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1. Introduction  

When estimating discrete choice models, the attributes of the choice alternatives are a key 

component of most model specifications. Measures of time or duration are common types of 

attributes investigated by analysts. Examples include travel time in the field of transportation, 

life expectancy in health economics, and product life in marketing. Other attributes are linked to 

time, in that they are a measure of the quality or condition of the alternative either at some point 

in time, or for some length of time. For example, travel time when driving is sometimes broken 

down into time in one of several driving conditions, such as free flow, slowed down and stop-

start (e.g., Hensher 2001). Essentially, the aggregate time attribute is decomposed, such that it 

represents the sum of time spent in various conditions. Other possible applications include time 

in various crowding conditions when travelling by train (the focus of this study), the quality of 

cycling infrastructure along a route (e.g., Wardman et al. 2007), the deterioration of health over 

a life expectancy, and the degradation of performance of a phone over the length of its life.  

This paper is an investigation of these types of attributes, which we refer to as time-varying 

attributes (TVAs). A similar concept called common-metric attributes has been suggested in the 

literature (Layton and Hensher 2010), which refers to attributes that have the same metric and 

might be processed in certain ways, such as aggregation. However, TVAs are a specific case of 

common-metrics attributes, and relate explicitly to time under certain conditions. 

Of relevance is how the time-varying attribute’s conditions may change over time. Some TVAs 

may be inherently discrete in nature, with well-defined conditions in which time can be spent. 

Consider bicycle infrastructure, which could come in one of a number forms, such as segregated 

off-road cycleway and segregated on-road cycle lanes. When a cyclist makes a trip, they may 

experience one or more types of road or bicycle infrastructure, and spend a certain proportion of 

their total trip time in each (Wardman et al. 2007). Another example of distinct, discrete TVAs 

is if time on public transport is broken down into time sitting and time in which one must stand. 

Wardman and Whelan (2011) note that several unpublished studies in the United Kingdom have 

employed this approach, but also caution that the crowding level may vary across the time spent 

seated or standing. Public transport crowding is an example of a TVA in which the crowding 

level may be relatively continuous in nature, in that the crowding level gradually changes over 

the trip length. A challenge then is to find an appropriate way of representing these continuous 

TVAs. Boundaries can be imposed, resulting in a discrete number of conditions, with a certain 

amount of time (potentially zero) spent in each, but the question then is what boundaries should 

be employed. In the crowding literature, there has been a shift in recent years to the use of many 

crowding levels (e.g., Whelan and Crockett 2009; Hensher et al. 2011; Li and Hensher 2011, 

2013), yet this does not scale well when time in each crowding condition must be processed by 

survey respondents. 

To complicate matters further, there may be a degree of ambiguity about what is changing over 

time. A car trip may include varying levels of congestion over the length of the trip, but the 

congestion itself may be perceived as a mix of factors, including but not limited to proximity to 

other cars, actual speed relative to the speed limit, and speed oscillations. The question then is 

how best to represent TVAs in stated choice studies, where we wish to gain an empirical 

understanding of how individuals value the TVA, its various conditions, and associated 

dynamics. The most common approach with crowding studies is to utilize a single crowding 

measure (e.g., Whelan and Crockett 2009, Hensher et al. 2011). This measure may be framed as 

crowding over the entire trip, or crowding at a single snapshot in time. In some cases, the time 

at or over which the crowding applies is left unspecified. This study will show empirically that 

these simplified approaches can be very problematic. 

In this paper, various ways of representing TVAs will be discussed in detail, with potential 

advantages and disadvantages identified for each. The handling of risky outcomes with TVAs 

will also be discussed. Then, we describe a stated choice survey which depicts train crowding in 

three different ways: as a single measure, as the time in five different crowding conditions, and 
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as three possible outcomes, each described by time in different crowding conditions, and 

associated with a probability of occurrence. The model results will focus on the problems 

associated with the simplified presentations, and the improved performance once the trip time is 

decomposed by crowding level. 

