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Abstract. The presence of discontinuities such as cracks and faults in porous media can remarkably 

affect the fluid pressure distribution. This is due to considerable contrast between hydraulic properties 

of porous matrix and discontinuity. Several numerical techniques have been adopted to simulate the 

behaviour of fractured porous media subjected to fluid flow mostly in the context of discrete fracture-

matrix models. Current approaches still have several shortcomings, namely in terms of computational 

costs from large number of additional degrees of freedom to capture the discontinuities, and the 

implementation of special integration procedures. The present work proposes a new technique to model 

fluid flow in saturated fractured porous media based on coupling finite elements to enable embedding 

the preferential paths of flow created by discontinuities in regular meshes. The discretisation of fracture 

and porous medium does not need to conform and the meshes are coupled without additional degrees 

of freedom. Two numerical examples are presented to assess the performance of the new method in 

comparison with other techniques available in the literature. 

Keywords: Fractured porous media; Darcy’s law; coupling finite elements.  

1 INTRODUCTION 

It is widely known that natural or engineered discontinuities such as joints, faults, planes, and human-

induced fractures can strongly influence the fluid pressure distribution in porous media. In most cases, 

the discontinuities increase the permeability of the material and act as preferential flow paths. This can 

significantly impact the response of the system for example in management of groundwater resources. 

Three main groups of numerical models can be found in the literature for simulating fluid flow in 

fractured porous media. The first group is quite suitable for large scale problems since it is based on the 

replacement of the fractured medium by an equivalent continuum model with averaged properties 

(Jackson et al., 2000; Long et al., 1982). The second type of approach handles both porous medium and 

discontinuities using their own hydraulic properties, in what is known as a dual porosity model 

(Barenblatt et al., 1960; Moench, 1984; Zimmerman et al., 1993). Discrete-fracture matrix (DFM) 

methods compose the third group (Andersson and Dverstorp, 1987; Sudicky and McLaren, 1992; 

Woodbury and Zhang, 2001), in which individual discontinuities are considered explicitly with the flux 

exchange with the surrounding porous domain. Over the last decades, various DFM methods were 
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proposed for the discretisation of fractured porous media and these were gradually improved towards 

more realistic descriptions of the processes involved. Boone and Ingraffea (1990) developed a numerical 

strategy that combined the finite element method (FEM) – to model the mechanical deformation – with 

the finite difference method (FDM) – to capture the flow through the discontinuity. In such models, 

discontinuities and neighbouring porous domain are discretised using a hybrid-dimensional approach, 

i.e. the number of dimensions required by the fracture is one unit less than that of the surrounding matrix 

(Bogdanov et al., 2003; Helmig, 1997; Martin et al., 2005).  

Classical DFM models rely heavily on matching grids for discontinuities and porous discretised 

domains. In order to overcome such mesh dependency, the extended finite element method (X-FEM) 

has been employed and several non-conforming DFM models were introduced in recent years 

(D’Angelo and Scotti, 2012; Flemisch et al., 2016; Huang et al., 2011; Schwenck et al., 2015). 

Unfortunately, such approach requires cumbersome integration procedures and significant number of 

additional degrees of freedom to capture the discontinuities. This can be quite prohibitive for general 

problems. 

This paper proposes an innovative approach based on coupling finite elements (CFEs) to 

independently discretise both discontinuities and porous media. Even though both meshes are non-

matching, there is no need for additional degrees of freedom (Bitencourt Jr. et al., 2015). The 

formulation is based on standard element shape functions to avoid particular integration procedures. The 

paper is organised as follows. Section 2 describes the governing equations for fluid flow in fractured 

porous media and discretisation procedure. The coupling elements are introduced in Section 3, whereas 

two case studies are analysed in Section 4. Finally the main conclusions are presented in Section 5.   

2 GOVERNING EQUATIONS OF FLUID FLOW  

2.1   Strong form   

2.1.1   Flow in matrix 

 

A 2-D fractured saturated porous medium with an incompressible single-phase fluid is considered in 

this paper – see schematic representation in Fig. 1.  

  

Figure 1: Domain and boundary conditions of a general fractured porous medium. 

