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Introduction 

Widely available kilovoltage imaging systems, using marker-based [1-6] and markerless 

technology [7-12] are being actively developed and are moving into clinical practice. One 

technology that has been clinically implemented using a linear-accelerator gantry-mounted 

imaging system is kilovoltage intrafraction monitoring (KIM) [13,14],, which measures the 3D 5 

tumor positions in real-time from 2D projections of the implanted fiducial markers acquired by a 

single kV imager based on a probability distribution function. wWith the most recent step being 

the clinical implementation of real-time six-degree of freedom (6DoF) target motion monitoring, 

in which both the target translation and rotation are being measured in real-time [15]. 

Management of intrafraction tumor motion is particularly important for non-uniform dose 10 

prescription or the use of boost volumes in hypofractionation, which are postulated to be superior 

for prostate cancer treatment compared to 3D conformal radiotherapy [16-18]. There is increasing 

evidence to demonstrate the importance of accounting for translational and rotational (6DoF) 

tumor motion during prostate radiotherapy [19-24]. The magnitude of rotational motion during 

radiotherapy has been quantified for lung, liver and prostate cancer patients [20,25-27]. Ignoring 15 

the rotational motion was shown to result in a significant underdosing effect even if the 

translational tumor motion was properly managed [19]. Appropriate management of the rotational 

tumor motion can improve the accuracy of the tumor positional estimates [25] and further reduce 

the treatment margins by 4-6 mm, while maintaining target coverage given the controllability of 

rotation motion within 1° [23].  20 

With the clinical introduction of a real-time six degrees-of-freedom (6DoF) tumor motion 

monitoring system [15], an obvious question is how accurate and precise are the translation and 

rotational measurements. To answer this question, we performed a quantitative analysis of the 

clinical accuracy and precision of the KIM six degree-of-freedom prostate motion measurements 

based on the in-treatment kV and MV imaging data collected from 377 fractions of 14 patients. 25 

The real-time 6DoF KIM measurements were compared against the concurrent ground truth 

motion derived from kV/MV triangulation. 

Methods and Materials 

Clinical trial data 

In this ethics-approved clinical trial (NCT01742403), Kilovoltage Intrafraction Monitoring (KIM) 30 

was used to monitor the 6DoF prostate tumor motion in real-time and to trigger a gating event 
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where the treatment beam was paused and the couch position was adjusted to compensate for the 

prostate motion when it exceeded the threshold (3-mm/5-seconds for standard dose fractions and 

2-mm/5-seconds for SBRT fractions).   

The real-time 6DoF tumor motion information was recorded for 14 patients (age range 62 to 35 

85, median of 78.5). The maximum hip width, which influences the marker visibility, for these 

patients ranged from 32.3 to 39.6 cm with the median of 36.4 cm. Out of a total of 403 treatment 

fractions, o with a total of 403 fractions.The mwas Only 377 fractions were available for analysis 

due to missing and/or incomplete acquisition of the MV images which are required for the ground 

truth. Of the 377 fractions, 7 were 15-Gy SBRT fractions (BOOSTER trial, NCT02004223) and 40 

370 2-Gy fractions.  

Real-time measured 6DoF prostate tumor motion 

The focus of this study was on the accuracy and precision of the KIM 6DoF system. A large 

amount of prostate 6DoF motion was measured, and the motion from 14 patients (377 fractions) is 

summarized in supplementary table 1 and. It should be noted that as a 3-mm translation motion 45 

gating threshold (2-mm for SBRT) was used, that the translational motion was less than would 

have been observed if no intrafraction correction strategy was in place.  In addition, ttwo 

interesting examples of 6DoF prostate motion trajectories with large intrafractional rotation 

motion are shown in supplementary figure 1, where a large intrafractional rotation motion of > 10° 

was present whilst the translation motion was relatively small within the gating threshold., which 50 

demonstrates the importance of real-time guidance of tumor motion in 6DoF. It should be noted 

that as a 3-mm translation motion gating threshold (2-mm for SBRT) was used, that the 

translational motion was less than would have been observed if no intrafraction correction strategy 

was in place.   

