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1.0 Introduction 

Characterisation and analysis of complex systems as networks can reveal important insights 
into their various macroscopic structural properties. In recent years, network theory has widely 
been used to study various natural and man-made complex systems, such as biological and 
ecological systems, technological networks, social systems, and, transportation and supply 
chain networks. These studies have revealed various nontrivial topological properties 
underlying the structure and organisation of the connections (or links) between the individual 
entities (or nodes) from which each system is made of.  

The most well-known feature of most systems is their tendency to display scale free structure, 
where the degree (the number of connections of a given node) distribution obeys power law. 
As a result of this heterogeneous distribution of connections among nodes, scale-free networks 
are characterised by hubs (i.e. the nodes which have relatively higher number of connections 
compared to others in the system). The mechanism underlying the scale free structure has been 
explained by the BA model, which suggests that new entrants to a system attach preferentially 
to the highly connected nodes already present within the system.  

In addition to the scale free nature, recent empirical research investigating networked systems 
have observed mixing patterns of nodes based on various node level properties. A network is 
said to be assortative if nodes with similar properties tend to connect together, and disassortative 
otherwise. When the property considered is node degree, one can observe degree correlations 
in a given network (herein after, this paper considers node degree as the context in which node 
mixing is discussed).   

Data driven studies, to date, have revealed that almost all social networks display assortative 
mixing, where well connected people tend to know each other. In contrast, disassortativity 
seems to be a common property of almost all biological (metabolic, protein interaction, 
predator-prey) and technological networks (WWW, internet) (Pastor et al., 2001; Maslov and 
Sneppen, 2002; Newman, 2002; Nacher and Akutsu, 2012). Furthermore, recent work 
undertaken in the area of topological analysis of supply chain networks (SCNs) has also 
revealed disassortative mixing, where highly connected firms generally tend to avoid each other 
(Orenstein, 2016; Perera et al., 2016).  

While ‘homophily’ (like attracting like) is generally attributed as the mechanism underlying 
assortative mixing (Barabasi, 2016), disassortative mixing itself and the underlying mechanism 
remain less well understood. Unlike assortativity, disassortativity can also be induced by the 
scale-free property of the network. In a simple representation of a network, the nodes are only 
allowed one link between each other and this creates a conflict between the scale free property 
and degree correlations of the network – a phenomena referred to as structural disassortativity 
(Barabasi, 2016).  

Structural disassortativity is an artefact of the scale-free model and therefore is not 
representative of any underlying mechanism which drives the system towards disassortativity. 
Therefore, it is imperative to rule out structural disassortativity from any disassortativity 
observed in the data. From contemporary literature, it is evident that various mechanisms have 
been attributed to observed disassortativity, in biological networks, without first eliminating the 
possibility of structural disassortativity (Dan et al., 2007; Xu et al., 2010).  
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In this paper, we investigate the disassortativity of two distinct types of complex network 
systems, namely; the naturally evolved biological systems and man-made SCNs. Although both 
these classes of networks have been identified by various studies to be disassortative, no study 
to date has investigated whether this observed disassortativity is structurally induced or not. 
Therefore, we examine whether the disassortativity observed in the above two classes of 
networks are due to an external mechanism or whether they are simply structurally induced as 
a result of simple network representation. 

The remainder of this manuscript is structured as follows. Section two will provide a 
background to this study and introduce key concepts available in literature relating to degree-
correlations. Section three presents the details of the datasets considered and the methodology 
adopted for analysis. Section four presents the results obtained and section five provides a 
comprehensive discussion of the results. Section six concludes the paper.  

 
2.0 Literature Review 

2.1 Degree Correlated Networks 

Degree correlations (also referred to as assortativity) capture the relationship between the 
degrees of nodes that link to each other. A network is said to display degree correlations if the 
number of links between the high and low degree nodes are systematically different from what 
is randomly expected. 

A network is said to be assortative when high degree nodes are, on average, connected to other 
nodes with high degree and low degree nodes are, on average, connected to other nodes with 
low degree. In contrast, a network is said to be disassortative when, on average, high degree 
nodes are connected to nodes with low(er) degree and, on average, low degree nodes are 
connected to nodes with high(er) degree (Noldus and Van Mieghem, 2015).  