2. Alternative approaches for representing and valuing 

time-varying attributes  

In this section, each of the approaches to representing TVAs will be considered in more detail. 

Examples will mostly be given in the context of train crowding, however some other examples 

will also be introduced. 

First, it is worth noting that a study may be conducted with no decomposition of a time attribute 

into time in various conditions, with a focus given to the time attribute only. For example, the 

value of travel time savings (VTTS) could be estimated with no regard to public transport 

crowding or traffic congestion. A risk with this approach is that there will be a plurity of real 

life experiences of crowding and traffic congestion, and these experiences may be projected 

onto a hypothetical choice scenario, in the absence of an explicit treatment of these attributes. 

One individual may evaluate the time savings in terms of no crowding, while another may 

evaluate the same time savings in terms of heavy crowding, and so have a higher VTTS. This 

could have implications for the retrieved VTTS, perhaps manifesting itself as random 

preference heterogeneity. A more appropriate approach is to make efforts to disentangle the 

value of time and the value of quality measures related to time, such as crowding and 

congestion. 

One approach to representing TVAs is to take a snapshot as some point in time (see, for 

example, some of the studies reviewed in Wardman and Whelan 2011). Whilst this is easy for 

the analyst to implement, and relatively easy for the respondent to process, there is an ambiguity 

as to how the respondent extrapolates from that snapshot in time to the entire duration. If, for 

example, crowding was framed in terms of the crowding level at boarding, then the respondent 

may infer some change in crowding after that time based on their own experiences of changing 

crowding levels along the length of the trip. It is uncertain then exactly what crowding condition 

is being valued. 

This ambiguity could be overcome by specifying the same condition for the entire duration. 

Wardman and Whelan (2011) note in a train crowding context that such a specification might 

not be perceived as credible. Again, a respondent might ‘adjust’ the crowding level to reflect 

some realistic level of variation over the trip. Whilst this adjustment might seem less likely for 

the entire-time crowding framing than the snapshot framing, this study will empirically show 

that respondents do interpret a single crowding level differently, for both the snapshot and the 

entire-trip framing of the crowding attribute. The disadvantages of a single crowding measure 

extend beyond framing effects. The entire-time approach is ill suited if the analyst wishes to test 

for threshold or penalty effects, in which evaluation of the alternative might be 

disproportionately influenced by even limited time exposure to a particular condition. It would 

also be a poor environment for testing nonlinear responses to the various conditions. 

One way to overcome the ambiguity problem of the snapshot approach and potentially 

overcome the credibility problem of the entire-time approach is to decompose the total time into 

time in the various conditions associated with the TVA. For example, train trip time could be 

decomposed into time sitting, and time standing in various crowd densities. Nonlinear responses 

can be more effectively captured. Consider an example where we wish to investigate the impact 

of heavy crowding on a 40 minute train trip. With a single crowding measure, we can only test 

zero or 40 minutes of heavy crowding. By decomposing the trip time, we could test, say, a 10 

minute duration under heavy crowding, in the context of the 40 minute trip, rather than in the 

context of a 10 minute trip. The decomposition approach also helps identify possible thresholds, 

which also might vary as a function of total trip time. The downside of this approach is that it 
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places a greater cognitive load on the respondent, and so cognitive and motivational limits 

might be exceeded. 

The analyst may be interested in how individuals respond to risky outcomes in the context of 

TVAs. The issue here specifically is the variability in the mix of conditions over the length of 

time, rather than the time variability itself. For example, train passengers may have a reliable 

train service, but variable levels of crowding, due to random demand fluctuations across the rail 

network. Since the travel time is not varying in this example, schedule delay (Small 1982) is not 

the issue. Rather, passengers may place some penalty on alternatives with more variable 

crowding experiences. This could take the form of a mean-variance model (e.g., Senna 1994), or 

individuals might impose penalties if certain conditions are ever encountered. For example, an 

older passenger might disproportionately dislike a train service that has a non-negligible 

probability of requiring them to stand. 