Evaluating the accuracy and precision 6DoF motion measurements 55 

Figure 1 shows the workflow of the analysis for the accuracy and precision of real-time acquired 

6DoF KIM prostate motion. Six parameters describing three translations and three rotations about 

the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) axes were used to represent 

the rigid transformation in 6 DoF, and these are denoted as TLR, TSI, TAP, RLR, RSI, RAP, 

respectively. In each treatment, kV and MV images were simultaneously acquired at 10 Hz. Real-60 

time 6DoF target motion, relative to its position in the planning CT scan was estimated from the 

successive kV images using KIM. Concurrently acquired MV frames were collected and saved for 

post-treatment kV/MV triangulation analysis to derive the ground-truth motion. 
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We previously developed a procedure to derive 6DoF motion information from kV/MV 

triangulated 3D markers’ positions [28] given all three markers 3D positions are available. These 65 

kV/MV triangulation derived 6DoF motion estimates served as the ground truth.  

Due to the low contrast of MV images and marker occlusions by MLC leaves in VMAT, 

marker segmentation in MV images was challenging. The predicted marker positions on the MV 

images were obtained using a two-step semi-automated procedure (i) forward projecting the 

temporally-synchronized 3D KIM marker position onto the MV imager; and (ii) using an MV 70 

marker detection algorithm. Figure 2 shows temporally synchronized kV and MV images with the 

segmented marker positions. The automatic kV marker segmentation from the real-time KIM 

measurements was used in the kV/MV triangulation. The segmentation quality was visually 

inspected and corrected if necessary on each image to limit the influence of the segmentation 

errors from KIM propagate into the ground-truth motion estimates.   75 

As the KIM and the ground truth 6DoF prostate motion derived from kV/MV triangulation are 

concurrent and directly comparable, the real-time 6 DoF KIM prostate motion measurement 

accuracy and precision was calculated in each DoF as the mean and standard deviation (s.d.) of the 

differences, respectively. Further analysis was undertaken on the relationship between the KIM 

6DoF accuracy and (i) the gantry angle; and (ii) the magnitude of the motion. The Pearson 80 

correlation coefficient (ρ) between the actual motion (ground-truth) and the KIM measured motion 

was computed in each DoF. 

Results 

Ground truth 6DoF motion from kV/MV triangulation 

kV/MV image frames from the 377 fractions from 14 patients were used for triangulation. 15,739 85 

kV and MV frames were obtained where all three markers were visible and successfully 

segmented. The data spanned approximately 10% of the entire treatment time.  

The accuracy and precision of 6DoF KIM 

The accuracy and precision of 6DoF KIM motion estimates are listed in Table 1. The accuracy of 

the rotational motion measurements of the entire collection of the data (upper rows) in each axis 90 

was comparable to within 0.2° whilst the highest precision of rotation motion (to within ±0.5°) 

was found in AP, followed by LR (±1.0°) and SI (±1.3°) axes. Translational motion was most 

accurate and precise in SI direction (-0.1 ± 0.2 mm) and the other two directions had analogous 

accuracy and precision of 0.0 ± 0.5 mm. Relatively large minimum and maximum values are 

found in RLR and RSI for rotations, and TAP for translations. The vast majority of these values are 95 
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the result of measurement noise, which is evident in the 5
th

 and 95
th

 percentiles. Relatively large 

errors (>3.4° for rotation and >1.2 mm for translation) were present in 2% of the analysed data. 

Based on this table, overall RSI and TAP are the least accurate degrees of freedom for rotational and 

translational measurements, respectively. The distribution of the differences between KIM and 

ground truth is shown in Figure 3, clearly demonstrating that TSI and RSI were the most precise 100 

translation and least precise rotation motion, respectively. None of these differences were 

normally distributed based on the Kolmogorov-Smirnov test.  