Assortativity is a key structural property of complex networks, as it can reveal important 
insights into how various dynamics operate over the network topology. Assortative mixing is 
found to impact a network’s; robustness (to both random failures and intentional attacks), 
stability, controllability, traffic dynamics, propagation of information or infections and various 
other dynamic processes (Friedel and Zimmer, 2007; Tanizawa et al., 2012; Perera et al., 2016; 
Miao et al., 2008; Xue et al., 2010; Chavez et al., 2006; Payne et al., 2009). 
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Figure 1: Structure of assortative and disassortative networks (Adapted from Hao et al., 
2011)  

Figure 1 visually illustrates the structural differences between assortative and disassortative 
network topologies. In disassortative systems, hubs (the highly connected nodes) tend to avoid 
each other, instead linking to lower-degree nodes. As a result, the network structure tends to 
display hub and spoke character (as opposed to core periphery structure observed in assortative 
networks).  

2.2 Degree correlations and the scale free property in networks 

Intuitively, scale free networks arising through BA mechanism would have a natural 
predisposition to be disassortative. The reasoning behind this lies at the fundamental 
proposition of the BA model, the preferential attachment; which suggests that every time a new 
node is added to the system, a link is placed between the newly added node n, which has degree 
0<= dn <=m (where m is the number of links that are added to the system with every new node) 
and a node that is already present within the system, which is likely a node with a relatively 
high degree. Thus, iterative placement of links between a low-degree node (i.e. the new nodes 
that enter the system) and high-degree nodes, will ultimately make the resulting network 
disassortative, as a whole (Noldus and Van, 2015). However, it has been shown analytically 
(by Nikoloski et al) and through simulations (by Newman, 2003), network generation using BA 
model, asymptotically for large N, does not generate any degree correlations (i.e. the resulting 
network is neutral). 

2.2.1 Expected number of links between two nodes in a neutral network 

Consider an undirected network of N nodes and M links, with degree distribution kp , where 

kp  is the probability that a randomly chosen node on the network will have degree k . Assume 
that we reach a node by following a randomly chosen link on the network. The degree of this 
node is not distributed according to kp , rather it is biased towards nodes of higher degrees 
(since more links are incident on high degree nodes than on low degree nodes). Therefore, the 



Disassortativity in Biological and Supply Chain Networks 

Perera, Bell and Latty 

4 
 

degree distribution for the node at the end of a randomly chosen link is proportional to kkp as 
opposed to kp (Newman, 2002).  

Let kq be the probability of having a degree k  node at the end of a link. We can write kq as; 

k
k

kpq
k

=
〈 〉

 (Eq. 1) 

Since the sum of kq  for a given network equals 1, division by the average degree k〈 〉  is used 
for normalisation of the probability kq across the network. 

As presented in Callaway et al (2001), we can define the quantity jke  to be the joint probability 

distribution of finding a node with degree j  and a node with degree k , at the two ends of a 
randomly selected link. Since in an undirected network, this quantity is symmetric on its 
indices, i.e. jk kje e= , we can invoke sum rules as follows; 

1jk
jk

e =∑  

jk k
j

e q=∑  

Accordingly, in a network which has no degree correlations (i.e. a neutral network), we expect 
that; 

jk j ke q q=  (Eq. 2) 

Replacing jq  and kq with Eq. 1, we obtain; 

2
k j

jk

kp jp
e

k
=

〈 〉
 (Eq. 3) 

Therefore, deviations from the above condition are considered as characteristic of degree 
correlations in a network.   

In a network with degree correlations jke , the expected number of links between node j  and 
node k can be found as follows; 

jk jkE e k N= 〈 〉   

For a neutral network (with no degree correlations), we can replace jke with Eq. 3, to obtain 
(Maslov et al., 2004; Boguná et al., 2004); 

k j
jk

kp jp
E N

k
=

〈 〉
 (Eq. 4) 

The quantity jkE  derived above can be used to estimate the expected number of links between two 

nodes, when the overall network is neutral.   

 



Disassortativity in Biological and Supply Chain Networks 

Perera, Bell and Latty 

5 
 

2.3 Quantifying degree correlations 

It is important to be able to quantify the degree correlations of a given network using a single 
metric. In this regard, we can utilise the average degree of the neighbours, for each node i , as 
follows; 

nn
1

1( )
N

i ij j
ni

k k A k
k =

= ∑  (Eq. 5) 

The degree correlation function should consider the above calculation for all nodes with degree 
k (Pastor-Satorras et al., 2001; Vázquez et al., 2002); 

nn ( ) ( | )
j

k k jP j k=∑  (Eq. 6) 

In the above function, ( | )P j k is the conditional probability of reaching a degree j  node at the 
opposite end of a degree k node. In essence, the above function provides the average degree of 
neighbours for each node of degree k . In order to identify the degree correlations of a given 
network, the dependence of nn ( )k k on degree k  should be investigated.  

