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1.   Introduction 

Discrete choice analysis is widely applied to a range of disciplines such as transport, economics, 

marketing, political science, etc. (see, e.g., Hensher et al., 2015; Train, 2009). It investigates decision-

makers’ choice behaviour when they make a choice from several options. Conventional discrete choice 

analysis associated with a fully compensatory choice paradigm focuses on the scenario where the choice 

situations are assumed riskless for choice makers in the sense that the alternatives under investigation 

are completely characterised by a number of deterministic (or given) attributes (covariates).  

This papers considers decision-making when decision-makers are facing several risky prospects, 

following along the research line of Prospect Theory (PT) (Kahneman and Tversky, 1979), Rank 

Dependent Utility model (RDU) (Quiggin, 1982), and Cumulative Prospect Theory (CPT) (Tversky and 

Kahneman, 1992). These theories offer an alternative behavioural paradigm to the conventional 

expected utility theory (EUT) (Wakker, 2010; Fehr-Duda and Epper, 2012) for the investigation of 

decision-making under uncertainty. They argue, with a large body of evidence in the literature, that 

when facing uncertainty, decision-makers will transform the given uncertainty measure and utility 

function, prior to decision-making, into their own decision weights and value function.  

Discrete analysis and CPT are mostly investigated separately in the literature. Hensher et al. (2011) 

reviewed the contributions of CPT in transport and other literature and undertook a study to embed 

perceptual conditioning and risk attitude into discrete choice analysis. They investigated, in a stated 

choice setting, individual preferences for two designed routes in Australia with travel time subject to 

risk. The respondents (travellers) in the survey were asked to consider their reference alternative and 

two designed alternatives. Unlike the conventional discrete choice analysis where alternatives are 

characterised by a number of deterministic (or given) attributes, the most distinguished feature of the 

research in Hensher et al. (2011) was that the alternatives shown to the respondents during the survey 

were under risk and described by a probability distribution, and hence the analysis in Hensher et al. 

(2011) was based on the respondents’ perceived travel time. Gao et al. (2010), on the other hand, 

developed a routing policy choice model based on CPT. They investigated a scenario where travellers 

know the probabilistic distributions of the link travel times, leading to a route choice problem under risk. 
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They also compared differences between models based on EUT and CPT. Their study demonstrates the 

flexibility of the CPT models to represent varying degrees of risk aversion and risk seeking depending 

on the outcome probabilities. In addition to Hensher et al. (2011) and Gao et al. (2010), some other 

studies in the transportation and traffic studies literature investigated travellers’ choice behaviour with 

risky prospects. For example, Xu et al. (2011) investigated modelling traveller’s route choice behaviour 

based on CPT.  Li and Hensher (2013) investigated behavioural implications of preferences, risk 

attitudes and beliefs in modelling risky travel choice with travel time variability. Kemel and Paraschiv 

(2013) applied PT to investigate joint time and money consequences in risk and ambiguity of transport 

users. De Palma et al. (2008) provided a general overview on choice analysis for both EUT and non-

EUT approaches. Hu et al. (2012), on the other hand, investigated a comparison of EUT and non-EUT 

approaches in the context of modelling travellers’ risky choice.   

The purpose of this paper is to generalise the approaches investigated in Hensher et al. (2011) and 

Gao et al. (2010).  We aim to investigate the risky weighting problem in a general context so that the 

methodology developed in this paper can be applied to a wide range of problems of behaviour under 

risk, including travel behaviour and route choice. We contribute to the literature by developing a 

simultaneous modelling method for both decision-makers’ risk perception and choice behaviour when 

decision-makers choose from several risky prospects. We propose a unified method for elicitation of 

decision-makers’ risk perception. In the literature, there are several widely used risky weighting 

functional forms, including Goldstein and Einhorn (1987), Tversky and Kahneman (1992), Wu and 

Gonzalez (1996), and Prelec (1998).  It is not yet clear, from a theoretical perspective, how these risky 

functions are related to each other and in which particular circumstance we should choose one from 

several candidate functions. We examine these commonly used risky weighting functions in the 

literature, upon which we propose a broad class of cumulative risky weighting functions (CRWFs) for 

the modelling of decision-makers’ risky weighting behaviour. We then investigate some important 

theoretical characteristics of risky weighting and how these risky weighting functions are related to each 

other.  
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On the basis of the proposed CRWFs, we develop a multivariate approach to describing decision-

makers’ choice behaviour when choice situations are subject to risk. We consider the case of stochastic 

value functions in CPT, and capture the relationship between choice outcomes and the attributes of 

decision-makers and prospects under the framework of discrete choice analysis.  

This paper is structured as follows. In Section 2, we propose a broad class of CRWFs. We then 

consider some important properties of risky weighting and develop a unified CRWF. In Section 3 we 

investigate a multivariate method for choice analysis with risky prospects. The elicitation of the risky 

weighting function and the value function will be discussed in Section 4. The proposed method is 

illustrated using a practical example in Section 5. Finally, in Section 6, we summarise the main 

contributions of this paper. All the proofs of theorems are presented in Appendix A. In Appendix B we 

discuss the maximum entropy principle.  

2.   Cumulative risky weighting functions  

In this section, we focus on decision-makers’ risky weighting and propose a general approach to the 

specification of the CRWF. 

2.1.   Expected utility theory and cumulative prospect theory   

We briefly summarise EUT and CPT in this subsection. Consider a typical decision-making problem 

where there are a number of (say 𝐽) states of nature, each having a probability 𝑝𝑗 ≥ 0 ( 𝑗 = 1, … , 𝐽) with 

∑ 𝑝𝑗
𝐽
𝑗=1 = 1. Each decision-maker 𝑛 (𝑛 = 1, … , 𝑁) needs to choose a prospect from a choice set 𝐶𝑛 of 

size 𝑀, where each prospect 𝑖 is defined to be a contract (gamble): 

 𝑔𝑖 = ({𝑝𝑗}
𝑗=1

𝐽
, {𝑡𝑖𝑗}

𝑗=1

𝐽
)      for 𝑖 = 1, … , 𝑀, 

associated with the primary outcome (payoff) variable 𝑇 that takes a value of  𝑡𝑖𝑗 with probability 𝑝𝑗.  

Let 𝑢(𝑡; 𝜇̃, 𝜏̃) denote the utility function of a decision-maker with risk attitude coefficient 𝜏̃ and 

individual-specific parameter 𝜇̃.  For decision-maker 𝑛 choosing prospect 𝑖, the expected utility 𝑢𝑖𝑛 is 

defined to be 

 𝑢𝑖𝑛 = ∑ 𝑢(𝑡𝑖𝑗; 𝜇̃𝑖𝑛, 𝜏̃)𝑝𝑗
𝐽
𝑗=1 ,        (1) 
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where 𝜇̃𝑖𝑛  is the individual-specific parameter of the utility function for decision-maker 𝑛 choosing 

prospect 𝑖.  The most dominant normative and descriptive model of decision making under uncertainty 

in the conventional decision-making theory is EUT. In EUT, a decision-maker chooses a prospect 𝑖 if 

and only if  𝑢𝑖𝑛 ≥ 𝑚𝑎𝑥𝑗∈𝐶𝑛
{𝑢𝑗𝑛}, i.e., his/her expected utility attains the maximum when choosing 

prospect 𝑖 (see, e.g., Wakker, 2010). 

Allais (1953), however, considered a decision-making problem consisting of two choice situations 

(denoted as A and B), each with two prospects (gambles). Allais (1953) found that the choice behaviour 

of the same person across a series of choice situations was often inconsistent with EUT, now known as 

the Allais paradox.  

Since the study of Allais (1953), there has been a large body of empirical evidence in the literature 

in relation to the Allais paradox, and considerable effort has been made to try to resolve the Allais 

paradox. In particular, Kahneman and Tversky (1979) developed prospect theory, which was 

subsequently modified to become a more general theory, known as cumulative prospect theory (CPT), 

in Tversky and Kahneman (1992). It is argued in CPT that, when facing uncertainty in reality, each 

decision-maker will transform the given uncertainty measure and his/her utility function prior to the 

decision making. Specifically, let 𝑣(𝑡; 𝜇, 𝜏) denote the value function with risk attitude coefficient 𝜏 and 

an individual-specific parameter 𝜇 , and 𝑤𝑗(𝑝1, … , 𝑝𝐽)  denote the risky weighting function that 

transforms probability 𝑝𝑗 ( 𝑗 = 1, … , 𝐽) into the decision-maker’s “decision weight” (probability) 𝑞𝑗: 

 𝑞𝑗 = 𝑤𝑗(𝑝1, … , 𝑝𝐽).          (2) 

The expected value 𝑣𝑖𝑛 after the risk perception transformation in CPT is: 

 𝑣𝑖𝑛 = ∑ 𝑣(𝑡𝑖𝑗; 𝜇𝑖𝑛, 𝜏)𝑞𝑗
𝐽
𝑗=1 ,        (3) 

where 𝜇𝑖𝑛  is the individual-specific parameter of the value function for decision-maker 𝑛 choosing 

prospect 𝑖.   

In the literature, there is in general a consensus that the two components in equation (3), i.e., the 

value function 𝑣(𝑡; 𝜇, 𝜏) and the risky weighting function 𝑞𝑗 = 𝑤𝑗(𝑝1, … , 𝑝𝐽), must satisfy some desired 

behavioural properties. For example, the value function is usually assumed to be concave for gains and 

convex for losses; a risky weighting function 𝑞𝑗 = 𝑤𝑗(𝑝1, … , 𝑝𝐽) overweights small tail probabilities 
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(Tversky and Kahneman, 1992; Abdellaoui et al. 2010). This allows the researcher considerable 

flexibility in modelling. In empirical analysis, however, because there is little guidance on the choice of 

the value function and risky weighting function, the researcher usually has to explore a number 

functional forms (see, e.g., Stott, 2006; Hensher et al., 2011, Balcombe & Fraser, 2015), aiming to find 

a suitable choice of value function 𝑣(𝑡; 𝜇, 𝜏)  and risky weighting function 𝑞𝑗 = 𝑤𝑗(𝑝1, … , 𝑝𝐽)  that 

performs best numerically. For example, Stott (2006) and Balcombe & Fraser (2015) examined 256 and 

549 variants constructed from these functions respectively.  

2.2.   CRWFs and primary outcome transformations 

We now focus on the risky weighting function in equation (2). Following the assumption in the 

previous subsection, each prospect is characterised by a random primary outcome variable 𝑇  (e.g., 

travel time of a journey) with a reference point of zero and a probabilistic measure 𝐹(𝑡) = Pr (𝑇 > 𝑡) 

(which is usually termed survival function in the event-to-time analysis, describing the likelihood that 

the primary outcome exceeds a particular level 𝑡).  

In real-world decision-making problems, the primary outcome variable 𝑇 can be of various data 

formats. In Tversky and Kahneman (1992), they confine their investigation to monetary outcomes, and 

hence the support of the variable is the entire real line (denoted by ℜ). In this paper, we restrict our 

interest to the situation that the primary outcome variable 𝑇 has the support of all nonnegative real values 

(denoted by ℜ+ );  this appears to line up well with the design of attribute levels in many choice 

experiments in transportation research. We will briefly discuss the scenario of 𝑇 ∈ ℜ at the end of this 

section.  

In many choice experiments, the continuous primary outcome variable 𝑇 is often discretised and 

expressed as a number of outcomes, each corresponding to a state of nature with probability representing 

the chance that the state will occur, i.e. (𝑡𝑗, 𝑝𝑗) with 𝑝𝑗 ≥ 0  (for 𝑗 = 1, … , 𝐽) and ∑ 𝑝𝑗
𝐽
𝑗=1 = 1. This 

leads to a prospect defined to be 𝑔 = ({𝑝𝑗}
𝑗=1

𝐽
, {𝑡𝑗}

𝑗=1

𝐽
). Without loss of generality, it is assumed that  

𝑡1 < 𝑡2 < ⋯ < 𝑡𝐽. Therefore, 𝑝1 and 𝑝𝐽 are the left-tail and right-tail probabilities of the distribution 
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respectively. Let 𝑃𝑗 = ∑ 𝑝𝑘𝑘≥𝑗  denote the corresponding discrete survival function (𝑗 = 1, … , 𝐽 + 1) 

with 𝑃𝐽+1 = 0.  

Suppose that a decision-maker transforms the survival function 𝐹(𝑡) = Pr (𝑇 > 𝑡)  shown in a 

choice experiment into a new survival function 𝐺(𝑡) via a CRWF, 𝑊(𝑃): 

𝐺(𝑡) = 𝑊(𝐹(𝑡)).          (4) 

Clearly, for the given two survival functions 𝐹(𝑡) and  𝐺(𝑡), the CRWF that transforms 𝐹(𝑡) to  𝐺(𝑡) 

is equal to 𝑊(𝑃)=𝐺[𝐹−1(𝑃)]. Note that the risky weighting function 𝑞𝑗 = 𝑤𝑗(𝑝1, … , 𝑝𝐽) in equation (2) 

is a special case of (4) where the survival function 𝐹(𝑡) is discretised and represented by {𝑃𝑗}𝑗=1
𝐽+1

 . In 

this case, the risky weighting function that maps from the probabilities 𝑝𝑗 to decision weights 𝑞𝑗 (𝑗 =

1, … , 𝐽) is defined explicitly as 

 𝑞𝑗 ≔ 𝑤𝑗(𝑝1, … , 𝑝𝐽) =  𝑊(𝑃𝑗) − 𝑊(𝑃𝑗+1) = 𝑊(∑ 𝑝𝑙) − 𝑊(∑ 𝑝𝑙)
𝐽
𝑙=𝑗+1

𝐽
𝑙=𝑗 , (𝑗 = 1, … , 𝐽). 

Note that the difference between CPT and the original version of prospect theory is that it is the 

cumulative probability distribution function, rather than probability mass function, in CPT that is applied 

to the perceptual conditioning because the functional form of prospect theory violates stochastic 

dominance (Tversky and Kahneman, 1992; Wakker, 2010). Empirical studies also favour cumulative 

prospect theory over prospect theory (e.g., Fennema and Wakker, 1997). 