If the analyst is to place a value on risky outcomes in the context of TVAs, using stated choice 

methods, then the choice task is going to be complex. Even with variability of a single travel 

time measure, there are a variety of ways of presenting the variability (see Li et al. 2010). Yet 

with TVAs, the attribute becomes a multivariate random variable: the time under each of the 

conditions may vary, rather than just a single measure of time. The evaluation of each outcome 

will require the evaluation of times for each of the conditions, and so the dimensionality is high. 

This discourages the use of eqi-probable outcomes (e.g., Senna 1994), which will not be an 

efficient use of the respondents’ attention. In this paper, we present three train experiences per 

alternative, each with a probability attached, and described by five levels of crowding. 

However, we will only use the expected values in the present analysis, and reserve a richer 

investigation of inter-trip crowding variability for future research. 

3. Methodology and empirical setting 

This paper empirically investigates alternative presentations of TVAs in the context of train 

crowding. In October 2016, a stated choice study was conducted in the Sydney region, focusing 

on the Bankstown line (see Figure 1). Survey participants’ home station had to be between 

Carramar and Erskineville, inclusive. This removed the complication of route choice, which is 

available to some users of stations further out along the line. The Bankstown line has relatively 

high crowding, with an average load factor between 8am and 9am of 120 percent (Transport for 

NSW 2014). This load factor, which measures the ratio of boarded passengers to seated 

capacity, was sampled at Erskineville, which is just prior to the first CBD station, Redfern, 

which has a substantial number of offloads. Thus, Erskineville is typically the location with the 

highest crowding level on this line. The Bankstown line is also being considered for conversion 

to metro along most of the line, which will have implications for the number of number of 

available seats, and the mix of crowding experiences across the day and along the line. This 

conversion motivates a more nuanced understanding of passenger valuation of crowding. 

 

 

Figure 1: Study area: Bankstown line, Sydney 
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Survey participants were recruited at one of three shopping centers along the train line, and took 

part in a computer assisted personal interview that averaged 15 minutes duration. To be eligible 

for the study, participants had to travel to or from work on the Bankstown line at least once a 

week. The trip direction had to be towards the Central Business District (CBD) in the morning 

peak (6am-10am) or away from the CBD in the evening peak (3pm-7pm), thus ensuring that 

they travel at a time and in a direction with relatively high crowding levels. Two hundred 

individuals completed the survey. Of these, 30 chose lexicographically with respect to price 

over all nine choice tasks, and were dropped from the analysis, resulting in 170 respondents and 

a total of 1530 choice observations. 

Prior to the presentation of the choice tasks in the survey, information on a typical eligible train 

trip was collected. There were then nine choice tasks in total, with each respondent being shown 

three choice tasks for each of the train crowding presentations examined, where these will be 

considered in detail below. Two train alternatives were made available for choice. Both forced 

and unforced choice responses were collected, with the former used in the present analysis. 

Figure 2 shows an example choice task, with a single crowding measure shown.  

The fare attribute levels were drawn from one of three possible sets of levels, depending on the 

length of their trip. The frequency could be every 5, 10, 15 or 20 minutes. Station crowding was 

handled by varying the time to enter/exit/transfer through the station closest to the CBD (1, 2 or 

3 minutes), and by varying the crowding level as they moved through the station (little, 

moderate or heavy crowding). Station crowding will not be examined in this paper in detail. 

Irrespective of the train crowding presentation shown, five possible train crowding 

levels/conditions were considered. Two of these are associated with sitting. Either the passenger 

can sit next to a free space or companion, or they must sit next to a stranger, where the latter is 

potentially more onerous. For both sitting conditions, the individual may opt to stand instead – 

they merely have the option to sit. There are three standing conditions: little, moderate and 

heavy, with respondents told the corresponding number of passengers standing in the vestibule 

(see Figure 3) and shown top-down diagrams of what this might look like. A d-efficient design 

was generated in the Ngene software. 