2.3.1 Neutral networks  

Note that in a neutral network, the quantity ( | )P j k is in fact the same as the quantity jq , as 
below (Barabasi, 2016); 

( | ) jk j k
j

jk k
j

e q q
P j k q

e q
= = =
∑  (Eq. 7) 

Accordingly, replacing ( | )P j k with jq , we obtain; 

nn ( ) j
j

k k jq=∑ (Eq. 8) 

From Eq1., it is known that j
j

jp
q

k
=
〈 〉

 

Therefore, replacing jq  in Eq. 8 with the above, we obtain the following; 

2

nn ( ) j
j

j j

jp kk k jq j
k k

〈 〉
= = =

〈 〉 〈 〉∑ ∑  (Eq. 9) 

As can be seen above, in a neutral network, the average degree of a given node’s neighbours, 
does not depend on the degree of that node (i.e. nn ( )k k is independent of k ). 
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2.3.2 Correlated networks 

In correlated networks, nn ( )k k depends on k . In assortative networks, where hubs tend to 
connect with each other, this relationship is expected to be positive (and vice versa for 
disassortative networks).  

2.3.2.1 Correlation exponent 

The correlation exponent characterises the relationship between nn ( )k k and k , as follows 
(Pastor-Satorras et al., 2001); 

nn ( )k k ck µ=  (Eq. 10) 

Where c is th1e constant of proportionality.  

As per the above, the correlation exponent can be used to quantify the level of degree 
correlations in a given network. For neutral networks, one would expect µ  to be zero. For 
assortative and disassortative networks, µ  would be >0 and <0, respectively.  

It is noted that some studies use the degree correlation coefficient, r, proposed by Newman 
(2002) to characterise the level of degree correlations that exists in a network. However, in this study, 
we use µ (as per Eq. 10) to characterise the degree correlations of networks analysed.  

Structural Cutoff: From Eq. 4, it is clear that only when the degrees of node k  and node j , 
are above a certain threshold, the expected number of links jkE  is >1 (i.e. prediction of multiple 
links), which gives rise to degree correlations. This threshold is termed structural cut-off, sk  
and it scales as (Boguná et al., 2004); 

1/2
s ( ) ( )k N k N〈 〉  

Natural Cutoff: The degree distribution Pk of a scale free network is approximated with power 
law as follows; 

kP k γ−
  

where k is the degree of the node and γ is the degree exponent (also known as the power law or 
the scale free exponent). The popular BA model generates networks with γ  = 3. For a scale-
free network, the expected maximum degree maxk  (also known as the natural cut-off) which 
represents the expected size of the largest hub is estimated as follows (Barabasi, 2016); 

1
1

max mink k N γ −
   (Eq. 11) 

where maxk and mink are the expected maximum and minimum degree of a node, respectively. N 
is the system size, in terms of the number of nodes.  

 

 



Disassortativity in Biological and Supply Chain Networks 

Perera, Bell and Latty 

7 
 

2.3.3 Origin of Structural Disassortativity 

Comparing maxk  to sk  reveals two distinct regimes (Barabasi, 2016); 

When γ >3: 0.5
maxk N <
 . Therefore maxk is always less than sk . This means that the degree 

required by the largest hub to trigger the structural cut-off is higher than the degree of the largest 
hub in the network. Therefore, when γ >3, there will be no nodes for which jkE  is >1 – thus 
no conflict between degree correlations and the simple network requirement is observed.    

When γ <3: 0.5
maxk N >
 , thus exceeding sk  (which scales at 0.5). Consequently, the nodes 

with degrees > sk  can violate 1jkE >  condition. Such networks will have fewer links between 
its hubs than predicted by Eq. 4 (due to simple network representation, the two largest hubs 
cannot have multiple links between them to maintain the neutral status of the network). Such 
networks will inevitably become disassortative. This is known as structural disassortativity. 
Such disassortativity may not be a result of any microscopic property of the network, rather it 
is purely due to the structural limitations of the simple network representation.  