Table 1 also lists the results of the same analysis of the data divided into two treatment types: 

(i) Standard fractions (mid rows); and (ii) SBRT fractions (lower rows). A previous study showed 

that longer treatment duration degraded the accuracy of KIM motion measurements in simulations 105 

[29], which is not evident in the results of the current study. In all DoF, the standard and SBRT 

treatments exhibited comparable accuracy and precision, as well as 5
th

 and 95
th

 percentiles, except 

RSI in which showed a smaller range of 5
th

, 95
th

 percentiles for SBRT fractions. The difference in 

findings may have been caused by the considerably smaller datasets in the SBRT fractions (7 

fractions) compared to standard fractions (370 fractions), requiring a further analysis upon the 110 

collection of more data.  

Figure 4 shows the overall accuracy and precision of the KIM motion as a function of gantry 

angle. A slight dependency in the accuracy and precision of KIM-measured rotational motion was 

found which varied from ~0° to ±2° as the gantry angle ranging from -140° to +140° (Varian IEC 

601-2 scale) where a reduction in both accuracy and precision was found at lateral gantry angles 115 

(±90°) for rotations in LR and SI directions, which is expected as both RLR and RSI rely on TAP, 

which is the least accurate DoF at the lateral gantry angles. Although the translational motion was 

all within ±1 mm, sinusoidal variations in the accuracy depending on the gantry angle were 

visible. This could be attributed to (i) inherent dependencies of the accuracy of translational 

motion estimates with KIM on gantry angle where the TSI is always resolved, hence the most 120 

accurate whilst the accuracies of TLR and TAP alternate depending on the gantry angle i.e. TLR is 

most accurate at gantry angle of ±90° and TAP is most accurate at gantry angle of 0°; and (ii) small 

residual misalignment (≤ ±0.5 mm) in the positions of the isocenter between kV and MV imagers 

after applying the correction factor based on Winston-Lutz test [30]. Although the effect of this 

residual misalignment in the isocenter position is visible in the data, the magnitude was within the 125 

tolerance (≤1.0 mm) recommended by Task Group 142 [31].  

The magnitude of KIM-measured motion is plotted against the actual ground-truth motion in 

Figure 5, which shows that there is no dependency of the accuracy and precision of real-time KIM 

measured 6DoF motion on the magnitude of the actual motion. The Pearson correlation 
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coefficients (ρ) were calculated for each DoF and showed there were very strong correlations (all 130 

≥0.88) between the KIM and ground-truth motion. This result implies that the KIM provided the 

6DoF motion estimates that are sufficiently accurate and precise for the entire motion ranges of 

clinical relevance, retrospectively ensuring that the gating events were correctly issued. 

Discussion 

This study reports the accuracy and precision of the real-time estimated intrafractional 6DoF 135 

tumor motion, measured across 14 prostate cancer patients during VMAT treatments from the 

prospective ethics-approved clinical trial (NCT01742403) of KIM. The results demonstrate that 

the 6DoF prostate tumor motion can be measured with an accuracy±precision of 0.2±1.3° and 

0.0±0.5 mm for rotations and translations, respectively. For the first patient (5 fractions) enrolled 

in a separate study, the Stereotactic Prostate Adaptive Radiotherapy Utilising Kilovoltage 140 

Intrafraction Monitoring (SPARK) trial (TROG 15.01, NCT02397317), the accuracy and 

precision of the real-time 6DoF prostate motion measured using KIM were reported to be within 

4° and one millimeter for rotational and translational prostate motion, respectively [15]. The 

differences in the quantified accuracy and precision are attributed to significantly lower number of 

data points used in the SPARK trial (n = 18) compared to this study (n = 15,739). 145 

The accuracy and precision of the 6DoF KIM motion measurements were performed by 

comparing against the corresponding ground-truth motion derived from kV/MV triangulation. 