From a probabilistic perspective, a transformation function for a probability measure implicitly 

derives a transformation function for the corresponding random variables. Theorem 1 below shows that 

a CRWF 𝑊(𝑃) is linked to a transformation function that connects the primary outcomes presented in 

the choice experiment to the ones that are perceived by the decision-makers. 

Theorem 1. The CRWF 𝑊(𝑃)=𝐺[𝐹−1(𝑃)] that transforms a survival function  𝐹(𝑡) to  𝐺(𝑡) derives a 

transformation function 𝐻(𝑇) = 𝐺−1[𝐹(𝑇)] such that 

(i) it transforms the primary outcome variable 𝑇  with survival function  𝐹  to the decision-maker’s 

perceived outcome  𝑆 = 𝐻(𝑇) with survival function 𝐺(𝑡) = 𝐹(𝐻−1(𝑡));  

(ii) 𝑊(𝑃) and 𝐻(𝑇) are connected via 𝑊(𝑃)=𝐹(𝐻−1[𝐹−1(𝑃)]).  
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See Appendix A for proof. This theorem indicates that 𝑊(𝑃) and 𝐻(𝑇) can be mutually determined 

for a given underlying survival function 𝐹(𝑡). In practice, therefore, we only need to focus on one of 

them if 𝐹(𝑡) is specified.  

2.3.   Properties of CRWFs  

In this section, we propose a large class of CRWFs and investigate some important properties about 

decision-makers’ risky weighting.  

2.3.1.   A class of CRWFs 

From Theorem 1, in order to fully specify a CRWF, the transformation 𝐻(𝑇)  and underlying 

survival function 𝐹(𝑡) need to be determined. We consider an important case of perceptual conditioning 

where the decision-makers’ perceived outcomes are transformed from 𝑇  to 𝑆 via: 

 𝐻 :      𝑆 = (𝑎𝑇)𝜆            for 𝜆 > 0 and 𝑎 > 0,      (5) 

where following Prelec (1998), we restrict 𝜆 > 0. Clearly transformation function (5) ensures that the 

support ℜ+  of the primary outcome variable is invariant. According to Theorem 1, equation (5) 

implicitly derives a broad class of CRWFs for any survival function 𝐹(. ) as defined below:  

 𝒜 = {𝑊(𝑃) ≔ 𝐹({𝐹−1(𝑃)}1/𝜆/𝑎)| for any survival function 𝐹(. ) on ℜ+, 𝜆 > 0 , 𝑎 > 0}.  (6) 

As it will be shown latter (see Theorems 2 and 3), the parameter 𝜆  in (6) plays a central role in 

determining the shape of the CRWFs belonging to class 𝒜 and is termed risk perception parameter. By 

definition, for any survival function 𝐹(𝑡) on  ℜ+, a CRWF 𝑊(𝑃) ∈ 𝒜  transforms 𝐹(𝑡) to  

 𝐺(𝑡) = Pr((𝑎𝑇)𝜆 > 𝑡) = Pr(𝑇 > 𝑡1/𝜆/𝑎) = 𝐹(𝑡1/𝜆/𝑎)      for 𝜆 > 0 and 𝑎 > 0. (7) 

Consequently, choosing a different survival function 𝐹(. ) leads to a different CRWF. Hence, there are 

an infinite number of CRWFs belonging to class (6); as a result, the class of risky weighting functions 

(6) provides flexibility to model a wide range of practical problems.  

Power transformation is usually a good approximation of many monotonically increasing functions 

that a decision-maker may use in practice. It is widely used in many economic analyses such as the well-

known Cobb–Douglas production function. The power transformation can also be justified from a 

statistical perspective. This transformation is known as the Box-Cox transformation in statistical 

analysis. A more general form for the Box-Cox transformation is 𝑆 = (𝑇𝜆 − 1)/𝜆. According to Box 



Risky Weighting in Discrete Choice 

Li and Hensher 
 

8 

 

and Cox (1964), (𝑇𝜆 − 1)/𝜆  is slightly preferable for theoretical analysis because it is continuous at 

𝜆 = 0 . In this paper, however, we follow Prelec (1998) and restrict 𝜆 > 0; a negative value of 𝜆 

transforms gains into losses, which does not make any practical sense. Mathematically, an obvious 

advantage of using the power transformation (5) over  𝑆 = (𝑇𝜆 − 1)/𝜆 is that the former ensures the 

support ℜ+ of the primary outcomes invariant but the latter may lead to negative values. Hence we use 

(5) throughout this paper. Technically, the parameter 𝑎 in equation (5) affects the scale of the perceived 

outcomes. In some applications, it is taken as 1 (i.e., without a scale transformation) or 𝜆−1/𝜆. Note that 

in the latter case, equation (5) becomes 𝑆 = 𝑇𝜆/𝜆. There are some other choices for the scale parameter 

𝑎 in the Box-Cox transformation; see, for example, Weisberg (2005).  

Next, we turn to discuss some important theoretical properties for decision-makers’ risky weighting. 

Prelec (1998) considered four important properties that CRWFs are expected to possess, i.e., (a) 

regressiveness, (b) asymmetry, (c) inverse-s shape, and (d) reflectiveness. The following theorem 

investigates these properties for any 𝑊(𝑃) ∈ 𝒜  with 𝜆 > 1. 

Theorem 2A. For any 𝑊(𝑃) = 𝐹({𝐹−1(𝑃)}1/𝜆/𝑎) ∈ 𝒜  with 𝑎 = 1 and 𝜆 > 1, we have  

(i) 𝑄 = 𝑊(𝑃) is an increasing function of 𝑃 with 𝑊(0) = 0 and 𝑊(1) = 1; 

(ii) For continuous 𝐹(𝑡), there exists a fixed-point (probability) 𝑃∗ = 𝐹(1) satisfying 𝑃∗ =

𝑊(𝑃∗) such that 𝑊(𝑃) ≥ 𝑃 for any 𝑃 ∈ (0, 𝑃∗) and  𝑊(𝑃) ≤ 𝑃 for any 𝑃 ∈ (𝑃∗, 1).  If 

𝐹(𝑡) is strictly decreasing and 0 < 𝐹(1)  < 1,  then the fixed-point 𝑃∗  is unique on the 

interval (0, 1); 

(iii) The left-tail decision weight 𝑞1 = 1 − 𝑊(1 − 𝑝1) is an increasing function of 𝜆 if  𝑝1 <

1 − 𝑃∗; the right-tail decision weight 𝑞𝐽 = 𝑊(𝑝𝐽) is also an increasing function of 𝜆 if 

𝑝𝐽 < 𝑃∗ . Hence the CRWF overweights a small left-tail decision weight and a small right-

tail decision weight; 

(iv) As the risk perception parameter 𝜆 becomes sufficiently large, the left-tail and right-tail 

decision weights 𝑞1 = 1 − 𝑊(1 − 𝑝1)  and 𝑞𝐽 = 𝑊(𝑝𝐽)  approach to 1 − 𝑃∗  and 𝑃∗ 

respectively; all the other decision weights 𝑞𝑗  (𝑗 = 2, … , 𝐽 − 1) vanish. 
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The proof of Theorem 2A is given in Appendix A. Property (i) ensures that the transformed function 

𝐺(𝑡) = 𝑊(𝐹(𝑡)) is a well-defined survival function. Properties (ii)-(iii) are related to the regressiveness 

and inverse-s shape natures of the cumulative risky weighting curve 𝑄 = 𝑊(𝑃) (𝑃 ∈ [0, 1]): 𝑃 = 𝑊(𝑃) 

holds at the two end-points  𝑃 = 0 and 1 respectively; the curve also intersects the diagonal line of 𝑄 =

𝑃 at the fixed point 𝑃∗. In addition, the curve 𝑄 = 𝑊(𝑃) overweights a small left-tail probability and a 

small right-tail probability. Property (iv) further shows that 𝐺(𝑡)  is approximately a U-shaped 

distribution for a large 𝜆 with its limiting distribution of a Bernoulli distribution that takes values at the 

two extreme ends only, i.e. 𝑡1 and 𝑡𝐽.  

Barberis (2013) emphasises that risky weighting means that the decision-makers overweight the two 

tails of any distribution (i.e., overweight unlikely extreme outcomes). This is consistent with Theorem 

2A.  Note that the fixed-point 𝑃∗of the asymmetry property in Prelec (1998) is expected to lie in the 

range of 1/3 to 1/2; the inverse-s shape feature in Prelec (1998) also requires that the curve 𝑄 = 𝑊(𝑃) 

be concave within an initial interval and be convex beyond that. However, because there is  little 

restriction imposed on the shape of survival function 𝐹(𝑡) here, these strong properties do not generally 

hold. A further investigation will be undertaken in the next subsection.  

The following theorem discusses the case of 0 < 𝜆 < 1. The proof is given in Appendix A. 

Theorem 2B. For any 𝑊(𝑃) = 𝐹({𝐹−1(𝑃)}1/𝜆/𝑎) ∈ 𝒜  with 𝑎 = 1 and 0 < 𝜆 < 1, we have  

(i) 𝑄 = 𝑊(𝑃) is an increasing function of 𝑃 with 𝑊(0) = 0 and 𝑊(1) = 1; 

(ii) For continuous 𝐹(𝑡), there exists a fixed-point (probability) 𝑃∗ = 𝐹(1) satisfying 𝑃∗ =

𝑊(𝑃∗) such that 𝑊(𝑃) ≤ 𝑃 for any 𝑃 ∈ (0, 𝑃∗) and  𝑊(𝑃) ≥ 𝑃 for any 𝑃 ∈ (𝑃∗, 1). If 

𝐹(𝑡) is strictly decreasing and 0 < 𝐹(1)  < 1,  then the fixed-point 𝑃∗  is unique on the 

interval (0, 1); 

(iii) The left-tail decision weight 𝑞1 = 1 − 𝑊(1 − 𝑝1) is an increasing function of 𝜆 if  𝑝1 <

1 − 𝑃∗; the right-tail decision weight 𝑞𝐽 = 𝑊(𝑝𝐽) is also an increasing function of 𝜆 if 

𝑝𝐽 < 𝑃∗ . Hence the CRWF underweights a small left-tail decision weight and a small right-

tail decision weight; 
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(iv) As the risk perception parameter 𝜆 > 0 becomes sufficiently small, the decision weights 

degenerate to a single-point distribution such that all the decision weights 𝑞𝑗 vanish except 

for one, 𝑞𝑗0
= 1, where 𝑗0 is the state with 𝑃𝑗0

≥ 1 − 𝑃∗ and 𝑃𝑗0+1 ≤ 1 − 𝑃∗. 

Clearly, the case of 0 < 𝜆 < 1 describes an unusual circumstance in practical decision-making: 

decision-makers underestimate the tail probabilities. This can occasionally occur in reality. For example, 

if the respondents believe that the tail probabilities shown in a survey experiment are substantially larger 

than what they have experienced before, they may make some necessary adjustment for the decision 

weights; see Balcombe and Fraser (2015) for some examples.  

2.3.2.   A unified CRWF 

There are a number of existing CRWFs in the literature, some of which were formulated in an ad 

hoc manner, whereas the others were developed on the basis of a set of axioms (e.g., Prelec, 1998). In 

this subsection, we propose a unified CRWF that includes several commonly used weighting functions 

as special cases. The proposed unified CRWF helps us understand the relationships among these existing 

risky weighing functions, and also differentiates risky weighting in CPT from EUT. We first examine 

two important CRWFs in relation to the power transformation (5).  

Case I (Prelec, 1998). When the underlying survival function 𝐹(𝑡)  is chosen as the exponential 

distribution 𝐹(𝑡) = exp (−𝑡/𝑏), the power transformation (5) leads to a Weibull distribution, 𝐺(𝑡) =

exp [−𝑡1/𝜆/(𝑎𝑏)]  and the following CRWF: 

 𝑊(𝑃)=𝐹(𝐻−1[𝐹−1(𝑃)]) = exp (−𝜔[−log (𝑃)]1/𝜆)       with 𝜔 = 𝑏1/𝜆−1𝑎−1,            (8) 

where 𝑎 is the scale parameter in (5) and 𝑏 is the parameter of the underlying distribution 𝐹(𝑡) =

exp (−𝑡/𝑏). Either 𝑎 or 𝑏 or both can be pre-specified. For example, as mentioned earlier,  𝑎 can be 

taken as 1 or 𝜆−1/𝜆 . If the primary outcomes are scaled to have a unit variance, then 𝑏 is set as 1. 

Alternatively, 𝜔 can be estimated in numerical analysis. 

  𝑊(𝑃) in (8) is termed Prelec II function in the literature. When 𝜔 is pre-set as 1, it is termed Prelec 

I function. In addition, we note that when 𝜆 = 1, the CRWF in (8) becomes   

 𝑊(𝑃) =  𝑃𝜂.            
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with 𝜂 = 1/𝑎. Hence, a power transformation of the probability is a special case of Prelec II function. 

This function was also considered in De Palma et al. (2008), Abdellaoui et al. (2010), and Beaud and 

Willinger (2015). In particular, taking 𝜂 = 1, we obtain 

 𝑊(𝑃) = 𝑃.           (9) 

This is the case corresponding to no risky weighting, a scenario considered in EUT.  

Case II (Goldstein and Einhorn, 1987). When the underlying survival function 𝐹(𝑡) is chosen as the 

log-logistic distribution 𝐹(𝑡) = 1/(1 + 𝑡/𝑏) , the power transformation (5) leads to a log-logistic 

distribution, 𝐺(𝑡) = 1/[1 + 𝑡1/𝜆/(𝑎𝑏)]  and the Goldstein-Einhorn’s CRWF: 

 𝑊(𝑃)=𝐹(𝐻−1[𝐹−1(𝑃)]) = 𝑃1/𝜆/[𝑃1/𝜆 + 𝜔(1 − 𝑃)1/𝜆]       with 𝜔 = 𝑏1/𝜆−1𝑎−1.     (10) 

Two questions arise from a practical perspective: (a) how are these existing risky weighting 

functions related to each other? (b) how do we choose a CRWF 𝑊(𝑃) among many candidate functions?  