 
2.4 Deciphering Observed Degree Correlations in Real World Networks 

An important question is whether the degree distribution on its own is sufficient to describe the 
structure of a network, i.e. whether the degree correlations observed in the network is explained 
by the ensembles of networks generated by its degree distribution while preserving the degree 
vector.  

In the case of assortative networks, the observed degree correlations cannot be due to the 
structural cut-off since the effect of hubs is opposite. As such, the degree distribution cannot 
explain the observed degree correlations in assortative networks. Therefore, there is some 
unknown mechanism during the evolution of the network which drives it into an assortative 
state. Some researchers (McPherson et al., 2001; Aral et al., 2009; Rivera et al., 2010) have 
attributed this to homophily (i.e. like attracting like).  

In the case of disassortative networks, the absence of structural cut-off can be partially 
responsible for disassortativity. However, deeper analysis is required to determine whether the 
observed degree anti-correlations in a given network is due to structural disassortativity or some 
unknown mechanism. In this regard, degree preserving randomisation plays an important role, 
as discussed below. 

2.4.1 Degree Preserving Randomisation (DPR) 

DPR can help establish whether or not the degree-correlations observed in a network is simply 
an artefact of the network’s inherent structural properties or a property unique to the nodes.  

DPR involves rewiring the original network, to generate an ensemble of null models, while 
preserving the degree vector (Noldus and Van, 2015). At each time step, the DRP process 
randomly picks two connected node pairs and switch their link targets. This switching is 
repeatedly applied to the entire network. The resulting network represents a null model where 
each node still has the same degree, yet the paths through the network have been randomised.  
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Comparison of trend lines between the original/observed degree correlation function nn ( )k k  

and the randomised degree correlation function
R
nn ( )k k  (obtained as an average through a number 

of DPR trials) can reveal if the degree correlations observed in the original network are 

structural or not. If the original nn ( )k k and the randomised 
R
nn ( )k k  trends are identical, then the 

degree correlations observed in the original network are purely structural, i.e. the degree 
correlations can entirely be explained by the degree distribution without attribution to any other 

external mechanism. However, if the original nn ( )k k indicates degree correlations which 

diverge from the randomised 
R
nn ( )k k trend, there is an underlying mechanism which induces the 

degree correlations in the original network (Barabasi, 2016).  

3.0 Methods 

Two distinct classes of networks were considered in this study, namely; the man-made SCNs 
and natural biological networks. Four network datasets from each network class was considered 
for analysis. Table 1 provides the description of each network along with the data source.  

Table 1: Description of the network datasets considered 

 Network Description Data Source 
SCNs 
Industrial Organic Chemicals  

SCN firms are represented as nodes 
and contractual relationships as 
links. 

Willems (2008). 
Farm Machinery and Equipment  
Primary Batteries, Dry and Wet  
Aircraft Engines and Engine Parts  
Biological Networks 

Metabolic (C.Elegans) Nodes are substrates and links are 
metabolic reactions. 

Duch and Arenas (2005). Data 
obtained from 
networkrepository.com (Rossi 
and Ahmed, 2015). 

Mouse Brain Visual Cortex Nodes represent neurones and links 
represent neural connections. 

Data obtained from 
networkrepository.com (Rossi 
and Ahmed, 2015). 

Food Web Nodes are predators and prey, links 
are predator-prey relationships. 

Ulanowicz et al., 1998. Data 
obtained from 
networkrepository.com (Rossi 
and Ahmed, 2015). 

Protein Protein Interactions 
(Yeast) 

Nodes represent various proteins and 
links represent interactions between 
them. 

Ito et al., 2001.  

 
In this study, all the above networks were considered as undirected/unweighted networks. 
Initially, for each network, the degree correlation was established from the degree distribution. 
Then, 50 independent runs of DPR was conducted for each network dataset. During DPR no 
self-loops and multi-links between nodes were allowed.  

In addition, for each network, the number of hub nodes with degrees > sk  which can violate 
1jkE >  condition was calculated. For the two largest hubs, in each network, the number of links 
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required between them to maintain the neutral status (i.e. no degree correlation) was also 
calculated. These results are presented in Section 4.   

 
4.0 Results 

The following table outlines basic properties of the networks considered.  

