a given
criteria measured under the 2-norm also minimizes the unbalancedness for that
criteria. While this is not a property of the model under the 1-norm we believe
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Table 1 Weekly demand

Train
System operator Demand

s1 op1 98
s1 op2 21
s2 op1 21
s2 op2 0

Table 2 Weekly route utilization

Train Route
System operator Route utilization

s1 op1

A 19/98
B 22/98
E 15/98
G 34/98
J 8/98

s1 op2

A 3/21
B 2/21
E 0
G 2/21
J 14/21

s2 op1

A 13/21
B 5/21
E 0
G 0
J 3/21

Table 3 Performance statistics under the 2-norm

Objective Degrad[%] Relax Root BestBnd BestFeas Gap[%] Time[sec]

1 0 756 - 756 756 0 <1
2D 10 0 0 2.5 2.5 0 49
3D 10 0 0 0 3.4 100 600
4D 10 - - 0 10090 100 600
5 10 5406 5618 5640 5698 1 600
6D - - - 0 4204 100 600

Table 4 Performance statistics under the 1-norm

Objective Degrad[%] Relax Root BestBnd BestFeas Gap[%] Time[sec]

1 0 756 - 756 756 0 <1
2D 10 0 0 5.2 5.2 0 26
2B 10 0 0 5.2 5.2 0 30
3D 10 0 - 0 0 0 4
3B 10 0 - 0 0 0 3
4D 10 0 0 12 12 0 162
4B 10 0 0.3 9.8 12 18 600
5 10 5986 6025 6085 6088 0.05 600
6D 10 1153 1303 1399 1516 8 600
6B - 1153 1165 1170 1516 22 600

Table 5 Revised performance statistics under the 1-norm

Objective Degrad[%] Relax Root BestBnd BestFeas Gap[%] Time[sec]

1 0 756 - 756 756 0 <1
2D 10 0 0 5.2 5.2 0 18
3D 10 0 0 0 0 0 4
4D 10 0 0 12 12 0 108
5 10 5987 6025 6085 6088 0.05 220
6D - 1218 1391 1483 1512 2 600

Table 6 Comparison under the 2-norm of the deviations of the final multiple objective MICP
solutions

Norm 1 2 3 4 5 6

2-norm 756 2.7 3.4 6441 5698 4204
1-norm 756 2.9 0 4.5 6688 1591
Revised 1-norm 756 2.9 0 5.5 6688 1610
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that it will frequently be the case when solving practical instances. Consequently,
we revised the hierarchical optimization procedure to omit the unbalancedness
objectives under the 2-norm, and check for their redundancy under the 1-norm.

A computational investigation on a real instance of the problem reveals, not
unsurprisingly, that the hierarchical optimization procedure under the 1-norm finds
good solutions much faster than under the 2-norm. Moreover, the quality of the
solutions found by the procedure under the 1-norm compare well to the solution
found under the 2-norm when the 1-norm solutions are evaluated for each criterion
using the 2-norm.

Future work will include improved modelling of bottleneck performance criteria
such as Criteria 6, improved solution procedures such as customised branching for
the single objective MICPs within the hierarchical optimization procedure, and
extending the problem considered to include additional practical considerations
such as dynamic start times for unload slots.
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