Clearly, if the choice is restricted within the class 𝒜 defined in equation (6), this is equivalent to the 

choice of the underlying survival function 𝐹(𝑡). To address these research issues, we propose a general 

CRWF that is based on the following underlying survival function:  

 𝐹(𝑡; 𝜅) = 1/[1 + 𝑡/ (𝜅𝑏)]𝜅 for 𝑡 ≥ 0   and 𝜅 > 0.     (11) 

In the literature, this distribution is termed type I generalised log-logistic distribution. See, e.g., 

Balakrishnan (1992, Chapter 9), for a detailed discussion of the statistical properties of type I generalised 

logistic distribution.  𝐹(𝑡; 𝜅) = 1/[1 + 𝑡/ (𝜅𝑏)]𝜅 is also a scaled F-distribution with the first degree of 

freedom of 2, the second degree of freedom of 2𝜅, and scale parameter 𝑏. 

The underlying distribution (11) derives the following CRWF belonging to class 𝒜: 

 𝑊(𝑃) = 𝐹(𝐻−1[𝐹−1(𝑃)]) 

= 𝑃1/𝜆/[𝑃1/(𝜅𝜆) + 𝜔𝜅1/𝜆−1(1 − 𝑃1/𝜅)1/𝜆]𝜅 with 𝜔 = 𝑏1/𝜆−1𝑎−1,   (12) 

that transforms 𝐹(𝑡; 𝜅) to  𝐺(𝑡; 𝜅) = 1/[1 + 𝑡1/𝜆/(𝜅𝑎𝑏)]𝜅.  

The proposed CRWF (12) includes several important CRWFs in the literature as special cases: 
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(i) As 𝜅 → +∞ with 𝜆 = 1 and 𝜔 = 1,  𝐹(𝑡; 𝜅) = 1/[1 + 𝑡/ (𝜅𝑏)]𝜅  in (11) approaches the 

exponential distribution 𝐹(𝑡) = exp (−𝑡/𝑏) . Hence, the CRWF in (12) approaches the 

identity function in (9); 

(ii) As 𝜅 → +∞,  𝐹(𝑡; 𝜅) = 1/[1 + 𝑡/ (𝜅𝑏)]𝜅 in (11) approaches the exponential distribution 

𝐹(𝑡) = exp (−𝑡/𝑏). Hence, the CRWF in (12) approaches Prelec’s function in (8); 

(iii) As 𝜅 = 1 ,  𝐹(𝑡; 𝜅) = 1/[1 + 𝑡/ (𝜅𝑏)]𝜅  collapses to the log-logistic distribution 𝐹(𝑡) =

1/(1 + 𝑡/𝑏). Hence, the CRWF in (12) becomes the Goldstein-Einhorn’s function in (10); 

(iv) Let 𝑃̃ = 𝑃𝜂. Then the CRWF in (12) can be written as 𝑃̃1/(𝜂𝜆)/[𝑃̃1/(𝜂𝜅𝜆) + 𝜔𝜅1/𝜆−1(1 −

𝑃̃1/(𝜂𝜅))1/𝜆]𝜅. This is related to Wu-Gonzalez’s CRWF, 𝑃1/𝜆/[𝑃1/𝜆 + (1 − 𝑃)1/𝜆]𝜅 (Wu 

and Gonzalez, 1996), and Tversky-Kahneman’s function  𝑊(𝑃) = 𝑃1/𝜆/[𝑃1/𝜆 + (1 −

𝑃)1/𝜆]𝜆  (Tversky & Kahneman, 1992). 

Case (i) corresponds to the scenario where the risky weighting function is an identity function, i.e. 

the case of EUT where no transformation is involved. In empirical analysis, we can statistically test if 

the evidence is in favour of EUT against CPT by checking if 𝜆 = 1, 𝜔 = 1 and 𝜅 → +∞.  

In addition, from cases (ii) and (iii), Prelec’s function and Goldstein-Einhorn’s function are two 

special cases of the unified CRWF (12) with parameter 𝜅 at the two extreme spectrums of its range. 

Again, statistical tests can be performed to decide which risky weighting function is more preferable.  

We also note that case (iv) can be considered as a combination of the power transformation and (12), 

i.e., a scale transformation (𝜆 = 1 and 𝑎 = 1/𝜂) with 𝐹(𝑡; +∞),  followed by a power transformation 

(𝜆 ≠ 1 and 𝑎 = 1) with 𝐹(𝑡; 𝜅). It is of interest to note that this is also related to the source preference 

model developed in Fox and Tversky (1998) for the situation where people’s choice depends not only 

on the degree of uncertainty but also on its source, i.e. [𝑊(𝑃)]𝛿 , where 𝛿 > 0 is a parameter that is 

inversely related to the attractiveness of the source. Clearly, risky weighting with source preference can 

be modelled as a combination of (12) and the power transformation, i.e., a power transformation (𝜆 ≠ 1 

and 𝑎 = 1) with 𝐹(𝑡; 𝜅), followed by a scale transformation (𝜆 = 1 and 𝑎 = 1/𝛿) with 𝐹(𝑡; +∞). 

From a perspective of numerical computation, since the unified CRWF in (12) includes these 

commonly used CRWFs as special cases, the choice for risky weighting function amounts to the choice 
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for parameters in (12). Consequently, instead of exploring each of the commonly used CRWFs 

separately in empirical analysis (like it was done in Hensher et al., 2011), the choice for risky weighting 

function can be automatically made by estimating these parameters during the data analysis stage, 

leading to a data-driven model-selection approach.  

To better understand the proposed risky weighting function, we further explore the four important 

characteristics about CRWFs investigated in Prelec (1998). We show below that the unified CRWF (12) 

has much stronger properties in comparison with that in Theorems 2 and 3. We consider the situation 

where the primary outcome variable has been re-scaled to have a unit scale parameter 𝑏 = 1 so that the 

following conclusions do not rely on the measurement unit of the primary outcome variable.  

Theorem 3. For the unified CRWF (12) with 𝑎 = 1  and 𝑏 = 1 , there exists a unique fixed-point 

(probability) 𝑃∗ = 𝐹(1; 𝜅) satisfying 𝑃∗ = 𝑊(𝑃∗) such that 

(i) 0.367 < 𝑃∗ < 0.5 for 𝜅 ∈ (1, +∞); 

(ii) 𝑃∗ = 0.5 for 𝜅 = 1; 

(iii) 0.5 < 𝑃∗ < 1  for  𝜅 ∈ (0, 1); 

(iv) For 𝜆 > 1, 𝑊(𝑃) is concave and 𝑊(𝑃) > 𝑃 for any 𝑃 ∈ (0, 𝑃∗), and 𝑊(𝑃) is convex and 

𝑊(𝑃) < 𝑃 for any 𝑃 ∈ (𝑃∗, 1); 

(v) For 0 < 𝜆 < 1 , 𝑊(𝑃)  is convex and 𝑊(𝑃) < 𝑃  for any 𝑃 ∈ (0, 𝑃∗) , and 𝑊(𝑃)  is 

concave and 𝑊(𝑃) > 𝑃 for any 𝑃 ∈ (𝑃∗, 1). 

The proof of Theorem 3 is given in Appendix A. The upper and lower left panels of Figure 1 

illustrate Theorem 3 parts (i), (iii) and (iv), where the function 𝑄 = 𝑊(𝑃) with 𝜆=2 is plotted against 𝑃 

using (12) (the real line) for 𝜅 = 30 (upper left) and for 𝜅 = 0.2 (lower left). This is compared with the 

straight-line 𝑄 = 𝑃 (the dotted line); the latter is the case where the risk perception does not involve any 

risky weighting, i.e. equation (9). Likewise, the upper and lower left panels of Figure 2 illustrate 

Theorem 3 parts (i), (iii) and (v), where the function 𝑄 = 𝑊(𝑃) with 𝜆=0.5 is plotted against 𝑃 using 

(12) (the real line) for 𝜅 = 30 (upper left) and for 𝜅 = 0.2 (lower left).  

In addition, to demonstrate the impact of different risk perception parameter values, we consider a 

number of mass probabilities all equal to 𝑝𝑗 = 0.10 (𝑗 = 1, … ,10). This represents the scenario where 
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the primary outcome at all states of nature has an equal probability (i.e. 0.10). We then apply the risky 

weighting  𝑄 = 𝑊(𝑃) in (12) with several different values of 𝜆, i.e. 2, 4, and 10, to transform these 

probabilities 𝑝𝑗  to obtain decision weights 𝑞𝑗  ( 𝑗 = 1, … ,10 ). The resulting decision weights are 

displayed in the upper and lower right panels of Figure 1, where the original probability (0.10) and the 

decision weights transformed with 𝜆= 2, 4, and 10 are plotted. Note that the four probability values for 

each of the states are clustered in the bar chart (bars from left to right at each state of nature are the 

original probability of 0.1 and the associated risky weighting with  𝜆=2, 4, and 10 respectively). Take 

the lower right panel of Figure 1 as an example: the furthermost bar on the far right at each state shows 

a J-shaped distribution of the decision weights which are transformed with  𝜆=10. On the other hand, 

the decision weights without risky weighting have a uniform distribution as displayed by the furthermost 

bar on the far left at each state. 

From Theorem 3, the asymmetry of the fixed point depends on the range of parameter 𝜅, which in 

turn has an important implication to the risk attitude of the decision-makers. Specifically, Theorem 3 (i) 

shows that the fixed-point 𝑃∗ is less than 0.5 for any 𝜅 ∈ (1, +∞), as displayed in the upper left graph 

of Figure 1. From Theorem 2A, the left-tail decision weight 𝑞1 = 1 − 𝑊(1 − 𝑝1) approaches to 1 −

𝑃∗ ∈ [0.5, 0.632] as the risk perception parameter 𝜆 becomes large. When the left-tail and right-tail 

probabilities are equal, i.e. 𝑝1 = 𝑝𝐽, the asymmetry in Theorem 3 (i) leads to a higher left-tail decision 

weight 𝑞1 than the right-tail 𝑞𝐽, as displayed by Figure 1 (upper right). As the risk perception parameter 

𝜆 becomes sufficiently large, the right-tail (or left-tail) decision weight approaches 𝑃∗ = 𝐹(1; 30) =

0.374 (or 1 − 𝑃∗ = 0.626) for 𝜅 = 30. When the primary outcomes are gains, this suggests that the 

perceptual conditioning tends to increase more in risk-aversion for losses than gains. 

On the other hand, Theorem 3 (iii) shows that for 0 < 𝜅 < 1, the fixed-point 𝑃∗ = 𝐹(1; 𝜅) lies in 

the range of 0.5 < 𝑃∗ < 1, as displayed in the lower left graph of Figure 1. As 𝜆 becomes large, the 

right-tail (or left-tail) decision weight approaches  𝑃∗ = 𝐹(1; 0.2) = 0.699 (or 1 − 𝑃∗ = 0.301) for 

𝜅 = 0.2. In other words, with 𝑃∗ > 0.5, the decision weights are J-shaped. Hence, when the primary 

outcomes are gains, the perceptual conditioning tends to increase more in risk-aversion for gains than 

losses. 
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In addition, Theorem 3 (ii) with 𝜅 = 1 is the Goldstein-Einhorn’s CRWF for which the decision-

maker’s risk attitude does not favour either gains or losses. Because the parameter 𝜅 reflects the degrees 

of asymmetry of the fixed-point 𝑃∗, as well as the skewness of the decision weights, it is termed an 

asymmetry parameter in this paper.  

Theorem 3 (iv) shows the regressiveness and inverse-s shape natures of the unified CRWF  in (12) 

when 𝜆 > 1. It is important to note that the fixed-point and inflection point coincide, as illustrated in the 

upper left and lower left graphs of Figure 1. 

Finally, Theorem 3 (v), corresponding to Theorem 2B with 0 < 𝜆 < 1, describes the scenario that 

decision-makers underweight the tail probabilities. From the upper left and lower left graphs of Figure 

2, the cumulative risky weighting curve still shows the regressiveness with a unique fixed-point that 

coincides the inflection point.  It is also clear that the curve is s-shaped (rather than inversely s-shaped). 

The upper right (or lower right) graph of Figure 2 shows that, as 𝜆 becomes sufficiently small, all the 

decision weights approaches to 0 except for one state. See also, Abdellaoui et al. (2010), for a discussion 

about the link between risky weighting function and probabilistic risk attitudes was discussed. 

 

Figure 1. Overweighted tail probabilities: the left panels show CRWF  𝑾(𝑷) of the square transformation 

(𝝀 = 𝟐) in (12) when  𝜿 = 𝟑𝟎 (upper left) and 𝜿 = 𝟎. 𝟐 (lower left); 

The right panels show decision weights for the original equal mass probabilities 𝒑𝒋 = 𝟎. 𝟏 (for all states 𝒋) 

and using (12) with 𝝀= 2, 4, 10 (bars from left to right at each state respectively) when 𝜿 = 𝟑𝟎 (upper 

right) and 𝜿 = 𝟎. 𝟐 (lower right). 
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Figure 2. Underweighted tail probabilities: the left panels show CRWF  𝑾(𝑷) of the square root 

transformation (𝝀 = 𝟎. 𝟓)  in (12) when 𝜿 = 𝟑𝟎 (upper left) and 𝜿 = 𝟎. 𝟐 (lower left); 

The right panels show decision weights for the original equal mass probabilities 𝒑𝒋 = 𝟎. 𝟏 (for all states 𝒋) 

and using (12) with 𝝀=1/2, 1/4, 1/10 (from left to right at each state respectively) when 𝜿 = 𝟑𝟎 (upper 

right) and 𝜿 = 𝟎. 𝟐 (lower right). 

 

In practice, most empirical evidence supports inverse-s probability weighting but s-shape weighting 

functions were also documented in the literature. See Prelec (1998), Balcombe and Fraser (2015) and 

the references therein for further discussion on inverse-s and s shapes of CRWFs.  