The continuity equation for the steady flow of an incompressible fluid phase over a fixed porous 

medium, Ω, in the absence of body forces and sinks (or sources) can be written as (Whitaker, 1966):  

∇.vm = 0. (1)  

The Darcy’s law is applied to describe the flow in the porous matrix as:  

https://www-sciencedirect-com.ezproxy1.library.usyd.edu.au/science/article/pii/S0045782515000870#s000010
https://www-sciencedirect-com.ezproxy1.library.usyd.edu.au/science/article/pii/S0045782515000870#s000015
https://www-sciencedirect-com.ezproxy1.library.usyd.edu.au/science/article/pii/S0045782515000870#s000070
https://www-sciencedirect-com.ezproxy1.library.usyd.edu.au/science/article/pii/S0045782515000870#s000115
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vm= -
km

μ
 ∇p

m
,  

(2)  

where vm denotes the representative element volume fluid average velocity, whereas km, μ and p
m

 stand 

for the permeability, fluid viscosity and pressure, respectively. By inserting Eq. (2) into Eq. (1) the 

following standard form is obtained (Muskat, 1937):  

∇. (
km

μ
 ∇p

m
)  = 0. 

(3) 

The latter equation can be solved by imposing the boundary condition  p
m

 = p̅  on Γp and 

 q
m

.nГ = q̅ on Γq, where q
m

 is the fluid flux, and Γ= Γp ∪ Γq  is the boundary of the domain as 

represented in Fig. 1. 

2.1.2   Flow in a discontinuity 

The continuity equation for the steady state fluid flow along the discontinuity is given by (Segura 

and Carol, 2004): 

-
dq

d

dГ
+ q-+ q+ = 0,  

(4)  

where q
d

 is the longitudinal flow, q- and q+ are the fluxes incoming the discontinuity from the 

surrounding continuum medium, as shown in Fig. 1. The local flux at the discontinuity, q
l
, and 

longitudinal flow are related with the crack width, w, by q
d
 = w q

l
. Since the longitudinal flow can be 

considered steady, it can be approximated by Darcy’s law as follows: 

q
l
 = -

kl

μ
 
dp

d

dГ
, 

(5) 

where pd is the fluid pressure. It is worth emphasising that the permeability of the discontinuity, kl, 

highly depends on the crack width. In an ideal case where two parallel planes at constant distance are 

filled with porous material, e.g. the permeability can be obtained directly using the cubic law 

(Witherspoon et al., 1980): 

kl = 
1

f

w2

12
, 

(6) 

where ‘f ’ represents a correction coefficient typically in the range of 1.04 to 1.65 to account for 

situations other than the ideal (Adler et al., 2012).  

By substituting Eq. (5) into (4), the following governing equation can be obtained: 

d

dГ
(

kd

μ
 
dp

d

dГ
)  + q-+ q+ = 0, 

(7) 

where kd stands for the permeability of the discontinuity, i.e., kd = w kl.  

2.2   Weak form  

The weak form of Eqs. (3) and (7) is derived, respectively, by multiplying the virtual quantities, δpm 

and δpd, both satisfying the essential boundary conditions, and integrating over domains Ω and Гd:  

∫ δp
m

 [∇. (
km

μ
 ∇p

m
)]  dΩ

f

Ω

 = 0, 
(8) 
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∫ δp
d
 [

d

dГ
(

kd

μ
 
dp

d

dГ
)  + q-+ q+ ]

f

Гd

dГ=0. 
(9) 

The above integral equations can be further developed using the Divergence theorem and integrating 

by parts, in which case the following governing equations are finally obtained:  

- ∫ ∇δp
m

km

μ
 ∇p

m
dΩ

f

Ω

 + ∫ δp
m

(q
m

. nΓ) dГ
f

Γq

=0, 
(10) 

- ∫ [
d δp

d

dГ
(

kd

μ
 
dp

d

dГ
)] dГ  + ∫ δp

d
 q-

f

Гd
 -

dГ + ∫ δp
d
 q+

f

Г
d 

+

dГ
f

Γd

=0. 
(11) 

 