This study provided a method to evaluate the accuracy of the intrafractional 6DoF target motion 

for post-treatment quality control and better understanding of the limits in the accuracy and 

precision of the measured target motion using KIM. All of these are of clinical significance in 150 

moving towards real-time 6DoF tumor motion adaptive radiotherapy. As both kV and MV 

imagers are standard on conventional cancer radiotherapy systems, kV/MV triangulation enables 

the routine post-treatment evaluation of the KIM accuracy and could be deployed in parallel with 

the KIM algorithm. The limitation of using kV/MV triangulation as the ground truth for KIM is 

that the kV system is used for both methods and there is a common marker segmentation task, the 155 

accuracy of which is limited by systematic uncertainties in the kV system e.g. finite pixel size and 

isocenter alignment. Therefore, the KIM errors originating from these sources may not be 

detected. To reduce the likelihood of this problem, the kV system should be part of a 

comprehensive quality assurance program, for example that described in AAPM Task Group 142 

[31]. 160 

Although overall accuracy and precision of 6DoF KIM seem promising, outliers with 

relatively large errors (of up to 15° and 5 mm) are also present in the data. These outliers appear to 
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have been resulted from errors in kV segmentation or 2D to 3D conversion, which only occurred 

for limited time (≈ 0.2% of the treatment time). Despite the fact that these outliers did not affect 

the quality of the treatment delivery in this study as (i) these erroneous outliers only affected short 165 

period of time that were much shorter than the gating threshold of 5s, and (ii) treatment adaptation 

was only carried out as the means of manual couch shifts, tThese large errors require further 

investigation and refinement of the current implementation of the KIM method particularly prior 

to automating simultaneous 6DoF treatment adaptation.  

The accuracy of the motion measurements varied to within ±1.5° and ±0.7 mm, and the 170 

precision varied within ±2.0° and ±0.5 mm for the gantry angle ranging from -140° to +140°. 

Based on the spread of the data and the calculated ρ values (Figure 5), KIM translations are again 

most accurate in the SI direction (which is always resolved in kV) and least accurate in the LR 

direction, which is only crudely estimated to be equal to the KIM estimated mean position for 

prostate KIM by not optimizing the LR translation for prostate [32]. Consequently, KIM rotations 175 

are assumed to be most accurate around the LR axis (which relies on SI and AP translations) and 

least accurate around the SI axis (which relies on LR and AP motion).  

The ground-truth 6DoF motion was derived from kV/MV triangulation using a closed-form 

least squares method [33]. Although this method provides accurate and concurrent measurements 

of the three implanted markers, it required all three markers 3D triangulated positions. Due to the 180 

modulated treatment field, the ground-truth motion was available on only ≈10% of the entire 

treatment data. This is an indication that MV-based localization techniques will only provide 

6DoF motion measurements for around 10% of the treatment time depending on the degree of the 

treatment field modulation, as compared to tracking nearly 100% of the entire treatment with the 

kV-based localization technique, such as KIM.  185 

This limited number of ground-truth 6DoF motion was to an extent overcome by including 

multiple patients and fractions. However, we currently have limited data for high dose SBRT 

fractions (only 7 fractions), which has much longer treatment duration to standard fractions and 

requires more accurate pose measurements during the treatment.  

Previously, we have quantified the accuracy and precision of the real-time 6DoF KIM motion 190 

measurements for dynamic prostate and lung tumor motion traces, using a phantom [28]. In this 

study, we found the 6DoF KIM had sub-mm accuracy and precision for translation motion 

estimates, and sub-degree and 1.3° accuracy and precision for rotation motion estimates. The 

degraded accuracy and precision for patient data compared to the phantom study could be 

attributed to an increase in measurement uncertainty in the marker segmentation due to much less 195 

signal-to-noise ratio in kV and MV images for patient data compared to the phantom.  
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Li et al. showed that dosimetric discrepancies caused by prostate rotation were more 

significant than those caused by translational intrafractional motion, and significant reduction in 

the treatment margin may be enabled if the rotation motion can be controlled to within 1° [23]. 