We also note that in Theorem 3, the unique fixed-point (probability) 𝑃∗ for 𝜅 ∈ (1, +∞) is bounded 

in the range of 𝑃∗ ∈ (0.367,0.5). This is consistent with Prelec (1998) that indicates the fixed-point 𝑃∗ 

lies in the range of 1/3 to 1/2. It seems that the lower bound of 0.367 may be restrictive in some 

applications. However, the fixed-point 𝑃∗  falls in this range only for the unit scale parameter 𝑎 in 

transformation (5). The following corollary shows that the lower bound of the fixed-point is also 

partially determined by the scale parameter 𝑎 in transformation (5).  

Corollary. For the unified CRWF (12) with 𝑏 = 1, the unique fixed-point 𝑃∗ satisfying 𝑃∗ = 𝑊(𝑃∗) is 

given by 𝑃∗ = 𝐹(𝑎𝜆/(𝜆−1); 𝜅). Hence for 𝜆 > 1 and 𝑎 > 1, we have  𝑃∗ ∈ (0, 0.5) for 𝜅 ∈ (1, +∞). 
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The proof of the Corollary is given in Appendix A. This shows that the scale parameter affects the 

location of the fixed-point 𝑃∗:  by allowing the scale parameter 𝑎 to vary, the fixed-point 𝑃∗ can take 

values anywhere in the range of (0, 0.5). 

Remarks. (i) In many choice survey instruments, the number of states, 𝐽 , of a contract  𝑔𝑖 =

({𝑝𝑗}
𝑗=1

𝐽
, {𝑡𝑖𝑗}

𝑗=1

𝐽
) is usually set to be small (typically 2 to 4) to avoid overcomplicated choice situations 

that could confuse the respondents. The information provided in the survey instruments is hence not 

sufficient to elicit the entire survival function 𝐹(𝑡). We show in Appendix B that, when eliciting prior 

knowledge with limited information, the distribution (11) is the optimal underlying survival function 

that maximises a constrained entropy. In other words, the unified CRWF (12) is optimal in the sense of 

the maximum entropy when choosing a CRWF within class 𝒜. 

(ii) Before concluding this section, we very briefly discuss the scenario of 𝑇 ∈ ℜ. Two approaches can 

be used here. First, we note that the log-transformation converts any nonnegative primary outcome 

variable on ℜ+ to a real-valued outcome variable on the real line ℜ. Hence, one approach is to use the 

log-transformation so that all the results obtained in this section can be applied. A more popular 

approach in the literature (see, e.g., Wakker, 2010) is to consider a piecewise CRWF: 

𝑊(𝑃) = {
𝑊+(𝑃)   if 𝑇 ≥ 0
𝑊−(𝑃)   if 𝑇 < 0

 . 

Clearly, for each of 𝑊+(𝑃) and 𝑊−(𝑃), the proposed method in this section can be used.  The 

parameters in the unified CRWF (12) for 𝑊+(𝑃) and 𝑊−(𝑃) are usually set differently. As people may 

view gains and losses very differently (Tversky and Kahneman, 1992), the second approach is more 

preferable in many applications.  

3.   Modelling of choice behaviour with risky prospects 

In this section, we will investigate the modelling of decision-makers’ choice behaviour with risky 

prospects on the basis of the unified CRWF (12).  

We consider the stochastic form of CPT. To describe the stochastic nature of travellers’ choices, we 

incorporate the approach of discrete choice analysis. There are three components to be considered within 
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this research framework, i.e. risky weighting function, value function and link function. We show in this 

section that the power utility function and the multiplicative discrete choice model are a natural choice 

for the class of risky weighting functions in (6).  

3.1.   Value function  

In the previous section we focused on CRWFs. We now consider the next component in CPT, i.e. 

the value function. We assume that for given primary outcomes over ℜ+, a decision-maker’s value (or 

utility) function of choosing a prospect is a random variable. We break down the value function into a 

non-stochastic systematic part 𝑣̅(𝑡; 𝜇, 𝜏) termed subutility and a stochastic component 𝜀 for the given 

primary outcomes. The two parts are assumed to connect each other via the following multiplicative 

model: 

𝑣(𝑡; 𝜇, 𝜏) = 𝑣̅(𝑡; 𝜇, 𝜏) 𝜀.         (13) 

In this subsection, we focus on the subutility 𝑣̅(𝑡; 𝜇, 𝜏). The stochastic component 𝜀  will be modelled 

via the link function in the next subsection.  

For the non-stochastic subutility function, Tversky and Kahneman (1992) considered the constant 

relative risk aversion (CRRA) utility function: 

𝑣̅(𝑡; 𝜇, 𝜏) = 𝜇𝑡1−𝜏/(1 − 𝜏)        (14) 

where 𝜏  is risk attitude coefficient and 𝜇 is an individual specific parameter. The CRRA utility is also 

considered in many other studies, e.g., Prelec (1998), Gao et al. (2010), Hensher et al. (2011), and Beaud 

and Willinger (2015).  

As shown in Theorem 1, perceptual conditioning is a process that the decision-makers transform the 

primary outcome variable 𝑇 into their perceived outcome 𝑆 = 𝐻(𝑇). Under this transformation, the 

subutility 𝑣̅(𝑆; 𝜇, 𝜏) becomes 𝑣̅(𝐻(𝑇) ; 𝜇, 𝜏): 

𝑣̅(𝐻(𝑇) ; 𝜇, 𝜏) = 𝜇[𝐻(𝑇)](1−𝜏)/(1 − 𝜏).       (15) 

Hence, the consistency in functional form of the value (utility) function is retained via the power 

transformation if the decision-maker incorporates the CRRA utility form. This is summarised below. 
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Theorem 4. Suppose that the subutility function 𝑣̅(. ; 𝜇, 𝜏) for a decision-maker is of the CRRA form as 

given in (14). Then the power transformation in (5) ensures that the subutility function 𝑣̅(𝐻(. ); 𝜇, 𝜏) is 

also of the CRRA form.  

To characterise each decision-maker’s value function, we assume that the parameter 𝜇 in equation 

(14) is linked to a vector of covariates termed attributes 𝐱𝑖𝑛 = [𝑥𝑖𝑛1, … , 𝑥𝑖𝑛𝑙]𝑇, denoted as 𝜇𝑖𝑛:  

𝜇𝑖𝑛 = exp ( 𝛃𝑇𝐱𝑖𝑛),         (16) 

where 𝛃 = [𝛽1,…,𝛽𝑙]𝑇 is a vector of parameters.  

Now we consider the expected value function that integrates the two components of CPT, i.e. the 

risky weighting and value functions. By definition, the expected value function with respect to the 

primary outcome variable is given by 𝐸 = − ∫ 𝑣(𝑡; 𝜇, 𝜏)𝑑𝐺(𝑡). In the case of a finite number of states 

of nature, it reduces to (3), i.e. 

𝐸 = ∑ 𝑣(𝑡𝑖𝑗; 𝜇𝑖𝑛 , 𝜏)𝑞𝑗(𝜆)
𝐽
𝑗=1          

for each prospect 𝑖 , where 𝑞𝑗(𝜆) = 𝑊(𝑃𝑗; 𝜆) − 𝑊(𝑃𝑗+1; 𝜆) and  𝑊(𝑃; 𝜆) = 𝑃1/𝜆/[𝑃1/(𝑣𝜆) +

𝜔𝑣1/𝜆−1(1 − 𝑃1/𝑣)1/𝜆]𝑣 is given by (12).  Consequently, from equation (13), the value function of 

decision-maker 𝑛 for choosing prospect 𝑖 is  

𝑣𝑖𝑛 = 𝑣̅(𝐱𝑖𝑛; 𝛃, 𝜆, 𝜏)𝜀𝑖𝑛 = 𝜀𝑖𝑛exp ( 𝛃𝑇𝐱𝑖𝑛)(1 − 𝜏)−1 ∑ 𝑡𝑖𝑗
(1−𝜏)𝐽

𝑗=1 𝑞𝑗(𝜆),   (17) 

with the subutility  𝑣̅(𝐱𝑖𝑛; 𝛃, 𝜆, 𝜏) = exp ( 𝛃𝑇𝐱𝑖𝑛)(1 − 𝜏)−1 ∑ 𝑡𝑖𝑗
(1−𝜏)𝐽

𝑗=1 𝑞𝑗(𝜆).   

3.2.   Link function and choice probability 

Now we turn to consider the stochastic component 𝜀𝑖𝑛 in the multiplicative model (17).  

We consider the scenario where a decision-maker  𝑛  is facing a decision-making problem with 

several risky prospects. Rather than assume that the prospects under investigation are riskless in 

conventional discrete choice analysis (see, e.g., Hensher et al. 2015; Train 2009), we investigate a more 

general scenario where each prospect is risky and characterised by a contract (gamble) 𝑔𝑖 =

({𝑝𝑗}
𝑗=1

𝐽
, {𝑡𝑖𝑗}

𝑗=1

𝐽
). Following CPT, we take into consideration risky weighting of the decision-maker 

so that his/her decision-making is based on 𝑣𝑖𝑛 = 𝑣̅(𝐱𝑖𝑛; 𝛃, 𝜆, 𝜏)𝜀𝑖𝑛 in (17). A prospect 𝑖 is chosen if 

𝑣𝑖𝑛 ≥ 𝑚𝑎𝑥𝑘∈𝐶𝑛
{𝑣𝑘𝑛}. The probability that this event occurs,  
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 𝑃𝑖𝑛 = Pr {𝑣𝑖𝑛 ≥ 𝑚𝑎𝑥𝑘∈𝐶𝑛
𝑣𝑘𝑛}  ,        (18) 

is used to characterise the decision-making problem (see, e.g., Ben-Akiva and Lerman, 1985).  

To derive an explicit form of choice probability (18), we need to specify a statistical model for the 

stochastic component 𝜀𝑖𝑛  of the value function in equation (17). Specifically, for the multiplicative 

model (17), we follow Fosgerau and Bierlaire (2009) and Li (2011), and assume that the independent 

error terms 𝜀𝑖𝑛 have a Weibull distribution with 𝛼 > 0 the scale parameter of log (𝜀𝑖𝑛). When 𝜏 > 1, the 

choice probability (18) is given by 

𝑃𝑖𝑛 = 𝑃𝑖𝑛(𝛃, 𝜆, 𝜏, 𝜅|𝐱𝑛) 

= Pr{𝑣𝑖𝑛 ≥ 𝑚𝑎𝑥𝑘∈𝐶𝑛
𝑣𝑘𝑛} = Pr{−log (−𝑣𝑖𝑛) ≥ 𝑚𝑎𝑥𝑘∈𝐶𝑛

−log (−𝑣𝑘𝑛)} 

=
exp ( −𝛼{𝛃𝑇𝐱𝑖𝑛+|1−𝜏|+log [∑ 𝑡𝑖𝑗

(1−𝜏)𝑞𝑗(𝜆)]
𝐽
𝑗=1 })

∑ exp (−𝛼 { 𝛃𝑇𝐱𝑘𝑛+|1−𝜏|+log [∑ 𝑡𝑘𝑗
(1−𝜏)𝑞𝑗(𝜆)]}

𝐽
𝑗=1 )𝑘∈𝐶𝑛

   ,    

where 𝐱𝑛 is a collection of all 𝐱𝑘𝑛 for 𝑘 ∈ 𝐶𝑛. We note that the common term |1 − 𝜏| is cancelled out 

in the above expression. Hence, we obtain 

𝑃𝑖𝑛(𝛃, 𝜆, 𝜏, 𝜅|𝐱𝑛) =
exp ( −𝛼{𝛃𝑇𝐱𝑖𝑛+log [∑ 𝑡𝑖𝑗

(1−𝜏)𝑞𝑗(𝜆)]
𝐽
𝑗=1 })

∑ exp (−𝛼 { 𝛃𝑇𝐱𝑘𝑛+log [∑ 𝑡𝑘𝑗
(1−𝜏)𝑞𝑗(𝜆)]}

𝐽
𝑗=1 )𝑘∈𝐶𝑛

   .   

Similar to the above analysis, we can obtain the following choice probability for 𝜏 < 1: 

𝑃𝑖𝑛(𝛃, 𝜆, 𝜏, 𝜅|𝐱𝑛) = Pr{𝑣𝑖𝑛 ≥ 𝑚𝑎𝑥𝑘∈𝐶𝑛
𝑣𝑘𝑛} = Pr{log (𝑣𝑖𝑛) ≥ 𝑚𝑎𝑥𝑘∈𝐶𝑛

log (𝑣𝑘𝑛)} 

=
exp ( 𝛼{𝛃𝑇𝐱𝑖𝑛+log [∑ 𝑡𝑖𝑗

(1−𝜏)𝑞𝑗(𝜆)]
𝐽
𝑗=1 })

∑ exp (𝛼 { 𝛃𝑇𝐱𝑘𝑛+log [∑ 𝑡𝑘𝑗
(1−𝜏)𝑞𝑗(𝜆)]}

𝐽
𝑗=1 )𝑘∈𝐶𝑛

  . 

Let 𝜌 = 1 − 𝜏. The above two expressions can be written in a unified form: 

𝑃𝑖𝑛(𝛃, 𝜆, 𝜌, 𝜅|𝐱𝑛) =
exp ( 𝛼𝑠𝑖𝑔𝑛(𝜌){𝛃𝑇𝐱𝑖𝑛+log [∑ 𝑡𝑖𝑗

𝜌𝑞𝑗(𝜆)]
𝐽
𝑗=1 })

∑ exp (𝛼 𝑠𝑖𝑔𝑛(𝜌){ 𝛃𝑇𝐱𝑘𝑛+log [∑ 𝑡𝑘𝑗
𝜌𝑞𝑗(𝜆)]}

𝐽
𝑗=1 )𝑘∈𝐶𝑛

  ,    

with 𝛼 > 0. 𝑠𝑖𝑔𝑛(𝜌) is the sign function of 𝜌. 