2.3   The FEM discretisation  

Eqs. (10) and (11) are herein discretised with bidimensional elements for the porous domain and 

unidimensional elements for the discontinuities, as shown in Fig. 2. Accordingly, the pressure field in 

the porous domain is approximated by: 

p
m

 =  Nm p̅
m

, (12) 

and along the discontinuity by:  

p
d
 = Nd p̅

d
, (13) 

where  Nm , Nd , p̅m
, p̅

d
 are the shape functions and nodal pressures for domain and discontinuity, 

respectively. By replacing Eqs. (12) and (13) in (10) and (11), respectively, the uncoupled finite element 

discretisation is finally written as: 

Hm p
m

= q
m

, (14) 

Hd p
d
= q

d
, (15) 

where Hm, Hd are the permeability matrices for domain and discontinuity, respectively, defined by: 

Hm= ∫ Bm
T km

μ
 Bm dΩ,

f

Ω

 
(16) 

Hd= ∫ Bd
T kd

μ
 Bd

f

Гd

dГ, 
(17) 

q
m

= ∫ Nm
T q̅ dГ,

f

Гq

 
(18) 

q
d
 =  ∫ Nd

T q-dГ
f

Гd 
-

+ ∫ Nd
Tq+ dГ,

f

Г
d
 +

 
(19) 

in Eqs. (16) and (17), Bm and Bd stand for the partial derivatives of the shape functions of the element. 

It should be emphasised that the discretisation shown in Eqs. (14) and (15) is carried out independently, 

with the connection between the meshes being established after this step using coupling finite elements. 

This procedure is addressed in the next section.  
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3   CFE FORMULATION 

For a typical finite element with ‘n’ nodes, the fluid pressure at any point inside its domain can be 

approximated by: 

p
m

 = ∑N̅i 
p̅

i
 , (20) 

where N̅i  and p̅
i
 are, respectively, the shape function and nodal pressure for node ‘i’. If the element is 

crossed by a discontinuity, then a coupling element exactly matching the underlying element and having 

an additional node, n+1, herein designated by Cnode, overlaps the standard element. The additional node 

is used to connect the finite element for the porous medium with the discontinuity inside its domain. It 

should be highlighted that the additional node will not require more degrees of freedom in the global 

system of equations and it can also be located anywhere inside the element, including along its 

boundaries, as shown in Fig. 2. In this figure, two coupling elements, both with an additional node, are 

used to establish the connection with the two nodes that define the discontinuity: element ei matches the 

standard bilinear element on midlle and contains the coupling node Cnode_i; and element ej matches the 

standard element on the right and contains the second coupling node Cnode_  j.  

   

Figure 2: Illustration of two CFEs used to couple the underlying mesh with the discontinuity.  

To establish the connection between the meshes, the pressure drop between the coupling node, Cnode, 

and the material point inside the standard element at the same location, Xc, has to be zero. Using the 

standard shape function, the following can be written: 

⟦P⟧ = p
n+1

 – p ̅(Xc) = p
n+1

 – ∑ N̅i
n
i=1 (Xc) p

i
 = Ne Pe , (21) 

where matrices Ne and Pe are given by: 

Ne = [–N̅1(Xc)  –N̅2(Xc)…  –N̅n(Xc)   1] and (22) 

Pe = [p
1
   p

2
… p

n  
 p

n+1
]T. (23) 

Following the analogy between mechanical and hydraulic problems discussed in (Segura and Carol, 

2004), an equivalent internal virtual work, δWint for the CFE is obtained as:   

δWint=δ⟦P⟧ q(⟦P⟧) , (24) 

where q is the flux associated with the pressure drop and the virtual pressure drop is given by:     

δ⟦P⟧=Ne δPe . (25) 

Since the internal flow input is expressed by:  

qint = Ne
Tq (⟦P⟧), (26) 

the tangent stiffness matrix of the CFE is obtained by Ke= ∂qint / ∂Pe , i.e.:  

Ke = Ne
T C Ne, (27) 

where C = ∂q⟦P⟧/∂⟦P⟧. 

It is herein assumed a linear relation between the pressure drop and flux, in which case C is a constant 

penalty factor enforcing a null pressure drop, i.e. the compatibility between meshes.  
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4 CASE STUDIES 

In the following sections two case studies are presented to validate the CFEs, the first with a single 

and the second with multiple discontinuities. Bilinear elements are used to discretise the porous domain 

and linear elements are adopted for the discontinuities, whereas CFEs establish the connection between 

the sets of meshes.  