Based on this study, the 6DoF KIM may be able to provide the real-time rotational and 200 

translational tumor motion measurements with the accuracy and precision required to achieve this 

level of clinical significance. In particular, achieving clinically required accuracy and precision 

together with the use of the commonly available gantry mounted kV imager for the 6DoF KIM 

method could enable a streamlined and cost-effective pathway for the broader dissemination of the 

technology for widespread patient use. Current plans are to expand the clinical application of KIM 205 

in more cancer centers and treating more sites, particularly tumors in the thorax and abdomen 

where motion is a significant problem. 

Although accurate real-time 6DoF intrafractional tumor motion monitoring is enabled using 

KIM, it should be noted that there are some limitations associated with these measurements, 

including (i) it imposes extra imaging dose to patients (≈ 15 mSv for standard treatment from 210 

[34]), (ii) it measures surrogate motion (implanted markers), not actual tumor motion, and (iii) the 

tumor is approximated as rigid body and it does not account for the deformation. Furthermore, 

although the current study only included VMAT treatments, the KIM method can also be utilized 

for conformal and IMRT treatments [35], which will need to be clinically tested. These limitations 

present opportunities for further research and development into real-time kilovoltage-guided 215 

radiotherapy.  

Conclusions 

This study quantitatively assessed the accuracy and precision of real-time 6DoF prostate motion 

measured during treatment using the KIM method. The results showed that the accuracy and 

precision are within 0.2° and 1.3° for rotations and 0.1 mm and 0.5 mm for translations, 220 

respectively, with slight gantry angle dependence and no motion magnitude dependence. As KIM 

only requires a single x-ray imager, which is available on most modern cancer radiotherapy 

devices, there is potential for widespread adoption of this technology.   
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Table 1 Accuracy (mean), precision (s.d.), 5
th
, 95

th
 percentiles, minimum and maximum differences between 

6DoF KIM and the corresponding ground-truth motion. 

  Rotation (°) Translation (mm) 

  LR SI AP LR SI AP 

All 

fractions 

(n = 377) 

Accuracy ± precision -0.2 ± 1.0 0.0 ± 1.3 -0.1 ± 0.5 0.0 ± 0.5 -0.1 ± 0.2 0.0 ± 0.5 

[5
th
, 95

th
]  [-1.7, 1.2] [-2.1, 2.1] [-0.9, 0.8] [-0.7, 0.7] [-0.4, 0.3] [-0.6, 0.8] 

[Min, Max] [-14.7, 15.5] [-7.5, 7.9] [-3.9, 3.3] [-1.8, 2.0] [-1.4, 1.5] [-4.9, 2.3] 

Standard 

fractions 

(n = 370) 

Accuracy ± precision -0.2 ± 0.9 0.0 ± 1.3 -0.0 ± 0.5 0.0 ± 0.5 -0.1 ± 0.2 0.0 ± 0.5 

[5
th
, 95

th
]  [-1.7, 1.2] [-2.2, 2.1] [-0.9, 0.8] [-0.7, 0.7] [-0.4, 0.3] [-0.6, 0.8] 

[Min, Max] [-14.7, 7.8] [-7.5, 7.9] [-3.9, 3.3] [-1.8, 2.0] [-1.4, 1.5] [-4.9, 2.3] 

SBRT 

fractions 

(n = 7) 

Accuracy ± precision -0.2 ± 1.7 0.0 ± 1.0 -0.1 ± 0.5 0.0 ± 0.4 -0.1 ± 0.2 -0.0 ± 0.5 

[5
th
, 95

th
]  [-1.9, 1.2] [-1.5, 1.6] [-0.9, 0.6] [-0.7, 0.7] [-0.4, 0.3] [-0.7, 0.8] 

[Min, Max] [-9.2, 15.5] [-4.9, 6.8] [-2.0, 2.4] [-0.9, 1.0] [-0.9, 0.6] [-2.2, 2.0] 
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Figure 4 Accuracy (mean) and precision (error bars, 1 s.d.) of 6DoF KIM motion as a function of gantry 
angle. 
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