Finally, if the primary outcomes are losses rather than gains, a prospect 𝑖  is chosen if 

−𝑣𝑖𝑛 ≥ 𝑚𝑎𝑥𝑘∈𝐶𝑛
{−𝑣𝑘𝑛}. We can then obtain the following result by some simple manipulations: 

𝑃𝑖𝑛(𝛃, 𝜆, 𝜌, 𝜅|𝐱𝑛) =
exp ( −𝛼𝑠𝑖𝑔𝑛(𝜌){𝛃𝑇𝐱𝑖𝑛+log [∑ 𝑡𝑖𝑗

𝜌𝑞𝑗(𝜆)]
𝐽
𝑗=1 })

∑ exp (−𝛼 𝑠𝑖𝑔𝑛(𝜌){ 𝛃𝑇𝐱𝑘𝑛+log [∑ 𝑡𝑘𝑗
𝜌𝑞𝑗(𝜆)]}

𝐽
𝑗=1 )𝑘∈𝐶𝑛

  .    
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We offer the following remarks before concluding this section. First, although the CRRA model has 

been shown to be a natural choice in Section 3.1, this is not a restriction on the model specification; the 

value function and risky weighting function can be chosen separately.  

Secondly, the multiplicative model in (13) essentially leads to a weibit link funciton (Fosgerau and 

Bierlaire, 2009; Li, 2011); the weibit link is transformed into the logit link function via the log-

transformation.  Li (2011) proposed a distribution family consisting of an infinite number of link 

functions and including both logit and weibit links as special cases. We will discuss some potential 

extensions with this distribution family in Section 6. 

4.  Elicitation of risky weighting and value functions 

In this section, we discuss the elicitation of risky weighting and value functions via statistical 

inference.  

4.1.   Individual-specific risk perception 

So far, we have implicitly assumed that all decision-makers have a common risk perception 

parameter 𝜆. In many applications, this assumption may not be realistic (DePalma et al., 2008; Glöckner 

and Pachur, 2012). We now relax this assumption. In doing so, the elicitation of the risky weighting 

function will be more accurate.  

Specifically, rather than assume the same transformation function 𝐻(. ) applying to all the decision-

makers, we incorporate a more realistic assumption that each decision-maker 𝑛  has his/her own risk 

perception parameter 𝜆𝑛 , and hence the transformation is denoted as 𝑆 = 𝐻(𝑇; 𝜆𝑛) = (𝑎𝑛𝑇)𝜆𝑛  in 

equation (5) with the individual-specific risk perception parameter 𝜆𝑛 > 0 being written explicitly. For 

simplicity, here we consider the case that 𝑎𝑛 is constant across all the individuals, i.e. 𝑎𝑛 = 𝑎; otherwise, 

𝑎𝑛 or its log-transformation log (𝑎𝑛) need to be included into the parameter vector  𝛉𝑛 to be defined in 

equation (19) below. The corresponding CRWF is denoted as 𝑊(𝑃; 𝜆𝑛).  The decision weights in (2) 

are denoted as 𝑞𝑗(𝜆𝑛) = 𝑤𝑗(𝑝1, … , 𝑝𝐽; 𝜆𝑛) (𝑗 = 1, … , 𝐽).  

Let 𝜑𝑛 = log (𝜆𝑛). This transforms a positive parameter 𝜆𝑛 to a real-valued parameter  𝜑𝑛.  The 

following statistical model is specified for parameter 𝜑𝑛 for individual-specific risk perception:  
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𝜑𝑛~ 𝑝(𝜑𝑛; 𝜓0, 𝜎2), 

where 𝜓0 is the location parameter and 𝜎 is the scale parameter characterising the centre of parameter 

𝜑𝑛 across the whole population as well as its variability.   

In practice, distribution 𝑝(𝜑𝑛; 𝜓0, 𝜎2) can be specified as a normal distribution; this is equivalent 

to stipulating a log-normal distribution for 𝜆𝑛. However, we point out that the methodology developed 

in this paper does not impose such a restriction; any reasonable distribution can be used. In addition, the 

risk perception parameter can potentially be linked to a number of covariates. See Section 6 for further 

discussion.  

In many applications, the coefficients in vector 𝛃 can be treated as random variables. This approach 

is particularly useful for the scenario where each decision-maker faces more than one choice situation 

(which is typical in many choice experiments). In this case, the error term 𝜀𝑖𝑛 and hence value function 

𝑣𝑖𝑛 = 𝑣̅(𝐱𝑖𝑛, ; 𝛃, 𝜆)𝜀𝑖𝑛 in equation (17) are not independent of each other. We now follow McFadden 

and Train (2000) and use a random-coefficient discrete choice model to deal with this problem. 

In the random-coefficient choice model, each decision maker 𝑛 has a different coefficient vector, 

denoted as 𝛃𝑛 = [𝛽1𝑛,…,𝛽𝑙𝑛]𝑇. 𝛃𝑛 is assumed to follow a statistical distribution, 𝛃𝑛~ 𝑝(𝛃𝑛; 𝛏̃), with an 

unknown parameter vector 𝛏̃. A commonly used specification for the distribution of 𝛃𝑛 is a normal (or 

lognormal) distribution. In this case, 𝛏̃ includes both mean vector  𝛙̃ = [𝜓1, … , 𝜓𝐾]𝑇 and covariance 

matrix 𝚺̃. In the case of normal distributions for 𝛃𝑛 , parameters 𝜓1, … , 𝜓𝐾  represent the population 

means of 𝛃𝑛 which are usually of primary interest in practice.  

Unless it is known a priori that 𝜆𝑛 and 𝛃𝑛 are independent of each other, we can in general assume 

a joint distribution for them: 

 𝛉𝑛~𝑝( 𝛉𝑛; 𝛙, 𝚺),          (19) 

where  𝛉𝑛 = [𝜑𝑛, 𝛃𝑛
𝑇]𝑇 and 𝛙 = [𝜓0, 𝛙̃𝑇]𝑇 . The covariance matrix 𝚺  consists of 𝜎2 , 𝚺̃ , and the 

covariances of 𝜑𝑛 and 𝛃𝑛.  

We follow Train (2009) and extend the developed model to the case where the coefficient vector 𝛃𝑛 

is a set of random variables. When the primary outcomes are gains, the choice probabilities are: 
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𝑃𝑖𝑛(𝛃𝑛, 𝜆𝑛, 𝜌, 𝜅|𝐱𝑛) =
exp ( 𝛼𝑠𝑖𝑔𝑛(𝜌){𝛃𝑛

𝑇𝐱𝑖𝑛+log [∑ 𝑡𝑖𝑗
𝜌𝑞𝑗(𝜆𝑛)]

𝐽
𝑗=1 })

∑ exp (𝛼 𝑠𝑖𝑔𝑛(𝜌){ 𝛃𝑛
𝑇𝐱𝑘𝑛+log [∑ 𝑡𝑘𝑗

𝜌𝑞𝑗(𝜆𝑛)]}
𝐽
𝑗=1

)𝑘∈𝐶𝑛

     (20) 

with 𝛼 > 0. The results for the case that the primary outcomes are losses can be worked out similarly: 

𝑃𝑖𝑛(𝛃𝑛, 𝜆𝑛, 𝜌, 𝜅|𝐱𝑛) =
exp ( −𝛼𝑠𝑖𝑔𝑛(𝜌)({𝛃𝑛

𝑇𝐱𝑖𝑛+log [∑ 𝑡𝑖𝑗
𝜌𝑞𝑗(𝜆𝑛)]

𝐽
𝑗=1 })

∑ exp (−𝛼 𝑠𝑖𝑔𝑛(𝜌){{𝛃𝑛
𝑇𝐱𝑘𝑛+log [∑ 𝑡𝑘𝑗

𝜌𝑞𝑗(𝜆𝑛)]}
𝐽
𝑗=1 )𝑘∈𝐶𝑛

  .   (21) 

Equation (20) (or (21)) is a multivariate model for choice analysis with risky prospects. It includes 

a generalised linear equation (16) that links the value function to a number of attributes in 𝐱; it also 

characterises risk perception by the individual-specific risk perception parameter 𝜆𝑛.  

4.2.   Statistical inference   

To elicit the risky weighting function and the other components in CPT, a commonly used approach 

is the maximum likelihood method (see, e.g., Wakker, 2010). Recently, Toubia, et al. (2013) have 

considered Bayesian parameter estimation for CPT. Li (2011), on the other hand, have considered 

Bayesian multinomial choice modelling.  

In this sub-section, we briefly outline a simple Bayesian approach to statistical inference for the 

developed model. As it will be seen, a Bayesian approach is particularly convenient when dealing with 

individual-specific random coefficients within the context of choice experiments.  

We consider a general situation where each decision-maker 𝑛 in a choice experiment faces 𝐾 

different choice situations. Let  𝐲𝑛 = [𝑖1, … , 𝑖𝐾]𝑇  denote the corresponding sequence of the choice 

alternatives in the 𝐾 choice situations.  

It is well known that a logit model is identifiable only up to a scale parameter (see, e.g., Hensher et 

al., 2015; Train, 2009; Fosgerau and Bierlaire, 2009; Li, 2011). Hence, we set the scale parameter 𝛼 to 

be unity in this paper.  

Let 𝛟 denote the collection of all fixed effect parameters, including 𝜌 and 𝜅, and 𝜑 = log (𝜆) (if a 

common risk perception is assumed), plus the coefficients of any fixed effects in the attribute vector 𝐱. 

Let 𝛉𝑛  denote the collection of all random coefficients, including 𝜑𝑛 = log (𝜆𝑛)  (if assuming an 

individual-specific risk perception parameter), and the random coefficients in 𝛃𝑛. 

For each decision-maker 𝑛, the contribution to the likelihood is given by: 

𝐿𝑛(𝛉𝑛, 𝛟| 𝐲𝑛, 𝐱𝑛) = ∏ 𝑃𝑖𝑘𝑛(𝛉𝑛, 𝛟|𝐱𝑛)𝐾
𝑘=1 ,       
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with 𝑃𝑖𝑘𝑛(𝛉𝑛, 𝛟|𝐱𝑛) is given by (20) or (21).   

The above likelihood depends on the unknown vector 𝛉𝑛 which is treated as a latent vector in the 

Bayesian analysis and specified by (19). Hence, the joint distribution for decision-maker 𝑛 is given by 

𝐿𝑛(𝛉𝑛, 𝛟| 𝐲𝑛, 𝐱𝑛)𝑝( 𝛉𝑛; 𝛙, 𝚺) . Taking into account all the decision-makers, we can write out the 

likelihood function as ∏ 𝐿𝑛(𝛉𝑛, 𝛟| 𝐲𝑛, 𝐱𝑛)𝑝( 𝛉𝑛; 𝛙, 𝚺)𝑁
𝑛=1 .  

To fully specify the problem, we also need the prior distributions of 𝛟, 𝛙 and 𝚺, denoted as 𝜋(𝛟) 

and 𝜋(𝛙, 𝚺) respectively. When no external information is available in the analysis, non-informative 

priors are used for 𝛙 and 𝚺. Following Train (2009) and Gelman et al. (2009), the prior for 𝛙 can be 

chosen as 𝜋(𝛙|𝚺) ∝ 1  and the prior for 𝚺 can be chosen to be inverse Wishart:  𝜋(𝚺) = 𝐼𝑊(𝐾, 𝐈), 

where 𝐾 is the dimension of 𝛉𝑛 and 𝐈 is the identity matrix of size 𝐾.  

Then we apply Bayes’ rule to obtain the posterior distribution  

𝑝(𝛉𝑛, 𝛟, 𝛙,𝚺| 𝐲𝑛, 𝐱𝑛, ∀𝑛) ∝ 𝜋(𝛟)𝜋(𝛙, 𝚺) ∏ 𝐿𝑛(𝛉𝑛, 𝛟| 𝐲𝑛, 𝐱𝑛)𝑝( 𝛉𝑛; 𝛙, 𝚺).𝑁
𝑛=1   (22) 

The above posterior distribution is not analytically tractable, and hence it needs to be evaluated 

numerically. The Markov chain Monte Carlo (MCMC) method with data augmentation can be used. We 

outline this iterative method as follows. 

Let 𝛙(𝑘), 𝚺(𝑘),  𝛟(𝑘),  𝛉𝑛
(𝑘)

 denote the draws of 𝛙, 𝚺, 𝛟, and 𝛉𝑛 at the kth iteration of the MCMC. 

We set the initial guess 𝛟(0), 𝛙(0) and 𝚺(0) for 𝑘 = 0. Then for each k=1, 2, …, we draw a sample 

alternately: (a) simulate vectors  𝛉𝑛
(𝑘)

 from (22) for given 𝛟(𝑘−1) 𝛙(𝑘−1) and 𝚺(𝑘−1); and (b) simulate 

parameters 𝛟(𝑘), 𝛙(𝑘) and 𝚺(𝑘) from (22) for given 𝛉𝑛
(𝑘)

. This continues until convergence.  

The simulation in step (a) can be based on the Metropolis-Hasting algorithm (see, e.g., Gelman et 

al., 2009).  The implementation for the simulation in step (b) depends on the assumption about 

𝑝(𝛉𝑛; 𝛙, 𝚺) in equation (19) and specification of the priors 𝜋(𝛟) and 𝜋(𝛙, 𝚺). When the location 

parameters are assumed to follow a normal distribution and the scale parameters are assumed to follow 

an inverse Wishart (or inverse gamma) distribution, Gibbs sampler can be embedded into the algorithm; 

see Train (2009) for details. Following Gelman et al. (2009), we use the deviance information criterion 

(DIC) for model comparison and selection in the Bayesian analysis.   
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5.   Application 

In this section, we consider an empirical application on road tolling to illustrate the developed 

method. Road tolling has attracted a growing number of choice model applications in the last two 

decades. See the general overviews and discussion of Saleh (2005), Palma et al. (2006), and the 

references therein; see, in particular, Li and Hensher (2010) for an overview on road tolling in Australia. 

The application considered here is based on a stated preference survey undertaken in Australia. In the 

literature, choice analysis with risky prospects has been investigated with both stated preference data 

(e.g. Hess et al., 2008; Razo and Gao, 2013) and revealed data (e.g. Hu et al., 2012).  