 

Figure 2: Example choice task, with single crowding measure 
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The first crowding presentation format shown was the single crowding measure, shown in 

Figure 2. Respondents were randomly allocated to one of two crowding level framings: 

crowding for the entire trip, and crowding at the time of boarding (i.e., the snapshot approach). 

Additionally, respondents were randomly allocated to either morning travel towards the CBD, 

or evening travel away from the CBD. The Sydney rail network is CBD-centric, with crowding 

levels generally increasing on morning peak inbound trains, and decreasing on evening peak 

outbound trains. This relatively monotonic change in crowding level in real life may have 

implications for how respondents will make inferences about changing crowding levels when a 

single crowding measure is employed, especially under the snapshot approach. 

Consider the journey to work, in which crowding levels generally increase over the trip. If an at-

boarding crowding measure is employed, the respondent may anticipate the crowding getting 

worse. In this case, as the respondent processes the total travel time, they would be perceiving 

some mix of crowding conditions that is worse on average that the level presented, they would 

place greater disutility on this time, and the VTTS would increase. If they have a seat on 

boarding, then they keep the seat for the rest of the trip, although the general feeling of 

crowding may increase, with standing passengers encroaching on their space. At a low to 

intermediate crowding level, there is scope for the crowding level to deteriorate. At heavy 

crowding levels, there are capacity limits that will prevent crowding from getting worse. 

Consider next the journey from work. Here, the crowding levels in Sydney will generally 

decrease over the trip, respondents may anticipate this, the average crowding conditions will be 

less than the at-boarding level presented, and the at-boarding VTTS will be lower than the 

entire-trip VTTS. These hypotheses will be tested in the Results section. 

 

 

Figure 3: Presentation of crowding in select choice tasks as decomposition of total time on train 

The second crowding presentation format decomposed the total time on train, reporting the time 

under each of the five crowding conditions, where in many instances these times are allowed to 

be zero (see Figure 3). One way to consider this is as there being intra-trip crowding variability. 

The third crowding presentation format introduces inter-trip crowding variability, by showing 

three ‘crowding experiences’, each again decomposed into the time under each crowding 

condition (see Figure 4). In addition, probabilities are assigned to each of the three crowding 

experiences. The most crowded experience always has a 1/10 probability, and captures the 

worst experience that the train service provides on a regular basis. 

 

 

Figure 4: Presentation of multiple crowding outcomes in select choice tasks 
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At this stage, only basic multinomial logit models are employed, with the focus being on the 

comparison of crowding valuations across single crowding measure framing (entire trip, start of 

trip), and safety presentation (no crowding variability, intra-trip variability, intra and inter-trip 

variability). The modelling effort and sophistication will be extended in future research. 

4. Results 

Table 1 contains the results of the MNL model estimated on the single crowding measure data 

only (i.e., the first three choice tasks that each respondent completed). Separate train crowding 

parameters are estimated for each combination of the crowding framing shown (at boarding, for 

the entire trip), and trip direction (to work, from work). For all combinations, the five crowding 

levels shown to respondents were collapsed to three crowding levels after a specification search. 

Respondents did not distinguish between the type of seat available (next to a free space or 

companion, or next to a stranger), or little/moderate crowding when standing. All estimated 

parameters are significant and of expected sign. 

Table 1: MNL model with single crowding measure 

Attribute 
Crowding 

framing 

Trip 

direction 
Parameter t-ratio 

Fare 
  

-0.7821 -6.13 

Frequency 
  

-0.0701 -6.00 

Heavy station crowding (minutes) 
  

-0.1847 -2.84 

Time on train in crowding level: 
    

  Seat available At boarding To work -0.1038 -2.86 

  Must stand, little/moderate crowding At boarding To work -0.1405 -3.72 

  Must stand, heavy crowding At boarding To work -0.1584 -3.53 

  Seat available At boarding From work -0.1191 -3.91 

  Must stand, little/moderate crowding At boarding From work -0.1283 -3.78 

  Must stand, heavy crowding At boarding From work -0.1611 -4.04 

  Seat available For entire trip To work -0.0734 -2.14 

  Must stand, little/moderate crowding For entire trip To work -0.0957 -2.46 

  Must stand, heavy crowding For entire trip To work -0.1398 -3.10 

  Seat available For entire trip From work -0.1178 -3.69 

  Must stand, little/moderate crowding For entire trip From work -0.1529 -4.15 

  Must stand, heavy crowding For entire trip From work -0.1537 -3.70 

Model fit 
    

LL -312.95 
   

N 510 
   

AIC/N 1.286 
   

K 15 
   

 

Table 2 compares the VTTS per crowding level, across the different experimental conditions. 