4.1 Porous medium with a single discontinuity 

The first verification example consists of a 2-D rectangular domain with 10 m by 16 m. A pressure 

difference of 286 kPa is applied between bottom and top, and no flow is allowed through the sides. The 

permeability of the porous matrix is 8 mD (millidarcy), i.e. 7.896×10-15 m2. A discontinuity is defined 

with 45° inclination relatively to boundaries and through the centre. Its permeability is 80 D (Darcy), 

i.e. 7.896×10-11 m2 – see Figure 3.a. Results obtained by Lamb (2011) using a discrete fracture model 

(DFM), a mesh-free model (FM-Mfree), and a finite element method (FM-FEM), and by Liu et al. 

(2015) using X-FEM, are used for validation.  

            
    

                                       (a)                  (b) 

Figure 3: Fractured porous medium: (a) geometry and boundary conditions; (b) FEM mesh. 

Figure 3.b shows the mesh adopted, which has the same number of bilinear elements as in the X-

FEM example mentioned above. In total 620 bilinear elements, 26 linear elements, and 27 coupling 

elements are used. It can already be highlighted that even though the standard bilinear elements adopted 

by X-FEM and the model with CFEs are indeed the same, the former formulation requires 62 additional 

degrees of freedom to discretise the crack, whereas only 27 are used in the present formulation.  

Figs. 4 and 5a depict the pressure distribution inside the domain, and the profile along a vertical 

section through the centre. From the represented values, it can be concluded that the mesh with CFEs 

provides accurate results, with the pressure distribution properly reflecting the impact of the 

discontinuity. It should be mentioned that both meshes are non-conforming conversely to all other 

models used for comparison. In addition, Fig. 5b shows the change in pressure at the centre of the 

discontinuity for different values of the coupling stiffness. The results are very stable and insensitive to 

the parameter for the tested range. 

        

(a) DFM (Lamb, 

2011) 

(b) FM-FEM 

(Lamb, 2011) 

(c) FM-MFree 

(Lamb, 2011) 

(d) X-FEM (Liu 

et al. 2015) 

(e) CFEs (this      

study) 

 

Figure 4: Pressure field obtained with different methods. 
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(a) (b) 

Figure 5: Pressure (a) along a vertical section across the centre of the domain; and (b) at the midpoint of the 

discontinuity versus coupling stiffness. 

4.2 Dam foundation with multiple discontinuities 

The example shown in Fig. 6.a is based on the study presented by Segura and Carol (2004) on a dam 

foundation with multiple discontinuities. The soil underneath the gravity dam has an hydraulic 

conductivity (hc) of 10-7 m/s, and three longitudinal conductivities are used for each model containing 

the discontinuities: 8.1182×10-10, 1.0148×10-7, 8.1182×10-7 m2/s.  

Figure 6.b compares the pressure obtained for each value of the conductivity using the model with 

CFEs in comparison with benchmark results obtained using zero-thickness interface elements (Segura 

and Carol, 2004). The proposed formulation provides nearly the same results even though the meshes 

are non-conforming and use substantially less degrees of freedom. With increasing longitudinal 

hydraulic conductivity, the fluid flows easier through the discontinuities thus leading to higher values 

of hydraulic head, particularly in the region directly underneath the dam . 

 

  

(a) (b) 

Figure 6: (a) Geometry and boundary conditions; and (b) pressure distribution along the studied level. 

5 CONCLUSIONS 

A new technique based on CFEs was proposed in this paper to couple non-conforming meshes in 

steady state flow problems. The discretisation can be carried out independently for discontinuities and 

porous medium, and without additional degrees of freedom to establish the connection between the two. 

The bidimensional examples shown the ability to handle single and multiple discontinuities against 

several existing methods, including X-FEM and zero-thickness interface elements. The obtained results 

were not sensitive to the coupling stiffness. Given the advantages found, namely in the simplification of 
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the meshing process together with the possibility of using standard shape functions and integration 

procedures, the formulation will be further developed to deal with more general examples including the 

transverse pressure drop across discontinuities.  
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