5.1.   Data 

The data used in the analysis of this section were drawn from a large-scale study undertaken in 2008 

in Brisbane, Australia, in the context of toll vs. free roads, which utilised a stated choice experiment 

involving two alternatives (i.e., route A and route B) pivoted around the knowledge base of travellers 

(i.e., the current trip). The original large-scale study was designed and implemented to capture a large 

number of travel circumstances and to determine how each individual traveller trades-off different levels 

of travel times and trip time variability with various levels of proposed tolls and vehicle running costs, 

in the context of tolled and non-tolled roads. 752 respondents were included into the original analysis. 

Each respondent considered 16 choice situations, hence resulting in 12,032 choice situations in total. 

The primary outcome variable in this analysis was travel time; it was assumed to be subject to a 

great deal of uncertainty, depending on the traffic conditions. In the survey the respondents were advised 

that departure time remained unchanged and the prospects were described with three travel scenarios 

(states of nature), i.e., ‘arriving earlier than expected’, ‘arriving at the time expected’, and ‘arriving later 

than expected’; each was associated with a corresponding probability of occurrence. Table 1 gives an 

example of the payoffs table and Figure 3 is an illustrative choice scenario.  
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Table 1. Example of payoffs (travel time in hours) in one choice situation of a traveller with the 

corresponding probability in parentheses 

 

State of nature arriving  earlier 

than expected 

arriving at the 

time expected 

arriving later 

than expected 

Prospect 1 0.28 (0.2) 32 (0.5) 42 (0.3) 

Prospect 2 0.37 (0.4) 0.40 (0.5) 0.50 (0.1) 

…………    

 

 

Figure 3 Illustrative Choice Scenario 

 

There were in total 734 travellers included into the analysis below after the initial data pre-screening. 

Table 2 gives descriptive statistics of the sample on the payoffs (travel times in hours) and the 

corresponding probabilities.  We also included other attributes in the analysis, namely running costs 

(𝑥1) and toll costs (𝑥2), as well as the socioeconomic profile of the respondents: (a) age (𝑥3)  (years); 

(b) gender (𝑥4) (male =1 and female=0); (c) hours of work in a typical week (𝑥5); (d) annual personal 

income before tax under $10,000 (𝑥6) (binary indicator); (e) annual personal income before tax over 

$120,000 (𝑥7) (binary indicator).  Hence, we have 𝐱=[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7]𝑇. The summary statistics 

of these attributes are displayed in Table 3. 
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Table 2. Travel times and probabilities of occurrence 

 Mean Std. Dev. Min Max 

Early arrival time (hours) 0.631     0.324     0.117     4.583     

Probability of arriving  earlier than expected 0.25 0.11 0.10 0.40 

     

Arrival on time (hours) 0.717     0.358     0.167     4.750     

Probability of arriving at the time expected 0.50 0.15 0.20 0.80 

     

Late arrival time (hours) 0.891 0.453 0.183 6.067 

Probability of arriving later than expected 0.25 0.11 0.10 0.40 

 

Table 3. Descriptive statistics of the attributes 

 

Running 

costs (𝑥1) 

Toll costs 

(𝑥2) 

Age 

(𝑥3) 

Gender  

(𝑥4) 

Work hours 

per week (𝑥5) 

Income under 

$10,000 (𝑥6) 

Income over 

$120,000 (𝑥7) 

Mean $4.51 $2.10  42.70  0.57 30.75     0.09     0.07    

Std. Dev. $7.48 $1.37 14.96 0.50 18.56     0.29     0.25    

 

In the following analysis, variables 𝑥3 (age) and 𝑥5 (work hours per week) were divided by 100 so 

that all the socio-economic factors have a similar magnitude to each other.  

5.2.   Model and prior specification  

5.2.1.   Models  

In the following analysis, the value function was chosen as the CRRA utility function (14), 

𝑣̅(𝑡; 𝜇, 𝜏) = 𝜇𝑡1−𝜏/(1 − 𝜏) . The generalised linear model for the value function (16), 𝜇𝑖𝑛 =

exp ( 𝛃𝑛
𝑇𝐱𝑖𝑛), was incorporated, where 𝐱𝑖𝑛 is a vector of factors that potentially influenced the value 

function. In the analysis, 𝐱𝑖𝑛  initially included all seven attributes in Table 3 and hence 𝛃𝑛 =

[𝛽1𝑛, … , 𝛽7𝑛]𝑇. The unified CRWF in equation (12) was used, 𝑊(𝑃) = 𝑃1/𝜆/[𝑃1/(𝜅𝜆) + 𝜔𝜅1/𝜆−1(1 −

𝑃1/𝜅)1/𝜆]𝜅. The choice probability model was chosen as equation (21): 

 𝑃𝑖𝑛(𝛃𝑛, 𝜆, 𝜌, 𝜅|𝐱𝑛) =
exp ( −𝑠𝑖𝑔𝑛(𝜌)({𝛃𝑛

𝑇𝐱𝑖𝑛+log [∑ 𝑡𝑖𝑗
𝜌𝑞𝑗(𝜆𝑛)]

𝐽
𝑗=1 })

∑ exp (− 𝑠𝑖𝑔𝑛(𝜌){{𝛃𝑛
𝑇𝐱𝑘𝑛+log [∑ 𝑡𝑘𝑗

𝜌𝑞𝑗(𝜆𝑛)]}
𝐽
𝑗=1 )𝑘∈𝐶𝑛

   (23) 

where 𝑡𝑖𝑗 are the primary outcomes (travel times). Note that as mentioned in the previous sections, we 

have 𝜌 = 1 − 𝜏. In addition, the parameter 𝛼 in (21) is scaled to unity.  Importantly, there is no beta 

coefficient for travel time. This is because the multiplicative model is used here, equivalent to the case 

that each element of 𝛃𝑛 is divided by this coefficient. In addition, we set 𝑎 = 1 and set 𝑏 to be the 

average travel time across all respondents and alternatives so that the analysis was independent of the 
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measurement unit of the primary outcome variable. This also allows us to compare with the existing 

risky weighting functions, such as Prelec’s and Goldstein-Einhorn functions, more easily. 

Two scenarios were considered: (a) the CRWF with a risk perception parameter 𝜆 common to all 

individuals; and (b) the individual-specific risky weighting functions where each individual traveller has 

his/her own value of risk perception parameter  𝜆𝑛 in order to reflect the individual effect on perceptual 

conditioning. Following Train (2009), we also consider running cost and total cost to be random effects 

in Model (b). Hence, two models were investigated:    

 Model (a): The perception parameter  𝜆 is a fixed-effect parameter and  𝑥1 - 𝑥7 are all fixed 

effects; Hence,  𝛃𝑛 for 𝑛 = 1, … ,734 are all equal, denoted as 𝛃 = [𝛽1, … , 𝛽7]𝑇; 

 Model (b): The risk perception parameter  𝜆𝑛 is an individual-specific random parameter; the 

coefficients of variables 𝑥1 and 𝑥2 are also individual-specific random variables (denoted as 

𝛽1𝑛 and 𝛽2𝑛). The other five attributes were fixed effects. Hence 𝛃𝑛 = [𝛽1𝑛, 𝛽2𝑛, 𝛽3, … , 𝛽7]𝑇 . 

5.2.2.   Prior specification  

Next, we specify the priors of the parameters in the models. The prior of coefficient 𝜌 was set as a 

non-informative prior 𝜋(𝜌) ∝ 1.  

As mentioned early, when the asymmetry parameter 𝜅 in (12) is sufficiently large, it approaches 

Prelec’s function (8). In the subsequent analysis, the range of  𝜅  for both models was restricted to be (0, 

100), and the prior of the asymmetry parameter 𝜅 was chosen to be a uniform distribution on (0, 100). 

Clearly, any estimate of 𝜅 close to the upper bound of 100 is in favour of Prelec’s weighting function.  

For Model (a), we choose the prior of 𝛃 to be non-informative, i.e. 𝜋(𝛃) ∝ 1. From a practical 

perspective, only a few transformations in the Box-Cox transformation are usually of interest, such as 

square transformation and cubic transformation (see, e.g., Weisberg, 2005). In the analysis we restricted 

the range of 𝜆 to be less than or equal to 5 in transformation (5). In addition, from Theorem 2A, we 

further restricted 𝜆 ≥ 1 in the analysis. Hence, the prior of 𝜑 = log (𝜆) was set as a uniform distribution 

on [0, log (5)] . This range is usually wide enough to include all the values of the perception parameter 

of practical importance.  
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For Model (b), the risk perception parameter 𝜆𝑛 was treated as a random coefficient. We specified 

the distribution of 𝜆𝑛 as log-normal 𝐿𝑁(𝜓0, 𝜎2) restricted to interval [1, 5]; hence, the prior distribution 

of  𝜑𝑛 = log (𝜆𝑛) was assumed to be a normal distribution 𝑁(𝜓0, 𝜎2) truncated to the interval [0, 

log (5)]. For Model (b), the coefficients of 𝑥1 and 𝑥2 were also treated as individual-specific random 

variables and were denoted as 𝛽1𝑛  and 𝛽2𝑛  respectively. For each respondent 𝑛 , we specified the 

distribution of [𝛽1𝑛, 𝛽2𝑛]𝑇 as a normal distribution: 

[𝛽1𝑛, 𝛽2𝑛]𝑇~𝑁([𝜓1,𝜓2]𝑇 , 𝚺̃),         (24) 

where 𝚺̃  is a 2 × 2 covariance matrix of the normal distribution. Let  𝛙 = [𝜓0, 𝜓1,𝜓2]𝑇 and 𝚺 be the 

covariance of  𝜑𝑛  and [𝛽1𝑛, 𝛽2𝑛]𝑇. Hence, 𝜓1 and 𝜓2 are the population means of  𝛽1𝑛 and 𝛽2𝑛. The 

prior of  𝛙  and 𝚺 , 𝜋(𝛙, 𝚺) = 𝜋(𝛙|𝚺)𝜋(𝚺) , was taken as non-informative prior:  𝜋(𝛙|𝚺) ∝ 1   and 

𝚺~𝐼𝑊(3, 𝐈) respectively, where  𝐼𝑊 is an inverse-Wishart distribution. 𝐈 is a 3 × 3 identity matrix. In 

addition, we chose a non-informative prior for 𝛽𝑗, 𝜋(𝛽𝑗) ∝ 1 (j=3,…,7). See Train (2009) for further 

discussion on prior specification.  

The total number of iterations of the MCMC was chosen as 10000, among which the first 5000 

iterations were treated as the burn-in period and the draws in this period were discarded. The results 

reported below were based on the rest of the 5000 draws. The posterior means were used as the estimates 

of the parameters.  

5.3.   Results 

Table 4 displays the main empirical results. We first consider Model (a). It can be seen from Table 

4 that the coefficients of all the socio-economic factors, 𝛽𝑗 (𝑗 = 3, … ,7), are statistically insignificant at 

the 5% level. Hence, there is no evidence suggesting that these factors influenced the travellers’ choice. 

However, the coefficients associated with the running costs 𝑥1 and toll costs 𝑥2 are both significant at 

the 5% level: 𝛽̂1 = 0.591 and 𝛽̂2 = 0.667. Hence there is evidence that the running costs and toll costs 

affected the value function of the respondents and hence their choice probabilities. Turning to Model 

(b), we can see that it outperformed Model (a) in terms of the likelihood and DIC. Like Model (a), the 

coefficients of the socio-economic factors in Model (b), 𝛽𝑗 (𝑗 = 3, … ,7), are insignificant at the 5% level.  
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For Model (b), the coefficients of running costs 𝑥1 and toll costs 𝑥2 for each traveller 𝑛, 𝛽1𝑛 and 

𝛽2𝑛 (𝑛 = 1, … ,734), are random variables. From equation (24), 𝜓1 and 𝜓2 are the population means of 

the random coefficients  𝛽1𝑛 and 𝛽2𝑛 across all the individual travellers 𝑛 = 1, … ,734, representing the 

average effects of the two travel-cost variable (running costs and toll costs). From Table 4, we can see 

that the population means associated with the running costs 𝑥1 and toll costs 𝑥2 are significant at the 5% 

level:  𝜓̂1 = 0.733 and 𝜓̂2 = 0.771. In addition, the estimate of the population mean of the logarithm 

risk perception parameter is also significant at the 5% level, 𝜓̂0 = 0.856. 

Table 4. Estimates of parameters with 95% Bayesian credible intervals  

 coefficient  Model (a) Model (b) Model (c) 

mean log-risk parameter 𝜓0   0.856 

(0.683, 0.999) 

0.638 

(0.370, 0.949) 

log-risk parameter 𝜑  0.762 

(0.244, 1.376) 

  

mean running cost effect 𝜓1    0.733 

(0.651, 0.822) 

0.730 

(0.629, 0.834) 

mean toll cost effect 𝜓2    0.771 

(0.700, 0.849) 

0.759 

(0.680, 0.846) 

running cost effect 𝛽1  0.591     

(0.538, 0.637) 

  

toll cost effect 𝛽2  0.667 

(0.620, 0.702) 

  

Age effect 𝛽3   -0.050 

(-0.304, 0.234) 

   -0.168 

(-0.378, 0.064) 

-0.224 

(-0.339, -0.105) 

Gender effect 𝛽4  -0.037 

(-0.226, 0.181) 

    0.001 

(-0.093, 0.094) 

 

work hour per week 𝛽5  -0.081 

(-0.221, 0.118) 

-0.068 

(-0.300, 0.152) 

 

income under $10,000 𝛽6  -0.151 

(-0.397, 0.062) 

-0.057 

(-0.250, 0.119) 

 

income over $120,000 𝛽7  0.017 

(-0.074, 0.109) 

-0.073 

(-0.289, 0.131) 

 

asymmetry parameter 𝜅  7.371 

(3.776, 10.827) 

7.376 

(4.302,10.112) 

9.328 

(3.206, 15.232) 

risk attitude 𝜏  0.943 

(0.821, 0.998) 

0.945 

(0.839, 0.999) 

0.948 

(0.843,0.997) 

Log-likelihood   -6628.0 -5625.3 -5645.7 

𝐷𝐼𝐶   13228.1 12375.4 12368.9 

Note: 𝜓𝑗 is the mean of random coefficient 𝛽𝑗𝑛 (j=1,2) and 𝜓0 is the mean of random coefficient 𝜑𝑛 =

log (𝜆𝑛) averaged across all individual travellers 𝑛 (n=1,…, 734) 
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Next, we removed insignificant socio-economic factors,  one at a time, from Model (b), resulting in 

a refined model, Model (c). Variable 𝑥3 (age) became significant after having removed the other socio-

economic factors, suggesting young and senior travellers have different value functions. The lower left 

graph in Figure 4 displays the posterior distribution of the coefficient 𝛽3 of variable 𝑥3 (age).  