Table 2: Basic properties of the networks considered 

 Nodes Links 
γ
(correlation) µ  k〈 〉  2k〈 〉  

2k
k

〈 〉
〈 〉

 

SCNs 
Industrial Organic 
Chemicals  1479 2069 1.503 (0.891) -0.136 2.798 27.190 9.718 
Farm Machinery and 
Equipment  706 908 0.925 (0.85) -0.273 2.572 27.630 10.743 
Primary Batteries, Dry 
and Wet  617 753 1.555 (0.967) -0.685 2.441 19.460 7.972 
Aircraft Engines and 
Engine Parts  2025 16225 0.846 (0.869) -0.366 16.025 1802.060 112.453 
Biological Networks 
Metabolic (C.Elegans) 453 2025 0.956 (0.358) -0.258 8.940 358.490 40.098 
Mouse Brain Visual 
Cortex 193 214 1.092 (0.913) -1.014 2.218 28.746 12.963 
Food Web 54 353 0.537 (0.329) -0.298 13.074 233.296 17.844 
Protein Protein 
Interactions (Yeast) 790 761 1.806 (0.999) -0.421 1.927 12.268 6.368 

 
As shown in the table above, the degree distributions of all the networks considered can be 
reasonably approximated as scale free. The scale free exponent of all these networks are below 
2. The degree correlations of these networks were established using Eq.10. As indicated by 
negative µ , all the networks indicate disassortative mixing. Also, the average degree of a given 
node’s neighbours, for a neutral scenario of each network (without degree correlations), is 
provided in the right most column, as approximated using Eq. 9.  
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Table 3: Hub characteristics of the networks considered 

  

Degree of 
the largest 
hub 

Degree of 
the second 
largest hub 

Neutral network 
prediction, jkE  
(between two largest 
hubs) 

Structural 
cut-off, sk  

% of nodes 
with degree 
> sk  

SCNs 
Industrial Organic 
Chemicals  48 26 0.302 64.329 0 
Farm Machinery and 
Equipment  30 20 0.330 42.613 0 
Primary Batteries, Dry 
and Wet  25 23 0.382 38.808 0 
Aircraft Engines and 
Engine Parts  241 233 1.730 180.141 1.90% 
Biological Networks 
Metabolic (C.Elegans) 237 123 7.198 63.640 1.77% 
Mouse Brain Visual 
Cortex 31 30 2.173 20.688 3.63% 
Food Web 48 40 2.720 26.571 5.56% 
Protein Protein 
Interactions (Yeast) 56 33 1.214 39.013 0.13% 

 
Table 3 provides insights onto the hub structure of the networks considered. The neutral 

network prediction, jkE provides the number of links required between the two largest hubs, for 
each network to maintain the neutral nature. For example, consider the Metabolic (C.Elegans) 
network, which has two largest hubs with degrees 237 and 123, respectively. Using Eq. 4, we 
establish that these two largest hubs should be connected by 7-8 links, in order for the network 
to be neutral. However, due to the simple network representation, two nodes can be connected, 

at most, by one link. Therefore, when jkE is greater than 1, this induces structural 

disassortativity in networks. Also, the networks which include jkE >1, include nodes with 

degrees which are above the structural cut-off, sk .  

The following plots illustrate the degree correlation function, nn ( )k k for each network 
considered. The Red circles indicate degree correlations observed from each network with the 
line of best fit shown in light Red.  

The Blue squares indicate average
R
nn ( )k k , obtained from 50 independent trials of DPR (the 

error bars show the range of 
R
nn ( )k k obtained). The line of best fit for average

R
nn ( )k k is presented 

in light Blue colour.  

The horizontal Black dashed line indicates the degree correlations prediction, using Eq. 9, for 
a neutral network, with the same degree distribution as the considered network.  
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Figure 2a: Industrial organic SCN 

 

 

Figure 2b: Battery SCN 
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Figure 2c: Farm machinery and equipment SCN 

 

 

Figure 2d: Aircraft engines and engine parts SCN 
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Figure 3a: Food web  

 

 

Figure 3b: Brain network (mouse visual cortex)  
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Figure 3c: Metabolic network (C. elegans)  

 

 

Figure 3d: Protein-Protein interaction network 

  

5.0 Discussion 

5.1 General observations from the results 

From the results presented in Section 4, it is clear that all networks from both classes, show 
disassortativity – where average neighbour degree decays for higher degree nodes. Although 
all considered networks show disassortativity, there is an important distinction. The biological 
networks consistently show disassortativity which is structurally induced, while the SCNs show 
both structural and ‘physical’ disassortativity. Here, the term ‘physical’ is used to describe 
disassortativity which is driven by an underlying mechanism.  
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Consider the biological networks presented in Figures 3a-d. The scaling of nn ( )k k for these 

networks are almost indistinguishable from
R
nn ( )k k . This implies that the disassortativity which 

is materialised and observed in these networks are attributable to their degree distributions (i.e. 
DRP process can achieve the same level of disassortativity for the same degree distribution). 
Therefore, these networks are structurally disassortative, meaning their disassortative nature 
can be fully explained by their respective degree distributions, without attribution to any 
underlying mechanism which drives the system towards disassortativity.  