Clearly, for any given crowding level, there are differences based both on crowding framing, 

and trip direction. Earlier, it was hypothesized that when travelling to work, respondents would 

anticipate worsening crowding, and thus have a higher VTTS for each crowding level when the 

crowding is framed as being at boarding, instead of the entire trip. The results are consistent 

with this. For sitting time, the VTTS is $7.96 at boarding, compared to $5.63 for the entire trip – 

a ratio of 1.41:1. For standing with little/moderate crowding, the ratio is similar at 1.47:1. For 

heavy crowding, the ratio is smaller at 1.13:1, which as suggested earlier may be because it is 

hard for the crowding level to deteriorate further as the trip progresses, due to capacity limits. 
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Table 2: Comparison of VTTS under each crowding level ($AUD per person hour) 

Crowding level  At boarding For entire 

trip 

Boarding/ 

entire trip 

Seat available To work $7.96 $5.63 1.41 

Must stand, little/moderate crowding  $10.78 $7.34 1.47 

Must stand, heavy crowding  $12.15 $10.73 1.13 

Seat available From 

work 

$9.14 $9.03 1.01 

Must stand, little/moderate crowding  $9.85 $11.73 0.84 

Must stand, heavy crowding  $12.36 $11.79 1.05 

 

Turning to the VTTS comparisons when the choice task was for trips from work, there is less of 

a difference in VTTS based on the framing of crowding. The difference is negligible when a 

seat is available, or for standing under heavy crowding. However, for standing with 

little/moderate crowding, the VTTS estimated under the at-boarding framing is now somewhat 

lower than the VTTS estimated under entire-trip framing. Here, the respondent may have been 

anticipating an improvement in crowding as the trip progressed, and have factored this into their 

perception of the crowding level presented to them.  

Based on the present evidence, if crowding must be reduced to a single measure, then it is best 

for that measure to represent crowding over the entire trip. Nonetheless, we can still see notable 

differences in valuation of crowding depending on trip direction. Particularly notable is the time 

sitting, with a VTTS of $9.03 for travel from work, and just $5.63 for travel to work. These 

differences may be due to a desire to get home more quickly than the trip to work. What these 

results show is that the introduction of ambiguity in terms of when the presented crowding 

condition applies can lead to a systematic bias in the valuation of the crowding levels. It also 

raises questions as to what exactly is being measured when VTTS values are retrieved in a study 

context that does not explicitly consider related TVAs such as train crowding and traffic 

congestion. A mix of experiences of these attributes might be contributing to variance in the 

VTTS measure.  

The next models that we estimate utilise the decomposition of the total time on train into time in 

each of the five crowding conditions. Two types of choice tasks are pooled for these models: 

those that show a single train trip per alternative, and those that show three train trips per 

alternative (i.e., those with inter-trip crowding variability). In the latter case, the expected values 

are used in the model. Consider first Model A, reported in Table 3, in which all attributes are 

entered linearly into the utility expressions. The total time on train is specified, resulting in a 

base VTTS of $8.61 per hour. The time standing with both little/moderate and heavy crowding 

are also entered into the utility expressions, such that the associated parameters must be added 

to the total time parameter to get an overall sensitivity to these crowding conditions. This results 

in a VTTS of $10.72 for standing with little/moderate crowding, and $13.58 for standing with 

heavy crowding. These values are reasonable, and a little higher than the averages of the values 

from the single crowding measure models. Crucially, interactions were tested between trip 

direction and all of the time parameters, and were not significant. This suggests that respondents 

are more likely to take the crowding times shown to them at face value, with the VTTS 

unimpacted by framing effects and ambiguous measures of crowding. 
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Table 3: MNL model with multiple crowding times 