The estimated population means of the two travel-cost related random coefficients, i.e., running 

costs and toll costs, are 𝜓̂1 = 0.730 , 𝜓̂2 = 0.759 for Model (c), respectively; both are significant at the 

5% level. See the upper left and upper right graphs of Figure 4 for the posterior distributions of 𝜓1 and 

𝜓2. Noting the negative sign in front of the exponent in equation (23), the positive 𝜓̂1 and 𝜓̂2 indicate 

that higher levels of the running costs and toll costs corresponds to lower probability of choosing that 

particular route. 

The estimated covariance matrix of 𝛙 = [𝜓0, 𝜓1,𝜓2]𝑇 is  

𝚺̂ = [
     0.123   −0.004 0.008 

    −0.004    0.308  0.248
0.008 0.248    0.403 

]. 

It can be seen that the population means of the two travel-cost related random coefficients, 𝜓1 and 𝜓2, 

are closely correlated each other with correlation coefficient of 0.704, whereas the relationship between  

𝜓0 and  (𝜓1, 𝜓2) is much weaker: the correlation coefficients are −0.022 and 0.034  respectively; both 

of them are insignificant at the 5% level. The estimated 𝜏 in Model (c) is 0.948 with a 95% credible 

interval of (0.843,0.997). 
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Figure 4. Posterior distributions of 𝝍𝟏 (upper left), 𝝍𝟐 (upper right), 𝜷𝟑 (lower left) and 𝜿 (lower right). 

 

We now turn to consider the elicited risky weighting function for Model (c). The estimated 

asymmetry parameter is 𝜅̂ = 9.328 with 95% Bayesian credible interval of (3.206, 15.232); see the 

lower right graph of Figure 4 for the posterior distribution of  𝜅. This suggests that for this particular 

case, the elicited CRWF is neither Prelec’s (with 𝜅 = +∞) nor Goldstein-Einhorn’s (with 𝜅 = 1)  

function. This has demonstrated an advantage of using the unified CRWF (12): rather than use the 

approaches in the existing studies, e.g., Stott (2005), Hensher et al. (2011) and Rasouli and Timmermans 

(2014), where a number of CRWFs were explored one by one, here we use a data-driven approach to 

choosing a CRWF. 

The average risk perception parameter 𝜆̂ = exp(𝜓̂0) = 1.893 is significantly different from 1, with 

a 95% credible interval of (exp(0.370), exp(0.949))=(1.448, 2.583). This piece of evidence about the 

risk perception parameter 𝜆, in conjunction with 𝜅̂ = 9.328 with 95% Bayesian credible interval of 

(3.206, 15.232), suggests that the risky weighting function is not the identity function 𝑊(𝑃) = 𝑃 in (9). 

Hence, the survey data provides evidence of risky weighting: the respondents indeed transformed the 
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given probabilities into their own decision weights when making their choices.  Hence, the evidence is 

in favour of CPT against EUT for this particular study. 

Figure 5 displays the elicited CRWF when 𝜓0 takes the values of the posterior mean 𝜓̂0 = 0.638, 

and the two end-points of the 95% Bayesian credible interval respectively. It is evident from Figure 5 

that the two CRWFs corresponding to the end-points of the 95% Bayesian credible interval do not 

overlap with the diagonal straight-line; the latter is the identity function 𝑊(𝑃) = 𝑃.  

The asymmetry of the fixed-point is evident from Figure 5: 𝑃∗ = 0.387.  This has great implications 

to risky weighting: when the survival probability 𝑃𝑗 = ∑ 𝑝𝑘𝑘≥𝑗  is large (close to 1), the transformed 

survival probability 𝑄𝑗 = ∑ 𝑞𝑘𝑘≥𝑗  will be substantially lower than the original survival probability 𝑃𝑗. 

As a result, the left-tail decision weight 𝑞1 = 1 − 𝑊(1 − 𝑝1) is substantially larger than the original 

left-tail probability 𝑝1.  

To gain further insight into the elicited risky perceptual weighting, we consider a concrete example 

with the mean probabilities of ‘early arrival’, ‘arrival on time’, and ‘late arrival’ events in Table 1, i.e. 

𝑝1 = 0.25, 𝑝2 = 0.50, and 𝑝3 = 0.25 respectively. With the average risk perception parameter 𝜆̂ =

exp(𝜓̂0) = 1.893, the obtained CRWF transforms these three probabilities to 𝑞1 = 0.44, 𝑞2 = 0.29 

and 𝑞3 = 0.27 respectively. Hence, the risky weighting in this analysis substantially overestimated the 

left-tail probability (from 𝑝1 = 0.25 to 𝑞1 = 0.44), whereas it kept the right-tail probability almost the 

unchanged: 𝑝3 = 0.25 compared to 𝑞3 = 0.27. This seems to indicate that the respondents tended to be 

more optimistic about the required travel time than what was shown in the survey questionnaire. This is 

a phenomenon well documented in the literature (Tversky and Kahneman, 1992; Prelec, 1998).  
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Figure 5. Elicited unified CRWF in (12) scaled to 𝒃 = 𝟏 with risk perception parameter 𝝀 equal to the 

posterior mean exp(0.638) (), and equal to the two end-points of the 95% Bayesian credible interval, i.e. 

exp(0.370) ( ), and exp(0.949) (   ) respectively. 

 

Figure 6. Histogram of the estimated values of the individual-specific risk perception parameter 𝝀𝒏  

across the 734 respondents. 
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To show the variability of the risk perception parameter, Figure 6 displays the histogram of the 

estimated 𝜆𝑛  (𝑛 = 1, … ,734) across the individual travellers. It can be seen that most values of the 

individual-specific risk perception parameter 𝜆𝑛  lie within the interval [1.85, 1.95], suggesting a 

transformation close to the square transformation. In addition, it is reinforced by Figure 6 that a 

restriction of 𝜆𝑛 on the interval of (0,5] is a reasonable choice; the likelihood that 𝜆𝑛 is larger than 5 is 

negligible.   

In summary, the case study in this section provides empirical evidence of risky weighting for 

travellers’ route choices as the empirical results are in favour of CPT relative to EUT. In the existing 

literature, there are some comparisons between CPT and EUT based models (e.g., Gao et al. 2010). 

However, these studies do not address this issue statistically. Secondly, the case study shows that neither 

the Prelec’s risky weighting function nor Goldstein-Einhorn’s function is a suitable choice to model 

risky weighting for the problem considered here; in this case, the developed unified CRWF outperforms 

these specific forms. Again, there are some existing studies that compare the performances of various 

risky weighting functions (e.g., Hensher et al. 2011). However, without a proper statistical model, these 

studies cannot address the issue formally and statistically. The results also suggest that if the researcher 

only selects risky weighting functions from a few existing forms, the results could potentially be biased. 

Finally, the study also provides evidence that risk perception varies from traveller to traveller, supporting 

the argument in De Palma et al. (2008). Hence, assuming a uniform risk perception parameter, like it 

was done in the most existing literature, could be problematic. 

6.   Concluding remarks 

In this paper, we have investigated the modelling of decision-makers’ risky weighting and choice 

behaviour when they are facing several risky prospects. We have proposed a broad class of CRWFs and 

investigated some important properties of the CRWFs within the class. On the basis of this, we have 

developed a unified CRWF that includes several important CRWFs in the literature as special cases. We 

have also shown that in practice, the choice for CRWFs within this class comes down to the selection 

of the asymmetry parameter 𝜅. In addition, the asymmetry parameter 𝜅, together with the individual risk 
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perception parameter 𝜆𝑛, can be used to test about CPT and provides empirical evidence about risky 

weighting. Hence, the CRWFs can be used to differentiate CPT from EUT in empirical studies.  

We have developed a multivariate method for discrete choice analysis with risky prospects to 

account for decision-makers’ individual-specific risk perception and the impact of various factors on 

decision making. Individual-specific risk perception makes much more practical sense than a common 

risk perception parameter because in reality people’s risk perception does vary from person to person. 

The multivariate method also provides an approach to a better understanding about how decision-makers 

form their value function.  

The research in this paper can be extended to accommodate more complicated problems. We outline 

a couple potential future research directions below. First, it is well documented in the literature that 

individuals’ risk perception could be affected by some common psychological factors and social factors 

(see, e.g., Fox and Tversky 1998; Weber and Hsee, 1998; Sjöberg, 2000; Braisby and Gellatly, 2012; 

among many others). An important extension of the research in this paper is to link the individual risk 

perception parameter 𝜆𝑛  to a number of psychological and social covariates, i.e. 𝜆𝑖𝑛 = exp (𝛄𝑇𝐳𝑖𝑛), 

where 𝐳𝑖𝑛 is a vector of covariates and 𝛄 is the vector of the corresponding coefficients. The modelling 

of risk perception parameter will give us an opportunity to investigate the impact of various 

psychological and social factors on risky weighting.  

Second, we have focused on the multiplicative model, equation (13), where the link function is 

weibit and the underlying distribution of the stochastic part is a Weibull distribution. Li (2011) 

developed a large class of link functions where the underlying distribution does not have to be a Weibull 

distribution. Importantly, this model class includes both the additive model and multiplicative model as 

special cases. Clearly, extensions can be made to substantially relax the assumption of the multiplicative 

model used in this paper.  

Finally, similar to the multinomial logit model, the scale parameter 𝛼 in models (22) and (23) is 

assumed to be the same for all decision-makers and all alternatives throughout this paper. In some 

applications, this may not be realistic. The issue of scale heterogeneity across individuals has been 
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investigated in the literature (see, e.g., Greene and Hensher, 2010). Following these existing studies, the 

method developed in this paper can be extended accordingly. 

 

Appendix A. Proofs of the theorems   

Proof of Theorem 1. The result in (i) follows by noting that 𝐺(𝑡) = Pr(𝑆 > 𝑡) = Pr(𝐻(𝑇) > 𝑡) =

Pr(𝑇 > 𝐻−1(𝑡)) = 𝐹(𝐻−1(𝑡))  and hence 𝐻(𝑇) = 𝐺−1[𝐹(𝑇)] . Substituting 𝐺(𝑡) = 𝐹(𝐻−1(𝑡))  into 

𝑊(𝑃)=𝐺[𝐹−1(𝑃)] yields 𝑊(𝑃)=𝐹(𝐻−1[𝐹−1(𝑃)]). This completes the proof.  

Proof of Theorem 2A.  (i) The results of  𝑊(0) = 0 and 𝑊(1) = 1 are immediate from the fact that  

𝐹(0) = 1  and 𝐹(+∞) = 0 . In addition, since 𝐹(𝑡)  is a decreasing function, we have 𝐹−1(𝑃1) ≥

𝐹−1(𝑃2)  for any 𝑃1 < 𝑃2 . We further have {𝐹−1(𝑃1)}1/𝜆 ≥ {𝐹−1(𝑃2)}1/𝜆 . This implies that  

𝐹({𝐹−1(𝑃1)}1/𝜆) ≤ 𝐹({𝐹−1(𝑃2)}1/𝜆), i.e. 𝑊(𝑃1) ≤  𝑊(𝑃2). Hence, 𝑊(𝑃) is an increasing function.  

(ii) Because survival function  𝐹(𝑡) is a decreasing function, we obtain 

𝑊(𝑃) ≤ 𝑃   if and only if   {𝐹−1(𝑃)}1/𝜆 ≥ 𝐹−1(𝑃). 

Hence, we have either  𝐹−1(𝑃) = 0 or 𝐹−1(𝑃) ≤ 1 since 𝜆 > 1 and 𝐹−1(𝑃) ≥ 0 (note that the domain 

of  𝐹(𝑡) is ℜ+). From  𝐹−1(𝑃) ≤ 1 we obtain 𝑃 ≥ 𝐹(1) = 𝑃∗. Similarly, we can show that 𝑊(𝑃) ≥ 𝑃 

if 𝑃 ≤ 𝑃∗.  Due to the continuity of 𝑊(𝑃), there exists a fixed-point 𝑃∗ = 𝐹(1)  satisfying 𝑃∗ = 𝑊(𝑃∗). 

Furthermore, if 𝐹(𝑡) is a strictly decreasing function, then we have {𝐹−1(𝑃)}1/𝜆 = 𝐹−1(𝑃) from  𝑃∗ =

𝑊(𝑃∗). For 𝜆 > 1, the equation 𝑥1/𝜆 − 𝑥 = 0 has a unique real root of 1 on interval (0, +∞). Hence, 

𝑃∗ = 𝐹(1) is the unique fixed-point if 0 < 𝐹(1) < 1. 

(iii) For any 1 ≤ 𝜆1 ≤ 𝜆2, we have {𝐹−1(𝑃)}1/𝜆1 ≥ {𝐹−1(𝑃)}1/𝜆2 if 𝐹−1(𝑃) ≥ 1. Noting that 𝐹(𝑡) is a 

decreasing function, we obtain that 𝐹({𝐹−1(𝑃)}1/𝜆1) ≤ 𝐹({𝐹−1(𝑃)}1/𝜆2)  if 𝐹−1(𝑃) ≥ 1 , i.e., 𝑃 ≤

𝐹(1) = 𝑃∗. Hence, for all 𝜆 ≥ 1, 𝑊(𝑃) is an increasing function of  𝜆 if 𝑃 ≤ 𝑃∗. The final conclusion 

in (iii) is immediate from the fact that 𝑞1 = 𝑝1 and 𝑞𝐽 = 𝑝𝐽 when 𝜆 = 1.  