In contrast, consider the SCNs presented in Figures 2a-c. The nn ( )k k of these networks decay 

more rapidly than
R
nn ( )k k . Also, the majority of the observed degree correlation data points for 

these networks, lie outside the range indicated by DPR. Therefore, the disassortativity of these 
networks cannot be fully explained by their respective degree distributions. There is an 
underlying mechanism which drives these systems towards disassortativity. However, the 
aircraft engines and engine parts SCN, presented in Figure 2d, indicates structural 

disassortativity as evident by the indistinguishable scaling of nn ( )k k and 
R
nn ( )k k . This 

observation is further corroborated by jkE being greater than 1 for this network. Therefore, it is 
evident that while all biological networks considered in this study indicate disassortativity 
which is of structural origin, the SCNs can include both structural and physical disassortativity.  

 
Another important aspect of all the networks, considered in this study, are their scale free 
exponent, which always lies below 2. Many properties of a scale-free network depend on the 
value of the degree exponent, γ. Therefore, it is interesting to establish how the network 
properties vary with γ. For a scale-free network, the expected maximum degree maxk  (the 
natural cut-off) which represents the expected size of the largest hub can be estimated using 

Eq.11 (Barabasi, 2016). Based on Eq. 11, when γ<2, the exponent  is larger than 1. Therefore, 

the link acquisition rate of the largest hub (i.e. node with maxk ) is faster than the growth of the 
network in terms of the number of nodes present. Accordingly, no large networks can exist in 
this regime, since the largest hub will eventually run out of nodes to connect to. In this scenario, 
the high-degree nodes are disproportionately attractive. This winner-takes-all dynamic leads to 
a hub-and-spoke network topology in which all nodes are within a short distance from each 
other.  

From Table 3, it can be seen that in the cases where structural disassortativity is observed, this 
is due to the relatively minor proportion of the super-rich nodes whose degrees exceed the 
structural cut-off, sk . However, as γ continues to increase beyond 2, the networks include 
smaller and less numerous hubs, which ultimately leads to a topology similar to that of a random 
network where all nodes have almost the same number of connections. 
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5.2 Biological networks 

It is known that in assortative networks, due to high degree nodes pairing up with each other, 
percolation and formation of a giant component is facilitated, while the opposite is true for 
disassortative networks. Also, another unfavourable implication of disassortativity is that since 
high degree nodes are less connected to one another, many paths between nodes in the network 
are dependent on high degree nodes. Therefore, failure of a high degree node (under a targeted 
attack which selectively compromises hubs) in a disassortative network, would have a relatively 
large impact on the overall connectedness of the network (Noldus and Van, 2015). In particular, 
since most low degree nodes are connected to hubs in a disassortative network, removal of a 
hub also removes these low degree nodes. In comparison, in assortative networks, removal of 
hubs are less damaging due to the presence of multiple/redundant hubs which are connected 
with each other to form the core of the network. 

 
Sinha (2009) acknowledges that assortative mixing in networks has favourable implications in 
terms of robustness and questions why natural evolution of biological networks has favoured 
disassortativity. Justification is then put forth relating the advantages for dynamical stability of 
networks arising from disassortative structures. It is not difficult to imagine that assortative 
network structure can lead to cascading disruptions – where a disruption at one leaf node can 
spread quickly within the network through the connected hubs (Brintrup et al., 2016). On the 
other hand, disassortative networks are generally resilient against cascading impacts arising 
node failures – since hubs are not connected with each other, the likelihood of disruption 
impacts cascading from one hub node to another is minimised (Song et al, 2006).  