 Model A 

Crowding coded linearly 

Model B 

Crowding coded non-

linearly 

Attribute Parameter t-ratio VTTS 

($/person hr) 

Parameter t-ratio 

Fare -0.4854 -8.09  0.0560 -8.51 

Frequency -0.0464 -5.84  0.0079 -5.89 

Heavy station crowding 

(minutes) 

-0.1800 -5.52 $22.25 0.0311 -5.53 

Total time on train -0.0697 -5.78 $8.61 0.0095 -6.55 

Time must stand, with 

little/moderate crowding 

-0.0171 -1.74 $10.72 0.000037 -2.26 

Time must stand, with 

heavy crowding 

-0.0402 -2.11 $13.58 0.00041 -3.03 

Model fits      

LL -624.26   -620.48  

N 1020   1020  

AIC/N 1.236   1.228  

K 6   6  

 

As discussed earlier, by decomposing travel time by crowding condition, threshold effects and 

nonlinearities are more readily identified. Model B in Table 3 has thresholds and nonlinear 

effects specified for the two standing crowding attributes. A specification search was conducted 

over a number of thresholds and nonlinear specifications. The resulting model has improved 

model fit over Model A. The little/moderate crowding time attribute was specified with a 

threshold of four minutes, and a cubic transformation. That is, all times over four minutes are 

cubed, and all times four minutes and under are specified with a time of 64 (i.e. the threshold 

value cubed). This implies that quite a strong nonlinear effect is present with respect to standing 

time. The heavy crowding time attribute was specified with a large 16 minute threshold, and 

was squared. Perhaps the act of getting into a highly crowded train is what generates much of 

the disutility, especially for shorter trips. 

5. Discussion and Conclusion 

This research has shown that use of a simplified measure of crowding can introduce problematic 

biases, and be limiting in terms of retrieving thresholds and nonlinearities. It has examined some 

of the future directions contemplated by Wardman and Whelan (2011), including the explicit 

handling of crowding levels that vary over the trip, and nonlinear responses to time in certain 

crowding conditions. Their call for an investigation of the probabilistic nature of crowding 

motivated the inclusion of choice tasks with inter-trip variability in this study, however this 

analysis will be a part of our future research agenda. This agenda will include the specification 

of nonlinear models that allow for risk attitude and perceptual conditioning (Hensher et al. 

2017). In the Sydney context, where long metro lines are currently being built, the nonlinear 

effects identified in this study flag potential concerns. If passengers must stand over long 

distances, then there might be negative implications for patronage. 

The warning about simplifying TVAs to a single measure extends to other TVAs beyond 

crowding. Some of the specific dynamics of crowding have been discussed herein, but other 

TVAs might have other dynamics that might influence how they are perceived in a stated choice 

study. These dynamics could relate to how the TVA components typically or realistically 

change over the length of time, or to the context in which the decision is being made. We 

suggest careful consideration of these dynamics before any study that includes TVAs is 

conducted. One aspect of TVAs that warrants specific attention is what boundaries are 
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appropriate for delimiting different TVA conditions. The boundaries that the analyst specifies 

may not match those perceived by the respondent, or the respondent may even choose in real 

life without consciously perceiving any boundaries at all. There may be experimental 

alternatives to the use of discrete conditions with associated times. One approach would be to 

present a sequence of snapshots along the length of time. This could take the form of a video 

depicting the changes in the attribute. Another alternative is virtual reality. In the case of 

crowding, a respondent could see the crowding level change around them station after station. 

For traffic congestion, a driving simulator could represent changes in congestion (traffic 

proximity, oscillations etc.) implicitly through the traffic around the participant, rather than 

explicitly in a stated choice task. Thus, TVAs might motivate the use of emerging choice data 

collection technologies. 
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