(iv) It follows immediately by noting {𝐹−1(𝑃)}1/𝜆 approaches to 1 for any 𝑃 ∈ (0, 1) as 𝜆 becomes 

sufficiently large. This completes the proof. 

Proof of Theorem 2B.  The proof of (i) is the same as Theorem 2A (i).  
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(ii) Clearly 𝑊(𝑃) ≤ 𝑃   if and only if   {𝐹−1(𝑃)}1/𝜆 ≥ 𝐹−1(𝑃). Hence, we have either  𝐹−1(𝑃) = 0 or 

𝐹−1(𝑃) ≥ 1  since 𝜆 < 1 . This implies 𝑃 ≤ 𝐹(1) = 𝑃∗ . The remaining part is the similar to the 

counterpart of Theorem 2A(ii).  

(iii) The proof that 𝑊(𝑃) is an increasing function of  𝜆 for all 0 < 𝜆 ≤ 1 is the same as that of Theorem 

2A (iii). The conclusion in (iii) is immediate as 𝑞1 = 𝑝1 and 𝑞𝐽 = 𝑝𝐽 when 𝜆 = 1.  

(iv) As 𝜆  becomes sufficiently small,  {𝐹−1(𝑃)}1/𝜆  approaches to 0 (or +∞)  if 𝐹−1(𝑃) < 1  (or 

𝐹−1(𝑃) > 1). Hence 𝑊(𝑃) = 𝐹({𝐹−1(𝑃)}1/𝜆) approaches to 1 (or 0) if 𝐹−1(𝑃) < 1 (or 𝐹−1(𝑃) > 1). 

This indicates that decision weights 𝑞𝑗 = 𝑊(𝑃𝑗) − 𝑊(𝑃𝑗+1) = 0   if 𝑃𝑗+1 > 𝑃∗  or 𝑃𝑗 < 𝑃∗ . Hence, 

there exists an index 𝑗0 such that 𝑊(𝑃𝑗0
) = 1 and (𝑃𝑗0+1) = 0 , i.e.  𝑞𝑗0

= 1. 

Proof of Theorem 3.  

(i) Since 𝐹(𝑡; 𝜅) is a strictly decreasing function of 𝑡, the fixed-point  𝑃∗ = 𝐹(1; 𝜅) = 1/[1 + 1/ 𝜅]𝜅 

given in Theorems 2A and 2B is unique.  In addition, because 1/[1 + 1/ 𝜅]𝜅 is monotonic in 𝜅, we have 

𝑒−1 ≤ 𝐹(1; 𝜅) ≤ 0.5  for any 𝜅 ∈ (1, +∞). The proof of (iii) is similar and proof of (ii) is trivial.  

(iv) It is easy to verify that  

 𝜕2𝑊(𝑃)/𝜕𝑃2 = 𝜆−2𝜅−1{1 + 𝜅−1[𝜅 (𝑃−
1

𝜅 − 1)]
1

𝜆}−𝜅−2[𝜅 (𝑃−
1

𝜅 − 1)]
1

𝜆
−2𝑃−

1

𝜅
−2𝐽(𝑃), 

where 

 𝐽(𝑃) = [𝜅 (𝑃−
1

𝜅 − 1)]
1

𝜆 {(𝜅 + 𝜆)𝑃−
1

𝜅 − 𝜆(𝜅 + 1) (𝑃−
1

𝜅 − 1)} + 𝜅(𝜆 − 1)𝑃−
1

𝜅 − 𝜆𝜅(𝜅 + 1) (𝑃−
1

𝜅 − 1) .  

It is straightforward to verify that 𝐽(𝑃∗) = 0 and hence 𝜕2𝑊(𝑃)/𝜕𝑃2 = 0 at 𝑃∗ . Therefore, 𝑃∗ is an 

inflection point of 𝑊(𝑃) for 𝑃 ∈ [0, 1]. In addition, we have  𝐽(1) = 𝜅(𝜆 − 1) > 0 and 𝐽(0) → −∞. 

Finally, by some algebra it can be shown that 𝐽(𝑃) is a strictly increasing function of 𝑃. Therefore 𝑃∗ is 

the unique root of 𝐽(𝑃) on [0, 1], and hence it is the unique inflection point of 𝑊(𝑃) on [0, 1].  

(v) The proof is similar to that of (iv).  

Proof of Corollary.  

By definition, the fixed-point 𝑃∗ satisfies 𝑊(𝑃∗) = 𝑃∗, i.e.   {𝐹−1(𝑃∗; 𝜅)}
1

𝜆/𝑎 = 𝐹−1(𝑃∗; 𝜅). Hence, we 

obtain 𝐹−1(𝑃∗; 𝜅) = 𝑎𝜆/(𝜆−1)  or equivalently 𝑃∗ = 𝐹(𝑎𝜆/(𝜆−1); 𝜅). From the proof of Theorem 3,  
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1/[1 + 1/ 𝜅]𝜅 is monotonic in 𝜅. Hence, we obtain we have 𝐹(𝑎𝜆/(𝜆−1); +∞) ≤ 𝑃∗ ≤ 𝐹(𝑎𝜆/(𝜆−1); 1)  

for any 𝜅 ∈ (1, +∞) . When 𝜆 > 1  and 𝑎 > 1 , we have  𝑎𝜆/(𝜆−1) > 1 . Hence 𝐹(𝑎𝜆/(𝜆−1); +∞)  

approaches 0 as 𝑎𝜆/(𝜆−1)  becomes large. In addition, 𝐹(𝑎𝜆/(𝜆−1); 1)  approaches 𝐹(1; 1) = 0.5  as 

𝑎𝜆/(𝜆−1) approaches 1. Hence, we obtain 0 ≤ 𝑃∗ ≤ 0.5.  

 

Appendix B. The maximum-entropy principle 

The maximum entropy principle is widely incorporated in the literature for statistical inference with 

limited prior knowledge; see Golan et al. (1996) for a general review, and Park and Bera (2009) for an 

example in econometric modelling. In Bayesian analysis, it is also used to work out prior probability 

measures (see, e.g.,, Gelman et al., 2009). Here we consider the problem of choosing an underlying 

survival function 𝐹(𝑡) with very limited information in a choice experiment. 

We wish to find a probability density function 𝑓(𝑡|𝜂) for the primary outcome variable  𝑇 ∈ ℜ+  

with the mean parameter 𝜂. When the mean 𝜂  is fully specified, it is well known that the maximum 

entropy distribution is the exponential distribution𝑓(𝑡|𝜂) = 𝜂−1 exp(−𝑡/𝜂) (see, e.g., Golan et al., 

1996; Park and Bera, 2009). Now we consider the problem from a Bayesian perspective and assume that 

the mean of the underlying distribution 𝑓(𝑡|𝜂) is not completely specified; rather, it is subject to random 

variation and it follows a prior distribution 𝜋(𝜂) which is also unknown but some information about 𝜂 

is available and is expressed as the moment conditions. Consequently, the objective is to find the joint 

distribution 𝑔(𝑡, 𝜂) = 𝑓(𝑡|𝜂)𝜋(𝜂) from the maximum entropy principle. The following lemma shows 

that under some conditions, we can determine a joint distribution 𝑔∗(𝑡, 𝜂) = 𝑓(𝑡|𝜂)𝜋(𝜂)  from the 

maximum entropy principle, upon which the marginal probability density function of  𝑇 ∈ ℜ+  can be 

obtained: 𝑓∗(𝑡) = ∫ 𝑓(𝑡|𝜂)𝜋(𝜂)𝑑𝜂 , and hence the underlying survival function is chosen as 𝐹∗(𝑡) =

∫ 𝑓∗(𝑥)𝑑𝑥
+∞

𝑡
. 

Lemma. Consider the entropy 𝐼 = − ∬ 𝑔(𝑡, 𝜂) log[𝑔(𝑡, 𝜂)] 𝑑𝑡𝑑𝜂  for a joint continuous probability 

density function 𝑔(𝑡, 𝜂) = 𝑓(𝑡|𝜂)𝜋(𝜂), where 𝜋(𝜂) is the marginal density function of 𝜂 and 𝑓(𝑡|𝜂) is 

the density function of 𝑇 ∈ ℜ+  conditional on 𝜂.  Then for any 𝑔(𝑡, 𝜂) on ℜ+ × ℜ+, the solution that  
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maximises    𝐼 = − ∬ 𝑔(𝑡, 𝜂) log[𝑔(𝑡, 𝜂)] 𝑑𝑡𝑑𝜂        (A1) 

subject to:  ∬ 𝑔(𝑡, 𝜂)𝑑𝑡𝑑𝜂 = 1                   (A2) 

     ∫ 𝑡𝑓(𝑡|𝜂)𝑑𝑡 = 𝜂 < +∞                  (A3) 

                  ∫ log(𝜂−1) 𝜋(𝜂)𝑑𝜂 = 𝑟1 < +∞                 (A4) 

                  ∫ 𝜂−1𝜋(𝜂)𝑑𝜂 = 𝑟2 < +∞                   (A5) 

is given by 𝑔∗(𝑡, 𝜂) = 𝑐0𝜂−𝜔1exp [−(𝑡 + 𝜔2)/𝜂] with 𝑐0 > 0 the normalisation constant, and 𝜔𝑖 > 0 

( 𝑖 = 1,2 ) are two constant values. The marginal survival distribution of 𝑇 ∈ ℜ+   is 𝐹∗(𝑡) =

∫ [∫ 𝑔(𝑥, 𝜂)
+∞

0
𝑑𝜂]𝑑𝑥

+∞

𝑡
= 1/[1 + 𝑡/𝜔2 ]𝜔1. 

Proof . We form the Lagrangian function as 

𝐿 = − ∬ 𝑔(𝑡, 𝜂) log[𝑔(𝑡, 𝜂)] 𝑑𝑡𝑑𝜂 + 𝜔0 [∬ 𝑔(𝑡, 𝜂)𝑑𝑡𝑑𝜂 − 1] 

     +𝜔1[∬ log(𝜂−1) 𝑔(𝑡, 𝜂)𝑑𝑡𝑑𝜂 − 𝑟1] + 𝜔2[𝑟2 − ∬ 𝜂−1𝑔(𝑡, 𝜂)𝑑𝑡𝑑𝜂]+[∬ 𝜔3(𝜂)(𝜂 − 𝑡)𝑔(𝑡, 𝜂)𝑑𝑡𝑑𝜂], 

where 𝜔𝑗 (𝑗 = 0,1,2,3) are the Lagrange multipliers. By using the calculus of variations, the optimal 

condition is the Euler equation given by 

−log[𝑔(𝑡, 𝜂)] − 1 + 𝜔0 +𝜔1log(𝜂−1) − 𝜔2𝜂−1 + 𝜔3(𝜂)(𝜂 − 𝑡) = 0. 

Solving the above equation together with the constraints (A2)-(A5), we obtain 

𝑔(𝑡, 𝜂) = exp (𝜔0 − 1)𝜂−𝜔1exp {−𝜔2𝜂−1 + 𝜔3(𝜂)(𝜂 − 𝑡)}.    (A6) 

Integrating out 𝑡, we obtain the marginal density function of 𝜂: 

𝜋(𝜂) = ∫ 𝑔(𝑡, 𝜂)𝑑𝑡 = exp (𝜔0 − 1)𝜂−𝜔1exp {−𝜔2𝜂−1 + 𝜔3(𝜂)𝜂}/𝜔3(𝜂).               

(A7) 

Hence, the distribution of 𝑇 conditional on 𝜂 is 𝑓(𝑡|𝜂) = 𝑔(𝑡, 𝜂)/𝜋(𝜂) = 𝜔3(𝜂)exp {−𝜔3(𝜂)𝑡}. From 

(A3), we conclude that 𝜔3(𝜂) = 1/𝜂, and hence 

𝑓(𝑡|𝜂) = 𝜂−1exp {−𝑡/𝜂}.        (A8) 

Consequently, 𝜋(𝜂) in (A7) becomes 𝜋(𝜂) = exp (𝜔0)𝜂−𝜔1exp {−𝜔2𝜂−1}. To ensure the convergence 

of the integrals in (A4) and (A5), both 𝜔1 and 𝜔2 must be positive. Therefore,  𝑔(𝑡, 𝜂) in (A6) reduces 

to 𝑔∗(𝑡, 𝜂) = 𝑐0𝜂−𝜔1exp {−(𝜔2 + 𝑡)𝜂−1}, where 𝑐0 = exp (𝜔0) is constant. Finally, integrating out 𝜂, 

we obtain the marginal density function of 𝑇 ∈ ℜ+: 
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𝑓∗(𝑡) = ∫ 𝑔∗(𝑡, 𝜂)𝑑𝜂 = ∫ 𝑐0𝜂−𝜔1exp {−(𝜔2 + 𝑡)𝜂−1}𝑑𝜂 = 𝜔2
−1(1 + 𝑡/𝜔2)−𝜔1−1. 

Hence, the underlying survival function is 𝐹∗(𝑡) = (1 + 𝑡/𝜔2)−𝜔1. This completes the proof. 

We note that constraint (A2) in the lemma is simply the normalisation condition. Constraint (A3) 

ensures that the mean of 𝑓(𝑡|𝜂) exists and is equal to 𝜂. The mean 𝜂 here is not assumed to be fully 

specified; rather, it follows an unknown distribution 𝜋(𝜂). The information about 𝜂 is expressed by the 

two moment conditions, i.e. (A4) and (A5). Constraints (A4) and (A5) are commonly used in the 

literature to derive (inverse) gamma distributions via the maximum entropy principle (Kagan, et al., 

1973; Park and Bera, 2009).  

The result in the lemma shows that when eliciting prior knowledge with limited information, the 

distribution (11) is the optimal underlying survival function in the sense of the maximum entropy.  
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