 
A number of previous studies have stated that the mechanism underlying the origin of 
disassortativity in biological/cellular networks remains unexplained (Barabasi and Oltvai, 
2004; Atanas, 2007; Barzel et al., 2012; Walhout et al., 2012; Sah et al, 2014). However, some 
studies have formulated plausible mechanisms which may underlie the observed 
disassortativity in biological networks (Dan et al., 2007; Xu et al., 2010) while a number of 
other studies have constructed network growth models which can mimic the observed 
disassortative mixing of biological networks (Tian and Shi, 2007; Takemoto and Oosawa, 2007; 
Zhou et al., 2009; Wang et al., 2015). While most of these mechanisms relate to duplication 
and divergence principles, no attempt has been made to first rule out the structural 
disassortativity. As shown in the results presented in this study, it is evident that the observed 
disassortativity in biological networks (those which were investigated in this study) is 
structurally induced, meaning their disassortative nature can be fully explained by their 
respective degree distributions, without attribution to any underlying mechanism which drives 
the system towards disassortativity. 
 

The above result reveals the importance of moving beyond simple network representation 
(which allows, at most, only one undirected link between any pair of nodes) when studying 
disassortativity in biological networks. Our findings confirm that the restriction to single links 
between node pairs, in simple network representations, accounts for all of the anti-degree 
correlations observed in the biological network cases considered.  

In addition, the direction of the links provide important information in relation to the structure 
of the biological networks. For metabolic networks in particular, a meaningful understanding 
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requires one to consider the direction and the temporal aspects of the interactions (Almaas, 
2007). Piraveenan et al (2012) have shown that although undirected biological networks may 
appear disassortative, when directedness is considered, they do in fact become assortative. 
Therefore, future analysis of biological systems should consider representation of networks as 
directed with multi-link formations allowed between nodes.  

 
5.3 Supply chain networks 

As shown in the results, apart from the Aircraft Engines and Engine Parts SCN, the remaining 
3 SCNs all indicated disassortativity driven by an underlying mechanism. A reason for this 
physical disassortativity in SCNs could be due to the heterogeneity in the functions undertaken 
by the firms which are represented as nodes in the network model. Such disassortative mixing 
has been observed commonly in economic systems (Barabasi, 2016). For example, in economic 
settings, trade typically takes place between individuals or organisations of different skills and 
specialities. The above is certainly true in the SCN – where a supplier is most likely to link with 
a manufacturer, rather than to another supplier. This inherent functional property, in the SCN 
context, is likely to be responsible for forcing the SCNs towards disassortative mixing – which 
leads to hub and spoke network topology.  

Nacher and Akutsu (2012), and Molnar et al. (2013) have examined the dynamical control of a 
network by considering a model of reduced complexity, where a minimum set of possible nodes 
dominates the whole system, called the Minimum Dominating Set (MDS). An important 
finding suggests that only a few nodes are needed to control the entire network if γ< 2, whereas 
many nodes are required if it is larger than 2. When γ< 2, the number of connections in the 
network increases faster than the number of nodes, resulting in highly heterogeneous network 
connectivity. Such networks tend to be dense and centralised with small average shortest path 
lengths, and therefore are inherently easy to dominate. Given the vital role of coordination and 
control in SCNs, particularly due to largely unpredictable market demand conditions, it could 
be that SCNs self-organise themselves towards hub-and-spoke topologies where γ< 2, so as to 
minimize the size of the MDS. Being able to control the overall network through control of a 
handful of firms can have remarkable advantages in an economic context (Perera et al, 2015).  

 
6.0 Conclusions 

In this paper, we have investigated the observed disassortative tendencies in man-made supply 
chain networks and naturally occurring biological networks. Degree preserving randomisation 
is used to generate an ensemble of null models for each network. Comparison of the degree 
correlation profiles of each network, against that of their degree preserving randomised 
counterparts reveal whether the observed disassortativity in each network is of structural nature 
or not. We find that in all biological networks, the observed disassortativity is of structural 
nature, meaning their disassortative nature can be fully explained by their respective degree 
distributions, without attribution to any underlying mechanism which drives the system towards 
disassortativity. However, in supply chain networks, we find one case where disassortativity is 
structurally induced and in other cases where it is mechanistically driven.  

Future work should focus on investigating a plausible mechanism underlying the disassortative 
mixing observed in networks. However, as outlined in this paper, a vital step for any future 
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research aiming to establish the mechanism underlying disassortativity is to rule out structural 
disassortativity by thorough analysis. If a network is found to be structurally disassortative, then 
no specific mechanism is needed to be invoked to account for its disassortativity. 
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